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ABSTRACT OF THE DISSERTATION

Scalable and Efficient Material Point Methods on Modern Computational Platforms

by

Yuxing Qiu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2024

Professor Demetri Terzopoulos, Chair

The challenge of efficiently and plausibly simulating deformable solids and fluids

remains significant in the domains of Computer Graphics and Scientific Computing.

This dissertation presents an in-depth exploration of physics-based simulation, with an

emphasis on the Material Point Method (MPM) — a dominant technique in this arena. Our

research aims to extend the capabilities of MPM, focusing on enhancing its performance,

scalability, range of applications, and integration with emerging AI technologies. We

first summarize our development of optimized MPM leveraging GPU architectures. This

advancement accelerates scenarios involving hundreds of millions of particles in multi-GPU

computational environments. Furthermore, the thesis introduces a device-agnostic and

distributed MPM framework. This system is adept at dynamically allocating workloads

across multiple computing ranks, thus enabling simulations at unprecedented particle-count

scales. Additionally, the dissertation examines the application of physics-based simulation,

specifically MPM, in real-time contexts. It also integrates simulation with generative AI

tasks. This exploration includes developing unified frameworks for simulations, image

rendering, and natural language processing, showcasing the versatile applicability of MPM

in tackling contemporary computational challenges.
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CHAPTER 1

Introduction

As humans, we inhabit a world subject to underlying principles and laws that influence

our behaviors and interactions. Relentless research into understanding the mechanics

and rules of motion has empowered the application of physical laws and theories in

transformative ways. These advancements have had profound impact on various sectors,

from manufacturing to entertainment. In recent decades, the advent and ubiquity of

computer technologies has dramatically reshaped everyday life and yielded indispensable

tools for a wide range of applications. Concurrently, researchers and engineers have

harnessed and expanded computational capabilities to address practical challenges rooted

in physical laws. Amidst these technological advancements, physics-based simulation

stands as a pivotal discipline. Its importance is increasingly acknowledged as pivotal in

the fields of computer graphics and scientific computing.

To bring the natural phenomena of deformable solids and fluids into both virtual

and real-world applications, researchers have delved into Lagrangian and Eulerian com-

putational methods. Lagrangian Finite Element Method (FEM) is a cornerstone for

the simulation of solid-like behaviors, while the Eulerian approaches are suitable for

fluid-like behaviors. The ideas behind both methods are combined in hybrid simulations,

offering enhanced numerical stability in accurately predicting the behavior of materials

with intermediate characteristics — those that are deformable like solids, but undergo

complex changes akin to fluids. The employment of Cartesian grids in these hybrid

methods naturally handles self-collisions and achieves unified computations across dif-

ferent materials. Meanwhile, Lagrangian particles effectively track mass, momentum,

and deformation, adeptly managing significant deformations and topological variations.
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The inception of Particle-In-Cell (PIC) and Fluid Implicit Particle (FLIP) techniques in

fluid simulation has paved the way for the introduction in the last decade of the Material

Point Method (MPM), a hallmark in physics-based simulation and animation. The MPM

has demonstrated exceptional flexibility and versatility in a wide array of continuous

material simulations within a unified framework, including snow (Stomakhin et al., 2013;

Gaume et al., 2018), sand (Klár et al., 2016; Daviet and Bertails-Descoubes, 2016; Gao

et al., 2018b; Zhao et al., 2019), cloth (Jiang et al., 2017; Fei et al., 2018; Guo et al.,

2018; Montazeri et al., 2019), hair (Jiang et al., 2017; Fei et al., 2018; Guo et al., 2018),

and non-Newtonian fluids and foam (Yue et al., 2015; Ram et al., 2015; Yue et al., 2018;

Nagasawa et al., 2019).

The primary challenge in MPM applications lies in the extensive computational

requirements. First, the particle degree of freedom is generally high for most of the

applications due to the following facts: (i) The material particles carry a plethora

of attributes crucial for motion and deformation. (ii) In practice, achieving physically

accurate simulations often necessitates using hundreds of thousands to millions of particles.

This large particle count is also vital for capturing detailed material information for specific

scientific uses. Second, as a hybrid approach, the MPM involves frequent attribute transfers

between particles and grids in each computational step, numerous times within each video

frame. The necessity for C1 continuity in Eulerian interpolating functions for achieving

stability means using at least second-order spline kernels for interpolations (e.g ., quadratic

or cubic B-splines), requiring each particle to interact with multiple neighboring grid cells.

Furthermore, in 3D, each grid cell typically contains multiple particles, intensifying the

computational load. During particle-to-grid data transfers, atomic additions, essential

for simultaneous data writing by multiple particles, lead to serialization bottlenecks in

the parallelization of MPM pipelines. These concurrent particle data writings create

bottlenecks in MPM parallelizations. Moreover, the grid-to-particle transfer process,

despite not requiring atomic additions, faces performance limitations due to the random

access patterns in the particle and grid data.

To enhance simulation performance and scalability, and to broaden the applicability
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in both virtual and real-world scenarios of physics-based simulations, particularly the

MPM, this dissertation embarks on a series of innovative research investigations from

diverse perspectives.

1.1 Thesis Contributions and Overview

Massively Parallel and Scalable Multi-GPU Material Point Method.

The MPM, already implemented on contemporary architectures such as GPUs, has

seen enhancements in performance and scalability. The evolution of GPU capabilities,

particularly the advancements in scalable atomic operations, enables the execution of

numerous MPM steps in a condensed timeframe on a single GPU. Despite this, as previ-

ously discussed, the MPM inherently demands intensive computational effort, especially

in particle computations and data transfers. To further refine the MPM’s efficiency

on single GPUs, Chapter 3 introduces a reformulated MPM pipeline and a specialized

Array-of-Structure-of-Array (AoSoA) particle data structure, achieving speed improve-

ments of 2ˆ to 3ˆ over conventional MPM methods. Moreover, Chapter 3 also discusses

the expansion of the algorithm to multi-GPU settings using static partitioning and

computation-communication masking strategies. Utilizing multiple GPUs overcomes the

single GPU’s limitations in memory and computational power, enabling simulations at a

scale of 134 million particles within a minute on an 8-GPU workstation.

A Sparsely Distributed Gigantic Resolution Material Point Method.

Contrary to state-of-the-art solvers that focus on exploiting single machines for MPM

simulation scale and efficiency, Chapter 4 further aims to overcome the limitations of single

machines in terms of memory and computational power. In Chapter 4, we introduce a

device-portable distributed simulation system that can be applied to Lagrangian, Eulerian,

as well as hybrid simulation methods. The design of this system is multifaceted. The

first objective is to allow for the effortless interchange of computing devices without

altering any code. Secondly, the system is intended to expand upon existing libraries and
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incorporate a distributive sparse grid data structure to conserve device memory usage.

Thirdly, it aims to facilitate dynamic workload distributions across various machines,

thereby improving simulation efficiency and robustness. Finally, the system is intuitively

designed, ensuring its user-friendliness for engineers, scientists, and artists alike. Chapter 4

showcases the system’s capacity to customize large-scale simulations, maximizing device

resource utilization while embodying the aforementioned features.

Real-time Simulation Applications.

The aforementioned explorations, particularly the development of distributed systems,

have effectively shattered the scale barrier for the MPM. With sufficient computing re-

sources, these systems can be linked to facilitate extensive simulations. This breakthrough

led us to revisit the potential of simulation methods, especially the MPM algorithm, in

real-time applications with limited computing resources. Chapter 5 delves into various ap-

plications of physics-based simulations: (i) a physically interactive environment for robot

training, and (ii) MPM simulations within real-time interactive gaming environments.

The Material Point Method for AI Generation Tasks.

Having achieved high-performance simulations for real-time applications and detailed

large-scale simulations, we next turn our attention to the future possibilities of simulation

technology. Simulation, at its core, is a generative process that starts from an initial state

and evolves according to physical laws. This perspective leads us to consider the evolution

of 2D generation in the computer vision (CV) field as a potential roadmap for the future

of 3D generation. A notable trend in image generation is the empowerment of general

users, who lack formal training in art, to become creators through the use of AI models

and natural language. In Chapter 6, we explore the potential of bridging simulations,

images, and natural languages. Our initial trial in §6.1 involves the development of an

automatic sampler that generates data points encompassing 3D simulations, rendered

videos, and language descriptions. This effort aims to integrate various aspects of human

knowledge into a unified representation, paving the way for future large-scale model
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training and testing. Additionally, we introduce a universal representation method that is

applicable to both simulation and rendering in §6.2. This innovation enables the capture

and simulation of real-world data, including the deformation of specific objects imaged in

videos.
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CHAPTER 2

Background of The Material Point Method

MPM is a hybrid simulation method that uses particle and grid representations to

discretize the simulation domain. In this chapter, we briefly summarize the deformation

theories that MPM build upon and the basic algorithm for the MPM. We refer to (Jiang

et al., 2016) for a more detailed introduction to deformation theory and discretization

algorithms.

2.1 Deformation Theory

The motion of the material-of-interest is conceptualized as a transformation from material

point position X to their deformed configuration x. This process allows for the definition

of the deformation gradient as

FpX, tq “
Bϕ

BX
pX, tq “

Bx

BX
pX, tq. (2.1)

Different types of constitutive models, which often use the derivatives of the deformation

gradient mathbfF and its determinant, are used to explain how different materials behave.

Using JpFq to represent the determinant of F, we can compute the differentials of the

determinant as δJ “ JF´T δF. Accordingly, we can write the derivative as

BJ

BF
“ JF´T . (2.2)

The simulation cases happen mostly in 2D or 3D, in which cases F is a 2D or 3D matrix,

and JF´T can be written as another matrix represented by the polynomial of F’s entries.
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According to that, we can compute the other differentials according to the concrete

requirements of the constitutive models.

With SVD computations being generally involved in constitutive computations, another

commonly used differential is the differential of F’s SVD results. The SVD of F is

represented as

F “ UΣVT . (2.3)

Here, U and V are rotation matrix, which means UTU “ I and VTV “ I. Taking

differentials on both sides of Equation 2.3, we get

δF “ δUΣVT
` UδΣVT

` UΣδVT . (2.4)

According to UTU “ I and VTV “ I, we have

0 “ δUTU ` UT δU, (2.5)

0 “ δVTV ` VT δV. (2.6)

According to Equation 2.3, we can compute the δΣ as δΣ “ UT δFV´UT δUΣVTV´

UTUΣδVTV. After simplification, we have

δΣ “ UT δFV ´ UT δUΣ ´ ΣδVTV. (2.7)

Then, by substituting Equation 2.5 and Equation 2.6 we know that the diagonal entries

of UT δU and VT δV are zeros. Thus, we can rewrite the δΣ as:

δΣ “ diagpUT δFV ´ UT δUΣ ´ ΣδVTVq

“ diagpUT δFVq.
(2.8)
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Notation Meaning Relation to E, ν

E Young’s modulus
ν Poisson’s ratio
µ Shear modulus µ “ E

2p1`νq

λ Lamé modulus λ “ Eν
p1`νqp1´2νq

κ Bulk modulus κ “ E
3p1´2νq

Table 2.1: Material Parameters.

2.2 Constitutive Models

In this section, we introduce several commonly used constitutive models in this dissertation.

The commonly used parameters in discussing the constitutive models are summarized in

Table 2.1.

To simulate the deformation behaviors of different materials, we use different consti-

tutive models. In detail, a given constitutive model describes how the internal forces

are generated from material deformations, or, in other words, how the material stresses

are computed from the material strain. With these internal forces computed, plus the

influences of external forces (such as winds and gravity), we are able to compute the

acceleration of discretized material parts. Then, according to the governing motion

equations, we can further compute the velocities and advect material parts to different

positions. By recording the evolution process of material point positions, we achieve the

simulation of the objects with corresponding materials.

Generally, continuum mechanics uses energy density functions according to material

deformation gradients (ΨpFq) to present constitutive models that depict elastic defor-

mations. Accordingly, we can compute the first Piola-Kirchoff stress, P, according to

P “ BΨ
BF

. For any general isotropic elastic materials, we can further compute the Cauchy

stress through

σ “
1

J
PFT

“
1

detpFq

BΨ

BF
FT .

(2.9)

The plasticity is generally modeled as a constraint on the deformation gradient. By

8



decomposing F into an elastic and a plastic part (i.e. F “ FEFP ), we can have the

material parts “remembering” the elastic deformations FE and consider FP as the new

local rest state of the material. Changing the rest configuration setups, we actually enforce

permanent deformations on the material.

Fixed Corotated Elasticity. The First Piola-Kirchoff stress, P , is defined as

P “ 2µpF E
´ Rq ` λpJ ´ 1qJF E´T

, (2.10)

where R “ UV T and F E
“ UΣV T is the singular value decomposition of elastic

deformation gradient. J is the determinant of F E (Jiang et al., 2015).

StVK Elasticity. The irst Piola-Kirchoff stress, P , is defined as

P “ U
`

2µΣ´1ϵ ` λ sumpϵqΣ´1
˘

V T , (2.11)

where ϵ “ logpΣq and F E
“ UΣV T (Klár et al., 2016).

Neo-Hookean Elasticity. The First Piola-Kirchoff stress, P , is defined as

P “ µpF E
´ F E´T

q ` λ logpJqF E´T
, (2.12)

where J is the determinant of F E (Jiang et al., 2015).

Drucker-Prager Plasticity. The return mapping of Drucker-Prager plasticity for sand

(Klár et al., 2016) is, given F “ UΣV T and ϵ “ logpΣq,

F E
“ UZpΣqV T , (2.13)
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ZpΣq “

$

’

’

’

&

’

’

’

%

1, sumpϵq ą 0,

Σ, δγ ď 0, and sumpϵq ď 0,

exp
´

ϵ ´ δγ ϵ̂
}ϵ̂}

¯

, otherwise.

(2.14)

Here δγ “ }ϵ̂} ` α pdλ`2µq sumpϵq

2µ
, α “

b

2
3

2 sinϕf

3´sinϕf
, and ϕf is the friction angle. ϵ̂ “ devpϵq.

Von-Mises Plasticity.

Similar to Drucker-Prager plasticity, given F “ UΣV T and ϵ “ logpΣq,

F E
“ UZpΣqV T ,

where

ZpΣq “

$

&

%

Σ, δγ ď 0,

exp
´

ϵ ´ δγ ϵ̂
}ϵ}

¯

, otherwise,
(2.15)

and δγ “ }ϵ̂}F ´
τY
2µ
. Here τY is the yield stress.

Herschel-Bulkley Plasticity. We follow Yue et al. (2015) and take the simple case

where h “ 1. Denote strial “ devpτ trialq, and strial “ ||strial||. The yield condition is

Φpsq “ s ´

b

2
3
σY ď 0. If it is violated, we modify strial by

s “ strial ´

˜

strial ´

c

2

3
σY

¸

{

ˆ

1 `
η

2µ∆t

˙

.

s can then be recovered as s “ s ¨ strial

||strial||
. Define bE “ F EF ET

. The Kirchhoff stress τ is

computed as

τ “
κ

2

`

J2
´ 1

˘

I ` µ dev
”

detpbEq
´ 1

3bE
ı

.

2.3 The MPM Algorithm

In the MPM context, a continuum body is discretized into a set of Lagrangian particles

(i.e. material points). The particles hold physical attributes to depict the motion and
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the deformation of the material. These attributes typically include mass (mp), velocity

(vp), deformation gradient (F p), and affine momentum (Cp). The grid nodes, on the

other hand, generally store mass (mi) and momentum (mivi) that are transferred from

particles. In other words, the Eulerian grids are treated as auxiliary scratchpad variables

to perform spatial derivative computations and boundary condition enforcement.

With the basic first-order explicit MPM time integration scheme, we discretize the

time into a sequence of time steps t “ 0, t1, t2, . . .. A fixed time-step size ∆t is adopted

according to the CFL condition.

Based on the notations mentioned before, let mp, x
n
p , vn

p , F n
p , τ n

p , and Cn
p denote the

mass, position, velocity, deformation gradient, Kirchhoff stress, and affine momentum on

particle p at time tn, while mn
i , xn

i and vn
i refer to the mass, position, and velocity on

grid node i at time tn. In this dissertation, we assume the particle masses are invariant

according to the mass conservation law. The explicit MPM algorithm can be summarized

as below:

1. Particles-to-Grid (P2G) Compute grid mass and momentum from particles. In

this dissertation, the Affine Particle-in-Cell (APIC) transferring scheme (Jiang et al.,

2015) is applied by default. Also, the particle elastic stress force contributions are

computed and transferred to the grid nodes (first term of Eq. (2.17)).

mn
i “

ÿ

p

wn
ipmp, mn

i v
n
i “

ÿ

p

wn
ipmp

`

vn
p ` Cn

p

`

xi ´ xn
p

˘˘

,

τ n
p “ τ pF E,n

p q.

(2.16)

2. Grid Update. Update grid velocities based on external forces (second term of

Eq. (2.17)). Also, we apply boundary conditions by restricting the momentum

(or velocities) of specific grid nodes in this step according to specific application

requirements.

vn`1
i “ vn

i ´
∆t

mi

ÿ

p

τ n
p∇wn

ipV
0
p ` ∆tg. (2.17)

3. Transfer Grid to Particles. Transfer velocities from grid nodes back to particles
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and advect particle positions with their new velocities.

vn`1
p “

ÿ

i

vn`1
i wn

ip, xn`1
p “ xn

p ` ∆tvn`1
p (2.18)

In addition, evolve particle strains (deformation gradient):

∇vn`1
p “

ÿ

i

vn`1
i ∇wn

ip
T , F E, tr

p “ pI ` ∇vn`1
p qF E,n. (2.19)

According to the APIC (Jiang et al., 2015), we also need to update the affine

momentum (Cp). Here b is the B-spline degree, and ∆x represents the Eulerian

grid cell size.

Cn`1
p “

12

∆x2pb ` 1q

ÿ

i

wn
ipv

n`1
i

`

xn
i ´ xn

p

˘T
, (2.20)
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CHAPTER 3

A Massively Parallel and Scalable Multi-GPU

Material Point Method

Harnessing the power of modern multi-GPU architectures, we present a massively parallel

simulation system based on the Material Point Method (MPM) for simulating the physical

behaviors of materials undergoing complex topological changes, self-collision, and large

deformations. Our system makes three critical contributions. First, we introduce a new

particle data structure that promotes coalesced memory access patterns on the GPU

and eliminates the need for complex atomic operations on the memory hierarchy when

writing particle data to the grid. Second, we propose a kernel fusion approach using a new

Grid-to-Particles-to-Grid (G2P2G) scheme, which efficiently reduces GPU kernel launches,

improves latency, and significantly reduces the amount of global memory needed to store

particle data. Finally, we introduce optimized algorithmic designs that allow for efficient

sparse grids in a shared memory context, enabling us to best utilize modern multi-GPU

computational platforms for hybrid Lagrangian-Eulerian computational patterns. We

demonstrate the effectiveness of our method with extensive benchmarks, evaluations,

and dynamic simulations with elastoplasticity, granular media, and fluid dynamics. In

comparisons against an open-source and heavily optimized CPU-based MPM codebase

(Fang et al., 2019) on an elastic sphere colliding scene with particle counts ranging

from 5 to 40 million, our GPU MPM achieves over 100ˆ per-time-step speedup on a

workstation with an Intel 8086K CPU and a single Quadro P6000 GPU, exposing exciting

possibilities for future MPM simulations in computer graphics and computational science.

Moreover, compared to the state-of-the-art GPU MPM method (Hu et al., 2019a), we

not only achieve 2ˆ acceleration on a single GPU but our kernel fusion strategy and
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Figure 3.1: Crushing concrete. Our system enables this concrete crushing simulation
(inspired by the hydraulic press) on a single workstation with 4 NVIDIA Quadro P6000
GPUs. This simulation contains 93.8 million particles on a 10243 grid, achieving a 3.9
min/frame performance. (Left) A concrete-style render. (Middle) Coloring by GPU.
(Right) Coloring by the plastic volumetric strain for visualizing the damage propagation.

Array-of-Structs-of-Array (AoSoA) data structure design also generalizes to multi-GPU

systems. Our multi-GPU MPM exhibits near-perfect weak and strong scaling with 4

GPUs, enabling performant and large-scale simulations on a 10243 grid with close to 100

million particles with less than 4 minutes per frame on a single 4-GPU workstation and

134 million particles with less than 1 minute per frame on an 8-GPU workstation.

3.1 Introduction

The Material Point Method (MPM) provides significant potential and opportunities to

exploit parallelism on modern computing architectures. To date, most work on MPM

performance has focused on how to thread the algorithm on conventional CPUs and, to a

lesser extent, has attempted to exploit domain decomposition via the Message Passing

Interface (MPI). This line of work includes threading particle and grid operations as well

as handling the transfer of data between particles and grids, which often results in a

bottleneck when parallelized. With the advent of modern accelerator architectures such

as GPUs, enough memory and bandwidth are available on the accelerator to perform

MPM simulations with the significant number of particles and grid cells needed for
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generating expansive and high-resolution visual scenes. These new accelerator performance

capabilities, including advances in native support for scalable atomic operations on floating-

point numbers, result in the ability to perform a relatively large number of computations

in a relatively small amount of computing time on a single GPU.

However, the memory and computing power of a single GPU is not limitless. To the

best of our knowledge, no prior work has attempted to develop a performant algorithm

for MPM that utilizes multi-GPUs in a shared memory context. Given numerous multi-

GPU platforms being deployed by vendors both in server and workstation configurations,

algorithm development for multi-GPUs will enable us to perform even larger-scale simula-

tions at a significantly reduced computing time on what could be considered commodity

hardware. Re-designing MPM algorithms for multi-GPUs is non-trivial. First, as a hybrid

simulation method, MPM involves complex operations on particles, grids, and the transfer

of data between them. Compared to developing a scalable single GPU algorithm, algo-

rithms utilizing multi-GPUs require inter-GPU communications to program the majority

of these operations. Second, MPM simulations usually target scenarios with explosions,

fractures, highly deformable solids, and fluids. For such highly dynamic problems, the

particle population will fluctuate in time as a function of space and therefore incur load

imbalance when multiple devices are used.

To further increase the computational power available to perform MPM simulations in

both single- and multi-GPU execution contexts, we make three novel contributions. First,

we reformulate the conventional GPU-based MPM pipeline with a fused G2P2G kernel

function, which not only enables both single- and multi-GPU performance gains, but is also

generalizable to prior MPM designs (Wolper et al., 2019; Fang et al., 2019). Secondly, we

develop a specialized Array-of-Structs-of-Array (AoSoA) particle data structure tailored

for our G2P2G kernel utilizing the delayed-ordering technique that maximizes bandwidth

efficiency. Finally, we propose a domain-decomposition-invariant computation scheme

tailored for multi-GPUs, which significantly reduces the additional memory overhead due

to PCIe connections among GPUs. As a result, our method outperforms the heavily

optimized state-of-the-art single-GPU MPM implementation (Hu et al., 2019a; Gao et al.,
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Figure 3.2: Bomb falling. We run the bomb falling test on 8 GPUs with 134M particles
(6,688 bombs with nonlinear finite-strain hyperelastic constitutive models) and grid
resolution 512ˆ2048ˆ512. On average, each frame is finished within 1 minute, indicating
the scalability of our proposed multi-GPU MPM pipeline.

2018b) with a 2ˆ speedup and achieves almost linear scaling on multi-GPUs. Moreover,

we accomplished large-scale MPM simulations with truly enormous particle and grid cell

counts.

We organize this chapter as follows. We review related work in §3.2, serving as the basis

for our comparisons to the state-of-the-art. In §3.3, we introduce our improved single-GPU

algorithm and outline the kernel fusion procedure and data structure details. In §3.4, we

present the new multi-GPU algorithm and include a discussion of memory management

and communication, while details on the implementation of our code are provided in §3.5.

In §3.6, we present results on an extensive selection of benchmarks using a variety of

materials. We also include an analysis of both strong and weak scaling of our algorithm

as a function of the number of GPUs, which shows significant performance improvements

over the state-of-the-art in GPU implementations as well as significant performance gains

when using the GPU algorithm relative to a highly optimized CPU implementation.

Finally, in §3.7, we conclude the chapter with a discussion of the limitations of our new

algorithm and the resulting avenues for future work.
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3.2 Related Work

3.2.1 HPC-Based Simulations in Computer Graphics

Parallelized Solvers The rapid development of modern CPU and GPU architectures

makes it possible to accelerate physics-based simulation by parallelizing existing algorithms

using threads, domain decomposition, or some combination thereof. A basic approach to

parallelism executes an algorithm using multiple threads on multiple CPU cores on a single

node, supported by shared memory programming models such as Intel TBB (Willhalm and

Popovici, 2008) and OpenMP (Dagum and Menon, 1998). Recent examples include that

of Li et al. (2019b), which performs domain decomposition within an optimization time

integrator for CPU-based parallel evaluation and factorization of subdomain Hessians.

To achieve even better performance, researchers have developed parallel simulation

algorithms for the GPU, which enables more floating-point operations on a per-Watt

and per-dollar basis when compared to traditional multi-core CPU architectures. In

literature, parallelization of large-scale simulations in fluid dynamics, such as Eulerian

fluids (Chentanez and Müller, 2011, 2013; Cohen et al., 2010; Pfaff et al., 2010), Lagrangian

fluids (Goswami et al., 2010; Vantzos et al., 2018; Winchenbach et al., 2016; Amada

et al., 2004; Macklin et al., 2014), and the hybrid Eulerian-Lagrangian solvers (Wu et al.,

2018; Chentanez et al., 2015), have all been implemented on a single GPU. For GPU

simulations of solid mechanics, Gao et al. (2018b) and Hu et al. (2019a) implement the

high-performance Moving Least Squares MPM (Hu et al., 2018), and Bernstein et al.

(2016) and Hu et al. (2019a) explore parallel Finite Element Method (FEM) techniques.

Due to the ever-increasing demand for computational resources and new hardware

releases by vendors, developing multi-GPU solutions is an inevitable trend for physics-

based simulations to utilize modern computing hardware effectively. Recent work, such

as multi-GPU-based Smoothed Particle Hydrodynamics (SPH) (Verma et al., 2017;

Rustico et al., 2012; Domı́nguez et al., 2013; Xiong et al., 2013), FEM (Li et al., 2020a),

and parallelized Poisson equation solvers (Ament et al., 2010; Liu et al., 2016), has

demonstrated the plausibility of physics-based simulation on multi-GPU platforms.
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Another stream of high-performance physics-based simulation utilizes distributed

platforms; i.e., cloud-based simulation. Early work commonly makes use of MPI to

assign computing tasks to distributed nodes automatically. To better adapt to large

topological changes that can occur during a simulation, methods for fluid load balancing

in cloud-based simulations are proposed (Mashayekhi et al., 2018; Shah et al., 2018a),

showing significant potential to achieve high-performance distributed fluid animations.

Efficient Data Structures From the Eulerian viewpoint, the MPM simulation domain

is represented by a discretized structured grid where the volumetric data involved is

often spatially sparse in large-scale 3D simulations due to dynamic particle populations.

This fact has inspired extensive studies on hierarchical and sparse data structures (Liu

et al., 2018; Museth, 2013; Hoetzlein, 2016; Setaluri et al., 2014) to create efficient data

access patterns that mitigate the effects of sparsity. For instance, OpenVDB (Museth,

2013), one of the most popular sparse storage schemes in computer graphics, dynamically

arranges blocks of a grid in a hierarchical manner similar to B+ tree. Hoetzlein (2016)

extends this idea further on GPU and proposes GVDB Voxels with an efficient memory

pooling architecture to support dynamic topology changes. Alternatively, SPGrid (Setaluri

et al., 2014; Gao et al., 2018b) has proven to be a promising data structure in both

MPM (Hu et al., 2018; Aanjaneya et al., 2017) and other fluid simulations (Aanjaneya

et al., 2017; Liu et al., 2016; Setaluri et al., 2014). Additionally, methods such as

spatial-temporal coherent spatial hashing are also explored to take advantage of the

spatial sparsity (Tang et al., 2016; Weller et al., 2017; Wang, 2018). Recently, Hu et al.

(2019a) introduce the Taichi programming model, which exposes high-level interfaces

for developing and processing spatially sparse multi-level data structures and benefits

researchers by eliminating redundant work in data and performance management.

On the other hand, from the Lagrangian viewpoint, particle information is generally

unstructured and stored in an Array-of-Structure (AoS) (Hu et al., 2019a) or Structure-

of-Array (SoA) (Gao et al., 2018b) compact layout. SoA promotes coalesced memory

accesses of particle data when sequential threads access sequential memory addresses.
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However, the particles need to be re-sorted after each time step to maintain such an

efficient data access pattern (Gao et al., 2018b). SoA is less efficient in gather/scatter

operations such as serialization, where long strides in memory are needed to access all

data for a single particle, resulting in the use of multiple memory pages. In contrast, AoS

maps more readily to the concept of a particle and performs well in cases of un-coalesced

memory access patterns due to the locality of the data for a single particle. However, such

a memory layout prevents coalesced reads and writes of particle data, thereby significantly

inhibiting both GPU and vectorized CPU performance when coalescing is possible. To

exploit both the advantages mentioned above and mitigate the disadvantages, we propose

an MPM-centric Array-of-Structs-of-Array (AoSoA) data structure for better performance,

which possesses the qualities of both SoA and AoS. Inspired by the Hierarchical Particle

Buckets introduced by Hu et al. (2019a) and Bailey et al. (2013), we store particles’ data

in a hierarchical manner with AoSoA. The particles are reorganized in low-level bins and

high-level block-buckets to conserve the efficiency of both the memory access and the

data transfer.

3.2.2 The Material Point Method in Computer Graphics

Introduced by Sulsky et al. (1994, 1995), the MPM is an extension of Hybrid-Fluid-

Implicit-Particle (FLIP) (Brackbill and Ruppel, 1986; Zhu and Bridson, 2005) from fluid

animation in hydrodynamics to general elastoviscoplastic materials simulation in solid

mechanics. As one of the most promising discretization choices in physics-based simulation,

MPM has been used for simulating numerous materials and diverse phenomena. Prior

work includes snow (Stomakhin et al., 2013; Gaume et al., 2018), granular materials (Klár

et al., 2016; Daviet and Bertails-Descoubes, 2016; Gao et al., 2018b; Zhao et al., 2019),

viscoelastic solids (Fang et al., 2019), cloth (Jiang et al., 2017; Fei et al., 2018; Guo et al.,

2018; Montazeri et al., 2019), hair (Jiang et al., 2017; Fei et al., 2018; Guo et al., 2018),

and non-Newtonian fluids and foam (Yue et al., 2015; Ram et al., 2015; Yue et al., 2018;

Nagasawa et al., 2019). Additionally, other complex phenomena have been simulated with

MPM including melting (Stomakhin et al., 2014; Gao et al., 2018b), baking (Ding et al.,
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Figure 3.3: Candy bowl. We show how to gather a bowl of candies by pouring 6786
candies from a tube. This simulation runs on 4 GPUs with 23M particles and grid
resolution 1024 ˆ 1024 ˆ 512. Each frame is simulated with approximately 4 seconds,
demonstrating the acceleration achieved by our algorithm to simulate and generate
large-scale scenes that cannot be efficiently processed using traditional MPM on smaller
computing systems.

2019), topological changes and fracture (Wretborn et al., 2017; Wang et al., 2019; Wolper

et al., 2019), multiple-material interaction (Tampubolon et al., 2017; Hu et al., 2018; Gao

et al., 2018a; Yan et al., 2018; Han et al., 2019), frictional contact and collision (Ding and

Craig, 2019), etc. Recently, GPU-based acceleration (Gao et al., 2018b; Hu et al., 2019a),

as well as spatially (Gao et al., 2017; Yue et al., 2018) and temporally (Fang et al., 2018)

adaptive methods have been proposed to improve the computational efficiency of MPM.

Prior work on GPU MPM has focused on the design of GPU-tailored data structures

for both particles and grids, as well as the corresponding mathematical operations to

achieve better performance; each sub-step is redesigned for GPU (largely using CUDA

up to this point). For instance, both Gao et al. (2018b) and Hu et al. (2019a) reduce

write conflicts during the Particles-to-Grid (P2G) transfer, either by CUDA warp-level

reductions (Gao et al., 2018b) or the random-shuffling of particles inside each block

(Hu et al., 2019a). As reported in these papers, using GPUs can considerably improve

performance compared to traditional CPU-based MPM.

3.2.3 Data Structures and Simulations in HPC

AoSoA Particle data structures are largely responsible for CPU and GPU performance as

they dictate memory access patterns when parallelizing codes via threading or vectorization.
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The most commonly adopted memory layouts in HPC are SoA and AoS. Specifically,

in terms of particle data layouts, SoA stores all particle data components (e.g ., mass,

each velocity direction, etc.) in separate arrays, ensuring coalesced memory access when

reading/writing the same component of adjacent particles. However, when performing non-

coalesced operations like particle-grid transfers, additional sorting methods are required

to maintain particle order to guarantee that consecutive thread indices access consecutive

particle indices (Gao et al., 2018b). In contrast, AoS reduces the need for sorting in

non-coalesced operations, since its improved memory locality has better performance when

randomly accessed. However, the same data components of adjacent particles are no longer

adjacent in memory (Hu et al., 2019a), resulting in a non-coalesced data access pattern

even when coalescing would otherwise be possible. To take advantage of both the AoS

and SoA layouts, researchers have proposed AoSoA to achieve both coalescing/vectorizing

data access patterns whenever possible and to improve performance via memory locality

when it is not (Wald, 2010; Weber and Goesele, 2014). §3.3.2 discusses the implementation

of AoSoA in greater detail.

HPC Simulation Frameworks For scientific simulations in HPC, accelerators are

already being adopted broadly with a number of the current top supercomputers leveraging

GPU hardware to achieve the majority of their performance (TOP500.org, 2019). In these

types of supercomputing configurations, thousands of accelerators are combined with a

high-speed interconnect with the goal of reaching exascale-class levels of floating-point

operations in the next few years. To achieve portability across the variety of accelerator

architectures in use in modern supercomputers, several programming models, libraries,

and frameworks have been developed to allow for the manipulation of data structures (e.g .,

AoS vs. SoA) and parallel loop patterns based on the underlying hardware. Examples

of performance portability programming models include Kokkos (Edwards et al., 2014)

and its derivative libraries Cabana (Slattery et al., 2021), a portable library for writing

multi-GPU particle simulations via the AoSoA data structure as well as multi-GPU

grid-based simulations which can be used to implement hybrid particle-in-cell algorithms
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such as MPM. Other examples include SMILEI (Derouillat et al., 2018), an open-source

multi-purpose Particle-In-Cell (PIC) implementation that has been applied to a wide

range of physics studies, from astrophysical plasma to relativistic laser-plasma interaction.

An analysis of the accelerated machines on the TOP500 list, as mentioned above,

and a review of the computational patterns in libraries (such as Kokkos and Cabana)

reveal that multi-GPU programming on such machines is relegated mainly to a single

GPU per MPI rank. Such a programming model allows for a more straightforward

description of parallelism and more accessible programming. However, in the case of

many simulation algorithms such as MPM, it forces the application more quickly into the

strong scaling limit by further subdividing the problem into smaller pieces. By developing

a multi-GPU shared memory programming model in this work, we aim to gain additional

performance on modern supercomputers by reducing the number of subdomains needed

for parallelization, thus increasing the number of GPUs per MPI rank and reducing the

dependence on the performance of the network, including its bandwidth and latency. The

multi-GPU advancements in this work are particularly important for machines such as

Summit (Facility, 2018) as a subset of the GPUs on each compute node has a significantly

faster local interconnect than the PCI connection and therefore would strongly benefit

from the MPI-free algorithm presented here.

3.3 Improved Single-GPU Algorithm

Before introducing our algorithmic improvements, we first summarize the essential steps

of a conventional first-order MPM time integration scheme for incremental dynamics from

tn to tn`1 (∆t “ tn`1 ´ tn).

1. Particles-to-Grid (P2G).

Transfer mass and momentum from particles to grid nodes: tmp,mpv
n
p u Ñ tmi,miv

n
i u;

2. Grid Update.

Update grid velocities with either explicit or implicit time integration: vn
i Ñ vn`1

i ;
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3. Grid-to-Particles (G2P) and Particle Advection.

Transfer velocities from grid nodes to particles, evolve particle strains, and project

particle deformation gradients for plasticity (if any). Update the particle positions

with their new velocities: tvn`1
i u Ñ tvn`1

p ,F n`1
p u, tpn

p ,v
n`1
p u Ñ tpn`1

p u;

4. Partition Update.

Maintain the sparse data structure topology by updating the active-block array and

the mapping from block coordinates to array indices.

