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NONLINEAR PRINCIPAL COMPONENT ANALYSIS

JAN DE LEEUW

A. Two quite different forms of nonlinear principal component

analysis have been proposed in the literature. The first one is associated

with the names of Guttman, Burt, Hayashi, Benzécri, McDonald, De

Leeuw, Hill, Nishisato. We call it multiple correspondence analysis. The

second form has been discussed by Kruskal, Shepard, Roskam, Takane,

Young, De Leeuw, Winsberg, Ramsay. We call it nonmetric principal

component analysis. The two forms have been related and combined,

both geometrically and computationally, by Albert Gifi. In this paper

we discuss the relationships in more detail, and propose an alternative

algorithm for nonlinear principal component analysis which combines

features of both previous approaches.

This paper was originally presented at COMPSTAT 1982 in Toulouse,

France. It was published previously in H. Caussinus, P. Ettinger, and R.

Tomassone (eds) COMPSTAT 1982, Wien, Physika Verlag, 1982, 77-86.

1. I

We suppose that the reader is familiar with multiple correspondence anal-

ysis and with nonmetric principal component analysis. For multiple cor-

respondence analysis we refer to Cazes et al. [1977] and to Lebart et al.
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Key words and phrases. correspondence analysis, nonmetric scaling. multidimensional
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2 JAN DE LEEUW

[1977]or to Hill [1974] and Nishisato [1980]. We only discuss a compar-

atively simple case, the many interesting generalizations developed espe-

cially in Toulouse could in principle also be fitted into our framework. For

nonmetric principal component analysis we refer to Kruskal and Shepard

[1974] or Young et al. [1978]. Again we study a simple special case of this

technique. For previous attempts to integrate the two approaches we refer

to De Leeuw and Van Rijckevorsel [1980], De Leeuw et al. [1981] and Gifi

[1981].

2. N P C 

Suppose L1 · · · ,Lm are closed subspaces of a separable Hilbert space H ,

with inner product < ., . >, norm ‖.‖, and unit sphere S. For each choice

of elements y j ∈ L jS, the intersection of L j and S, we can compute the

matrix R(yi, · · · , ym) with elements r j`(y1, · · · , ym) =< y j, y` >. This matrix

is a correlation matrix, in the sense that it is positive semi-definite and has

diagonal elements equal to unity. The problem of nonmetric principal com-

ponent analysis (NCA) is to find y j ∈ L jS in such a way that the sum of the

p largest eigenvalues of the matrix R(yi, · · · , ym) is maximized (or, equiva-

lently, the sum of the m−p smallest eigenvalues is minimized). Observe that

for different choices of p this defines a different problem. In some cases we

shall not only be interested in solutions that maximize our criterion, but we

shall be interested in all solutions of the stationary equations corresponding

with the maximization problem.

It is clear that NCA generalizes ordinary principal component analysis, in

which the subspaces L j are one-dimensional. Our formulas deal with a

somewhat restricted form of NCA, because most of the literature we have

mentioned treats the more general case in whichL j is a closed convex cone.
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Tenenhaus [1982] even discusses the case of a possibly infinite number of

convex cones. There is another serious restriction of generality in most of

our paper: we suppose that all L j are finite-dimensional. For notational

convenience we shall even suppose that dim(L j) is the same for all j, but

this last assumption is in no way essential. We use orthonormal bases for

each of the L j and collect them in the n × q matrices G j. Here q is the

common dimensionality of the L j and n is the dimensionality ofH . We do

not necessarily assume that n is finite. If n is not finite, then G j is simply an

ordered q-tuple of elements of H , and all “matrix operations” we use have

their obvious interpretations.

Thus y j = G jα j is in L jS if and only if the q-vector α j satisfies α′jα j = 1.

Then r j`(y, · · · , ym) = α′jC j`α`, where C j` is the q × qmatrix defined by

C j` = G′jG`. Observe that for all j it is true that C j j = I, the identity of order

q. It is also convenient to define the n ×mq supermatrix G = (G1 | · · · | Gm)

and the mq × mq supermatrix C = G′G. The supermatrix C is sometimes

called the Burt table of the NCA problem, observe that it depends on the

choice of the bases.

