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1. Introduction

We consider differential equations

dx

dt
= F (x), x ∈ X, t � 0, (1)

where X ⊂ R
n is a nonempty convex set in which its interior IntRn X is dense. Our main results

postulate further restrictions on X .
The maximally defined solutions t �→ Φt(a), t � 0, a ∈ X , generate the local semiflow Φ :=

{Φt}t∈R+ . We refer to F (or (F , X,R
n), or (F , X,R

n,Φ)) as a system. Dynamical notions are applied
interchangeably to F and Φ .

Many biological situations are modeled by cooperative systems, meaning that

∂ F j

∂xi
� 0 for j �= i.

The biological interpretation of this is that an increase of species i tends to increase the population
growth rate of every other species j. When this holds and X is convex, Φ is monotone, meaning
it preserves the vector order. Monotonicity causes the crude dynamics to be comparatively simple;
for example, there are no attracting cycles and every orbit is nowhere dense (Hadeler and Glas [13],
Hirsch [16]).

Our goal is to show that some of the dynamical advantages of cooperative systems extend to sys-
tems having a significantly weaker property: F is coherent (another name is positive feedback system)
if the following holds:

Whenever i0, . . . , iν , ν ∈ {1, . . . ,n} are such that

iν = i0, ik−1 �= ik, and
∂ Fik−1

∂xik

�≡ 0 (1 � k � ν) (2)

then

∂ Fik−1

∂xik

is everywhere � 0 or everywhere � 0

and the set {
k ∈ {1, . . . ,n}: (∃p ∈ X)

∂ Fik−1

∂xik

(p) < 0

}

has even cardinality.

Our chief combinatorial result, Theorem 10, shows that by permuting the variables xi and changing
the signs of some of them, any coherent system can be transformed into a dynamically equivalent
system (F , X,R

n,Φ) with the following properties:

• F is not merely coherent, it has the stronger property of being quasicooperative: for any

(i0, . . . , iν) as in (2),
∂ Fik−1
∂xik

is everywhere � 0;
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• if F is not cooperative, there exists a cooperative system (F 1, X1,R
n1 ,Φ1), 1 � n1 < n, such that

the natural projection

Π : R
n → R

n1 , (x1, . . . , xn) �→ (x1, . . . , xn1 )

maps X onto X1, and Π semiconjugates F to F 1 and Φ to Φ1:

Π ◦ F (x) = F 1 ◦ Π(x), Π ◦ Φt(x) = Φ1
t ◦ Π(x) if Φt(x) is defined.

Mild geometrical conditions on X will guarantee that for each equilibrium p of F 1, the restriction of
F to X p := X ∩ Π−1(p) is equivalent to a quasicooperative system ( F̂ p, X̂ p,R

n−n1 ). This is the basis
for inductive proofs of our main results.

Examples. Let f , g,h : R → R be C1 functions. The differential equations

ẋ = f (x),

ẏ = x + g(y) − 2z,

ż = x + h(z)

generate a quasicooperative system (F ,R
3,R

3) that cannot be transformed to a cooperative system
by changing signs of variables. This type of system is called an “incoherent feedforward loop” in the
systems biology literature [2]. (The terminology in that textbook is, unfortunately, contradictory with
ours; in fact, “coherent” in [2] means the same as “monotone system” in dynamical systems language.)

More generally, a system of the general form

ẋ = f (x),

ẏ = g(x, y, z),

ż = h(x, y, z)

is coherent if either ∂ g
∂z � 0 and ∂h

∂ y � 0, or ∂ g
∂z � 0 and ∂h

∂ y � 0. Replacing y by −y makes the system

quasipositive, but if either ∂ g
∂x or ∂h

∂x changes sign, or if there is some point p = (x, y, z) such that

∂ g

∂z
(p)

∂ g

∂x
(p)

∂h

∂x
(p) < 0,

the system cannot be made cooperative by changing signs of variables.

1.1. Attractors

We call a set A ⊂ X positively invariant for Φ if Φt(a) is defined and belongs to A for all t � 0,
a ∈ A. If in addition A is nonempty and Φt(A) = A for all t � 0 then A is invariant.

A set A ⊂ X attracts a point y if the orbit closure γ (y) is compact and ω(y) ⊂ A. The set of such
points y is the basin of A. A is attracting if it is invariant and compact, and its basin is a neighborhood
of A. If in addition A has arbitrarily small positively invariant neighborhoods, A is an attractor.1 An
attractor is global if its basin is all of X . An equilibrium is globally asymptotically stable if it is the
global attractor.

Three types of attractors A have received special attention:

1 There are many definitions of “attractor” in current use, not mutually consistent. The one adopted here is equivalent to that
of Conley [8], and (for compact invariant sets) those of Hale [14] and Sell and You [38]. It is analogous to the definitions for
discrete-time systems in Smale [39] and Akin [1].
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Point attractors: A is single point, necessarily an equilibrium.
Periodic attractors: A is a cycle, i.e., a periodic orbit that is not an equilibrium.
Strange attractors, often called “chaotic”. This somewhat vague term usually signifies that A is nei-

ther an equilibrium nor a cycle, and the dynamics in A exhibits “sensitive dependence on initial
conditions”, and sometimes that A is topologically transitive, i.e., some orbit is dense in A. For some
authors chaos also require that periodic orbits be dense in A.

This paper is motivated by the question: What kind of nonequilibrium attractors A can exist in
coherent systems? Theorem 1 shows that A cannot be topologically transitive; Theorems 2 and 3 give
further dynamical information. Theorem 9 is the key combinatorial result. Results 11 to 18 contain
new dynamical results for general monotone systems.