Typically, each particle has several attributes including mass mp, position xp, velocity

vp, deformation gradient Fp, initial volume V 0
p , and the affine matrix Cp, which is the

same as the velocity derivative matrix in MLS-MPM (Hu et al., 2018). On the grid, each

node generally stores the grid mass mi and the momentum mivi, from which the nodal

velocity vi can be calculated.

For the grid data structure, we use the GPU-SPGrid (Gao et al., 2018b), a variant of the

CPU-based SPGrid (Setaluri et al., 2014). Although both GPU- and CPU-based SPGrid

use SoA layout for blocks, their underlying arrangements of blocks are fundamentally

different. CPU-based SPGrid (Setaluri et al., 2014) leverages the extensive hardware

acceleration mechanisms inherent in the virtual memory system for performant sequential

and stencil operations on grid data. The GPU-based SPGrid (Gao et al., 2018b), on the

contrary, explicitly manages grid blocks with spatial hashing, which maps spatial block

coordinates to block indices in an array. Both structures can maintain the sparsity of

the grid and minimize the memory footprint. In this work, we use the quadratic B-spline

weighting kernel for both mass and velocity transfers between particles and grids, and

therefore each particle is associated with 3 ˆ 3 ˆ 3 grid nodes in 3D (3 ˆ 3 in 2D). However,

our algorithm works for all typical interpolating kernels that use compact stencils.

When parallelizing MPM algorithms, the general concern about the performance is

the transfer operations between particles and grids, i.e., P2G and G2P. These sub-steps

become even more crucial to the performance of implicit schemes where significantly

more transfer operations are required. Below, we present two techniques to accelerate
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the transfer operations: 1) Grid-to-Particles-to-Grid (G2P2G), an innovative and fused

algorithmic kernel, and 2) Array-of-Structs-of-Array (AoSoA), a new application of a

particle data structure with an associated parallel loop strategy.

3.3.1 G2P2G

Similar to many PIC/FLIP-based solvers, the MPM method uses particles to represent

discrete Lagrangian elements of the simulated continuum material and employs the

Eulerian background grid as the auxiliary scratchpad to compute spatial derivatives

and apply boundary conditions. Within a conventional MPM formulation, the particle

states are the primarily evolved quantities. When parallelizing the MPM algorithm,

the computations in all the sub-steps (i.e., P2G, grid update, G2P, particle advection,

and partition update) are implemented in separate GPU kernels. Prior methods adopt

GPU-tailored data structures for particles and grids and reduce write-conflicts during P2G,

either through CUDA warp-level reductions (Gao et al., 2018b) or by randomly shuffling

particles inside each block (Hu et al., 2019a). Although each kernel is highly optimized,

the synchronization of the grid state required by the grid update incurs the separation of

kernels, hindering the GPU MPM performance. This limit calls for additional treatments.

To further reduce the latency on modern GPU architectures, reordering the traditional

time-stepping strategy and combining several kernels are necessary. In each traditional

MPM time step, particle quantities have to be streamed in and out of the GPU global

memory for multiple times, i.e., in P2G and G2P. Unlike the GPU MPM kernels

implemented by Gao et al. (2018b) where Fp is updated at the end of the G2P kernel,

Hu et al. (2019a) reorder the pipeline by moving the update of Fp to the beginning of

the P2G kernel before the P2G transfer to reduce the redundant particle data accesses.

With this modification, the evolved Fp can be reused immediately inside the P2G kernel,

thus removing the operations to write and reload the updated Fp to and from the GPU

global memory in both the current G2P kernel and the next P2G kernel. Using a similar

strategy, we could further reorder the traditional MPM time step and reformulate a new
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Figure 3.4: MPM pipeline reformulation. The left column shows the traditional
MPM pipeline, and the middle one illustrates an analysis of data dependencies among
the sub-steps. The exchange of the update partition at the current time step k and the
P2G at the next time step k ` 1 would not break the data dependency or the execution
correctness, making it possible to reorder and assemble the G2P and the P2G to form a
more efficient G2P2G kernel, as shown on the right.

kernel for better efficiency.

We start by analyzing the data dependencies among adjacent MPM sub-steps. As

shown in the left column of Fig. 3.4, we observe some order constraints on data depen-

dencies and execution orders of the sub-steps: 1) The P2G must be finished before the

grid update, and the G2P is performed after all the grid states been evolved. 2) The

partition update, wherein the particle-grid mapping and the sparse grid data structure are

maintained, depends only on the results of G2P, i.e., the advected particle positions. 3)

The P2G transfer relies on the particle-grid mapping, i.e., particles need to know to which

grid nodes they should rasterize to, which leads to the dependency between the partition

update in the current time step k and the P2G in the next time step k ` 1. The first two

observations exhibit strict data dependencies, which are unchangeable to ensure correct

computations. The third one, however, is a weak dependency, since the particle-grid
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mapping can be staggered differently. Therefore, we can reformulate the execution order of

the sub-steps for better performance should the strict data dependencies were preserved.

Following the above analysis, we devise a novel G2P2G kernel by grouping the G2P

in time step k and the P2G in time step k ` 1 together; see Fig. 3.4 for a graphical

illustration. Specifically, during the G2P, transferring the velocity vp and any other higher-

order velocity modes of the particles can be interpolated from grids to update particle

positions and deformation gradients. When grouping the G2P and the P2G together,

these interpolated attributes can be referenced immediately for both the particle updates

and the next momentum transfer from particles to grids, converting these quantities

to temporary variables within the kernel instead of arrays allocated in GPU global

memory; the only particle attributes that need to be preserved are the mass, positions,

and deformation gradients. With such a G2P2G reformulation, the new MPM pipeline

inverts the traditional MPM time step by regarding the grid states as the primarily

evolved quantities in each time step, with particles treated as intermediate integration

points instead. At a high level, this G2P2G reformulation not only eliminates twice of

transfer kernel launches and twice of particle data accesses for each time step, which

significantly improves the performance but also reduces the particle storage. Note that,

in addition to refactoring an explicit time step as presented in this work, the G2P2G

approach could also be applied to implicit MPM schemes where the transfer process can

take up to 90% of the wall time of a given simulation.

As for the particle-grid mapping strategy, the traditional GPU MPM solvers (e.g .,

Gao et al. (2018b) and Hu et al. (2019a)) employ an off-by-one particle-grid mapping,

wherein each particle block only touches 2 ˆ 2 ˆ 2 grid blocks in both the P2G and

the G2P transfer kernels. After the particle advection, the particles may move out of

their original particle blocks, and the next P2G could then write to a different set of

2 ˆ 2 ˆ 2 grid blocks. Although the partition update kernel may remap the particles to

grids to ensure the P2G still loads only 2 ˆ 2 ˆ 2 grid blocks in the next time step, the

partition update and the P2G only possess a weak dependency; i.e., the correctness of the

calculation would still be guaranteed if the next P2G is executed immediately after the
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Figure 3.5: Different staggered mappings. Each square represents a cell in space,
marked with a color that indicates the block it is located in. During the transfer,
particles represented by circles contribute properties to the background grid. (Left) The
conventional GPU MPM pipeline adopts an off-by-one staggered mapping between blocks
and particles for more efficient use of the shared memory. (Right) The G2P2G pipeline
adopts an off-by-two strategy: particles from a block should be located at least two-cell
distance from the border of the arena. Such a design ensures the particles to stay in the
same blocks after CFL-bounded advection in the G2P2G.

G2P without updating the partition. What does change is that the data accessed in the

P2G kernel may need to involve more grid blocks. To eliminate the influence of particle

advection on the grid blocks accessed by the G2P and the following P2G kernel, we design

an off-by-two mapping strategy, making it possible to reorganize the time step without

sacrificing the performance during the P2G transfer. Below, we present the technical

details needed to adopt this new G2P2G pipeline.

Particle-Grid Offset In general, the “scratchpad” pattern is critical to the performance

of transfer operations; it refers to a software-managed local data buffer stored in shared

memory in the context of GPU computing. For the P2G kernel, this buffer stores the

grid attributes, i.e., mass, and momentum, to which particles will rasterize. For the G2P

kernel, on the other hand, it stores the attributes of grid nodes from which the particle

states would be interpolated. Instead of using a direct mapping between particles and

blocks, traditional GPU MPMs use an off-by-one staggering strategy (Hu et al., 2019a;

Gao et al., 2018b). In detail, a staggered mapping between particles and grid blocks with
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Figure 3.6: Soil falling. We show a soil falling test with Non-Associated Cam-Clay
(NACC) running on 4 GPUs with 53M particles and grid resolution 512 ˆ 512 ˆ 512. We
illustrate the Multi-GPU Static Partitioning by Particles (MGSP) on the right-top corner
of each subfigure. On the right-bottom corner, the NACC-α (the plastic volumetric strain
hardening variable) is also visualized to indicate the fracture pattern, where red indicates
significant material fractures.

a one-cell-distance is applied to the P2G and the P2G kernel. In this way, each transfer

kernel requires a small shared memory buffer with only 2 ˆ 2 ˆ 2 grid blocks loaded, as

shown in the left-side of Fig. 3.5. Without such a staggering, 3 ˆ 3 ˆ 3 grid blocks (3 ˆ 3

in 2D) will be needed, increasing the cost of both memory storage and the data accessing.

However, in the G2P2G, the off-by-one staggered mapping between particles and grid

nodes cannot be used as it is impossible to keep the assumption that particles would

only touch 2 ˆ 2 ˆ 2 grid blocks during transfers, since we now advect the particles

during the G2P2G kernel execution. We solve this problem with an off-by-two staggered

mapping, tailored for our G2P2G pipeline. Overall, the local buffer size remains the

same as in prior off-by-one staggered mapping (Hu et al., 2019a; Gao et al., 2018b), i.e.,

2 ˆ 2 ˆ 2 grid blocks, with each block containing 4 ˆ 4 ˆ 4 grid nodes. In detail, bounded

by a Courant-Friedrichs-Lewy (CFL) condition, particles would never move more than

one-cell distance during the particle advection. Therefore, the grid cells that particles

may write to during the P2G transfer would not extend by more than one cell in each

3D direction. When enforcing the particle-grid mapping with the off-by-two strategy,

the touched grid blocks would not change for the P2G after the previous G2P and the

particle advection. Therefore, the G2P2G pipeline reformulation does not increase the

shared memory usage or the data-accessing cost. Note that if CFL condition is violated,

the premise for the G2P2G pipeline reformulation will no longer be valid. Thus, the
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execution of the G2P2G kernel could fail due to the out-of-bound shared memory access.

If such a situation happens, one needs to re-run the solver with a shorter stepping time

until the CFL condition is satisfied.

Compute Dt The time step size dt for MPM evolution should be carefully chosen

under the restriction of CFL condition to preserve the numerical stability while at the

same time as large as possible to accelerate the simulation process. In order to satisfy

both requirements, the maximum velocity of particles is typically used to compute dt.

However, since the state of other particles cannot be inferred during the execution of a

single G2P2G kernel thread, retrieving such a global quantity inside the G2P2G kernel

is impossible. As a substitute, we use the maximum velocity of the grid nodes, which

can be computed before entering the G2P2G kernel. Since the particle velocities are

interpolated from the surrounding grid nodes, the maximum velocity of particles will

not be larger than the maximum grid velocity, and therefore the CFL restriction will be

conserved. Moreover, this method is more computationally efficient in dt estimation since

the number of grid nodes is much less than the number of material particles. Although

this approach estimates a more conservative dt, experimental results show little difference

in the computed dt (less than 1%) between the computation performed with the maximum

velocities of grid nodes and particles.

3.3.2 AoSoA

Particle data layouts and the corresponding memory access patterns also significantly

influence performance, since the particle attributes constitute the majority of the simu-

lation data. In general, for a gather-style transfer, the particle memory throughput is

at least one order of magnitude larger than the throughput of the grid data, making it

impossible to cache all the particle data in the limited GPU shared memory. However, it

is feasible to cache the grid attributes in the corresponding G2P kernel. For a scatter-style

transfer, on the other hand, each particle is commonly assigned to one specific thread,

making particles invisible to each other. It is, therefore, more meaningful to cache the grid
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data instead of the particle attributes to the shared memory. In both cases, inside the

G2P or the P2G kernel, there is at least a one-time reading from or writing to the GPU

global memory to access the particle data, which cannot be cached for better performance.

Therefore, optimizing the efficiency of particle data accesses from GPU global memory

becomes one of the most significant factors when maximizing performance.

Although both state-of-the-art approaches (Hu et al., 2019a; Gao et al., 2018b) use the

GPU-tailored SPGrid variant for grid storage, they adopt fundamentally different particle

data structures and algorithmic strategies. Gao et al. (2018b) store particle attributes in

an SoA layout and devises a delayed-reordering technique to maintain the particle order;

without reordering, the change of the spatial distribution of particles may lead to an

insufficient GPU cache line utilization and cause performance degradation. To get rid

of the cost of the particle reordering, Hu et al. (2019a) use an AoS layout, making the

performance less sensitive to the particle order. Nevertheless, the performance is still

limited by the non-coalesced read/write of particle attributes from/to the GPU global

memory.

To exploit the advantages of both SoA and AoS layouts without compromising

performance, we devise an AoSoA data structure to store particle attributes. The particles

are grouped according to their positions, such that particles mapping to the same block

can be gathered together in the memory. We adopt an SoA structure to store the

particle attributes inside each group, while the particle groups are organized using an

AoS structure. With such a design, the proposed AoSoA particle data structure has the

following advantages:

‚ As long as the SoA group size is a multiple of the CUDA warp size, each warp of threads

can access (read and write) particle data in a coalesced manner to ensure bandwidth

efficiency.

‚ The particles are grouped according to their positions, and the particle groups are

organized in an AoS layout. Therefore, each block (a 4 ˆ 4 ˆ 4 cell size in our pipeline)

of particles resides in contiguous memory, easier for faster migration among multi-GPUs.
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Note that the SoA layout does not possess such property as particle attributes are

stridden across the GPU memory. Such a design suits better for the proposed G2P2G

pipeline, wherein each CUDA block handles only one particle block.

‚ By organizing particles inside each particle block with a finer granularity, we can reduce

memory usage by making each particle block to occupy a minimal amount of memory

to accommodate the particles inside; see details in the binning strategy paragraph.

Particle Bins To devise an appropriate particle data structure that possesses these

properties, we introduce the concept of particle bins, inspired by the designs of SPGrid

(Setaluri et al., 2014) and Hierarchical Particle Buckets (Hu et al., 2019a; Bailey et al.,

2013).

One intuitive idea is to group particle data in particle blocks such that particles

that belong to the same grid block are gathered together. In a single particle block, the

particle then becomes the basic unit, with the particle attributes corresponding to the

grid channels in the conventional SPGrid. However, compared to the grid block, the

particle block would suffer from the large granularity and the uncertainty of the in-use

number of particles. In particular, the number of particles residing in a single block is

generally orders of magnitude larger than the number of grid nodes, and each particle

usually contains more attributes than a grid node. Thus, the actual size of a particle

block could be much larger than a grid block. Additionally, the number of particles inside

a particle block changes dynamically throughout the simulation, causing memory waste

and additional bookkeeping operations.

To remedy these problems, we further group the particles inside a single block into

particle bins; the size of a particle bin can be customized as needed. For performance

considerations, we recommend setting the bin size to be a multiple of the thread group

size on a given GPU architecture. For example, one can set the bin size as 32, which is

the size of a CUDA warp on an NVIDIA GPU.

As illustrated in Fig. 3.7, particle data is organized in an SoA layout within each
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Figure 3.7: Binning. The internal layout of each particle bin is SoA. In this example,
the array length of the particle bin equals to the thread group size on the NVIDIA GPU
architecture (i.e., 32 for an NVIDIA GPU warp) for coalesced memory access within a
bin. The number of properties is flexible according to the material; we used 4 for fluids
and 13 for solids.

particle bin. In this way, coalesced global memory accesses are ensured with the CUDA

32-, 64-, or 128-byte transactions that are aligned to these sizes. Another advantage

of using particle bins instead of a monolithic SoA particle block is related to the page

management in the virtual memory system. For example, a particle bin containing 64

particles, with each particle owning 16 float-type attributes, consumes a 4KB memory. In

contrast, the particle block with the same setting would consume a space much larger

than the 4KB configuration. Although the actual page size in CUDA might differ from

the CPU page setting in practice, the particle binning strategy still provides the potential

to better utilize the automatic CUDA unified virtual memory management.

The mapping from a block to its particles is implemented through the Hierarchical

Particle Bucket design. Specifically, particle attributes and particle indices are stored

separately in particle blocks and particle buckets, both in a 4 ˆ 4 ˆ 4 block granularity.

Each particle is reached hierarchically through the block index and the local index inside

the block. In practice, an upper bound of the particle bucket size is predetermined

statically at compile-time, the maximum number of bins inside a block is predetermined

by the bucket size when compiling, and the number of bins that each block contains can

also be decided at run-time before execution. However, as illustrated in Fig. 3.8, such a

uniformly allocated particle-block memory may cause a significant memory waste. To

further reduce memory usage, we count the number of bins in-use and establish a mapping

from the block ID to the bin ID through a lightweight exclusive scan.
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Figure 3.8: Compact storage. Particles are often unequally distributed in space. Hence,
uniformly allocating fixed memory space for each particle block would result in a significant
amount of unused memory. Instead, a more efficient strategy is to allocate just enough
particle bins for each block according to the current distribution of particles.

Binning Strategy There are typically two strategies to reduce the write conflicts in

the P2G kernel:

‚ Group particles by cells, reduce at warp-level, perform a single shared memory atomic

increment per warp, and perform a single global memory atomic increment per block

(Gao et al., 2018b).

‚ Leave particles unsorted to reduce the chances of atomic-write conflicts and avoid the

warp-level reduction (Hu et al., 2019a).

The first method imposes restrictions on the order of the particles, which cannot be

satisfied in the context of the G2P2G pipeline; particles may advect to the neighbor cells

after the G2P transfer in the G2P2G kernel, breaking the cell-based sorted order.

Adopting ideas from the second strategy, we use a pseudo-coloring procedure and

collect particles from different cells within a particle block to build the particle bins. The

algorithm is outlined in Algorithm 1, which stops when there are not enough particles

left to form a bin. With this strategy, particles inside a single bin are forced to write to

different nodes unless the bin is formed after satisfying the stopping condition; i.e., there

exist at least two particles from the same cell inside this bin. As a result, the chance

of write conflicts occurring within a warp is significantly reduced. Note that the warp
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aggregated atomic increment is required to ensure the correctness of the Algorithm 1

(refer to Adinets (2014) for more implementation details).

Update Particles Inside the G2P2G kernel, the maintenance of the particle structure

must be performed after the particle advection. To ensure the execution correctness of

the proposed G2P2G pipeline, we adopt a double buffer strategy for both particles and

grids; i.e., the G2P2G kernel reads from and writes to different particle/grid buffers. To

maintain the particle structure, a naive scheme can be adopted to update the particle

attributes in place while the particle orders are rearranged in an extra kernel incurring

additional overhead. Following the delayed-ordering (Gao et al., 2018b), we postpone the

particle reordering in the G2P2G kernel to the next time step.

Specifically, the updated particle attributes are written back to the particle blocks

in the coalesced manner, and the particle indices are inserted into the particle buckets

according to their updated positions. In the following time step, we determine the particle

attributes in the previous particle block buffer from the indices saved in the current

particle bucket. Theoretically, the particle block ID and its local index inside the block

would change after the particle advection. However, we do not update the hierarchical

particle indices immediately after updating particle positions. Instead, we compute the

new indices from the advection vector and their original location; as indicated by the

CFL bound, the particles will move at most a one-cell-distance in each time step. In

practice, we use ´1, 0, or `1 to indicate the particle’s movement in x, y, or z direction

to form the 3D advection vector (i.e., one specific vector from a set of 27 possibilities).

Given the previous block ID and the advection information, the new particle indices are

then uniquely determined by a spatial hash with a 32-bit integer.

3.4 Multi-GPU Pipeline

Using multi-GPUs for MPM simulations affords significantly larger simulations and

shortens the overall simulation time. To extend from using a single GPU to running
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Algorithm 1 Distribute particles from cell buckets to block bucket

Input: cell buckets, ppcs, maxppc, blockid, cellid Ź ppc: particles per cell
Output: block bucket, ppbs Ź ppb: particles per block
function DistributeParticlesc2b(test)

laneid Ð cellid mod warpsize
ppc Ð ppcsrcellids

pidic Ð 0 Ź pidic: local particle index in cell
while pidic ă maxppc do

if pidic ă ppc then
pidib Ðaggregate atomicadd(laneid, ppbsrblockids)

Ź pidib: local particle index in block
block bucketrpidibs Ð cell bucketrpidics

end if
syncthreads in block( )
pidic Ð pidic ` 1

end while
end function

on multi-GPUs, we divide the whole simulation domain into partitions according to

the device number and assign one partition to one GPU device. Load balancing is one

of the essential considerations when distributing partitions for multi-GPU applications.

Depending on the dynamics of the simulation, the same partitioning scheme could result in

drastically different performances on various problems. Ultimately, the parallel efficiency

of multi-GPUs is primarily determined by 1) how large the halo region is compared to the

whole partition, and 2) how equally the partitions are distributed on all devices. Here, we

focus on arranging the computations once the partitioning strategy is confirmed.

Additionally, we maintain sparse spatial information according to particle positions at

each time step. The partition on each device is maintained through a list of activated

blocks that cover all particles. Since the particles may rasterize to grid blocks, which

can be halo blocks and shared by multi-GPUs, the attributes on gird blocks must be

synchronized after the P2G transfer. Therefore, in addition to partitioning strategies,

efficient utilization of multi-GPUs for MPM also needs to consider:

‚ Halo Block Tagging :

tag the blocks that overlap partitions on other devices (i.e., the halo blocks).
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Figure 3.9: Instruction pipelines. The additional operations in the multi-GPU MPM
compared to the single-GPU MPM are displayed in red. By masking these halo-region-
related data transfers with the execution of the G2P2G kernel, one can achieve more
optimized scaling results with multi-GPUs.

‚ Halo Block Merging :

share block data in the halo region with other devices after executing the G2P2G kernel,

for grid reduction and/or particle migration depending on partitioning strategies.

In the following subsections, we introduce detailed designs of two MPM-tailored

variations of the most widely adopted partitioning methods, i.e., the static geometric

partitioning methods.

3.4.1 Multi-GPU Static Partitioning by Particles (MGSP)

MGSP is an ideal option for solid simulations, including elastic jellos, sand, and other

granular materials, due to the stable halo distribution of solids. Since the overall shape

of solid models remains intact even under large deformations, the halo regions typically

reside on the model surfaces. Even when significant fractures happen (see examples in

Figs. 3.1 and 3.6), the halo regions still only occupy a small portion of the whole partition.

Carrying out both halo block tagging and halo block merging relies heavily on multi-

GPU communication. The latency of the related operations relies highly on the underneath

hardware setup. In most consumer-level machines, multi-GPU devices are connected

via the slow PCI-Express x16 Gen 3, which may lead to high communication latency.

Fortunately, nearly all CUDA devices with compute capability of 1.1 or higher can
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Figure 3.10: Halo block tagging. We tag grid blocks with three labels: assigned,
transferred, and advected. Assigned grid blocks are the blocks where particles are residing
in. Transferred grid blocks contain the grid-nodes that particles may write to; e.g ., with
quadratic B-spline kernel, each particle may write to neighbor nodes within a three-cell
distance. Advected grid blocks represent the blocks where particles may advect to after
the G2P and the particle advection. The transferred and the advected grid blocks may
contain no particles in the current time step. In the context of multi-GPU MPM, the
partition from one device can overlap partitions from other devices. These overlapping
regions (i.e., halo regions) may include all three types of grid blocks. The grid data in
the halo regions should be shared and synchronized by the corresponding GPUs to ensure
execution correctness.

concurrently perform the memory copies and computing kernels. Therefore, it is possible

to hide the latency by overlapping data transfers with computations (i.e., G2P2G) through

CUDA streams, as shown in Fig. 3.9.

Halo Block Tagging For each device, to acquire its intersections with other devices,

the coordinates of the active blocks from all the other devices are gathered and then

checked in a local hash table. We perform the halo block tagging as an additional step of

the MPM algorithm; see Fig. 3.10. Due to the data dependencies, this step should not

be overlapped with other computations. The data size of the active block coordinates

increases with the growth of the simulation scale when more blocks are involved. However,

in general, such data size is still small, making this additional overhead introduced by
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multi-GPU extensions insignificant.

Halo Grid Reduction The heavy workload of the G2P2G kernel provides the potential

of overlapping the memory copies with the computations; see an illustration in Fig. 3.9.

Based on the halo block tagging results, we split the particle blocks on each device into

two groups. One group produces data for halo grid blocks during the G2P2G execution,

whereas the other only works with the interior grid blocks. The G2P2G kernel is first

launched for grids and particles inside the halo regions. After that, the following two

operations are performed simultaneously with different CUDA streams, i.e., 1) the halo

grid attributes on each partition are gathered and sent to other partitions, and 2) the

G2P2G kernel is evaluated on the particles and grids outside the halo regions on each

device. In this way, the overhead of the memory copies among GPUs is masked with the

G2P2G execution for interior particles and grids.

3.4.2 Multi-GPU Static Partitioning by Space (MGSS)

In an MPM simulation, the size of halo regions among multiple partitions may grow

beyond a threshold, such that the latency of the non-halo G2P2G kernel is not high

enough to mask the device-to-device memory copies. This situation is especially common

for fluid simulations where fluids can theatrically mix (see Fig. 3.12 as an example),

making halo sizes increase dramatically as time goes by. In such cases, re-partitioning

particles is necessary for load balancing, and statically partitioning by space is a simple

yet efficient strategy.

Halo Block Tagging Unlike in MGSP, the blocks in the halo region in MGSS can

be tagged without the knowledge of any other partition. While updating the partition,

blocks located in the spatially predefined halo region are directly tagged as halo blocks,

and halo regions can be shared by two or more devices depending on the splitting scheme.

The handling of the tagged halo grid blocks in MGSS is the same as in MGSP, but the

particles moving to partitions on other devices are also migrated in addition to the grid
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data.

Halo Particle Migration Although the overhead of halo tagging in MGSS is avoided,

and halo grid reduction in MGSS is similar to the one in MGSP, there is an additional

task in MGSS ; namely, particles moving out of the current domain must be migrated

to the corresponding device. This operation is easily supported by our AoSoA particle

data structure since particles are already grouped by blocks, and it is efficient to retrieve

these particles before streaming. Furthermore, gathering particles in halo regions in bulk

and streaming to other devices are always better than sending the same amount of data

in pieces at a time, e.g ., particle by particle. Therefore, the same AoSoA particle data

structure also specifies the particle buffer array for sending halo data to and receiving

data from other devices.

The migration of halo particles in MGSS is inherently more memory-intensive than

sharing halo grid blocks in MGSP. In general, particles have more quantities compared to

grid nodes, and the number of particles inside each particle block is an order of magnitude

larger than the number of grid nodes inside each grid block. Consequently, within the same

halo region, particle blocks use significantly more memory than grid blocks. Moreover,

the number of particle bins at each location near the boundary of a domain is only known

after G2P2G kernels in all neighboring partitions are done, which breaks the premise

of “compact storage” (§3.3.2). Fortunately, the maximum number of such halo blocks is

bounded and known at compile time and is small compared to the whole domain. A simple

workaround regarding the number of particle bins is to preserve a space conservatively

that is fit for the maximum number of particles specified in the “Hierarchical Particle

Bucket.”

3.5 Implementation

In this section, we provide essential implementation details. Please refer to Appendix A

for more compile-time settings and coding examples.
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Figure 3.11: Sand armadillo. In this simulation, two sand armadillos hug and smash
together using 4 GPUs with 55M particles and a grid resolution of 512 ˆ 512 ˆ 1024. Fine
details are captured with a small ∆x.

3.5.1 Multi-GPU Communication

Although there are multiple CUDA libraries (e.g ., OpenSHMEM (Chapman et al., 2010),

NCCL (Nvidia, 2019)) for inter-GPU communications, we directly use the low-level

memory APIs for better control over the double-buffering scheme and halo communication.

The halo data can be manually copied through the host, peer-to-peer, GPU-Direct, or

with the use of Unified Virtual Memory (UVM) and let CUDA handle on-demand requests

of halo data in UVM. However, page faults during kernel executions are expensive, and

pre-fetching block-by-block before kernel launching requires many CUDA API calls. Hence,

we choose to manually initiate the data transfers through multiple streams.

3.5.2 Memory Consumption

Table 3.1 summarizes the memory footprint in our pipeline and in that of Hu et al.

(2019a); each particle block contains 4096 particles in total. As shown in Fig. 3.7, there
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Particle Buffer
Grid Bucket

Fluid Solid

Conventional 278528 n 409600 n 1024 m 16384 n
G2P2G 131072 n 425984 n 2048 m 16384 n

Table 3.1: Memory budget. We compare the number of particle blocks and grid blocks
with the block size 4 ˆ 4 ˆ 4. Here, numbers followed by n stand for the number of
particle blocks and m for the number of grid blocks. We use 64 as the maximum number
of particle-per-cell inside each grid cell; this setting is more than sufficient for most MPM
simulations (8 is the typical setting). We have not observed any violations in any examples.
Note that the data in the second row represents the total memory cost from the double
buffering required by the G2P2G kernel.

are 16 bytes for a fluid particle and 52 bytes for a solid particle in our G2P2G pipeline.

In contrast, in the conventional pipeline, there are 68 bytes and 100 bytes, respectively.

In our pipeline, the per-particle storage size is reduced substantially, especially in the

fluid case, due to particle velocity being a kernel-local quantity. However, we need to

maintain two copies of the data structures due to the double-buffer strategy.

3.5.3 Material-Dependent Computation

The constitutive model-related particle-wise operations (elasticity, plasticity, etc.) are

implemented in separate device functions, and the correct function for a specific material

to call is automatically handled when utilizing the C++ sum type variant. Thus, different

materials are easily supported with little changes in our approach.

3.5.4 Generalizations to Other MPM Methods

Not only is the AoSoA particle data structure compatible with different algorithmic or

material choices, but the G2P2G kernel is essentially a general operator evolving the

grid state through transfers. With reasonable efforts, the majority of existing MPM

methods (including those of Jiang et al. (2017) and Wolper et al. (2019)) can also be

implemented with AoSoA+G2P2G. In the case of the implicit MPM, matrix-free linear

solvers, as in (Gao et al., 2018b), can be implemented directly with the G2P2G fusion
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Figure 3.12: Single dam-break with MGSS. We simulate a fluid dam-break with
48M particles and the MGSS partition strategy. Each color denotes particles running on
a single physical GPU device. With each device assigned approximately the same size
spatial domain, all particles are evenly partitioned to 4 GPUs.

strategy used for a single matrix-vector product to improve performance. Moreover, our

AoSoA+G2P2G design can benefit other hybrid particle-grid simulation methods, such

as PIC/FLIP fluids, with better performance, more efficient memory usage, and flexible

extension to multi-GPUs.

3.6 Benchmarks and Performance Evaluations

In this section, the fixed corotated constitutive model (Stomakhin et al., 2012a) is applied

by default for all benchmarks unless stated otherwise. We use microseconds as units for

all timings. The codebase used to generate these examples is made publicly available.

For experiments with different materials, we experimented with multiple parameters,

which are set as easy-to-set compile-time constants. For instance, the crashing concrete

scene is tested with Young’s modulus ranging from 6e6 to 6e8 for grid resolution 512 ˆ

512 ˆ 512 and 1024 ˆ 1024 ˆ 1024, since concrete is really a mixture of materials with no

absolute stiffness. We choose one of the material parameter settings we tested for the

final results and list them in Table 3.5 for reproduction purposes.

In the following subsections, we start with the single-GPU performance comparison

against the state-of-the-art methods. Two ablation studies are presented to analyze the

efficacy of the proposed AoSoA+G2P2G design. We then move to multi-GPU settings with

discussions of scalability, comparisons of two partitioning strategies, and demonstrations

of large-scale simulations.
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Quadro P6000 RTX2080

(Hu et al., 2019a) (Hu et al., 2019a)* Ours (Hu et al., 2019a) (Hu et al., 2019a)* Ours

Dragons 4.3 5.0 2.0 3.0 3.5 1.5
Dragons* 2.6 3.0 1.3 1.8 2.0 0.9
Bomb Falling 6.4 6.7 3.4 4.2 4.4 2.5

Table 3.2: Single-GPU performance comparison. All candidate single-GPU MPM
methods use the MLS-MPM transfer method in explicit time integration. The timing
results are run on NVIDIA RTX 2080 and Quadro P6000 and gathered after objects hit
the ground for better evaluation. In addition, the initial reordering is disabled in the (Hu
et al., 2019a)* benchmark; and the dragons* scene reduces particles per cell by half.

3.6.1 Single-GPU Performance

3.6.1.1 Speedup over State-of-the-art Methods

When comparing with the state-of-the-art method (Hu et al., 2019a), we apply the optimal

settings listed by Hu et al. (2019a), i.e., AoS for particles, and SPGrid for grid blocks.

Moreover, we set up the following scenes for performance evaluations.

‚ dragons. 775196 particles, 256 ˆ 256 ˆ 256 grid.

‚ bomb falling. 984018 particles, 256 ˆ 256 ˆ 256 grid.

As shown in Table 3.2, our pipeline reaches around 2ˆ speedup compared to the

state-of-the-art approach of Hu et al. (2019a). Under a more fair setting with the initial

sorting of particles in (Hu et al., 2019a) disabled, we further achieve a 2.5ˆ speedup.

Measured speedups show consistencies on NVIDIA GPUs for both gaming (RTX series)

and computing (Quadro series) and for different generations.

We also compare the timing against an open-source, heavily optimized CPU-based

MPM codebase (Fang et al., 2019) (a SIMD vectorized implementation provided by its

authors). The experiment is conducted in an elastic sphere colliding scene with particle

counts ranging from 5 to 40 million. On a workstation with an Intel 8086K CPU and a

single Quadro P6000 GPU, our GPU MPM achieves 110 to 120 ˆ per-time-step speedup,

as summarized in Table 3.3.
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Particles # 5M 10M 15M 20M 25M 30M 35M 40M

CPU Time 667.70 1442.90 2110.20 2949.60 3875.01 4671.09 5148.63 5925.24
GPU Time 5.97 11.91 18.22 27.38 32.30 38.54 43.67 50.15

Table 3.3: Performance comparison between an SIMD implementation vs our
GPU pipeline. (in microseconds) CPU: Intel 8086K. GPU: Quadro P6000 GPU.

3.6.1.2 Ablation Studies

G2P2G Speedup We implement (Hu et al., 2019a) with the proposed G2P2G kernel.

As shown in Table 3.4, all of the test cases have achieved around 40% speedup, except for

the cube case where the model is generated with uniform sampling rather than Poisson

sampling. With perfectly balanced particle distribution in the cube case, the negative

impact of redundant particle data access pattern in P2G and G2P pipelines is mitigated.

Moreover, the G2P2G kernel may lessen the latency-hiding capability (Laine et al., 2013)

compared to conventional separate transfer kernels (i.e., P2G and G2P), limiting the

performance gain in the cube case. In addition to improving performance, the proposed

G2P2G pipeline also decreases the storage size required for each particle, making it more

favorable for particle migrations in the multi-GPU pipeline.

AoSoA Speedup On top of the G2P2G pipeline, we further change the AoS in (Hu

et al., 2019a) to our proposed AoSoA layout. As shown in Table 3.4, the combined

improvements enhance the transfer kernel with around 3ˆ speedup without introducing

any additional overheads of the maintenance or the storage of particle data.

3.6.2 Multi-GPU Scalability

The scaling with multi-GPU devices is an essential aspect of evaluating the efficacy and

robustness of the algorithm. Ideally, the performance should scale with the number of

devices and remain robust when simulating scenes that have different patterns for the

halo regions. We perform scaling benchmarks on a workstation with one Intel Core

i7-8086K CPU, four NVIDIA Quadro P6000 GPUs, and 64GB RAM assembled on a
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(Hu et al., 2019a) G2P2G AoSoA+G2P2G

ref time time speedup time speedup

Dragons (775,196) 3.98 2.91 1.37ˆ 1.33 2.99ˆ

Dragons (619,916) 3.18 2.3 1.38ˆ 1.15 2.77ˆ

Dragons (388,950) 2.04 1.47 1.39ˆ 0.78 2.62ˆ

Bomb Falling (3,193,038) 16.95 12.25 1.38ˆ 7.00 2.42ˆ

Cube (262,144) 0.99 1.10 0.9ˆ 0.74 1.34ˆ

Table 3.4: Ablation study. The first timing column is the sum of the timings of P2G
and G2P kernels. The timing in the second timing column is measured by replacing
P2G and G2P kernels with the proposed G2P2G kernel. The timing in the third timing
column is measured by replacing the AoS layout with the proposed AoSoA layout on top
of the G2P2G kernel. The speedup is calculated by comparing it with the reference time
(Hu et al., 2019a). Both Bomb Failing and Dragons scenes use irregular geometries; all
Dragons scenes have the very same geometry but are sampled with different numbers
of particles per cell, and Bomb Failing scene is much denser in space. The Cube scene
is a uniformly sampled cube with particles ordered. All timings are computed using an
NVIDIA RTX 2080 graphics card.