A useful operation for our purposes is the direct sum of a number of matri-

ces [McDuffee, 1946, p. 81]. If X and Y are matrices of dimension a × b

and c × d, then the direct sum is the (a + c) × (b + d) matrix

X u Y =

X 0

0 Y

 .

The extension to direct sums of more than two matrices is obvious. We now

define A as the mq×rn matrix α1u · · ·uαm. In this notation R(y1, · · · , ym) =

A′CA, provided that A′A = I.



4 JAN DE LEEUW

It follows that σp(y1, · · · , ym), the sum of the p largest eigenvalues of the

correlation matrix R(y1, · · · , ym) has the representation

(1) σp(y1, · · · , ym) = max{tr T ′A′CAT }

with T varying over the rn × p matrices satisfying T ′T = I. Thus max-

imization of σp(y1, · · · , ym) over y j ∈ L jS amounts to the same thing as

maximization of tr T ′A′CAT over all m × p matrices T satisfying T ′T = I

and all mq × m matrices A of the form A = α1 u · · · u αm also satisfying

A′A = I. If A and T satisfy these restrictions, and U is the mq × p matrix

AT , then U′U = I, and U consists of m submatrices U j, of dimension qxp,

and of the form U j = α jt
′
j, with t j row j of T . Thus U is blockwise of rank

one, each subspace L j defines a block.

We can now define

(2) σp(L1, · · · ,Lm) = max tr U′CU

with U varying over all orthonormal mq × p matrices which are blockwise

of rank one. The NCA problem is to compute σp(L1, · · · ,Lm) and to find

the maximizer U of the required form.

We now derive the stationary equations of the NCA problem. From (1) we

must have

(3) RT = TΩ,

with Ω a symmetric matrix of order p. For identification purposes we can

actually assume that Ω is diagonal. Also remember that R = A′CA. Differ-

entiation of (1) with respect to the α j gives the equations

(4)
m∑
`=1

γ j`C j`α` = θ jα j
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where Γ = {γ j`} is defined by Γ = TT ′, where the θ j are undetermined mul-

tipliers, and where the α j satisfy α′jα j = 1. It follows from (3) and (4) that at

a solution Θ = diag(TΩT ′), and thus (tr)(Θ) = tr(Ω). Most algorithms for

NCA are based on alternating solution of (3) for T , given A, and solution

of (4) for A, given T .

Although (3) and (4) can be used to construct convergent algorithms for

finding stationary points [Gifi, 1981] they give little insight into the math-

ematical structure of the NCA problem. It is not at all clear, for example,

if (3) and (4) have more than one solution. and if so, how these different

solutions are related. There is one fortunate exception. If p = 1, i.e. if we

choose y j ∈ L jS in such a way that the largest eigenvalue of R(y1, · · · , ym)

is maximized. then the requirement that U is blockwise of rank one is no

restriction at all, and thus the problem is maximizing u′Cu over u′u = I,

where we have written u instead of U, because U is of dimensions mq × 1.

The solutions to the NCA problem with p = 1 are consequently the eigen-

vectors of C. A little reflection shows that p = m − 1, i.e. the solution

for y j ∈ L jS minimizing the smallest eigenvalue of R(y1, · · · , ym) gives the

identical result. If v is an eigenvector of C, v′v = 1, eigenvalue µ, then we

can partition it into blocks v j, each with q elements. If a block is nonzero

we set α j =
v j

v′jv j
, if a block is zero α j is an arbitrary unit length vector.

Moreover t j =
√

v′jv j , i.e. u j = v j. Remember that in this case T is m × 1,

its elements are written simply as t j. Also θ j = µv′jv j and ω = µ. It is of

some interest to observe that µ is not always the largest eigenvalue of the

corresponding matrix R with elements r j` = α
′
jC j`α`. More precisely: if µ

is the largest eigenvalue of C then ω = µ is also the largest eigenvalue of

the corresponding R, and the same thing is true for the smallest eigenvalue

of C. But no such thing is true for the intermediate eigenvalues.
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3. M C A

The last paragraph brings us naturally to multiple correspondence analysis

(MCA). This is defined simply as the computation of some or all of the

eigenvalues and eigenvectors of C. Accordingly each solution of

(5) Cv = µv

will be called an MCA solution. In a more restricted sense we can also call

the problem of computing

(6) ρp(L1, · · · ,Lm) = max tr V ′CV

with V varying over all orthonormal mq × p matrices the MCA problem.

