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Abstract

Investigating Microwave-Activated Entangling Gates on Superconducting Quantum
Processors

by

Bradley Kenneth Mitchell

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Irfan Siddiqi, Chair

Superconducting quantum circuits are a leading technology in the quest toward building a
quantum computer, which promises to outperform conventional, or “classical” computers, in
solving a variety of tasks. To be useful for computation, a quantum processing unit (QPU)
architecture must be scalable and have low error rates. Microwave activated entangling in-
teractions, while often being slower than interactions that use flux-tunable components, are
a scalable approach to realizing entanglement in that they are compatible with a minimally
complex QPU design: single-junction transmon qubits with fixed qubit-qubit coupling. A
prominent microwave-activated gate in this architecture, the cross resonance (CR) gate, is
experimentally investigated, including mitigation of leakage errors, and budgeting of coher-
ent and incoherent errors. Importantly, the fidelity of the CR gate is limited in general
by the static cross-Kerr, or ZZ, interaction between the qubits. A novel cross-Kerr entan-
gling interaction that commutes with the static cross-Kerr interaction is presented, based on
simultaneous off-resonant drives. This cross-Kerr interaction is tunable, enabling the com-
plete cancellation or enhancement of qubit-qubit coupling, a first for this fixed-frequency,
fixed-coupling architecture. We show the tunability of the sign of the interaction, and use it
to implement a two qubit controlled-phase (CZ) gate. This gate is observed to have lower
coherent error than the CR gate. Designing a QPU with this as the native entangling inter-
action could enable faster microwave-activated gates, improving overall performance while
maintaining minimal hardware complexity.
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Chapter 1

Introduction

Quantum computation is the idea of encoding data, conventionally represented as bit strings,
into a quantum system, typically represented by qubits, or quantum bits, and performing
logical operations on and measurements of the outcomes, which are based on the laws of
quantum mechanics. Richard Feynman and Yuri Manin independently proposed the idea
of quantum computers in the 1980s. Since then, progress on the theoretical side showed
potentially useful calculations that a quantum computer could perform significantly more
efficiently than a conventional, or “classical”, computer, such as factoring integers [1], un-
structured search [2], and simulating quantum systems [3, 4].

The theoretical possibility of quantum computational advantage spurred intense research
toward building a quantum computer, however the challenge of decoherence, where environ-
mental noise dissipates the quantum properties, (i.e. entanglement and superposition) of a
quantum state, cast doubt on the possibility of realizing a quantum computer. Fortunately,
in 1995, Peter Shor proposed a way around decoherence, by redundantly encoding logical
qubits into multiple physical qubits in what’s called a quantum error correction (QEC)
code [5]. With QEC, the promise of fault-tolerant quantum computation was again seen as
realizable, and today researchers are assessing in greater and greater detail the experimental
resources needed to bring about quantum computational advantage.

One of the most promising QEC codes being studied for implementation with supercon-
ducting circuits is the surface code [6, 7]. This is because it only requires nearest-neighbor
connectivity between qubits, and has one of the highest error thresholds of about 1%, mean-
ing that if operations on physical qubits (e.g. initialization, gates, storage, and measurement)
have error rates below 1%, corresponding errors on logical qubits will be suppressed as the
size of the code (i.e. the number of physical qubits per logical qubit) is increased. The error
threshold of a QEC code sets an important minimum performance measure to consider when
designing quantum processors and benchmarking their performance.

In superconducting circuits, and also other platforms, two-qubit gates are one of the
highest-error operations. Therefore, studying and mitigating the error processes that occur
during two-qubit gates is crucial to maximizing quantum processor performance. In this
thesis, calibration and error budgeting of entangling gates based on two different microwave-
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activated interactions is presented. These interactions are realized on a quantum processor
consisting of eight single-junction transmon qubits with fixed coupling in a ring geometry.
First, I present a study of the cross-resonance (CR) gate [8], which is one of the most popu-
lar entangling gates on single-junction, fixed coupling architectures. Then I present a novel
interaction that realizes a controlled-Z gate based on tunable cross-Kerr coupling generated
by simultaneous off-resonant driving of the transmons, published in [9]. Besides being useful
for generating entanglement, this interaction has the additional benefit that it enables can-
cellation of static coupling between qubits, a significant error source for architectures with
fixed qubit frequencies and fixed coupling.

The structure of this thesis is as follows. In the remainder of this chapter, I will give back-
ground of superconducting quantum computing that is sufficient for understanding the main
results of this thesis, including an introduction of circuit quantum electrodynamics (cQED)
and the experimental quantum processing unit (QPU) used in presented experiments. In
Chapter 2, I describe procedures single-qubit gate calibration, microwave crosstalk miti-
gation on the device, and error budgeting single qubit gates. In Chapter 3, experiments
assessing the error budget of cross resonance gates on our hardware are presented, including
the implementation of leakage-cancellation techniques on the CR gate, and novel calibra-
tion schemes using modern compilation and closed-loop optimization. Chapter 4 details the
microwave-activated tunable cross-Kerr (ZZ) coupling, and experiments implementing a CZ
gate with this interaction. Future directions are then discussed.

1.1 Circuit Quantum Electrodynamics

1.1.1 A brief history of superconducting quantum computing

While a variety different technologies are being pursued to build quantum computers, includ-
ing trapped ions, photonic systems, and semiconductor quantum dots, a prominent technol-
ogy being pursued in academia and industry is superconducting quantum circuits. Supercon-
ducting circuits rely on a particular circuit element called a Josephson junction [10], which is
simply a thin insulating barrier between two superconducting metals. In 1985, energy-level
quantization was first observed in a Josephson junction circuit here at UC Berkeley by Pro-
fessor John Clarke, Michel Devoret, and John Martinis [11], answering Anthony Leggett’s
question about whether a degree of freedom comprised of so many atoms can indeed be-
have quantum-mechanically1. This observation showed that superconducting circuits based
on Josephson junctions could behave as ‘artificial atoms’, and subsequently direct evidence
of their quantum behavior was shown with the observation of Rabi oscillations in a su-
perconducting charge qubit in 1999 [12], and Ramsey oscillations in a quantronium qubit
in 2002 [13]. Milestones continued to be established in superconducting quantum circuits,
including strong coupling between a single photon and superconducting charge qubit in
2004 [14], heralding the field of circuit quantum electrodynamics (cQED) [15] (as an analogy

1This story is from Steven Girvin’s talk, A Brief History of Superconducting Quantum Computing

https://youtu.be/xjlGL4Mvq7A
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to the cavity QED of optical photons and true atoms) as an architecture for quantum com-
putation. Shortly after came the proposal [16] and realization [17] of the transmon qubit,
which is one of the most commonly used superconducting qubits at this time of writing, and
is the superconducting qubit used in this thesis.

The framework for cQED is described in the next sections, however see refs. [18, 19] for
more details.

1.1.2 The quantum LC circuit

To begin, we consider the quantization of an LC circuit. The Hamiltonian of a circuit with
capacitance C and inductance L is

HLC =
Q2

2C
+

Φ2

2L
, (1.1)

where Q is the charge on the capacitor and Φ is the flux threading the inductor. This
harmonic Hamiltonian has resonance frequency ωr = 1/

√
LC, and impedance Z0 =

√
L/C.

This is analogous to the simple harmonic oscillator (SHO) Hamiltonian, with particle position
x and momentum p HSHO = p2/2m+kx2/2. While either Q or Φ can be mapped to position
x in this analogy, typically Φ is chosen as the ‘coordinate’ variable, and thus C is the mass
and L−1 is the spring constant. Quantization then amounts to promoting the conjugate
variables to operators, with canonical commutation relation

[Φ, Q] = ih̄. (1.2)

Second quantization then follows with the definition of bosonic creation and annihilation op-
erators a† and a such that Φ = Φzpf(a+a†) and Q = izpf(a−a†), with Φzpf =

√
h̄Z0/2,Qzpf =√

h̄/2Z0 being the flux and charge zero-point fluctuations. Rewriting equation 1.1 in terms
of a, a† we have

HLC = h̄ωr
(
a†a+ 1/2

)
. (1.3)

For an LC circuit to behave in a quantum mechanical manner, two conditions must be met:
the circuit must be very low loss, such that the spectral linewidth of the energy states is
less than their separation, and the ambient temperature kBT ≪ ωr. However, since the
energy spectrum is linear, resolving or addressing individual transitions is not possible with
a quantum LC circuit alone. A nonlinear element is needed to encode a qubit in the Fock
states of the oscillator.

1.1.3 The Josephson junction

To encode a qubit in a quantum circuit then, we need a lossless circuit element that is non-
linear, and the Josephson junction meets these requirements. A typical Josephson junction
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consists of two superconducting leads, separated by a thin insulating barrier. Remarkably,
a dissipationless current flows across the junction according to the DC Josephson effect

I = Ic sinφ, (1.4)

where Ic is the junction critical current above which lossy current flows, and φ is the phase
difference between the superconducting wavefunctions on either side of the junction [20]. The
critical current Ic depends on the area of the junction, the thickness of the junction barrier,
and the energy gap of the superconductor via the Ambegaokar-Baratoff relations [21]. The
voltage across the junction is related to φ in a manner analogous to Faraday’s law

V =
Φ0

2π
φ̇, (1.5)

where Φ0 = h/2e is the magnetic flux quantum. Equation 1.5 describes how a DC voltage
across the junction leads to an AC current, creating a voltage-to-frequency converter that
has led to using Josephson junction arrays as a tool to establish the SI definition of the
volt [22].

From these Josephson relations, we can derive the associated energy of the junction

UJ(t) =

∫ t

−∞
IV dt′ (1.6)

=
Φ0Ic
2π

(1 − cosφ) (1.7)

= EJ(1 − cosφ). (1.8)

Since the potential energy is not quadratic, the Josephson junction introduces a nonlinearity
to the energy spectrum that is needed for constructing ‘artificial atoms’ used to encode
qubits.

1.1.4 The transmon qubit

The simplest and most common superconducting qubit is the transmon qubit [16], which is
realized by replacing the inductor in an LC circuit with a Josephson junction (see Figure 1.1).
Defining the generalized ‘flux‘ variable as Φ =

∫ t
−∞ V dt′, The Hamiltonian for the transmon

is then given by

H =
(Q−Qg)

2

2C
− EJ cos

2πΦ

Φ0

(1.9)

= 4Ec(n− ng)
2 − EJ cosφ, (1.10)

with Q = 2en being the charge on the capacitor with number of cooper pairs n, and possible
offset charge Qg allowed and defining Ec = e2/2C. Note that C in this case accounts for
both the intrinsic capacitance of the junction and the additional shunting capacitance. The
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L C EJ EC

(a) (b) (c)

Figure 1.1: The transmon qubit as an anharmonic oscillator. (a) Standard LC cir-
cuit (b) transmon qubit, replacing the inductor with a Josephson junction (c) comparison
of energy spectrum for an LC circuit (dashed line) and a transmon (solid line), with the
potential energy in gray and the eigenenergies denoted in the legend. The anharmonicity η
is about 5% of the lowest energy transition ω01 = E1 −E0. for typical transmons in our lab,
corresponding to an EJ/Ec = 70.

transmon qubit operates in the regime EJ/Ec ≫ 1 [16], because in this regime charge noise
is exponentially suppressed, leading to higher qubit coherence times than for smaller EJ/Ec
circuits, known as Cooper Pair Boxes. In the limit EJ/Ec ≫ 1, the phase difference φ is well
localized in the bottom of the cosine potential well around φ = 0, and from the Hamiltonian,
the system behaves as a quantum particle in a cosine-potential well. For EJ/Ec ≫ 1, the
kinetic energy Ec is much lower than the well depth EJ , meaning that the dynamics can be
approximated in a perturbative fashion. As such, a typical approximation for the transmon
is the Duffing oscillator, which is a harmonic oscillator with an additional quartic term

H = h̄ωqa
†a+ h̄

η

2
a†a(a†a− 1), (1.11)

where h̄ωq ≈
√

8EcEJ − Ec is the qubit frequency and η ≈ −Ec/h̄ is the anharmonicity. In
the Duffing oscillator approximation, these values fully determine the transmon Hamiltonian.
Note that these approximations give a sense for how to relate circuit parameters to measured
transmon frequencies, however higher order or numerical methods should be used when
estimating EJ and Ec from measured quantities ωq and η. Typical values of ωq and η are
2π × 5 MHz and 2π × 300 MHz.
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1.1.5 Qubit-resonator coupling

The combination of quantum LC circuits and the nonlinear quantum circuits comprised of
one or more Josephson junctions establishes a superconducting quantum computing toolbox
known as circuit QED [15], with terminology and methods analogous to cavity QED, wherein
optical cavities are coupled to true atoms for studying quantum interactions between light
and matter. Dispersively coupling a transmon to a resonator enables measurement of the
transmon state, and dispersively coupling multiple transmons to a shared resonator enables
interactions between the transmons for entangling gates.

Coupling a resonator and a transmon is often realized via a coupling capacitance, which
can be thought of as electric dipole coupling that is written as

Hint = −h̄g(a− a†)(b− b†) (1.12)

≈ −h̄g(ab† + a†b) (1.13)

for bosonic operator a of the transmon and b for the cavity. The coupling strength g is given
by [18]

g = ωr
Cg
C

(
EJ
2Ec

)1/4√
πZ0

RK

, (1.14)

where ωr is the resonator angular frequency, Cg is the coupling capacitance, C is the transmon
capacitance, Z0 is the resonator impedance, and RK = h/e2 is the resistance quantum.
Equation 1.13 invokes the rotating wave approximation, as terms like a†a† that add or remove
two photons are perturbatively suppressed by factors of g/|ωq + ωr|, whereas exchange type
terms like ab† are suppressed by a much smaller factor of g/∆ (assuming |∆| ≪ |ωq+ωr|) and
thus terms which remove or add photons to the unperturbed (uncoupled) Hamiltonian have
negligible effect on the dynamics compared to the exchange type terms. Thus, the coupled
resonator-qubit Hamiltonian (including the uncoupled terms) looks like (letting h̄ = 1 from
now on)

H = ωqa
†a+

η

2
a†a†aa+ ωrb

†b+ g
(
a†b+ ab†

)
. (1.15)

So far, we have not considered the detuning between the resonator and the transmon.
In the so-called dispersive limit of ∆ = ωq − ωr ≫ g, then applying perturbation theory,
the energies of the coupled states are shifted and the Hamiltonian in qubit subspace of the
transmon is

HD = ω′
q(1 − σz)/2 + ω′

rb
†b− χσzb

†b, (1.16)

where the cross-Kerr coupling χ between cavity and resonator is given by

χ = − g2η

∆(∆ + η)
, (1.17)

and the frequencies are renormalized (i.e. Lamb shifts) as indicated by the primes.
Note that beyond the qubit truncation for the transmon, the dispersive shift χ is different

for each higher transmon transition. Additionally, if the transmon were a true qubit, this
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corresponds to η → ∞, and in this limit χ = g2/∆, whereas for two resonators, this dispersive
shift is 0. Finally, if both systems were ideal qubits, then there again would be zero dispersive
shift from the coupling g in the dispersive limit.

The dispersive Hamiltonian in equation 1.16 is the basis for non-destructive (or QND)
measurement of a qubit in the σz basis by measuring the frequency of a readout resonator [15].

1.1.6 Coupling transmons

To realize entangling interactions between transmons, they are typically capacitively coupled
either by bringing their shunting capacitor pads directly in proximity to each other, or via
a mutual dispersive coupling to a resonator. In the case of the Trailblazer chip that is used
in this thesis, a coupling resonator is used. While some approaches generate entanglement
between qubits by bringing the |01⟩ and |10⟩ into resonance via flux-tunable qubits or with
parametrically driven tunable couplers, on the Trailblazer chip, the qubits are coupled in
a ‘straddling-regime’ configuration, where |∆| = |ωc − ωt| < ηc, ηt for qubit pair Qc, Qt.
In this regime, entanglement can be generated using the Cross-resonance interaction [8], as
described in Chapter 3, or via a differential Stark shift interaction as described in Chapter 4.
One benefit of this approach is that neither qubits nor couplers need to be flux-tunable in
order to entangle the qubits. This is beneficial because flux-tunable qubits and couplers
introduce additional sources of decoherence for the qubits, and so designs omitting these
components tend to produce qubits with longer coherence times.

Similar to the transmon-resonator coupling, transmon-transmon exchange coupling can
be described by the Hamiltonian

H = Hq1 +Hq2 + J(a†1a2 + a1a
†
2), (1.18)

where Hqi is the Duffing oscillator approximation for transmon i, with bosonic annihilation
operator ai. The exchange coupling J for the case of two qubits mutually dispersively coupled
to a resonator is approximated by

J =
g1g2

2

(
1

∆1

+
1

∆2

)
, (1.19)

where gi is the coupling of transmon i to the coupling resonator, and ∆i = ωqi − ωr is the
detuning of the qubit from the coupling resonator frequency ωr.

One consequence of equation 1.18 for detuned qubits is, due to higher levels of the
transmon, the exchange coupling J results in a cross-Kerr coupling between the transmons
in the dispersive limit ∆ ≫ J . In the qubit subspace of the Hamiltonian, this results in a
static σz⊗σz (also often written ZZ) interaction between the qubits, which to leading order
is

ζ0 = 2J2

(
1

∆ − ηt
− 1

∆ + ηc

)
. (1.20)

Crucially, this always-on (but not necessarily desired) interaction between the qubits scales
with J2, whereas the designed the CR interaction scales linearly with J . This sets a design
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constraint on the coupling J to be small enough such that it isn’t prohibitive for single-qubit
gates, but large enough to achieve reasonable two-qubit gate times on this architecture. Typ-
ically, for qubit frequencies between 4−6 GHz, and anharmonicities between 250−300 MHz,
coupling rates J of order 2−4 MHz struck a balance between low ζ0 rates and fast CR rates.
However, with the interaction described in Chapter 4, ζ0 can be cancelled, enabling larger J
for two-qubit gates. Additionally, multipath coupler elements employing two coupling paths
between qubits allow for reduced ζ0 for a given effective exchange coupling [23].

1.1.7 Coupling to the environment

So far, we have been discussing quantum circuits as closed quantum systems, and how they
couple to each other to enable quantum processing tasks, like qubit measurement by cou-
pling the transmon to a readout resonator, and qubit-qubit entanglement by coupling two
transmons via a coupling resonator. However, to communicate to the transmons and to the
readout resonators, we need to couple them to the outside world. Important in the design of
how strongly to couple components to the outside world, are tradeoffs between speed (e.g.
of measurements or qubit gates) and loss channels introduced by coupling the system to
the transmission lines used for control and measurement. Additionally, uncontrolled noise
sources via materials imperfections, quasiparticle excitations, and even radiative sources
introduce noise into quantum systems and cause decoherence. These challenges are summa-
rized in [24], and here I focus on electromagnetic design considerations for balancing control
and measurement with the decoherence channels they introduce.

Generally, stochastic noise processes on the qubit can be described as a combination of two
processes via the Bloch-Redfield [25–27] picture of two-level system dynamics: longitudinal
relaxation Γ1 and transverse relaxation Γ2 = Γ1/2 + Γϕ (including pure dephasing rate
Γϕ) [19]. The decay rate Γ for a qubit with frequency ωq coupled to a transmission line with
impedance Z0 with coupling Cc, for instance, can be estimated in the same fashion as an
oscillator with external coupling; by modeling the external coupling as a parallel resistance
with R = Re[Z0]. The decay rate then amounts to Γ = Z0ω

2
qC

2
c /Cq [28], where Cq is the

capacitance of the qubit. Selecting Cc to be too large would cause the qubit lifetime to be
limited by emission into the control line. However, choosing a Cc that is too small would
cause the practical challenge of delivering the power required to implement sufficiently fast
gates without too much heat dissipation on the sample.

In addition to emission through the control line, the qubit can also decay by emitting a
photon through the transmission line that the readout resonator is coupled to. To mitigate
this, an additional resonator, dubbed a Purcell filter, is placed between the transmission
line and the readout resonators, to reduce the density of states in the transmission line
at the qubit frequency [29]. While there are various implementations of Purcell filters, a
bandpass filter design [30] is used on the Trailblazer chip, enabling multiplexed readout with
all readout resonators coupled to the same Purcell filter. Without a Purcell filter, the T1 limit
of the qubit would be T1 ≤ (∆/g)2/κ, where ∆ = ωq − ωr is the qubit-resonator detuning,
g is the qubit-resonator coupling rate, and κ is the external external coupling rate of the
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Figure 1.2: Two qubit QPU, the ’unit cell’ of the Trailblazer quantum processor.

resonator. By including a Purcell filter with quality factor Qp and frequency ωp, the T1 limit
becomes [30].

T1 ≤
1

κ

(
∆

g

)2(
ωr
ωq

)(
2∆

ωr/Qp

)2

. (1.21)

1.2 The Trailblazer QPU

Thus far, we have summarized the essential elements for the building blocks of a quantum
processing unit (QPU): encoding a qubit with a transmon, measuring the qubit by coupling it
dispersively to a resonator, coupling qubits by dispersively coupling them both to a resonator,
and coupling the qubit to the environment for delivery of control and measurement signals.
These elements combined are shown in Figure 1.2, with a circuit diagram and a corresponding
micrograph of a portion of the Trailblazer QPU used in this thesis. The full micrograph of
the Trailblazer chip is shown in Figure 1.3.