Z390 motherboard.

Weak Scaling We assign each GPU device with one giant cube containing 4,096,000

particles. All cubes are either arranged compactly or side-by-side. In the compact layout,

each partition shares a certain amount of halo regions with partitions from all the other

GPU devices. In the side-by-side layout, each partition is only in contact with at most two

neighboring partitions. The weak scaling comparisons are shown in Figs. 3.13 and 3.14.

Strong Scaling Four cubes of the same size that contains 4,741,632 particles are used

to form a long cuboid. The scene is evenly partitioned and assigned to multi-GPU devices.

The strong scaling comparisons are shown in Fig. 3.15.

Results Taken together, the scaling results indicate that the G2P2G kernel, as the

bottleneck of the algorithm, is scaling almost linearly when each GPU is saturated by

enough computations. Additionally, our multi-GPU MPM pipeline scales almost perfectly

with the increasing number of GPUs. The improved efficiency with respect to memory
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Figure 3.13: Weak scaling; compact layout. (a) The per time-step wall time remains
steady with an increasing number of GPUs for the G2P2G and overall performances. The
additional overhead of halo tagging is growing but remains insignificant. (b) Both the
G2P2G kernel and the overall efficiencies still stay around 95% even when employing 4
GPU devices.
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Figure 3.14: Weak scaling; side-by-side layout. (a) The per time-step wall time
remains steady with an increasing number of GPUs for the G2P2G and overall perfor-
mances. The additional overhead of halo tagging is growing but remains insignificant. (b)
Both the G2P2G kernel and the overall efficiencies stay above 95% even when employing
4 GPU devices.
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Figure 3.15: Strong scaling; side-by-side layout. (a) Both G2P2G and overall
performances scale well with an increased number of GPUs. The additional overhead of
halo tagging is growing but remains insignificant. (b) The loss of the strong scaling of
G2P2G is trivial even when employing 4 GPU devices, while the overall strong scaling
drops to around 90%.

access and data communication (e.g ., fewer attributes stored, coalesced data accessing,

and particle data locality) is also preserved in multi-GPU systems.

3.6.3 Partitioning Comparisons

Although MGSP is a perfectly balanced partitioning method in terms of the number

of particles, the overhead due to halo block tagging would increase with more GPU

devices employed. Moreover, when the size of the halo regions becomes large enough, the

memory latency will increase and become the dominant factor compared to the latency

of the G2P2G kernel. Such a performance degradation may frequently happen in fluid

simulations where fluid may significantly mix together as time goes by, resulting in an

increasing number of halo region storages and computations. In such cases, it would be

more efficient to use MGSS where the halo region size stays the same throughout the

simulation time; we demonstrate the partitioning using MGSS throughout a dam-break

scene in Fig. 3.12.
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3.6.4 Large-scale Simulations

We showcase a suite of simulations with various materials to demonstrate the scalability

of our multi-GPU MPM algorithm. The following constitutive models with plasticity

are implemented to demonstrate the applicability of our methods to diverse materials:

1) fixed corotated (Stomakhin et al., 2012a) to simulate elastic jello, 2) Non-Associated

Cam-Clay (NACC) (Wolper et al., 2019) to reproduce soil and concrete, 3) Drucker-Prager

elastoplasticity (Klár et al., 2016) for sand animation, and 4) weakly compressible fluid

(Tampubolon et al., 2017) to generate water. All timings and spatial resolution settings

are summarized in Table 3.5. Additionally, we also provide material related parameter

settings for reproduction purposes.

We first demonstrate the scalability of the proposed multi-GPU MPM in Fig. 3.2,

wherein 13,346 bombs fall onto the ground. This example is run on 8 GPUs, with the

grid resolution 512 ˆ 2048 ˆ 512, 134M particles, and each frame finished within 1 minute

on average. To the best of our knowledge, no prior work has achieved such a large-scale

simulation with MPM on with a single machine. In addition to the 8-GPU test, we also

evaluate this scene on 4 GPUs with 6,688 bombs (67M particles). In a 4-GPU context,

proper scaling is achieved with each frame simulated in 49.14 seconds on average.

Using the fixed corotated elastic material, we fill the bowl in Fig. 3.3 with 6,786

candies (23M particles) with each frame finished within 5 seconds on average. In other

words, one only needs 20 minutes to obtain the results of a 200-frame simulation with

20M particles, which usually would take several days if only CPU-based MPM algorithms

were adopted.

We crush concrete in Fig. 3.1 with NACC models, showing hydraulic press experiments

on a concrete cylinder. The simulation domain is discretized into a 1024 ˆ 1024 ˆ 1024

grid with ∆x “ 1{1024, while the concrete cylinder is represented by 93.8M particles. On

a 4-GPU workstation, each frame is finished within 4 minutes. Note that only 4 (instead

of 8) GPUs are employed to simulate 96M particles, indicating a strong potential of the

proposed AoSoA+G2P2G in simulating large-scale scenes with limited memory resources.
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Moreover, we further test the same scene with different settings of resolutions, particle

numbers, and material parameters. Timing statistics show that it takes only 17 seconds

to simulate the same scene with 12M particles and grid resolution 512 ˆ 512 ˆ 512.

As another NACC example, three soil chunks fall, fracture, and mix together in

Fig. 3.6; each frame with 52M particles is finished under 1 minute. In comparison, as

reported by Wolper et al. (2019), a NACC example with only 1.67M particles consumes at

most 10 minutes on a CPU-based MPM implementation. Similar to Fig. 3.1, we visualized

the NACC-α to indicate the crack propagation.

Sand material is used to create two armadillos smashing together with fine details

captured in Fig. 3.11. This scene has 55.5M particles with grid resolution 512ˆ512ˆ1024.

Simulating each frame takes less than 30 seconds using the proposed multi-GPU MPM

pipeline.

We demonstrate a large-scale fluid simulation with the MGSS strategy in a single

dam-break experiment, shown in Fig. 3.12. The topology of the fluid changes substantially

as the simulation evolves, resulting in different portions of the fluid to mix together as

time goes by. The size of the halo region would increase substantially as the simulation

proceeds should we utilize the MGSP strategy; it would lead to significant performance

degradation as most of the run-time would be spent in inter-GPU communication. In

contrast, with the MGSS strategy, even though different portions of fluid are permeating

into each other, the multi-GPU partitions are still relatively well balanced with a fixed-size

halo region.

3.7 Limitation and Future Work

Limitation Our G2P2G kernel inherently requires a double buffer strategy for simul-

taneous read and write of particle and grid data. This fact could offset some of the

savings of memory from the per-particle storage size. Although we use compact storage

for particle attributes, their indices are still managed in the corresponding buckets that

are pre-allocated with a uniform and conservative size. This design imposes restrictions
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Example Particle# Ave s/frame ∆tframe GPU# Grid Resolution

(Fig. 3.2) Bomb Falling 134,007,186 59.56 1/48 8 512 ˆ 2048 ˆ 512
(Fig. 3.3) Candy Bowl 22,900,536 4.15 1/48 4 1024 ˆ 1024 ˆ 512
(Fig. 3.1) Crushing Concrete 93,790,217 236.89 1/240 4 1024 ˆ 1024 ˆ 1024
(Fig. 3.6) Soil Falling 52,904,854 57.38 1/48 4 512 ˆ 512 ˆ 512
(Fig. 3.11) Sand Armadillo 55,508,474 34.39 1/48 4 512 ˆ 512 ˆ 1024
(Fig. 3.12) Single Dam-break 48,608,497 15.17 1/240 4 512 ˆ 2048 ˆ 512

max∆tstep ∆x Material Parameters

2.71 ˆ 10´5 1/256 Fix-corotated: p100, 3 ˆ 105, 0.2q

2.10 ˆ 10´4 1/256 Fix-corotated: p100, 3 ˆ 103, 0.2q

1.74 ˆ 10´6 1/1024 NACC: p2240, 6 ˆ 108, 0.2,´0.01, 0.5, 0.8, 1.85q

1.65 ˆ 10´5 1/256 NACC: p2, 3 ˆ 104, 0.3,´0.006, 0.3, 0.5, 1.85q

3.58 ˆ 10´5 1/512 Sand: p20, 1 ˆ 104, 0.4, 30, 0q

1 ˆ 10´5 1/256 Fluid: p1000, 4 ˆ 104, 7.15q

Table 3.5: Parameters and timings. We summarize the parameters of particle numbers,
grid resolutions, ∆x, the average time per frame, and the maximum ∆t for various
experiments described in Section 3.6.4. These examples are simulated with different
materials; material-related information is recorded in the last two columns. Specifically,
FC denotes the fixed corotated material, NACC for Non-Associated Cam-Clay, and
Sand for the Drucker-Prager elastoplasticity. In addition to the basic settings of the
material (density ρ, Youngs Modulus E, and Poisson Ratio ν), we also include other
material-specific parameters. The material parameters are listed in the following order:
1) FC: pρ, E, νq, 2) NACC: pρ, E, ν, α0, β, ξ,Mq, 3) Sand: pρ, E, ν, fa, coq, and 4) Fluid:
pρ, k, γq. We recommend review the corresponding papers for further information about
parameters.

on more irregular MPM simulations where the number of particles per cell is significantly

larger.

Future Work For simplicity, we adopt the “pre-allocation for all” strategy for all spatial

data structures specified in our codebase due to the lack of a dedicated allocator. A more

customized allocator could provide more flexibility in terms of memory management, e.g .,

on-demand allocation. There is also room for improvement in terms of robustness. We

will work on an adaptive and unified framework that supports multi-material simulations,

including both solids and fluids, and more flexible load balancing by allowing for dynamic

re-partitioning of the whole domain, which would change the method of halo-region

identification and memory preservation for halo particles. Deploying to distributed

systems, e.g ., cloud or multi-GPU clusters, is another challenging yet promising direction

worth of research efforts.

50



In the robotics community, we recently observe a growing amount of work that exploits

physics-based simulation to facilitate robot learning in navigation (Xie et al., 2019),

embodiment mapping (Liu et al., 2019a), soft robot locomotion (Hu et al., 2019b), tool-

using (Zhu et al., 2015), inferring human utility (Zhu et al., 2016), and causality (Edmonds

et al., 2020). These tasks are traditionally considered to be extremely challenging. With

the capability to run large-scale simulations on multi-GPUs with a relatively short

simulation time, we expect the robot learning community would start to adopt high

fidelity simulations to enable robots acquiring knowledge and skills swiftly with minimal

human intervention or supervision.
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CHAPTER 4

A Sparse Distributed Gigantic Resolution Material

Point Method

We present a four-layer distributed simulation system and its adaptation to the Material

Point Method (MPM). The system is built upon a performance portable C++ programming

model targeting major High-Performance-Computing (HPC) platforms. A key ingredient

of our system is a hierarchical block-tile-cell sparse grid data structure that is distributable

to an arbitrary number of Message Passing Interface (MPI) ranks. We additionally propose

strategies for efficient dynamic load balance optimization to maximize the efficiency of

MPI tasks. Our simulation pipeline can easily switch among backend programming models,

including OpenMP and CUDA, and can be effortlessly dispatched onto supercomputers

and the cloud. Finally, we construct benchmark experiments and ablation studies on

supercomputers and consumer workstations in a local network to evaluate the scalability

and load balancing criteria. We demonstrate massively parallel, highly scalable, and

gigascale resolution MPM simulations of up to 1.01 billion particles for less than 323.25

seconds per frame with 8 OpenSSH-connected workstations.

4.1 Introduction

High-resolution simulations are of high demand in both the VFX industry and scientific

research. In recent years, the Material Point Method (MPM), due to its flexibility and

versatility, has shown a great potential for modeling a wide range of continuum materials.

To reduce computational cost and programming efforts, researchers have explored

modern computational platforms and improved MPM in both parallelization schemes
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Figure 4.1: Hierarchical System Architecture. Our distributed MPM simulation sys-
tem is designed and implemented hierarchically. In the chapter, we will use Particle/Grid
data layer in short for the Particle/Grid Data, Algorithms and Communication layer.
Different layers are implemented in separate codebases. Library names are labeled below
layer names.

and latent particle/grid data management. Dedicated code design examples in graphics

include threaded CPU MPM (Fang et al., 2018), single-GPU MPM (Gao et al., 2018b;

Hu et al., 2019a, 2021) and multiple-GPU implementations (Wang et al., 2020; Fei et al.,

2021). These state-of-the-art solvers still focus on exploiting a single machine with limited

memory and computing power, leading to restrictions from several perspectives. On

one hand, CPU-based computation is less efficient due to the limited number of threads

despite the hundred-GB memory to support large-scale data. GPU-based computation,

on the other hand, can significantly reduce the simulation time, but the onboard memory

makes it challenging to go large-scale. While using additional GPUs can relieve the intense

memory usage (Wang et al., 2020; Fei et al., 2021), the number of GPUs that a single

motherboard can hold is still capped. Furthermore, both CPU and GPU MPM require

skillful programming and dedicated design efforts.

Together, these restrictions motivate our exploration of a device-portable distributed

simulation system, which allows researchers with minimal software experience to customize
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large-scale simulations and maximally leverage their devices. Specifically, we aim to build

a distributed MPM system that pursues the following design goals:

‚ Device portability for high performance. Many existing simulations using only

CPU or GPU resources require dedicated design, implementation, and optimization

of code. It’s also challenging to perform device-related code migration if new needs

arise. Our design goal is to support effortless hardware switching according to users’

needs, i.e., to allow switching the latent programming models and parallel platforms

for the simulations by modifying very few lines of code.

‚ Distributed dispatch for large-scale simulation. We allow the simulation

system to scale up according to available hardware. To achieve this goal, we need to

establish reliable and efficient grid/particle data structures and build communication

machinery among multiple separate-memory computing nodes. To further improve

the scalability, we aim to reduce unnecessary memory usage by developing new

sparse data structures.

‚ Dynamic workload decomposition. Distributing computations to multiple

workers is challenging from two standpoints. First, from the performance perspective,

calculation time is bounded by the device with the highest workload. While other

nodes are busy, idle nodes with tasks completed earlier simply wait, wasting time

and resources. Second, robustness and system stability are crucial. An imbalanced

partitioning strategy may cause run-time failure by exhausting the memory of some

overloaded node. In simulations, the topology of the activated grids and the particles

can dramatically differ from their initial settings. Thus, static partitioning can

become extremely ineffective and non-robust, working only for carefully designed

scenes as in (Wang et al., 2020; Fei et al., 2021). Therefore, we demand dynamic

workload partitioning for better distributed performance and robustness.

‚ Programming simplicity. A typical parallel simulation code requires great

programming effort in memory management and parallel execution. We prefer the

system’s users with different simulation and programming skill levels can all focus
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Figure 4.2: 1B-Fluid with more than 1.01B particles. We use 4 ˆ 1 ˆ 2 MPI ranks (8
in total) to handle the simulation domain. The weakly compressible fluid particles are
colored by the volume change ratio. We show representative frames (left) and sub-domains
handled by eight workers (right).

on their primary goals, ranging from setting up scenes and designing numerical

algorithms to exploring novel data structures.

4.1.1 Key Insight

These assumptions and design goals lead us to a hierarchical architectural design principle

as shown in Figure 4.1. We divide the whole system into four layers: the programming

model layer, the particle/grid data layer, the PIC algorithm layer, and the application

layer. This hierarchical design allows users with various experimental goals to focus on

distinct layers and extrapolate the system’s potential. Below, we discuss each layer in

more detail.

Programming Model. This bottom layer focuses on developing device-portable spe-

cializations on 1) memory allocation and access and 2) parallel execution operations.

Specifically, it allows upper layers to use unified interfaces to perform parallel

computations with the desired backend computational models (e.g ., OpenMP or

CUDA) and manipulate data stored on user-preferred computing devices (e.g ., CPU

or GPU).

Particle/Grid Data. Generally, Lagrangian particles, Eulerian grids, and/or their com-
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binations are used for the simulation schemes considered in this work. However,

designing and implementing these data structures and related algorithms on dis-

tributed systems require intensive effort. Thus, we use an independent layer to

implement particle/grid distributed data structures that allow users to customize

the latent memory layout and the attributes stored for each element. Furthermore,

particle and grid inter-rank communications are integrated for distributed systems.

In addition, since particle/grid number determines the total workload on each rank,

we also attach dynamic load balancing as another crucial component in this layer.

PIC Algorithm. Simulating dynamic physical systems typically requires a time inte-

gration scheme. In our case for example, MPM adopts a Particle-In-Cell (PIC)

paradigm. Users can switch to other schemes by modifying the integration strat-

egy. Additional components in this layer include constitutive models for material

versatility and a particle sourcing module for time-dependent particle injection.

Application. Users can customize the scene setup and material parameters inside this

layer based on all lower-layer components. The user also chooses an MPI topology

according to the host hardware.

4.1.2 Background

To avoid reinventing the wheel, we employ two libraries, Kokkos (Edwards et al., 2014;

Trott et al., 2022) and Cabana (Slattery et al., 2022; Mniszewski et al., 2021) to satisfy

part of the requirements of the bottom two layers.

Kokkos provides support for basic data structures on all major heterogeneous and

high-performance computing architectures (Edwards et al., 2014; Trott et al., 2022). Users

can allocate multidimensional arrays on different computing devices such as CPUs and

GPUs in a relatively easy and unified manner. In addition, Kokkos contains abstractions

for most general parallel execution patterns that are portable across hardware. Kokkos

fully satisfies the design goal of our programming model layer, enabling adoptions on

modern hardware including NVIDIA GPUs and multi-core CPUs which are both used in
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Figure 4.3: Mudflow. Our distributed MPM enables this over-207.8M-particle mudflow
simulation using averagely only 159.34 seconds per frame. Here we employ four worksta-
tions connected through OpenSSH.

this work.

Cabana is a particle-specific library based on Kokkos. It provides particle data

structures, particle algorithms, and MPI communication operations. It also supports

dense-grid and dense-particle-grid operations with a static partitioning. Thus, Cabana

satisfies the particle-related requirements in our particle/grid data layer ; however, we

require extra components for the grid components. First, the dense grid is not suitable for

simulations with significant empty space since a large amount of memory and resources

would be wasted. Second, static partitioning limits the performance and scalability as

analyzed in the design goals.

4.1.3 Contributions

Following the hierarchical approach above, we develop a distributed simulation framework

specialized for MPM kernels, emphasizing scalability and performance portability. Our

system is built on top of a modern C++ programming model (Kokkos) and allows users
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to write and dispatch performant code on HPC platforms with CPU- and GPU-based

parallelization. In order to support the generality for users to switch back-end devices

effortlessly, we do not pursue extensive performance improvement on problems that can

be well-solved by dedicated-designed single-rank CPU or GPU devices, as did Klár et al.

(2017); Gao et al. (2018b); Wang et al. (2020); Fei et al. (2021). Instead, we concentrate

on properly resolving large-scale scenarios where inter-communication is unavoidable and

single-rank machines are unable to handle.

In addition, for the particle/grid data layer, we utilize Cabana for particle-related oper-

ations. We extend the Cabana library by designing and implementing a novel distributed

sparse grid data structure with highly efficient allocation, access, and communication

algorithms. Furthermore, we customize a dynamic load balancing partitioner to improve

the simulation performance by ensuring a balanced workload distribution on all MPI ranks.

Based on these implementations, we develop a fully open-source simulation library that

supports multiple MPM-related algorithms and application designs, leading to gigascale

resolution simulations for a wide range of solid and fluid materials. We further provide

comprehensive computational experiments that demonstrate

‚ the scalability of the proposed distributed system,

‚ the benefits of dynamic load balancing on sparse simulations,

‚ the performance variance with different MPI topologies.

In addition, we demonstrate large-scale simulation examples for designers to customize

their scenes with versatile application-level components.

4.1.4 Overview

Following the hierarchy proposed in §4.1.1, in this chapter, we introduce each system

layer in different subsections. First, in §4.3, we overview the background needed to

understand this chapter and corresponding implementations, including an introduction

of MPM (§4.3.1), the Kokkos programming model (§4.3.2), and Cabana particle-related
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Figure 4.4: High-resolution Sand Injection with grid resolution 512 ˆ 512 ˆ 512 and
266.5M particles. Sand particles are rainbow-colored by their positions. We use four MPI
ranks (2 ˆ 2 ˆ 1) for computation and show the partition status on the left-top corner of
each sub-figure.

implementations (§4.3.3). This section thus covers the programming model layer and

part of the particle/grid data layer. Next, we introduce two new features we integrated

into the particle/grid data layer : §4.4 presents the proposed MPI-dedicated distributed

sparse grid and §4.5 shows our distributed dynamic load balancing scheme. After that,

we describe additional details related to the PIC algorithm and application layers in §4.6.

We then offer performance analysis in §4.7: 1) weak and 2) strong scaling of the proposed

distributed MPM scheme, 3) the performance improvement with our distributed dynamic

load balancing algorithm, 4) performance comparison with different MPI rank topologies,

and 5) large-scale simulation results with up to 1B particles. Finally, we conclude this

chapter with limitations, discussion, and possible future work.

4.2 Related Work

4.2.1 HPC-oriented Simulation Programming Model

Modern hardware makes it possible to improve simulation performance with dedicated

data structure and parallel kernels. One primary attempt is to use multiple CPU cores

with tools like OpenMP (Dagum and Menon, 1998) and Intel TBB (Willhalm and Popovici,

2008). Further explorations are built upon GPUs for faster computations. For example,

GPU-based schemes were designed for Eulerian and Lagrangian fluids (Chentanez and

Müller, 2011, 2013; Cohen et al., 2010; Pfaff et al., 2010; Goswami et al., 2010; Vantzos
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et al., 2018; Winchenbach et al., 2016; Amada et al., 2004), as well as for hybrid solvers

(Gao et al., 2018b; Hu et al., 2019a, 2021; Wu et al., 2018; Chentanez et al., 2015).

Multi-GPU platforms (Wang et al., 2020; Fei et al., 2021) were developed for MPM as

well.

For scalability, researches such as (Shah et al., 2018a; Qu et al., 2020; Liu et al., 2016;

Bauer et al., 2012) also explored algorithms and data structures for distributed simulations.

Kale and Krishnan (1993) introduced Charm++, an object-oriented portable C++-based

parallel programming language that is still being actively maintained by researchers from

multiple fields. Additionally, supportive systems such as Canary (Qu et al., 2018) and

Nimbus (Mashayekhi et al., 2017, 2018) distribute tasks onto computing nodes. For most

systems, MPI (Snir et al., 1998) is adopted as the message communication library. It

provides various communication primitives for sending and receiving data among ranks.

For example, Lesser et al. (2022) propose a multi-physics framework named Loki, which

can be used as a generalized tool to simulate various material phenomena ranging from

elastic solids to fluids with multi-CPU-core clusters. However, Loki leaves GPU usage as

future work. Similarly, for other systems, whether single-machine-based or distributed,

data arrangement and computations are limited to specific back-end devices, and the

performance optimization is only architecture-oriented.

There have been many efforts for performance portability, i.e., enabling high perfor-

mance across different architectures with a single source code. For example, Hu et al.

(2019a) developed a compiler that allows users to switch CPU/GPU backend by changing

a single line of code. Medina et al. (2014) provided a unified API for interacting with

backend devices with a C-extended kernel language. Additionally, Zenker et al. (2016)

implemented an abstract hierarchical redundant parallelism model that supports appli-

cations on many hardware types ranging from multi-core CPUs to GPUs. Furthermore,

libraries such as Kokkos (Edwards et al., 2014; Trott et al., 2022) with its extensions

like Cabana (Slattery et al., 2022; Mniszewski et al., 2021) support the manipulation

of array-based data structures and their corresponding parallel patterns on multiple

underlying computing devices in a distributed manner. These libraries relieve researchers’
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effort in backend-oriented maintenance and their usage is becoming a trend for next

generation high-performance simulations.

4.2.2 Sparse Grid Data Structures

In many Eulerian and hybrid simulations, the grids are sparsely activated, i.e., only part of

the grids contains non-zero entries. Thus, sparse grid data structures have been developed

to improve memory bandwidth and data access efficiency. For instance, OpenVDB

(Museth, 2013), sparse paged grids (Setaluri et al., 2014), and Bifrost’s volume tools

(Bojsen-Hansen et al., 2021) enable efficient interactions of time-varying sparse quantities

over large grid with dedicated grid representation design on CPUs. Furthermore, Museth

(2021); Hoetzlein (2016) and Gao et al. (2018b) broaden the sparsity idea of VDB and

sparse paged grids to GPUs. These extensions vastly improve the simulation scalability

and efficiency on NVIDIA GPUs with limit-sized RAMs. Moreover, developing a data

hierarchy is an important addition to improve sparse data access efficiency, such as in

(Hu et al., 2019a; Liu et al., 2018).

4.2.3 Load Balancing for Simulations

Load balancing and workload distribution are crucial for the performance of distributed

systems. Traditional load balancing algorithms perform either geometric-based (Berger

and Bokhari, 1987) or graph-based (Karypis and Kumar, 1997; Catalyurek et al., 2007)

optimization. Some other works consider the temporal aspect when deciding partition

boundaries. Shah et al. (2018a) proposed speculative balancing for fluid simulation.

It computes partition-to-worker assignments by performing a low-resolution simulation

substitution and predicting the high-resolution workload distribution in the upcoming

steps. Their partitioning overhead is polynomial in the number of ranks. Additionally,

Qu et al. (2020) proposed a birdshot scheduling method for partitioning. It splits the

simulation domain into many micro-partitions and assigns them to nodes randomly. Based

on cloud computing nodes’ high latency, high throughput, and full bisection bandwidth,
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birdshot scheduling was shown to outperform static partitioning in many fluid simulation

schemes including SPH, Eulerian and hybrid methods.

4.2.4 Fast MPM in Computer Graphics

MPM was introduced to graphics by Stomakhin et al. (2013) for simulating snow dynamics.

Scaling MPM to higher resolution is promising since a regular Cartesian grid is used to

discretize fields (Jiang et al., 2016). Many research efforts investigated techniques to

accelerate MPM. For example, Klár et al. (2017) constructed production-ready GPU

MPM solvers in the Dreamworks animation pipeline with adaptive particle advection. Gao

et al. (2018b) studied design choices for explicit and implicit MPM parallelism utilizing

GPU. Based on that, Wang et al. (2020) harnessed the power of multiple GPUs and

achieved one-hundred-million-particle simulations on an eight-GPU workstation. Recently,

Fei et al. (2021) summarized various principles for accelerating single- and multi-GPU

MPM implementations. They achieved real-time performance for a one-million-particle

simulation on four NVIDIA GPUs with NVLinks.

Taking a different path towards performance optimization, Hu et al. (2019a) proposed

the Taichi programming language as a high-level interface to process spatially sparse

multi-level data structures. By decoupling data structures from computations, users can

perform experiments using different data structures without changing much code. Hu

et al. (2021) further improved this compiler by introducing low-precision numerical data

types for reduced memory occupation and bandwidth consumption. It enabled faster and

higher-scale simulations by sacrificing numerical accuracy.

4.3 Background

4.3.1 Material Point Method (MPM)

MPM is a hybrid simulation method that uses particle and grid representations to

discretize the simulation domain. Typically, physical attributes including mass (mp),
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Figure 4.5: Our distributed MPM simulation pipeline, using 2 ranks as an illustrative
example. In the figure, Comm. is short for Communication.
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velocity (vp), deformation gradient (Fp), and affine velocities (Cp) are stored on particles;

grid nodes that stores mass (mi) and momentum (mivi), transferred from particles, are

treated as auxiliary scratchpad variables to perform spatial derivative computations and

boundary condition enforcement.

To demonstrate our programming model without loss of generality, we implement the

most basic first-order MPM time integration scheme with the following essential steps for

incremental dynamics.

1. Particles-to-Grid (P2G).

Compute grid mass and momentum from particles: tmp,mpv
n
p u Ñ tmi,miv

n
i u. In

addition, transfer force contributions to grid nodes from elastic stresses of the nearby

particles and project particle deformation gradients for plasticity (if any).

2. Grid Update.

Update grid velocities with either explicit or implicit time integration: vn
i Ñ vn`1

i ,

taking boundary conditions and collision objects into account.

3. Grid-to-Particles and Particle Advection (G2P).

Transfer velocities from grid nodes to particles, evolve particle strains, and then update

particle positions with their new velocities: tvn`1
i u Ñ tvn`1

p ,F n`1
p u, tpn

p ,v
n`1
p u Ñ

tpn`1
p u.

These three steps are the major computing components in MPM. We show how these

computations are performed on each MPI rank in our distributed system in Figure 4.5.

4.3.2 Performance Portable Parallel Programming with Kokkos

As introduced in §4.1.2, we employ the Kokkos library (Edwards et al., 2014; Trott et al.,

2022) as the device-portable programming model layer that supports multidimensional

array allocation and access and parallel execution patterns. Using Kokkos, our simulation

pipeline can switch among different backend programming models, including OpenMP

and CUDA, using C++ template arguments. For example, we can make the following

64



definitions and pass them into both particle and grid data structures and related parallel

kernels to invoke an NVIDIA GPU for data management and computation. The comments

show how we can quickly switch to CPU with OpenMP.

1 using EXECSPACE = Kokkos ::Cuda; // Kokkos :: OpenMP

2 using MEMSPACE = Kokkos :: CudaSpace; // Kokkos :: HostSpace

3 using DEVICE = Kokkos ::Device <EXECSPACE , MEMSPACE >;

The particle data structure, our new sparse grid, and all other supporting arrays are

implemented based on Kokkos::View, which defines a multidimensional array based on

user-specified memory space. We can set the array size at compile time or run time. One

example of defining a 2-dimensional array with Kokkos::View is listed in the first line of

the code patch below. It defines an NUM ˆ 3 array, with the first dimension size (NUM)

specified during run time and the second during compile time.

To dispatch parallel computations, one can use various Kokkos parallel patterns with

a specified execution policy to perform defined kernels on different architectures, as shown

below. In line 2, we get particle position data slices (detailed particle definitions are listed

in §4.3.3), and then dispatch a Kokkos::parallel_for pattern with a range policy to

assign particle positions to the pre-defined Kokkos::View. By changing the content of

KOKKOS_LAMBDA, one can easily modify the behavior of the computing kernel. Finally, in

line 12, we create a host copy of the View data so that the CPU-side (host-side) code can

also access or further output the data to files for visualization.

1 Kokkos ::View <T*[3], MEMSPACE > pos( "positions", NUM );

2 auto x_p = Cabana ::slice <P::pos >( particles );

3 /* dispatch a parallel for to assign data from x_p to pos */

4 Kokkos :: parallel_for(

5 Kokkos :: RangePolicy <EXECSPACE >( 0, particle_num ),

6 KOKKOS_LAMBDA( const int idx ) { // compute kernel

7 pos( idx , 0 ) = x_p( idx , 0 ); // element access

8 pos( idx , 1 ) = x_p( idx , 1 );

9 pos( idx , 2 ) = x_p( idx , 2 );

10 } );

11 Kokkos ::fence (); // fence execution space

12 auto host_view =

13 Kokkos :: create_mirror_view( Kokkos :: HostSpace (), pos );

In addition to Kokkos::parallel_for, other parallel execution patters are supported in

Kokkos, including parallel_reduce and parallel_scan. We refer to Trott et al. (2022);
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Edwards et al. (2014) for further details.

4.3.3 Distributed Particles with Cabana

With the device-portable programming model, we are able to build the particle/grid data

layer. As mentioned in §4.3, we utilize Cabana library for particle memory management

and communication.

Built upon the Kokkos::View, the Cabana::AoSoA enables Array-of-Structure-of-

Array (AoSoA) layout (Wang et al., 2020) to manage particle storage with user-specified

properties. The AoSoA structure exploits the advantages of both Structure-of-Array and

Array-of-Structure to conserve both coalesced threads calculations and performant random

memory access patterns when parallelizing MPM. The following code sample shows how

to declare particle storage with MPM-essential properties such as mass, position, velocity,

deformation gradient, APIC transformation matrix, and plastic volumetric strain (lines

1-4). Additionally, lines 5-8 illustrate how to use Cabana::slice to access individual

particle properties. Additional details are provided by Mniszewski et al. (2021).

1 using particle_members =

2 Cabana :: MemberTypes <T, T[3], T[3], T[3][3] , T[3][3] , T>;

3 using particle_list = Cabana ::AoSoA <particle_members , MEMSPACE >;

4 particle_list particles;

5 // access single particle properties with Cabana :: slice

6 auto position = Cabana ::slice <1>( particles );

7 auto velocity = Cabana ::slice <2>( particles );

8 auto affine = Cabana ::slice <4>( particles );

4.3.4 MPI Communication

Handling particle and grid data communication is another crucial ingredient of the

particle/grid data layer. We use MPI (Snir et al., 1998), a message passing interface

widely used for multi-node applications, to perform data communication among distinct

ranks. In the rest of the chapter, we use MPI rank, rank, and worker as interchangeable

terms of the logically independent computing unit that handles non-overlapped work.

In practice, we divide the whole simulation domain spatially and distribute the corre-
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Figure 4.6: Hierarchical Sparse Grid Representation. We use a 2D MPI topology
as an example. The entire simulation domain is divided into four blocks, each handled by
a unique MPI rank. The blocks are further divided into tiles, which contains N ˆ N grid
cells (in this example, N “ 4). Local cell indexing inside each tile is lexicographical. The
tile ijks are mapped to 1D keys through a user-specified manner (either lexicographical
or using a Morton curve). In addition, the halo regions, i.e., the shared spaces of different
MPI ranks, are classified as owned-shared space and ghosted-shared spaces as illustrated
in shaded colors.

sponding workload (particles and grids) to ranks with a user-specified MPI communicator

topology. MPI ranks can be mapped to a single or multiple computing devices according

to the hardware setup and the options provided when running the simulation executable

with mpirun/mpiexec command. Generally, one individual process will handle one rank

during execution. In our system, we use non-blocking MPI_Isend/MPI_Irecv pairs for

particle and grid data exchanges among workers. Also, MPI_ALLReduce with operators

like MPI_SUM or MPI_MIN are employed for inter-rank grids/particles reductions. Moreover,

MPI_Barrier is called for synchronization to ensure data consistency and computation

correctness.

4.4 Distributed Sparse Grid

In MPM simulations, the valid domain is generally sparsely occupied by material particles.

As a result, it may cause an unnecessary waste of computing time and memory occupation
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in large-scale simulations if a dense grid is used. Therefore, we develop a distributed sparse

grid data structure to represent the sparsely populated uniform grids in the particle/grid

data layer to more effectively leverage the computing resources on multiple MPI ranks.

Our sparse-grid approach shares kernel-level interfaces with the dense grid data structures

implemented in Cabana, making it effortless for Cabana users to switch in their simulation

implementations.

We distribute the simulation work to multiple MPI ranks by dividing the entire domain

into rectangular partitions. Each MPI rank needs to have panoramic information to guide

its local computations. Some essential global knowledge includes the size and position of

the entire simulation domain and the rectangle range each MPI rank handles. To clarify

the descriptions, we propose the following concepts to represent the logical simulation

domain and uniform grid. Each concept is implemented as a separate C++ class in

practice.

‚ Global Mesh: The actual position and size of the entire simulation domain.

‚ Global Grid: The entire logical uniform grid, indexing from 0 to the grid resolution

in each dimension. The global grid also contains the domain partition information,

indicating the grid range that the current MPI rank is in charge of.

‚ Local Mesh: The position and rectangle sub-domain size of the current MPI rank.

‚ Local Grid: The valid owned and shared grid indexing space of the current worker.

The owned space represents all the grids exclusively accessed by the rank, while the

shared space indicates the halo range with which multiple MPI ranks may interact.

As illustrated in Figure 4.6, we have two shared space types: 1) owned-shared space

to represent all the grids that are owned and managed by the current MPI rank but

may interact with particles residing on the neighbor ranks, and 2) ghosted-shared

space to denote the grid range that owned by some other MPI ranks, but the current

worker may read from or write to.

To further improve the flexibility of grid data management, we propose a hierarchical
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block-tile-cell representation of the simulation grid domain. Block is defined as the

reference to the entire local grid domain on a single MPI rank. It is further divided

into tiles, as shown in Figure 4.6, where each tile contains a user-defined number of cells

(4 ˆ 4 ˆ 4 in our examples). This hierarchical design allows users to customize the grid

data allocation and access with coalesced data access patterns that could potentially

benefit parallel particle-grid interpolations. It can also fit the special design needs in

user-customized simulation pipelines such as (Wang et al., 2020; Gao et al., 2018b).

