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In systems in which interactions couple a central degree of freedom and a bath, one would expect signatures of 
the bath’s phase to be reflected in the dynamics of the central degree of freedom. This has been recently explored 
in connection with many-body localized baths coupled with a central qubit or a single-cavity mode—systems 
with growing experimental relevance in various platforms. Such models also have an interesting connection with 
Floquet many-body localization via quantizing the external drive, although this has been relatively unexplored. 
Here we adapt the multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) method, a well-known 
tree tensor network algorithm, to numerically simulate the dynamics of a central degree of freedom, represented 
by a d-level system (qudit), coupled to a disordered interacting one-dimensional spin bath. ML-MCTDH allows 
us to reach ≈102 lattice sites, a far larger system size than what is feasible with exact diagonalization or kernel 
polynomial methods. From the intermediate time dynamics, we find a well-defined thermodynamic limit for the 
qudit dynamics upon appropriate rescaling of the system-bath coupling. The spin system shows similar scaling 
collapse in the Edward-Anderson spin-glass order parameter or entanglement entropy at relatively short times. 
At longer timescales, we see slow growth of the entanglement, which may arise from dephasing mechanisms 
in the localized system or long-range interactions mediated by the central degree of freedom. Similar signs of 
localization are shown to appear as well with unscaled system-bath coupling.

I. INTRODUCTION

The advent of controllable quantum simulation platforms
allows for novel explorations of quantum coherent phenom-
ena. Certain such architectures have the advantage of using
extra degrees of freedom as a way to easily read out prop-
erties of a system [1]. Examples of such setups include
cavity QED with ultracold atoms [2] and superconducting
qubit circuits, the latter of which was recently used to sim-
ulate the many-body localized (MBL) phase in a 10-qubit
chain with long-range interactions mediated by a central
resonator [3]. Given that such platforms are in their early
stages, it is important to explore the interplay of disorder-
induced localization and mediated long-range interactions,
and how they affect the dynamics of localization in these
systems.

If localization exists in these systems, it will naturally
be many-body localization since the spins hybridize with
the central degree of freedom to give nontrivial interactions.
Rigorous results on MBL have already been established in
one-dimensional (1D) systems with short-ranged interactions
[4]. In such a setting, it is a stable phase of matter, with
respect to adding short-range perturbations, that can coexist

with other types of order [5,6]. While strong disorder enables
localization, it cannot prevent thermalization if interactions
are long-ranged, decaying slower than r−2D, where D is the
spatial dimension [7,8]. Even the MBL phase with short-
ranged interactions is fragile. It is destroyed upon coupling to
a continuum of bath modes [9], which, intuitively, can provide
arbitrary amounts of energy and allow the system to transition
between eigenstates of vastly different character. One sees
then that there are two ingredients to this delocalization mech-
anism: a continuum of energies of large enough bandwidth,
and hybridization due to effective infinite-ranged interactions
mediated by the non-Markovian bath.

In fact, for a specific type of memoryless bath, nonergod-
icity does survive. This is the case of Floquet MBL, in which
an MBL system is subjected to an external periodic drive with
frequency � modeled as a time-dependent Hamiltonian acting
on the system [10,11]. The failure of thermalization is due to
the inability of the system to absorb energy in quanta of h̄�,
which itself is a consequence of the discreteness of the energy
spectrum. The external drive, however, is not inherently dy-
namical and thus does not capture the backaction present in a
fully quantum-mechanical system.
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In this work, we consider the time evolution of such a
system obtained by treating the Floquet drive as a quantum
degree of freedom. Specifically, we consider a localized sys-
tem globally coupled to a d-level system (qudit) with finite
energy spacing, similar to [12]. When the qudit is a two-level
system, it was shown that localization does not survive at
any finite coupling [13,14]. But when it is instead a d > 2
level system, localization was argued to survive under certain
conditions [12]. It is not known, however, what dynamical
signatures should be expected in such regimes since the ge-
ometry and spin-spin interactions in the system limit the
efficiency of usual computational approaches using matrix
product operators. We bridge this gap by numerically simulat-
ing the nonequilibrium dynamics at much larger system sizes
than previously considered. This is done using the multilayer-
multiconfigurational time-dependent Hartree (ML-MCTDH)
method, which solves the Schrödinger equation using the
time-dependent variational principle on the manifold of wave
functions represented by certain tree tensor networks [15–19].