The Trailblazer chip (fabrication details in [31]), first published in [32], was designed
by Kevin O’Brien and developed by Kevin O’Brien and John Mark Kreikebaum, and is
the beginning multi-qubit planar architecture in the group. It incorporates many standard
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Figure 1.3: Trailblazer quantum processor 8-qubit ring. Photo credit: John Mark
Kreikebaum [31].
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planar cQED QPU design principles, with a few deliberate distinctions. I will describe
the design choices as I understand them. There are eight transmons coupled in a ring
geometry. The transmons were designed to be high coherence, with the qubit capacitor
pads shape chosen to minimize surface participation of dielectric materials in the transmon
mode volume [33]. The EJ/Ec ∼ 70 was chosen to allow for operation of the devices as
qutrits (three-level quantum systems) with sufficient coherence of the |2⟩ state. The qubit
frequency allocation follows a ‘V’ pattern, with target neighbor detunings of ∆/η ∼ 0.6, to
maximize the Cross Resonance rate [34]. The average qubit frequency is around 5.5 GHz,
which sits comfortably within the frequency band of 4−8 GHz that most cryogenic microwave
component and microwave electronics manufacturers can accommodate, while also being
high-enough frequency to satisfy h̄ωq/kBT ≫ 1.

The couplers are half-wave transmission line resonators. Transmission line resonators gen-
erally have higher internal quality factors over lumped-element circuits because the fields are
stored less in the dielectrics and interfaces and are less concentrated. However, transmission-
line resonators have higher-order modes that can cause unwanted couplings [35]. The couplers
within the two columns of four transmons have coplanar-waveguide (CPW) coupling sections
with a coplanar stripline (CPS) resonator at the end. This design was chosen because its
higher-order modes are higher in frequency than a standard CPW resonator (determined by
finite element simulation), reducing parasitic modes on the chip. The two top and bottom
resonators connecting the columns are half-wave CPW resonators. The coupler frequencies
are designed to be around 7 GHz to give qubit-qubit couplings J ∼ 3 MHz. This value
was chosen as a balance between fast entangling rates and static ZZ, a trade-off which is
discussed often in this thesis.

The readout resonators are quarter-wave CPW resonators, with frequencies evenly spaced
by 60 MHz between ωr0/2π = 6.2 GHz and ωr7/2π = 6.7 GHz. The designed qubit-resonator
couplings are gqr/2π ∼ 75 MHz with external couplings κ/2π ∼ 1 MHz, targeting the χ/κ
ratio for optimal readout |χ/κ| = 0.5 [36]. Each resonator is coupled via a mixed-reactance
coupling to the Purcell filter that vertically divides the chip, which has frequency ωp/2π =
6.5 GHz in the center of the readout resonator band and external quality factor Qp = 10 to
reduce Purcell decay of the qubits into the readout feedline, as discussed earlier. The Purcell
filter gives about a factor of 10 improvement in the Purcell limited T1 through the readout
line, from approximately 200µs to 2 ms.

The control lines are CPW traces with thinner center trace and gap than the other
elements, in order to reduce crosstalk caused by dipole radiation from the bondpads. The
qubit-control line coupling, set by the separation between the open end of the control line
and the qubit capacitor pad, was set (in version 5) to realize a simulated qubit quality
factor Qq = ωq/Γ ∼ 5 × 106. For a qubit with ωq/2π = 5.5 GHz, this corresponds to
T1 ≤ Qq/ωq ≈ 150µs. In version 6 of the Trailblazer chip, these were changed to give
T1 ≤ 1 ms.

All of these design considerations for the Trailblazer QPU position it for meeting the
Divincenzo criteria for a quantum computer [37]:
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1. A scalable physical system with well characterized qubits. The transmon qubit
is the approach taken here.

2. The ability to initialize the state of the qubits to a simple fiducial state,
e.g. |00...0⟩. Initialization is done by cooling with the dilution refigerator. Residual
thermal population can be either actively reset or results processed via post-selection.

3. Long relevant decoherence times, much longer than the gate operation time.
Measured coherences are 50 ≤ T1 ≤ 100µs, with 30 ns single-qubit gates and 200 ns
two-qubit gates.

4. A universal set of quantum gates. Arbitrary single-qubit gates are implemented
with individual control lines. Two qubit gates are implemented with microwave-
activated interactions described in Chapters 3 and 4. Any CNOT-like two-qubit gate,
along with a Hadamard gate and a T gate, is sufficient for universal quantum compu-
tation [38].

5. A qubit-specific measurement capability. Qubits are measured separately with
individual qubit readout resonators that are frequency-multiplexed into a single mea-
surement line.

1.3 Thesis structure and results summary

The remaining components of this thesis focus on the task of calibrating and benchmarking
single- and two-qubit gates on the Trailblazer QPU. Experiments in this thesis were per-
formed by myself and Ravi Naik, who measured data presented in Figures 3.11, 3.12, 4.4, 4.5,
and 4.6. The two measured samples were mounted to the base plate of a BlueFors XLD400
dilution refrigerator with a base temperature of 10 mK. Cryogenic and room temperature
wiring is described in [32, 39]. Chapter 2 describes the single-qubit gate calibration process,
classical crosstalk mitigation, and error budgeting of single qubit gates. We find that re-
maining simultaneous single-qubit gate errors are well budgeted by decoherence and static
ZZ interactions.

Chapter 3 details investigations of the cross resonance [8] gate on our hardware, including
Hamiltonian dynamics, leakage mitigation using a two-parameter DRAG pulse shape, and
two calibration techniques explored to maximize gate performance, as measured with a
suite of benchmarking techniques detailed in Appendix A.1. Interestingly, calibrating an
‘intrinsic CR‘ gate, instead of a direct CNOT gate, showed reduced coherent errors, despite
being 100 ns slower. Additionally, a sample with higher microwave crosstalk showed better
performance than one with lower crosstalk, which is consistent with other works that suggest
some microwave crosstalk can reduce overall gate error in the CR gate [34, 40].

In Chapter 4, we discuss a novel tunable cross-Kerr (ZZ) coupling, realized by driving
both transmons off-resonantly. The effect is described theoretically and numerically, followed
by experimental meeasurement of the tunable ZZ dynamics by varying the relative phase
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between the off-resonant drives. The data agree well with the model, when crosstalk is taken
into account. This tunable coupling is used to calibrate a CZ gate with fidelity 99.43%, which
is found to be dominated by stochastic error sources. Notably, unlike the CR interaction, this
interaction commutes with the static ZZ interaction, and therefore the CZ gate fidelity is not
limited by this. We further investigate an apparent drive-induced decoherence mechanism
observed with this interaction. Finally, we conclude with future directions for leveraging this
interaction as the native entangling interaction on future QPUs.
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Chapter 2

Single-qubit Gates and Crosstalk

Of the Divincenzo criteria described in the previous chapter, one particular prerequisite for
calibrating and benchmarking two-qubit gates, is calibrating and benchmarking single-qubit
gates. In this chapter, I will describe the procedure we employed to calibrate single-qubit
gates on the Trailblazer chip including an important experimental consideration of classical
crosstalk.

2.1 Single Qubit Gate Calibration

In our experiments, we calibrated only one single-qubit gate, the Xπ/2 = e−iσxπ/4 gate,
because any single-qubit rotation (i.e. an arbitary matrix in the SU(2) group) can be pa-
rameterized via [41]

U(θ, ϕ, λ) = Zϕ−π/2Xπ/2Zθ−πXπ/2Zλ−π/2, (2.1)

and arbitary Zθ gates are implemented via virtual Z gates, i.e phase changes in software.
Thus, the problem of arbitary single-qubit gate calibration is reduced to simply calibrating
the Xπ/2 gate.

To understand how to calibrate a gate, it helps to examine the Hamiltonian of a driven
transmon in the Duffing oscillator approximation with frequency ωq and anharmonicity η

Hd = ωqa
†a+

η

2
a†a†aa+ Ω(t)

(
ei(ωdt+ϕ) + e−i(ωdt+ϕ)

) (
a+ a†

)
, (2.2)

where Ω(t) is the drive envelope at carrier frequency ωd. In the rotating frame of the drive
a → ae−iωdt, making the rotating wave approximation, and truncating to the |2⟩ state, Hd

is written in matrix form as

Hd ≈

 0 Ωeiϕd 0

Ωe−iϕd ∆
√

2Ωeiϕd

0
√

2Ωe−iϕd 2∆ + η

 , (2.3)

where ∆ = ωq−ωd. Of course, for realizing an Xπ/2 gate, we drive on resonance ∆ = 0. While
we are concerned with single-qubit gates, we include the non-computational |2⟩ state in the
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Hamiltonian, because its presence introduces detuning (Z-type) errors in the computational
subspace that need to be corrected [42–44]. In these experiments, we used 30 ns Gaussian
pulse envelopes with a 5σ cutoff for our Xπ/2 pulses. This pulse time was found to give
sufficiently high fidelity single-qubit gates, though the gate fidelity as a function of pulse time
was not systematically studied, it was found that moving to shorter pulses made crosstalk
cancellation, as described in Section 2.2, less effective. The primary two parameters we need
to calibrate are the pulse amplitude and frequency, to ensure that the pulse properly reaches
the equator from the pole, and that the drive is resonant to the qubit, respectively. Next,
phase errors introduced by the Stark shift of the |1⟩ − |2⟩ transition need to be corrected,
which is accomplished by calibrating software-defined Z gates, realized by shifting the phase
of the qubit drive, called “virtual-Z” gates, on either side of the pulse ZθXπ/2Zθ [41].

After spectroscopic calibration of the qubit frequency, the calibration sequence for the
Xπ/2 gate then proceeds as follows:

1. Coarse amplitude calibration

2. Ramsey-based frequency calibration

3. Progressive fine amplitude calibration, using error-amplification

4. Phase correction calibration

Coarse amplitude calibration, depicted in Figure 2.1 (a), calibrates a Xπ/2 pulse sufficient
for Ramsey-based qubit frequency calibration. It consists simply of measuring the qubit
|1⟩ population (or equivalently, ⟨Z⟩) as a function of pulse amplitude. The point at which
⟨Z⟩ = 0 corresponds to even superposition of |0⟩ and |1⟩. Once this calibration is done,
we are able to measure the qubit frequency by performing Ramsey experiments, depicted
in Figure 2.1 (b). Typically, a Ramsey experiment consists of a simple sweep of wait times
t between two Xπ/2 pulses, however we can improve the sensitivity by adding “artificial
detuning” ν using virtual-Z gates during the wait time. This is useful in the case of a
small detuning error from the predicted qubit frequency from the actual qubit frequency,
where slow oscillations can be difficult to distinguish from decay when fitting. Further, by
performing the experiment for multiple artificial detunings ν, the correct qubit frequency
can be determined.

After the qubit frequency has been calibrated, the drive amplitude must be recalibrated
as well, because the amplitude needed for a detuned drive to put the qubit on the equator
of the Bloch sphere is different than a resonant drive. Further, the precision of the optimal
drive amplitude can be improved by performing the experiment in Figure 2.1 (c), which
involves applying n consecutive Xπ/2 pulses. For this sequence, assuming the only error of
the pulse is in the amplitude, the qubit |1⟩ population for n Xπ/2 can be estimated to be [45]

P1 = −1(n+1)C cos

(
2π

4Aπ/2
(n+ 1)A

)
+ y0, (2.4)
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Figure 2.1: Xπ/2 calibration (a) Coarse pulse amplitude calibration (b) Ramsey frequency
calibration with several artificial detunings ν to find the qubit frequency (c) Fine amplitude
calibration, with pulse repetitions to find increase sensitivity to the optimal drive amplitude.
(d) Phase error correction, bookends the pulse with virtual-Zθ gates to correct for phase
errors due to Stark shifts of the higher transmon levels.

where y0 = 0.5 for perfect Xπ/2 pulses, C = 1 for perfect measurement contrast, and Aπ/2
is the Xπ/2 pulse amplitude. With this functional form in mind, the experiments in Fig. 2.1
(c) show amplitude sweeps, first for few n in the left plot, and then for many n in the right
plot, illustrating the improved accuracy that can be realized with this approach. Finally,
we turn to the errors induced by the presence of higher levels interacting with the pulse.
Even though the drive frequency is resonant with the qubit, as calibrated by the Ramsey
experiments, the pulse is off-resonantly driving the |1⟩ ↔ |2⟩ transition. From the form
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of Hd given in equation 2.3, this off-resonant drive will shift the energies of the system by
∆12 ≈ 4Ω2/η [46]. This can be thought of as a dynamic detuning of the pulse, that changes
as the pulse amplitude changes. In principle, this can be mitigated by detuning the pulse
drive frequency [47], however for Xπ/2 pulses this can be more simply corrected by calibrating
virtual-Zθ gates on either side of the pulse [41], as shown in Figure 2.1 (d). To calibrate
θ, we perform a calibration that compares two sequences that ideally put the qubit on the
equator, but are linearly sensitive to detunings and are oppositely-signed [48], as seen in the
plot. By fitting to the point where they cross (or the minimum of their squared difference),
the optimal θ can be determined.

Note that, in addition to phase errors, leakage errors, where the |2⟩ state is inadvertently
populated due to a strong off-resonant drive on the |1⟩ ↔ |2⟩ transition, can also occur,
particularly at when Ω/η approaches the upper end of the perturbative limit. In our case,
with single-qubit gate times of 30 ns, this corresponds approximately to Ω ∼ 20 MHz < 0.1η.
In principle, minimizing single-qubit gate times can improve fidelity, and further study of
minimizing single-qubit gate times while maximizing single-qubit gate fidelities is necessary
for maximal algorithm performance. However, in the interest of solving the limiting errors
first, reducing two-qubit gate and crosstalk errors is of most concern for improving algorithm
performance.

In the next section, I will describe challenges that arise when driving single-qubit gates
between qubits simultaneously, specifically due to microwave crosstalk present on our quan-
tum hardware.

2.2 Mitigating Classical Crosstalk

Ideally, single-qubit operations on qubit Qq are realized by sending control fields Ωq(t) to
Qq, and Ωq(t) would only interact with Qq. However, design imperfections of our sample
packaging inevitably results in fields being sent to unwanted locations on the chip, resulting
in inadvertent driving of other qubits. We present experiments to measure this crosstalk,
and describe our approach to mitigating it with additional crosstalk cancellation tones of
appropriate amplitudes and phases.

A schematic illustration for classical crosstalk is given in Figure 2.2. Concretely, suppose
we want to apply a drive εt(t) that targets qubitQt at frequency ωd. This drive is then applied
by sending a microwave pulse At(t) down its designated control line Lt. However, due to
microwave crosstalk, modeled via a matrix C, At can also generate field εs on spectating
qubit Qs. Microwave crosstalk originates for example from coupling between control lines
and other qubits directly or via common coupling to electromagnetic modes present in the
sample box. The crosstalk matrix C can be written as(

εs
εt

)
=

(
eiθs Cste

iφst

Ctse
iφts 1

)(
Ase

−iϕs

Ate
−iϕt

)
, (2.5)
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Figure 2.2: Classical crosstalk schematic. (a) Drive amplitudes are sent to the qubits
via their control lines, though crosstalk matrix C mixes the drive signals to realize fields εc,
εt on the transmons. Coupling J can alter the effects that crosstalk has, such as “accidental
CR” interactions. (b) Image of two coupled qubits on the Trailblazer chip, with control lines
on the left.

where Cst (φst) denotes the crosstalk amplitude (phase) from Qs to Qc. The phase θs results
the Qs line having different electrical delay relative to the Qt line. If the drive is resonant
(off-resonant) with spectating qubit Qs, we can measure the field strength |εs(t)| incident on
Qs by performing Rabi (Ramsey) type experiments on Qs when the drive is applied. Then,
the field on Qs can be cancelled by applying a drive down line Ls with amplitude and phase
that minimizes the e.g. Stark shift or Rabi rate on Qs. Measuring and mitigating crosstalk
between drive line Lt and spectator qubit Qs is conceptually simple when Qt and Qs are not
coupled: measure the Rabi/Ramsey frequency for resonant/detuned drive frequencies, and
minimize the Rabi frequency / Stark shift by applying down line Ls the appropriate drive
amplitude and phase As, ϕs. This process is in essence diagonalizing the crosstalk matrix
C(ω = ωt) between the Qt and Qs.

When the two transmons are coupled and engineered for the Cross Resonance (CR)
interaction as they are for the Trailblazer chip, however, measuring crosstalk between coupled
qubits needs to be adapted to account for the other Hamiltonian dynamics between them.
For example, when targeting qubit Qt, classical crosstalk between the Qt drive line Lt and the
control qubit Qc will induce an “accidental CR” interaction between target Qt and control
Qc. While this field on Qc is off-resonant (being resonant with Qt), simply measuring the
Stark shift on Qc as above would not work because the combination of Qt being driven
and the ZZ coupling between Qc and Qt results in additional Z-type dynamics on Qc. To
measure the field on Qc then, we can instead minimize this unwanted CR interaction as
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Figure 2.3: Crosstalk calibration for coupled qubits using the CR effect. (a) Con-
ditional Rabi rate experiment on Qt by driving the Qc control line. Here, Q6 is Qt i.e. the
targeted or driven qubit, and Q5 is Qc or the spectator qubit. Measuring Rabi rates con-
ditioned on Qc state gives an estimate of the field present on Qc. (b) Conditional Rabi on
Qt’s own drive line, showing some conditionality, indicating crosstalk from Lt to Qc that can
be cancelled with a drive down Lc. (c) Calibrating the phase of the crosstalk cancellation
tone down Lc. Minimizing the Qt population difference (color bar) when Qc is in |0⟩ and |1⟩
versus relative drive phase (y-axis) and pulse duration (x-axis).
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a function of Qc crosstalk cancellation drive amplitude Ac and phase ϕc. Specifically, we
minimize the conditional Rabi rate of Qt as a function of drive amplitudes At, Ac, and
relative drive phase ϕc − ϕt. An example of experiments run for this purpose are shown in
Figure 2.3. The essential idea is, field at frequency ωt on Qc realizes a Qc-state-dependent
Rabi rate on Qt via the Cross Resonance (CR) effect, so we measure the conditionality of
the Rabi rate of Qt on the state of the control qubit to measure the field strength on Qc. In
Figure 2.3 (a), the Rabi rate as a function of drive amplitude down Lc is measured, when Qc

is in |0⟩ and |1⟩. Fitting the slope of difference in these Rabi rates gives the scaling of the
conditional Rabi rate with respect to drive amplitude when driving Qt from line Lc, denoted
µ(Qt, Lc). Similarly, we fit the slope of the conditional Rabi rate when driving down Qt’s
own line µ(Qt, Lt) (this is really the crosstalk we want to cancel). From these experiments,
we can match the conditional Rabi rate coming from driving Lt that comes from crosstalk
accidentally driving Qc, by applying the amplitude that gives the equal Rabi rate down
Lc. That is, given drive amplitude At, from the experiments in Figure 2.3 (b) we predict
conditional Rabi rate µ(Qt, Lt)At down Lt. To match this amplitude down Lc, we apply
amplitude Ac such that µ(Qt, Lc)Ac = µ(Qt, Lt)At. Importantly though, we need to find the
drive phase ϕc that cancels the µ(Qt, Lt). That is, we apply equal conditional Rabi rates
down each line, and sweep the relative phase between the drives to minimize the conditional
Rabi rate, thus cancelling the field on Qc, as shown in Figure 2.3. The phase at which the
difference in Qt populations when Qc is in |0⟩ and |1⟩ is minimized corresponds to the phase
at which the field on Qc is coherently cancelled. A final measurement of the conditional
Rabi rate with the calibrated crosstalk cancellation tones included is performed to confirm
crosstalk cancellation.

To benchmark this crosstalk cancellation protocol, we can perform simultaneous and
isolated single-qubit Randomized Benchmarking (RB) [45], described in more detail in Sec-
tion A.1. An example data set is shown in Figure 2.4. Crosstalk should have maximal
impact when gates are run simultaneously, and minimal impact when run in isolation. The
data in Figure 2.4 shows that without crosstalk cancellation, simultaneous operations have
error rates about five times that of isolated operations. With crosstalk cancellation pulses
calibrated as described above, the simultaneous error rates are reduced to just under two
times the isolated error rate.