Before performing the grid array allocation, we define a sparse grid layout to specify

the following information:

1. The entity type on the sparse grid (i.e., whether to store the value on grid nodes,

cell centers, faces, or edges);

2. The valid grid tiles in the current simulation step;

3. The halo status in the current simulation step.

The first piece of information is consistent throughout the entire simulation process. In

practice, we define multiple overloading functions in the local grid concept to deal with

the minor indexing and grid ownership disparity caused by different entity types. By

contrast, the second and third status varies along with the simulation and, thus, require

recalculation in every time step. In the following subsections, we explain how the sparsity

is registered (§4.4.1) and how the halo communications are achieved (§4.4.2).

4.4.1 Sparse Map

In MPM simulations, the valid/activated grids, i.e., the grids that will be allocated and

accessed in the upcoming step, are the grids that will interact with particles. The grid

range each particle will activate is determined by the particle position and the Eulerian

interpolating functions. We adopt the quadratic kernel for particle/grid data transfer in

all examples. Thus, we can ensure that each particle will activate only 27 grid cells nearby.

Since we use grid tile as the minimum unit of actual allocation, each corresponding tile of
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these cells is mapped to an array index inside the grid memory by spatial hashing before

MPM time integration in each step. We first map the global 3D tile index to a hashing

key using either the lexicographical order or a space-filling Morton curve (Figure 4.6)

(Setaluri et al., 2014; Gao et al., 2018b; Wang et al., 2020) according to user’s choice.

This process ensures that every logically independent grid tile has a unique identifier

on whichever worker. Then the tile key is registered in a device portable hash table

(Kokkos::UnorderedMap) in a specified execution manner. This way, the 3D indices of all

valid tiles will be mapped to a linear memory span indexing from 0 to the total valid-tile

number.

4.4.2 Sparse Halo

To decide whether two adjacent MPI ranks need to exchange grid data and how much to

communicate, we need to consider the following factors:

‚ Entity type stored on the grids.

‚ Particle-grid interpolation kernel size.

‚ Whether the grid halo region contains valid tiles.

‚ Halo size.

Concretely, the first two factors correspond to how the MPI neighbor topology is defined

by the entity type and the kernel size to transfer particle-grid data. Specifically, in 3D

with kernel size 1, the workers would share data with all 26 neighbor ranks if data is

stored on grid nodes or cell centers, while only six neighbors require communication for

edge and face cases. Our MPM system stores all the attributes on grid nodes with a

quadratic kernel, and thus each worker needs to communicate data with all topologically

adjacent ranks.

The next two factors correspond to the following. Considering the sparsity of the grid

data, halo communication happens only when there are commonly registered tiles in the
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ghosted-shared spaces and owned-shared space of two neighboring ranks. And the size of

the owned- and ghosted- shared space is decided by the halo size. Under this circumstance,

we introduce two types of halo communications:

‚ Halo Scatter. Scatter the data in the ghosted-shared space of the current MPI rank

to their owner rank and perform the specified grid reduction (such as summation or

computing the minimum/maximum value). Note that the reduction happens on the

owned-shared space of the owner worker.

‚ Halo Gather. Gather grid attributes in the ghosted-shared space of the current

worker from the owned-shared space of the neighboring owners.

The halo scatter happens after the P2G transfer in MPM time integration. The grid

owner ranks collect and reduce all valid grid data during this process. Afterwards, all

owner ranks will contain complete grid information transferred from simulation particles,

including in owned space and owned-shared spaces. Then halo gather is performed before

grid update to ensure all MPI ranks hold the entire and correct grid data in shared spaces.

To reduce the MPI communication overhead, we first count the valid tiles in the

ghosted- and owned- shared space before halo gather/scatter, and broadcast the counting

results to the neighbor ranks. For halo scatter, workers will send halo data to a specific

neighbor only if both the counting in its ghosted-shared space and the counting in the

neighbor’s owned-shared space are non-zero. Additionally, a worker will wait to receive

data from a neighbor only when the owned-shared space and the corresponding neighbor’s

ghosted-shared space are non-empty. Similar verification is also performed before actual

data transfer in halo gather operation, with the role of ghosted- and owned- shared space

switched.

4.4.3 Sparse Array Allocation

Based on the information provided by the grid layout (specifies entity type, grid activation,

and sparse halo), the sparse grid array is created and allocated. The grid is managed in
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Figure 4.7: Elastic Playground. Numerous letters, symbols, and numbers are poured
onto the toy playground. At most, 394M particles are involved, and the average simulation
time is 229.56 seconds per frame.

an AoSoA manner, with each tile serving as a basic Structure-of-Array unit. I.e., the cell

properties inside each tile is organized in an SoA manner while the tile structures are

listed in an outer array. By controlling the tile size, user can switch grid data to either

SoA (when tile size equals to the block size) or AoS (when tile size equals to 1 ˆ 1 ˆ 1

cell). As proposed in (Wang et al., 2020), this design helps improve data vectorization

inside a contiguous array of member variables and overall device cache efficiency with

small grid tiles.

The following code example shows how to define and allocate the sparse grid in

the proposed programming model. In line 1, we specify the primary value type of grid

attributes. Moreover, in lines 2-3, we define the attributes stored on grids by listing all

member types (mass (1D) and grid momentum/velocity (3D)). Users can easily adjust

data channels by modifying the template definitions. Then, in lines 4-5, we create a

sparse map (§4.4.1) to record valid grid tiles in each simulation step. Here, the MEMSPACE

indicates whether the hashing data is on CPU or GPU and further decides whether the
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hash insertions or queries are performed or paralleled within the host or device kernels.

1 using T = float; // or other types like double

2 using node_members = // mass and momentum in MPM simulation

3 Cabana :: MemberTypes <T, T[3]>;

4 auto sparse_map = // hash table , Sec 4.1

5 Cajita :: createSparseMap <MEMSPACE >( global_mesh , reserve_size);

6 /* create grid array layout , contains sparse halo (Sec 4.2); the entity

type Cajita ::Node() indicates values are stored on grid nodes */

7 auto layout =

8 Cajita :: createSparseArrayLayout <node_members >( local_grid , sparse_map ,

Cajita ::Node());

9 auto nodes = // allocated grid AoSoA

10 Cajita :: createSparseArray <DEVICE >("nodes", layout);

11 nodes.reserve(pre_allocate_cell_num); // optional

Later in lines 7-8, we need to specify the grid layout from the local grid, sparse map, and

the entity type to support the actual array allocation. In detail, entity type guides the halo

communication and array allocation (§4.4); while local grid computes the owned-/ghosted-

tile ranges. Note the tile ranges in shared spaces require update once the simulation

domain is partitioned (§4.5) to ensure communication correctness. Finally, an AoSoA array

is created with the pre-prepared information in lines 9-10. Automatic reallocation will be

triggered during simulation if the valid grid array size exceeds the allocated capacity. We

recommend explicitly reserving spaces for grid data by providing an estimation of the

maximum valid cell number (line 11) to reduce performance drop caused by unnecessary

reallocation.

4.5 Distributing and Load Balancing

For performance-portable large-scale simulations, evenly distributing the workload to

multiple ranks is essential. Considering the significance of load balancing, simulation

communities have formulated partitioning as a domain optimization problem (Surmin

et al., 2015). However, most existing works focus on the theory and formulation. In

this section, we propose and demonstrate a detailed dynamic load-balancing algorithm

as an essential component of most distributed computing systems. The corresponding

implementation is integrated into our particle/grid data layer, i.e., into the Cabana library.

It will be fully open-sourced with detailed documentation and unit tests. In the rest of
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Algorithm 2 Dynamic Load Balancing

Input: Sparse map map Ź for dynamic grid partitioning
Input: Particle positions posp Ź for dynamic particle partitioning
Input: MPI communicator comm
Output: Optimized partition P “ tI, J,Ku

Output: Optimization iteration times performed n
computeLocalWorkload(map or posp) Ź §4.5.1.1
computeGlobalWorkload(comm) Ź §4.5.1.2
computePrefixSum Ź §4.5.1.3
n Ð 0
while n ă nmax do Ź nmax: max iteration time

dim sequence Ð random permutation of t0, 1, 2u

for all d P dim sequence do
is changed Ð false
is dim changed Ð optimization1D(d)
is changed Ð is changed || is dim changed

end for
n Ð n ` 1
if NOT is changed then

return n
end if

end while

this chapter, we first introduce two definitions of simulation workload in §4.5.1, and then

explain our 3D partition optimization in §4.5.2. The complete dynamic load balance

optimization algorithm is summarized in Algorithm 2. More implementation details and

the unit test of the proposed dynamic load balance algorithm can be found in section B.1

and section B.2, respectively.

4.5.1 Workload Computation

As introduced in §4.4, the entire work is distributed by partitioning the simulation domain

into non-overlapped rectangular sub-regions according to the MPI topology, with every

independent MPI rank handling each sub-region. To perform the partition optimization,

we need to evaluate the workload on each MPI worker, i.e., inside each rectangular

sub-region, which changes dynamically throughout the simulation. In addition, the

optimization process requires frequent workload analysis of the partitioned attempts.
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Figure 4.8: Sand injection with different partition algorithms (133.2M particles in total,
grid resolution 256 ˆ 256 ˆ 256). The first column shows static partitioning result, and
DGP-N refers to Dynamic Grid Partitioning per N simulation steps. Similarly, DPP
refers to Dynamic Particle Partitioning. Row 1 to 3 shows the results for frames 25, 99,
and 145, respectively. Different color refers to particles (simulation sub-domain) handled
by different MPI ranks.

Thus, we need a representation that supports efficient workload computation within any

rectangle region.

We construct a 3D matrix to realize this goal, with each element referring to the

workload value inside the corresponding area. The granularity of the workload matrix

influences the accuracy and performance of the load balancing optimization. A matrix with

elements representing smaller-sized regions helps the optimizer to make a more accurate

and flexible choice but may increase the computation and communication overhead.

4.5.1.1 Local Workload Computation

First, we count the workload handled locally on each MPI rank. In hybrid simulation

methods, particles and grids are two crucial representations. Thus, both can measure the

work amount, leading to two types of workload computing methods.

Particle-based workload computation. In this case, each particle is treated as a

work unit. We make a parallel loop over particle positions and perform atomic addition to

corresponding elements in the workload matrix. This method finally leads to a partition

where all MPI ranks contain a similar number of particles. Generally, hybrid methods

use dramatically more particles than valid grids (typically, each grid cell contains at
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least eight particles in 3D, and sometimes more to increase details and reduce numerical

fractures). Thus, computations involving particles and atomic additions consume more

computing and time resources for workload statistics. Nevertheless, balanced particle

distribution can potentially benefit the timing of particle-grid data transfer if particles

per cell are similar all over the domain because particle number decides the number of

parallel kernels and the majority of memory accesses.

Grid-based workload computation. In order to improve the load balancing time

efficiency, we also support the workload computation based on valid grid tiles. The

compute kernel loops over the hash table in the sparse map and set the workload matrix

element to 1 if the tile is valid. I.e., no atomic additions are required, and fewer matrix

elements are involved compared to particle-based computation.

Discussion on the choices. Generally speaking, both methods estimate the workload

distribution from different perspectives in a given domain. When particles are relatively

evenly distributed in grids, e.g ., in elastic simulations, these two representations will

generate similar load balancing results. In this situation, grid-based workload outperforms

as it uses fewer computing resources. However, in simulations for granular media and

fluids, the particles can splash out dramatically or gather locally. In this case, particle-

based method standouts because valid grid tiles are likely to contain significantly different

numbers of particles, leading to distinct P2G and G2P time and memory requirement

on different ranks. This may influence the simulation performance, as demonstrated in

§4.7, or cause run-time particle memory allocation errors after particle communication for

large-scale scenes.

In this chapter, we refer to the load balancing algorithm as dynamic grid partitioning

if the workload is computed from the valid grid tiles, and as dynamic particle partitioning

for the particle-based case. See §4.7 for detailed comparison results.
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4.5.1.2 Global Workload Computation

All MPI ranks need to know the workload distribution in the whole simulation domain to

perform global optimization. Thus, we need to gather all the computed local workload

matrices to form a global matrix. We achieve this calculation by performing MPI

reduction among all ranks with the MPI_Allreduce interface. Note that CUDA-aware

MPI is required if the simulation uses CUDA memory and GPU execution space.

4.5.1.3 Global Workload Prefix Summation

We must scan all dimensions to perform load balancing optimization and analyze if the

current partition is optimal. This process requires frequent workload counting inside

any arbitrary rectangle sub-regions. Inspired by Surmin et al. (2015), we compute the

3D prefix summation of the global workload matrix, pursuing a constant-time workload

estimation. Specifically, we adopt Kokkos::parallel_scan interface as an efficient

solution for dispatching parallel inclusive/exclusive scans with a user-defined functor

and a parallel execution policy. We scan the 3D workload matrix in three dimensions

separately to compute the 3D prefix summation matrix. I.e., the first scan is in the x

direction, and then the second and third scans are based on the intermediate matrices

in y and z direction individually. The concrete algorithm is listed in the supplemental

document.

4.5.2 Partition Optimization

In this section, we first summarize the formulation of the 3D partition optimization

process and then introduce the detailed algorithm we used for dynamic load balancing

implementation. We use I, J,K to represent the partition in dimension x, y and z, with

I “ pi0, i1, ..., iNxq, J “ pj0, j1, ..., jNyq, and K “ pk0, k1, ..., kNzq indicating the dividing

boundary sets. Here, Nx, Ny and Nz are the total number of MPI ranks in corresponding

dimensions, and i˚, j˚, k˚ refers to the tile indices. Specifically, i0 “ j0 “ k0 “ 0 and

iNx , jNy , kNz equals to the total number of tiles in x, y and z dimension, respectively.
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Note that the workload matrix granularity will influence the unit of the pre-mentioned

indices in the proposed implementation. In practice, to make implementations easily

understandable and consistent, we use grid tile as the atomic unit of 1) workload matrix,

2) partition boundary index, and 3) grid data communication.

For any given rank pα, β, γq, the local grid domain it in charges is given by grid tiles

tpi, j, kq|iα ď i ă iα`1, jβ ď j ă jβ`1, kγ ď k ă kγ`1u. Suppose the starting tile of the

current rank are optimized and fixed; the proposed load balancing algorithm will find the

optimal ending tile indices by solving the following optimization.

min
iα`1,jβ`1,kγ`1

:

iα`1
ÿ

i“iα

jβ`1
ÿ

j“jβ

kγ`1
ÿ

k“kγ

|Wi,j,k ´ W |

Here, Wi,j,k is the workload in tile pi, j, kq and W refers to the average rank workload

computed by
řNx

i“0

řNy
j“0

řNz
k“0 Wi,j,k

NxˆNyˆNz
.

As discussed in (Surmin et al., 2015), this optimization is an NP-complete problem.

With previous partitions pi0, ..., iαq, pj0, ..., jβq and pk0, ..., kγq fixed, there are three degree-

of-freedoms to decide, i.e., the optimal partition iα`1, jβ`1 and kγ`1, for the current rank.

In addition, the results will influence the computation for later ranks with larger rank

indexing values. To solve this problem with three unknowns, we iteratively alternate

among each variable and perform 1D optimizations. The iteration will stop when the

partitioning results are unchanged or the maximum iteration number is reached, as shown

in Algorithm 2. In the supplemental document, we present a validation example to show

that this iterative algorithm can generate the optimal solution with several iterations

when the ground truth is unique.

4.5.2.1 1D Load Balancing Optimization

Inside each 1D optimization, we randomly choose one dimension of interest that is never

covered in the current iteration. This randomness reduces the possibility for the algorithm

to be trapped into local optimal and potentially reduces the iteration times. Then, the
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Algorithm 3 Compute Workload in a Given Sub-domain

Input: Dimension label di and tile range li, hi

Input: Dimension label dj and tile range lj, hj

Input: Dimension label dh and tile range lh, hh

Input: Workload prefix sum matrix WS
Output: Workload in tile range rli, his ˆ rlj, hjs ˆ rlk, hks

function ComputeWorkload(di, li, hi, dj, lj, hj, dk, lk, hk)
srdis Ð li, srdjs Ð lj, srdks Ð lk
erdis Ð hi, erdjs Ð hj, erdks Ð hk

return WSper0s, er1s, er2sq ´ WSpsr0s, er1s, er2sq

´WSper0s, sr1s, er2sq ´ WSper0s, er1s, sr2sq

`WSpsr0s, sr1s, er2sq ` WSper0s, sr1s, sr2sq

`WSpsr0s, er1s, sr2sq ´ WSpsr0s, sr1s, sr2sq

end function

partition in the non-chosen two dimensions is fixed. All partition boundaries in the

dimension of interest will be reanalyzed individually for a more even workload division.

The detailed algorithm is summarized in the supplemental document.

In practice, it is possible to have a range of consecutive tiles where there are no valid

particles. In theory, any tile indices in this range can be treated as optimal partition

positions. However, because dynamic load balancing is not performed in every simulation

time step, if we choose the pre-mentioned tile range boundaries as the partition position,

the particles may move over the range boundaries before the next round of partitioning.

This choice will cause extra particle communications in the upcoming steps, especially

for solid simulations, where many particles tend to gather together, and the particle

communication overhead would be considerable. Therefore, we always set the partition

point as the middle point of the equivalent tile range where there are no particles. This

simple operation reduces the potential particle communications among MPI ranks and

improves the overall performance. For

4.5.2.2 Workload Computation

Once the 3D prefix summation matrix of the global workload is obtained, we can calculate

the workload in any given rectangle domain within constant time as shown in Algorithm 3.
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4.5.3 Partition Optimization

We apply three separate 1D optimizations to approximate the optimal solution of the 3D

partition optimization. Details of the 1D case is shown in Algorithm 4.

4.6 Distributed MPM Implementation

4.6.1 Time Integration

As mentioned in §4.3, we implement the first-order MPM time integration scheme including

three basic computation kernels, i.e., P2G, Grid Update, and G2P. For distributed

systems, another two communication kernels, Grid Halo Communication and Particle

Communication are required to guarantee the correctness. In detail, Grid Halo

Communication is performed before Grid Update to ensure the completeness of the grid

data on each MPI worker. It consists of the halo scatter and gather operations introduced

in §4.4.2. Then, after updating particle positions in G2P, we end up time integration

step with Particle Communication to distribute particles to the ranks in charge of the

corresponding grid sub-domain. Additionally, Dynamic Partition Optimization is

performed right before Particle Communication at certain time steps to ensure a relatively

balanced load distribution. The entire pipeline is illustrated in Figure 4.5.

4.6.2 PIC Algorithms and Application Implementation

To make a more complete distributed MPM simulation system, we add the PIC Algorithm

layer to further support the application layer in building up versatile large-scale scenes.

In addition to the core time integration routines, we add components like device-portable

sparse collision object, particle sourcing, analytic/VDB-based shape, and multi-material

constitutive modeling with elasticity and plasticity, forming the MultiSim library (Fig-

ure 4.1). We support four types of constitutive models, including fixed-corotated model

(Stomakhin et al., 2013) for elasticity, Drucker-Prager elastoplasticity (Klár et al., 2016)

for sand simulations, Non-Associated Cam-Clay (NACC) (Wolper et al., 2019; Li et al.,
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Algorithm 4 1D Rectangle Partition optimization

Input: Dimension-of-interest: d
Output: Optimized partition: P , with P0 “ I, P1 “ J, P2 “ K
Output: If partition is updated: is changed
function optimization1D(d)
Ź solve 1D rectangle optimization given partitions in the other two dimensions fixed

di Ð d
dj Ð pd ` 1q mod 3
dk Ð pd ` 2q mod 3
for all j P r0, Njq, k P r0, Nkq do Ź in parallel

Wallpj, kq Ð

ComputeWorkload(di, 0, Ni, dj , Pdjpjq, Pdjpj ` 1q, dk, Pdkpkq, Pdkpk ` 1q)
Wavepj, kq Ð Wallpi, jq { Ni

end for Ź Ni, Nj and Nk: rank number in corresponding dimensions
pi´1 Ð 0
pi Ð 1
eqstart Ð 1 Ź record equivalent partition range
last diff Ð INT MAX
Pdip0q “ 0
for all rank “ 1, ..., Ni ´ 1 do

while true do
for all j P r0, Njq, k P r0, Nkq do Ź in parallel

W pj, kq Ð

ComputeWorkload(di, pk´1, pk, dj , Pdjpjq, Pdjpj ` 1q, dk, Pdkpkq, Pdkpk `

1q)
end for
diff Ð

ř

j,k|W pj, kq ´ Wavepj, kq| Ź parallel reduce
if diff ă last diff then

eqstart Ð pk
last diff Ð diff

else
if P pdi, rankq ‰ ppi ´ 1 ` eqstartq{2 then

P pdi, rankq Ð ppi ´ 1 ` eqstartq{2
is changed “ true

end if
pi´1 Ð pi
break while loop

end if
pi Ð pi ` 1

end while
end for

end function

81



2022b) for snow/mud-like behaviors, and furthermore, weakly compressible fluids (Tam-

pubolon et al., 2017) for liquids. Users can easily specify the component or even extend

the current PIC Algorithm layer for more applications. In the section B.3, we provide a

concrete example showing how to use the components in application level. More demos

can be found in our open-source code.

4.7 Results and Evaluations

This section evaluates the proposed distributed MPM framework with scaling tests, load

balancing comparisons, MPI Cartesian topology comparisons, and large-scale demonstra-

tions. We use at most eight workstations (each as one MPI rank) in our experiments.

The workstation has one Intel Core i9-10920X (12 core, 24 threads, base clock 3.50Hz)

and one NVIDIA GeForce RTX 3090 GPU. We adopt 10-Gigabit bandwidth Ethernet to

support inter-rank communications, with OpenSSH (developers, 2021) and CUDA-aware

OpenMPI 4.1.2 (Members, 2021). All the evaluations and demonstrations are conducted

under this setup unless stated otherwise. In addition, the fixed-corotated constitutive

model (Stomakhin et al., 2012b) and dynamic grid partitioning (per 200 simulation steps)

are adopted for all scaling tests.

4.7.1 Multi-MPI Scalability

Scalability with increased computing resources is a widely adopted test to evaluate the

effectiveness and robustness of a distributed algorithm. Ideally, performance should scale

up with the number of involved MPI ranks. However, perfect scaling is not practical.

Specifically, Amdahl’s law and Gustafson’s law demonstrate the limitation of parallel

computing; furthermore, the communication bandwidth also constrains the upper bound

of multi-rank acceleration. To analyze the performance of the proposed distributed MPM

system, we present the scaling results on local workstations with both CUDA and OpenMP

as the latent programming models respectively.
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Figure 4.9: Weak Scalability scene setup with 1-8 workstations. Different colors refer
to different MPI ranks in each sub-figure.

4.7.1.1 Weak Scaling

Inspired by Gao et al. (2018b), we set up the experiment by placing an elastic cuboid at

the center of each rank’s local mesh and let it fall with gravity, as illustrated in Figure 4.9.

All cuboids are of the same size with 28.8M particles. The MPI rank topology is nˆ 1 ˆ 1

for rank number n “ 1, 2, 3, 5, 7, and n{2 ˆ 1 ˆ 2 for n “ 4, 6, 8. We summarize the

experiment timing and efficiency of each computing/communication kernel in Figure 4.20.

For communication kernels (Particle Communication, Dynamic Partition Optimization

and Grid Halo Communication), efficiency is computed with 2-rank timings as the 100%

base, since there’s little communication overhead for the 1-rank case. As demonstrated,

the aggregated weak efficiency is over 95% regardless of the rank numbers.

To further illustrate the scaling potential of the proposed model, we run the weak

scaling test with more cuboids on the Summit supercomputer with up to 120 ranks (20

nodes). Each compute node on the Summit contains six NVIDIA Tesla V100 GPUs

(six MPI ranks), and these GPUs are grouped into two sockets. Thus, various levels of

latencies are incurred for both cross- and within-node communications. The results are

shown in Figure 4.24.
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Figure 4.10: Strong Scalability scene setup with 1-8 workstations. Different colors refer
to the particles handled by different MPI ranks in each sub-figure.

The scalability tests on local workstations with OpenMP as the latent programming

model are shown in Figure 4.22. While the scene configurations remain consistent with the

CUDA cases, we lower the particle size of each cuboid to 1M to speed up the evaluation

process.

4.7.1.2 Strong Scaling

For the strong scaling test, we assign a falling cuboid at the center of the global mesh as a

fixed-size problem and bring different numbers of MPI ranks into the computation. The

cuboid contains 159M particles for the CUDA test. Using the proposed dynamic load

balancing algorithm with a user-specified MPI topology, as shown in Figure 4.10, the

whole workload is automatically split up and given to ranks. We conduct the experiments

with the same MPI rank topology settings as in §4.7.1.1. The timing and speedup analysis

are illustrated in Figure 4.21. Our system can pursue an almost linear overall speedup as

the MPI rank increases.

The strong scalability tests on local workstations with OpenMP as latent programming

model are shown in Figure 4.23, and the cuboid is resized to 10M particles.
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Figure 4.11: Elastic toys with different partition algorithms distributed on 4 (2 ˆ 2 ˆ 1)
MPI ranks (22.4M particles in total, grid resolution 256 ˆ256ˆ256). Row 1 to 3 shows
the results for frames 6, 12, and 22, respectively. Particles are colored yellow, blue, purple,
and pink to indicate the MPI ranks they belong to. Minor hue differences are applied to
separate toys.

4.7.2 Load Balancing Studies

Dynamic load balancing generally boosts the simulation performance of a distributed

system from several perspectives, as stated before. However, partition optimization and

commensurate particle relocation may require significant computation and communication

time. In addition, various material behaviors may lead to divergent partition results

when using different workload elements. Therefore, we conduct several experiments with

multiple material behaviors to evaluate the proposed load balancing algorithms in this

section. The results and discussions can help users find the best choice for their simulation

objectives.
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Figure 4.12: Detailed timing per step (in milliseconds) of sand injection with static
partitioning, dynamic grid partitioning (DGP) and dynamic particle partitioning (DPP).

4.7.2.1 Sand Injection

In this experiment, we focus on comparing the behavior of the static, dynamic grid, and

dynamic particle partitioning methods and analyzing how partitioning frequency influences

the performance. As displayed in Figure 4.8, we design a 4-MPI-rank sand injection

scene, where each rank injects sand from two sourcing points with random velocities

pointing towards the shelf (collision object) sitting at the domain center. Throughout

the simulation, sand material sometimes splashes and finally settles down, leading to

dynamically varying workload distribution.

Dynamic Partitioning V.S. Static Partitioning For a thorough analysis, we illus-

trate the detailed timing on all 4 ranks for static, dynamic grid, and dynamic particle

partitions in Figure 4.12. In addition to the timing of each separate kernel, we also show

waiting time, which refers to the duration when faster ranks finish computation/commu-

nication and wait for other ranks. We show the data with dynamic partitions performed

every 50 steps without loss of generality. In the first row of Figure 4.12, static partitioning

pushes more work to lower ranks (rank 0-0-0 and 1-0-0) as the sand particles fall to the

ground. The upper ranks (rank 0-1-0 and 1-1-0), on the other hand, contain fewer and

fewer particles and thus sit idle, wasting time waiting for the lower ranks. This issue is

mitigated when the dynamic partition is adopted (rows 2-3 in Figure 4.12).

In this test, some sand particles splash out in the upper sub-domains while the others
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pile up at the bottom. This uneven particle-per-grid-tile distribution leads to different

behaviors of dynamic grid partitioning and dynamic particle partitioning. When applying

dynamic grid partitioning, each rank contains a similar number of grids, but the upper

ranks need to handle more particles. This fact means that more parallel work is required

for the upper ranks to perform P2G and G2P, and thus the lower ranks become idle,

especially after frame 90. For dynamic particle partitioning, the roles reverse as the lower

ranks need to handle more of the grid, making the upper ones wait.

Dynamic Partition Frequency We compare the speedup of dynamic grid/particle

partitioning with different frequencies to static partitioning in Figure 4.13. This specific

simulation takes around 233 steps per frame, and the sand particles are continuously

injected until frame 80. We choose partitioning step intervals to be 50, 200, 1000, 2000,

and 4000 for testing, i.e., performing dynamic load balancing per about 0.25, 1, 4, 8, and

17 frames.

As illustrated in Figure 4.13, all choices achieve over 1.4x speedup and can reach 2.3x

in some frame ranges. In theory, the best speedup would be about 2x, as the extreme

case is that the lower two ranks handle all workloads and the upper two do nothing but

wait. This speedup can be better in practice when considering the overhead of parallel

scheduling, memory access, and communication.

Overall, dynamic particle partitioning outperforms the grid-based method for the

splashing materials. Moreover, each partitioning frequency has a different speedup trend

through frames 0-25, 25-80, and 80-150. This indicates that the particle/grid number

(problem scale), material behavior (sourcing, splashing, and falling), as well as motion

(if particles are moving towards the same direction as the partition boundaries) will all

influence the actual performance. Despite the partitioning frequency, our dynamic load

balancing algorithm, compared to the static case, can always accelerate the simulation

process, as summarized in Table 4.1, and it can gain more speedup for large-scale cases

that consume more time (after frame 80 when sourcing stops, as in Figure 4.13).

In particular, we observe that dynamic particle partitioning per 4000 steps behaves
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Figure 4.13: Aggregated time speed up of dynamic load balancing over static partitioning.
DGP-N and DPP-N refer to dynamic grid partitioning and dynamic particle partitioning
performed every N steps, respectively.

Figure 4.14: Elastic Toys. (Left) Aggregated simulation time statistic, averaged on each
step. (Right) Speedup of dynamic partitioning over static partitioning.
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Method Static DPP-50 DPP-200 DPP-1000 DPP-2000 DPP-4000

Time (h) 6.15 3.83 3.82 3.83 3.62 3.64
Speedup (%) - 160.49% 160.87% 160.30% 169.89% 169.10%

Method (h) - DGP-50 DGP-200 DGP-1000 DGP-2000 DGP-4000

Time (h) - 4.26 4.25 4.37 4.25 4.26
Speedup (%) - 144.28% 144.68% 140.69% 144.49% 144.13%

Table 4.1: Sand Injection Speedup. We summarize the total simulation time of the
150 frames in hours and the speedup of partition methods with different partitioning
frequencies. Dynamic particle partitioning and dynamic grid partitioning achieve the best
overall speedup 2000 and 200 steps, separately.

better than other cases after frame 80. There are two possible reasons. First, frequent

partition changes prompt immediate particle relocation among ranks. It will also introduce

extra particle communication work in the following steps, especially when particles and

partition boundaries move in the same direction. Second, a relatively perfect particle

partition leads to an undesirable grid partition for splashing sands. Nevertheless, delayed

partitioning alleviates this situation by pushing more particles to lower ranks but more

grids to the upper ranks, thus leading to more rank-balanced particle-grid computations.

dynamic grid partitioning, however, cannot benefit from this partitioning delay.

4.7.2.2 Elastic Toys

This experiment shows how partition methods behave when materials splash considerably

less. Initially, we assign 4 MPI ranks the same number and type of toys and thus the same

amount of particles, and we drop them as shown in Figure 4.11. With toys falling down,

particles are communicated to lower ranks if they pass the upper-lower partition interface.

Here the overall acceleration rates (173% for dynamic grid partitioning and 180% for

the particle case) are similar and are close to the best theoretical speedup (200%). In

a detailed timing statistics (Figure 4.14), we notice better acceleration with dynamic

particle partitioning before frame 30. It happens because the toys are of irregular shape

and random orientation. Thus, some active grid tiles contain only a sharp toy corner

with few particles. Lower toys reach the bottom while falling, but the upper ones are still
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Figure 4.15: Sand dambreak with different partition algorithms and MPI topology
settings (17M particles in total, grid resolution 256 ˆ 256 ˆ 256). TOPO in the figure
refers to MPI Cartesian topology. Rows 1 and 2 show the results of frames 21 and
49, respectively. Different color refers to particles (simulation sub-domain) handled by
different MPI ranks.

placed evenly in the sky. As a result, more grids will be activated in the upper domain,

leading to a partition boundary closer to the upper toy group. The toy’s falling direction

makes the workload less balanced in the steps prior to the next round of partitioning.

One of the representative frames is shown in the first row of Figure 4.11.

4.7.2.3 Sand Dam break

Another classic scene we test is the sand dam break illustrated in Figure 4.15. Initially,

two sand columns are located at the diagonal corner of the entire domain. Unlike previous

settings, we use MPI rank topology 4 ˆ 1 ˆ 1 to evaluate the behavior of dynamic load

balancing algorithms. In this simulation, the sand flows towards the domain center

and settles down onto the floor at last. There is no splashing or extreme deformations

throughout this process. Thus the two dynamic partition methods achieve similar speedups

as demonstrated in Figure 4.16. In addition, with more and more sands gathering into the

middle domain, static partitioning gradually becomes a naturally appropriate approach

(after frame 50). In this case, the dynamic load balancing methods exhibit only 10%-15%

performance improvement.
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Figure 4.16: Sand Dambreak. (Top) Aggregated simulation time statistic, averaged on
each step. (Bottom) Speedup over static partitioning with MPI rank topology 4 ˆ 1 ˆ 1.

4.7.3 Cartesian Topology of MPI Ranks

Here we observe another factor that strongly influences the performance of distributed

simulators: the initial MPI Cartesian topology setting. In this section, we use the Sand

Dam break example introduced in §4.7.2.3 for illustration. We rerun the simulation with

MPI topology 1 ˆ 4 ˆ 1, 1 ˆ 1 ˆ 4, and 2 ˆ 2 ˆ 1 (Figure 4.15) and compare the timing to

the case 4 ˆ 1 ˆ 1. To make a fair comparison, we adopt dynamic grid partitioning for all

the new topology settings and summarize the timings in Figure 4.16.

With identical computing resources, the simulation performance reduces significantly

with inappropriate MPI topologies (1 ˆ 4 ˆ 1 and 2 ˆ 2 ˆ 1). There are several reasons

leading to this result in this specific simulation scene. First, sands move with gravity

towards the ´y direction. If there are rank boundaries on the y dimension, particles must

be relocated to other ranks when flowing down, increasing the particle communication

overhead. Second, diverse rank topologies lead to a different number of neighbors and

the size of halo areas, causing performance variance. Consequently, the takeaway is that
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Example Particle# Ave s/frame ∆tframe Rank# Grid Resolution

(Figure 4.2) 1B-Fluid 1, 006, 766, 992 323.25 1{4 8 256 ˆ 266 ˆ 256
(Figure 4.3) Mudflow 207, 810, 349 159.34 1{10 4 256 ˆ 256 ˆ 256
(Figure 4.4) High-Res Sand 266, 507, 608 1, 072.95 1{60 4 512 ˆ 512 ˆ 512
(Figure 4.7) Elastic Ground 393, 954, 516 229.56 1{4 4 512 ˆ 512 ˆ 512

max∆tstep ∆x Material Parameters

1.01 ˆ 10´3 100{256 Fluid: p500q-p3 ˆ 106, 3q

3.36 ˆ 10´4 200{256 NACC: p1500, 1.5 ˆ 107, 0.3q-p´0.007, 0.05, 30, 30q

3.58 ˆ 10´5 1{512 Sand: p20, 1 ˆ 104, 0.4q-p30.0, 0.0q

8.42 ˆ 10´4 200{512 Fix-corotated: p1000, 9 ˆ 106, 0.4q

Table 4.2: Parameters and timings. We summarize the parameters of particle numbers,
grid resolutions, MPI rank numbers, grid cell size ∆x, and the average time per frame
for various experiments described in subsection 4.7.4. The material-related parameters
are listed as well. In addition to the basic material settings (density ρ, Youngs Modulus
E, and Poisson Ratio ν), parameters needed by specific materials are provided. We
refer to the corresponding papers for a physical explanation of the parameters. For fix-
corotated model, we simply show pρ, E, νq; while for Non-Associated Cam-Clay (NACC),
parameters are given with format pρ, E, νq-pα0, β, ξ,friction angleq; sand model (Drucker-
Prager elastoplasticity) includes parameters pρ, E, νq-pfriction angle, cohesionq, and finally,
we provide pρq-pk, γq for fluids.

we should always carefully consider the particle distribution and motion tendency in the

scene to set the initial MPI topology for the best performance.

4.7.4 Large-scale Simulations

This part demonstrates the scalability of the proposed distributed MPM scheme with a

suite of large-scale simulations. The corresponding settings and average time per frame

are summarized in Table 4.2. In addition, we show detailed timing statistics for large-scale

simulations in Figure 4.19, Figure 4.17 and Figure 4.18. The high-resolution sand injection

has similar detailed timing proportions as the low-res version (illustrated in Figure 4.12)

and is not repeatedly illustrated.