We furthermore explore the possibility that the additional
degree of freedom can provide alternative, nondestructive di-
agnostics of localization. In experimental settings, the usual
observables signaling nonergodic behavior are correlation
functions such as the occupation imbalance between odd and
even sites of the lattice [20]. More sophisticated setups may
attempt to perform tomographic measurements to reconstruct
the reduced density matrix for a subsystem and show loga-
rithmic growth of entanglement entropy [3], or to measure
the energy spectrum of the system in order to retrieve energy
level spacing statistics [21]. Though these metrics serve as
gold standards in characterizing MBL, the latter two methods
are difficult to scale with larger systems. In our model, since
quantum fluctuations of the spins necessarily involve the qu-
dit, there may be signatures of (de)localization imprinted into
the qudit dynamics. Such a possibility has been explored in
autocorrelations of qudit observables [14] probing the energy
level statistics, as well as dynamics of the occupation num-
ber [22] by measuring the light intensity output by a single
mode cavity. In this work, we show that the qudit qualita-
tively changes the spin chain dynamics, and we elucidate the
timescale on which this occurs. This provides some insight
into the breakdown of localization, and the possible role that
non-Floquet physics may play in it.

The structure of this paper is as follows: we will discuss
our model and its localization in connection to Floquet MBL;
review the essentials of ML-MCTDH, which we then apply to
study intermediate time dynamics; present results on thermal-
izing and nonthermalizing behaviors in dynamical metrics;
and discuss what may be expected in experiments, where
control over the central coupling may be limited in range.

II. MODEL

We consider a simplified model of many-body localization
by coupling a one-dimensional chain of qubits (spins-1/2) via
global interactions with a central qudit:

H = H0 + �τ̂ z + γ H1(τ̂+ + H.c.),

H0 =
L∑

i=1

hξiσ
z
i + gσ z

i σ z
i+1, H1 =

L∑
i=1

σ x
i , (1)

where τ̂ z = ∑d
n=1 n|n〉〈n|, τ̂+ = ∑d−1

n=1 |n + 1〉〈n|, and the
operators H0 and H1 act only on the spin subspace. The
states |n〉 label the states of the central qudit. Here, h =
1.3, g = 1.07, � = π/0.8, and ξi is a random variable
drawn uniformly from (−1, 1). These parameters are cho-
sen to be rather generic, with � large but finite, such
that the model exhibits a numerically sharp localization-
delocalization transition in the Floquet limit d → ∞.
The transition is signaled by adjacent level statistic r =
min(�Ei,i+1,�Ei−1,i )/ max(�Ei,i+1,�Ei−1,i ) and the bipar-
tite entanglement entropy of eigenstates near the middle of
the many-body spectrum. The position of this transition is at
a critical coupling γc � 0.3 [23]. We restrict our discussion
to γ either deep in the localized phase (γ < 0.2) or deep in
the ergodic phase (γ ≈ 1). Finally, throughout this paper we
restrict ourselves to central qudit size d = 7, which is large
enough to display Floquet-like behavior but small enough that
the finite qudit size plays an important role.

The spin part of the Hamiltonian, H0, is a trivial antifer-
romagnetic Ising chain with longitudinal on-site disorder. It
can be alternatively conceptualized as a special case of the
l-bit Hamiltonian for MBL systems in which only nearest-
neighbor coupling remains and is uniform. The presence of
the Ising coupling allows the spins to interact with each other
independently of the qudit. The diagonal nature of H0 in
the z-basis yields trivial localization in the eigenstates. This
manifests in eigenstates |ψn〉 as vanishing site-averaged mag-
netization L−1 ∑

i 〈ψn|σ z
i |ψn〉 and the maximal value of the

spin-glass parameter, q = L−1 ∑
i 〈ψn|σ z

i |ψn〉2 = 1, at high
energy densities. Values of q ≈ 1 suggest that the eigenstates
are described mostly by a single pattern of magnetization.
Introducing a small coupling to the qudit without longitudinal
disorder induces hybridizations that push q → 0. We find that
it is necessary to have both qudit coupling and strong disorder
to preserve the nonergodicity when probing the system in
the middle of the many-body spectrum, where the density of
states (DOS) is the greatest.

Several features distinguish our model from those studied
previously. While Nandkishore et al. [9] coupled a “fully
MBL” system to an interacting bath of bosons, the qudit we
present here is not bathlike because it does not have a contin-
uous DOS. The model of thermal inclusions studied by Ponte
et al. [13] closely resembles ours, but crucially we place a
constant “magnetic field” �τ̂z on the qudit, thus selecting a
preferred direction for the central spin. This greatly impacts
the ease with which the qudit fluctuates, which in turn can
regulate transitions in the spin states leading to delocalization.