This makes it more similar to the NCA problem. The main difference be-

tween the two, from this point of view, is that the MCA problem is nested,

i.e. the solution for p − 1 are the first p − 1 dimensions of the solution for

p. Although each choice of p defines a different MCA problem the various

solutions are closely related. In fact they can all be constructed from the

mq solutions of (5). Another obvious difference between NCA and MCA is

that computing (6) gives p different elements of each L jS, and thus p dif-

ferent correlation matrices. Each of these correlation matrices has at least

one eigenvalue equal to the corresponding µ of (5), and usually only one.

Computing (2) on the other hand gives only one solution for the y j, thus

only one correlation matrix, of which the p largest eigenvalues are equal to

Ω = U′CU = T ′RT . In Gifi’s terminology there is multiple selection from

L jS in MCA, there is single selection from L jS in NCA (for selection Gifi

also uses transformation or quantification. depending on the context, cf

infra).
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Before we study the relations between NCA and MCA in more detail, we

must make one important comment. Interpreting NCA and MCA as gener-

alizations of ordinary principal component analysis is only one possibility.

We then use the fact that these techniques can be interpreted as optimizing

some property of the correlation matrix before performing the actual prin-

cipal component analysis. This particular interpretation is natural in some

contexts, for example if L j is defined as a subspace of possible transfor-

mations or quantifications of an element of H . Sometimes, however, the

notion of quantification or transformation does not make much sense, be-

cause the variable is purely nominal and a one-dimensional arrangement of

its possible values is somewhat far-fetched. In these cases it is usually more

sensible to interpret NCA and MCA as multidimensional scaling techniques

which map objects or individuals into low-dimensional space in such a way

that some criterion defined in terms of distance and/or separation is opti-

mized. Such interpretation are possible and fruitful, they are discussed in

detail by Gifi [1981] and Heiser [1981].

In the previous section we have already one relationship between NCA and

MCA. If p = 1 then NCA and MCA are the same, basically because mq× 1

matrices are always blockwise of rank one. If p > 1 then comparing (2)

and (6) shows directly that ρp(L1, · · · ,Lm) ≥ σp(L1, · · · ,Lm) with equal-

ity if and only if the eigenvectors corresponding with the p largest eigen-

values of C are blockwise of rank one. In the next section we shall try to

find out if this condition for equality is ever likely to be met in practice.

We shall also discuss another problem connected with MCA. The mq solu-

tions to (5) give mq correlation matrices, and thus mq principal component

analyses. Gifi calls this data production in order to distinguish it from data

reduction. A pertinent question is if the mq correlation matrices are related
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in some simple way, so that it is easy to see where the redundancy in this

representation is.

4. R   I S C

Suppose that there exist α j and r j` such that α′jα j = 1 for all j and

(7) C j`α` = r j`α j

for all j, ell. Suppose moreover that T is of order m, satisfies TT ′ = T ′T = I,

and RT = TΩ, with Ω of order m and diagonal. Thus (7) is the critical

assumption, it defines α j and r j`, T is then defined simply as the matrix of

eigenvectors of R. Now define U = AT , with A = α1 u · · · u am. By using

(7) it is now simple to verify that CU = UΩ. Thus U constructed in this

way defines m solutions to (5), i.e. to MCA or to NCA with p = 1. The

m solutions to (5) moreover induce the same correlation matrix R. If we

select p columns from T , then these p columns obviously satisfy (3). We

can also verify that they satisfy (4), if taken together with the α j, and that

consequently we can construct
(

m
p

)
solutions to the NCA equations (3) and

(4) if (7) can be satisfied. All these NCA solutions have the same R.

Now suppose v is another solution of (5), not one of the m solutions con-

structed by using the α j of (7). By orthogonality
∑

v′jU j =
∑

v′jα jt
′
j = 0,

which is possible only if v′jα j = 0 for all j. Thus, in the terminology sug-

gested by Dauxois and Pousse [1976], v is not only weakly but actually

strongly orthogonal to the m columns of U. In particular this implies that

if there is a second solution of (7), i.e. if C j`β` = s j`β j for all j, `, then

α′jβ j = 0 for all j. Such a second solution of (7) again defines m solutions

to (5) and
(

m
p

)
solutions to (3) and (4). In total, of course, (7) can only have
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q solutions, all strongly orthogonal, each of them corresponding with m so-

lutions of (5), and each of them having a single induced correlation matrix

R. If we find q solutions to (7) then we have found mq, and consequently

all, solutions to (5). We have also found q
(

m
p

)
solutions to (3) and (4), but

this need not be all possible solutions.