1B-Fluid. Example in Figure 4.2 exemplifies a complex fluid scene containing 1.01

billion particles falling onto chip-shaped boards. To the best of our knowledge, this is

the first MPM simulation beyond the scale of 1B. Initially, there is a water layer on the

ground and eight liquid cubes falling on top. We use eight workstations to solve this
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Figure 4.17: Mudflow. Detailed timing per frame (in seconds). Some Ethernet instability
happened during particle communications in frames 495, 840, and 875, which can be
regarded as external noises.

Figure 4.18: Playground. Detailed timing per frame (in seconds).

challenging problem with MPI topology 4 ˆ 1 ˆ 2 through CUDA parallelization. In order

to maintain a balanced fluid distribution, we use the dynamic grid partitioning (per 50

steps). As a result, every MPI rank consistently uses 22 to 23 Gigabytes of GPU memory

throughout the simulation. The fluid’s turbulence is recorded in a large amount of detail,

as shown in Figure 4.2.

Mud flow. We simulate natural mud flow (Figure 4.3) with NACC models. The domain

is of size 200 ˆ 200 ˆ 200 meters, with a bumpy slope serving as a collision object.

Mud particles are injected into the scene in the first 500 of the total 1000 frames and

reach 207.8M at maximum. The simulation is performed with 4 ˆ 1 ˆ 1 MPI ranks and

dynamic grid partitioning every 200 steps. Figure 4.3 also visualizes the mud flow damage

propagation.

High-resolution Sand Injection. Figure 4.4 demonstrates the scalability with a high-

resolution version of Sand Injection. We increase the spatial resolution to 512 ˆ 512 ˆ 512,

and the scene reaches 266.5M particles at the middle point of the simulation time.

Compared to Figure 4.8, there are more splashing and collision details in Figure 4.4. This

demo has the same MPI rank topology as the low-res case.
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Device Method Particle # Timing (ms/step)

CPU
(Wolper et al., 2019) 10M 1034.98

Ours 10M 2261.39

GPU
(Gao et al., 2018b) 20M 39.89

Ours 20M 73.17

Table 4.3: CPU/GPU SOTA comparison. Note that the particle number is rounded.

Playground. Another scene involving more than 393.95M particles shows elastic jellos

spreading onto the ground. We visualize some frames from different viewpoints in

Figure 4.7. In this test, numerous elastic letters, numbers, and symbols are continuously

poured into a toy playground. Four workstations (4 ˆ 1 ˆ 1) are adopted for computation.

4.7.5 Single-machine Performance

For completeness, we also compare our distributed MPM pipeline with the state-of-the-art

(SOTA) C++ MPM simulation pipeline implementations that are heavily hand-optimized

for single architectures: CPU (Wolper et al., 2019) and GPU (Gao et al., 2018b). As the

test example, we use a simple scene, an elastic box falling down to the ground with a

grid resolution of 256 ˆ 256 ˆ 256. Table 4.3 summarizes the particle number, testing

device, and timing results. Indeed, our distributed system cannot outperform the separate

CPU- and GPU-implements, which have CPU-tailored SPGrid (Setaluri et al., 2014)

and CUDA kernel optimizations (Gao et al., 2018b), but is near 50% performance for

both. Nevertheless, our target is a generalized, distributed, and scalable system that

can be executed on most HPC platforms without code modification, while the compared

implementations have adopted sophisticated hardware-specific code optimizations focusing

on their specialized single-machine platforms.

4.8 Conclusion and Discussion

We proposed a distributed simulation framework specialized for MPM computations.

Based on the hierarchical system architecture design, we make it possible to achieve
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Figure 4.19: 1B-Fluid. Detailed timing per frame (in seconds).

multiple advancements in each layer. The programming model layer uses Kokkos to enable

fast switching between various latent devices and dispatch the MPM pipeline to many

major HPC platforms. Additionally, particle/grid data, algorithms, and communication

layer with our dedicated distributed sparse grid design makes it simpler for hybrid

simulation mechanics. Furthermore, we propose the dynamic load balancing algorithm to

improve overall performance. Multiple experiments and comparisons are conducted to

demonstrate the effectiveness and serve as a reference for simulation setups. Finally, we

demonstrated that the proposed distributed MPM system can handle extremely large-scale

simulations of complex elastoplastic materials with more than 1 billion particles, which

has never been achieved before in computer graphics or computational mechanics.

Limitations and Future Work. First, there is still space to improve communication

efficiency. We adopt MPI_Isend/MPI_Irecv for data transmission among MPI ranks.

However, better communication scaling could be achieved if more efficient MPI interfaces

are studied and explored. Second, as discussed in §4.7, the initial settings of MPI topology

and dynamic load balancing frequency will strongly influence the overall performance.

Making this decision process automatic according to initial particle samples is a valuable

direction to explore. Furthermore, the workload computation in dynamic load balancing

can be improved. Grid or particle alone is both insufficient to form a perfect workload

description to fit all general simulation scenes. Therefore, combining these two pieces of

information and conducting better representation could provide more benefits. Finally, it

is also meaningful to further improve the performance for individual parallel backends and
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within the particle/grid layers on specific devices to support faster application systems.

Indeed, because the simulation framework is built on Kokkos and Cabana, testing and

leveraging additional hardware architectures is straightforward. This includes AMD GPUs

as deployed in the recent Frontier supercomputer, as well as future systems.
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Figure 4.20: Weak Scalability on local workstations with GPU(CUDA). Here, Particle
is short for Particle Communication kernel; and similarly, Grid Halo for Grid Halo
Communication and Partitioner for Dynamic Partition Optimization. The listed numbers
in the lower figure are the efficiency values for aggregated timing (summation of all six
kernels).
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Figure 4.21: Strong Scalability on local workstations with GPU(CUDA). All ranks
handle a huge elastic box with 159M particles.
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Figure 4.22: Weak Scalability on local workstations with CPU (OpenMP). Each rank
handles an elastic box with 1M particles.
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Figure 4.23: Strong Scalability on local workstations with CPU(OpenMP). All ranks
handle a huge elastic box with 10M particles.
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Figure 4.24: Weak Scalability on Summit with GPU(CUDA). Each rank handles an
elastic box with 1M particles.
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CHAPTER 5

Real-Time Simulation Applications

5.1 A Virtual Testbed for Physical and Interactive AI

We propose VRGym, a virtual reality (VR) testbed for realistic human-robot interaction.

Different from existing toolkits and VR environments, the VRGym emphasizes on building

and training both physical and interactive agents for robotics, machine learning, and

cognitive science. VRGym leverages mechanisms that can generate diverse 3D scenes

with high realism through physics-based simulation. We demonstrate that VRGym is

able to (i) collect human interactions and fine manipulations, (ii) accommodate various

robots with a ROS bridge, (iii) support experiments for human-robot interaction, and (iv)

provide toolkits for training the state-of-the-art machine learning algorithms. We hope

VRGym can help to advance general-purpose robotics and machine learning agents, as

well as assisting human studies in the field of cognitive science.

5.1.1 Introduction

The past decade has witnessed a rapid development of categorical classification for objects,

scenes, and actions, fueled by large datasets and benchmarks, discriminative features,

and machine learning methods. Similarly, successes have also been achieved in many

other domain-specific tasks, largely due to the ever-growing vast amount of labeled data

and rapidly increasing computing power, combined with supervised learning methods (in

particular, deep learning (Hinton and Salakhutdinov, 2006)). The performance of certain

tasks has reached a remarkable level, even arguably better than human in control (Duan

et al., 2016; Mnih et al., 2015), grasp (Mahler et al., 2017; Lenz et al., 2015), object
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recognition (He et al., 2015), learning from demonstration (LfD) (Argall et al., 2009), and

playing the game of go (Silver et al., 2016) and poker (Moravč́ık et al., 2017; Brown and

Sandholm, 2018).

Despite the impressive progress, these data-driven feed-forward classification methods

have well-known limitations, hindering the advancement towards a more general Artificial

Intelligence (AI) that can interact with human: (i) needing large labeled training datasets ;

(ii) often task-specific and view-dependent, which makes it difficult to generalize; (iii)

lacking an explicit representation and structure to handle large variations exhibited in

and outside of the training data.

In contrast, the hallmark of machine intelligence is the capability to rapidly adapt to

new tasks and “achieve goals in a wide range of environments (Legg and Hutter, 2007)”.

To achieve such intelligence, recent years have seen the increasing use of synthetic data

and simulation platforms. Advantages include: (i) the structure of the data is efficiently

encoded without the need for human labeling as the simulation inherently comes with the

ground truth; (ii) can accommodate different embodied agents (e.g ., humans, humanoid

robots, or turtle-bots); and (iii) benchmark generalization in various tasks at a low cost.

Empowered by the gaming industries, tremendous amount of game contents, including

scenes and objects, are made available for the virtual environment. Meanwhile, more

sophisticated physics-based simulation engines and rendering techniques have enabled

more realistic simulations. These characteristics allow a growing number of tasks to be

performed using synthetic data in simulation platforms. Furthermore, some simulation

platforms also become publicly available, such as AirSim (Shah et al., 2018b), AI2THOR

(Kolve et al., 2017), Gibson (Xia et al., 2018), etc., promoting the further explorations

and applications. In short, it is both the research and the engineering efforts that make it

possible to achieve considerable successes in some AI tasks and applications.

However, prior work often lacks the human involvement, especially in high-level tasks.

For instance, although some virtual platforms (e.g ., OpenAI Gym (Brockman et al.,

2016) and Mujoco (Todorov et al., 2012)) allow to train a virtual robot to perform many
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Figure 5.1: (a) VRGym integrates three types of input devices, providing human manip-
ulation in an increasing resolution using Oculus Touch, LeapMotion, and a data glove,
from top to bottom. (b) The VRGym-ROS bridge allows physical human/robot agent
meet virtual agents inside a virtual world, providing the capability of social interactions.
(c) The training of the robot navigation using reinforcement learning (RL) inside VRGym.
The robot successfully navigates to the goal without collisions after about 10,000 episodes.
(d) The learning of object manipulation using human demonstrations (leftmost) and
inverse reinforcement learning (IRL) (right three) inside VRGym.

manipulation tasks, they lack a human in-the-loop, thus cannot handle critical tasks like

intention prediction and social interaction. Hence, having a simulation environment where

a robot can interact realistically with a human and evolve incrementally could facilitate

the robotics developments.

In this section, we propose VRGym—a virtual reality testbed, which combines VR

with virtual training for both physical and interactive AI agents. By putting human

in-the-loop, VRGym goes beyond the traditional synthetic data and simulation platforms

by simulating a human-robot co-existing environment.

Specifically, VRGym tries to fill in the gap between the new advancement of VR and

the need for training virtual agents to collaborate with human. In particular, we hope to

address three critical issues. First, what is the best way to reflect human embodiment

in VR; i.e., how humans can genuinely interact with robots and how the robots can

perceive related data that are sufficiently close to those in real life? Second, how to

take advantages of current well-developed algorithms and models? Third, to which
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Figure 5.2: System architecture of VRGym, consist of three major components: (i)
Hardware modules for human data input. (ii) Scene modules batch import various
category of scenes as well as diverse objects, derived from different resources such as 3D
modeling tools, scanned models, and automatically generated synthetic data. (iii) VR
environment serves as an ideal testbed, where both a human and a robot can perform
diverse tasks. The inherent physics-simulation engine enables realistic human-scene
interactions and robot-scene interactions.

level of unique interactions the VR simulations can afford? To answer these questions,

VRGym is designed to push the limits of current akin simulators by offering the following

characteristics.

Fine-grained human embodiment representation Adding a real human in the

simulation is not a trivial task. Most of the current simulation platforms only support

either scripted or limited remote-controlled human models. In VRGym, we integrate a

multi-sensor setup as alternatives to traditional VR input devices. Our setup is capable

of providing a whole-body sensing and reflecting the measured data on a detailed human

avatar. As a result, the simulation can account for both body and hand poses during

interactions. Figure 5.1a shows different resolutions of manipulations in VRGym.
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High compatibility with existing robotics systems and algorithms In VRGym,

we build an efficient bi-directional communication interface with the Robot Operating

System (ROS). Figure 5.1b depicts an example of how a person interacts with a robot

in VRGym, supported by the VRGym-ROS bridge. As a result, all ROS-compatible

resources can be used in VRGym with little effort, which allows easy setups, training,

evaluations, and benchmark.

Multiple levels of interactions By providing the fine-grained human embodiment

representation and the ROS integration, various interactions between humans and au-

tonomous agents are made possible in different resolutions. VRGym supports interactions

as simple as only providing visual/perception information and as sophisticated as learning

complex robot grasping from human demonstrations. Figure 5.1c shows how an agent

obtains a navigation policy using RL, and Figure 5.1d shows learning a grasp policy using

IRL.

VRGym makes the three contributions:

‚ A comprehensive simulation platform that integrates UE4 built-in functions, e.g ., scene,

physics-based simulation, rendering, basic human inputs, with customized developments,

aiming to facilitate a variety of AI researches.

‚ A multi-sensor hardware and software setup that allows the whole body sensing and

reflects human subjects to virtual embodiments with great details. The generated data

can be seamlessly logged for online and offline training purposes.

‚ VRGym-ROS bridge enables a bi-directional data communication. Through this

interface, AI researchers can take advantages of the existing robotics models and

algorithms. Similarly, robotics researchers can utilize more sophisticated physics-based

simulation.
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5.1.2 VRGym System Architecture

Figure 5.2 illustrates the system architecture of the VRGym. VRGym offers a variety of

realistic scenes and tasks for both humans and robots, and provide automatic logging of

the data during agents performing tasks. This capability is provided by the integration

of three main modules: (i) scene module which renders user-specified 3D scenes and

objects, (ii) VR environment based on UE4 with physics-simulation engine, introducing

various physical properties that enrich tasks and data, and (iii) VR hardware module that

imports a human agent’s state and command to the VRGym. We now further elaborate

each module in the following subsections.

5.1.2.1 Scene Module

Scenes and objects are the building blocks for a simulation environment. In order to

increase the variety of environments for VRGym, we develop several pipelines to import or

create scenes into VRGym based on the users’ specifications. The scene module enriches

static environments for VRGym. Note that the ground truth of RGB image, depth image,

surface normal, and object label come automatically with the scene module in real-time,

enabling the training for machine learning models and robotics applications.

Specifically, VRGym can directly import the entire 3D scenes provided in large open-

source datasets, either collected from the web (Song et al., 2017; Chang et al., 2017)

or automatically generated from a given set of objects (Yu et al., 2011; Qi et al., 2018;

Jiang et al., 2018) (see top of Figure 5.2). Additionally, VRGym also supports manually

constructed scenes (see Figure 5.4) for more specific tasks, where neither the open-source

scene dataset or the automatically generated scenes could satisfy such constraints.

Similarly, individual objects can be imported to VRGym from mesh files, which can

be obtained from open-source CAD datasets (e.g ., (Chang et al., 2015; Calli et al., 2015)).

Customized or complex objects can be manually created or scanned using a RGB-D sensor

to import to VRGym for specific tasks. After the import, users can further adjust static

meshes, textures, materials, and collision boundaries of the objects.
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Figure 5.3: Examples of various physics-based simulation for diverse tasks in VRGym
beyond merely rigid-body simulation in other 3D virtual environments. (Top) Pouring
water. (Bottom) Folding clothes.

5.1.2.2 Real-time Physics-Based Simulation

We choose UE4 as the simulation engine for VRGym for its advanced real-time physics-

based simulation. Unlike previous 3D virtual environments that mostly focus on rigid

body simulation or symbolic-level event simulation, VRGym integrates the advanced

simulation provided by UE4 to enable a large set of various simulations, including rigid

body, soft body, collision, fluid, cloth, slicing, and fracture. Some examples are shown in

Figure 5.3 and the center of Figure 5.2. As a result, subtle object state or fluent (Newton

and Colson, 1736) changes due to the virtual agent’s actions are realistic and diversify.

Integrating with such sophisticated physics-based simulations, VRGym not only increases

the task complexity and improves the visual experience of human agents, but also affords

more complicated task simulations for both virtual and physical robots.

5.1.3 Human Embodiment in VRGym

Compared to other similar 3D virtual environments, VRGym has another distinct feature;

i.e., introducing the capability to represent the physical human agent’s embodiment in

real-time as an avatar in the virtual environment. To reflect human movements and

manipulations accurately, the physical human agent is tracked in real-time, resulting in

a humanoid mesh that can deform accordingly based on the underlying tracked body

skeleton and the hand poses.
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Specifically, the setup includes: (i) A Kinect One RGB-D sensor to map human

skeleton to the avatar in real-time through a customized-built Kinect plugin developed in

UE4, (ii) an Oculus headset to record the head pose, (iii) a dance pad to navigate the

avatar inside a large virtual world, and (iv) three types of input devices that provide

manipulation information in different resolutions. Compared to other platforms, VRGym

emphasizes the capability for users to interact with virtual environments. Depending on

the needs, the user can use one of the three input devices for manipulation:

‚ Oculus Touch Controller offers an attachment-based approach; i.e., the virtual object

will automatically attach to the virtual controller/hand once the user triggers the grasp

event. It enables a firm-grip manipulation, providing a firm but the least realistic grasp

during the human-object interaction. Such manipulation is effective in the event-level

tasks where the fine-grained hand pose is not required; e.g ., pick and place.

‚ The commercial hand pose sensing products (e.g ., LeapMotion) provide the vision-based

gesture recognition. It is a low-cost and off-the-shelf solution that can be easily set up

by mounting the sensor on the head-mounted display. However, it is difficult to have a

firm grasp due to occlusions and sensor noises. Note that the hand tracking will fail if

the hand is not within the view.

‚ An open-sourced glove-based device (Liu et al., 2019b) is also compatible with VRGym

to provide the finest-grained manipulation. It requires a Vive Tracker to provide global

positioning of the hand, and an IMU network in the glove to measure the rotation

of each phalanx and calculate the hand poses using forward kinematics. Although

glove-based devices are costly compared to other alternatives, they allow reliable hand

pose sensing, which is vital for the tasks with detailed, complex and subtle hand

manipulations.
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Figure 5.4: A human agent performs a series of actions in a virtual scene using Oculus
Touch controllers. (Left) Action sequence from a top view of a virtual indoor environment.
(Right) Sequences of the performed actions. Specifically, the human agent starts at the
red dot as shown in the left, (1) pushes a door, (2) navigates along the hall, (3) twists
a door to enter the kitchen, and (4)-(7) makes a cup of coffee. This process involves (i)
large movements using the human embodiment provided in VRGym (navigating along
the hallway), (ii) complex operations (operating the coffee maker), (iii) fine-grained
manipulations (twisting the doorknob), and (iv) physics-rich controls (pouring milk).

5.1.4 Software Interface Design

VRGym has two major software interfaces developed to enable training and benchmarking

both physical and interactive AI agents. The first interface is the human data logging

system that builds on top of the hardware setups to collect the data generated during the

interactions between the avatar and the environment. Another interface, a VRGym-ROS

bridge, is introduced to allow seamlessly import of robot models and robotics algorithms

from ROS. The collected data together with the VRGym-ROS bridge could be used for a

variety of AI applications; see examples in subsection 5.1.5.

To demonstrate the functions of these two interfaces, we consider a task-rich environ-

ment built for the VRGym. Figure 5.4 depicts an environment in VRGym that provides

semantically-diverse tasks to the agent. Note that although such environment could be

constructed in the real world to perform the demonstrated tasks, sensing and logging the

detailed data generated during the interactions between the agent and objects would be
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extremely difficult in practice.

In such a typical virtual environment in VRGym, an agent (a human as an avatar

or a virtual robot) is initially placed on the starting point, indicated as the red dot in

Figure 5.4. The final goal for the agent is to reach the kitchen located at the far-end,

and accomplish several sub-tasks. At the beginning, the agent has to push to open the

first door and navigate along the corridor, requiring large movements. Then the agent

must go through another door to enter into the kitchen, and the only solution is to twist

the doorknob using complex manipulations. Inside the kitchen, the agent is required to

make a cup of coffee with milk, which needs to grasp and move a mug, operate the coffee

maker by pushing several buttons in a certain order. The entire procedure requires the

task planning empowered by the physics-based simulation.

5.1.4.1 Human Data Logging

When a user performs a task, data generated by the interactions between an avatar and

the environment can be directly logged with ground-truth labels in VRGym. In this

section, we showcase two scenarios where the data is logged and used in other applications.

Grasping Finer-grained manipulation is made feasible in VRGym using a glove-based

device (Liu et al., 2019b); see Figure 5.5a for some results. By collecting a set of subjects’

grasp data on a variety of objects, we can merge all the collected grasp data to form

heat maps on different objects to visualize the likelihood of grasp points on man-made

objects. Specifically, the grasp data shown in Figure 5.5b is the averaging data of heat

maps collected from 10 human subjects, where the hotter the area is, the denser the grasp

points are, and the more likely a human agent would grasp around that area.

Footprints VRGym provides the function to log an agent’s footprints or the odometry

data. Figure 5.5c shows the recorded odometry data from 5 human subjects who have

limited VR experience. Each of the participants navigates from the starting point to the

kitchen room along the corridor using Oculus Touch controllers.
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Figure 5.5: (a) Grasp a mug, a tennis racket, and a bowl. The red area indicates the
contact force between the virtual hands and the object. (b) Visualization of the collected
human grasp data. Top: a set of 3D objects. Bottom: the average grasp heat map
generated by multiple subjects. (c) Visualization of footprint from different subjects.

5.1.4.2 ROS Interface

The VRGym is compatible with the popular ROS framework through a customized

VRGym-ROS communication bridge. This bridge allows the off-the-shelf ROS robot

models to communicate with the simulations and human agents in VRGym with minimal

efforts; e.g ., the diverse scenes rendered in VRGym can also be exported to the Gazebo

simulator, which is highly compatible with ROS.

Implementation We develop a ROS interface, VRGym-ROS bridge, based on the

TCP/IP protocol in order to enable VRGym to communicate with the existing popular

robotics platforms. Through this interface, robot body parts can be easily imported to

VR environments as mesh files and control signals, and a data stream can be seamlessly

transferred between the VRGym and the robot platforms using ROS to communicate with

either physical or virtual robots. We organize all data types (i.e., ROS topics) in a unified
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(a) (b)

Figure 5.6: VRGym-ROS bridge. (a) The robot navigation in the scene imported into the
Gazebo, exported from the VRGym. The red curve indicates the path planned by the
robot’s global planner. The black curve is the actual trajectory executed by the robot.
(b) A Husky-UR5 robot is imported into VRGym from ROS to guide the way and open
the door for a human agent.

JSON format and construct JSON parsers in both VRGym and ROS to further improve

the compatibility. Each port in the protocol supports a stream of data, making it possible

to present multiple agents from ROS into the VRGym. With the VRGym-ROS bridge, we

present two examples of training and evaluating human robot interactions (HRI) inside

VRGym in subsection 5.1.5, which incorporates direct human reactions and involvements.

Such capability is largely missing in the current robotics simulators such as Gazebo or

V-Rep. The benchmark in subsection 5.1.5 is also supported by this VRGym-ROS bridge.

Evaluation We evaluate the VRGym-ROS bridge on a navigation task (see Figure 5.4)

using a Clearpath Husky robot. This navigation task is performed in VRGym, whereas

the robot model is imported from ROS, making it possible to evaluate a number of SLAM

algorithms and path planning approaches. In Figure 5.6a, the mapping result is obtained

using the conventional GMapping package in ROS. The red curve indicates the planned

path, whereas the black curve is the actual odometry of the Husky robot. Figure 5.6b

shows the user’s view when the robot is moving. This VRGym-ROS bridge fills in the gap

between the diverse scenes in VRGym and the existing fine-tuned algorithms provided in

ROS.
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Communication Bandwidth To evaluate the reliability and efficiency of the VRGym-

ROS bridge, we conduct an experiment by sending packages with the size of 512Kb1.

5.1.5 Experiments

In this section, we demonstrate the performance and capability of the VRGym from four

different perspectives2. Two human robot interaction (HRI) applications are conducted,

including a human intention prediction task and a social interaction task. Like other

testbeds, we also benchmark the performance popular machine learning algorithms (e.g .,

reinforcement learning and IRL) in the VRGym.

5.1.5.1 Experiment 1: Intention Prediction

Predicting human intention is difficult when training on a physical robot since this task

has very small error tolerance; wrong predictions may endanger both the human and

the robot. It is particularly interesting to study human intention prediction in VRGym,

since this problem involves complicated inference process that many types of data can be

useful: human trajectories, human poses, object positions, object states, and first/third-

person vision inputs, etc. Predicting intention is made possible in VRGym as our unique

multi-sensor setup reflects human poses, and the odometry data provided by the data

logging system indicates human’s trajectories.

In the experiment, we analyze different human intention prediction algorithms to

demonstrate the potential of VRGym as a testbed for both physical and virtual AI agents.

Additionally, we show the unification of both the learning and the inference enabled by

the VRGym. 20 subjects are recruited. The virtual environment is set up as a virtual

kitchen, in which more than 20 objects are placed on top of three long tables. The layout

of the kitchen is shown in Figure 5.7, where the agent starts from the entrance of the

room (red dot) and performs the task with at least 4 steps: grasp a mug, operate the

coffee maker, add milk, and add sugar. Note these tasks can perform in different orders.

1See a detailed evaluation in supplementary. 2See a video demo at Vimeo.
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Figure 5.7: Intention predictions in a coffee-making task. (a) Grab a cup. (b) Use the
coffee machine. (c) Pour milk. (d) Add sugar. (Right) Visualization of three intention
prediction algorithms. Blue and Red: sampled paths from the grammar model (Qi et al.,
2017). Green: straight-line distance. Yellow: prediction by shortest perpendicular distance
(dashed lines) from objects to the ray direction (solid arrow) based on avatar’s location.

The resulting footprint from one subject is plotted in Figure 5.7. All subjects are required

to perform a coffee-making task—making a cup of coffee using the available objects.

Figure 5.7e illustrates the comparisons among these three methods. The qualitative

results are shown in Figure 5.7a-d to reveal the intention of the agent as the heat maps

during the process of making coffee, where hotter color (red) indicates higher probability.

This high-level semantic prediction is inferred given multiple human demonstrations as

logged navigation and grasp data collected from the agent using VRGym.

5.1.5.2 Experiment 2: Social Interaction

Social interactions or social HRI is a vital topic enabling human-robot co-existing envi-

ronment, since the robot needs to understand and respond properly to human’s social

behaviors, such as waving and hand-shaking. Although the current robot simulators (e.g .,

Gazebo and V-Rep) provide a suite of features, one key element these simulation plat-

forms still largely missing is direct human involvement which is crucial for human-robot

interaction studies.
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Participants A total of 10 subjects were recruited. We implemented the algorithm

proposed in (Shu et al., 2017) for robot learning social affordance. The algorithm is briefly

described as follows; we refer the readers to the original paper for more technical details.

Results Qualitative results are shown in Figure 5.8. Concretely, the robot starts hand-

waving in response to the agent’s hand waving (Figure 5.8a), illustrated by a virtual hand

model. The robot stretches out its manipulator to make a handshake with the virtual

agent (Figure 5.8b). Technically, when the virtual Baxter inside the VRGym perceives

the action signals from a virtual human such as hand shaking or hand stretching out, it

sends the action signals to ROS through the VRGym-ROS bridge. In ROS, the motion

planning will generate corresponding body parts transformations and send the computed

transformation data back to the virtual Baxter inside VRGym, such that it will then act

with the appropriate responses to the virtual human agent. In this sense, the proposed

VRGym enables a new approach to study social human-robot interaction without using a

costly physical robot or having a physical contact between a subject and robots, which in

some cases could be dangerous.

5.1.5.3 Experiment 3: RL Algorithms Benchmark

We introduce a playground as a sub-module (Figure 5.9) inside the VRGym, aiming to

train robots to navigate in a 3D maze-like indoor corridor. The overall goal is to teach the

robot agent itself by trial and error to obtain a navigation policy, reaching the final goal

of the maze. The learning strategy applied on the virtual robot follows the standard RL

framework. A Baxter robot is integrated into the VRGym and controlled by off-the-shelf

ROS packages.

Compared to other virtual playgrounds (e.g ., OpenAI Gym), the proposed VRGym

differs in two primary aspects.

‚ Sophisticated Interactions. With the advanced physics-based simulator, the VRGym

offers realistic interactions between the virtual agent and the virtual environment.
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Figure 5.8: Human robot interactions in VRGym. A Baxter robot (a) waves hands and
(b) shake hands with a virtual human agent.

Figure 5.9: Settings for the RL training inside VRGym environment for an indoor maze
navigation task. (a) First-person view of a virtual robot. (b) The robot collides with a
wall, triggering negative rewards. (c) An eagle view of the indoor navigation task. (d)
Rewards assigned in different color zones (red, yellow, green and blue) from low to high.
(e) The performances of the tested RL algorithms.
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Figure 5.10: Learning human grasping demonstration with different IRL frameworks.

‚ Physical RL Agent. Since the VRGym is capable of importing both the physical and

the virtual robot model to the virtual scene, it is feasible to transfer RL model trained

inside the virtual environment directly to a physical robot agent.

We conduct four state-of-the-art deep RL algorithms to demonstrate the VRGym’s

capability in RL related tasks. These algorithms are DDPG (Lillicrap et al., 2016), DQN

(Mnih et al., 2015), Actor-Critic (Mnih et al., 2016), and Dueling DQN (Wang et al.,

2016). All four algorithms use the pixel-input from the first-person camera view. The

quantitative comparison of the above four algorithms in VRGym is plotted in Figure 5.9e.

5.1.5.4 Experiment 4: IRL for Learning Grasp

Grasp is an imperative capability for an interactive agent. In this experiment, we adopt

an inverse reinforcement learning (IRL) framework to enable a virtual robot learning to

grasp from human demonstrations. This task primarily involves both the data logging

function in VRGym and a ROS motion planer communicated by the VRGym-ROS bridge.

The robot is expected to learn how to successfully grasp an unknown object based on the

hand trajectories demonstrated by the human subjects, collected through tele-operations

using the Oculus Touch Controller inside the VRGym.

The trajectories of the human demonstrations are logged and used to infer the model

and its parameters. Later, with the learned model and its parameters, the robot can be

executed using the motion planner in ROS to grasp an unknown objects in the virtual
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environment.

Three IRL algorithms are implemented in the VRGym: Bayesian-IRL (Ramachandran

and Amir, 2007), Maximum Entropy-IRL (Ziebart et al., 2008), and Semi-supervised-IRL

(Valko et al., 2012). Qualitative results are shown in Figure 5.10.

5.1.6 Conclusion

In this section, we introduce the VRGym as a promising simulation platform for training

and evaluating autonomous agents to build the physical and interactive AI. VRGym can

represent a fine-grained human embodiment as a virtual avatar using a range of hardware

setups for body and manipulation sensing. Existing robotics systems and algorithms

developed in ROS can also be integrated to VRGym through a customized VRGym-ROS

bridge. Multiple evaluations indicate that the VRGym has a robust performance at the

system level and in the communication with ROS. Our experiments have demonstrated

that four different robotics interactive tasks can be successfully trained using RL and IRL

inside VRGym. Specifically, we showcase how the data logged from the VRGym is useful

in several interaction tasks, combining with the functions (e.g ., motion planners, robot

models) provided by ROS through the VRGym-ROS bridge. The successful implements of

RL and IRL for robotics interactive tasks in VRGym also support the training capability

offered by VRGym in training robots with advanced machine learning methods. We

believe VRGym could have further potential applications and it will benefit future research

on the physical and interactive AI.

5.2 Real-time Material Point Method in Unreal Engine

The prior subsection highlighted the significance of real-time physics-based simulations

in VR environments, both for interactive tasks and agent training. During the initial

development of VRGym, our capabilities were limited to the Unreal Engine version 4

(UE4). The multi-material simulation (rigid and deformable solids and fluids, as shown in

Figure 5.3) in VRGym was achieved through the integration of NVIDIA Flex (Macklin
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et al., 2014). However, the advent of Unreal Engine version 5 (UE5) marked a notable

enhancement in engine performance. Additionally, the introduction of the Niagara VFX

System in UE5, a leading tool for creating visual effects, offers new avenues for the

implementation of real-time physics-based solvers.

In this section, we discuss the redevelopment of the MPM solver utilizing the Niagara

VFX system in UE5. We present an evaluation of our solver and provide a compilation of

timing statistics. This redevelopment was undertaken during the internship at LightSpeed

Studio. It is important to note that, due to copyright restrictions, an in-depth exposition

of the method and its implementation details are omitted.

5.2.1 Background

This section is dedicated to elucidating the foundational elements of the Niagara System

within Unreal Engine 5 (UE5), with an emphasis on contrasting traditional coding

methodologies with the Niagara framework.

Niagara is a cutting-edge VFX system for UE5, specifically tailored for technical

artists who may not possess extensive programming knowledge. Unlike conventional

coding practices, Niagara facilitates the creation and customization of simulation pipelines

through graphical user interfaces. This approach deviates from traditional text-based

coding but offers a visual-oriented workflow where artists can define program behaviors

by sequentially listing graphical modules or connecting graphical nodes. In addition, the

system is equipped with a variety of templates, enabling artists to effortlessly modify and

create desired visual effects. The contrast between the graphical user interface-driven

Niagara system and traditional code-centric strategies marks a significant shift in the way

visual effects are developed in modern gaming engines.

To commence the development of visual effects in Niagara, including those for physics-

based simulations, the initial step is to instantiate a Niagara system. A key aspect of the

Niagara system is its composition, which includes a system setup block and one or more

Niagara emitters. In particular, one example of an empty Niagara system equipped with
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Figure 5.11: An Empty Niagara System with an empty Emitter.

a single empty emitter is illustrated in Figure 5.11. Generally speaking, the system setup

block is designed to define overarching behaviors that are applied universally, impacting

every emitter within that particular system instance. This block is also in charge of

setting fundamental parameters and rules that govern the system-wide characteristics

of the simulation. The Niagara emitters, on the other hand, define particle behaviors

such as particle initialization, simulation steps, and rendering features. Within each of

these components, both in the system setup and the emitters, a set of default stages are

pre-integrated. Users are allowed to add additional stages to the emitters, enhancing their

capability to customize the system. The update stages and any user-defined stages within

the Niagara system can be executed on either CPUs or GPUs. This depends on the ”sim

target” configuration of the respective emitters. When the ”sim target” is configured for

GPU execution, both the particles and grids associated with that emitter are also stored

and managed on the GPU.

Contrary to traditional coded simulation pipelines, the Niagara system, as exemplified
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(a) (b)

Figure 5.12: Real-time Niagara MPM Simulation for (a) Drucker-Prager elastoplasticity
(Klár et al., 2016) and (b) Non-Associated Cam-Clay (NACC) (Wolper et al., 2019).

in Figure 5.11, is not presented in a linear, time-sequential format. The list below outlines

the sequential execution of these stages, with comments indicating the devices (CPU or

GPU) on which each stage is run.

1 - System Spwan // CPU

2 - for each Emitter:

3 - Emitter Spawn // CPU

4 - Particle Spawn // GPU or CPU

5 - set TIME t = 0

6 - while true:

7 - System Update // CPU

8 - for each Emitter:

9 - Emitter Update // CPU

10 - Particle Update // GPU

11 - User -defined Stages // GPU

12 - t += dt

In order to implement an MPM solver based on the Niagara system, we also need

to figure out how to define particle and grid data structures and how to perform data

access and data transfers between different data structures. We refer (Tutorials) for more

details.
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Example Sim-Par# Render-Par# Ave ms/run fps Grid Resolution

(Figure 5.12a) Real-time Sand (One Cylinder) 9, 635 77, 239 ` 9, 635 0.43 120 64 ˆ 64 ˆ 64
(Figure 5.12a) Real-time Sand (Six Cylinder) 57, 810 521, 244 1.30 120 64 ˆ 64 ˆ 64
(Figure 5.12b) Real-time Soil (One Block) 46, 656 46, 656 1.25 120 64 ˆ 64 ˆ 64
(Figure 5.12a) Real-time Soil (Four Block) 186, 624 186, 624 3.63 110 64 ˆ 64 ˆ 64
(Figure 5.14) Real-time Fluid (One Block) 110, 592 110, 592 5.31 95 32 ˆ 32 ˆ 32

Table 5.1: Parameters and timings. We summarize the parameters of particle numbers
(with “Sim-Par#” and “Ren-Par#” refers to particle numbers for simulation and rendering,
respectively), grid resolutions, and the timing statistics for various experiments described
in subsection 5.2.2. Here, “Ave ms/run” refers to the average timing for running a single
round of Niagara GPU simulation, while the “fps” is the approximate average frame rate
for running the test map, which contains not only the simulation but also the rendering
and user-interaction controls.