Recent studies have examined how localization can persist
in the presence of long-ranged interactions [8,22] or with
central coupling to a single degree of freedom yielding an
effective Hamiltonian with long-ranged interactions [13,14].
With the exception of a numerical study [22], these past works
have noted that preservation of localization in the thermo-
dynamic limit requires increasing the disorder strength with
increasing system size or decreasing the strength of central
coupling as γ → γ /L. Reducing the coupling strength in this
way renders the long-ranged part of the effective Hamiltonian
for the spin chain subextensive. This is also reflected in the
dynamics of the qudit as its transition rate vanishes.



On the other hand, the existence of Floquet MBL affords
a different pathway to the coexistence of localization and
central coupling. For our model, the mapping upon taking the
Floquet limit, d → ∞, gives a driven Hamiltonian

HFloq(t ) =
L∑

i=1

hξiσ
z
i + gσ z

i σ z
i+1 + 2 cos(�t )

L∑
i=1

σ x
i .

In this time-dependent context, the persistence of MBL is not
due to a vanishing coupling to the external drive, but to a
suppression of mixing between different localized eigenstates
of the undriven system. This picture suggests that an effective
Hamiltonian for only the spin degrees of freedom should show
localized behavior. This is indeed the case, as previous work
based on the high-frequency expansion has shown [12]. In
this limit of � → ∞, the spins are governed by an effec-
tive Hamiltonian diagonal in the qudit basis, reproducing the
eigenenergies modulo an integer multiple of �:

Heff = H0 + (H1)2 |d〉〈d| − |1〉〈1|
�

+ O(�−2). (2)

At lowest order in �−1, we see that possible delocalization
is reserved only for states with |1〉 or |d〉, as (H1)2 induces
all-to-all coupling. Increasing L without increasing d , as we
do in this paper, means that eigenstates occupying |1〉 will
eventually encroach upon the middle of the spectrum and
contribute to the quench dynamics we study. This can be seen
from the density of states when H0 is dominant as it follows
ρ(E ) ∝ exp (− E2

(J
√

L)2 ) for the energy scale J ∼ O(1), mean-
ing ρ(E ) will grow wider with increasing L. An energetically
dominant (H1)2 term will both delocalize the eigenstates and
deform the Gaussian density of states in the thermodynamic
limit.

We thus assume γ to be small enough such that neither
outcome occurs, and we ask when this picture will naively
break down. In such a limit, we can treat the H2

1 field term in
a mean-field fashion for each eigenstate:

Heff ≈ H0 + γ 2L

�
+

∑
i

γ 2

�

〈∑
j 
=i

σ x
j

〉
σ x

i ,

where the effective field 〈∑ j 
=i σ
x
j 〉 in an eigenstate must

be determined self-consistently. For a typical eigenstate in
the middle of the spectrum, this field should have the value
∼ f (γ )

√
L, where f (γ ) must vanish when γ = 0. The trans-

verse magnetization is subextensive at high energies where
the density of states is dominated by contributions from the
zero magnetization sector, allowing us to consider

∑
j 〈σ x

j 〉 to
be the sum of L − 1 independent random variables with zero
mean, and the finite γ eigenstates are assumed to be perturba-
tively connected to a corresponding γ = 0 eigenstate. For this
model, we take the lowest-order approximation f (γ ) ≈ f1γ .
With this assumption [24], the effective transverse field on site
i will begin to compete with the longitudinal fields in H0 when
γ 2〈∑ j 
=i σ

x
j 〉 ∼ O(g, hi ) ∼ O(1). For the high-energy density

eigenstates in which we are interested, this effective field will
inhibit spin-glass ordering and the system should obey the
eigenstate thermalization hypothesis. Thus, γ ∝ L−1/6 should
serve as a rough separatrix between thermalizing and athermal
behaviors. Furthermore, couplings that tend to zero faster

d√
L

γ

Thermalizing

Localizing

0

1 ∞

γ∗
c

0.65

0.05

0.35

I

II

L = 24

L = 48

L = 96

FIG. 1. Schematic phase diagram for the coupled system (1),
along with the parameters for which we present numerical results
from ML-MCTDH. The rough phase boundaries are determined
from numerics and analytical arguments. The data are separated into
three solid segments: the strong, intermediate, and weak couplings
from top to bottom. The angle of the segments comes from fixing the
qudit size to d = 7 and scaling the central coupling γ ∝ L−1/2. For
ease of discussion, we group the three coupling regimes as region I
(weak and intermediate) and region II (strong).

than L−1/6 will realize a trivial limit, where the localization
comes entirely from H0. Note that, in general models where
H1 includes operators diagonal in the z-basis, we would have
f (0) 
= 0; in this case, the scaling is replaced by γ ∼ L−1/4.