We now investigate if (7) is a realistic condition, with interesting interpre-

tations. In the first place we repeat (7) in words: it says that if two of the

matrices C j` have a subscript in common, then they have a singular vector

in common. Another interpretation of (7) is also quite useful. Suppose α j

and r j` satisfy (7) and define y j = G jα j. Then (7) says that the projection of

y` on L j is equal to the projection of y`. on the one-dimensional subspace

through y j. In the next section this interpretation will be related to linearity

of the regress ion between two random variables.

A condition stronger than (7) is that there exist m matrices K j orthonormal,

of order q, and diagonal matrices D j` such that

(8) C j`K` = K jD j`

This is equivalent to the condition that (7) has q different solutions, it says

that if two matrices C j` have a subscript in common then they must have all

their singular vectors in common. By using familiar results this can be re-

duced to the condition that several matrices must commute [Bellman, 1960,

p. 56], but in itself this commutation result does not give much insight. We

know already that if (8) is true then we can construct all mq solution to (5).

We now show how this can be done systematically.

Suppose (8) is satisfied. Let K = K1 u · · · u Km. Then K′CK has subma-

trices D j` = K′jC j`K` , and as we know these submatrices are all diagonal.

Moreover they are all of order q, there are m2 of these D j`, they all have
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q nonzero elements at most. It is now possible to construct a permutation

matrix P such that P′DP = P′K′CKP = E is of the form E = Eu · · · u Eq,

where each of the Et is a symmetric matrix of order m. Thus D consists

of m2 matrices, each with at most q nonzero elements, and E consists of q

matrices, each with at most m2 nonzero elements. Element j, ` of matrix

Et is equal to element t, t of matrix D j`. As the next step in our solving of

(5) we construct L = L1 u · · · u Lq with each Lt orthonormal of order m,

such that Lt diagonalizes Et. Thus F = L′EL = L′P′DPL = L′P′K′CKPL

is of the form F = F1 u · · · u Fq, with all of the Ft diagonal. It follows

that KPL diagonalizes C, thus KPL contains the eigenvectors of C, and the

matrices Ft contain eigenvalues in some order. If we look somewhat closer

to KPL, we find that it consists of mq submatrices, all of order q×m, and all

of rank one. Conversely this particular block structure of the eigenvectors

of C, together with the rank one property of the blocks, implies that (8) is

satisfied. It also implies that there is no data production, there are only q

different induced correlation matrices, not mq. We also know that this block

structure makes it possible to find q
(

m
p

)
solutions to (3) and (4). It is a useful

exercise to find out what happens to the results of this section if the L j have

different dimensionalities, making some C j` rectangular instead of square.

5. EM S C

We now apply the three-step or KPL-diagonalization in some cases in which

we can easily show that it works. If m = 2 we use the singular value decom-

position C12 = K1D12K′2. Here D12 is diagonal of order q, with singular val-

ues on the diagonal. Thus the Et are correlation matrices of order two, each

Et has one singular value as off-diagonal element. The Ft are diagonal of

order two, the two elements are one plus the singular value and one minus
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the singular value. This is the familiar result linking multiple correspon-

dence analysis with two variables with ordinary correspondence analysis of

the cross table of the two variables. We emphasize that in ordinary corre-

spondence analysis we often use a very special basis of indicator functions

or step functions. This basis has some attractive properties, we mention for

example the centroid principle of Benzecri, and we mention the fact that

(7) can be interpreted as the assumption that all bivariate regressions can be

linearized by suitable choice of the y j ∈ L jS . The stronger assumption (8)

means that all bivariate distributions can be diagonalized simultaneously.