5.2.2 Experiments

In this section, we demonstrate the performance of the UE5 Niagara-based MPM sim-

ulation system with various materials. We adopt the following constitutive models: 1)

Drucker-Prager elastoplasticity (Klár et al., 2016) for sand animation, 2) Non-Associated

Cam-Clay (NACC) (Wolper et al., 2019) for soil-like behaviors, and 3) weakly compress-

ible fluid (Tampubolon et al., 2017) for fluid simulation. All materials are implemented

through Niagara modules and can achieve simple switches by setting up a compile-time

parameter in the Niagara system. All the experiments are performed on a desktop with

one NVIDIA GeForce RTX 3080 GPU (10GB of GDDR6X RAM).

Real-time Sand. In this experiment, we interactively inject sand cylinders into the

testing UE map by pressing some keyboard buttons, as shown in Figure 5.12a. Here, each

sand cylinder contains 9635 particles for simulation purposes, and we additionally sample

77K particles that perform the G2P (Grid to Particle) step only. The detailed timing

statistics are summarized in Table 5.1. Additionally, we test the interactive behaviors

when setting different cohesion values for the sand model. As illustrated in Figure 5.13,

the sands become wetter as the cohesion value increases. Both demos use a grid resolution

of 64 ˆ 64 ˆ 64.
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Figure 5.13: Real-time Niagara MPM sand solver with different cohesion value setups.

Real-time Soil. Similar to the sand, we simulate the soil dropping interactively. Here,

each soil block contains 46.6K particles that are used for both simulation and rendering.

To visualize damage propagation, we use the plastic volumetric strain to color the soil

particles. The timing statistics for one-block and four-block soil simulations are listed in

Table 5.1.

Real-time Fluid. In Figure 5.14, we simulate fluids dropping on top of some obstacles.

Except for fluid block dropping, we further added some user-controllable blocks to create

more interactive features. The player can change the value of the friction factor between

the collision object and fluids. The fluid particles are colored through the initial particle

ID, and the fluid turbulence is thus visible as well. In this test, the grid resolution

is 32 ˆ 32 ˆ 32, and each fluid block contains 110K particles for both simulation and

rendering.
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Figure 5.14: Real-time Niagara MPM fluid.
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CHAPTER 6

Material Point Method for AI Generation Tasks

6.1 TPA-Gen: A Multi-Modal Data Generative Method for

Text and Physics-Based Animation

Powered by an enormous amount of paired data from the vision and language domains,

Vision-Language (V&L) Multi-Modality (MM) research has achieved remarkable results

in both text-driven generation and understanding. However, constrained by the data, the

learned MM knowledge space predominantly represents the alignments between text and

appearances or shapes, lacking further understanding of the underlying dynamics. In this

section, we aim to expand the Multi-Modality (MM) knowledge space by bridging the gap

between text, vision, and real-world physical dynamics from a data-centric perspective,

enabling MM models to better estimate these dynamics. We propose an automatic

pipeline to generate Text-to-Video/Simulation (T2V/S) data. Each generated scenario

comprises a high-resolution 3D physical simulation and a textual description of the physical

phenomena. To simulate a diverse set of real-world dynamic phenomena—such as elastic

deformations, material fractures, collisions, and turbulence—as faithfully as possible, we

take advantage of state-of-the-art physical simulation methods: (i) Incremental Potential

Contact (IPC) and (ii) Material Point Method (MPM). Additionally, high-quality, multi-

view rendering is integrated into the pipeline. We envision our work as the first step

towards fully automatic Text-to-Simulation (T2S), potentially shifting the paradigm

towards understanding world dynamics.
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6.1.1 Introduction

In the past few years, we have witnessed the blooming of the Vision-Language (V&L)

Multi-Modality (MM) community in solving diverse tasks (Lu et al., 2019; Li et al., 2019a;

Chen et al., 2020; Ramesh et al., 2021; Radford et al., 2021; Zhang et al., 2021; Alayrac

et al., 2022; Gao et al., 2022; Kamath et al., 2021; Ramesh et al., 2022). Particularly, V&L

models have achieved remarkable performances on various conventional V&L tasks thanks

to the availability of an enormous amount of V&L data (Schuhmann et al., 2022) and the

rapidly developing Large-scale Language Model (LLM) (Vaswani et al., 2017; Devlin et al.,

2018; Radford et al., 2019; Brown et al., 2020). On the other hand, MM V&L generative

tasks are unprecedentedly popular thanks to the advances in Vision-Language (V&L)

domain. Text-to-Image (T2I) generation (Ho et al., 2020; Ramesh et al., 2021; Rombach

et al., 2022; Saharia et al., 2022; Chang et al., 2023) can already produce commercial

quality images from free-form text, and meanwhile, Text-to-Video (T2V) (Singer et al.,

2022; Ho et al., 2022; Khachatryan et al., 2023) and Text-to-3D (T2-3D) (Jain et al.,

2022; Poole et al., 2022; Jun and Nichol, 2023a) are also gaining more attention.

There are three key factors that jointly contribute to the success of the recent Vision-

Language (V&L) research: (i) self-supervised learning techniques and self-attention/cross-

attention deep learning architectures are fully explored (Vaswani et al., 2017; Devlin

et al., 2018; Radford et al., 2019; Lewis et al., 2019; Brown et al., 2020); (ii) Vision-

Language (V&L) generative models such as Denoising Diffusion Models (DDM) and

Vector-Quantized (VQ) transformer decoder, are well studied (Goodfellow et al., 2020;

Zhu et al., 2017; Ho et al., 2020; Rombach et al., 2022; Chang et al., 2022, 2023); (iii)

Most importantly, a large volume of paired V&L data, e.g . (Lin et al., 2014; Ordonez

et al., 2011; Sharma et al., 2018; Changpinyo et al., 2021; Schuhmann et al., 2022), are

available on the Internet, enabling (i) and (ii) to capture the alignments between visual

appearance/shape and language tokens’ representations.

However, things are not as rosy as they seem. First, as shown in Figure 6.1(a),

current MM V&L paradigm only models the alignments between visual characteristics
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Figure 6.1: (a) Task space of Physics-based multi-modality. (b) Knowledge space of
Physics-based multi-modality.

and corresponding text descriptions. Visual information, such as appearances and shapes,

is a projection of the world dynamics to the perception space (see Figure 6.1(b)). This

projection loses a lot of physical information, and the learned V&L representation may

not reflect the real-world dynamics correctly. It will lead to distortions in both generation

and understanding. For instance, the generated video may not be physically realistic.

Second, from a statistical perspective, although there is a significant amount of V&L data,

it is still far from fully covering the entire data distribution. In other words, the learned

V&L representation cannot cover wide enough real-world phenomena in the spectrum. It

will lead to a lack of generalizability and compositionality in text-driven V&L generation.

Third, video-text paired data is more domain-specific compared to image-text paired data.

In fact, T2V training oftentimes mixes T2I data. Lastly, the quality of publicly accessible

V&L data is varied. A large portion of the data is not usable. Meanwhile, the cost of

high-quality labeling is too expensive.

As illustrated in Figure 6.1, our solution is to expand the current V&L MM knowledge

space to physics-based MM space where models can directly learn the alignments across

text, perception, and physics. In this knowledge space, a Multi-Modality (MM) model

can better estimate the world dynamics. In this section, we propose an automatic data

generation pipeline to be the first towards this goal. In each run, our proposed pipeline

generates a high-resolution, physically realistic animation with descriptive texts. To cover

a wide enough range of physical phenomena, we take the advantage of (i) Incremental
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Potential Contact (IPC)(Li et al., 2020b), a robust solid simulation framework that can

accurately resolve the intricate contact dynamics for both rigid and deformable objects

with guaranteed intersection-free results; (ii) Material Point Method (MPM)(Stomakhin

et al., 2013; Sulsky et al., 1995), a multi-physics simulation framework that is capable

of simulating versatile solids, fluids, granular materials, and multi-physics phenomena.

Our pipeline covers various real-world dynamics, such as deformations, fractures,

collisions, turbulence, etc. With commercial-level rendering tools, we also produce

high-resolution multi-view videos. To summarize, our automatic data generation pipeline

has three-folds of contributions:

‚ It generates high-quality physically realistic 3D animations along with sentences

describing the physical phenomena, including a wide spectrum of commonly seen

real-world dynamics.

‚ With the generated data, we can expand the current vision-language multi-modal

knowledge space to the physics-based multi-modal knowledge space. It could help

us to better estimate the real-world dynamics behind the scene.

‚ The generated high-quality data provides more diversity, which could benefit a

wide range of research, such as Text-to-Image (T2I), Text-to-Video (T2V), Text-to-

3D (T2-3D), Text-to-Simulation (T2S), and Text-to-Animation (T2A).

6.1.2 Related Work

Text-to-Image and Text-to-Video Generation.

Reed et al. (2016) are recognized as the pioneers in Text-to-Image (T2I), which extends

the Generative Adversarial Network (GAN) (Goodfellow et al., 2020) to multi-modal

generation. Similarly, Zhang et al. (2017) and Xu et al. (2018) apply GAN variants and

further enhance the quality of the generated images with improved image-text alignments.

Other works, such as DALL-E (Ramesh et al., 2021), formulate the T2I problem as

a sequence-to-sequence transfer, and incorporate both Transformer and VQVAE for

solutions. Some follow-up studies show that the results could be further improved by
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replacing DALL-E components with other vision language modules, such as the CLIP

latent space in DALLE2 (Ramesh et al., 2022). Moreover, the recent success of Denoising

Diffusion Models (DDM) (Ho et al., 2020; Rombach et al., 2022) also improves the

generation quality with cascading up-sampling diffusion decoder. In Text-to-Video (T2V),

most previous works (Pan et al., 2017; Li et al., 2018) produce relatively low-resolution

videos in simplified domains. The latest research (Wu et al., 2021; Hong et al., 2022b;

Singer et al., 2022; Ho et al., 2022; Khachatryan et al., 2023) extends the T2I framework to

T2V by improving modules in diffusion-based T2I framework, adding additional attention

modules, and making use of both image-text and video-text data.

Text-to-3D, Text-to-Animation Generation and 3D-Text Retrieval.

As extensions of T2I, DreamFusion (Poole et al., 2022) and (Michel et al., 2022)

synthesize 3D meshes from texts. Moreover, DreamField (Jain et al., 2022) generates

radiance field with NeRF. Latest work such as Shap-E (Jun and Nichol, 2023b) predicts

latent parameters for 3D texture and radiance field. Chen et al. (2022b) use texts to

control lighting conditions in rendering. Besides, several works use CLIP to enable

text-to-3D representations. For example, Mohammad Khalid et al. (2022) generate mesh

and texture in CLIP space; Wang et al. (2022) incorporate CLIP with NeRF, enabling

simple text-editable 3D object manipulation; (Tevet et al., 2022) generate human motion

from text. (Hong et al., 2022a) further apply text-to-3D generation to Avatar.

Vision-Language Datasets.

Microsoft COCO(Lin et al., 2014), Google concept caption (Sharma et al., 2018;

Changpinyo et al., 2021), WIT (Srinivasan et al., 2021), and VisualGenome (Krishna

et al., 2017) etc. are the most popular fine-labeled image-based V&L datasets. CLVER

(Johnson et al., 2017) is one of the iconic synthetic V&L datasets. Besides, billions

of image-text pairs have been collected from the internet, such as SBU and LAION

5B (Ordonez et al., 2011; Schuhmann et al., 2022). These image-text pair datasets

significantly contribute to the success of recent T2I generative models. On the hand, there
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are less video-text data available, especially fine-annotated video-text datasets. Existing

work includes HowTo100M (Miech et al., 2019), which mainly focuses on instructional

descriptions, and WebViD (Bain et al., 2021), which contains high-quality daily activity

video clips. Additionally, MSRVTT (Xu et al., 2016), MSVD (Chen and Dolan, 2011),

DiDeMo (Hendricks et al., 2018), and ActivityNet (Caba Heilbron et al., 2015) are

commonly used, especially for video-language pre-training. Most of them only contain

daily human activity without physical world dynamics.

6.1.3 Automatic TPA Generation

As demonstrated in Figure 6.2, our work employs the attributed stochastic grammar

to represent the unified knowledge scenario space that can be instantiated to concrete

representations in any modality. Specifically, this tree-structured representation uses nodes

to represent the object-of-interests and environmental and rendering setups, with different

collections of attributes attached to each node to represent corresponding properties, as

explained in §6.1.3.1. The dynamic behaviors of multiple objects are characterized using

dynamic models (§6.1.3.2) that constrain object velocity properties, as well as multi-object

motion and positional relationships. By utilizing constrained sampling, we can obtain

a parse tree that represents the initial states and motion characteristics of a concrete

scenario, which can then be translated into a physical simulation, rendered videos, and

descriptive captions.

The procedure of parse tree sampling is summarized below and elaborated in §6.1.3.3.

First, the parse tree structure is sampled from the stochastic grammar to decide the

content of a scenario. This process will determine the number of simulated objects

and collision objects, as well as environmental and rendering setups. Following that,

node-related attributes at each hierarchical level will be determined. Afterward, a dynamic

model is chosen at random based on the number of objects in the scene, and relation and

motion constraints are applied to the attributes of selected objects accordingly.

After settling all attributes and the sampling process is finished, we dump this data
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Figure 6.2: Attributed Scene Grammar that defines the unified knowledge scenario space
and its instantiation to 3D-physics and 2D-vision domain.

instance to a JSON file and import it to the IPC or MPM simulator based on the user’s

choice. IPC can be used to simulate elastic or rigid objects with an accurate friction

handler, whereas MPM is adept at handling a variety of materials, including elastic, plastic

solids, granular materials, and fluids. The simulator will produce 3D scene representations

at multiple discretized time steps. With these data, we can further generate photorealistic

videos using an automatic rendering algorithm based on the rendering configurations in

the parse tree. More details of the process are introduced in §6.1.3.4.

In addition, a stochastic language grammar is constructed from the scenario represen-

tation concurrently with the simulation process (§6.1.3.5). A collection of sentences that

characterize the animation using randomly selected descriptors is produced as described

in §6.1.3.6. These sentences are subsequently rewritten using ChatGPT interfaces. In the

subsequent subsections, additional modeling and sampling details are introduced.

6.1.3.1 Attributed Scene Grammar

As previously introduced, we use an attributed stochastic grammar to represent the

scenario domain. Specifically, the stochastic grammar is a hierarchical tree composed of

the following node types: Scene, Target Object Set, Collision Object Set, Environment,

Render, and Object. Here, a Scene node is the root node containing three nodes, Target
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Object Set, Environment, and Render. Furthermore, Target Object Set and Collision Object

Set are non-terminal set nodes that can contain an arbitrary number of non-terminal set

nodes of the same type or a random number of Object nodes that are leaf nodes of the

grammar. Environment nodes are also non-terminal that contain Collision Object Set

nodes. Each node, according to its categorization, has a particular set of attributes.

Object Nodes. Object nodes belonging to the same set may have special semantic

relationships, while Objects in a specified Collision Object Set may constrain the motion

and position of Objects in a given Target Object Set. Moreover, each Object node contains

multiple categories of attributes, including object-render, shape, motion, and physics. The

attributes are used to specify the corresponding characteristics of the object. Each of them

contains several concrete dependent or independent features that can be directly mapped

to a semantic label and a range of quantitative values. For example, physics attribute

consists of three independent features (material type, friction coefficient, and material

density) and two dependent features (Young’s Modulus and Poisson Ratio). The values

of the dependent features rely on the sampling results of both the other independent

features and their own label. In the physics, Young’s Modulus, for instance, determines

the material’s resistance to elastic deformation under loads and is therefore dependent on

both material types (whether the object is fluids, granular, soft, or rigid solids) and the

sampling results of its own label (whether the object is relatively softer or harder).

Environment Nodes. Environment contains attributes to control general scenario

configurations such as boundaries, external forces, and temporal discretizations. The

boundary attribute has a BC features for controlling boundary shape, type, and friction

settings, a Force feature for determining the external force, and a Time feature for specifying

temporal step size and the total number of frames.

Render Nodes. Expect the object-render attribute attached to each Object to depict

the object color and reflective properties, there are additional rendering setups that can
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reflect the human’s visual imagination of a given scenario. We use a terminal node, Render,

to specify those configurations, such as background light, textures, and the position of the

camera. All of these setups are, as before, supported by attributes with detailed features.

6.1.3.2 Dynamic Model

We propose dynamic models to characterize and constrain object motions and relationships

in addition to the tree-structure grammar. Each dynamic model can be mapped to a verb

that semantically describes the velocity feature and interactions between subjective and

objective objects. It may also include directional descriptors such as from and to to

further guide the objects’ moving characteristics and initial position properties.

Currently, our data generative model supports the following dynamic models: JUMP,

DROP, THROW, PUSH and STRIKE. The first three models, which are referred to by

intransitive verbs, are capable of influencing the behavior of one or two objects. If a single

object is sampled, these models will either constrain the initial position of the object to be

on the ground or in the air by confining the corresponding position feature in the motion

attribute. In addition, they will assist the object in choosing an appropriate velocity

scale and movement direction. If two Objects are sampled in the corresponding set nodes,

however, a directional descriptor will be sampled to customize the relationship between

these two objects. One of them is selected at random to serve as the subjective object,

while the remainder severs as the objective. Their relationship will be constrained by the

selected directional descriptor. From, for instance, indicates that the initial position of

the subjective object is close to the objective object and that it is moving in the opposite

direction; whereas to means that the subjective object starts from a relatively distant

location and moves toward the objective.

The PUSH and STRIKE models are slightly distinct due to the transitive nature of

these verbs. This suggests that they inherently associate an objective object with the

subject described. The semantic meaning of the verbs also constrains the initial positions

and motion directions of the involved objects. If directional descriptors are also sampled
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within the transitive dynamic models, an extra object will be introduced with additional

constraints. As a case study, we can sample a model that reads “sub PUSH obj 1 to

obj 2”. This can be interpreted as the sub moving toward obj 1 with velocities pointing

to obj 2 and trying to push obj 1 in the direction of obj 2.

In practice, our model can be expanded by integrating additional dynamic models

with minimal design and implementation effort. In human languages, all verb semantics

are subjectively defined, necessitating the manual design of object relations and feature

constraints. As we offer a variety of constraint/relation/feature-related abstract interfaces

for defining, validating, and applying each user-defined constraint, it is straightforward to

convert the design of a constraint set into a dynamic model class in our codebase.

6.1.3.3 Scenario Sample Process

In order to instantiate a concrete scenario from the stochastic grammar, we need to

sample 1) a parse tree structure that defines the content and characteristics of a scene,

2) the concrete qualitative labels and quantitative values of features in corresponding

attributes, 3) a dynamic model with a specified verb and optional directional descriptor

that constrains the dynamic behavior of several objects. This section examines these

three phases in detail.

Sample Parse Tree Structure. The structure sampling procedure begins at the root

node and progresses downward until it reaches the terminal nodes. Different nodes are

sampled according to their individual categories in order to specify which children nodes

are essential and which are optional. Set nodes, for instance, can sample any number of

children nodes within a permitted children number range. In contrast, an Environment

node must contain at least one Collision Object Set node. Following this phase, the total

number of object-of-interest and collision objects will be determined. This information

will further narrow our selection of dynamic models.
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Figure 6.3: Sentence generation process.

Sample Features. As specified in §6.1.3.1, each node in the parse tree comprises a

number of attributes. Additionally, an attribute contains multiple features to determine

particular semantic properties. In this stage, the goal is to first sample a qualitative

label for each feature, then sample the corresponding absolute values that define certain

physical or visual properties.

To attain this objective, we begin by randomly selecting feature labels in each tree

hierarchy using in a top-down sampling manner. The independent features are sampled

from the candidate pool, while the dependent features are sampled subsequently to ensure

semantic consistency in describing the scenario. Following the selection of all feature

labels, concrete feature values are sampled from the predefined quantitative ranges of

each label.

Top-down sampling provides only an initial selection of features; the final labels and

values are further determined by the choice of dynamic models (next paragraph). With

the selected model, all concerned features will undergo a bottom-up refinement. We first

evaluate whether the values of specified features satisfy the dynamic model’s constraints.

If not, the out-of-range projection of the values will be removed in order to enforce the

constraints. Once all constraints are met, we reselect the feature labels based on the

modified values.
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Sample Dynamic Models. As indicated in §6.1.3.2, diverse dynamic models are

capable of guiding a variety of object counts. In this step, the choice of the dynamic

model is based on the total number of objects (including object-of-interests and collision

objects). The total number of objects must be sufficient to accommodate the motion and

relationship depicted by the current model. Afterward, we randomly select objects from

the parse tree to serve as the subjective or objective(s) of the respective motion. Note

that the subject can only refer to the object-of-interest, whereas the objective can be of

any types. If additional free objects or collision items remain, they will be regarded as

noise unrelated to the current scenario data point and will not be included in the language

model (§6.1.3.5).

6.1.3.4 Simulation and Rendering

After determining the scene parse tree structure with appropriate feature labels and

values, the data point is transferred into a JSON format. This output JSON file is then

sent to an Incremental Potential Contact (IPC) (Li et al., 2020b) or an Material Point

Method (MPM) (Qiu et al., 2023) simulator based on the sampled object materials or the

user’s preferences. According to the JSON, physical simulators initially load object shapes

(§6.1.4) and assign both object- and environment-related parameters from corresponding

feature values. Then, the object motion and material behaviors such as deformation and

fractures are simulated until the maximum frame number is reached.

A renderer then collects the 3D output results at various time steps to generate

high-fidelity rendering results. In addition, rendering configurations such as background

texture, object colors, reflective materials, background light, and camera position are also

loaded from the sampled JSON file. Blender (Blender, 2018), which is open-sourced and

supports fully Python-scriptable rendering operations, is used to accomplish automatic

rendering.

In addition to the technologies employed by the proposed pipeline, other publicly

available simulators (e.g ., NVIDIA’s FleX (Macklin et al., 2014)) and rendering engines
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can also be utilized with corresponding JSON file parser.

6.1.3.5 Language Generation Model

On the basis of the sampled scenario parse tree, a hierarchical tree-structured language

model is constructed (Figure 6.3). In this model, the root node, which represents a

sentence structure, is decomposable into multiple sub-sentence nodes. Each sub-sentence

consists of three nodes representing typical linguistic components: a prepositional node, a

noun phrase node, and a verb phrase node. In this case, the prepositional node collects

feature labels associated with environmental and rendering configurations in the parse

tree, thereby describing the global scenario characteristics. If the noun phrase node is

placed under the root node, it is considered the subjective object in the scene; otherwise,

if belonging to a verb phrase, it is regarded as the objective object. Detail-wise, a noun

phrase contains a noun and its descriptors which are summarized from the corresponding

Object node. And verb phrase, on the other hand, has a verb with dynamic descriptors

and multiple noun phrase children nodes performing the objective roles.

When constructing the language model, we begin by examining the type of dynamic

model and mapping it to a verb in the verb phrase; the object relationships in the dynamic

model determine which Object falls to the subjective phrase and which refers to the

objectives. Then, if the features in the parse tree and dynamic model merit being stated in

sentences, they are assigned to language components. Specifically, the shape feature of an

Object is captured by certain noun phrases, and the tags of the corresponding object mesh

are retrieved and sampled as the noun. The other physical and rendering features are

attached as adjective descriptors to the noun phrase. Certain specialized features, such as

Young’s Modulus, are too specific to be included in common language and are therefore

neglected. Additionally, the verb phrase collects the subjective Object’s velocity-related

features as auxiliaries. And finally, features associated with the Environment and Render

nodes are inserted into the prepositional node.
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6.1.3.6 Generating Random Sentences

In addition to the aforementioned structured language model, the next stage is to create

concrete sentences that describe the scenario. The entire sentence consists of sub-sentences

joined by conjunctions such as “,”, “;” or “and”. Additionally, each sub-sentence is

composed of a subjective phrase, a verb phrase, and prepositional components. To obtain

each finalized sub-sentence, we break down the problem into multiple steps, which are

described in the paragraphs that follow.

Sample Sentence Structure. The components of the sub-sentences can appear in a

variety of arrangements to create diverse sentence structures. The objective of this phase

is to determine this order. We offer several common sentence structures as candidates. For

example, SVOP (Subject-Verb-Object-Preposition) is the most common English sentence

structure, whereas OVS is an example of passive voice.

Sample Components. In this step, each sentence component is sampled independently

into concrete clauses and concatenated in the order specified by the predefined sentence

structure. Using the language model constructed in §6.1.3.5, the corresponding clauses

can be formed. As stated previously, each language component node contains all the

accumulated feature labels from the parse tree. However, including all potential descriptive

terms in our everyday language is unnecessary and cumbersome. Therefore, we arbitrarily

select a number of descriptors that appear either before or after the noun/verb in

corresponding phrases.

Specifically, for noun-phrases, descriptors displayed before nouns are adjectives joined

by conjunctions, whereas descriptors presented after nouns can be formulated as subclauses

introduced by “that” or “which”. The descriptor number can also be zero, indicating that

the noun contains no description portion. As an instance, we can sample two adjectives

and three clause-descriptors from the subjective noun phrase to construct a noun phrase

clause such as “a blue and matte cube that is small, elastic, and rough”. The phrases

“blue and matte”, “cube”, and “small, elastic, and rough” denote the adjective-, noun-,
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Figure 6.4: Examples of generated animations.

and clauses-portions, respectively.

Similar strategies are used to manage descriptors in the verb-phrase case. To enhance

sentence diversity, we sample the verb tense further when generating the verb phrase

clause. The objective object of the verb is sampled as another noun phrase. As for the

prepositional portion, a random sample of conjunction-coupled labels is selected.

Sentence Diversity. To maximize the diversity of the sampled sentences, we sample

them multiple times so that various types and quantities of object and motion descriptors

are chosen. Then, ChatGPT interfaces are called to rewrite each sentence with suitable

prompts. In this sense, both sentence structure and word synonyms are interchangeable.

6.1.4 3D Shape Collecting and Processing

Apart from the generation procedure described in the §6.1.3, additional support is required

to complete the pipeline. That is, to collect, process, and utilize 3D shapes with noun

labels indicating what the shape represents. This section describes three methods for

achieving this objective, along with their advantages and disadvantages.
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3D Object From Existing Dataset. Existing 3D object datasets, such as Thingi10K(Zhou

and Jacobson, 2016), can be used as the prospective shape pool. Preprocessing is required

to meet the input format specifications of Incremental Potential Contact (IPC) and

Material Point Method (MPM). Particularly, IPC accepts a tetrahedral geometry (4

vertices per face, .ply format) whereas MPM accepts a 3D volumetric signed distance

field (.vdb format).

Thanks to the contributions of Zhou and Jacobson (2016), we can readily collect a

large number of 3D forms. Nevertheless, noun sampling with Thingi10K is a laborious

procedure. Specifically, we use properties like titles and tags affixed to all the shapes as

the object noun vocabulary. However, the descriptiveness and quality of these terms are

less reliable (containing adjectives like “funny”, “movable” and over-broad concepts like

“3D”, or “art”).

Text-Based 3D Shape Generation. Another alternative is to generate 3D shapes

from text labels. We can ask ChatGPT to generate a certain number of nouns of a specific

type, and then feed these words into a text-to-3D model to generate 3D shapes. In our

experiments, we use Shap-E (Jun and Nichol, 2023b), but other similar generators could

also be viable alternatives.

This procedure mitigates the disadvantage described in the preceding paragraph.

However, new difficulties arise. First, the majority of models for generating 3D shapes

require carefully adjusted parameters for desired results, which doesn’t fit our requirement

for automatic mass production. Therefore, the generated 3D meshes are of unreliable

quality. To filter out invalid meshes that are noisy, incomplete, or contain too many holes,

we designate all generated shapes with a command-line labeling tool.

Text-Based 3D Shape Retrieval Utilizing an existing 3D shape retrieval model (e.g .

(Liu et al., 2023a)) to search and extract existing shapes from a pre-sampled noun list is

an alternative solution. The quality of the retrieved meshes is trustworthy, and the noun

we employed for retrieval can serve as the noun descriptor in our sample sentences. We
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The purple globe, which is medium-weight and on the ground, jumps fast to an elastic green tumbler. The rough and elastic mediumweight top hat on the ground jumps to a light and fluid globe.

A medium-weight hourglass fell from the sky and landed on an anvil. The smooth and matte tumbler quickly struck the light, white, sandy quill in the air

Figure 6.5: Side-by-side comparison of generated animation and zero-shot Text-to-Video
(T2V).

are eager to incorporate this work into our pipeline once their code has been published.

6.1.5 Qualitative Comparison of T2V Generation

We list some representative rendering results with descriptive captions in Figure 6.4. More

demos can be found in the Appendix C. Due to the absence of benchmark methods, we

set up an qualitative comparison between generated animation and zero-shot text-to-video

generation results. Although it may not be a fair comparison, it still conveys our the main

idea of the proposed method. As shown in Figure 6.5, the zero-shot Text-to-Video (T2V)

(Khachatryan et al., 2023) generated results shows very limited dynamic interactions

between the involved objects and the world. Oftentimes the video shows no dynamics but

simply slight viewpoint shifts. However, our generated animations show vivid physical

dynamic interaction across the scene. As mentioned in §6.1.1, such a difference is caused

by the absence of modeling physical knowledge in the Multi-Modality (MM) knowledge

space.
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6.1.6 Conclusion

In this study, we have introduced an innovative approach for automatically generating

physics-based animations with textual descriptions. Our method has been extensively

analyzed, and we have presented both qualitative results of our data generation method

and comprehensive experiments that highlight the importance of such physically real-

istic datasets to the multi-modal generation research community. We believe that the

addition of these resources could substantially contribute to the expansion of the current

vision-language multi-modal knowledge space, facilitating improved understandings and

estimations of real-world dynamics.

6.2 PhysGaussian: Physics-Integrated 3D Gaussians for Gener-

ative Dynamics

In this section, we introduce PhysGaussian, a new method that seamlessly integrates

physically grounded Newtonian dynamics within 3D Gaussians to achieve high-quality

novel motion synthesis. Employing a custom Material Point Method (MPM), our approach

enriches 3D Gaussian kernels with physically meaningful kinematic deformation and

mechanical stress attributes, all evolved in line with continuum mechanics principles.

A defining characteristic of our method is the seamless integration between physical

simulation and visual rendering: both components utilize the same 3D Gaussian kernels

as their discrete representations. This negates the necessity for triangle/tetrahedron

meshing, marching cubes, “cage meshes,” or any other geometry embedding, highlighting

the principle of “what you see is what you simulate (WS2).” Our method demonstrates

exceptional versatility across a wide variety of materials–including elastic entities, plastic

metals, non-Newtonian fluids, and granular materials–showcasing its strong capabilities

in creating diverse visual content with novel viewpoints and movements. Certain results

are better presented in video format and can be found in the supplementary document.

143



t
What You Simulate

What You See

Figure 6.6: PhysGaussian is a unified simulation-rendering pipeline based on 3D
Gaussians and continuum mechanics.

6.2.1 Introduction

Recent strides in Neural Radiance Fields (NeRFs) have showcased significant advancements

in 3D graphics and vision (Mildenhall et al., 2021). Such gains have been further augmented

by the cutting-edge 3D Gaussian Splatting (GS) framework (Kerbl et al., 2023). Despite

many achievements, a noticeable gap remains in the application towards generating novel

dynamics. While there exist endeavors that generate new poses for NeRFs, they typically

cater to quasi-static geometry shape editing tasks and often require meshing or embedding

visual geometry in coarse proxy meshes such as tetrahedra (Yuan et al., 2022; Xu and

Harada, 2022; Peng et al., 2022; Jambon et al., 2023).

Meanwhile, the traditional physics-based visual content generation pipeline has been

a tedious multi-stage process: constructing the geometry, making it simulation-ready

(often through techniques like tetrahedralization), simulating it with physics, and finally

rendering the scene. This sequence, while effective, introduces intermediary stages that

can lead to discrepancies between simulation and final visualization. Even within the

NeRF paradigm, a similar trend is observed, as the rendering geometry is embedded into

a simulation geometry. This division, in essence, contrasts with the natural world, where

the physical behavior and visual appearance of materials are intrinsically intertwined.

Our overarching philosophy seeks to align these two facets by advocating for a unified

representation of a material substance, employed for both simulation and rendering. In

essence, our approach champions the principle of “what you see is what you simulate
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(WS2)”, aiming for a more genuine and coherent integration of simulation, capturing, and

rendering.

Building towards this goal, we introduce PhysGaussian: physics-integrated 3D Gaus-

sians for generative dynamics. This novel approach empowers 3D Gaussians to encapsulate

physically sound Newtonian dynamics, including realistic behaviors and inertia effects

inherent in solid materials. More specifically, we impart physics to 3D Gaussian kernels,

endowing them with kinematic attributes such as velocity and strain, along with me-

chanical properties like elastic energy, stress, and plasticity. Notably, through continuum

mechanics principles and a custom Material Point Method (MPM), PhysGaussian ensures

that both physical simulation and visual rendering are driven by 3D Gaussians. This

eradicates the necessity for any embedding mechanisms, thus eliminating any disparity or

resolution mismatch between the simulated and the rendered.

We present PhysGaussian’s versatile adeptness in synthesizing generative dynamics

across various materials, such as elastic objects, metals, non-Newtonian viscoplastic

substances (e.g. foam or gel), and granular mediums (e.g. sand or soil). To summarize,

our contributions include

‚ Continuum Mechanics for 3D Gaussian Kinematics: We introduce a con-

tinuum mechanics-based strategy tailored for evolving 3D Gaussian kernels and

their associated spherical harmonics in physical Partial Differential Equation (PDE)-

driven displacement fields.

‚ Unified Simulation-Rendering Pipeline: We present an efficient simulation

and rendering pipeline with a unified 3D Gaussian representation. Eliminating the

extra effort for explicit object meshing, the motion generation process is significantly

simplified.

‚ Versatile Benchmarking and Experiments: We conduct a comprehensive suite

of benchmarks and experiments across various materials. Enhanced by real-time

GS rendering and efficient MPM simulations, we achieve real-time performance for

scenes with simple dynamics.
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6.2.2 Related Work

Radiance Fields Rendering for View Synthesis.

Radiance field methods have gained considerable interest in recent years due to their

extraordinary ability to generate novel-view scenes and their great potential in 3D

reconstruction. The adoption of deep learning techniques has led to the prominence

of neural rendering and point-based rendering methods, both of which have inspired

a multitude of subsequent works. On the one hand, the NeRF framework employs a

fully-connected network to model one scene (Mildenhall et al., 2021). The network takes

spatial position and viewing direction as inputs and produces the volume density and

radiance color. These outputs are subsequently utilized in image generation through

volume rendering techniques. Building upon the achievements of NeRF, further studies

have focused on enhancing rendering quality and improving training speeds (Fridovich-

Keil et al., 2022; Müller et al., 2022; Sun et al., 2022; Barron et al., 2022; Xu et al.,

2022). On the other hand, researchers have also investigated differentiable point-based

methods for real-time rendering of unbounded scenes. Among the current investigations,

the state-of-the-art results are achieved by the recently published 3D Gaussian Splatting

framework (Kerbl et al., 2023). Contrary to prior implicit neural representations, GS

employs an explicit and unstructured representation of one scene, offering the advantage

of straightforward extension to post-manipulation. Moreover, its fast visibility-aware

rendering algorithm also enables real-world dynamics generations.

Dynamic Neural Radiance Field.

An inherent evolution of the NeRF framework entails the integration of a temporal

dimension to facilitate the representation of dynamic scenes. For example, both Pumarola

et al. (2021) and Park et al. (2021) decompose time-dependent neural fields into an

inverse displacement field and canonical time-invariant neural fields. In this context, the

trajectory of query rays is altered by the inverse displacement field and then positioned

within the canonical space. Subsequent studies have adhered to the aforementioned design

when exploring applications related to NeRF deformations, such as static scene editing
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Figure 6.7: Method Overview. PhysGaussianis a unified simulation-rendering pipeline
that incorporates 3D Gaussian splatting representation and continuum mechanics to
generate physics-based dynamics and photo-realistic renderings simultaneously and seam-
lessly.

and dynamic scene reconstruction (Peng et al., 2022; Yuan et al., 2022; Chen et al.,

2022a; Qiao et al., 2022, 2023; Liu et al., 2023b). Additionally, Yuan et al. (2022); Qiao

et al. (2022); Liu et al. (2023b) have contributed to the incorporation of physics-based

deformations into the NeRF framework. However, the effectiveness of these methodologies

relies on the usage of exported meshes derived from NeRFs. To circumvent this restriction,

explicit geometric representations have been explored for forward displacement modeling

(Xu et al., 2022; Kerbl et al., 2023). In particular, Chen et al. (2023); Luiten et al. (2023);

Yang et al. (2023a); Wu et al. (2023); Yang et al. (2023b) directly manipulate NeRF

fields. Li et al. (2023) extend this approach by including physical simulators to achieve

more dynamic behaviors. In this study, we leverage the explicit 3D Gaussian Splatting

ellipsoids as a unified representation for both physics and graphics. In contrast to previous

dynamic GS frameworks, which either maintain the shapes of Gaussian kernels or learn

to modify them, our approach uniquely leverages the first-order information from the

displacement map (deformation gradient) to assist dynamic simulations. In this way, we

are able to deform the Gaussian kernels and seamlessly integrate the simulation within

the GS framework.