1.2. Ordered spaces

By an ordered space we mean a topological space Z together with an order relation R ⊂ Z × Z that
is topologically closed. If x, y ∈ Z we write:

x � y and y � x if (x, y) ∈ R, x � y and y ≺ x if x � y, x �= y. (3)

The vector order in any subset of R
n is defined by

u � v ⇐⇒ u − v ∈ R
n+

where R
n+ denotes the positive orthant [0,∞)n ⊂ R

n .
A subset of an ordered space is unordered if none of its points are related by �.
Every subspace X ⊂ Z inherits an order relation from Z . If M ⊂ Z then x � M means x � y for all

y ∈ M , and similarly for the other relations in (3). For x, y ∈ X we write

x �X y if x � a neighborhood of y,

x �X y if x ≺ a neighborhood of y.

Note the notational anomaly that x�X y and y �X x are not equivalent statements for general ordered
spaces. For example, if X = R

2+ with the vector order, we have (0,0)�X (0,1) but not (0,1)�X (0,0).
On the other hand, if X ⊂ R

n is open and has the vector order then x �X y ⇔ y �X x because they
both mean xi > yi, i = 1, . . . ,n.

Let X be a subset of an ordered space Z . We call q ∈ X strongly accessible in X from above (respec-
tively, from below) if every neighborhood of q in X contains a point x �X q (respectively, x �X q).2

Some of our inductive proofs need the domain of the dynamics to have simple geometry. A con-
venient class of such sets are defined as follows. By a coordinate halfspace in R

n we mean a set of the
form

Hn(l,α, c) := {
x ∈ R

n: αxl � c
}
, l ∈ {1, . . . ,n}, α ∈ {±1}, c ∈ R.

A positive coordinate cone in R
n is a set of the form

ν⋂
j=1

Hn(l j,1, c j), 1 � l1 < · · · < lν � n.

A coordinate halfspace is a positive coordinate cone, as is R
n+ .

2 Slightly stronger properties with the same names are used in Hirsch and Smith [18].
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1.3. Statement of the main results

We call a set A finitely transitive if it is the union of the omega limit sets of finitely many members
of A. Every cycle is finitely transitive, and more generally, every orbit closure is. For example, an
irrational flow on a torus has the whole torus as a finitely transitive set.

Theorem 1. Let (F , X,R
n) be a system satisfying one of the following two conditions:

(i) F is coherent and X is open in R
n or a coordinate halfspace;

(ii) F is quasicooperative and X is open in R
n or a positive coordinate cone.

Then every connected, compact, finitely transitive attracting set is an equilibrium. In particular, there does not
exist an attracting cycle.

A stronger conclusion for monotone semiflows is proved in Theorem 18.

Theorem 2. If (F , X,R
n), n � 2, is a coherent system, every orbit is nowhere dense.

Conjecture. In a coherent system with n � 2, every orbit closure has measure zero.

Even for cooperative systems this is known only for n = 2.
A subset of a R

n is a rectangle if it has the form I1 × · · · × In where each In ⊂ R is a (nonempty)
interval (open, closed or half-open).

Theorem 3. Let (F , X,R
n) be a coherent system with X open in a rectangle, and assume there is a global

attractor. Then there exists an equilibrium q. If X is open in R
n and q is the unique equilibrium, then q is

globally asymptotically stable.

Proposition 16 extends a basic result previously known only for strongly order-preserving local
semiflows. The development of the concept “attractor” is discussed in Appendix A.

As an illustration of an application of the above theorems, we have the following example.

Example. Let K ⊂ R
n be a closed orthant and denote the corresponding open orthant by Ko := Int K.

Let F : Ko → R
n be a C1 vector field whose components have the form

Fi(x) = gi(x)

(
n∑

j=1

Mij x j + Bi

)
(i = 1, . . . ,n). (4)

The functions gi : Ko → R are nonzero everywhere, and Mij and Bi denote real constants.

A special case is the restriction of a Lotka–Volterra system to the open positive orthant Int(Rn+), for
which gi(x) = xi . Hofbauer and So [19] have found a Lotka–Volterra system in R

3+ whose restriction
to the open orthant has a global attractor containing two attracting periodic orbits; see also Lu and
Luo [25], Xiao and Li [49]. The following result says that such systems cannot be coherent:

Proposition 4. Assume the system (F ,Ko,R
n) defined by Eq. (4) is coherent and has a global attractor A ⊂ Ko .

Then A is an equilibrium.

Proof. By Theorem 3 there exists an equilibrium q and it suffices to prove that q is unique. Every
equilibrium p lies in Ko , hence all its coordinates are nonzero. As gi(p) �= 0 we therefore have

p ∈ E ⇐⇒
∑

j

Mij p j + Bi = 0 (i = 1, . . . ,n).
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Assuming p and q are distinct equilibria, we will reach a contradiction. Let L ⊂ R
n denote the line

through p and q. Then

L ∩ Ko ⊂ E .

As E is closed in A, it is a compact set in Ko , hence

L ∩ Ko ⊂ Ko.

But this not possible, because L ∩ Ko meets K\Ko . �
1.4. Motivations

To every system (F , X,R
n) there is associated a directed labeled interaction graph Γ (F ) (defined

below) with the property that F is coherent if and only if every directed loop is positive. A more
restrictive condition, for graphs that are not necessarily strongly connected, is the requirement that
all loops, directed and undirected, are positive. In that case changing the signs of certain variables
makes the system cooperative. We obtain analogous transformations for coherent systems.

In the classic and often quoted 1981 paper [46], R. Thomas conjectured that coherent systems do
not have any periodic attractors: “the presence of at least one negative loop in the logical structure ap-
pears as a necessary (but not sufficient) condition for a permanent periodic behavior”. It is frequently
claimed that Thomas’ conjecture was settled by Snoussi [40] and Gouze [12] (see e.g. Pigolotti et al.
[31]). However, these references dealt only with the more restricted monotone case. Theorem 1 im-
plies that, indeed, coherent systems do not admit periodic attractors (“persistent periodic behaviors”),
thus settling the conjecture in the positive.