Now consider the case q = 2 with a basis of normalized indicators for each

of the L j.Thus C j` is a 2 × 2 table with bivariate frequencies, divided by

square root of the product of the univariate marginals. These C j` satisfy (8),

one column of K j is proportional to the square roots of the marginals, the

other columns must be orthogonal to it and is consequently also determined

completely by the marginals. It follows that E = E1 u E2 where E1 is of

order m and has all elements equal to one and where E2 is likewise of order

m and,has as its elements the matrix of phi-coefficients or point correlations

of the binary variables. Thus F1 has one element on the diagonal equal to

m and m − 1 diagonal elements equal to zero. The elements of F2 are the

eigenvalues of the matrix of phi-coefficients. This is the familiar result that

multiple correspondence analysis or nonmetric principal component anal-

ysis of binary variables is the same thing as ordinary component analysis

of phi-coefficients. A matrix E1 of order m, with all elements +1, occurs

whenever we use normalized indicators as a basis. Thus there is always a

trivial eigenvalue equal to m and m − 1 trivial eigenvalues equal to zero in

this case.



12 JAN DE LEEUW

As a final special case suppose we have m standard normal variables, and

suppose L j is the linear space of all polynomial transformations of degree

not exceeding q − 1. As a basis of each of the L j we take the Hermite-

Chebyshev polynomials of degree 0, · · · , q − 1. It is well known that trans-

form s of variable j and transform t of variable ` are uncorrelated (orthogo-

nal) if s , t. If s = t then their correlation is ρs
j` where ρ j` is the correlation

in the original rnultinormal distribution. Thus (8) is satisfied, E1 has all

elements equal to one, E2 has elements ρ j`, E3 has elements ρ2
j` and so on.

The eigenvalues of the MCA problem are those of E1 and those of E2 and

so on. The largest nontrivial one is the largest eigenvalue of E2, the small-

est nontrivial one is the smallest of E2 [Styan, 1973]. but the order of the

others is undecided. In fact the second largest MCA, eigenvalue can be

the largest of E3, in which case all transformations on the second dimen-

sion are quadratic functions of the first (horse-shoe or Guttman effect). But

the second largest MCA eigenvalue can also be the second largest eigen-

value of E2, the second set of transformations is then linear with the first.

For the q
(

m
p

)
NCA solutions we can compute from this representation the

transformations in two dimensions are both linear, or both quadratic, and so

on. NCA rank one restrictions make sure that both or all p transformations

come from the same Et [Gifi, 1981, Ch. 11]. The multinormal example has

been generalized in many directions by Lancaster and his pupils [Lancaster,

1969]. It is remarkable that in all three special cases condition (8) is sat-

isfied, and KPL-diagonalization consequently works. Our results indicate

that in general NCA solutions can easily be interpreted in a principal com-

ponent analysis framework, the same thing is consequently true for MCA

solutions with p = 1. But multidimensional MCA solutions are difficult to

interpret in this framework if (8) is not approximately true. The rest of our

paper studies if (8) is approximately true in a wide variety of examples.
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6. A 

In order to investigate in how far (8) is satisfied in practical examples, i.e. in

how far KPL-diagonalization is possible we have written an APL-algorithm

PREHOM. A FORTRAN-version is currently being developed. The technique

is fairly simple: if F = L′P′K′CKPL, then we want to maximize the sum of

squares of the diagonal elements of F on the condition that L = L1u · · ·uLq

and K = K1 u · · · u Km, where all matrices in the direct sums are square

orthonormal. Observe that P is a fixed permutation matrix. For fixed K

we maximize the criterion by choosing Lt as the eigenvectors of Et, the

maximum value is the sum of squares of the elements of Et, which means

that we maximize our criterion by maximizing the sum of squares of all

diagonal elements of all D j` = K′jC j`K`. This is done by a straightforward

generalization of the Jacobi-procedure which cycles through all the relevant

plane rotations. As an initial estimate of K j we use the eigenvectors of∑
C j`C` j, summed over ` , j. This initial estimate is usually very good,

but for precise convergence the program usually needs another five to ten

cycles of plane rotations.

We have analyzed a large number of examples with PREHOM, although APL-

restrictions imply that our examples cannot be too large (C must have order

less than 35). The conclusion of the examples is partly as we expect it

to be: if the number of subspaces .(variables) is small (three or four) then

KPL-diagonal ization works very well, and if the average number of cat-

egories (dimensionalities) is close to two then KPL-diagonalization also

works well. Generally KPL-diagonalization seems to work best for ordi-

nal or rating scale type variables, and much less well for purely nominal

variables. It came as a surprise to us that even in the least favourable cir-

cumstances KPL-diagonalization still works quite well, and it can predict
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the first three MCA-solutions (largest eigenvalues) and the last three MCA-

solutions (smallest eigenvalues) very well.