While this crosstalk cancellation protocol has shown improvement in simultaneous single-
qubit RB, a natural question to ask is what the limitations and drawbacks are of this cali-
bration measurement scheme. First, this approach is continuous-wave field cancellation, and
therefore any delays between control lines in pulse delivery are not captured in the condi-
tional Rabi experiments. Additionally, a method that can amplify sensitivity to the optimal
crosstalk compensation amplitude and phase is desired. One possible approach is, rather
than measuring the Qt Rabi rate conditioned on the state of Qc, to instead measure the
Stark shift on Qc when driving at the Qt frequency down each line, after preparing Qt along
the axis of the drive. This is so that Qt stays fixed during the drive, avoiding unwanted
Z-type dynamics on Qc resulting from the static ZZ coupling and Qt dynamics. Note that,
because Qc and Qt are coupled, with Qt along the e.g. X axis, ZZ static dynamics will still
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Figure 2.4: Benchmarking single-qubit gates and crosstalk cancellation. Without
crosstalk cancellation, simultaneous operation has an error rate about five times as large
as isolated operation. With crosstalk cancellation, this reduces to simultaneous operation
having error rates only twice that of isolated operation.

play a role (since Qt is in superposition of Z eigenstates). This can be mitigated with an echo
pulse on Qt, to reverse the ZZ dynamics that would affect the Qc Stark shift measurement.
Furthermore, this experiment can be done in a pulsed fashion, replacing the Rabi drive with
repeated e.g. Xπ/2 pulses. This enables error amplification (going to larger pulse numbers),
and it uses the actual pulses that will be employed in circuits, rather than a continuous-
wave drive. Similar pulse-level experiments that vary e.g. a delay between the pulse delivery
between Lc and Lt could also be useful for measuring delays between control lines, which
would complicate this simple cancellation scheme described above.

These drawbacks and potential extensions of this crosstalk cancellation protocol are based
on a physical model of crosstalk, and propose physically-motivated experiments to mitigate
it. However, a more model-free approach has also been successfully used in the group,
where, like the tuning of the intrinsic Cross Resonance gate discussed in Section 3.3.2,
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closed-loop optimization is done to tune the crosstalk amplitudes and phases, by minimizing
the error in simultaneous RB, similar to previous work using RB [49]. This has the benefit
of optimizing the parameters with the very benchmark that is used to verify performance,
however, the randomness of the RB circuit also reduces sensitivity of the cost function to
the pulse parameters.

2.3 Error budgeting single-qubit gates

Having discussed calibrations of single-qubit gates and crosstalk, it’s worth quantifying dif-
ferent error sources of single-qubit gates, including decoherence, leakage, and the static ZZ
interaction between qubits. Leakage begins to affect fidelity when gate durations are below
10/η [42, 50], which for our system is about 5 ns. The reason why shorter gates lead to
more leakage can be understood simply by considering the Fourier spectrum of a pulse. A
shorter pulse has a broader spectral width, leading to larger spectral weight on neighboring
transitions (i.e. the |1⟩ ↔ |2⟩ transition for transmons), thereby driving those transitions
and causing leakage. Since our single-qubit gate times are 30 ns ≫ 10/η, leakage contri-
butions to gate errors are small in comparison to decoherence- and ZZ-induced errors. As
mentioned, the gate duration of our single-qubit gates were not made shorter because we
found crosstalk cancellation to be less effective below 30 ns. Unfortunately, longer gate times
lead to higher error rates due to decoherence. The combined process error for both qubits
due to decoherence can be estimated from the Qt and Qc lifetimes (coherence times) T

(t)
1

and T
(c)
1 (T

(t)
2 and T

(c)
2 ) via

eD ≈ ⟨τg⟩
4

(
1

T
(c)
1

+
1

T
(t)
1

+
2

T
(c)
2

+
2

T
(t)
2

)
. (2.6)

For our qubits, with typical parameters ranging between 50µs ≤ T1 ≤ 100µs and 70µs ≤
T2 ≤ 150µs, this corresponds to a decoherence error budget for 60 ns arbitary single qubit
gates of 0.7 × 10−3 ≤ eD ≤ 1.5 × 10−3, in the range of measured simultaneous RB process
fidelities.

2.3.1 ZZ error budget

The contribution toward process error due to the static ZZ interaction can be simply es-
timated by considering the process error of static ZZ on an identity operation of the gate
duration τg (see for example [51] supplement)

eZZ = 1 − Tr
[
U †
idUerr

]
/d2, (2.7)

with Uid = I and Uerr = e−2πiζ0τg |1⟩⟨1| with ζ0 being the static ZZ rate. Figure 2.5 shows
the process error from ZZ as a function of the ZZ rate, for a few different single-qubit
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Figure 2.5: Error contribution of ZZ, as estimated by equation 2.7, for a few
different pulse times. Scaling with ZZ is super-linear, but sub-exponential, highlighting
benefits of reducing static ZZ and gate time as much as possible.

gate durations. For the systems studied in this thesis, with e.g. 150 kHz ≤ ζ0 ≤ 300 kHz,
and with two Xπ/2 gates per arbitrary single-qubit gate, the error contribution as estimated
above is between 0.1 − 0.25%, slightly below the typical single-qubit gate errors measured
in our experiments RB experiments. Further, because X-type gates have some decoupling
effects on ZZ dynamics, this estimate given above may be an upper bound on the general
gate errors.

2.3.2 Sample B error budget

While both ZZ error and decoherence error estimates are comparable, these can in principle
be distinguished using Extended Randomized Bencharking (XRB), described in Section A.1.
However, in the interest of precisely characterizing one SRB dataset, we can estimate the
error contributions from decoherence and ZZ for the simultaneous single-qubit RB data from
Sample B (parameters given in Table 3.1). From data shown in Figure 3.17, the average eF
of the qubits is eF = 2.25 × 10−3, and given the static ZZ ζ0 = 176 kHz, eZZ = 0.82 × 10−3

and the T1 and T echo
2 of the qubits, the decoherence error estimate is eD = 1.17 × 10−3.

Combined, eD + eZZ = 2.05 × 10−3, very close to the measured eF . This suggests that ZZ
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and decoherence are the dominant sources of error for single-qubit gates. The single-qubit
errors could thus be improved by reducing the single-qubit gate durations, reducing ZZ, or
improving qubit coherences.
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Chapter 3

Cross Resonance Gate

The Cross-Resonance gate, first proposed in [8] and demonstrated in [52], is an entangling
gate that is widely used on superconducting-circuit-based QPUs because it can be operated
on arguably the simplest hardware configuration: fixed-frequency, fixed-coupling transmon
qubits. Further, it is predicted to be capable of error rates below 10−4 [53], with the lowest
published experimental error rate of 1.9× 10−3 [51]. Because of its established use, compati-
bility with simple architectures, and predicted low error rates, the CR gate was the first used
primary entangling interaction on the Trailblazer multi-qubit chip architecture in QNL.

This chapter begins with the principle of the CR gate and the Hamiltonian dynamics
of the CR gate on the Trailblazer chip, including crosstalk and leakage effects. Then, pulse
optimization methods used to minimize leakage in CR gates are presented, followed by
a comparison of two calibration approaches: the direct CNOT and an intrinsic CR gate
calibration based on black-box optimization. Each calibration approach is benchmarked
with a suite of randomized benchmarking (RB) type protocols, and their performance is
compared.

3.1 Principle

The Cross Resonance (CR) interaction between two systems is an interaction where the drive
amplitude of one resonant system (the target system) is conditioned on the state of the other
(control) system. This is realized by driving the control system at the resonant frequency
of the target system, hence the name ‘cross-resonance’. The CR interaction between the
two systems with frequencies ω1 and ω2 needs a few ingredients: (1) an exchange coupling J
between the two systems, (2) individual control of each system, and (3) the systems need to
be detuned from each other such that |∆| = |ω2−ω1| ≫ J . The original CR work [8] and the
first demonstration analyzed the interaction assuming each system was a two-level-system, or
the ”qubit approximation“. However, Tripathi et al. observed that the interaction is present
even between two classical oscillators, provided one of the oscillators is nonlinear [34].

To gain some intuition for this interaction, let us briefly estimate how the Cross Resonance
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Figure 3.1: Classical picture of Cross Resonance interaction. The CR effect can
be seen between two coupled oscillators, with the control oscillator being nonlinear, i.e.
having a state-dependent frequency. (a) With the control oscillator in state “0”, the drive
transmitted to the target is attenuated. (b) When the control in “1”, the amplitude is
attenuated less. (c) Depiction of the control oscillator filtering the amplitude transmitted
to the target oscillator. The state-dependent frequency of the control oscillator results in
different filtered target drive amplitudes. See text for further description.

interaction scales with the system parameters for the classical coupled oscillators case, as
illustrated in 3.1. When driving the control oscillator with amplitude ε at the target oscillator
frequency, ωd = ωt, the control oscillator undergoes small forced oscillations at frequency
ωd, with amplitude that scales as ε/∆. These oscillations in turn drive the target oscillator
with amplitude ε̃ ∼ Jε/∆. In the case that the control oscillator frequency is nonlinear, its
frequency ωc depends on its state, and therefore the ε̃ depends on the control qubit state.
For instance, if the control oscillator in state 1 detuning doubles ∆ → 2∆ as compared to
control oscillator state 0, then the difference in target drive amplitudes ε̃0 − ε̃1 ∼ Jε/(2∆).

In the case of coupled qubits, the CR interaction can be derived through analysis of the
two-qubit Hamiltonian. In absence of the drive, in the uncoupled basis |c, t⟩, the coupled
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two-qubit Hamiltonian in the lab frame reads:

Ĥ/h̄ = ωc |10⟩ ⟨10| + ωt |01⟩ ⟨01| + (ωc + ωt) |11⟩ |11⟩ + J (|10⟩ ⟨01| + h.c.) . (3.1)

The eigenstates |c, t⟩ of Ĥ are superpositions within excitation manifold, where to first
order in J/∆ (with ∆ = ωc−ωt), |10⟩ ∼ |10⟩+ (J/∆) |01⟩ and |01⟩ ∼ |01⟩− (J/∆) |10⟩ [34],
with shifted eigenenergies ωc,t = ωc,t ∓ J/∆ [52].

The CR drive Hamiltonian in the drive frame is given by Ĥd = (ε |00⟩ ⟨10| + h.c.). The
effective target qubit drive rate ε̃n when the control qubit is in state n is determined by the
matrix elements of Ĥd in the coupled basis [34]:

ε̃n = ⟨n, 1|Ĥd|n, 0⟩. (3.2)

At lowest order, ε̃0 = − J
∆
ε and ε̃1 = J

∆
ε, and therefore the entangling rate is given by

µ =
ε̃0 − ε̃1

2
=

−Jε
∆

, (3.3)

to first order. Note that this same CR rate is obtained from the classical analysis, assuming
the control-target detuning ∆ approaches infinity for one of the oscillator states (i.e., infinite
non-linearity).

In terms of the Pauli operators, then, the CR drive induces a Hamiltonian that looks like

HCR = Z ⊗ (δziI + |µ| cos(φ)X + |µ| sin(φ)Y ) , (3.4)

with Hilbert space convention Hc⊗Ht, {I,X, Y, Z} = {I, σx, σy, σz} is the Pauli single-qubit

operator basis, and δzi = |ε|2
∆

is the control-qubit Stark shift from the off-resonant drive, and
φ = Arg[ε] is the phase of the CR drive, which maps to the polar angle of the Qt Bloch
rotation axis. Either the ZX or ZY term enable a CNOT gate to be implemented. More
concretely, in the Hilbert space defined by |Qc⟩ ⊗ |Qt⟩, a CNOT gate is written as

CNOT = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗X (3.5)

=
(
Z−π/2 ⊗ I

)
(Z ⊗X)π/2

(
I ⊗X−π/2

)
(3.6)

=
(
Z−π/2 ⊗ I

) (
I ⊗ Zπ/2

)
(Z ⊗ Y )π/2

(
I ⊗ Z−π/2

) (
I ⊗X−π/2

)
, (3.7)

where (Z ⊗ X)θ = exp
(
− i

2
θZ ⊗X

)
, and the last line can be understood from the single-

qubit Pauli gate relation Yπ/2 = Zπ/2Xπ/2Z−π/2, up to a global phase. In other words, a π/2
rotation about the Y axis can be realized by first rotating about the Z axis by π/2, performing
an Xπ/2 rotation, and then rotating about Z by −π/2 radians. From this reasoning, either
ZY or ZX can be used to realize a CNOT gate.
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3.2 Dynamics

While the classical (nonlinear) Harmonic oscillator and the two-level-system limits are illus-
trative of the CR effect, in reality the systems we use consist of many levels, and consequently
the observed dynamics of the Cross Resonance effect are more complex [54]. Several contem-
porary theoretical analyses have been done to carefully predict the CR dynamics on transmon
qubits [34, 53, 55]. In this section, I will outline the experimentally relevant dynamics that
we have studied and observed on hardware in QNL.

3.2.1 Computational Space Dynamics

Due to the higher levels of the transmon and microwave crosstalk on the device, the CR
drive induces a Hamiltonian of the form [54]

ĤCR = I ⊗ A⃗+ Z ⊗ B⃗, (3.8)

where A⃗ = axX + ayY + azZ and B⃗ = bII + bxX + byY + bzZ are generic sums of Pauli

operators. In other words, ĤCR is a conditional Rabi oscillation of the target qubit, whose
Bloch-sphere axis and rotational frequency depends on the control qubit state. Note that
in this notation, the CR rate is µ = bx and δzi = bI . In terms of physical origin, ay comes
from microwave crosstalk, ax has both intrinsic components and crosstalk-mediated terms,
and az comes from Stark-shifting of the higher levels of Qt. For the B⃗ components, bI comes
from Stark-shifting the Qc levels, by depends on the phase of the CR drive as before, and bz
results from the higher levels of the transmons shifting the |11⟩ state energy.

3.2.2 Duffing Oscillator Dynamics

It is perhaps illustrative to estimate, to lowest order, how each of the Hamiltonian terms in 3.8
arise after including higher transmon levels and microwave crosstalk. To begin, consider two
coupled, simultaneously driven transmons, as illustrated in Figure 4.1. The Hamiltonian
of the two transmons, in the frame of the drive at frequency ωd and making the Duffing
approximation of the transmon [16], is given by

Hqb =
∑
i=c,t

(ωi − ωd) a†iai +
ηi
2
a†ia

†
iaiai, (3.9)

where for transmon i, ai is the bosonic annihilation operator, ωi is the transition frequency
between |0⟩ and |1⟩, ηi is the anharmonicity, and h̄ = 1. Each drive term is given by

Hεi =
(
εiai + ε∗i a

†
i

)
, where εi is the complex drive amplitude, and the coupling term with

strength J is HJ = J
(
a†cat + aca

†
t

)
, where we denote the higher frequency transmon Qc, and

the lower frequency transmon as Qt. The total Hamiltonian is H = Hqb +HJ +Hεc +Hεt .
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Figure 3.2: CR drive diagram. Transmons are detuned by ∆ = ωc − ωt indicated by the
black dashed line, and coupled via exchange coupling J . They are driven simultaneously
at frequency ωd = ωt with amplitudes εc, εt. The bare CR drive only drives the control
(εt = 0), however a local target drive can be added intentionally, or via classical crosstalk,
and is included in the analysis.

First, we examine the case of no crosstalk, and with ωd = ωt and εt = 0. Following the

analysis of [34], the presence of higher levels modifies ε̃1 to be ε̃1 = J
∆

(
1 − 2∆

∆+ηc

)
εc. Since

ε̃0 and ε̃1 are no longer equal and opposite, there is a non-zero drive term ν on Qt that is
independent of Qc’s state

ν =
ε̃0 + ε̃1

2
=

−J
∆ + ηc

εc (3.10)

and the CR rate becomes

µ =
ε̃0 − ε̃1

2
= − J

∆

ηc
∆ + ηc

εc, (3.11)

that is, the higher levels add a correction factor of ηc/(∆ + ηc) to µ. Thus, the presence of
higher levels with the CR drive, and without crosstalk, the HCR terms have the following
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dependence on drive parameters:

ax = ν cos(φ) (3.12a)

ay = ν sin(φ) (3.12b)

az ∼ |ν|2/ηt (3.12c)

bx = µ cos(φ) (3.12d)

by = µ sin(φ) (3.12e)

bz = 2J2

(
1

∆ − ηt
− 1

∆ + ηc

)
(3.12f)

bI =
|εc|2ηc

2∆(∆ + ηc)
, (3.12g)

where equation 3.12c is due to off-resonant driving of the |1⟩ ↔ |2⟩ transition of Qt, equa-
tion 3.12f is the static shift of the |11⟩ state arising from dispersive coupling with |02⟩ and
|20⟩ states, and equation 3.12g is the formula for the Stark shift of a Duffing oscillator [56].
Higher order estimates for these parameters can be obtained from time-dependent Schrieffer-
Wolff Perturbation Theory (SWPT) [34, 53, 55]. Importantly, the conditional (ZY/ZX) and
unconditional (IY/IX) polar drive angles are equal and set by the CR drive phase φ.

3.2.3 Duffing Oscillator Dynamics with crosstalk

When crosstalk is added to the picture, the unconditional terms are increased, and the
unconditional and conditional rotation axes can become misaligned [54]. First, it is helpful
to distinguish between the fields εc and εt that are present on Qc and Qt, respectively, from
the microwave drive amplitudes Ac and At and phases ϕc and ϕt that we apply to the Qc and
Qt control lines. In the presence of crosstalk, the drive fields at frequency ωd are mapped to
the fields at the qubits via(

εc
εt

)
=

(
eiθc Ccte

iφct

Ctce
iφtc 1

)(
Ace

−iϕc

Ate
−iϕt

)
, (3.13)

where Cct (φct) denotes the crosstalk amplitude (phase) from Qt to Qc. The phase θc results
the Qc line having different electrical delay relative to the Qt line, from which the polar
axis for Qt is defined. With crosstalk present then, driving only down Qc’s line and setting
ϕc = 0, the drive fields become

εc = Ace
iθc (3.14a)

εt = CtcAce
iφtc . (3.14b)
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Here, we see that the conditional axis has polar angle θc. However, because there is now a
direct drive amplitude εt, the drive εt modifies the I ⊗ A⃗ terms to be

ax = ν cos(θc) + |εt| cos(φtc) (3.15a)

ay = ν sin(θc) + |εt| sin(φtc) (3.15b)

az ∼ |ν + εt|2/ηt. (3.15c)

From these terms, we see that the polar axis for A⃗ is shifted relative to B⃗. Because εt only
drives Qt, the Z ⊗ B⃗ terms are unaffected by the crosstalk.

3.2.4 Characterizing dynamics with Hamiltonian tomography

Despite the additional complexities that come from the higher transmon levels and classical
crosstalk, the unique form of ĤCR–it is only off-diagonal in the Qt Hilbert space Ht–all the
terms (except for bI) can be determined by measuring the Qt Bloch sphere dynamics for the
case of Qc in |0⟩ and |1⟩, as depicted in Figure 3.3 (a). In [54], this was dubbed Hamiltonian
tomography. Example Hamiltonian tomography dynamics are shown in the top three panels
of Figure 3.3 (b), demonstrating distinct Bloch sphere dynamics of the target qubit for each
control qubit state. These data are plotted on the Bloch sphere in part (c). The absence
of population transfer of Qc is evident in the bottom panel of Figure 3.3 (b). While this
experiment does not determine the ZI coefficient of ĤCR, this can be measured using a
driven Ramsey experiment outlined in the previous chapter. To extract the Hamiltonian
parameters, the Qt dynamics for each Qc state from Figure 3.3 (b) are simultaneously fit to

a model of a point-particle on a sphere rotating at a fixed frequency Ω⃗ about a fixed axis
n̂ [54]. From this fit, the data in Figure 3.3 give Hamiltonian terms ax/2π = −4.56 MHz,
ay/2π = −0.57 MHz, az/2π = 0.11 MHz, bx/2π = −3.39 MHz, by/2π = −0.46 MHz, and
bz/2π = −0.07 MHz. Note that the frequency resolution of these experiments is limited by
the time-span of the data, which here is about 200 ns, corresponding to a Nyquist frequency
of about 2.5 MHz. This must be kept in mind when examining low-frequency estimates of
parameters with Hamiltonian tomography.

Further, the form of ĤCR in equation 3.8 admits a simple measure for entanglement
between Qc and Qt, which we term the conditionality distance R, given by

R =
1

2
||r0 − r1||2, (3.16)

where ri is the target qubit Bloch vector when the control qubit is in state |i⟩. When R
is maximal, it indicates that the target qubit is located at maximally orthogonal locations
on the Bloch sphere, conditioned on the control qubit state. Unlike more general two-qubit
entanglement measures such as concurrence [57], estimating R does not require full two-qubit
tomography. This is because the action on Qc is only along Z. Therefore, it requires only
tomography of the target qubit Qt, for both conditions of Qc. The catch here is, R measures
only the entanglement produced by conditional-unitary type gates. Indeed, R is maximized
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Figure 3.3: Cross Resonance Dynamics and Hamiltonian tomography. (a) Pulse
sequence for Hamiltonian tomography. The control qubit is first prepared in either |0⟩ or
|1⟩, and then the CR drive at frequency ωt is applied to the control qubit. Then, the target
qubit Bloch vector is measured via state tomography. (b) Example CR dynamics and fit
according to the model in equation 3.8. The top three panels are the target qubit Bloch
vector components. The second from the bottom plot shows entanglement measure R versus
time. At the bottom, the control-qubit ⟨Z⟩ as a function of time. Small oscillations are
present. (c) Target qubit dynamics on the Bloch sphere, conditioned on the control qubit
state.
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only when the unitary acting on Qt when Qc is in |0⟩, is orthogonal to the unitary acting
on Qt when Qc is in |1⟩ (i.e. Tr[U †

0,tU1,t] = 0, where Ui,t denotes the unitary acting on Qt

when Qc is in state |i⟩). For other types of entangling interactions, such as SWAP-like or
iSWAP-like, R is not a good measure, because the interactions cannot be characterized by
only performing tomography on one qubit. The fourth panel in Figure 3.3 (b) shows R as
a function of time, with a fit indicating the pulse duration where the CR interaction has
maximally entangled the qubits. Notably, this measure is insensitive to local rotations. The
precise local rotations to realize a CNOT gate can be subsequently calibrated with target
qubit rotations, and a control-qubit Z-gate.