A different motivation for this result comes from current research in molecular systems biology.
As discussed in Sontag [41], many biological networks, while not monotone, may still lack negative
cycles. A concrete example is that of the yeast Saccharomyces cerevisiae gene regulatory network pub-
lished in [28] (the graph may be downloaded from [52]). This network has 690 nodes and 1082
edges, of which 221 are negative and 861 are positive.3 Current knowledge does not provide a pre-
cise mathematical model of this yeast gene regulatory network. However, if one assumes that each
node represents a scalar variable such as the concentration of a protein, or even that each node rep-
resents a vector of variables whose components are intermediates (mRNA concentrations, occupancy
of transcription factor binding sites, and so forth), the corresponding system will be coherent. This
guarantees, in view of the results presented here, that there are no topologically transitive attractors.
This by itself does not preclude exotic attractors, but it means that any that exist must be much more
complex than the traditional “chaotic” attractors, such as horseshoes, as these are finitely transitive
but are not equilibria. It is known that the system is not monotone with respect to any orthant order.
This assertion can be made quantitative, in the following sense: From the algorithm described in [10],
it was estimated in [41] that one must remove, or change the sign of, approximately 43 of the edges
of the interaction graph in order to obtain a monotone system. (Later computational work, in [20],
showed that the precise minimal number of required deletions or sign changes is 42.)

2. Fibre systems

We will need to consider certain more general dynamical situations, where the domain of the local
semiflow lies in an affine subspace of R

n . Consider a system (F , X,R
n,Φ). Suppose n1 ∈ {1, . . . ,n − 1}

is such that the first n1 coordinates of F (x) depend only on the first n1 coordinates of x. This means
there is a system (F 1, X1,R

n1 ,Φ1) with the following properties:

3 In the original data set, there is one edge labeled as “neutral”; this edge was arbitrarily labeled as positive in [41], but the
conclusions do not change substantially if it is labeled as negative instead, or deleted.
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• the natural projection Π : R
n → R

n1 on the first n1 coordinates satisfies

Π(X) = X1, Π ◦ F (x) = F 1 ◦ Π(x) (x ∈ X); (5)

• Π semiconjugates the local semiflow Φ of F to the local semiflow Φ1 in X1 generated by F 1:

Π ◦ Φt(x) = Φ1
t ◦ Π(x) if Φt(x) is defined. (6)

We summarize this by saying that Π : F � F 1 is a cascade.
Now assume p ∈ E(F 1) and set

E p := Π−1(p),

which is an (n − n1)-dimensional affine subspace of R
n and a coset of the kernel of Π . The set

X p := X ∩ E p

is positively invariant under Φ , that is, Φt(x) ∈ X p provided x ∈ X p and Φt(x) is defined. Thus Φ

restricts to a local semiflow Φ p in X p .
The map

T p : R
n−n1 → E p, y �→ (p1, . . . , pn1 , y1, . . . , yn−n1 )

is an affine isomorphism. Set

X̂ p := T −1
p (X p) ⊂ R

n−n1

and define Φ̂ p as the local semiflow in X̂ p that conjugates to Φ p by T p , characterized by

Φ̂
p
t (x) = (T p)−1 ◦ Φt ◦ T p(x) if x ∈ X̂ p and Φt

(
T p(x)

)
is defined. (7)

The vector field F p : X̂ p → R
n−n1 corresponding to Φ̂ p is transformed by T p to F |X p :

(T p)′(y)
(

F̂ p(y)
) = F (p, y) (y ∈ X̂ p).

The trajectories of Φ̂ p are the maximally defined solutions to

dx

dt
= F̂ p

(
Φ̂

p
t x

)
(x ∈ X̂ p, t � 0).

Evidently the following conditions are equivalent:

• ( F̂ p, X̂ p,R
n−n1 , Φ̂ p) is a system;

• X̂ p is the closure of its relative interior in R
n−n1 ;

• X p is the closure of its relative interior in E p .

When these conditions hold for a particular p ∈ E(F 1) we call ( F̂ p, X p,R
n−n1 ) the fibre system over p.

When they hold for all p ∈ E(F 1) we say F has fibre systems over E(F 1).
For inductions on dimension we need conditions ensuring that fibre systems exist and their do-

mains have nice geometry. The following result is far from exhaustive in this regard, but it suffices for
present purposes.

Consider the following conditions on pairs (X,n):
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P1(X,n): X is open in R
n;

P2(X,n): X is open in a coordinate halfspace in R
n;

P3(X,n): X is open in a positive coordinate cone in R
n;

P4(X,n): X is open in a rectangle in R
n .

Proposition 5. Assume P j(X,n) for some j ∈ {1, . . . ,4} and let Π : (F ,R
n, X) � (F 1, X1,R

n1 ) be a cascade.

(a) Either P j(Π(X),n1) holds or else Π(X) = R
n1 .

Assume p ∈ E(F1).

(b) If j ∈ {1,4}, then P j( X̂ p,n − n1) is satisfied. If j ∈ {2,3}, then Pk( X̂ p,n − n1) is satisfied for some

k ∈ {1,2,3}. Therefore F has a fibre system ( F̂ p, X̂ p,R
n−n1 ) over p.

(c) If j ∈ {1,2,3}, every point of X̂ p is strongly accessible in R
n−n1 from above and below.

Proof. Left to the reader. �
Structure of proofs. The proofs of Theorems 1–3 have a common pattern which we now discuss. The
theorem is proved first for a cooperative system, which includes the case n = 1. The proof proceeds
by induction on n. If the coherent system in question is not cooperative, by Theorem 10 below it is
transformed, through permuting and changing signs of variables, to a dynamically equivalent system
(F , X,R

n) having the following properties:

• F is quasicooperative;
• there is a cooperative system (F 1, X1,R

n1 ) with n1 < n and a cascade Π : F � F 1 having fibre
systems over E(F 1);

• each fibre system is quasicooperative.