Material Point Method.

The Material Point Method (MPM) is a widely used simulation framework for a broad
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range of multi-physics phenomena (Hu et al., 2018). The inherent capability of the MPM

system allows for topology changes and frictional interactions, making it suitable for

simulating various materials, including but not limited to elastic objects, fluids, sand, and

snow (Stomakhin et al., 2013; Jiang et al., 2015; Klár et al., 2016). MPM can also be

expanded to simulate objects that possess codimensional characteristics (Jiang et al., 2017).

In addition, the efficacy of utilizing GPU(s) to accelerate MPM implementations has also

been demonstrated by Gao et al. (2018b); Hu et al. (2019a); Wang et al. (2020); Qiu

et al. (2023). Owing to its well-documented advantages, we employ the MPM to support

the latent physical dynamics. This choice allows us to efficiently import dynamics into

various scenarios with a shared particle representation alongside the Gaussian Splatting

framework.

6.2.3 Method Overview

We propose PhysGaussian (Fig. 6.7), a unified simulation-rendering framework for gen-

erative dynamics based on continuum mechanics and 3D GS. Adopted from (Kerbl

et al., 2023), we first reconstruct a GS representation of a static scene, with an optional

anisotropic loss term to regularize over-skinny kernels. These Gaussians are viewed as the

discretization of the scene to be simulated. Under our novel kinematics, we directly splat

the deformed Gaussians for photo-realistic renderings. For better physics compliance, we

also optionally fill the internal regions of objects. We detail these in this subsection.

6.2.3.1 3D Gaussian Splatting

3D Gaussian Splatting method (Kerbl et al., 2023) reparameterizes NeRF (Mildenhall

et al., 2021) using a set of unstructured 3D Gaussian kernels txp, σp,Ap, CpupPP , where

xp, σp, Ap, and Cp represent the centers, opacities, covariance matrices, and spherical

harmonic coefficients of the Gaussians, respectively. To render a view, GS projects these

3D Gaussians onto the image plane as 2D Gaussians, differing from traditional NeRF
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techniques that emit rays from the camera. The final color of each pixel is computed as

C “
ÿ

kPP
αkSHpdk; Ckq

k´1
ź

j“1

p1 ´ αjq. (6.1)

Here αk represents the z-depth ordered effective opacities, i.e., products of the 2D Gaussian

weights and their overall opacities σk; dk stands for the view direction from the camera

to xk. Per-view optimizations are performed using L1 loss and SSIM loss. This explicit

representation of the scene not only significantly accelerates training and rendering speeds,

but also enables direct manipulation of the NeRF scene. The data-driven dynamics are

supported by making xp, Ap time-dependent (Wu et al., 2023) and minimizing rendering

losses over videos. In §6.2.3.1, we show that this time-dependent evolution can be given

by the continuum deformation map.

6.2.3.2 Continuum Mechanics

Continuum mechanics describes motions by a time-dependent continuous deformation map

x “ ϕpX, tq between the undeformed material space Ω0 and the deformed world space Ωt

at time t. The deformation gradient F pX, tq “ ∇XϕpX, tq encodes local transformations

including stretch, rotation, and shear (Bonet and Wood, 1997). The evolution of the

deformation ϕ is governed by the conservation of mass and momentum. Conservation of

mass ensures that the mass within any infinitesimal region B0
ϵ P Ω0 remains constant over

time:
ż

Bt
ϵ

ρpx, tq ”

ż

B0
ϵ

ρpϕ´1
px, tq, 0q, (6.2)

where Bt
ϵ “ ϕpB0

ϵ , tq and ρpx, tq is the density field characterizing material distribution.

Denoting the velocity field with vpx, tq, the conservation of momentum is given by

ρpx, tq 9vpx, tq “ ∇ ¨ σpx, tq ` f ext, (6.3)

where σ “ 1
detpF q

BΨ
BF

pF EqF ET
is the Cauchy stress tensor associated with a hyperelastic

energy density ΨpF q, and f ext is the external force per unit volume (Bonet and Wood,
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1997; Jiang et al., 2016). Here the total deformation gradient can be decomposed into

an elastic part and a plastic part F “ F EF P to support permanent rest shape changes

caused by plasticity. The evolution of F E follows some specific plastic flow such that it is

always constrained within a predefined elastic region (Bonet and Wood, 1997).

6.2.3.3 Material Point Method

Material Point Method (MPM) solves the above governing equations by combining the

strengths of both Lagrangian particles and Eulerian grids (Stomakhin et al., 2013; Jiang

et al., 2016). The continuum is discretized by a collection of particles, each representing a

small material region. These particles track several time-varying Lagrangian quantities

such as position xp, velocity vp, and deformation gradient Fp. The mass conservation in

Lagrangian particles ensures the constancy of total mass during movement. Conversely,

momentum conservation is more natural in Eulerian representation, which avoids mesh

construction. We follow Stomakhin et al. (2013) to integrate these representations using

C1 continuous B-spline kernels for two-way transfer. From time step tn to tn`1, the

momentum conservation, discretized by the forward Euler scheme, is represented as

mi

∆t
pvn`1

i ´ vn
i q “ ´

ÿ

p

V 0
p

BΨ

BF
pF E,n

p qF E,n
p

T∇wn
ip ` f ext

i . (6.4)

Here i and p represent the fields on the Eulerian grid and the Lagrangian particles

respectively; wn
ip is the B-spline kernel defined on i-th grid evaluated at xn

p ; V 0
p is the

initial representing volume, and ∆t is the time step size. The updated grid velocity field

vn`1
i is transferred back onto particle to vn`1

p , updating the particles’ positions to xn`1
p “

xn
p ` ∆tvn`1

p . We track F E rather than both F and F P (Simo and Hughes, 2006), which

is updated by F E,n`1
p “ pI ` ∆t∇vpqF E,n

p “ pI ` ∆t
ř

i v
n`1
i ∇wn

ip
T

qF E,n
p and regularized

by an additional return mapping to support plasticity evolution: F E,n`1
p Ð ZpF E,n`1

p q.

Different plasticity models define different return mappings. We refer to the supplemental

document for details of the simulation algorithm and different return mappings.
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6.2.3.4 Physics-Integrated 3D Gaussians

We treat Gaussian kernels as discrete particle clouds to spatially discretize the simulated

continuum. As the continuum deforms, we let the Gaussian kernels deform as well.

However, for a Gaussian kernel defined at Xp in the

material space, GppXq “ e´ 1
2

pX´XpqTA´1
p pX´Xpq, the

deformed kernel under the deformation map ϕpX, tq,

Gppx, tq “ e´ 1
2

pϕ´1px,tq´XpqTA´1
p pϕ´1px,tq´Xpq (6.5)

is not necessarily Gaussian in the world space, which

violates the requirements of the splatting process. Fortunately, if we assume particles

undergo local affine transformations characterized by the first-order approximation

ϕ̃ppX, tq “ xp ` FppX ´ Xpq, (6.6)

the deformed kernel becomes Gaussian as desired:

Gppx, tq “ e´ 1
2

px´xpqT pFpApF T
p q´1px´xpq. (6.7)

This transformation naturally provides a time-dependent version of xp and Ap for the

3D GS framework:

xpptq “ ϕpXp, tq,

apptq “ FpptqApFpptqT .
(6.8)

In summary, given the 3D GS of a static scene tXp,Ap, σp, Cpu, we use simulation

to dynamize the scene by evolving these Gaussians to produce dynamic Gaussians

txpptq,apptq, σp, Cpu. Here we assume that the opacity and the coefficients of spherical

harmonics are invariant over time, but the harmonics will be rotated as discussed in the

next subsection. We also initialize other physical quantities in Eq. (6.4): the representing

volume of each particle V 0
p is initialized as background cell volume divided by the number
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of contained particles; the mass mp is then inferred from user-specified density ρp as

mp “ ρpV
0
p . To render these deformed Gaussian kernels, we use the splatting from the

original GS framework (Kerbl et al., 2023). It should be highlighted that the integration

of physics into 3D Gaussians is seamless: on the one hand, the Gaussians themselves are

viewed as the discretization of the continuum, which can be simulated directly; on the

other hand, the deformed Gaussians can be directly rendered by the splatting procedure,

avoiding the need for commercial rendering software in traditional animation pipelines.

Most importantly, we can directly simulate scenes reconstructed from real data, achieving

WS2.

6.2.3.5 Evolving Orientations of Spherical Harmonics

Surface View Rotated View

Rendering the world-space 3D Gaussians can

already obtain high-quality results. How-

ever, when the object undergoes rotations,

the spherical harmonic bases are still rep-

resented in the material space, resulting in

varying appearances even if the view direc-

tion is relatively fixed to the object. The solution is simple: when an ellipsoid is rotated

over time, we rotate the orientations of its spherical harmonics as well. However, the

bases are hard-coded inside the GS framework. We equivalently achieve this evolution

by applying inverse rotation to view directions. This effect is illustrated in the inset

figure. We remark that the rotation of view directions is not considered by Wu et al.

(2023). Chen et al. (2023) tackle this issue in the Point-NeRF framework, but requires

tracking of surface orientation. In our framework, the local rotation is readily obtained

in the deformation gradient Fp. Denote f 0pdq as a spherical harmonic basis in material

space, with d being a point on the unit sphere (indicating view direction). The polar

decomposition, Fp “ RpSp, leads us to the rotated harmonic basis:

f t
pdq “ f 0

pRTdq. (6.9)
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6.2.3.6 Incremental Evolution of Gaussians

We also propose an alternative way for Gaussian kinematics that better fits the updated

Lagrangian framework, which avoids the dependency on the total deformation gradient

F . This approach also paves the way for physical material models that do not rely on

employing F as the strain measure. Following conventions from computational fluid

dynamics (McKIVER and Dritschel, 2003; Chandrasekhar, 1967), the update rule for

the world-space covariance matrix a can also be derived by discretizing the rate form of

kinematics 9a “ p∇vqa ` ap∇vqT :

an`1
p “ an

i ` ∆tp∇vpa
n
p ` an

p∇vT
p q. (6.10)

This formulation facilitates the incremental update of the Gaussian kernel shapes from

time step tn to tn`1 without the need to obtain Fp. The rotation matrix Rp of each

spherical harmonics basis can be incrementally updated in a similar manner. Starting

from R0
p “ I, we extract the rotation matrix Rn`1

p from pI ` ∆tvpqRn
p using the polar

decomposition.

6.2.3.7 Internal Filling

Condition 1 Condition 2

Internal Grid RayExternal Grid

The internal structure is occluded by the ob-

ject’s surface, as the reconstructed Gaussians

tend to distribute near the surface, resulting

in inaccurate behaviors of volumetric objects.

To fill particles into the void internal region,

inspired by Tang et al. (2023), we borrow the

3D opacity field from 3D Gaussians

dpxq “
ÿ

p

σp exp

ˆ

´
1

2
px ´ xpq

TA´1
p px ´ xpq

˙

. (6.11)

This continuous field is discretized onto a 3D grid. To achieve robust internal filling,
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we first define the concept of “intersubsection” within the opacity field, guided by a

user-defined threshold σth. Specifically, we consider it an intersubsection when a ray

passes from a lower-opacity grid (σi ă σth) to a higher-opacity one (σj ą σth). Based

on this definition, we identify candidate grids by casting rays along 6 axes and checking

inter-subsections (condition 1). Rays originating from internal cells will always intersect

with the surface. To further refine our selection of candidate grids, we employ an additional

ray to assess the intersubsection number (condition 2), thus ensuring greater accuracy.

Visualization of these internal particles is also crucial as they may get exposed due to

large deformation. Those filled particles inherit σp, Cp from their closet Gaussian kernels.

Each particle’s covariance matrix is initialized as diagpr2p, r
2
p, r

2
pq, where r is the particle

radius calculated from its volume: rp “ p3V 0
p {4πq

1
3 .

6.2.3.8 Anisotropy Regularizer

The anisotropy of Gaussian kernels increases the efficiency of 3D representation, while

over-skinny kernels may point outward from the object surface under large deformations,

leading to unexpected plush artifacts. We propose the following training loss during 3D

Gaussian reconstruction:

Laniso “
1

|P |

ÿ

pPP
maxtmaxpSpq{ minpSpq, ru ´ r, (6.12)

where Sp are the scalings of 3D Gaussians (Kerbl et al., 2023). This loss essentially

constrains that the ratio between the major axis length and minor axis length does not

exceed r. If desired, this term can be added to the training loss.

6.2.3.9 Elasticity and Plasticity Models

We adopt the constitutive models used by Zong et al. (2023). We list the models used for

each scene in Table 6.1.

In all plasticity models used in our work, the deformation gradient is multiplicatively
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Scene Figure Constitutive Model

Vasedeck Fig. 6.6 & Fig. 6.9 Fixed corotated
Ficus Fig. 6.7 Fixed corotated
Fox Fig. 6.6 & Fig. 6.8 Fixed corotated
Plane Fig. 6.8 von Mises
Toast Fig. 6.8 Fixed corotated
Ruins Fig. 6.8 Drucker-Prager
Jam Fig. 6.8 Herschel-Bulkley
Sofa Suite Fig. 6.8 Fixed corotated
Materials Fig. 6.12 Fixed corotated
Microphone Fig. 6.13 Neo-Hookean
Bread Fig. 6.9 Fixed corotated
Cake Fig. 6.9 Herschel-Bulkley
Can Fig. 6.9 von Mises
Wolf Fig. 6.9 Drucker-Prager

Table 6.1: PhysGaussian Demo Model Setups.

decomposed into F “ F EF P following some yield stress condition. A hyperelastic

constitutive model is applied to F E to compute the Kirchhoff stress τ . For a pure elastic

continuum, we simply take F E
“ F .

6.2.3.10 Experiments

In this subsection, we show the versatility of our approach across a wide range of

materials. We also evaluate the effectiveness of our method across a comprehensive suite

of benchmarks.

6.2.3.11 Evaluation of Generative Dynamics

Datasets. We evaluate our method for generating diverse dynamics using several sources

of input. In addition to the synthetic data (sofa suite) generated by BlenderNeRF (Raafat,

2023), we utilize fox, plane, and ruins from the datasets of Instant-NGP (Müller et al.,

2022), Nerfstudio (Tancik et al., 2023) and the DroneDeploy NeRF (Pilkington, 2022),

respectively. Furthermore, we collect two real-world datasets (referred to as toast and

jam) with an iPhone. Each scene contains 150 photos. The initial point clouds and
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Static Physics-based Dynamics

Figure 6.8: Material Versatility. We demonstrate the exceptional versatility of our
approach across a wide variety of examples: fox (elastic entity), plane (plastic metal),
toast (fracture), ruins (granular material), jam (viscoplastic material), and sofa suite
(collision).
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camera parameters are obtained using COLMAP (Schönberger et al., 2016; Schönberger

and Frahm, 2016).

Simulation Setups. We build upon the MPM by Zong et al. (2023). To generate

novel physics-based dynamics of a 3D Gaussian scene, we manually select a simulation

region and normalize it to a cube with edge length 2. The internal particle filling can

be performed before simulation. The cuboid simulation domain is discretized by a 3D

dense grid. We selectively modify the velocities of specific particles to induce controlled

movement. The remaining particles follow natural motion patterns governed by the

established physical laws. All our experiments are performed on a 24-core 3.50GHz Intel

i9-10920X machine with a Nvidia RTX 3090 GPU.

Results. We simulate a wide range of physics-based dynamics. For each type of

dynamics, we visualize one example with its initial scene and deformation sequence, as

shown in Fig. 6.8 and Fig. 6.9. The dynamics include: Elasticity refers to the property

where the rest shape of the object remains invariant during deformation, representing

the simplest form of daily-life dynamics. Metal can undergo permanent rest shape

changes, which follows von-Mises plasticity model. Fracture is naturally supported by

MPM simulation, where large deformations can cause particles to separate into multiple

groups. Sand follows Druker-Prager plasticity model (Klár et al., 2016), which can

capture granular-level frictional effects among particles. Paste is modeled as viscoplastic

non-Newtonian fluid, adhering to Herschel-Bulkley plasticity model (Yue et al., 2015).

Collision is another key feature of MPM simulation, which is automatically handled

by grid time integration. Explicit MPM can be highly optimized to run on GPUs. We

highlight that some of the cases can achieve real-time based on the 1{24-s frame duration:

plane (30 FPS), toast (25 FPS) and jam (36 FPS).
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Static Physics-based Dynamics

Figure 6.9: Additional Evaluation. Examples from top to bottom are: vasedeck
(elastic entity), bread (fracture), cake (viscoplastic material), can (plastic metal) and wolf
(granular material).

6.2.3.12 Lattice Deformation Benchmarks

Dataset. Due to the absence of ground truth for post-deformation, we utilize BlenderN-

eRF (Raafat, 2023) to synthesize several scenes, applying bending and twisting with

the lattice deformation tool. For each scene, we create 100 multi-view renderings of the

undeformed state for training, and 100 multi-view renderings of each deformed state to

serve as ground truth for the deformed NeRFs. The lattice deformations are set as input

to all methods for fair comparisons.
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Figure 6.10: Comparisons. For each benchmark case, we select one test viewpoint and
visualize all comparisons. We zoom in on some regions to highlight the ability of our
method to maintain high-fidelity rendering quality after deformations. We use a black
background to avoid interference from the background.
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Comparisons. We compare our method with several state-of-the-art NeRF frameworks

that support manual deformations: 1) NeRF-Editing (Yuan et al., 2022) deforms

NeRF using an extracted surface mesh, 2) Deforming-NeRF (Xu and Harada, 2022)

utilizes a cage mesh for deformation, and 3) PAC-NeRF (Li et al., 2023) manipulates

individual initial particles.

We show qualitative results in Fig. 6.10 and quantitative results in Table 6.2. NeRF-

Editing uses NeuS (Wang et al., 2021) as the scene representation, which is more suited

for surface reconstructions than high-fidelity renderings. Consequently, its rendering

quality is inherently lower than that of Gaussian splitting. Furthermore, the deformation

highly depends on the precision of the extracted surface mesh and the dilated cage

mesh – an overly tight mesh might not encompass the entire radiance field, while an

excessively large one could result in a void border, as observed in the twisting stool and

plant examples. Deforming-NeRF, on the other hand, provides clear renderings, but its

internal deformation, interpolated from the bounding cage vertices, does not perfectly

match lattice deformations, limiting its ability to manipulate individual parts. PAC-NeRF

is designed for simpler objects and textures in system identification tasks. While offering

flexibility through its particle representation, it does not achieve high rendering fidelity.

Our method utilizes both zero-order information (the deformation map) and first-order

information (the deformation gradient) from each lattice cell. It outperforms the other

methods across all cases, as high rendering qualities are well preserved after deformations.

Although not primarily designed for editing tasks, this comparison showcases our method’s

significant potential for realistic editing of static NeRF scenes.

Ablation Studies We further conduct several ablation studies on these benchmark

scenes to validate the necessity of the kinematics of Gaussian kernels and spherical

harmonics: 1) Fixed Covariance only translates the Gaussian kernels. 2) Rigid

Covariance only applys rigid transformations on the Gaussians, as assumed by Luiten

et al. (2023). 3) Fixed Harmonics does not rotate the orientations of spherical harmonics,

as assumed by Wu et al. (2023).
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Ground Truth Ours Fixed Cov. Rigid Cov. Fixed Harmonics

Figure 6.11: Ablation Studies. Non-extensible Gaussians can lead to severe visual
artifacts during deformations. Although direct rendering of the deformed Gaussian kernels
can already obtain good results, additional rotations on spherical harmonics can improve
the rendering quality.

Test Case Wolf Stool Plant

Deformation Operator Bend Twist Bend Twist Bend Twist

NeRF-Editing (Yuan et al., 2022) 26.74 24.37 25.00 21.10 19.85 19.08
Deforming-NeRF (Xu and Harada, 2022) 21.65 21.72 22.32 21.16 17.90 18.63
PAC-NeRF (Li et al., 2023) 26.91 25.27 21.83 21.26 18.50 17.78

Fixed Covariance 26.77 26.02 29.94 25.31 23.95 23.09
Rigid Covariance 26.84 26.16 30.28 25.70 24.09 23.53
Fixed Harmonics 26.83 26.02 30.87 25.75 25.09 23.69
Ours 26.96 26.46 31.15 26.15 25.81 23.87

Table 6.2: We synthesize a lattice deformation benchmark dataset to compare with
baselines and conduct ablation studies to validate our design choices. PSNR scores are
reported (higher is better). Our method outperforms the others across all cases.

Here we visualize one example in Fig. 6.11. We can observe that Gaussian will not

properly cover the surface after deformation if they are non-extensible, leading to severe

visual artifacts. Enabling the rotation of spherical harmonics can slightly improve the

consistency with the ground truth. We include quantitative results on all test cases

in Table 6.2, which shows that all these enhancements are needed to achieve the best

performance of our method.

6.2.3.13 Additional Qualitative Studies

Internal Filling. Typically, the 3D Gaussian splatting framework focuses on the surface

appearance of objects and often fails to capture their internal structure. Consequently, the

interior of the modeled object remains hollow, resembling a mere shell. This is usually not
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E ↑ E ↑

ν ↑

Figure 6.12: Internal filling enables more realistic simulation results. Our method
also supports flexible control of dynamics via material parameters. A larger Young’s
modulus E indicates higher stiffness while a larger poission ratio ν leads to better volume
preservation.

Ours

Stretch

NeRF-Editing

Stretch

Figure 6.13: Volume Conservation. Compared to the geometry-based editing method
(Yuan et al., 2022), our physics-based method is able to capture volumetric behaviors,
leading to more realistic dynamics.

true in the real world, leading to unrealistic simulation results. To address this challenge,

we introduce an internal filling method leveraging a reconstructed density field, which is

derived from the opacity of Gaussian kernels. Fig. 6.12 showcases our simulation results

with varying physical parameters. Objects devoid of internal particles tend to collapse

when subjected to gravity forces, irrespective of the material parameters used. In contrast,

our approach, assisted by internal filling methods, allows for nuanced control over object

dynamics, effectively adjusting to different material characteristics.

Volume Conservation. Existing approaches to NeRF manipulation focus primarily

on geometric adjustments without incorporating physical properties. A key attribute of

real-world objects is their inherent ability to conserve volume during deformation. In
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w/ Regularizer w/o Regularizer

Figure 6.14: Anisotropy Regularizer. We introduce an anisotropy constraint for
Gaussian kernels, effectively enhancing the fidelity of the Gaussian-based representation
under dynamic conditions.

Fig. 6.13, we conduct a comparison study between our method and NeRF-Editing (Yuan

et al., 2022), which utilizes surface As-Rigid-As-Possible (ARAP) deformation (Sorkine

and Alexa, 2007). Unlike NeRF-Editing, our approach accurately captures and maintains

the volume of the deformed objects.

Anisotropy Regularizer. 3D Gaussian models inherently represent anisotropic ellip-

soids. However, excessively slender Gaussian kernels can lead to burr-like visual artifacts,

especially pronounced during large deformations To tackle this issue, we introduce an

additional regularization loss Eq. (6.12) to constrain anisotropy. As demonstrated in

Fig. 6.14, this additional loss function effectively mitigates the artifacts induced by extreme

anisotropy.

6.2.4 Discussion

Conclusion. This subsection introduces PhysGaussian, a unified simulation-rendering

pipeline that generates physics-based dynamics and photo-realistic renderings simultane-

ously and seamlessly.

Limitations. The evolution of shadows is not considered in our framework. Additionally,

we use a one-point quadrature for integrating volume integrals, which may not adequately

represent the size of individual Gaussian ellipsoids. MPM with high-order quadratures
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may be adopted (Dritschel et al., 2004). Furthermore, while PDE-based dynamics offer a

useful approximation, incorporating neural networks learned from real data or data-driven

dynamics could provide more realistic modeling (Li et al., 2022a; Ma et al., 2023). Future

work will also explore handling more versatile materials like liquids and integrating more

intuitive user controls, possibly leveraging advancements in the Large Language Models

(LLMs).
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CHAPTER 7

Conclusions

In the realm of Computer Graphics and Scientific Computing, the accurate simulation of

the dynamics of solids and fluids has lead to significant advancements in both theoretical

understanding and practical applications. In this thesis, we explored the extensive

capabilities and applications of the Material Point Method (MPM), a computational

technique that stands at the forefront of physics-based simulation, aiming to enhance its

efficiency, scalability, and range of application. Our key contributions are summarized

below:

Enhanced Multi-GPU MPM. We have extended the capabilities of MPM on single

and multiple GPU systems. The introduction of an optimized Grid-to-Particle-to-Grid

MPM pipeline and the Array-of-Structure-of-Array particle data structure has dramatically

improved the computational performance, achieving 2ˆ to 3ˆ speed enhancements on

the single-GPU platform. The adaptation to multi-GPU environments further breaks the

barriers of scale, enabling simulations with millions of particles in around one minute per

frame.

Distributed Gigantic Resolution MPM. By developing a device-portable, dis-

tributed simulation system, we have addressed the memory and computational limitations

of single machines. This system not only optimizes resource utilization, but also show-

cases flexibility across different simulation methods, proving invaluable for large-scale

simulations.
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Real-Time Simulation Applications. The advancements in modern device archi-

tectures have paved the way for employing physics-based simulations and the MPM in

real-time applications such as interactive environments for robot training and gaming.

These applications demonstrate the practicality and adaptability of the MPM in scenarios

subject to limited computing resources.

The MPM in AI-Driven Generation Tasks. The final frontier explored in this

thesis is the integration of the MPM with AI, particularly in generative tasks. The

development of a unified representation for simulations, image rendering, and natural

language is a pioneering step toward comprehensive model training and testing. Our

explorations have not only enhanced our understanding of physical simulations, but they

have also opened up new avenues for AI-driven creative processes.
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APPENDIX A

Multi-GPU MPM System Implementation

A.1 Compile-Time Settings

To maximize the performance, we use compile-time constants for both controls- and

material-related settings. Below, we provide additional details on compile-time settings

for reproduction purposes.

We set the maximum number of particle-per-cell to be 64 for all the experiments.

Note that this setting is more than sufficient for most MPM simulations since the typical

particle-per-cell is 8 when initializing scenes. We have not observed any violations in

any examples we used in this chapter, and one can easily modify this setting in our code.

However, the particles will be discarded if the particle number inside one cell exceeds the

compile-time setting, leading to incorrect results.

We also present the maximum number of particle blocks and grid blocks, as well as

the maximum particle number for the experiments. These settings are adopted to enable

the pre-allocation of all spatial data structures. Still, we periodically check the current

demand for memory and dynamically resize it to fulfill the need. Different scenes require

different settings, and the program works as long as the whole memory allocated does not

exceed the device’s memory limit.

Another assumption is that the Courant-Friedrichs-Lewy (CFL) condition always holds

during run-time, indicating that the particles would move at most one-cell distances in

each time step. We use Courant number 0.6 to compute the CFL-bounded default stepping

time in all the experiments. The material stiffness is also considered when computing

the default stepping time for stability requirements. During run-time, we compute the
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maximum of the grid velocity and calculate a stepping time to ensure particles do not

move more than one cell distance. The final stepping time is chosen as the minimum of

the computed time among all devices and the default stepping time. The CFL condition is

crucial for the correctness of the results, and the G2P2G kernel will crash if it is violated,

leading to failures as would happen in traditional CPU and GPU solvers.

A.2 Hierarchical Data Structure Composition

Since the efficacy of the data structure is usually hardware- and algorithm-dependent,

it often requires non-trivial engineering efforts to explore different choices. Therefore,

the ability to quickly design and benchmark new data structures for a specific task can

significantly reduce code complexity.

A.2.1 Data-Oriented Design Philosophy

Due to the increased overhead of memory operations, the data-oriented design philosophy

(A., 2014) has been widely adopted in HPC. Following this design principle, Hu et al.

(2019a) introduce a high-performance programming language, Taichi, wherein dedicated

data structures can be developed by assembling components of different properties in

static hierarchies. Taichi provides a powerful and easy-to-use toolchain for developing

a wide range of high-performance applications. It implements an abstraction to define

multi-level spatial data structures and kernel functions through a user-friendly Python

front-end and a robust LLVM back-end that automatically handles memory, manages

executions, and deploys to CPU or GPU.

Still, there are two major issues in Taichi that prevent us from directly adopting it when

developing multi-GPU-tailored MPM algorithms: 1) no access to low-level operations,

including CUDA warp intrinsics, and 2) lack of multi-GPU support. Therefore, in our

implementation, we refer to the data structure description described in Taichi as the

mini-language and build up the infrastructure within our C++ codebase with the following

improvements.
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C++ Oriented Programming. Unlike developing a new compiler as in the Taichi

programming language, we intend to develop a tool that can be directly used in both

native C++ and CUDA C++. The latest standard supported by CUDA is C++14; thus

it becomes our final choice. Function definitions are decorated with ‘constexpr’ keyword

whenever applicable on both the host- and the device side.

Structural Composition. The C++ template meta-programming is adopted to im-

plement the infrastructure. Most setups, including hierarchy, layout, the relationship of

elements, etc., are known beforehand and can be statically specified as template param-

eters. Hence, the access interface and the internal composition of the customized data

structure are specified.

Memory Management. The representations of memory handles vary across APIs for

GPU computing. For CUDA C++, the memory handle of the device memory is simply

a pointer on the host; the cost of copying is trivial. Thus, the memory handle can be

value-copied to CUDA kernel functions from the host device. The specific type of memory

(e.g ., unified virtual memory or device memory) that the variable is allocated with is

determined by the allocator given at the run-time. The instance does not own the handle

of the allocator so its lifetime could be managed by programmers explicitly.

In our C++ codebase, we follow the same principle emphasized by the data-oriented

design principle: the internal data structure should be highly compositional and shielded

under a set of high-level access interfaces. Specifically, Structural Nodes can be associated

with child nodes recursively for multi-level hierarchy composition, and the accompanying

Decorator specifies the property of the node itself. For high performance, most specifica-

tions of the structure are performed at compile-time. We provide these utilities through

C++ variadic templates in the following form:

1 domain <Tn , Ns...>; // Tn: Index Type , Ns: Multi -dimensional coordinates

of type Tn

2 enum attrib_layout{aos ,soa};

3 enum structural_type{entity , hash , dense , dynamic };

4 decorator <structural_allocation_policy , structural_padding_policy ,

attrib_layout >;
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5 structural <structural_type , domain , decorator , structurals ...>;

A.2.2 C++ Implementation

The entire infrastructure consists of the four major components: Domain, Decorator,

Structural Node, and Structural Instance. For more details, please refer to the opensourced

code.

Domain Domain describes the range for the index of a data structure. It maps from

multi-dimensional coordinates to a 1D memory span.

1 template <typename Tn , Tn Ns...>

2 struct domain {

3 template <typename ... Indices >

4 static constexpr Tn offset(Indices &&... indices);

5 };

Decorator Decorator describes the auxiliary and detailed properties regarding the data

structure it decorates.

1 enum class structural_allocation_policy : std:: size_t {

2 full_allocation = 0,

3 on_demand = 1,

4 ...

5 };

6 enum class structural_padding_policy : std:: size_t {

7 compact = 0,

8 align = 1,

9 ...

10 };

11 enum class attrib_layout : std:: size_t {

12 aos = 0,

13 soa = 1,

14 ...

15 };

16 template <structural_allocation_policy alloc_policy_ ,

17 structural_padding_policy padding_policy_ ,

18 attrib_layout layout_ >

19 struct decorator {

20 static constexpr auto alloc_policy = alloc_policy_;

21 static constexpr auto padding_policy = padding_policy_;

22 static constexpr auto layout = layout_;

23 };
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Structural Node Structural Nodes with particular properties are formed in a hierarchy

to compose a multi-level data structure. Currently, we support three types of structural

nodes (i.e., hash, dense, and dynamic), the same as in (Hu et al., 2019a).

1 enum class structural_type : std:: size_t {

2 /// leaf

3 sentinel = 0,

4 entity = 1,

5 /// trunk

6 hash = 2,

7 dense = 3,

8 dynamic = 4,

9 ...

10 };

No matter what the internal relationship of elements is within a structural node (either

contiguous- or node-based), we assume there is at least one contiguous chunk of physical

memory to store the data; the size is a multiple of the extent of the Domain and the total

size of all the attributes of an element.

1 /// attribute index of a structural node

2 using attrib_index = placeholder :: placeholder_type;

3

4 /// traits of structural nodes

5 template <structural_type NodeType , typename Domain , typename

Decoration , typename ... Structurals >

6 struct structural_traits {

7 using attribs = type_seq <Structurals ...>;

8 using self =

9 structural <NodeType , Domain , Decoration , Structurals ...>;

10 template <attrib_index I>

11 using value_type = ...;

12 static constexpr auto attrib_count = sizeof ...( Structurals);

13 static constexpr std:: size_t element_size = ...;

14 static constexpr std:: size_t element_storage_size = ...;

15 /// for allocation

16 static constexpr std:: size_t size = domain :: extent *

element_storage_size;

17

18 template <attrib_index AttribNo > struct accessor {

19 static constexpr uintptr_t element_stride_in_bytes = ...;

20 static constexpr uintptr_t attrib_base_offset = ...;

21 template <typename ... Indices >

22 static constexpr uintptr_t coord_offset(Indices &&... is) {

23 return attrib_base_offset + Domain :: offset(std::forward <Indices >(

is)...) * element_stride_in_bytes;

24 }

25 template <typename Index >

26 static constexpr uintptr_t linear_offset(Index &&i) {

27 return attrib_base_offset + std::forward <Index >(i) *
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element_stride_in_bytes;

28 }

29 };

30

31 // manage memory

32 template <typename Allocator > void allocate_handle(Allocator

allocator) {

33 if (self::size != 0)

34 _handle.ptr = allocator.allocate(self::size);

35 else

36 _handle.ptr = nullptr;

37 }

38 template <typename Allocator > void deallocate(Allocator allocator) {

39 allocator.deallocate(_handle.ptr , self::size);

40 _handle.ptr = nullptr;

41 }

42 // access value

43 template <attrib_index ChAttribNo , typename Type = value_type <

ChAttribNo >, typename ... Indices >

44 constexpr auto &val(std:: integral_constant <attrib_index , ChAttribNo >,

Indices &&... indices) {

45 return *reinterpret_cast <Type *>(_handle.ptrval + accessor <

ChAttribNo >:: coord_offset(std::forward <Indices >( indices)...));

46 }

47 template <attrib_index ChAttribNo , typename Type = value_type <

ChAttribNo >, typename Index >

48 constexpr auto &val_1d(std:: integral_constant <attrib_index ,

ChAttribNo >,

49 Index &&index) {

50 return *reinterpret_cast <Type *>(

51 _handle.ptrval +

52 accessor <ChAttribNo >:: linear_offset(std::forward <Index >( index))

);

53 }

54 /// data member

55 MemResource _handle;

56 };

57 /// specializations of different types of structural nodes

58 template <typename Domain , typename Decoration , typename ... Structurals

>

59 struct structural <structural_type ::hash , Domain , Decoration ,

Structurals ...> : structural_traits <structural_type ::hash , Domain ,

Decoration , Structurals ...> {...};

60 ...

We define two types of Structural Nodes, the root node and the leaf node, to form the

hierarchy.

1 /// special structural node

2 template <typename Structural > struct root_instance;

3 template <typename T> struct structural_entity;
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Structural Instance A variable defined by a Structural Node is an Structural Instance

spawned given an allocator at the run-time. The instance is customizable (e.g ., accessing

the parent node requires additional data) as it is assembled from data components.

1 enum class structural_component_index : std:: size_t {

2 default_handle = 0,

3 parent_scope_handle = 1,

4 ...

5 };

6 template <typename ParentInstance , attrib_index ,

structural_component_index >

7 struct structural_instance_component;

8 /// specializations for each data component

9 template <typename ParentInstance , attrib_index >

10 struct structural_instance_component <ParentInstance , attrib_index ,

structural_component_index :: parent_scope_handle > {...};

11 ...