With the experimental toolkit of Hamiltonian tomography, and a model that captures
the CR dynamics with realistic experimental condition, we can study how the CR effect
scales with our experimental parameters, with the ultimate goal of calibrating a high-fidelity
CNOT gate. Recall that the parameters of interest for the CR interaction are the qubit-
qubit detuning ∆, the Qc anharmonicity ηc, the exchange coupling J , and the (complex) CR
drive εc. On the fixed-frequency, fixed-coupling 8-qubit ring platform primarily employed in
QNL, the only parameter we can control after fabrication is the CR drive. While previous
works have explored the CR effect while varying ∆ [58], theoretical prediction has shown
two regions of frequency detuning [34, 53] to target when designing fixed-frequency samples,
namely, when ∆ ∼ 0.6|ηc| is predicted to yield the largest CR rates, and ∆ ∼ 0.3|ηc| yields
a larger µ/bz ratio [53].

Figure 3.4 shows an example dataset for illustrating the interplay of CR dynamics with
classical crosstalk. Figure 3.4 (a) and (b) show Hamiltonian tomography data as a function
of CR drive amplitude and phase, respectively. The dashed vertical lines in the plots indicate
the amplitude (phase) at which the phase (amplitude) sweep experiments were performed,
and allow comparison between the two datasets. In Figure 3.4 (b), At = 0, whereas in
Figure 3.4 (a) there is an applied target drive At. This is evident by the differences in the
local terms between the two experiments. Since it has only the CR drive, to understand
this data we begin with Figure 3.4 (b). First, we see that the IX, IY , ZX, and ZY terms
are related according to the expected sinusoidal relation, and the IZ and ZZ rates are
approximately independent of the drive phase. This agrees with our understanding from
equation 3.12 and 3.15, that IZ and ZZ terms originate from Stark shift of the |1⟩ ↔ |2⟩
transition of Qt, and the static coupling between the qubits, respectively.

Next, we can estimate the crosstalk and complex drive parameter εc by fitting it to our
model of the system with crosstalk that was described earlier. The qubits (Sample A of
Table 3.1) used in this experiment at this time had parameters ωc/2π = 5.841 GHz, ωt/2π =
5.687 GHz, ηc/2π = −243.6 MHz, ηt/2π = −247.3 MHz, with static ZZ rate ζ/2π = 300 kHz,
corresponding to an inferred coupling strength J/2π = 3.31 MHz. From this, the theory
predicts that the bx/ax = µ/ν = ηc/∆ ≈ −1.57, for the above parameters. However, notably,
in the data in Figure 3.4, |ax| > |bx|, and their signs are aligned, rather than opposite. This is
a manifestation of microwave crosstalk. From these data, |εc|/2π = 60 MHz, corresponding
to the arbitrary-valued CR pulse amplitude in the dashed line of part (a). The relative drive
line phase is θc = 1.38 rad, the crosstalk amplitude is Ctc = 0.112, and crosstalk phase is



CHAPTER 3. CROSS RESONANCE GATE 34

30 40 50 60 70 80
CR Amplitude | c| (MHz)

4

2

0

2

4

6

8

H
CR

 R
at

e 
(M

H
z)

IX
IY
IZ

ZX
ZY
ZZ

0 2 4 6
CR Phase Arg[ ] (rad)

(a) (b)

Figure 3.4: Hamiltonian tomography while varying CR drive ε (a) Hamiltonian
terms as a function of |ε|. The presence of higher levels, and microwave crosstalk, results in
a nonzero IX term. A local Qt drive is also applied, offsetting the local terms. (b) Varying
CR drive phase displays control over the rotational axis of the local and entangling terms.
The ZX and IX terms are theoretically opposite in sign, however classical crosstalk in the
device modifies this [54]. The IZ and ZZ terms are insensitive to the CR drive phase. The
dashed line in the CR amplitude (phase) sweep indicates the fixed CR amplitude (phase)
used in the corresponding CR phase (amplitude) sweep.

φtc = −1.76 rad.
With the information gleaned from Figure 3.4 (b), we can understand the effect that

an additional drive term Ate
−iϕt has on the dataset in part (a), which has fixed CR phase

indicated by the dashed line in Figure 3.4 (b). First, the IX and IY values are offset
by approximately 10 MHz and 1.7 MHz, respectively, corresponding to At = 10.1 MHz and
ϕt = −2.97 rad. This nonzero At also adds to the field εc, but because Cct = 0.44, φct =
−0.09 rad (as independently determined with crosstalk calibrations described in Chapter 2),
the magnitude of additional field on Qc is only∼ 4 MHz, which is a small contribution to the
entangling dynamics compared to CR drive Ac ∼ 60 MHz as noted earlier, and is evidenced
by the similar ZX and ZY rates at the dashed lines between parts (a) and (b). In terms
of how the Hamiltonian terms scale with |εc|, the IX and IY terms scale linearly, and the
IZ term reduces as the local drive amplitude decreases, as expected via the AC Stark effect.
The ZZ and ZY terms appear to increase, however marginally, due to possible higher order
effects [55] on the former and imperfect CR phase alignment on the latter. The entangling

Z ⊗ B⃗ terms begin to show a saturation behavior, as predicted theoretically [34, 53, 55].
In general, the crosstalk on each device can vary, with older versions of microwave pack-

aging having much larger crosstalk, resulting in larger local target qubit dynamics. Further,
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Figure 3.5: Control qubit leakage. (a) Qc |2⟩ population dynamics when Qc is prepared
in |0⟩ during the Hamiltonian tomography experiment. Oscillations become clear at larger
drive amplitudes |ε|. (b) Same as (a), except Qc is prepared in |1⟩. (c) Time-averaged |2⟩
population for varying |εc|, showing increasing leakage with drive amplitude.

the crosstalk matrix is generally frequency-dependent. Nevertheless, with these experiments,
we are able to determine the Hamiltonian and crosstalk parameters, engineer the desired dy-
namics, and distinguish entangling from local terms as measured by R.

3.2.5 Leakage Dynamics

While the model originally provided in [54] and presented in equation 3.8 accounts for unitary
dynamics of the CR effect within the computational subspace, such as microwave crosstalk
and the non-resonant interactions involving higher transmon levels, at higher drive powers
additional physics comes into play; notably, leakage out of the computational subspace can
occur if the CR tone is near-resonant to the Qc |0⟩ ↔ |2⟩ or |1⟩ ↔ |2⟩ transitions.

The physical origin of leakage dynamics in the CR drive can be understood in the same
way as with single-qubit gates [42, 47]. While it has been proposed as a source of error
theoretically [34], leakage dynamics of the CR gate have only been recently studied experi-
mentally [23]. In short, because the CR drive frequency is near-resonant to the Qc |0⟩ ↔ |2⟩
and |1⟩ ↔ |2⟩ transitions, there is sufficient spectral weight of the CR pulse at the frequency
of these transitions, driving leakage out of the computational subspace. In the Hamiltonian
tomography experiment of Figure 3.4, we monitored the |2⟩ state population [59] for Qc. In
Figure 3.5 (a) and (b), we see oscillations of increasing amplitude.

To mitigate unwanted driving of a near-resonant transition, simple modifications to
the CR pulse can be made, using what’s called Derivative Removal by Adiabatic Gate
(DRAG) [42]. The idea of DRAG is to modify the pulse envelope b(t) → b′(t) in a simple
way

b′(t) = b(t) − i
α

∆

d

dt
(b(t)) , (3.17)
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Figure 3.6: CR DRAG Scheme (a) The CR drive is near-resonant to the control qubit two-
photon |0⟩ ↔ |2⟩ transition (dashed line) and the |1⟩ ↔ |2⟩ transition. (b) Fourier spectrum
of CR pulse with carrier frequency at the target qubit frequency (envelope in inset), for a few
different DRAG α coefficients. The spectral weight at the leakage transitions (red vertical
lines) is modified by α.

to eliminate the spectral weight of the pulse at the frequency of interest ωl = ωd + ∆.
Fourier analysis shows that when the weighting parameter α = 1, the pulse spectral weight
at detuning ∆, |b(ω = ∆)| = 0, however in practice the optimal α may be different due
to waveform distortions between the generator and the qubit [60]. The idea of DRAG is
illustrated in Figure 3.6. The CR drive frequency ωt for the qubit pair under study in this
chapter is detuned just below the two-photon ωc + ηc/2 transition by 0.13ηc ≈ −32 MHz,
and also just above the ωc+ηc transition by 89 MHz. The Fourier spectrum of the CR pulse,
shown in Figure 3.6 (b), thus has non-zero spectral weight on these transitions. Adding
the DRAG term to the pulse, illustrated in the inset showing the pulse shape, modifies the
spectrum of the pulse, and thus the spectral weight of the pulse on each transition. By tuning
the DRAG α parameter, the driving rate of these transitions can be tuned. In Figure 3.7, we
perform an experiment to quantify the leakage to the Qc |2⟩ state. The left plot shows the
Qc state dynamics when applying the CR pulse for varying lengths of time, with α = −2.0.
The Rabi oscillations between |0⟩ and |2⟩ are evident. To quantify leakage, we calculate the
mean-squared error of the dynamics of the |2⟩ state

LRabi =
1

T

T∑
t=0

(p2(t) − ⟨p2⟩t)2 , (3.18)

where p2 is the qubit |2⟩-state population. To calibrate α, we can thus minimize LRabi. In
Figure 3.7 (b), we measure LRabi as a function of α, and we see that the optimal α is different
depending on whether Qc is prepared in |0⟩ or |1⟩. This is because the frequency detuning of
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Figure 3.7: CR leakage DRAG α sweep (a) Qc state populations as a function of the
CR Rabi pulse duration, with α = −2.0 and Qc initialized in |0⟩. Significant oscillations are
seen between |2⟩ and |0⟩, indicating strong driving of the two-photon |0⟩ ↔ |2⟩ transition.
(b) Leakage LRabi as a function of DRAG α, when Qc is prepared in |0⟩ and |1⟩. Leakage
from each transition is not simultaneously minimized when tuning α.

the |0⟩ ↔ |2⟩ and |1⟩ ↔ |2⟩ transitions are different, and thus a single α parameter cannot
minimize the CR pulse spectral weight on both simultaneously.

To simultaneously reduce leakage on both transitions, the DRAG formalism can be ex-
tended with additional pulse shaping [47, 61]. With a base envelope b(t) of a flat-topped
pulse with a cosine ramp, we adopt a 2D DRAG envelope

Ac(t) = b(t) + iα0
d

dt
(b(t)) + α1

(
i
d

dt
(b(t))

)2

, (3.19)

and calibrate the DRAG parameters α0 and α1 to simultaneously minimize leakage from both
transitions. A sweep of α0,α1 is shown in Figure 3.8. With 2D DRAG pulse shaping, we can
thus reduce unwanted leakage dynamics that arise during the CR gate, which is crucial for
high-fidelity quantum logic [62]. This technique is shown in section 3.3.1.1 to substantially
reduce leakage while maintaining gate fidelity.

3.3 Gate Calibration

The Hamiltonian dynamics give physical understanding of the interactions between the
qubits, however leveraging these interactions into quantum logical elements requires de-
veloping gate calibration and benchmark protocols. In this section, I will discuss two main
approaches to calibrating entangling gates with the CR effect: direct CNOT calibration, and
intrinsic CR calibration. The direct CNOT calibration realizes a CNOT gate by combining
the CR interaction with additional local drives of the target qubit, realizing a CNOT gate
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Figure 3.8: Minimizing two leakage channels with 2D DRAG. Left is the leakage
from the two-photon |0⟩c |2⟩c transition. Middle is |1⟩c |2⟩c leakage, and right is the sum of
both.

without any subsequent single-qubit gates (aside from instantaneous virtual Z gates [41]).
We first show that leakage of the CR gate can be mitigated by shaping the CR pulse spectrum
with the 2D DRAG protocol discussed previously. However, reducing leakage did not appear
to reduce the overall gate error. On a separate pair of qubits that had higher anharmonicity
and therefore were less susceptible to leakage, a more detailed set of error benchmarking was
performed to assess the dominant error contributions, revealing that coherent (i.e. calibration
or ZZ) errors formed nearly half of the error contribution from this gate.

To reduce the coherent error contribution, an alternative calibration approach was ex-
plored, leaving out the additional local target qubit drives during the CR gate and relegating
local rotations to subsequent single qubit gates. Dubbed the intrinsic CR gate calibration
approach, this separated the CNOT gate calibration into (i) precisely calibrating the CR gate
amplitude to maximize entanglement with error-amplification circuits, and (ii) calibrating
the single-qubit gates needed to map the entangling CR unitary UCR to a CNOT gate. While
this approach on the surface results in longer CNOT gates due to the additional single-qubit
gates needed after the CR pulse, this issue is mitigated using by compiling quantum circuits
into a gate set that replaces the CNOT gate with the intrinsic CR gate UCR.

The benchmarking results of the direct CNOT and intrinsic CR gates are compared,
and while both approaches yielded gate fidelities above 99%, the intrinsic CR gate had
notably lower coherent error, suggesting that additional pulses used in the direct CNOT
gate suffered from calibration errors. The lower coherent error of the intrinsic CR gate
suggests that a simpler approach to gate calibration, focused on maximizing entanglement
and delegating the local rotations to compilation-based solutions, may enable higher fidelity
quantum algorithms.
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3.3.1 Direct CNOT calibration

The dynamics discussed in the previous section provide guidance in leveraging the CR in-
teraction to realize a CNOT gate. The unitary operation for a CR drive with envelope ε(t)

HCR(t) = I ⊗ A⃗(ε(t)) + Z ⊗ B⃗(ε(t)) with duration τp is given by

UCR = e−i
∫ τp
0 HCR(t)dt, (3.20)

assuming HCR commutes with itself at all times. Since a CNOT gate is locally equivalent
to ZX

(
π
2

)
= exp

{
− i

2
π
2
ZX

}
operation, via [8]

CNOT = ZI
(
−π

2

)
ZX

(π
2

)
IX
(
−π

2

)
, (3.21)

a natural approach would be to calibrate the CR drive parameters such that the HCR terms
are bx = bI = −ax, with all other terms being zero. Then, the interaction can be driven for
time τp such that

∫ τp
0
ε(t)dt = π

2
. From the dynamics shown in Figure 3.4, we see that by

can be calibrated to zero by adjusting the CR drive phase Arg[ε]. Further, any remaining
ay can be adjusted by applying drives to Qt [54].

However, az , bI , and bz do not depend on drive phase. Since bI commutes with the bx
interaction, this can be corrected later via a virtual-Z gate [41], but because bz and az do not
commute with bx, they can reduce the overall entanglement achievable by the drive. While
an echo on the control qubit can reduce the overall ZZ error in the unitary produced by the
CR drive [54], as bz/bx becomes larger, the contrast of the conditional Rabi oscillations on
Qc is reduced, and thus this is an important measure of how entangling the interaction can
be. Minimizing bz/bx has been explored using engineered ZZ suppression with a multipath
coupler [23], indicating that this poses a fundamental minimal coherent error bound on CR
gate error. Additionally, a strong IX drive on the target qubit can reduce the effect of bz
terms on the dynamics [40], however this increases az. The local Stark shift on Qt az can
finally be adjusted by adding a detuning the CR drive frequency ωd, or by adding DRAG
pulse shaping to the drive [42, 47].

To summarize, we can engineer the CR Hamiltonian to directly implement a CNOT gate,
with the following procedure:

1. Calibrate the entangling rate by measuring R versus |εc|. This involves a full Hamilto-
nian tomography measurement set, meaning full Qt tomography and preparing Qc in
|0⟩ and |1⟩, totaling to six experiments for each |εc|.

2. Minimize ZY by tuning the CR phase Arg[ε]. Since ZY only causes non-zero oscilla-
tions of rx the x-component of Qt Bloch vector r, measuring only rx is sufficient, only
four experiments per CR drive phase are needed.

3. Minimize IY with an IY drive on Qt. Similar to ZY , only rx needs to be measured,
and thus there are four experiments per IY drive amplitude.
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name Sample A Sample B
ωc (GHz) 5.84769 5.45868
ωt (GHz) 5.69371 5.29787
ηc (MHz) -244.21 -271.35
ηt (MHz) -246.87 -275
∆ (MHz) 153.98 160.81
∆/ηc 0.631 0.593
ζ0 (MHz) 0.3 0.176
J (MHz) 3.361 2.819
Qc T1 (µs) 60-80 65
Qt T1 (µs) 160 58
Qc T

echo
2 (µs) 120-160 86

Qt T
echo
2 (µs) 190 77

Table 3.1: Sample parameters for the two qubit pairs studied.

4. Calibrate IX drive amplitude to put Qt in |0⟩ when Qc is prepared in |0⟩. Here, rz is
all that need be measured, and only one preparation state, corresponding to just two
experiments per IX drive amplitude.

5. ZZ can also be reduced with the IX drive, i.e. a ‘rotary. echo’ [40]

6. IZ can be reduced by using DRAG [42, 47] or pulse detuning.

7. ZI is corrected using a virtual-Z gate [41] on Qc.

8. Leakage is calibrated with DRAG, with experiments described in section 3.2.5.

3.3.1.1 Leakage reduction with 2D DRAG

With this above approach, we calibrated CNOT gates on Sample A in Table 3.1 and varied
the CR pulse time τp, with the aim of investigating whether there is a gate speed at which
leakage is a dominant error source, and how robustly we can reduce leakage as gate speed is
varied. Note that we did not calibrate the drive to minimize ZZ or IZ as described above in
these experiments, as they depend more weakly on the drive parameters, and the focus of this
study is the impact of leakage on gate fidelity. To quantify the effect of leakage mitigation
with 2D DRAG pulse shaping, the gates were calibrated with and without the 2D DRAG
calibration step of section 3.2.5. Figure 3.9 shows Hamiltonian tomography data for each gate
after the calibration procedure, with the right (left) plot showing calibration with (without)
2D DRAG. The Hamiltonian tomography experiments show nearly the desired dynamics of a
pure CNOT interaction, as seen in the lower two plots, with the Qt approximately stationary
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Figure 3.9: CNOT gate time sweep, Hamiltonian tomography (a) Hamiltonian rates
of calibrated CNOT gates as a function of pulse time τp without 2D DRAG leakage calibra-
tion, and (b) with 2D DRAG leakage calibration. (c) Target qubit dynamics for τp = 112 ns
in the X − Z Bloch plane without DRAG and (d) with DRAG.

when Qc is prepared in |0⟩, and undergoing rotations approximately about the x-axis with
Qc in |1⟩. Some IY and ZY dynamics are seen in the data without DRAG, and IZ and ZZ
in the data with DRAG. However, slower oscillations are difficult to characterize precisely
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due to the limited frequency bandwidth of Hamiltonian tomography experiments.
While analyzing Hamiltonian tomography data gives insight into the dynamics, we next

seek to quantify the performance of the CNOT gates according to standardized measures of
gate fidelity, namely Randomized Benchmarking (RB) experiments [63, 64]. The RB protocol
involves running randomly sampled gate sequences of increasing length that simplify to the
identity operation. These random paths through Hilbert space have the effect of averaging
general gate errors, which can be coherent or incoherent, into a depolarizing channel, a
process called “twirling”. The RB protocol measures the “survival probability” (plotted on
the y-axis of Figure 3.10 (a)), or how well the qubits returned to their initial state, at the
end of the random net-identity path through Hilbert space, as a function of sequence length.
As the paths get longer, errors in the gates accumulate further, reducing the probability
that the qubits will return to their initial state. When the paths are sufficiently random (as
is accomplished by using random sequences of Clifford gates [64]), the survival probability
undergoes an exponential decay. Appendix A.1 gives more detailed information about RB
and other benchmarks. Using Quantum Benchmark’s software TrueQ [65], we measured
the average fidelity and, by monitoring the |2⟩ state, the leakage rate [47, 66] of the Direct
CNOT gate for a variety of gate times τp. Figure 3.10 (a) shows example RB decay curves
for τp = 112 ns for CNOT gates with (blue) and without (gold) DRAG correction. The decay
rates are comparable with and without DRAG, and this is consistent across all gate times
studied, as shown in Figure 3.10 (b). Here eF = d2−1

d2
(1 − pRB) is the process infidelity of the

average Clifford gate, is between 3.5% and 7%. This is substantially above the decoherence
limit indicated with the dashed gray line, suggesting the presence of substantial coherent
error in the gates. The process infidelity from decoherence for two qubits is approximately

eD = 1
4
τp

(
1/T

(c)
1 + 1/T

(t)
1 + 2/T

(c)
2 + 2/T

(t)
2

)
. For the qubits studied in this chapter, the

average T1 and T echo
2 times of around 70µs and 120µs, respectively, however even using a

low estimate of T1 = T2 = 50µs predicts eD about one order of magnitude lower, between
0.5% and 0.8%. Setting aside the high RB process infidelity, the 2D DRAG calibration does
successfully reduce leakage, as shown in Figure 3.10 (c) and (d). In part (c), the |2⟩ state
population of Qc is plotted as a function of RB sequence length, for the CNOT gate again
τp = 112 ns, as in part (a). The gate with DRAG shows substantially slower decay rate and
reduced steady-state population. This is further reflected in part (d), where the leakage rate
L1 is plotted for all pulse times studied and leakage is shown to be robustly reduced when
using 2D DRAG. This experiment highlights the value of pulse spectrum management on
managing error sources in CR gates, particularly on qubits with smaller anharmonicity, such
as those optimized for qutrit processors [32].