The inductive hypothesis implies the conclusion of the theorem holds for F 1 and each fibre system,
and this is used to complete the induction.

2.1. Local semiflows

A local semiflow Φ in a metrizable space Z is a collection Φ = {Φt}t∈R+ of continuous maps
Φt : Dt → Rt between nonempty subsets of Z , with Dt open. The notation Φt x indicates x ∈ Dt , absent
contraindications. Φ is required to have the following properties:

• The set Ω := {(t, x) ∈ R+ × Z : x ∈ Dt} is an open neighborhood of {0} × Z in R+ × Z , and the
map Ω → Z , (t, x) �→ Φt x is continuous.

• x ∈ (Φs)
−1 Dt ⇒ Φs ◦ Φt(x) = Φs+t(x).

• Φ0 is the identity map of Z .

We also say that (Φ, Z) is a local semiflow. When Φ is obtained by solving Eq. (1) each map Φt is a
homeomorphism, but this is not assumed for general local semiflows.

The orbit and omega limit set of x are respectively

γ (x) := {Φt x: x ∈ Dt}, ω(x) :=
⋂

t∈Dt

γ (Φt x),

p is an equilibrium if Φt p = p for all t . The set of equilibria is denoted by E(Φ), and by E(F ) when
Φ is generated by the vector field F .
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3. Graphs

By a directed graph Γ := (VΓ , EΓ ) we mean a nonempty finite set V := VΓ (the set of vertices)
together with a binary relation E := EΓ ⊂ V × V (the set of directed edges, usually referred to simply
as “edges”). We always assume E is totally nonreflexive i.e., (i, i) /∈ E .

An isomorphism between a pair of directed graphs is a bijection f between their vertex sets such
that f × f restricts to a bijection f∗ between their edge sets.

Our chief tool for analyzing the crude dynamics of systems (F , X,R
n) is the interaction graph

Γ := Γ (F ). This is the labeled directed graph with vertex set is V = V (Γ ) := {1, . . . ,n}, whose set of
(directed) edges is

E = E(Γ ) :=
{
( j, i) ∈ V × V : j �= i and

∂ Fi

∂x j
is not identically 0 in X

}
.

Edge ( j, i) is assigned the label h( j, i) ∈ {+1,−1, θ} according to the rule:

h( j, i) =

⎧⎪⎨
⎪⎩

1 if ∂ Fi
∂x j (x) � 0 for all x ∈ X,

−1 if ∂ Fi
∂x j (x) � 0 for all x ∈ X,

θ otherwise.

(8)

A path of length k ∈ N+ is a sequence (u0, . . . , uk) of vertices such that (u j−1, u j) is an edge for
j = 1, . . . ,k. The concatenation of an ordered pair (λ,μ) of paths,

λ = (u0, . . . , uk), μ = (uk, . . . , uk+l),

is the path

λ · μ := (u0, . . . , uk, uk+1, . . . , uk+l)

obtained by transversing first λ and then μ.
A loop of length μ ∈ N+ is a sequence of μ � 2 edges having the form

(i0, i1), (i1, i2), . . . , (iμ−1, iμ), iμ = i0.

As our graphs are totally nonreflexive, there are no self-loops: i j �= i j−1, j = 1, . . . ,μ.
A path is positive (respectively, negative) if each of its edges is labeled 1 or −1 and the product of

these labels is +1 (respectively, −1). All other paths are ambiguous.
We define three types of graphs in increasing order of generality:

Γ is positive if every edge is positive;
Γ is quasipositive if every loop has only positive edges;
Γ has the positive loop property if every loop is positive.

Paraphrasing some of the earlier definitions, we define corresponding types of systems F :

F is cooperative if Γ (F ) is positive;
F is quasicooperative if Γ (F ) is quasipositive;
F is coherent if Γ (F ) has the positive loop property.

Evidently cooperative ⇒ quasicooperative ⇒ coherent.
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The term “graph” is shorthand for “finite directed graph having edges labeled in {1,−1, θ}”. Graphs
are denoted by Greek capitals Γ,Λ, perhaps with indices. The sets of vertices and edges of Γ are
denoted by V (Γ ) and E(Γ ), respectively, and the labeling function is denoted by

hΓ : E(Γ ) → {1,−1, θ}.

We extend hΓ to the function (also denoted by h) mapping the set of paths into {1,−1, θ}, as
follows. If λ = (u0, . . . , uk) is a path of length k > 1 then

h(λ) =
{

θ if some edge of λ is ambiguous,

h(u1, u0) × · · · × h(uk, uk−1) otherwise.

Two graphs Γ,Λ are isomorphic if there is an isomorphism f : V (Γ ) → V (Λ) between the under-
lying directed graphs such that hΛ ◦ f∗ = hΓ .

Λ is a subgraph of Γ provided

V (Λ) ⊂ V (Γ ), E(Λ) ⊂ E(Γ ), hΛ = hΓ |E(Λ).

We abuse notation and denote this by Λ ⊂ Γ , saying that Λ contained in Γ .
If Λ,Λ′ are subgraphs their graph union is the subgraph with vertex set V (Λ) ∪ V (Λ′) and edge

set E(Λ) ∪ E(Λ′).
A graph Γ is connected if for each pair of distinct vertices j,k there is a sequence of vertices

j = i0, . . . , im = k such that (il−1, il) or (il, il−1) is an edge of Λ (l = 1, . . . ,m). A component of Γ is a
maximal connected subgraph. Γ is strongly connected if for any ordered pair (a,b) of distinct vertices
there is a path in Λ from a to b. When every component is strongly connected, Γ is weakly reversible
(Feinberg [11]).

These definitions imply:

• A graph with no edges is weakly reversible, but a graph with only one edge is not.
• The graph union of weakly reversible graphs is weakly reversible.
• If Γ is quasipositive, every weakly reversible subgraph is positive.