Besides scaling the coupling to zero, the all-to-all interac-
tions can be avoided by ensuring that eigenstates occupying
levels |d〉 or |1〉 in the qudit do not participate in the dynam-
ics. For quenches starting from the middle of the many-body
spectrum, this condition can be ensured by keeping the qudit
size d sufficiently large compared to the typical width of
the 1D many-body density of states,

√
L. The dynamics in

this limit should closely resemble Floquet physics, since the
fluctuations producing effective long-ranged interactions will
cancel out after accounting for the processes in which the
intermediate qudit state changes by +1 or −1. Away from
this limit, when d/

√
L � O(1), the all-to-all interactions are

unavoidable. The threshold value of d/
√

L for delocalization
should decrease as the coupling is decreased. These arguments
are summarized schematically in Fig. 1.

There are two important ways to think of this system
and its dynamics: either as a combined many-body systems
with localized and delocalized phases, as was done in the
previous paragraph, or as a central qudit interacting with an
unusual, localized, spin bath. From this latter viewpoint, it
will be useful to consider scaling the system bath coupling
γ ∼ 1/

√
L, since that will be shown to achieve a well-defined

thermodynamic (L → ∞) limit. This scaled coupling will be
used in the majority of our simulations, and is covered in more
detail in Sec. IV. For now, we note that γ ∼ L−1/2 scales to
zero faster than the L−1/6 that we predict is required for MBL.
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FIG. 2. Expansion of the wave function |�〉 and the first-layer
single-particle functions |ϕ (κ )

jκ
(t )〉 used in the ML-MCTDH approach

(left) and a schematic representation of the tree structure of the wave
function (right). The black dots represent single-particle functions
(SPFs). The red dot represents the qudit degree of freedom, and the
blue dots represent the spin degrees of freedom. The binary expan-
sion of the spin wave function is symmetric, and thus we choose the
numbers of SPFs within one layer to be equal. In the example shown,
only three spins are grouped together in the lowest layer for better
visualization. In the calculation, however, groups of up to 12 spins in
the lowest layer are used.

Therefore, at sufficiently late times, we predict MBL with our
scaled coupling.

In this model, we use qudits for numerical simplicity due
to their finite Hilbert spaces. However, our conclusions can
be easily applied also to the case in which the central degree
of freedom is a single bosonic mode, such as in cavity QED
or superconducting circuits. In these setups, we expect similar
dynamical behaviors when the central coupling is appropri-
ately scaled [12].

III. NUMERICAL METHOD

The nonlocal interaction induced by the centrally cou-
pled qudit makes the simulation based on matrix product
operator techniques like time-evolving block decimation
[25] inefficient. Instead we employ the multilayer multi-
configuration time-dependent Hartree (ML-MCTDH) method
[15,16,18,19,26], which has been used to study similar sys-
tems in the past, e.g., a two-level system coupled to a bath of
noninteracting spins [27]. The ML-MCTDH method general-
izes the original MCTDH method [17,28–31] for applications
to significantly larger systems. The ML-MCTDH approach
represents a rigorous variational basis-set method, which uses
a multiconfiguration expansion of the wave function, em-
ploying time-dependent basis functions and a hierarchical
multilayer representation. Within this framework, the wave
function is recursively expanded as a superposition of Hartree
products as depicted in Fig. 2. Here, |ϕ(κ )

jκ
(t )〉, |ν (κ,q)

iq
(t )〉 , . . . ,

are the so-called “single-particle functions” (SPFs) for the
first, second, etc. layer, and the coefficients Aj1,..., jN , Bκ, jκ

i1,...,iQ(κ )

are the expansion coefficients of the first, second, etc. layer.
Despite their name, SPFs describe multiple degrees of free-
dom; see Fig. 2. The ML-MCTDH equations of motions

for the expansion coefficients and the single-particle func-
tions are obtained by applying the Dirac-Frenkel variational
principle [15,32], thus ensuring convergence to the solution
of the time-dependent Schrödinger equation upon increasing
the number of SPFs. In principle, the recursive multilayer
expansion, which corresponds to a hierarchical tensor decom-
position in the form of a tensor tree network, can be carried out
to an arbitrary number of layers. In practice, the multilayer
hierarchy is terminated at a particular level by expanding
the single-particle functions in the deepest layer in terms of
time-independent basis functions.