These experiments showed a robust reduction of leakage with 2D DRAG calibration,
without sacrificing gate fidelity. However, the absolute RB error rates are well above the
decoherence limit. This points us to sources of coherent error, including the static ZZ and
calibration errors.

Interestingly, this direct CNOT gate calibration approach yielded a lower error CR gate
on a separate qubit pair, denoted Sample B in Table 3.1, which had much higher intrinsic
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Figure 3.10: Direct CNOT gate time sweep, leakage benchmarking (a) Two-qubit
RB survival probability decay curves for τp = 112 ns, with and without DRAG correction.
See the main text for description of survival probability. Decays are comparable, indicating
similar gate performance. (b) Clifford process fidelity eF from RB experiments for varying
τp. (c) Leakage RB decay curves at τp = 112 ns, showing reduced decay and steady-state Qc

|2⟩ population when DRAG is used. (d) LRB leakage rate L1 while varying τp. Leakage is
robustly reduced with DRAG.

local drive terms (i.e. classical crosstalk) present. Table 3.3.1.1 shows a comparison of the
Hamiltonian rates extracted with Hamiltonian tomography between Samples A and B, for
gates with approximately equal durations of τp = 144 ns and τp = 147 ns, respectively. The
ZZ and ZX rates are similar, but the IX and IZ terms on sample B are about 15 times
larger than Sample A. This results in the same polar angle tilt sin−1

(
IZ
IX

)
≈ 4.5◦ of the

unconditional rotations. However, as noted earlier, the error introduced by the ZZ term
may be partially mitigated by the larger natural IX drive on Sample B, as predicted [34]
and observed [40]. While we were not able to achieve comparable gate fidelities on sample A,
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Rate (MHz) Sample A Sample B

IX 1.894890 26.771392
IY -0.285226 0.045184
IZ 0.143450 -2.041381
ZX -1.871643 2.024811
ZY 0.231025 -0.490854
ZZ -0.143615 -0.132003

eCF × 102 4.6(4) 2.0(2)

Table 3.2: Hamiltonian rates for direct CNOT gates on Sample A (B) (circuit parameters
in Table 3.1) with τp = 144 ns (τp = 147 ns), and the resulting Clifford process fidelity eCF
measured by RB. The eCF quoted for sample A corresponds to the results plotted in Figure 3.9
(b). The result for sample B corresponds to an experiment like that shown in Figure 3.11
(a).

given their comparable circuit parameters and single-qubit gate fidelities, adding additional
drive on the target qubit may have improved the gate performance [40]. Notably, because
the leakage was lower on Sample B owing to the larger anharmonicity of the transmons,
we were able to mitigate the large IZ error using DRAG, reducing the polar angle tilt of
the unconditional drive, however this did not improve the direct CNOT gate RB process
fidelity. In the next section, I will describe approaches to further distinguish and reduce
error mechanisms of the direct CNOT gate on Sample B.

3.3.1.2 Error budgeting the direct CNOT gate

With our demonstrated ability to reduce leakage errors, we next describe a broader suite
of benchmarking experiments, used to determine the dominant noise sources of the direct
CNOT gate. The calibration procedure here is the same as was described earlier, except
leakage was lower for this gate owing to the larger anharmonicity of the qubits. Because
of this, a single CR DRAG parameter was instead calibrated to reduce IZ error of the
CR gate, as mentioned in the direct CNOT calibration procedure. Rather than sweeping
pulse time for this pair, we focused on thoroughly benchmarking a single gate time of τp =
147 ns, with a 30 ns cosine ramp. The benchmarking protocols we used were interleaved
randomized benchmarking (IRB), extended randomzied benchmarking (XRB), also known
as purity benchmarking, and Cycle Benchmarking (CB). The first protocol is a commonly-
used benchmark for estimating process error for a gate of interest, rather than process
error of the average Clifford gate, as was reported in the previous section. Further, XRB
distinguishes coherent and incoherent error sources [67]. Finally CB enables a tighter bound
on the process error, since the randomizing gate set is the Pauli group, rather than the
Clifford group [68]. For more information about the benchmark protocols, see section A.1.
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Figure 3.11: Benchmarking Direct CNOT Errors (a) Interleaved RB. Exponential
decay of Clifford sequence fidelity (y-axis) for different Clifford sequence lengths with (gold)
and without (blue) the interleaved intrinsic CR gate. From reference and interleaved decay
parameters pRB = 0.972(1) and pIRB = 963(2), respectively, we extract a CR process error
eg = 7(3) × 10−3 (see equation A.7). (b) Purity benchmarking shows a unitary (stochastic)
eU = 11.308(1)×10−3 (eS = 15.2925(1)×10−3) error component to the total Clifford process
error eCF = 26.600(1) × 10−3. (c) Leakage Randomized Benchmarking results, obtained by
monitoring the |2⟩ state of each transmon when performing RB. The leakage per Clifford
L1 are estimated to be L1 = 3.4(4) × 10−3 (0.11(5) × 10−3) for Qc (Qt). (d) Repeated IRB
measurements to quantify gate calibration and benchmarking stability. Note that the y-axis
is average gate error r = d−1

d
eF , where eF is the process infidelity of the protocol. The

statistical average gate process error is 11.3(3) × 10−3.
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Benchmarking results for this gate are shown in Figure 3.11. The highest gate fidelity, as
measured by IRB and shown in Figure 3.11 (a), was 99.5(2)%, with worst/best case fidelity
bounds of 90.8(3)%/99.97(2)% [68]. However, measuring IRB experiments repeatedly for
several hours gave an average gate fidelity of 99.1%.

To understand the dominant error sources, we first examine the XRB data, shown in
Figure 3.11 (b). The inset shows the breakdown of the total Clifford process infidelity eF ,
in terms of unitary or coherent, and stochastic or incoherent, error sources, denoted eU and
eS, respectively. First, it’s worth comparing eS to a naive estimate of the decoherence error
as calculated from the T1 and T echo

2 times of the sample. This is calculated as,

eD ≈ ⟨τC⟩
4

(
1

T
(c)
1

+
1

T
(t)
1

+
2

T
(c)
2

+
2

T
(t)
2

)
, (3.22)

which we estimate to be eD ≈ 7.5× 10−3 given an average clifford time τcliff = 383 ns, which
is a bit under half of the measured eS. The source of this discrepancy is a topic of further
study, though it has been predicted that the Stark shifting of the control qubit during the
CR drive will introduce additional decoherence channels via the (less coherent) higher levels
of Qc [34].

While the XRB, IRB, and LRB experiments gave some insight into error sources, the
high coherent error of the gate means that there is high uncertainty in the worst-case error
of the gate [69]. To get an improved estimate, we perform Cycle Benchmarking (CB) on the
gate as well, which is described in the Appendix A.1. Similar to RB, in CB, the probability
of the qubits returning to the expected state is measured after a sequence of random gates.
This is the y axis of Figure 3.12 (a). Cycle Benchmarking is distinct from Randomzied
Benchmarking in that the randomizing gates are n-qubit Pauli gates, rather than Clifford
gates. This has the benefit that n-qubit Pauli gates do not need any entangling gates, and
therefore the twirling operation has higher fidelity. However, unlike Clifford gates used in
RB, Pauli gates do not twirl general errors into a depolarizing channel. Instead, they twirl
errors into a Pauli channel, and so, in order to characterize the errors of this channel, each
Pauli decay rate of this Pauli channel must be measured. This is done by preparing all
eigenstates of the Pauli basis, running the CB circuits, and measuring the decay of the
probability that the qubits are in the expected state, given the prepared input state and
the random circuit instance. See Appendix A.1 for further information. Results for CB
on the direct CNOT gate are shown in Figure 3.12, give an estimated process fidelity for
the CNOT gate eg = 7.2(5) × 10−3, with lower/upper bounds eg,L/eg,U of 1.3(2)/38.3(9) ×
10−3, assuming fully stochastic/coherent noise, respectively [69]. These bounds are much
tighter than the estimate from IRB/XRB experiments, which estimated eg = 7.5 × 10−3,
and eg,L/eg,U of 0.925(1)/59.39(1) × 10−3. Furthermore, CB gives an estimate of the cycle
fidelity during a randomly-compiled algorithm, and therefore CB metrics are useful in the
context of applications [70].

While the majority of the noise for this direct CNOT gate is incoherent, nearly 1% of
the error is from coherent error sources. Coherent error sources are essentially limited to
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Figure 3.12: Cycle Benchmarking the Direct CNOT gate (a) Exponential decays of
the survival probabilities of the Pauli basis preparation states for the direct CNOT gate.
(b) Process infidelities extracted from the exponential decays, for the case with the direct
CNOT cycle (gold) and the identity cycle (blue). See A.1 for more information on Cycle
Benchmarking.

calibration errors and the static ZZ interaction. In effort to reduce coherent error in the gate,
we next explore a different calibration approach, where the unitary of the fully entangling
CR gate, which is locally equivalent to a CNOT gate, is measured and used as a native gate.

3.3.2 Intrinsic CR gates

With the demonstrated ability to reduce leakage in our toolkit, and our identification of
substantial coherent error in the direct CNOT gate, we next explored ways to reduce coherent
errors. The approaches are two-fold. First, we develop an error-amplification calibration
procedure, to more precisely calibrate the entangling portion of the CR gate, namely the
CR pulse amplitude that maximizes R. Then, we use closed-loop optimization to find the
single-qubit gates needed to map the intrinsic CR unitary UCR to a CNOT, by maximizing
a loss function, e.g. Bell state fidelity. Then, since the CR gate is locally-equivalent to a
CNOT, we use the intrinsic CR gate as the native gate when compiling circuits, rather than
using a CNOT.

The error-amplification procedure that we employ to maximize entanglement is one simi-
lar to other experiments used in pulse calibration: it leverages pulse repetition to accumulate
coherent errors of interest. The protocol, depicted in Figure 3.13 (a), maximizes R with re-
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Figure 3.13: CR amplitude calibration experiment with error-amplification. (a)
Pulse sequence for the experiment. The CR pulse is fixed in time, with the pulse amplitude
swept. This is repeated for different numbers of pulse repetitions n. (b) Experimental data
for several values of n. (c) Fitted optimal value, with uncertainties, as a function of pulse
repetitions n.

spect to |εc|. We increase the sensitivity by repeating the pulse an odd number of times, as
shown in Figure 3.13 (b). Interestingly, there are dips observed in the behavior or R vs εc for
some n > 1. This behavior, which is also observed in simulation, may be due to the static
ZZ interaction, which is not echoed away in this protocol, interfering with the CR dynam-
ics. Additionally, the maximal value of R is reduced with increasing n due to decoherence.
Figure 3.13 (c) shows the parabola fit estimate as a function of n. At few n, the precision is
lower, and around n = 19, the error in the fit estimate is reduced substantially.

With the improved calibration of the entangling portion of the CR gate, we know that
we have a fully entangling, CNOT-like gate. As the direct CNOT calibration described
previously suffered from limited precision in calibrating the local rotations with the additional
drive pulses, and also introduced coherent errors during the CR pulse, another approach to
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calibrate a CNOT is to simply append single-qubit rotations after the CR pulse, to realize
the desired unitary. If we used exclusively CNOT gates as our ’native’ entangling gate,
this approach could be costly, as the CNOT gate time is longer due to the overhead of
additional single-qubit gates after the CR gate (this is what we were trying to avoid with
the direct CNOT gate). However, with modern compilation software that supports more
general two-qubit unitaries as native gates, the intrinsic CR gate can itself be used as the
native entangling gate, avoiding this added cost. In order to use the compiler effectively,
however, the intrinsic CR unitary needs to be accurately determined. To determine the CR
unitary, we employ closed-loop optimization. In particular, we optimize the parameterized
calibration circuit shown in Figure 3.14 to realize a CNOT gate. The circuit parameters ϕ1

and θc are present to modify the ZI and IZ type errors, and the RT (φ⃗2) gate is an arbitrary
Bloch sphere rotation in the ZXZXZ decomposition [41]. In terms of cost function, we
have had most success by minimizing infidelity of Bell states |Φ⟩ = (|00⟩ + |11⟩) /

√
2 and

|iΦ⟩ = (|00⟩ + i |11⟩) /
√

2. Other experimental works have used RB cost functions with a
fixed sequence length [49]. We have explored this as well, however we found that ab initio
calibration is most successful with the Bell state infidelity. We note that RB sequences, due
to their error-randomizing nature, tend to reduce sensitivity to the parameters, but may be
useful when the gate has already a sufficiently high fidelity.

To optimize over the parameter space, we use the Covariance Matrix Adaptation Evo-
lution Strategy (CMA-ES) [71]. CMA-ES is a gradient-free optimizer that is similar to a
particle-swarm scheme in that multiple trial solutions are run for each optimization step,
and the selection of the next region where parameters will be taken is determined by fitting
the covariance of the loss function along the parameter space, and moving the parameter
sampling region in the direction of greatest covariance. The lower plots in Figure 3.14 show
the loss function convergence of the Bell state fidelity preparation circuit on the left, and
the parameter convergence in the right plots. The points in the right plots indicate different
samples within the parameter sampling region of the optimizer, at a given optimization step.

After the intrinsic CR unitary UCR is determined via closed-loop optimization, we spec-
ify UCR as a native two-qubit gate in the Keysight/Quantum Benchmark TrueQ [65] circuit
transpiler, where the CR gate can then be substituted for the CNOT gate in arbitary cir-
cuits before running on our hardware, as indicated in Figure 3.15. The top circuit indicates
a subset of an arbitrary quantum circuit, with rounds of arbitary single-qubit gates R in
between rounds of entangling gates. The transpilation process begins by inserting the cali-
brated quantum circuit for realizing a CNOT from a CR gate. Then, because any arbitrary
single-qubit gate can be expressed via three arbitrary-angle Z gates with X90 gates in be-
tween Zϕ1X90Zϕ2X90Zϕ3 [41], the parameters of neighboring single-qubit gates R are simply
modified to include the single-qubit rotations from the CNOT calibration circuit, R → R′.

Note that, in general, quantum circuits may not have the form as shown in the top
circuit; however, any circuit that is randomly-compiled [70], a compilation strategy that has
been shown to improve the reliability of quantum algorithms by tailoring coherent noise
into stochastic noise [39], will have this form. Since any quantum algorithm benefits from
tailoring coherent noise into stochastic noise [70], this compilation strategy will not result in
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Figure 3.14: Closed-loop optimization for calibrating local rotations to realize a
CNOT from the CR gate. The CNOT gate is parameterized by the circuit shown in the
top left, where RT (φ⃗2) is an arbitrary single-qubit rotation and the angles for all gates are
angles for virtual-Z gates, which have nearly perfect fidelity [41]. The CNOT calibration
circuit is inserted into a loss function circuit, such as a Bell state fidelity measurement shown
on the right, and a classical optimizer minimizes the loss function in a closed-loop fashion.
An example minimization of the loss function using the CMA-ES optimizer [71] is shown at
the bottom left, and the parameter convergences are shown at the right. The points in the
right plots indicate different parameter trials tested for each optimization step.

increased gate depths for any randomly-compiled circuit.
In Figure 3.16, benchmarking results are shown for an intrinsic CR gate calibrated on

the same qubit pair as described in the previous section. The gate duration and pulse shape
were modified from the direct CNOT gate, from τp = 147 ns → 250 ns, and from a ramp
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Figure 3.15: Compiling general circuits with intrinsic CR gates. General circuits, and
particularly randomly-compiled circuits [39, 70],consist of alternating rounds of single- and
two-qubit gates. The single-qubit gates R are arbitrary single-qubit rotations, which can be
decomposed into three arbitrary-angle Z gates with X90 gates in between Zϕ1X90Zϕ2X90Zϕ3 .
Therefore, the single-qubit gates within the CR-based CNOT calibration, shown in the
middle step of the compilation, can be folded into the other single-qubit gates without
changing the depth of the circuit. An example UCR is shown on the right, with information
output from the Keysight/Quantum Benchmark TrueQ software [65].

fraction τr = 30 ns to a “full ramp” cosine pulse shape. These changes were made in effort
to reduce leakage on this pair, which was indeed a successful strategy. The CR gate process
error, as estimated by Cycle Benchmarking, is eg = 11.52(3) × 10−3, with worst/best case
errors eg,U/eg,L of 29.27(4) × 10−3/4.5(1) × 10−3. This value is comparable to the average
estimate over repeated IRB measurements for the direct CNOT gate, but is higher than the
best reported direct CNOT gate error, and that which was measured with CB for the direct
CNOT gate.

A full comparison of the suite of benchmarks that were measured for both gates is shown
in Figure 3.17, with descriptions of quantities in Table 3.3.2. Both top and bottom plots
are the same data, but the top is log-scale on the y-axis, facilitating differentiation of the
smaller parameters, and the bottom plot is in linear scale for comparing larger errors. From
these data, we can make a few remarks:

• Cycle Benchmarking reliably finds narrower bounds on the best/worst case process
errors of the gate eg,L, eg,U .

• As measured by XRB, the intrinsic CR gate, despite being 100 ns longer, has a smaller
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Figure 3.16: Intrinsic CR Benchmarking (a) Interleaved RB. Exponential decay of Clif-
ford sequence fidelity (y-axis) for different Clifford sequence lengths with (gold) and without
(blue) the interleaved intrinsic CR gate. (b) Cycle Benchmarking results. The error rate ei
is obtained for the prepared Pauli eigenstate i from the exponential decay of sequence fidelity
pi with increasing sequence length. A larger error rate for a given Pauli eigenstate indicates
errors in the cycle that do not commute with the compiled Pauli term. (c) Leakage Ran-
domized Benchmarking. By monitoring the |2⟩ state of each transmon when running an IRB
experiment, the reference and interleaved |2⟩ state population data are fit to an exponential
model to extract the leakage-per-gate for each transmon. (d) Purity Benchmarking distin-
guishes coherent from stochastic errors by measuring the decay of the purity (main plot) of
the two-qubit density matrix by performing state tomography for each random Clifford RB
sequence, and comparing the purity decay to the RB decay. Inset: breakdown of Clifford
process infidelity between coherent and stochastic contributions.
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Metric Name Symbol Description Protocol

Clifford
Process error

e
(C)
F Clifford process infidelity RB

Clifford
unitary error

eU
Coherent error

contribution to e
(C)
F

XRB

Clifford
stochastic error

eS
Stochastic error

contribution to e
(C)
F

XRB

Gate
process error

eg
Process error measured via
reference, interleaved RB

IRB, RB

Lower bound
of eg

eg,L
Best case estimate
given unitarity

IRB, RB, XRB

Upper bound
of eg

eg,U
Worst case estimate
given unitarity

IRB, RB, XRB

Leakage rate L1
Gate leakage out
of computational subspace

LRB

Table 3.3: Names, symbols, and descriptions of benchmarking metrics used in this thesis.
Similar metrics are reported but obtained via CB, however their interpretation is the same.
Subsets for isolated and simultaneous single-qubit Clifford RB are reported. See section A.1
for detailed descriptions of these parameters.

stochastic error eS than the direct CNOT gate. It even has a smaller unitary error
eU . The overall improvement in two-qubit SRB with the intrinsic CR gate is notable,
given the comparable single-qubit SRB data for each experiment. Interestingly, for
the average clifford time with the intrinsice CR gate of τCliff = 542 ns, the predicted
decoherence error eD = 1.06% is close to the measured eS = 1.2647(1)% via XRB,
while the predicted eD differed substantially from eS for the direct CNOT gate.

• Using a full pulse ramp for the intrinsic CR gate lowered the leakage rate L1 sub-
stantially. However, even for the direct CNOT gate, L1 here is comparable to the
DRAG-mitigated CR gate on sample A (see Figure 3.10 (d)).

• Based on a simple model for the coherent error from static ZZ during the gate presented
in Section 2.3.1, the static ZZ error for the 147 ns direct CNOT gate and the 250 ns CR
gate are eZZ ∼ 4.5× 10−3 and eZZ ∼ 15× 10−3, respectively. These errors, while being
over-estimates, convey that the static non-commuting ZZ interaction is a substantial
source of error for these gates. The approach in Chapter 4 addresses this challenge.