A subgraph Λ ⊂ Γ is called:

• full provided it contains all edges in Γ joining vertices of Λ,
• initial if no edge of Γ is directed from a vertex outside Λ to a vertex of Λ,
• terminal if no directed edge of Γ joins a vertex of Λ to a vertex not in Λ,
• fundamental if it is initial and strongly connected, and no other subgraph containing Λ has these

properties.

Lemma 6. The following hold for every graph:

(a) fundamental subgraphs are full;
(b) if fundamental subgraphs share a vertex, they coincide;
(c) every strongly connected initial subgraph is contained in a unique fundamental subgraph;
(d) every vertex belongs to a fundamental subgraph.

Proof. (a) and (b) follow directly from definitions. (c) is proved by showing that the graph union of
a maximal nested family of strongly connected initial subgraphs is fundamental. As a graph with a
single vertex is strongly connected and initial, (d) is a consequence of (c). �
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3.1. Graphs and systems

Let (F , X,R
n) denote a system.

Proposition 7. Assume Π : F � F 1 is a cascade, p ∈ E , and F p is a fibre system. Then:

(a) Γ (F 1) is a full subgraph of Γ (F ),
(b) Γ (F p) is isomorphic to a subgraph (not necessarily full) of Γ (F ),
(c) when F is cooperative (respectively: quasicooperative, coherent), so are F 1 and F p .

Proof. By the cascade assumption:

∂ Fi

∂x j
= 0 if i � n1 < j

(
i, j ∈ {1, . . . ,n}) (9)

and the Jacobian matrices of F have lower triangular block decompositions of the form

F ′(x) =
[

M11(x) O
M21(x) M22(x)

]
(10)

where M11(x) = (F 1)′(Πx) ∈ R
n1×n1 , and O stands for a matrix of zeroes.

(a) and (b), which imply (c), are proved by inspecting the block decomposition (10) of the matrix
of functions F ′(x). �
Proposition 8. Let Γ 1 ⊂ Γ (F ) be an initial full subgraph such that V (Γ1) = {1, . . . ,n1}. Then:

(i) There is a cascade Π : (F , X,R
n) � (F 1, X1,R

n1 ) such that Γ (F 1) = Γ 1 .
(ii) Suppose F is quasicooperative. Then F 1 and all fibre systems are quasicooperative, and if Γ1 is weakly

reversible then F 1 is cooperative.

Proof. Initiality and fullness of Γ 1 means that (9) holds. Therefore (5) defines a cascade satisfying (i).
The first assertion in (ii) follows from Proposition 7(c). The second assertion holds because Γ1 is
quasipositive, and if it is weakly reversible then every edge is in a loop and is therefore positive. �
3.2. Spin assignments

A spin assignment for a graph Γ is any function σ : V (Γ ) → {±1}. It is consistent if h(u, v) =
σ(u)σ (v) for every edge (u, v) belonging to a loop.4

Theorem 9. Γ has the positive loop property if and only if it has a consistent spin assignment.

Proof. Assume Γ has the positive loop property. Let Γ ′ be obtained from Γ by keeping the same
vertices but deleting the edges not contained in loops. Evidently Γ ′ is weakly reversible and has the
positive loop property. Moreover, if σ is a consistent spin assignment on Γ ′ it is also a consistent
spin assignment on Γ . Therefore it suffices to consider the case that Γ is strongly connected.

Claim: If λ1, λ2 are paths from a to b then h(λ1) = h(λ2) ∈ {±1}. To see this, choose a path μ from
b to a. Since every loop is positive by hypothesis, for j = 1,2 we have

1 = h
(
λ j · μ) = h

(
λ j)h(μ).

Therefore h(λ1) = h(μ) = h(λ2).

4 This terminology is not the same as in Sontag [41], which further required every edge to be consistent.
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Now fix a vertex p of Γ and for each vertex v choose a path λv from p to v . Define σ(p) = 1 and
σ(v) = h(λv), which by the claim is independent of the choice of λv . For any edge e = (u, v) we can
fix λu and define λv := λu · e. Then we have

σ(u) = h(λu), σ (v) = h(λu · e) = h(λu)h(e),

which implies h(e) = σ(u)σ (v). The converse implication is left to the reader. �
Remark. The foregoing proof can be expressed homologically. Let Λ̂ denote the 1-dimensional cell
complex corresponding to a prime subgraph Λ ⊂ Γ , having the vertices of Λ as 0-cells and the
edges of Λ as 1-cells. In the cellular chain groups of Λ̂ with coefficients in Z2 (identified with the
multiplicative group {±1}), a labeling h is a 1-cochain, spin assignments are 0-cocycles, and a spin
assignment σ is consistent for h if its coboundary is δσ = h. As the evaluation of cochains on chains
induces a dual pairing H1(Λ̂;Z2) × H1(Λ̂;Z2) → Z2, the positive loop property makes the cohomol-
ogy class of h trivial. Thus h = δσ , proving that σ is consistent.

A change of variables x �→ y is called elementary if there is a permutation i �→ i′ of {1, . . . ,n} and
an n-tuple ρ ∈ {±1}n such that yi = ρi xi′ .

Theorem 10. Assume (F , X,R
n) is a coherent system with X open in R

n or in a positive coordinate cone.
Suppose F is not cooperative. Then there is an elementary change of variables that transforms (F , X,R

n) to
a system (G, Y ,R

n) admitting a cascade Π : (G, Y ,R
n) � (F 1, X1,R

n1 ), 1 � n � n − 1, with the following
properties:

(a) (G, Y ,F
n) is quasicooperative and (F 1, X1,R

n1 ) is cooperative;
(b) Π : G � F 1 has fibre systems over the equilibria of F 1 . Each of these fibre systems is quasicooperative, and

its domain open in R
n−n1 or in a positive coordinate cone in R

n−n1 .