Besides the data components, the Structural Instance also inherits from the Structural

Node that specifies the properties of itself.

1 /// traits of structural instance , inherit from structural node

2 template <typename parent_instance , attrib_index AttribNo >

3 struct structural_instance_traits

4 : parent_instance :: attribs :: template type <(std:: size_t)AttribNo > {

5 using self = typename parent_instance :: attribs ::type <(std:: size_t)

AttribNo >;

6 using parent_indexer = typename parent_instance :: domain ::index;

7 using self_indexer = typename self:: domain ::index;

8 };

9

10 /// structural instance , inherit from all data components and its

traits (which is derived from structural node)

11 template <typename ParentInstance , attrib_index AttribNo , typename

Components >

12 struct structural_instance;

13 template <typename ParentInstance , attrib_index AttribNo , std:: size_t

... Cs >

14 struct structural_instance <ParentInstance , AttribNo ,

15 std:: integer_sequence <std::size_t , Cs...>>

16 : structural_instance_traits <ParentInstance , AttribNo >,

17 structural_instance_component <ParentInstance , AttribNo ,

static_cast <structural_component_index >(Cs) >... {

18 using traits = structural_instance_traits <ParentInstance , AttribNo >;

19 using component_seq = std:: integer_sequence <std::size_t , Cs...>;

20 using self_instance =

21 structural_instance <ParentInstance , AttribNo , component_seq >;

22 template <attrib_index ChAttribNo >

23 using accessor = typename traits :: template accessor <ChAttribNo >;

24

25 // hierarchy traverse

26 template <attrib_index ChAttribNo , typename ... Indices >
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27 constexpr auto chfull(std:: integral_constant <attrib_index , ChAttribNo

>,

28 Indices &&... indices) const {

29 ...

30 }

31 template <attrib_index ChAttribNo , typename ... Indices >

32 constexpr auto ch(std:: integral_constant <attrib_index , ChAttribNo >,

33 Indices &&... indices) const {

34 ...

35 }

36 template <attrib_index ChAttribNo , typename ... Indices >

37 constexpr auto chptr(std:: integral_constant <attrib_index , ChAttribNo

>,

38 Indices &&... indices) const {

39 ...

40 }

41 };

A.2.3 Examples

Here, we showcase usages of Structural in C++ by providing a set of examples that

describes a GPU SPGrid.

Common Useful Definitions:

1 /// leaf node

2 using empty_ = structural_entity <void >;

3 using i32_ = structural_entity <int32_t >;

4 using f32_ = structural_entity <float >;

5

6 /// attribute index

7 namespace placeholder {

8 using placeholder_type = unsigned;

9 constexpr auto _0 = std:: integral_constant <placeholder_type , 0>{};

10 ...

11 }

12

13 /// default data components for constructing instances

14 using orphan_signature = std:: integer_sequence <std::size_t ,

static_cast <std::size_t >( structural_component_index :: default_handle)

>;

Definition of GPU SPGrid:

1 // domain

2 using BlockDomain = domain <char , 4, 4, 4>;

3 using GridBufferDomain = domain <int , g_max_active_block >;

4 // decorator

5 using DefaultDecorator = decorator <structural_allocation_policy ::

full_allocation , structural_padding_policy ::compact , attrib_layout ::

soa >;
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6 // structural node

7 using grid_block_ = structural <structural_type ::dense , DefaultDecorator

, BlockDomain , f32_ , f32_ , f32_ , f32_ >;

8 using grid_buffer_ = structural <structural_type ::dynamic ,

DefaultDecorator , GridBufferDomain , grid_block_ >;

Create Instances:

1 template <typename Structural , typename Signature = orphan_signature >

2 using Instance = structural_instance <root_instance <Structural >, (

attrib_index)0, Signature >;

3 template <typename Structural , typename Componenets , typename Allocator

>

4 constexpr auto spawn(Allocator allocator) {

5 auto ret = Instance <Structural , Componenets >{};

6 ret.allocate_handle(allocator);

7 return ret;

8 }

9 auto allocator = ...;

10 auto grid = spawn <grid_buffer_ , orphan_signature >( allocator);

Access GPU SPGrid in a Function:

1 /// acquire blockno -th grid block

2 auto grid_block = grid.ch(_0 , blockno);

3 /// access cidib -th cell within this block

4 grid_block.val_1d(_0, cidib); // access 0-th channel (mass)

5 /// access cell within by coordinates

6 grid_block.val(_1, cx, cy, cz); // access 1-th channel (velocity x)

Memory Layout:

Two types of Structural Nodes with different Decorators are illustrated in Fig. A.1 to

explain the underlying memory layout.

175



1 using Attr0 =

2 structural_entity <float >;

3 using Attr1 =

4 structural_entity <double >;

5 using DecoratorA = decorator <

structural_allocation_policy ::

full_allocation ,

structural_padding_policy ::align ,

attrib_layout:aos >;

6 using DecoratorB = decorator <

structural_allocation_policy ::

full_allocation ,

structural_padding_policy ::align ,

attrib_layout:soa >;

1 using StructuralA = structural <structural_type ::dense , DecoratorA ,

2 domain <int , 4, 4>, Attr0 , Attr1 >;

3 using StructuralB = Structural <structural_type ::dense , DecoratorB ,

4 domain <int , 4, 4>, Attr0 , Attr1 >;

Figure A.1: Spatial structure specification. Two structurals are specified with
different decorators. The arrows connecting all elements indicate the ascending order in a
contiguous chunk of memory. The structural can be used as a child of another structural
to form a multi-level hierarchy. Elements displayed in the grid view are accessed by a
child structural index (marked with different colors) and a coordinate within its domain.
Note that the memory size of each structural is padded to the next power of 2 due to the
alignment decoration.
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APPENDIX B

Distributed MPM System Implementation

This appendix chapter shows some implementation details of the distributed MPM system

we introduced in §4.

B.1 Dynamic Load Balancing Implementation

Here we present algorithm details and the unit tests of the proposed dynamic load

balancing method. Also, a 2D example is shown in Figure B.2 to visualize the dynamic

optimization process. We first compute the workload matrix locally on each rank and

then use MPI_ALLReduce to get the global workload matrix. Then we compute the prefix

summation for constant-time workload computation in any given rectangle region. After

that, we perform iterations of 1D rectangle partition optimization. We first fix the position

of the previous partition boundary pi´1, then we move current partition boundary pi to

the right until finding the optimal partition position argmin
pi

ř

jk |w
pi´1:pi
jk ´ wave

jk |.

B.2 Load Balancing Algorithm Validation

To validate the partition optimization algorithm, we design a grid/particle distribution

that leads to a unique ground truth of the partition boundary set. Figure B.1 illustrates

a 2D case of this unit test process. We first generate a ground truth partition by random

sampling. Then we sample the same number of valid grid cells or particles inside each

partitioned sub-domain. To ensure the uniqueness of this partition, two anchors grid cells

or particles are included and placed at the top-left and bottom-right corners. After that,
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Figure B.1: Load Balancing Unit Test. In this 2D example, we sample six grid cells in
each rank for dynamic grid partition test, and we sample 15 particles for dynamic particle
partition. Each case will contain two fixed anchor grid cells or particles to ensure the
uniqueness of the partition results.

we use the average partition for initialization and perform the dynamic load balancing

algorithm. The testing results show that our partition optimization algorithm can converge

to the ground truth within several (usually 1-4) optimization iterations.

B.3 Distributed MPM System Application Implementation

Here we show an example of setting up a scenario with collision objects in the application

level.

1 // define the latent programming model , using CUDA as an example

2 using EXECSPACE = Kokkos ::Cuda;

3 using MEMSPACE = Kokkos :: CudaSpace;

4 using DEVICE = Kokkos ::Device <Kokkos ::Cuda , Kokkos ::CudaSpace >;

5 // data type

6 using T = float;

7 // define particles

8 using particle_members =

9 Cabana :: MemberTypes <T, T[3], T[3], T[3][3] , T[3][3] , T>;

10 using particle_list = Cabana ::AoSoA <particle_members , MEMSPACE >;

11 using particle_type = typename particle_list :: tuple_type;

12 struct particle_index

13 {

14 enum Names

15 {

16 mass = 0,

17 pos = 1,
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Figure B.2: Illustration of the dynamic load balancing algorithm. In this 2D
example, we visualize how the dynamic partition is performed on the entire simulation
domain. Here we use the grid as the workload unit for illustration, where gray grids refer
to activated grid nodes, and the numbers represent the element values of the matrix.
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18 vel = 2,

19 F = 3,

20 affine = 4,

21 logJp = 5,

22 total = 6,

23 };

24 };

25 // basic parameter settings

26 namespace Settings

27 {

28 // domain corners

29 static constexpr T low_x = 0.0;

30 static constexpr T low_y = 0.0;

31 static constexpr T low_z = 0.0;

32 static constexpr T high_x = 200.0;

33 static constexpr T high_y = 200.0;

34 static constexpr T high_z = 200.0;

35 // spatial resolutions

36 static constexpr int res_x = 512;

37 static constexpr int res_y = 512;

38 static constexpr int res_z = 512;

39 static constexpr T dx = high_x / res_x;

40 // halo and partition control

41 static constexpr int halo_size = 4;

42 static constexpr int num_step_rebalance = 200;

43 static constexpr bool partition_op_on = true;

44 // boundary type

45 static constexpr MultiSim :: BCTypes boundary_type = MultiSim :: BCTypes ::

STICKY;

46 // temporal settings

47 static constexpr int frame_num = 170;

48 static constexpr T cfl = 0.3;

49 static constexpr T fps = 4;

50 // material related settings

51 static constexpr MultiSim :: MaterialTypes material_type =

52 MultiSim :: MaterialTypes :: FIX_COROTATED;

53 static constexpr T par_density = 1000.;

54 static constexpr T E = 9e6;

55 static constexpr T PR = 0.4;

56 // physical parameters

57 static constexpr T gravity = -9.8;

58 // particle info

59 static constexpr int PPC = 8;

60 static constexpr T par_volume =

61 ( high_x / res_x ) * ( high_y / res_y ) * ( high_z / res_z ) / PPC;

62 static constexpr T par_mass = par_density * par_volume;

63 static constexpr T init_y_vel = 100;

64 // sourcing related info

65 static constexpr T source_init_vel = 50;

66 // static constexpr T source_init_vel = 13;

67 // static constexpr int source_step = 800;

68 static constexpr int source_step_0 = 1;

69 // static constexpr int source_step_1 = 297;

70 static constexpr int source_step_1 = 98;
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71 static constexpr int source_step_2 = 199;

72 }; // end namespace Settings

73

74 // customized particle initialization

75 template <typename Scalar , class ExecSpace >

76 struct InitParticleFunc

77 {

78 using execution_space = ExecSpace;

79 using memory_spcae = MEMSPACE;

80

81 template <class ParticleList >

82 int operator ()( ParticleList& particles , const Kokkos ::Array <Scalar

, g_dim >& local_low_corner , const Kokkos ::Array <Scalar , g_dim >&

local_high_corner , const Scalar cell_size , const int ppc )

83 {

84 // sample from Analytical Level Set

85 MultiSim :: Analytic_Shape :: AnalyticLevelSet <MultiSim ::

Analytic_Shape ::cuboid , Scalar , 3>

86 cube( half_size , mid_pt , { 0, 0, 0 } );

87 std::vector <std::array <T, 3>> points;

88 MultiSim :: Particle_Sample ::Sampler <T, 3> sampler;

89 int particle_num = sampler.sample_particle_pos( points , cube ,

ppc , cell_size );

90

91 // sampled particles to Kokkos:View

92 Kokkos ::View <T* [3], memory_spcae > poses( "particles",

particle_num );

93 auto host_view = Kokkos :: create_mirror_view( Kokkos :: HostSpace

(), poses );

94 for ( int i = 0; i < particle_num; ++i )

95 for ( int d = 0; d < 3; ++d )

96 host_view( i, d ) = points[i][d];

97 Kokkos :: deep_copy( poses , host_view );

98

99 // Initialize Particles

100 using particle_type = typename ParticleList :: tuple_type;

101 using P = particle_index;

102 particles.resize( particle_num );

103 Kokkos :: parallel_for( Kokkos :: RangePolicy <execution_space >( 0,

particle_num ),

104 KOKKOS_LAMBDA( const int idx ) {

105 particle_type p;

106 // mass

107 Cabana ::get <P::mass >( p ) = Settings :: par_mass;

108 // pos

109 Cabana ::get <P::pos >( p, 0 ) = poses( idx , 0 );

110 Cabana ::get <P::pos >( p, 1 ) = poses( idx , 1 );

111 Cabana ::get <P::pos >( p, 2 ) = poses( idx , 2 );

112 // vel

113 for ( int d = 0; d < g_dim; ++d )

114 Cabana ::get <P::vel >( p, d ) = _v[d];

115 // F

116 for ( int d0 = 0; d0 < g_dim; ++d0 )

117 for ( int d1 = 0; d1 < g_dim; ++d1 )
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118 Cabana ::get <P::F>( p, d0 , d1 ) =

119 d0 == d1 ? (Scalar)1 : (Scalar)0;

120 // C

121 for ( int d0 = 0; d0 < g_dim; ++d0 )

122 for ( int d1 = 0; d1 < g_dim; ++d1 )

123 Cabana ::get <P::affine >( p, d0 , d1 ) = (Scalar)

0;

124 // logJp

125 Cabana ::get <P::logJp >( p ) = 0;

126 // init particle

127 particles.setTuple( idx , p );

128 } );

129 Kokkos :: fence();

130 return particle_num;

131 }

132 };

133 // customized scene initialization

134 template <typename Scalar >

135 struct InitSceneFunc

136 {

137 using data_type = Scalar;

138 // set all

139 template <class BoundaryCondition , class ProblemManager , class

MeshType >

140 void operator ()( BoundaryCondition& bc , ProblemManager& pm_ptr ,

MeshType& mesh_ptr )

141 {

142 set_bc( bc , mesh_ptr );

143 set_mat( pm_ptr );

144 pm_ptr ->set_gravity( Settings :: gravity );

145 }

146

147 private:

148 // set boundary condition - if each side has different settings

149 template <class BoundaryCondition , class MeshType >

150 std:: enable_if_t <BoundaryCondition :: bc_type == MultiSim :: BCTypes ::

MIX , void >

151 set_bc( BoundaryCondition& bc , MeshType& mesh_ptr )

152 {

153 using BCT = MultiSim :: BCTypes;

154 auto& gm = mesh_ptr ->globalMeshPtr ();

155 std::array <BCT , g_dim * 2> bc_types;

156 bc_types [0] = BCT:: STICKY;

157 bc_types [1] = BCT:: STICKY;

158 bc_types [2] = BCT:: STICKY;

159 bc_types [3] = BCT:: STICKY;

160 bc_types [4] = BCT:: STICKY;

161 bc_types [5] = BCT::NONE;

162 bc.set_bc( bc_types [0], bc_types [1], bc_types [2], bc_types [3],

163 bc_types [4], bc_types [5], 0, 0, 0,

164 ( gm ->highCorner( 0 ) - gm->lowCorner( 0 ) ) /

165 mesh_ptr ->cell_size (),

166 ( gm ->highCorner( 1 ) - gm->lowCorner( 1 ) ) /

167 mesh_ptr ->cell_size (),
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168 ( gm ->highCorner( 2 ) - gm->lowCorner( 2 ) ) /

169 mesh_ptr ->cell_size () );

170 }

171 // set boundary conditon - if all sides share the same setting

172 template <class BoundaryCondition , class MeshType >

173 std:: enable_if_t <BoundaryCondition :: bc_type != MultiSim :: BCTypes ::

MIX , void >

174 set_bc( BoundaryCondition& bc , MeshType& mesh_ptr )

175 {

176 auto& gm = mesh_ptr ->globalMeshPtr ();

177 bc.set_bc( 0, 0, 0,

178 ( gm ->highCorner( 0 ) - gm->lowCorner( 0 ) ) /

179 mesh_ptr ->cell_size (),

180 ( gm ->highCorner( 1 ) - gm->lowCorner( 1 ) ) /

181 mesh_ptr ->cell_size (),

182 ( gm ->highCorner( 2 ) - gm->lowCorner( 2 ) ) /

183 mesh_ptr ->cell_size () );

184 }

185 // set material

186 template <class ProblemManager >

187 void set_mat( ProblemManager& pm_ptr )

188 {

189 auto& mat = pm_ptr ->materialFunc ();

190 // material parameters

191 mat.density = Settings :: par_density;

192 mat.ys = Settings ::E;

193 mat.pr = Settings ::PR;

194 mat.lambda = Settings ::E * Settings ::PR /

195 ( ( 1 + Settings ::PR ) * ( 1 - 2 * Settings ::PR )

);

196 mat.mu = Settings ::E / ( 2 * ( 1 + Settings ::PR ) );

197 mat.volume = Settings :: par_volume;

198 }

199 };

200

201 void test_example ()

202 {

203 Kokkos ::Array <T, g_dim * 2> global_bounding_box(

204 { Settings ::low_x , Settings ::low_y , Settings ::low_z , Settings ::

high_x ,

205 Settings ::high_y , Settings :: high_z } );

206 std::array <int , g_dim > global_num_cell(

207 { Settings ::res_x , Settings ::res_y , Settings ::res_z } );

208 // initializer

209 InitParticleFunc <T, EXECSPACE > parpos_init_functor;

210 InitSceneFunc <T> scene_init_functor;

211 MultiSim :: Init_Partitioner :: InitUniformPartitionerFunc

212 partition_init_functor;

213 // solver

214 auto solver = MultiSim :: createMPMSolver <DEVICE , Settings ::

boundary_type ,

215 Settings :: material_type ,

216 particle_members ,

particle_index >(
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217 global_bounding_box , global_num_cell , Settings ::halo_size ,

218 parpos_init_functor , scene_init_functor , partition_init_functor

,

219 Settings ::PPC , Settings ::res_x * Settings ::res_y ,

220 Settings :: num_step_rebalance , Settings :: partition_op_on ,

Settings ::cfl);

221 // collision object

222 MultiSim :: VDB_Shape :: VdbLevelSet <T, 3> vdb_ls(

223 INPUT_DATA_PATH , "/collision_object.vdb", { 0.0, 0.0, 0.0 } );

224 MultiSim :: CollisionObject <MultiSim :: CollisionTypes ::STICKY , T,

g_dim , DEVICE > collision_obj( global_num_cell , Settings ::dx , vdb_ls

);

225 solver ->solve( Settings ::frame_num , Settings ::fps , std:: string(

OUTPUT_DATA_PATH ) + "out_rank", Settings :: init_y_vel , collision_obj

, LOGGER_PATH );

226 }

227

228 int main( int argc , char* argv[] )

229 {

230 using T = typename Examples ::T;

231 MPI_Init( &argc , &argv );

232 Kokkos :: initialize( argc , argv );

233

234 test_example ();

235

236 Kokkos :: finalize ();

237 MPI_Finalize ();

238 return 0;

239 }
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APPENDIX C

TPA-Gen: Implementation and Other Details

C.1 Scene Grammar Productions

We use an attributed stochastic grammar as a hierarchical and structured representation

that determines the scenario’s content with initial physical parameters and appearance

settings. The grammar is decomposed into multiple levels of components which are

sampled according to the production rules defined in Table C.1. The tree structure itself

describes the scenario’s content, while the related attributes, which contain numerous

features, specialize the content’s characteristics. Table C.2 presents a list of the attributes

and features designed for each node.

C.2 Dynamic Model and Constraints

Constraints.

In practice, we use the following eight constraints to reveal object relationships and

the constraints are checked and applied on selected object features. Every constraint

consists of a list of operands “ro0, o1, ..., oN s” and an ID number list “rn0, .., nM s” which

represents the unalterable criteria operand(s). Here, operand oi refers to either a constant

(value or vector that is always unalterable), or a node-attribute-feature pair, in which

case the value of the corresponding feature is fetched for computation. Additionally, the

criteria operands must by default satisfy the given constraints to avoid ambiguities.

‚ less eqpro0, ..., oN s, rn0, ..., nM sq:

o0 ď ... ď oN , with on0 , ...onM
stay unchanged during resampling.
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‚ lesspro0, ..., oN s, rn0, ..., nM sq:

o0 ă ... ă oN , with on0 , ...onM
stay unchanged during resampling.

‚ larger eqpro0, ..., oN s, rn0, ..., nM sq:

o0 ě ... ě oN , with on0 , ...onM
stay unchanged during resampling.

‚ largerpro0, ..., oN s, rn0, ..., nM sq:

o0 ą ... ą oN , with on0 , ...onM
stay unchanged during resampling.

‚ eqpro0, ..., oN s, rn0, ..., nM sq:

o0 “ ... “ oN , with on0 , ...onM
stays unchanged during resampling.

‚ same dirpro0, ..., oN s, rn0sq:

oi must be vectors, and for @i P r0, ..., N s the angle between oi and on0 is zero. Note

that only one criterion operand is allowed to be present in this constraint.

‚ oppo dirpro0, ..., oN s, rn0sq:

oi must be vectors, and for @i P r0, ..., N s the angle between oi and on0 is 180˝. Note

that only one criterion operand is allowed to be present in this constraint.

‚ similar dirpro0, ..., oN s, rn0, ..., nM s, θq:

oi must be vectors, and for @i P r0, ..., N s, @j P r0, ...,M s the angle between oi and

oj is less or equal to θ. Here, on0 , ...onM
stays unchanged during resampling.

During the sampling process, we validate the defined constraints after random sampling

all features. The non-criteria operands that violate the constraints will be resampled to

guarantee the correctness of the relation. If the criteria operands themselves violate the

constraint, the resampling process will be terminated and errors will be reported.

Dynamic Model.

As introduced before, we have the following dynamic models: JUMP, DROP, THROW,

PUSH and STRIKE. We summarize the basic constraints required for each intransitive

dynamic model in Table C.3 and transitive dynamical verbs in Table C.4. In addition
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Label Production Rules

Scene Scene Ñ TarObjSet ‘ Environment ‘ Render
Component-0 TarObjSet Ñ TargetObj` d TarObjSet˚

Environment Ñ ColObjSet
Component-* ColObjSet Ñ CollisionObj˚ d ColObjSet˚

TarObjSet˚ Ñ TargetObj˚ d TarObjSet˚

Table C.1: Production rule of the scenario stochastic grammar. Here, TarObjSet
is short for Target Object Set which includes a set of simulated object (TargetObj)
with potential relationships; ColObjSet represents a set of non-movable collision objects
(CollisionObj) serving as boundary conditions. Moreover, ‘ represents and relation,
making the child elements mandatory; while d refers to or relation to connect optional
child nodes; ` means one or more and ˚ means zero or more.

to these dynamic models, one can easily define and generate other dynamic models into

our codebase with predefined interfaces for constraints. Some example definitions can be

found in Table C.5.

In all the above-mentioned tables, ”DM” refers to the Dynamic Model, and the ”sub”

is used to denote the subjective object on which the verb in the dynamic model focuses.

As shown in the last two columns of the table, objective objects (represented by ”obj”)

are introduced with from and to directional relations.

C.3 Datasheet for Dataset

Motivation. We propose a method to generate Text and Physics-based Animation

(TPA) for multi-modal model training. The goal is to expand the current problem

domain of multi-modal learning from image-text understanding to vision-world dynamics

understanding. We believe that this is one of the beginning steps to enable the multi-modal

model’s capability to understand our world from a model fundamental perspective.

Composition Details.

‚ What do the instances that comprise the dataset represent?

Each generated instance consists of the following elements: a video of the rendered
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Node Attribute Feature Label Candidates

Env

Boundary
Boundary Box, Floor

Condition
Type Sticky, Slip

Friction Factor
Smooth, Even Surface,
Rough, Extremely rough

External Force type Gravity, Wind
Force Force value Dependent on Force type

Temporal Total Frame Short, Medium, Long

Object

Appearance
Color

White, Red, Blue, Green, Lime,
Orange, Yellow, Pink, Purple ...

Material Glossy, Matte

Shape
Shape Cube, Sphere, Cylinder, Mesh
Size Small, Medium-sized, Large, Super large

Motion

Velocity value Slow, Medium-speed, Fast

Velocity direction
Up, Down, Right, Left,
Forward, Backward, Horizontal, Vertical

Initial position On the ground, In the sky

Physics

Material
Elastic, Rigid, Fluid,
Snow, Mud, Sand, Granular

Young’s Modulus
Dependent on Material;
Soft, Moderate-hardness, Hard, Rigid

Poisson Ratio
Dependent on Material;
Elastic, Rigid

density Light, Medium-weight, Heavy

Friction factor
Smooth, Even Surface,
Rough, Extremely rough

Render
Background

Light Bright, Dark
Texture Preset texture list or “random”

Camera
Camera position Preset camera position
Viewpoint Dependent on Camera position

Table C.2: Attributes with features associated for each scene node. In the table,
independent features are highlighted with the small caps font style, whereas dependent
features are labeled with italic. The final column lists examples of candidate labels for
each feature. Each label is mapped to a specific value or range of values based on its
semantics. Additional labels can be easily appended by providing a mapping between the
label name and corresponding value ranges.

physics-based animation, a set of text descriptions of the animation, and a 3D

material points (position) of the object ID at frame ID.

‚ How many instances are there in total?

As mentioned before, we propose a method to generate TPA data. In theory, one
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DM Type Constraint

JUMP

Basic
similar dirprr0, 1, 0s, psub, Motion, Velocity directionqs, r0s, θ0q
less eqprvmin, psub, Motion, Velocity valueqs, r0sq

(vmin defined by user)

from
eqprpgt, psub, Motion, Initial positionqs, r0sq, with pgt “ rpgt0 , p

gt
1 , p

gt
2 s

Here, pgti “ pobji ˘ pssubi ` sobji ` Cq ˚ 0.5 for i P r0, 2s

to
similar dirprdgt, psub, Motion, Velocity directionqs, r0s, θ1q

Here, dgt “ ppobj ´ psubq ` α ¨ r0, 1, 0s (α defined by user)

DROP

Basic

similar dirprr0,´1, 0s, psub, Motion, Velocity directionqs, r0s, θ0q

larger eqprvsmall, psub, Motion, Velocity valueqs, r0sq

(vsmall defined by user)
less eqprpgt, psub, Motion, Initial positionqs, r0sq,
pgt “ rpgt0 , p

gt
1 , p

gt
2 s; pgt1 is user-defined threshold;

pgt0 and pgt2 are the global minimum position

from
eqprpgt, pobj, Motion, Initial positionqs, r0sq

Here, pgti “ psubi ˘ pssubi ` sobji ` Cq ˚ 0.5 for i P r0, 2s

to
eqprpgt, pobj, Motion, Initial positionqs, r0sq

Here, pgti “ psubi ˘ pssubi ` sobji ` Cq ˚ 0.5 for i “ 0, 2; pgt1 “ sobj1 ` C

THROW

Basic similar dirprvgt
dir, psub, Motion, Velocity directionqs, r0s, θ0q,

(UP) vgt
dir “ rC0, 1, C1s

Basic
similar dirprvgt

dir, psub, Motion, Velocity directionqs, r0s, θ0q,
vgt
dir “ rC0,´1, C1s

(DOWN) eqprpgt, pobj, Motion, Initial positionqs, r0sq.

Here, pgti “ psubi ˘ pssubi ` sobji ` Cq ˚ 0.5

from
eqprpgt, pobj, Motion, Initial positionqs, r0sq

Here, pgti “ psubi ˘ pssubi ` sobji ` Cq ˚ 0.5 for i P r0, 2s

to
eqprpgt, pobj, Motion, Initial positionqs, r0sq

Here, pgt “ psub ` ssub ` vsubvalue ¨ vsub
dir ¨ C

Table C.3: Constraints in each single-object dynamic model. In the table, s, p,
vvalue and vdir refers to object size, initial position, velocity value and velocity direction,
separately; C ě 0, C0 P r´1, 1s, C1 P r´1, 1s, Csmall P r0, 0.1 ˚ ssubmaxs represents random
noise, and ˘ means +/- are chosen randomly in practice. All the dynamic model has
the basic constraints applied to the objects, with randomly sampled from, to, or NONE
relation. Note that from and to relation will be chosen only when there are enough
objects in the scenario. Specially, for THROW model, we will first sample to decide if it
is ”Throw UP” or “Throw DOWN” before defining the basic constraints.

can generate as much as possible of TPA data with sufficient objects, types of

materials, and pre-defined motion types. To better illustrate the details of the data,

we provide a sample set of TPA data which contains 500 instances.

‚ Are there recommended data splits?

We don’t specify any splits. One can configure the split accordingly.
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DM Type Constraint

PUSH

Basic

similar dirprvgt
dir, psub, Motion, Velocity directionqs, r0s, θ0q

Here vgt
dir “ pobj ´ pgt-sub

less eqprvlarge, psub, Motion, Velocity valueqs, r0sq

(vlarge defined by user)
larger eqprvsmall, pobj, Motion, Velocity valueqs, r0sq

(vsmall defined by user)
Basic eqprpgt-sub, psub, Motion, Initial positionqs, r0sq

(Not from) Here, pgt-subi “ pobji ˘ pssubi ` sobji ` Cq ˚ 0.5 for i P r0, 2s

from

eqprpgt-sub, psub, Motion, Initial positionqs, r0sq

Here, pgt-subi “ pobj-extrai ˘ pssubi ` sobj-extrai ` Cq ˚ 0.5 for i P r0, 2s

eqprpgt-obj, pobj, Motion, Initial positionqs, r0sq

Here, pgt-obj “ pgt-sub
i ` K ˚

pgt-sub´pobj-extra

||pgt-sub´pobj-extra||

K “ 0.5 ¨ maxi“0,1,2ps
sub
i ` sobji q ` C

to
eqprpgt-obj-extra, pobj-extra, Motion, Initial positionqs, r0sq

Here, pgt-obj-extra “ pobj ` K ˚ vsub
dir

K “ 0.5 ¨ maxi“0,1,2ps
obj
i ` sobj-extrai q ` C

STRIKE

to pto “ pobj-extra

Not to Random sample pto

Basic

similar dirprpto ´ psub, p

sub, Motion, Velocity directionqs, r0s, θ0q
similar dirprpto ´ pobj, p

obj, Motion, Velocity directionqs, r0s, θ0q
less eqprvlarge, psub, Motion, Velocity valueqs, r0sq

(vlarge defined by user)
less eqprvlarge, pobj, Motion, Velocity valueqs, r0sq

(vlarge defined by user)

from
eqprpgt, pobj, Motion, Initial positionqs, r0sq

Here, pgti “ psubi ˘ pssubi ` sobji ` Cq ˚ 0.5 for i P r0, 2s

Table C.4: Constraints in each multiple-object dynamic model. These dynamic
models are applied to at least two objects, one representing the subjective and the other
representing the objective (“sub” and “obj” in the table). from and to relation will
include another objective object, named “obj-extra” in the table. C ě 0 represents
random noise, and ˘ means +/- are chosen randomly in practice.

Collection Process. As we mentioned before, we propose a method to generate text

and physics-based animation data. Since the data is synthetic, we don’t require any human

annotators to be involved. Besides, to improve the quality of the generated texts, we take

advantage of the most popular large language model, ChatGPT, to rewrite the generated

description of the animation. Besides, we also use ChatGPT to help propose label names

of the 3D objects in a TPA instance. The 3D objects are generated with a SoTA text-3D
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DM Type Constraint

FLY

Basic
similar dirprvgt

dir, psub, Motion, Velocity directionqs, r0s, θ0q,
vgt
dir “ rC0, 0, C1s

less eqprvlarge, psub, Motion, Velocity valueqs, r0sq

(vlarge defined by user)
less eqprpgt, psub, Motion, Initial positionqs, r0sq,
pgt “ rpgt0 , p

gt
1 , p

gt
2 s, pgt1 is user-defined threshold

pgt0 and pgt2 are the global minimum position

from
eqprpgt, pobj, Motion, Initial positionqs, r0sq

Here, pgti “ psubi ˘ pssubi ` sobji ` Cq ˚ 0.5 for i P r0, 2s

to
eqprpgt, pobj, Motion, Initial positionqs, r0sq

Here, pgt “ psub ` ssub ` vsubvalue ¨ vsub
dir ¨ C

SLIDE

Basic
similar dirprvgt

dir, psub, Motion, Velocity directionqs, r0s, θ0q,
vgt
dir “ rC0, 0, C1s

Basic
less eqprpgt-min, psub, Motion, Initial positionq,pgt-maxs, r0, 2sq

(Not from)
Here pgt-* “ rpgt-*0 , pgt-*1 , pgt-*2 s, pgt-min

1 “ ssub1 , pgt-max
1 “ ssub1 ` Csmall

pgt-*i refers to global * position for i “ 0, 2 and * refers to min/max

from
eqprpgt, psub, Motion, Initial positionqs, r0sq, with pgt “ rpgt0 , p

gt
1 , p

gt
2 s

Here, pgt1 “ pobj1 ` pssub1 ` sobj1 ` Csmallq ˚ 0.5

Random sample pgti P rpobji ´ sobji ˚ 0.5, pobji ` sobji ˚ 0.5s for i “ 0, 2

to
eqprpgt, pobj, Motion, Initial positionqs, r0sq

Here, pgt “ psub ` ssub ` vsubvalue ¨ vsub
dir ¨ C

Table C.5: Example of other possible dynamic models. One can easily define and
implement additional dynamic models within our codebase.

generation model. Specifically, we use the checkpoint of GPT-3.5-turbo-0301 as the

backbone model.

Pre-processing/Cleaning/Labeling.

‚ 3D object representation transformation:

The 3D objects are spatially discretized to material points at each time step. The

positions of the material points representing each object (including object-of-interests

and collision object)d are stored in separate PLY files.

‚ Description rewriting:

We use ChatGPT to help clean the generated text description by rewriting the

sentences without changing the meaning of it.
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Distribution.

‚ How will the dataset be distributed?

The implementation of the proposed TPA data generation method contains three

parts: 1, a scene sampling process code; 2, a binary execution of a physics-based

simulation engine compiled from a set of source code. The source code of this

simulation engine is based on an open-source version of Material Point Method

(MPM); 3, data cleaning codes. The above implementations will be made public on

GitHub.

‚ When will the dataset be distributed?

The sample dataset and the implementation code will be distributed after the

NeurIPS dataset track review process.

Impact and Challenges. We expect our proposed method and the data generated by

this method can make a broad impact on both the multi-modal and computer graphics

communities.

‚ In terms of multi-modal understanding, we aim to help this community expand the

problem domain from shallow vision-language alignment to deep comprehension of

the knowledge space of vision-language-world dynamics. It could broadly impact

specific research domains such as Text-to-Video/Simulation (T2V/S), robotics, and

intuitive physics.

‚ Our method could also make a large impact in the conventional computer graphics

domain by reformulating the 3D animation creation process. Our generation process

provides a rule-based generation of 3D animation scenes. On the other hand, once we

have a reliable model that can generate 3D animation from human language, it could

save a huge amount of effort to create 3D animation from scratch. The traditional

pipeline usually requires very experienced artists, computer graphics researchers,

and engineers to collaborate even for a simple scene. Our method initializes the very
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first step towards the fully automatic generation of 3D physics-based animations

from the text description.

Licensing and Access. We would like to specify that we intend to utilize the MIT

license for the method proposed in this section to generate TPA data. This open-source

license grants users the freedom to use, modify, and distribute the dataset while providing

clear attribution to the original creators. By choosing the MIT license, I aim to foster

collaboration, encourage innovation, and ensure that the generated data and the code of

the proposed method to generate remain accessible to the wider community for further

exploration and development.

C.4 Data Samples

Figure C.1, Figure C.2, Figure C.3, and Figure C.4 demonstrate more sample examples of

the proposed generative algorithm. For more demos, please check out this Google drive:

https://drive.google.com/drive/folders/1IbPJBmPLlzB4DPmXVx1eQhSr42WYjLU_?usp=

sharing. One can check out the demos in the following file hierarchy (DM refers to

concrete dynamic model names):

‚ DM scene:

– label out.json (labels of all nodes, attributes, and features)

– value out.json (quantitative values of corresponding setups)

– sentence original.json (sentence sampled from the proposed language model)

– sentence rewrite.json (sentence rewritten by ChatGPT)

– render (a folder contains rendered results)

˚ FID.png (FID refers to frame ID)

˚ out.mp4 (video of rendering results)

‚ DM 3d: (3D object data)
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– 0 0 0 target OID FID.ply (OID refers to object ID; 3D material points (posi-

tion) of object OID at frame FID)

– 0 0 0 collision FID.ply (point positions of collision objects)
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Figure C.1: Data samples of DROP dynamics.
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Figure C.2: Data samples of DROP dynamics.
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Figure C.3: Data samples of JUMP dynamics.
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Figure C.4: Data samples of JUMP dynamics.
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