• The simultaneous single-qubit gate process errors are a few parts in 10−3, suggesting
that measuring two-qubit gate errors below that is an uncertain task with these as the
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twirling operations.

In summary, we have addressed several challenges towards maximizing CR and CNOT
gate fidelities. We have demonstrated leakage reduction using 2D DRAG pulses on low-
anharmonicity transmons. We explored a faster scheme for implementing a CNOT, called
the direct CNOT, and identified ways to reduce coherent errors, via local driving of Qt [40]
as evidenced by the lower errors for direct CNOT gates on Sample B, which had more local
driving than Sample A due to crosstalk. We also developed a novel calibration scheme with
intrinsic CR gates as the native entangling gate, which is operationally simpler.

When considering scaling the system calibrations beyond two qubits, the optimizer-based
approach to calibration may hold even more promise, due to its general, black-box approach.
Still, knowledge of the physical interactions present on a quantum processor, like spectator
errors from static ZZ [72], crosstalk, and frequency collisions are important for realizing
high fidelity quantum operations on larger systems. Interestingly, the physical interaction
discussed in Chapter 4 was discovered during our calibrations of CR gates on the four-qubit
processor of which Sample B is a part.
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Figure 3.17: Comparing Performance of direct CNOT and intrinsic CR gates on
sample B. The points left of the left-most dashed vertical line are from the two-qubit RB
experimental suite, comprised of RB, IRB, XRB, and LRB. The middle points between the
two dashed vertical lines are from CB, and the right-most points are from single-qubit RB
experiments, both isolated and simultaneous [45].
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Chapter 4

Microwave-Activated Tunable
Coupling

During our studies in Chapter 3 on the Cross Resonance gate, we observed another entangling
interaction on our hardware. While applying a crosstalk-cancellation drive during a CR
gate on a spectator qubit neighboring the control qubit, an enhanced spectator-control ZZ
interaction was observed that was generated by this simultaneous, off-resonant drive. This
interaction has the notable benefit of commuting with the static ZZ coupling, suggesting
that with this, a ZZ-error-free two-qubit gate could be implemented, giving a performance
boost over the CR gate. Furthermore, this interaction offers the possibility for decoupling
qubits, by cancelling the static ZZ interaction with minimal hardware resources. Approaches
utilizing qubits and/or couplers with flux-tunable transition frequencies have shown high
tunability [73, 74], full decoupling of qubits [75], and gate fidelities above 99.8% [76–78].
However, these approaches require additional control circuitry, and introduce decoherence
channels.

A scheme with reduced hardware complexity while retaining the above capabilities would
simplify the scaling of high-fidelity two-qubit gates to many-qubit processors. Charge-
activated two-qubit gate schemes [8, 79–84] do not require additional control circuitry, and
they are compatible with fixed-frequency qubits. Particularly, the cross resonance (CR)
gate [8] has demonstrated a gate fidelity as high as 99.7% [85]. However, this scheme has
residual idle ZZ coupling between qubits [86] due to interactions between their noncomputa-
tional transitions. This idle coupling causes correlated errors, dephasing, and spectator errors
[72, 87–89]. Mitigating idle ZZ coupling without a flux-tunable coupler was done using dy-
namical decoupling [40, 54, 83] and using opposite-anharmonicity qubits [90], with added
overhead in circuit depth and in hardware complexity, respectively. Recently, cancellation
of the ZZ coupling between capacitively-coupled fluxonium qubits was also reported [91].

In this chapter, we describe experiments (first appearing in [9]) demonstrating a tunable,
charge-activated ZZ interaction between two fixed-frequency transmon qubits [16] with fixed
coupling. We show full cancellation of ZZ coupling between the qubits, and realize a CZ
gate with a fidelity of 99.43(1)%. The interaction is realized by driving the transmons
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simultaneously at a frequency between the |0⟩ → |1⟩ and |1⟩ → |2⟩ transitions, generating a
conditional Stark shift. In contrast to the CR interaction, here the drive frequency can be
tuned to avoid driving unwanted transitions, making this interaction suitable for use on large
devices with crowded frequency spectra [92, 93]. Further, in situ control over the coupling
enables controlled phase gates with arbitrary phase angles CZ (ϕ), which are useful for noisy
intermediate-scale quantum (NISQ) algorithms [94–96].

4.1 Principle

Consider two coupled, simultaneously driven transmons, as illustrated in Figure 4.1. The
Hamiltonian of the two transmons, in the frame of the drive at frequency ωd and making
the Duffing approximation of the transmon [16], is given by

Hqb =
∑
i=c,t

(ωi − ωd) a†iai +
ηi
2
a†ia

†
iaiai, (4.1)

where for transmon i, ai is the bosonic annihilation operator, ωi is the transition frequency
between |0⟩ and |1⟩, ηi is the anharmonicity, and h̄ = 1. Each drive term is given by

Hεi =
(
εiai + ε∗i a

†
i

)
, where εi is the complex drive amplitude, and the coupling term with

strength J is HJ = J
(
a†cat + aca

†
t

)
, where we denote the higher frequency transmon Qc,

and the lower frequency transmon as Qt. The total Hamiltonian is

H = Hqb +HJ +Hεc +Hεt . (4.2)

The Stark-induced ZZ interaction can be understood through the lens of the CR effect:
when driving the control qubit with amplitude εc at the target qubit frequency ωt, the target
experiences a drive amplitude ε̃n that depends on the control state |n⟩ [8, 34]. In the qubit
subspace, the CR drive realizes an entangling ZX interaction with rate µ = (ε̃0 − ε̃1) /2. In
the limit εc/∆t ≪ 1, detuning the drive frequency from the target qubit frequency ∆t =
ωt − ωd results in a conditional Stark shift of the target qubit frequency δ̃n, where

δ̃n =
ε̃2n
∆t

. (4.3)

The drive-induced ZZ interaction ζ then is given by ζ = δ̃0 − δ̃1, which can be expressed in
terms of µ as

ζ = 2µ (ε̃0 + ε̃1) /∆t. (4.4)

This conditional Stark shift is much smaller than the CR rate ζ ≪ µ. However, applying
a drive simultaneously to the target qubit at amplitude εt modifies the total drive amplitude
on the target to ε̃n + εt. Replacing ε̃n → ε̃n + εt above, ζ then scales linearly to first order
with εt
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. .
 . 

. .
 . 

Figure 4.1: Drive scheme for the Stark-induced ZZ interaction. Transmons are
detuned by ∆ = ωc − ωt indicated by the black dashed line, and coupled via exchange
coupling J . They are driven simultaneously with amplitudes εc, εt between frequencies
ωt and ωc + ηc, indicated with purple dashed lines. The simultaneous driving introduces
conditional Stark shifts, i.e., a ZZ interaction.

ζ =
2µ

∆t

(ε̃0 + ε̃1 + 2εt) +O(|εt|2). (4.5)

By driving both transmons simultaneously, one can generate a ZZ coupling between trans-
mons with detuning ∆ suitable for the CR gate, with interaction rates comparable to the
CR effect. Note that the qubits are interchangeable and this can be generalized to systems
that are not transmons [91].

4.2 Perturbation theory derivation

Here, we present a derivation of the effect using perturbation theory. The Hamiltonian of
two (uncoupled) off-resonantly driven transmons in the drive frame is given by:

Hqb =
∑
i=c,t

(ωi − ωd) a†iai +
ηi
2
a†ia

†
iaiai +

(
εie

iϕa+ h.c.
)
. (4.6)

For a single transmon, truncated to the |2⟩ level, the matrix looks like
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H =

 0 εeiϕ 0

εe−iϕ ∆
√

2εeiϕ

0
√

2εe−iϕ 2∆ + η

 (4.7)

The dressed states of H to first order become:

|0⟩ ≈ |0⟩ +
εe−iϕ

−∆
|1⟩ (4.8)

|1⟩ ≈ |1⟩ +
εeiϕ

−∆
|0⟩ +

√
2εe−iϕ

−(∆ + η)
|2⟩ (4.9)

|2⟩ ≈ |2⟩ +

√
2εeiϕ

∆ + η
|1⟩ (4.10)

(4.11)

To estimate ζ, we first calculate the joint computational states dressed by the drives
(without any coupling between the transmons). Then, we calculate the energy shift to first
order by the coupling HJ .

The joint computational levels |c, t⟩ dressed by respective drives εce
iϕc and εte

iϕt are given
by:

|00⟩ ≈ |00⟩ +
εte

−iϕt

−∆t

|01⟩ +
εce

−iϕc

−∆c

|10⟩ +
εcεte

−i(ϕc+ϕt)

∆c∆t

|11⟩ (4.12)

|01⟩ ≈ |01⟩ +
εce

−iϕc

−∆c

|11⟩ +
εte

iϕt

∆t

|00⟩ +
εcεte

−i(ϕc−ϕt)

−∆c∆t

|10⟩ (4.13)

+

√
2εte

−iϕt

−(∆t + ηt)
|02⟩ +

εce
−iϕc

−∆c

√
2εte

−iϕt

−(∆t + ηt)
|12⟩

|10⟩ ≈ |10⟩ +
εte

−iϕt

−∆t

|11⟩ +
εce

ϕc

∆c

|0⟩ ⊗
(
|0⟩ +

εte
−iϕt

−∆t

|1⟩
)

(4.14)

+

√
2εce

−iϕc

−(∆c + ηc)
|2⟩ ⊗

(
|0⟩ +

εte
−iϕt

−∆t

|1⟩
)

|11⟩ ≈ |1⟩ ⊗

(
|1⟩ +

εte
iϕt

∆t

|0⟩ +

√
2εte

−iϕt

−(∆t + ηt)
|2⟩

)
(4.15)

+
εce

iϕc

∆c

|0⟩ ⊗

(
|1⟩ +

εte
iϕt

∆t

|0⟩ +

√
2εte

−iϕt

−(∆t + ηt)
|2⟩

)

+

√
2εce

−iϕc

−(∆c + ηc)
|2⟩ ⊗

(
|1⟩ +

εte
iϕt

∆t

|0⟩ +

√
2εte

−iϕt

−(∆t + ηt)
|2⟩

)
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The coupling Hamiltonian HJ = J
(
a†cat + h.c.

)
can be written in the subspace truncated

to the |2⟩ state as

HJ ≈J (|01⟩⟨10| + h.c.) + (4.16)
√

2J (|11⟩⟨20| + |11⟩⟨02| + h.c.) +

2J (|12⟩⟨21| + h.c.) .

With this, we calculate the energy shifts of the computational states via Eij ≈ ⟨i, j|HJ |i, j⟩
for i, j ∈ {0, 1}:

⟨00|HJ |00⟩ =
2Jεcεt
∆c∆t

cosφ (4.17)

⟨01|HJ |01⟩ =
2Jεcεt

∆c

(
−1

∆t

+
2

∆t + ηt

)
cosφ (4.18)

⟨10|HJ |10⟩ =
2Jεcεt

∆t

(
−1

∆c

+
2

∆c + ηc

)
cosφ (4.19)

⟨11|HJ |11⟩ = 2Jεcεt cosφ

(
1

∆c∆t

+
−2

(∆c + ηc)∆t

+ (4.20)

−2

(∆t + ηt)∆c

+
4

(∆c + ηc)(∆t + ηt)

)
.

Then finally, we use these to calculate the ZZ interaction rate ζ:

ζ = ⟨00|HJ |00⟩ + ⟨11|HJ |11⟩ −
(
⟨01|HJ |01⟩ + ⟨10|HJ |10⟩

)
(4.21)

= 2Jεcεt cosφ

(
2

∆c∆t

+
−2

(∆c + ηc)∆t

+
−2

(∆t + ηt)∆c

+
4

(∆c + ηc)(∆t + ηt)
(4.22)

−
(

−2

∆c∆t

+
2

(∆c + ηc)∆t

+
2

(∆t + ηt)∆c

))
= 8Jεcεt cosφ

(
1

∆c∆t

+
−1

(∆c + ηc)∆t

+
−1

(∆t + ηt)∆c

+
1

(∆c + ηc)(∆t + ηt)

)
(4.23)

=
8Jεcεtηcηt

∆c∆t(∆c + ηc)(∆t + ηt)
cosφ. (4.24)

We see that the coupling is linear in J , εc, εt, and the magnitude can be tuned simply by
changing the relative phase φ between the drives.

4.3 Numerical Simulations

In addition to perturbation theory, we solve for the ZZ rates by numerically diagonalizing
the Hamiltonian in equation 4.2 using QuTiP [97]. Here, we present simulation results
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in Figure 4.2 showing how ζ behaves as a function of ωd, φd, εc, and εt. We include 7
levels for each transmon in the calculation and use the parameters for the first presented
pair: ωc/2π = 5.845 GHz, ωt/2π = 5.690 GHz, ηc/2π = −244.1 MHz, ηt/2π = −247.1 MHz,
and J = 3.45 MHz. In Figure 4.2 (a), ζ is calculated for a range of drive frequencies and

amplitudes. The regions of largest ζ are when ω
(12)
c < ωd < ωt, where ω

(12)
c = ωc + ηc, and

ωt < ωd < ωc. There are also many sharp features associated with the drive interacting
resonantly with higher levels of the transmons. Figure 4.2 (b) shows the dependence of ζ
on φd and |ε| with ωd = ωt − 40 MHz. The sinusoidal dependence is visible, as well as a
resonance around |ε| = 37 MHz. In Figure 4.2 (c) we sweep the amplitudes independently
at the same drive frequency as before, keeping constant φd = π. The dependence on each
amplitude is symmetric, except for the resonance observed for εt > 12.5 MHz.

4.4 Dynamics

We next experimentally investigate how the Stark-induced ZZ interaction depends on the
field amplitudes on each qubit εc, εt and the frequency of the drive field ωd. We measure
ζ using Ramsey interferometry [98] and extract the frequency shift of Qt conditioned on
the state Qc being |0⟩ or |1⟩ when applying the drive. We find agreement between our
measurements and numerical simulations when microwave crosstalk is included.

We show in Figure 4.3 experiments measuring ZZ as a function of drive parameters. The
experiments were performed on a pair of fixed-frequency, fixed-coupling transmons on a de-
vice of the same design as in [32], with parameters ωc/2π = 5.845 GHz (ωt/2π = 5.690 GHz),
ηc/2π = −244.1 MHz (ηt/2π = −247.1 MHz) with static ZZ coupling ζ0/2π = 307 kHz,
corresponding to an inferred exchange coupling strength J = 3.45 MHz.

In the presence of microwave crosstalk, εc and εt are complex linear combinations of CZ
drive amplitudes Ac and At applied to the control and target transmon drive lines, as shown
in Figure 4.3 (a). This is expressed via the crosstalk matrix(

εc
εt

)
=

(
eiθc Ccte

iφct

Ctce
iφtc 1

)(
Ac

Ate
−iφd

)
, (4.25)

where Cct (φct) denotes the crosstalk amplitude (phase). The phase θc results from electrical
delay between the drive lines. For these experiments in Figure 4.3 (b), we set ∆t = 40 MHz
and measured the ZZ interaction while varying drive phase φd and global drive amplitude
A, where Ac = At = A. The experimental data deviates from the crosstalk-free simulations,
which diagonalize the full system Hamiltonian (see supplementary material). This is reme-
died by including the crosstalk matrix parameters in the model fit. With no crosstalk, ζ is
symmetric about ζ0 between in-phase and out-of-phase driving. Additionally, in Figure 4.3
(c) we varied At and Ac independently while keeping φd fixed to φd = 1.31 rad. The linear
dependence of ζ on the drive amplitude is observed for non-zero Ac amplitudes, as predicted
in the theoretical description. Note that the predicted linear dependence is valid only when
the drive amplitude is weak compared to the drive detuning from the transmon transition
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Figure 4.2: ZZ Numerical Simulations (a) ζ versus ωd and global drive amplitude |ε| =

|εt| = |εc|, with φd = π. Driving in the regions ω
(12)
c < ωd < ωt and ωt < ωd < ωc show

consistently larger areas of enhanced ZZ interaction. Driving below ω
(12)
c or above ωc, the ZZ

enhancement is reduced. There are many resonances visible in the simulation. (b) ζ versus
φd and |ε|, with ωd = ωt − 40 MHz. (c) ζ versus εc and εt, with φd = π, ωd = ωt − 40 MHz.

frequencies. These experiments demonstrate tunability of the sign of the ZZ coupling, with
magnitude ζ ≈ 0, to one order of magnitude larger than ζ0, by adjusting the relative phase
between the drives. This flexibility is well-captured by numerical simulation, and is resilient
to microwave crosstalk,
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Figure 4.3: ZZ as a function of drive parameters, crosstalk (a) The control and
target drive fields εc, εt are complex combinations of the drive line amplitudes Ac, At, mixed
via the microwave crosstalk matrix C. (b) ZZ versus relative drive phase φd, for several
overall drive amplitudes |A| = |Ac| = |At|. Field amplitudes in the color-bar are determined
by fitting the data (dots) to numerical simulations including crosstalk (solid lines). With
no crosstalk (dashed lines) the predicted ζ is symmetric about φd = 0 and ζ0. Error bars
indicate Ramsey frequency fit uncertainty. (c) ZZ versus target drive amplitude At for
several control drive amplitudes Ac (color-bar).



CHAPTER 4. MICROWAVE-ACTIVATED TUNABLE COUPLING 64

4.5 Gate Calibration

4.5.1 Entanglement calibration

Using the enhanced ZZ interaction, we next calibrate a CZ gate, which is realized from
Hamiltonian terms IZ, ZI, and ZZ: CZ = exp

(
− i

2
π
2

(−ZI − IZ + ZZ)
)
. We first calibrate

the entangling term ZZ, and then correct local phase errors on the each qubit using virtual
Z gates [41]. To calibrate the ZZ term, we prepare the target qubit in superposition, apply
the CZ pulse, and measure the target qubit Bloch vector r0 (r1) when the control qubit is in
the |0⟩ (|1⟩) state (see Figure 4.4 (a)). To maximize entanglement, we maximize the quantity

R =
1

2
||r0 − r1||2, (4.26)

which measures the normalized vector distance between target Bloch vectors conditioned on
the control qubit state [54]. For the drive pulse, we use a cosine ramp with a flat top, with
the flat top of the pulse set to 40% of the total pulse time. The parameters to calibrate
include pulse time τp, drive frequency ωd, drive amplitudes Ac and At, and relative phase
φd. Pulse time is determined by experiments sweeping drive amplitudes and relative phase,
like those shown in Figure 4.3.

We calibrate the gate on a separate qubit pair that was used for the preceding exper-
iments, with parameters ωc/2π = 5.4696 GHz (ωt/2π = 5.315 GHz), ηc/2π = −270.5 MHz
(ηt/2π = −273.0 MHz) with static ZZ coupling ζ0/2π = 170 kHz, corresponding to an in-
ferred exchange coupling strength J = 2.79 MHz. We set τp = 201 ns, and pulse amplitudes
Ac, At and relative phase φd are selected to maximize |ζ|.

To calibrate the drive frequency ωd and overall pulse amplitude A, we find the values
that maximize R. In Figure 4.4 (b), one observes a bandwidth of 40 MHz where maximal
R is achievable. There is also a region around A = 0.1 where R is approximately zero,
corresponding to ZZ interaction cancellation. To map the pulse to a CZ gate, local phase
corrections are calibrated by measuring the individual qubit Pauli Z error using Ramsey-type
experiments.

4.5.2 Local Z Gate Calibration

Here we outline how the local terms of the CZ gate are calibrated. After calibrating the
ZZ term of the Hamiltonian to the maximally entangling angle of π

2
, the operation of the

pulse on the qubits is of the form exp
(
− i

2

(
αIZ + βZI + π

2
ZZ
))

. To correct for phases
α and β such that the phases on each qubit are aligned to realize a CZ gate, we apply
virtual Z (VZ) gates [41] with angles ϕZI and ϕIZ after the entangling pulse, as illus-
trated in Fig 4.5 (a). With the VZ gates, the combined unitary applied to the qubits is
exp

(
− i

2

(
(α + ϕIZ) IZ + (β + ϕZI)ZI + π

2
ZZ
))

. To calibrate ϕZI , we prepare the control
qubit along the x-axis of the Bloch sphere |+⟩ = 1√

2
(|0⟩ + |1⟩), apply the CZ gate circuit,

and measure along the x-axis, as shown in Figure 4.5 (b). We sweep ϕZI and measure ⟨ZI⟩
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Figure 4.4: CZ Gate Calibration (a) Pulse sequence for calibrating the amplitude and
frequency of the CZ pulse. The target is prepared in superposition, followed by the CZ
pulse, and then tomographic pulses T are applied to measure the target qubit Bloch vector
ri for each control qubit state |i⟩ ∈ {0, 1}. The global pulse amplitude and frequency are
calibrated by selecting parameters that maximize entanglement measure R. (b) R as a
function of the CZ gate amplitude A and drive detuning from the target (ωd − ωt). There
is a band of frequencies where R is maximal to realize the CZ gate. There is also a pulse
amplitude around A = 0.1 where R is minimal, corresponding to ZZ cancellation.
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Figure 4.5: Local Z Gate Calibration (a) Quantum circuit for compiling a CZ gate using
the entangling CZ pulse and local Z corrections. (b) Local phase calibration experiment.
The control qubit is prepared along the x-axis of the Bloch sphere |+⟩ = 1√

2
(|0⟩ + |1⟩), and

measured in the x-basis via Y
(
π
2

)
, Y

(
−π

2

)
gates, respectively. (c) The local phase ϕZI is

swept while measuring ⟨ZI⟩ for both target preparation states |0⟩ (T0) and |1⟩ (T1). The
value of ϕZI is calibrated when each input state is mapped to the correct output state, i.e.,
|+, 0⟩ → |0, 0⟩ and |+, 1⟩ → |11⟩. This is analogously done for the target qubit local phase
ϕIZ .

when the target qubit is in |0⟩ and |1⟩, as shown in Figure 4.5 (c). The value of ϕZI is
calibrated when each input state is mapped to the correct output state, i.e., |+, 0⟩ → |0, 0⟩
and |+, 1⟩ → |11⟩. We fit the expectation values for both target preparations to and set the
calibrated value to the average of the two fit results. This experiment is analogously applied
for ϕIZ , exchanging the roles of the control and target qubit in the experiment.