Proof. By Theorem 9 we choose a consistent spin assignment σ . The elementary change of variables
L : R

n → R
n ,

y = Lx, yi := σ(i)xi,

transforms (F , X,R
n) into a system

(
G, L(X),R

n)
,

such that Γ (G) and Γ (F ) have the same directed edges, but the labeling on some edges may change
sign. For every directed edge ( j, i) of Γ (G):

hΓ (G)( j, i) = sign

(
∂Gi

∂ y j

)
= σ jσi sign

(
∂ Fi

∂x j

)
σ jσihΓ (F )( j, i).

If ( j, i) belongs to a loop then hΓ (F )( j, i) = σ jσi by the consistency condition. Therefore

sign

(
∂Gi

∂ y j

)
(σ jσi)

2 = (±1)2 = 1,

showing that G is quasicooperative. After reindexing variables we assume by Lemma 6(d) that there is
a fundamental subgraph Γ 1 ⊂ Γ (F ) with vertex set {1, . . . ,n1}, 1 � n1 � n. Now apply Propositions 5
and 8. �
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4. Monotone dynamics

Throughout this section we assume:

• Φ := {Φt}t�0 is a local semiflow in an ordered metric space X ;
• Φ is monotone: x � y ⇒ Φt x � Φt y.

To simplify notation we may write x(t) := Φt x whenever Φt x is defined. It is well known for the data
in Eq. (1) that if F is cooperative and X is convex, the local semiflow Φ defined by integral curves of
X is monotone. This is a corollary of the Müller–Kamke theorem [21,29] on differential inequalities
(Hirsch [16]).

Proposition 11. The following are true for all x ∈ X :

(a) No points of ω(x) are related by �X or �X ;
(b) ω(x) is a singleton in the following cases:

(i) γ (x) is compact and there exist t∗ � 0, ε > 0 such that

t∗ < t < t∗ + ε �⇒ Φt x ≺ x or Φt x � x;

(ii) γ (x) is compact and there exists t > 0 such that

x �X Φt x or x �X Φt x.

Proof. (a) and (b)(i) are sharpenings of Hirsch and Smith [18, Theorems 1.8, 1.4], respectively. Asser-
tion (b)(ii) follows from (b)(i). �
Proposition 12. Assume A ⊂ X is attracting.

(a) If each point of A is strongly accessible in X from either above or below, then A contains an equilibrium.
(b) If each point of A is strongly accessible in X from both above and below and A ∩ E = p then A = p.

Proof. The conclusions of (a) and (b) were obtained in Hirsch [17, Theorems III.3.1 and III.3.3] under
the hypothesis that X is open in a strongly ordered Banach space. �
Proposition 13. Assume B ⊂ ω(x). Let q ∈ B be a minimal (respectively, maximal) point of B, and assume
q has a neighborhood N ⊂ X such that some point y ≺ N (respectively, y � N) is attracted to B. Then
q = infω(x) (respectively, q = supω(x)), and q = ω(y).

Remark 14. When X is a subset of R
n with the induced order and topology, then Proposition 13 has

the stronger conclusion q = ω(x). This is a consequence of Proposition 16 below.

Proof of Proposition 13. To fix ideas we assume q is a minimal point of B and y ≺ N . Notation is
simplified by setting w(t) := Φt w when w ∈ X , t � 0, and Φt w is defined.

Some point on the orbit of x lies in N and its omega limit set contains B . After replacing x by
such a point we assume x ∈ N . Therefore y ≺ x and

y(t) � x(t) (t � 0). (11)

There is a positive sequence tn → ∞ such that x(tn) ∈ N and

x(tn) → q. (12)
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Because ω(y) ⊂ B , after passing to a subsequence we have

y(tn) → b ∈ B. (13)

It follows from (11)–(13) and closedness of the order relation that b � q. Minimality of q implies
b = q, hence y(tn) → q.

Choose n0 so that y(tn0) ∈ N . If I ⊂ R+ is a sufficiently small open interval about tn0 then s ∈ I ⇒
y(s) ∈ N , hence y(s) � y. Proposition 11(b)(i) now shows y(t) converges, necessarily to q, whence
ω(y) = q. It follows from (11) that q � ω(x), hence q = infω(x). �

In the rest of this section we assume:

Hypothesis 15. X ⊂ R
n with the vector ordering.

Proposition 16. If infω(x) = p or supω(x) = p then ω(x) = p.

For strongly order-preserving local semiflows a stronger conclusion holds: Every omega limit set is
unordered (Hirsch and Smith [18, Corollary 1.9]).

Proof of Proposition 16. For each subset Σ ⊂ {1, . . . ,n} the corresponding face of R
n+ is

J := J(Σ) = {
z ∈ R

n+: zi > 0 ⇒ i ∈ Σ
}
.

When Σ �= ∅ the corresponding open face is

Jo := Jo(Σ) = {
z ∈ R

n+: zi > 0 ⇔ i ∈ Σ
}
.

Fix x, p ∈ X such that infω(x) = p or supω(x) = p; we have to prove ω(x) = p. To fix ideas we
assume p = 0 = infω(x).

Claim: Φt(x) is defined for all t � 0. It is well known that this is the case if the orbit closure of x
is compact. If it is not compact, the orbit intersects the boundary of some open ball centered at 0 in
an infinite set. Consequently ω(x) contains a point �= p, which implies the claim.

For any I ⊂ [0,∞) set Φ(I, x) := {Φt x: t ∈ I}. By the Baire category theorem there is a dense open
subset S ⊂ [0,∞) such that for each component I of S there is a unique open face Jo

I ⊃ Φ(I, x).
There is a sequence {Ik}k∈N of components of S and points tk ∈ Ik such that as k → ∞ we have

tk → ∞, x(tk) � 0, x(tk) → 0.

Passing to a subsequence we assume there is an open face Ko such that Jo
Ik

= Ko for all k, and Ko has
the largest possible dimension. Then there exists t∗ � 0 such that

t � t∗ �⇒ x(t) ∈ Ko.