PREHOM can be used to predict MCA-results very well. Our experience [Gifi,

1981, Ch. 13] suggest that NCA is often very similar to MCA with p = 1,

and thus PREHOM can be supposed also to approximate NCA very well. It

follows from these two conclusions that in ordinal and rating scale examples

NCA and MCA actually compute the same solutions, but in a different or-

der. The NCA eigenvalues can be found in the list of MCA eigenvalues, but

they are only very rarely the p largest ones. If we want to relate MCA and

NCA in the same dataset we can most efficiently do this by using PREHOM

or a similar program.

There are four actual examples in the tables on the next page. Example 1

are three variables with 3 + 4 + 3 categories, 100 observations, from Burt’s

classical MCA-paper. The variables are somewhat between nominal and

ordinal. Example 2 are 6 variables with 2 + 5 + 3 + 2 + 5 + 2 categories,

25 observations, describing screws, nails, and tacks, taken from John Har-

tigan’s book on cluster analysis. Most of the variables are clearly nomi-

nal. Example 3 has 5 ordinal variables with 2 + 4 + 5 + 4 + 6 categories,

about 30000 observations, data from a school career survey by the Dutch

Central Bureau’of Statistics. Example 4 are 8 rating scales with three cate-

gories each, 110 observations, taken from the Dutch Parliament Survey. All

four tables have four columns: in the first column the eigenvalues of the Et

are given (without the trivial ones), the second column has the same num-

bers but ordered, the third column has the actual MCA eigenvalues, and the

fourth column has diagonal elements of V ′KPL, cosines between actual and

predicted MCA eigenvectors.
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KPL KPL↓ MCA cos

2.61 2.61 2.61 1.00

0.39 1.90 1.90 1.00

0.00 1.42 1.43 1.00

1.90 0.78 0.78 0.99

0.78 0.58 0.58 0.99

0.33 0.39 0.49 0.78

1.42 0.33 0.22 0.77

0.58 0.00 0.00 0.98
T 1. Burt Data

KPL KPL↓ MCA cos

3.68 3.68 3.73 0.99

1.40 2.04 2.21 0.84

0.68 1.83 1.97 0.59

0.23 1.49 1.67 0.69

0.01 1.40 1.18 0.59

0.01 0.68 0.77 0.57

2.04 0.67 0.51 0.75

0.67 0.51 0.50 0.63

0.29 0.29 0.33 0.75

1.49 0.23 0.11 0.89

0.51 0.17 0.00 1.00

1.83 0.01 0.00 1.00

0.17 0.01 0.00 1.00
T 2. Hartigan Data
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KPL KPL↓ MCA cos

2.61 2.61 2.62 1.00

1.01 1.99 1.98 1.00

0.84 1.84 1.84 1.00

0.41 1.01 1.03 0.71

0.13 1.01 1.02 0.52

1.99 1.00 1.00 0.61

1.00 1.00 1.00 0.91

0.75 1.00 1.00 0.54

0.26 0.99 0.98 0.66

1.84 0.98 0.97 0.68

1.00 0.84 o.83 0.96

0.98 0.75 0.75 0.99

0.18 0.41 0.41 0.97

1.01 0.26 0.27 0.90

0.99 0.18 0.19 0.92

1.00 0.13 0.10 0.87
T 3. CBS data

KPL KPL↓ MCA cos

3.87 3.87 3.88 1.0

1.37 2.09 2.42 0.9

0.82 1.37 1.40 0.7

0.55 1.31 1.28 0.7

0.43 1.14 1.16 0.8

0.39 1.03 1.05 0.6

0.37 0.84 0.90 0.8

0.19 0.82 0.72 0.7

2.09 0.67 0.66 0.8

1.31 0.57 0.61 0.8

1.14 0.55 0.51 0.8

1.03 0.43 0.39 0.5

0.84 0.39 0.33 0.7

0.67 0.37 0.27 0.6

0.57 0.34 0.22 0.7

0.34 0.19 0.19 0.9
T 4. Rating data

U  L, N
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