4.6 Benchmarking

To assess gate performance, we perform randomized benchmarking (RB) [63, 64] experi-
ments. We first perform Interleaved Randomized Benchmarking (IRB) [99], shown in Fig-
ure 4.6 (a). The IRB protocol interleaves a gate of interest between a sequence of randomly
chosen Clifford gates, also called Clifford twirling, which randomizes gate errors to a depo-
larizing channel. The sequence fidelity is measured with increasing sequence length m and
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the decay parameter p is extracted by fitting to the exponential model P (m) = A · pm [100].
Because IRB estimates FCZ using exponential decays, it is insensitive to state prepara-
tion and measurement (SPAM) errors. The decay parameter for the interleaved experiment
pIRB = 0.9672(7) and the reference experiment pRB = 0.9744(9) give an estimate of the CZ
gate fidelity FCZ = 1 − d−1

d
(1 − pIRB/pRB) = 99.44(9)%, where d = 2n for n qubits (here

d = 4). The upper- and lower-bounds on gate fidelity estimates from IRB have been shown
to span orders of magnitude [69]. When pRB is comparable to pIRB, the IRB FCZ estimate
uncertainty increases. From these IRB results, the upper- and lower-bounds on FCZ are be-
tween 91.9(2)% and 99.96(1)%, spanning nearly 2 orders of magnitude in gate error (1-FCZ).

To reduce gate fidelity estimate uncertainty, we run the cycle benchmarking (CB) proto-
col [68], shown in Figure 4.6 (b). The CB protocol is similar to IRB, in that the gate, or cycle,
of interest is interleaved between randomly chosen gates. Instead of Clifford gates, in CB
the cycle is twirled with multi-qubit Pauli gates, which are tensor products of single-qubit
Pauli gates. Pauli twirling maps gate errors into stochastic Pauli errors, which are measured
by preparing each eigenstate of the multi-qubit Pauli basis, e.g. XX or Y Z for two-qubit
CB, and fitting the sequence fidelity to an exponential decay parameter (e.g., pXX , pY Z) as
a function of CB sequence length. The error rate ei = 1 − pi for Pauli eigenstate i measures
errors in the cycle that do not commute with that Pauli operator. We performed CB with
cycle lengths of m ∈ {2, 16, 32} for the CZ cycle, and for the empty cycle to estimate the
fidelity of the Pauli twirling gates, and extracted the error rate of each Pauli term, which is
plotted in Figure 4.6 (b). Averaging over all Pauli preparations, we extract average Pauli
decay parameters for both cycles pCZ = 0.98937(8) and pI = 0.99702(3). We then estimate
the CZ gate fidelity as in the IRB protocol, to be FCZ = 1 − d−1

d
(1 − pCZ/pI) = 99.43(1)%,

with a worst-case (best-case) fidelity bound of 97.52(2)% (99.764(5)%). Note that the in-
terval between these bounds from CB are narrower than that of IRB, because the fidelity of
the Pauli twirling operation is higher than Clifford twirling.

To understand how to reduce the CZ gate error, it is important to distinguish the dif-
ferent error sources. Different error types include coherent errors, such as mis-calibration,
stochastic errors, such as dephasing errors, and leakage errors, involving population transfer
to non-computational states of the system. We measure the leakage-per-gate using leakage
randomized benchmarking (LRB) [47, 66], realized by extracting |2⟩-state outcomes for Qc

and Qt in IRB experiments. We fit the qubit |2⟩-state population data shown in Figure 4.6
(c) to an exponential model [47, 66] for both reference RB and interleaved RB experiments.
We resolve the leakage-per-gate for each transmon to be 0.014% and 0.007% for Qc and Qt

respectively, indicating leakage is not a dominant source of errors for this gate.
To distinguish coherent and stochastic error sources, we perform purity benchmark-

ing [65, 67], which measures the decay of the purity of the two-qubit density matrix by
performing state tomography after Clifford RB sequences. Figure 4.6 (d) shows the pu-
rity decay curve, and the inset shows the breakdown of the Clifford process infidelity eF =
(1 − pRB) (1 − 1/d2) = 1.78(3) · 10−2 between coherent (eU = 0.37(3) · 10−2) and stochastic
(eS = 1.41(1) · 10−2) error types. The dominant source of error in the gate is stochastic
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Figure 4.6: Benchmarking Results (a) Interleaved RB. Exponential decay of Clifford
sequence fidelity (y-axis) for different Clifford sequence lengths with (gold) and without
(blue) the interleaved CZ gate. (b) Cycle Benchmarking results. The error rate ei is obtained
for the prepared Pauli eigenstate i from the exponential decay of sequence fidelity pi with
increasing sequence length. A larger error rate for a given Pauli eigenstate indicates errors
in the cycle that do not commute with the compiled Pauli term. The process infidelity is the
error averaged across Pauli terms. (c) Leakage Randomized Benchmarking. By monitoring
the |2⟩ state of each transmon when running an IRB experiment, the reference and interleaved
|2⟩ state population data are fit to an exponential model to extract the leakage-per-gate for
each transmon. (d) Purity Benchmarking distinguishes coherent from stochastic errors by
measuring the decay of the purity (main plot) of the two-qubit density matrix by performing
state tomography for each random Clifford RB sequence, and comparing the purity decay to
the RB decay. Inset: breakdown of Clifford process infidelity between coherent and stochastic
contributions.



CHAPTER 4. MICROWAVE-ACTIVATED TUNABLE COUPLING 69

error. We estimate the decoherence-limited Clifford process infidelity edecoh. using the mea-
sured T1 and T echo

2 for Qc (Qt) of T1 = 65(5)µs (T1 = 58(9)µs) and T echo
2 = 86(6)µs, (T echo

2 =
77(8)µs), and the average Clifford gate length of 389 ns, which gives edecoh. = 0.76·10−2. The
larger observed eS than the edecoh. suggests that other forms of stochastic error are present
beyond those introduced by relaxation and dephasing of the qubit transition levels. This
could be due to decoherence channels of higher transmon levels participating in the interac-
tion via state hybridization between computational and noncomputational levels during the
drive [91]. We measured reduced coherence when applying the CZ drive, described in the
supplementary material. To summarize, we measure the CZ gate fidelity to be 99.43(1)%,
with low leakage and the dominant source of remaining errors being stochastic error. The dis-
crepancy between stochastic error and predicted error from decoherence suggests additional
sources of stochastic error are present during the gate.

4.6.1 Coherence Dependence on Drive Amplitude

To investigate whether the CZ drive generated additional sources of incoherent noise, we
measured coherences and liftimes of the qubits when the CZ drive is on. In Figure 4.7 (a)
we show T1 versus CZ pulse amplitude, where little trend is observed, as expected. The
first 10 data points (about 5µs) were omitted from the time series data when fitting, due
to off-resonant driving of the transmons at high amplitudes which caused deviation from
exponential decay of the qubit populations. Further, in Figure 4.7 (b) T echo

2 is measured as
a function of CZ drive amplitude. We see that the echo time decreases with increasing CZ
pulse amplitude, consistent with the discrepancy between measured stochastic errors of the
gate and what is predicted by coherence estimates, described earlier. We also monitored
the average |2⟩-state population during in these experiments (not shown), and the largest
|2⟩ population of about 8% is observed on Qc when performing the echo experiment on Qc,
indicating off-resonant driving of the |1⟩ → |2⟩ transition of Qc.

4.6.2 Leakage Randomized Benchmarking

To estimate leakage-per-gate, we perform interleaved randomized benchmarking while resolv-
ing the |2⟩-state for both transmons (see Appendix A.1 for further details). Imperfect |2⟩-
state readout fidelity results in an underestimate of the leakage rate in a way approximately
proportional to the |2⟩-state readout infidelity (see [47] supplement). For our LRB experi-

ment, the readout fidelities for the three states are p
|0⟩
c = 0.996, p

|1⟩
c = 0.984, p

|2⟩
c = 0.975 for

the control transmon, and p
|0⟩
t = 0.996, p

|1⟩
t = 0.984, p

|2⟩
t = 0.962 for the target transmon,

suggesting that the leakage rates we measure are a few percent smaller than the actual leak-
age rates. We fit the observed |2⟩ state populations as a function of Clifford sequence length
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Figure 4.7: Coherence versus Drive Amplitude. (a) Qubit lifetimes T1 as a function of
CZ pulse amplitude. No visible trend is observed. (b) Measurements of T echo

2 versus CZ drive
amplitude for both qubits used in the gate in the main text. Error bars are uncertainties in
the fit. The coherence of the sample is reduced at larger CZ pulse amplitudes.

m from both the referenced and interleaved IRB experiments to the exponential model

P|2⟩ = B − Ae−Γm (4.27)

Γ = γ↑ + γ↓ (4.28)

B = γ↑/Γ, (4.29)

where γ↑ is the leakage rate and γ↓ is the seepage rate [47, 66]. Fitting both interleaved and
reference data-sets to this model, we extract the leakage-per-gate as γCZ

↑ = γIRB
↑ − γRB

↑ [84].

4.7 Discussion

We have demonstrated a tunable ZZ interaction between fixed frequency, fixed coupling
transmons using off-resonant, simultaneous charge drives. This tunable ZZ coupling enables
both cancellation and enhancement of the static ZZ interaction. We implemented a high
fidelity CZ gate that is resilient against drive crosstalk and static ZZ interactions during the
gate. We expect with this interaction one can leverage higher exchange coupling J between
qubits to further reduce CZ gate times, and multi-path couplers that suppress static ZZ [85]
can be combined with this drive to eliminate the unwanted ZZ during idling [75] or during
operation of other gates. Further, the off-resonant character of the interaction provides
drive frequency flexibility, reducing frequency crowding constraints with scaling up fixed
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Figure 4.8: Comparison of the direct CNOT, intrinsic CR, and CZ gates calibrated
on Sample B.

frequency, fixed coupling quantum processors. Quantifying multi-qubit errors of this gate
on a larger quantum processor, including spectator errors and simultaneous gate operation
with spectator ZZ cancellation, is a subject of future work. While we utilize this charge-
activated tunable ZZ interaction to implement a CZ gate, it can also be applied to simulation
of exotic quantum many-body physics, including the extended Bose-Hubbard model [101–
104] and nonreciprocal interacting photonic systems [105, 106], as well as realizing native
quantum stabilizer measurements [107], without the need for additional flux-based tunable
components.

As a final comparison, Figure 4.8 compares the benchmarking results for each entangling
gate calibrated on Sample B: the direct CNOT, intrinsic CR, and the CZ gate. Notably, the
estimated gate process errors are quite close for the CZ and direct CNOT gate, as measured
by CB. However, the leakage rate of the CZ gate was substantially lower than the direct
CNOT, more similar to the intrinsic CR gate, which may be explained by the difference their
respective gate times (direct CNOT was 147 ns, CZ was 200 ns, and intrinsic CR was 250 ns).
Both the intrinsic CR and the CZ also had similar unitary error eU , with the CZ error being
slightly smaller. This small difference may be due to the driven ZZ Hamiltonian commuting
with the static ZZ, however further study is necessary to determine these differences, as well
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as to determine the dominant coherent error sources in the CZ gate. The higher eU of the
direct CNOT gate may be explained by coherent errors from the additional drives.
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Chapter 5

Future Directions

In this thesis, we investigated microwave-activated entangling gates on the Trailblazer su-
perconducting quantum processor. As a prerequisite, we calibrated and benchmarked single-
qubit gates, finding that the static ZZ interaction and decoherence account for the measured
error rates. For the cross resonance gate, we explored two calibration techniques, and made
several improvements and discoveries. First, we mitigated leakage of the CR gate on a
low-anharmonicity sample using two-dimensional DRAG pulse shaping. On a separate sam-
ple with higher anharmonicity, we compared the direct CNOT gate calibration approach
with an intrinsic CR gate calibration, and found lower coherent errors on the intrinsic CR
gate, despite it being substantially longer. For both cases, the remaining process error was
consistent with errors from the static ZZ coupling. Following an observed increase in ZZ
interaction when applying a crosstalk-cancellation drive on a spectator qubit when operating
the CR gate, we discovered a microwave-activated tunable coupling. We studied this tun-
able coupling theoretically, numerically, and experimentally, finding good agreement with
experiments when crosstalk is accounted for. We then implemented a high-fidelity CZ gate
with the tunable coupling, and found the gate error was dominated by stochastic errors.

One overarching goal of the work in this thesis is to maximize performance of fixed
frequency, fixed coupling quantum processors. To this end, future QPU designs could in-
corporate the tunable coupling interaction as the native interaction, rather than the CR
interaction. The potential benefits for this are three fold: improved yield due to fewer fre-
quency collision constraints when compared to the CR gate [108], static ZZ cancellation
[51], and, as a consequence of the second point, higher exchange coupling J for faster gates.
For a qubit with 100µs T1, achieving a process error of 0.1% requires a two-qubit gate time
of 80 ns. Therefore, a path toward two-qubit gate performance of 10−3 would be to ap-
proximately double the coupling J . Importantly, this also increases the static ZZ coupling,
which scales with J2. This larger scaling of ζ0 with J is why J is generally kept small for
architectures based on the CR interaction, however with the tunable ZZ coupling presented
in Chapter 4, the static coupling can be cancelled.

While static ZZ cancellation is possible with the driven ZZ coupling, larger static ZZ
couplings require larger drive amplitudes to cancel, which worsens the drive-induced deco-
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herence presented in Figure 4.7. One additional way to temper the increased static ZZ rates
with J is to use multiple coupling paths between the qubits [23]. This allows a larger J/ζ0.
By incorporating multipath coupling elements, I estimate that we can maintain the same
static ZZ couplings, while nearly doubling the exchange coupling J . This suggests that two-
qubit gate times could be nearly halved, while maintaining similar single-qubit gate fidelities
without requiring active ZZ cancellation.

Finally, experiments utilizing this drive-induced interaction for implementing a two-qutrit
entangling gate are underway. Utilizing the |2⟩ state for computation has been shown to
enable hardware-efficient algorithms in this group [32], however this demonstration was based
on the static ZZ interaction between the qutrits and the CR interaction. Amplifying the
ZZ interaction via off-resonant drives could enable higher-fidelity quantum algorithms to be
implemented on qutrit systems.
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Appendix A

Appendix

A.1 Benchmarking

Benchmarking quantum circuits is the process of running standardized protocols and mea-
suring the fidelity, or error, of the outcomes. Benchmarking is crucial for understanding the
limitations of a given gate set in faithful execution of quantum circuits. In this section, I will
summarize the key protocols used in this thesis to benchmark the quantum gates studied,
namely isolated and simultaneous single-qubit gates, the direct CNOT gate, the intrinsic CR
gate, and the CZ gate.

A.1.1 Average gate fidelity and process fidelity

Starting from first principles, the simplest question to ask is, how to fully determine the
action of a quantum circuit? In general, any quantum circuit is a quantum channel, that is,
a completely positive (CP), trace-preserving linear operator that maps density matrices to
density matrices [38]. In particular, a quantum process Φ is termed a superoperator, because
it acts on density matrices, in contrast to standard quantum mechanical operators, which
act on wavefunctions.

Given an experimentally determined quantum process Φ, there are a couple of ways to
evaluate how well we have implemented the desired unitary U . Ideally, the unitary U acts
on a state |ψ⟩, and we can define the average gate fidelity F as simply the average state
fidelity between states generated by Φ(ρψ) and states generated by the ideal ρ†ψ, averaged
over input states ρψ

F (Φ, U) =

∫
dψ ⟨ψ|U †Φ(ρψ)U |ψ⟩ . (A.1)

In other words, F measures how well Φ approximates the U [109], with ρpsi = |ψ⟩ ⟨ψ| and
dψ is the uniform Haar measure over state space [109]. Essentially, this is the average state
fidelity over all possible (pure) input states. The average gate fidelity, or infidelity r = 1−F
is a common measure of gate performance.
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However, there is an important observation about r that is relevant for benchmarking
quantum gates. Native gates on a quantum computer that we want to benchmark in almost
all cases act on a subset of qubits, and the average gate fidelity does not account for effects
that Φ might have on the entanglement between the subsystem its acting on |ψ⟩ and the rest
of the quantum computer. A measure that is more relevant to quantum error correction [110]
is the process fidelity, or sometimes called entanglement fidelity.

The process fidelity can be understood by invoking the channel-state duality, known as
the Choi-Jamiolkowski isomorphism [111, 112], which represents the quantum process Φ as a
density matrix ρΦ, often called the Choi matrix, of the form A⊗B for input density matrices
A and output density matrices B

ρΦ =
1

d

∑
i,j

Eij ⊗ Φ(Eij), (A.2)

where Eij is the d × d matrix with value 1 at row i and column j, but is 0 elsewhere.
Note that, the trace-preserving property of Φ is equivalent to TrB[ρΦ] = I/d, and the unital
property (normally presented via the operator-sum representation of Φ as

∑
iK

†
iKi = 1 [38]

for Kraus operators Ki) given by TrA[ρΦ] = I/d. Now, the process fidelity F for a quantum
operation Φ is simply the state fidelity of the experimentally measured Choi matrix, with
the ideal Choi matrix

F = Tr[ρ
(ideal)
Φ ρ

(exp.)
Φ ]. (A.3)

Note that the equation for state fidelity used here assumes that ρ
(ideal)
Φ is a pure state, since

generally ideal quantum circuits are unitary. If this is not the case, the more general formula
for state fidelity must be used.

Importantly, the average gate fidelity F and process fidelity F are related via [109]

F =
dF + 1

d+ 1
. (A.4)

Note that the average gate fidelity is always larger than the process fidelity. For this reason,
and because process fidelity considers entanglement preservation with other subsystems as
described in [110], process fidelity should be the metric used to benchmark quantum pro-
cesses, as opposed to average gate fidelity. To give a sense for how much these quantities
differ, For two-qubit gates, d = 4, so F = 1

5
+ 4

5
F . A measurement reporting F = 99%

gives an F = 98.75%. Thus, choosing whether to report gate fidelity or process fidelity, can
impact whether a gate is perceived to be “below threshold” for quantum error correction.
We again stress that gate fidelity is inappropriate to use for this comparison.

A.1.2 Process infidelity and Quantum Error Correction
Thresholds

In the context of quantum error correction (QEC), there is a critical error threshold for a
QEC code where, if the physical operations are below this threshold, the logical error rate will



APPENDIX A. APPENDIX 77

reduce with growing system size, enabling the implementation of logical qubit storage, logical
gates, and eventually fault-tolerant quantum computation, ushering in a new paradigm of
computing power. The error thresholds reported in QEC codes typically are modeled as a
general depolarizing error rate per QEC cycle p, and each operation (e.g. preparation, gate,
storage, measurement) are assumed to have the same error rate.

So, how do we compare measures like process error eF to the QEC error thresholds? In
the case of more general and physically realistic errors, the QEC threshold error rate for
quantum channel E can be characterized by the diamond-distance from the identity [113]
ϵ (E)

ϵ (E) =
1

2
||E − I||⋄ = supψ

1

2
|| [E ⊗ Id − Id2 ] (ψ) ||1, (A.5)

which measures the worst-case error between two quantum channels. Here, || · ||1 is the trace
norm. While RB cannot measure the diamond-norm directly, measuring the process error
eF can be used to bound it [70, 114]:

eF ≤ ϵ (E) ≤ d
√
eF . (A.6)

Essentially, if gate errors are coherent, this means that the worst case error given a particular
input state, could be much larger than the overall process error, since coherent errors can
affect some input states much more than others. So, if coherent errors are substantial, then
the worst-case error rate may be much higher than the average case. Stochastic Pauli errors
on the other hand saturate the lower bound of equation A.6. Note that, while the upper
bound listed in equation A.6 is not known to be tight, the scaling with eF is optimal [115].
The implication of the right-hand inequality in equation A.6 is that, an RB estimate of eF
could indicate a ϵ error orders of magnitude larger than what is reported by RB. However,
utilizing a software protocol called Randomized Compiling, which converts coherent errors
to incoherent errors on average, when running quantum algorithms is one way to bring
predictions of algorithm performance by RB metrics and actual algorithmic performance
into agreement [39].