For if x(t0) ∈ Ko and ε > 0 is such that x(t) /∈ Ko for t ∈ (t0, t0 + ε], then x(t′) for some t′ ∈ (t0, t0 + ε]
belongs to an open face of larger dimension, and this can only happen finitely many times.

Let N ⊂ R
n+ be a neighborhood of 0 such that N ≺ x(t∗). Since 0 ∈ ω(x), there is an interval I > t∗

such that Φ(I, x) ⊂ N ∩ K0. Then

Φ(I, x) ≺ x(t∗),

which by Proposition 11(b)(i) implies the trajectory of x(t∗) converges, necessarily to 0. Therefore
ω(x) = ω(x(t∗)) = 0. �
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Corollary 17. Assume 0 ∈ X ⊂ R
n+ . If 0 ∈ ω(x), then 0 = ω(x).

Proof. Follows from Proposition 16 because 0 = infω(x). �
Remark. We digress to interpret this result biologically. Let xi � 0 stand for the “size” of species i
(population, biomass, density, . . . ) and call S(x) := ∑n

i=1 xi the “total size”. Assume that from each
initial state x(0) ∈ R

n+ the species develop along a curve x(t) = (x1(t), . . . , xn(t)) ∈ R
n+ , t � 0, governed

by a cooperative system (suggesting symbiosis or commensalism) in R
n+ . Then:

• Let x(t) be a trajectory. If the total population does not die out, the total size is bounded above 0. That is,
either limt→∞ x(t) = 0, or else inft�0 S(t) > 0.

This follows from the contrapositive of the corollary.

The next result will be used to start the inductive proof of Theorem 1. It applies only to cooperative
systems, but the assumptions on X and A are weaker than in Theorem 1. Recall that every nonempty
compact set in an ordered space contains a maximum point and a minimum point (Ward [50]).

Theorem 18. Assume X ⊂ R
n has the vector ordering and Φ is a monotone local semiflow in X. Let A ⊂ X be

compact connected set that is attracting and finitely transitive for Φ . Then A reduces to an equilibrium in the
following cases:

(a) n = 1;
(b) some maximal point of A is strongly accessible in X from above;
(c) some minimal point of A is strongly accessible in X from below;
(d) X is open in R

n or in a positive coordinate cone.

Proof. Case (a) is trivial because every omega limit set is an equilibrium. Cases (b) and (c) can be
shown to be formally isomorphic by reversing the order relation. Property (d) implies (b). Therefore
it suffices to give the proof under assumption (b).

Henceforth q denotes a maximal point of A, assumed to be strongly accessible in X from above.
We will prove:

(i) there exists y � q with ω(y) ⊂ A,
(ii) if ω(v) ⊂ A and q ∈ ω(v) then ω(v) = q ∈ E .

Assertion (i) holds because A attracts all nearby points. To prove (ii), assume q ∈ ω(v) ⊂ A. As q is
maximal in A, it is a fortiori maximal in ω(v), whence q = supω(v) by Proposition 13. Therefore (ii)
follows from (i) and Proposition 11(b)(ii).

Now assume per contra that A �= q. Since the set A is connected, there is a sequence {ak} in A
converging to q with the property that ak �= q and ω(ak) ⊂ A. By finite transitivity of A there is a
finite set V ⊂ A such that each ak is an omega limit point of some member of V . By finiteness of V
and compactness of A we find a subsequence {bk} of {ak} and a point v ∈ V such that bk ∈ ω(v) and
hence ω(bk) ⊂ ω(v), for all k. Therefore q ∈ ω(v), whence q = ω(v) by (ii). This can only happen if
bk = q for all k, contradicting the assumption that ak �= q. �
5. Proofs of the main theorems

We will use the following fact, whose proof is straightforward, concerning an arbitrary cascade
Π : F � F 1:

• If A ⊂ X is invariant, or finitely transitive for F , then Π(A) has the same property for F 1 . Likewise, if A is
a (global) attractor for F then Π(A) is a (global) attractor for F 1 .
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Proof of Theorem 1. When F is cooperative, Φ is monotone because X is convex, and the conclusion
follows from Theorem 18.

We proceed by induction on n. The case n = 1 is trivial because every omega limit set is an
equilibrium. Assume inductively: n > 1 and the conclusion holds for smaller values of n. We can
assume F is not cooperative. By Theorem 10, after performing an elementary change of variables
we can assume there is a cooperative system (F 1, X1,R

n1 ) with 1 � n1 < n and a cascade Π : F �
F 1 having fibre systems over equilibria of F 1, and such that for every p ∈ E(F 1) the fibre system
( F̂ p, X̂ p,R

n−n1 , Φ̂ p) is quasicooperative. The geometrical conditions on the pair (X,R
n) postulated by

Theorem 1 are inherited by (Π(X),R
n) and ( X̂ p,R

n−n1 ), according to Proposition 5.
Let A ⊂ X be a compact, connected, finitely transitive attracting set. The set Π(A) ⊂ X1 has these

same properties for F 1, hence Π(A) = p ∈ E(F 1) by the inductive assumption. Thus A lies in the
invariant set X p = X ∩Π−1(p), and A is attracting and finitely transitive for Φ|X p . This local semiflow
is conjugate to Φ̂ p , which is quasicooperative. Therefore the inductive hypothesis applied to Φ̂ p shows
that A is an equilibrium. This completes the induction. �
Proof of Theorem 2. Consider first the case that F is cooperative, so that Φ is monotone by convexity
of X . Assume per contra that the orbit closure of some x ∈ X contains a nonempty relatively open
subset U of X . As X is the closure of its interior in R

n , we can take U open in R
n . Therefore ω(x)

contains points a,b such that a �X b. But this contradicts Proposition 11(a).
Now assume F is not cooperative.
By Theorem 10, after performing an elementary change of variables we assume there is a coopera-

tive system F 1 and a cascade Π : F � F 1. Suppose U is open in X and γ is an orbit of F . Then Π(U )

is open in X1 and Π(γ ) is an orbit of F 1. As F 1 is cooperative, Π(γ ) ∩ Π(U ) is not dense in Π(U ),
whence γ ∩ U is not dense in U . �
Proof of Theorem 3. If F is cooperative, as when n = 1, the conclusion follows from Proposition 12.
We proceed by induction on n, assuming that n > 1 and the theorem holds for smaller values.

We can assume F is not cooperative. By Theorem 10 and Proposition 5 we assume, after an
elementary change of variables, that there is a cascade Π : F � F 1 onto a cooperative system
(F 1, X1,R

n1 ), n1 < n, with fibre systems over equilibria of F 1, such that F̂ 1 is cooperative and each
fibre system is quasicooperative.

As in the proof of Theorem 1, the inductive hypothesis applies to F 1. Therefore there exists
p ∈ E(F 1). Applying the inductive hypothesis to F̂ p , we obtain q ∈ E(F p) ⊂ E(F ). This proves the first
assertion of Theorem 3. Now assume X is open in R

n and E(F ) = q. Then E(F 1) = p and E(F p) = q,
hence the induction hypothesis implies (i) p is the global attractor for F 1, and (ii) q is the global
attractor for Φ p . From (ii) we infer A ⊂ X p , and now (i) implies A = q. This completes the induc-
tion. �
Acknowledgments

We gratefully acknowledge the many useful suggestions made by Hal Smith, and by the anony-
mous referee.

The research reported here was partially supported by NSF grants DMS-0504557 and DMS-0614371,
AF grant FA9550-08, and NIH grant 1R01GM086881.

Appendix A. Notes on the development of the concept “attractor”

In spite of the fact that everyone who is interested in dynamics has a more or less vague intuition of what
an attractor of a map f : M → M should be, there is no generally accepted mathematical definition for this
concept even if M is a smooth manifold and f is also smooth.

H. Bothe [5]

The first mathematical use of the word “attractor” may be in Coddington and Levinson’s 1955 book
[7], where it refers to an asymptotically stable equilibrium. The term was subsequently extended to
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include attracting cycles. Today there are many definitions, usually meaning an invariant set (of some
kind) that is approached uniformly (in some sense) by the forward orbits of all (or most) points in
some neighborhood of the set.

Attractors do not occur explicitly in the work of Poincaré or Birkhoff. These authors were primarily
interested in Hamiltonian systems, which have no attractors because they preserve volume.

An early proof of existence of a unique attracting periodic orbit for a general class of systems is in
the 1942 paper of N. Levinson and O. Smith [23].5

Early computer simulations revealed what appear to be attractors. As far back as 1952, Turing
[47] published pictures of numerical simulations of a nonlinear dynamical model of cell development,
exhibiting striking pattern formation. Simulations by Stein and Ulam [42,43] and Lorenz [24] gave
persuasive pictorial evidence of complicated structure in attractors, but attracted little attention when
they were published. Hamming’s review [15] of [43] was unenthusiastic:

Many photographs of cathode ray tube displays are given, a fondness for citing large numbers of
iterations and machine time used is revealed, and a crude classification of the limited results is
offered, but there appears to be no firm new results of general mathematical interest. . .

One can only wonder what will happen to mathematics if we allow the undigested outputs of
computers to fill our literature. The present paper shows only slight traces of any digestion of the
computer output.

Much of the early theoretical work on attractors on global analysis was concerned with character-
izing them in terms of Liapunov functions and topological dynamics (e.g., Ura [48], Auslander et al.
[3], Mendelson [26], Bhatia [4]). Little was known of their internal dynamics beyond the existence of
fixed points in global attractors for flows in Euclidean space (Bhatia and Szegö [6]).

In the 1960s a number of articles on attractors and related forms of stability were inspired by Sell
[37]. In his seminal 1967 work on global analysis, Smale gave detailed constructions and analyses of
hyperbolic attractors and other invariant sets, which would later be called “chaotic” and “fractal”, and
proved them structurally stable. He called attention to the vast mixture of periodic, almost periodic,
homoclinic and other phenomena found in structurally stable attractors, even in rather simply given
systems.

“Strange attractors” were proposed in 1971 as a model of turbulence by Ruelle and Takens [33,35,
36] and Newhouse et al. [30]. The physical significance of this route to chaos is still debated.

In his controversial 1972 book on morphogenesis [44,45] the late René Thom issued a bold mani-
festo proclaiming a fundamental scientific role for attractors:

1. Every object, or every physical form, can be represented by an attractor C of a dynamical system
in a space M of internal variables.
2. Such an object possesses no stability, and for this reason cannot be perceived, unless the corre-
sponding attractor is structurally stable.
3. Every creation or destruction of forms, every morphogenesis, can be described by the disappear-
ance of the attractors representing the initial forms and their replacement through capture by the
attractors representing the final forms. This process, called catastrophe, can be described in a space
of external variables. . . .

In recent years much work has been devoted to analysis of attractors in specific classes of chaotic
systems, such as those named after Duffing, Lorenz, Hénon and Chua, and to attractors having partic-
ular topological properties, such as R. Williams’ expanding attractors (Williams [51], Plykin and Zhirov
[32]). A novel measure-theoretic type of attractor due to Milnor [27] has stimulated several papers.

Many authors have investigated attractors in infinite-dimensional systems, especially for partial
differential equations, a prime desideratum being finite-dimensional global attractors. The large liter-

5 Thanks to George Sell for this reference.
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ature includes books by Constantin et al. [9], Hale [14], Ladyzhenskaya [22], Ruelle [34], Sell and You
[38], and others.

Attractors, being objects defined by topological limiting processes, resist classification and even
description. A general theory appears quite distant.
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