A.1.3 Benchmarking protocols for measuring eF

Because Φ is a linear operator, it can be represented as a matrix in the vector space of density
matrices, and therefore determining Φ amounts to measuring all of the matrix elements of
Φ, by preparing a spanning set of input density matrices, and measuring a spanning set of
the output density matrices; this is called quantum process tomography (QPT). QPT is a
natural approach is to measure Φ.

As QPT amounts to determining the elements of a matrix that maps density matrices
to density matrices, the naive complexity of QPT is O(d4), where d = 2n is the Hilbert
space dimension of n qubits [64]. Therefore, while in principle giving complete information
of the quantum process, it does not scale well with increasing system size. Furthermore,
state preparation and measurement (SPAM) errors limit the precision with which Φ can
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be determined [116]. An extension of QPT, called Gate Set Tomography (GST) [117], is a
SPAM-independent way to determine Φ, however GST also scales exponentially with system
size.

Because of scalability and precision challenges posed by measuring Φ precisely, an al-
ternative approach called Randomized Benchmarking (RB) [63, 64] has become a standard
procedure for benchmarking quantum gates. Rather than determining a specific process
matrix Φ, RB protocols and their extensions measure the average gate fidelity F , and via
equation A.4, the process fidelity F can be determined.

The two main varieties of benchmarking protocols used in this thesis are Randomized
Benchmarking (RB) [63, 64] protocols, and Cycle Benchmarking [68]. The RB protocol is an
industry-standard technique to measure average error rates of random sequences of Clifford
circuits (see definition of Clifford gates in the next paragraph), which can be thought of as
running net-identity circuits that take random paths through Hilbert space [118]. While
coherent errors and incoherent errors in the gates will affect each individual path differently,
the errors of the average trajectory behave as if all errors are depolarization errors. That is,
the error channel becomes a depolarizing channel Λ acting on density matrix ρ0

Λ(ρ0) = pUρ0U
−1 + (1 − p)

1

d
, (A.7)

where p is the depolarization constant and U is the target unitary to be implemented (for
the identity operation, U = 1). Intuition for how Clifford twirling tailors generic noise
into depolarizing noise comes from the notion the definition of twirling a quantum channel.
Twirling a quantum channel Φ is simply the operation of conjugating Φ with random uni-
taries. A given quantum channel Φ may have coherent and incoherent error sources, but
because the Clifford group forms a unitary 2-design [118], performing the twirled operation
ΦT ≡

∫
dUU †Φ(UρU †)U , where the integral is over the uniform (Haar) measure dU on the

space of d×d unitary matrices [109], is well approximated by twirling Φ over random Clifford
gates. The randomness over Hilbert space converts errors, in a statistical sense, onto a de-
polarizing channel, which is a purely random error channel on the state, having no preferred
direction in Hilbert space.

Clifford RB measures the depolarization constant p by performing random identity-
equivalent Clifford circuits of increasing depth m, measuring the decay of the survival proba-
bility P (m), and fitting P (m) = A0p

m +B0, where A0 and B0 contain state preparation and
measurement (SPAM) error information. Specifically, this is done efficiently by selecting
N randomly-sampled, length-m sequences of n-qubit Clifford operations, drawn from the
Clifford group, which is defined as the group that normalizes the n-qubit Pauli group Pn

Cn = {V ∈ U2n | VPnV
† = Pn}. (A.8)

The n-qubit Clifford group is generated by the single-qubit Hadamard (H) and S =
√
Z
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gates, and the two-qubit CNOT gate

H =
1√
2

(
1 1
1 −1

)
(A.9)

S =

(
1 0
0 i

)
(A.10)

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (A.11)

Note that while RB protocols don’t tell the type of errors present in a gate, the error rates
reported by RB are insensitive to SPAM errors, unlike QPT. Furthermore, it requires fewer
experiments per qubit than GST, and is therefore more scalable.

Once the depolarization parameter p is estimated, modifications to the standard RB
protocol allow estimation of fidelity of a particular gate (via interleaved RB [99]), of the
coherent and incoherent relative error contributions (via purity benchmarking [67, 69]), and
of the leakage rate (via leakage RB [47, 66]). Crosstalk errors can be characterized by
comparing single-qubit RB decay rates when performing single-qubit gates simultaneously,
and in isolation [87]. In the next sections, I will describe in further detail the different forms
of RB protocols, as well as Cycle Benchmarking.

A.1.4 Standard RB, Single and Two-qubit

Standard, or Clifford, RB gives an estimate of the depolarization constant p corresponding to
the random circuits run. From these decay parameters, the process infidelity of the average
Clifford gate can be estimated as eCF = d2−1

d
(1 − p), where d = 2n is the Hilbert space

dimension for n qubits. Another commonly reported measure is the average error per cycle
(EPC) r = d−1

d
(1 − p) = d

d+1
eCF , which is notably always lower than the per-cycle process

infidelity.
Single-qubit RB experiments are generally done simultaneously, as plotted in Figure A.1

(b), from which a simultaneous single-qubit Clifford process fidelity is extracted for each
qubit. This can be compared to single-qubit RB performed in isolation (Figure A.1 (a)) to
obtain a measure of crosstalk [87]. Simultaneous single-qubit RB for two qubits tends to be
in the range of e1Q,simF ∼ 3 × 10−3, with precise measurements reported in Figure 3.15.

A.1.5 Interleaved RB

Interleaved RB (IRB), shown in Figure A.1 (d) is a way to estimate the fidelity of a particular
gate G, by interleaving G between the random Clifford gates in a standard RB sequence [99].
Note that for Clifford RB, G must itself be in the Clifford group. Interleaving a gate of
interest with randomly sampled gates is defined as “twirling” the gate G. From these two
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Figure A.1: Benchmarking circuits (a) Isolated single-qubit Randomized Benchmark-
ing (b) Simultaneous single-qubit Randomized Benchmarking (c) Two-qubit Randomized
Benchmarking, with possible leakage detection with |2⟩-state readout (d) Interleaved Two-
qubit RB, with similar option for quantifying leakage as RB(e) Extended / Purity RB. Using
state tomography to measure decay of purity, i.e. ‘unitarity’ (f) Cycle Benchmarking, a more
scalable, precise, and measure for general cycle fidelity as compared to Clifford RB.
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Metric Name Symbol Relation to p or other Comments

Depolarization
constant

p 1

Depolarization
error

ed 1 − p

Process/Entanglement
error

eF
d2−1
d2

(1 − p) Independent of d

Process/Entanglement
fidelity

F 1 − eF

Error per
Cycle (EPC)

r d−1
d

(1 − p) = d
d+1

eF

Error per Gate
(EPG)

EPG r/ng
Upper bounds gate
error from IRB [77]

Interleaved
gate/cycle error

rc
d−1
d

(1 − pc/p) via IRB; large uncertainty [69]

Unitarity u via XRB[67]
Stochastic
error

eS 1 −
√
u (1 − 1/d2) + 1/d2 via XRB[67]

Unitary
error

eU eF − eS via XRB[67]

Leakage
rate

L1 via LRB[47, 66]

Table A.1: Names, symbols, and relationships of various benchmarking parameters used in
this thesis.

experiments, the decay parameters for the circuits with the interleaved gates and for standard
are measured pIRB and pRB. The standard way to estimate the process infidelity for the gate
of interest eg from IRB is given in Table 3.3.2, however this is subject to a large systematic
uncertainty when gate errors have coherent components [69]. The lower- and upper-bounds
on eg, denoted eg,L and eg,U are given in Equation A.12, with error bars saturated from
below in the case of stochastic errors (meaning state purity decays as p2RB), and from above
by fully coherent errors, corresponding no decay of state purity. These bounds can be more
precisely estimated using Extended, or Purity RB (XRB), described next.

A.1.6 Extended RB

Extended RB (XRB) or Purity RB, shown in Figure A.1 (e) allows estimation of the unitary
eU and incoherent or stochastic (eS) contributions to the overall process infidelity eF , by
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performing full state tomography after each RB sequence. This is because stochastic errors
contribute to the decay of state purity, while unitary errors do not contribute. Additionally,
measuring the unitarity with this method enables improved bounds of the worst/best case
error bounds on interleaved cycle fidelity [69],. To estimate the worst/best case infidelity
bounds eIU , eIL of a gate, the decay parameters pIRB, pRB, and purity decay (or ‘unitarity’)
u are estimated via IRB, RB, and XRB experiments respectively. From these parameters,
eIU , eIL are estimated via

eg,U = 1 −

(
pCpR
u

−

√(
1 − p2R

u

)(
1 − p2C

u

))
(A.12)

eg,L = 1 −

(
pCpR
u

+

√(
1 − p2R

u

)(
1 − p2C

u

))
. (A.13)

Note that, if the unitarity is not known or measured, using u = 1 (i.e. purely coherent error)
gives the worst case bounds of the upper and lower bounds of the gate process infidelity, while
setting u = p2RB (i.e. purely stochastic error) gives the best case upper and lower bounds.

A.1.7 Leakage RB

Leakage RB is an extension of an RB experiment where populations of the non-computational
(e.g. |2⟩) states of the transmons are also measured [47, 66]. This enables the estimation of
the leakage rate of the average Clifford gate, and also of the interleaved gate, in the case of
an IRB experiment with |2⟩-state measurement enabled. The leakage rate of the gate set is
important because leakage is often not accounted for in most QEC threshold calculations,
and methods used to address them often increase the resource overhead of QEC cycles [62,
119]. To benchmark the leakage-per-cycle of a RB experiment, we perform the same analysis
as was done in [47], where the average |2⟩-state population after m e.g. Clifford cycles is
modeled via the rate equation

p|2⟩(m+ 1) = p|2⟩(m) + L1

(
1 − p|2⟩(m)

)
− L2

(
p|2⟩(m)

)
, (A.14)

where L1 (L2) is the leakage (seepage) rate per Clifford. From the rate equation above for
p|2⟩, which is only valid when averaged over all Clifford circuit instances, the solution is

p|2⟩ = C(1 − Γ)m + p∞, p∞ =
L1

Γ
,Γ = L1 + L2. (A.15)

When Γ ≪ 1, the solution can be replaced with

p|2⟩ = (p|2⟩(0) − p∞)e−Γm + p∞, (A.16)

and estimating L1 and L2 amounts to fitting the p|2⟩(m) data to this model.
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In terms of leakage effects in quantum error correction, it generally reduces the error rate
threshold of a QEC code by requiring additional circuitry like Leakage-Reduction-Units to
mitigate [120]. In one notable work [121], it was found that the error threshold was reduced
by only a factor of 2 when leakage and depolarizing noise rates are comparable, assuming
three-outcome measurements. From this, a rule of thumb seems to be to reduce leakage rate
L1 below the depolarizing noise rate.

To give a sense of leakage rates among two-qubit gates in superconducting qubit sys-
tems, ref. [96] found leakage rates per cycle (or per gate) L1 ∼ 5 × 10−4. With gates of
this form, leakage errors have been studied and mitigated in the bit-flip error correction
code [122], showing an enhanced error suppression factor when unconditional reset is im-
plemented. This suggests that leakage rates of this magnitude are manageable with reset
schemes. The leakage-per-gate measured by the intrinsic CR gate (Figure 3.15) and the CZ
gates (Figure 4.6 in this thesis) are comparable to that measured in [96]. The leakage of the
direct CNOT on sample A (Figure 3.10), however, is higher, around 3×10−3, suggesting that
the anharmonicity for this sample is too low for low-leakage gates, or alternative methods
to mitigate leakage on samples with lower anharmonicities are needed.

A.1.8 Cycle Benchmarking

Figure A.1 (f) shows the quantum circuit for the Cycle Benchmarking (CB) protocol [68].
While RB typically uses the Clifford group as the randomizing/twirling group, CB uses the
Pauli group. Importantly, Clifford twirling converts general errors into a depolarization error
as in equation A.7, while Pauli twirling converts general errors into Pauli errors eP, realizing
the quantum operation Λ

Λ(ρ) =
∑

P∈{I,X,Y,Z}⊗n

µ(P )PρP †, (A.17)

where µ(P ) is a probability distribution. In CB, µ(P ) of the dressed cycle is measured by
preparing each Pauli eigenstate with the corresponding basis gates B in Figure A.1 (f). The
Pauli twirling gates P ensure that the cycle (indicated in the brackets) is a Pauli depolariza-
tion channel with exponential decays pP for each preparation, measured via the exponential
decay of the prepared eigenstate as a function of cycle length m. Note that the cycle lengths
m are typically chosen such that the net operation of the cycle G after m repetitions is the
identity, Gm = 1. Also, the basis measurement gates B at the end are in general different
than the preparation basis gates at the beginning, and are calculated by computing the
action of the cycle on the input Pauli state.

To estimate the bare cycle fidelity, similar to IRB, the dressed cycle fidelity is estimated
by performing CB with the cycle of interest interleaved with the Pauli gates, while the fidelity
of the twirling gates themselves (the ‘reference’ circuit) are separately measured. Estimating
the gate fidelity and worst/best case fidelity bounds are then estimated in the same way as
in IRB.
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More explicitly, any quantum channel Λ can be expressed via the Kraus representation

Λ(ρ) =
d2∑
k=0

AkρA
†
k,

∑
k

A†
kAk = 1. (A.18)

If the quantum channel is a noisy gate with ideal unitary U , the noise can be on average
converted to Pauli errors by inserting random Pauli gates between the gate of interest U [68,
123]. With Pauli noise, the Kraus operators Ak are of the form

Ak =

√
ek

d2 − 1
PkU, k ̸= 0 (A.19)

A0 =
√
a0P0U (A.20)

a0 = 1 − eP (A.21)

eP =
1

d2 − 1

d2∑
k=1

ek, (A.22)

where ek is the error probability for n-qubit Pauli operator Pk, and P0,a0 are the identity op-
erator and probability of no error. By preparing input states that are n-qubit Pauli operators
and measuring their expectation value by choosing the corresponding measurement basis, the
exponential decays with sequence length Apmk can be isolated and fitted, giving pk = 1 − ek
and avoiding the issue of fitting to multiple decays, similar to character benchmarking [124].
With these decays, the overall process fidelity a0 can be computed.

Note that while CB is used here as a way to determine the process fidelity of a gate
such as IRB, CB can be used on general, multi-qubit cycles. The dressed fidelity of a given
cycle corresponds to the estimated process fidelity of that cycle when running a randomly-
compiled algorithm and thus the goal of CB is to predict performance of general cycles in
an algorithm.

While general benchmarking protocols like those presented here offer a general way to
evaluate a quantum computer, and to try to render their performance more predictable,
application-specific benchmarking protocols also provide valuable insight into how general
quantum computer performance actually is. Indeed, it has been shown that performance of
current superconducting quantum hardware can vary substantially, depending on the type
of circuits being run. One notable work is the application of structured mirror-type circuits,
which were demonstrated to exhibit very different performance on commercial quantum sys-
tems than randomized methods [125]. Nevertheless, general benchmarking methods remain
valuable as a way to estimate future quantum computer performance, to provide guidance
into which sources of error are most important to reduce in pursuit of bringing physical error
rates below the quantum error correction threshold [126].
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76V. Neĝırneac, H. Ali, N. Muthusubramanian, F. Battistel, R. Sagastizabal, M. S. Moreira,
J. F. Marques, W. Vlothuizen, M. Beekman, N. Haider, A. Bruno, and L. DiCarlo, “High-
fidelity controlled-Z gate with maximal intermediate leakage operating at the speed limit
in a superconducting quantum processor”, arXiv:2008.07411 [quant-ph], arXiv: 2008.07411
(2020).

77J. Stehlik, D. M. Zajac, D. L. Underwood, T. Phung, J. Blair, S. Carnevale, D. Klaus, G. A.
Keefe, A. Carniol, M. Kumph, M. Steffen, and O. E. Dial, “Tunable Coupling Architecture
for Fixed-frequency Transmons”, arXiv:2101.07746 [quant-ph], arXiv: 2101.07746 (2021).

78Y. Sung, L. Ding, J. Braumüller, A. Vepsäläinen, B. Kannan, M. Kjaergaard, A. Greene,
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C. A. Ryan, and M. Steffen, “Self-consistent quantum process tomography”, Phys. Rev.
A 87, 062119 (2013).

117D. Greenbaum, “Introduction to quantum gate set tomography”, arXiv:1509.02921 [quant-
ph] (2015).

118C. Dankert, R. Cleve, J. Emerson, and E. Livine, “Exact and approximate unitary 2-
designs and their application to fidelity estimation”, Phys. Rev. A 80, 012304 (2009).

119A. G. Fowler, “Coping with qubit leakage in topological codes”, Phys. Rev. A 88, 042308
(2013).

120P. Aliferis and B. M. Terhal, “Fault-tolerant quantum computation for local leakage
faults”, arXiv:quant-ph/0511065 (2006).

121M. Suchara, A. W. Cross, and J. M. Gambetta, “Leakage suppression in the toric code”,
Quantum Info. Comput. 15, 997–1016 (2015).

122M. McEwen, D. Kafri, Z. Chen, J. Atalaya, K. J. Satzinger, C. Quintana, P. V. Klimov,
D. Sank, C. Gidney, A. G. Fowler, F. Arute, K. Arya, B. Buckley, B. Burkett, N. Bushnell,
B. Chiaro, R. Collins, S. Demura, A. Dunsworth, C. Erickson, B. Foxen, M. Giustina, T.
Huang, S. Hong, E. Jeffrey, S. Kim, K. Kechedzhi, F. Kostritsa, P. Laptev, A. Megrant,
X. Mi, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Niu, A. Paler, N. Redd, P. Roushan,
T. C. White, J. Yao, P. Yeh, A. Zalcman, Y. Chen, V. N. Smelyanskiy, J. M. Marti-
nis, H. Neven, J. Kelly, A. N. Korotkov, A. G. Petukhov, and R. Barends, “Removing
leakage-induced correlated errors in superconducting quantum error correction”, Nature
Communications 12, 1761 (2021).

123E. Knill, “Quantum computing with realistically noisy devices”, Nature 434, 39–44 (2005).
124A. Carignan-Dugas, J. J. Wallman, and J. Emerson, “Characterizing universal gate sets

via dihedral benchmarking”, Phys. Rev. A 92, 060302 (2015).
125T. Proctor, K. Rudinger, K. Young, E. Nielsen, and R. Blume-Kohout, “Measuring the

capabilities of quantum computers”, Nature Physics 18, 75–79 (2022).

https://doi.org/https://doi.org/10.1016/0034-4877(72)90011-0
https://doi.org/https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1088/1367-2630/11/1/013061
https://doi.org/10.1088/1367-2630/11/1/013061
https://doi.org/10.1088/1367-2630/16/10/103032
https://doi.org/10.1088/1367-2630/16/10/103032
https://doi.org/10.1088/1367-2630/18/1/012002
https://doi.org/10.1103/PhysRevA.87.062119
https://doi.org/10.1103/PhysRevA.87.062119
http://arxiv.org/abs/1509.02921
http://arxiv.org/abs/1509.02921
https://doi.org/10.1103/PhysRevA.80.012304
https://doi.org/10.1103/PhysRevA.88.042308
https://doi.org/10.1103/PhysRevA.88.042308
http://arxiv.org/abs/quant-ph/0511065
https://doi.org/10.1038/s41467-021-21982-y
https://doi.org/10.1038/s41467-021-21982-y
https://doi.org/10.1038/nature03350
https://doi.org/10.1103/PhysRevA.92.060302
https://doi.org/10.1038/s41567-021-01409-7


BIBLIOGRAPHY 95

126Google Quantum AI, Z. Chen, K. J. Satzinger, J. Atalaya, A. N. Korotkov, A. Dunsworth,
D. Sank, C. Quintana, M. McEwen, R. Barends, P. V. Klimov, S. Hong, C. Jones, A.
Petukhov, D. Kafri, S. Demura, B. Burkett, C. Gidney, A. G. Fowler, A. Paler, H. Putter-
man, I. Aleiner, F. Arute, K. Arya, R. Babbush, J. C. Bardin, A. Bengtsson, A. Bourassa,
M. Broughton, B. B. Buckley, D. A. Buell, N. Bushnell, B. Chiaro, R. Collins, W. Court-
ney, A. R. Derk, D. Eppens, C. Erickson, E. Farhi, B. Foxen, M. Giustina, A. Greene,
J. A. Gross, M. P. Harrigan, S. D. Harrington, J. Hilton, A. Ho, T. Huang, W. J. Hug-
gins, L. B. Ioffe, S. V. Isakov, E. Jeffrey, Z. Jiang, K. Kechedzhi, S. Kim, A. Kitaev, F.
Kostritsa, D. Landhuis, P. Laptev, E. Lucero, O. Martin, J. R. McClean, T. McCourt, X.
Mi, K. C. Miao, M. Mohseni, S. Montazeri, W. Mruczkiewicz, J. Mutus, O. Naaman, M.
Neeley, C. Neill, M. Newman, M. Y. Niu, T. E. O’Brien, A. Opremcak, E. Ostby, B. Pató,
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