In the present application of the ML-MCTDH method,
we separate the qudit wave function and the spin-chain wave
function in the uppermost layer as depicted schematically in
Fig. 2. The wave function of the spin chain is then further
expanded in a binary tree (i.e., P = Q = 2) up to the lowest
layer, which comprises blocks of up to 12 spins. Each of
the lowest blocks is expanded in the time-independent local
basis of the underlying Hilbert space. Regarding the number
of SPFs in the first layer, N1, it can be shown that N1 > d leads
to redundant configurations in the expansion [28], and thus we
set N1 = d in all calculations. The required number of SPFs
in the other layers of the expansion of the spin-chain wave
function was determined by thorough convergence tests and
depends on the coupling strength γ . In general, fewer SPFs
are needed for smaller coupling strengths. For L = 24, two
dynamical layers are employed, and the required number N2

of SPFs varies from 30 to 120 SPFs. For L = 48, a three-layer
scheme is used where the number of SPFs in the lowest layer
varies from 10 to 30 and in the highest layer from 20 to 60. For
L = 96, four layers are employed with SPFs that vary from 10
to 20 in the lowest layer and from 35 to 50 in the highest layer.

IV. RESULTS FOR SCALED COUPLING

We examine the system at infinite temperature by focusing
on states in the middle of the many-body spectrum, which
have energies close to the midpoint between the maximal
and minimal energies of the coupled system (Emax and Emin,
respectively). We take γ = 0 for t < 0 with the spins in a
“super-Néel” state |↓↓↑↑ · · · 〉 and the qudit occupying its
middle state |(d + 1)/2〉. The coupling is switched on instan-
taneously at t = 0 to a finite value. The super-Néel state is on
average a zero-energy eigenstate of H0 and has subextensive
energy variance, making it a suitable microcanonical probe.
Thus, when the system is thermalizing and shows ensemble
equivalence, we expect similar dynamics compared to those
obtained through averaging over random initial product states,
mimicking an infinite-temperature canonical ensemble.

As there are different dynamical behaviors in our model,
we shall organize our discussion around the schematic phase
diagram in Fig. 1, similar to the one first introduced in [12].
In this first section, we will consider scaling the coupling as
γ ∼ 1/

√
L, corresponding to the three solid lines in the phase

diagram, which, from top to bottom, will be referred to as
the strong-, intermediate-, and weak-coupling regimes. The
orientation of these cuts comes from the 1/

√
L scaling of γ .

This is natural if we think of the qudit as our main object of
interest, as it gives a well-defined thermodynamic limit for
the qudit when it is coupled to a noninteracting bath, such
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FIG. 3. Dynamics from an initial “super-Néel” state in the regimes of weak (top row, γ = 0.1/
√

L/12) and intermediate coupling (bottom
row, γ = 0.3/

√
L/12). The data are averaged over O(102)–O(103) disorder realizations, with the shaded bands indicating deviations of ±1

standard error of the mean. Left: Variance of qudit occupations �2
Q = 〈(τ z )2〉 − 〈τ z〉2; center: deviation from perfect spin-glass order 1 − qEA;

and right: entanglement entropy SA between a contiguous half of the spin chain and its complement. The observables �2
Q and 1 − qEA have

been appropriately rescaled [24] to show their coincidence (except a factor of 2) at early times for weak coupling. The dynamics are observed
to converge to a single curve (green line) and appear to be consistent with the dynamics without the nearest-neighbor Ising coupling (red
dashed line) as L → ∞. The data for the noninteracting case are identical for the largest system sizes shown on the timescales of these plots.

as in the spin-boson model [33]. This scaling reproduces the
Kac prescription [34] for the all-to-all term in the effective
Hamiltonian ensuring also the existence of a thermodynamic
limit for the spins. Specifically, we scale γ using the following
formula:

γ = γ0

√
L0

L
, (3)

where L0 = 12 throughout for convenience, such that γ = γ0

at L = 12. γ0 sets the overall strength of the coupling. We will
consider three regimes, indicated by the solid lines in Fig. 1:
weak coupling (γ0 = 0.1), intermediate coupling (γ0 = 0.3),
and strong coupling (γ0 = 0.7).

A. Weak and intermediate coupling (region I)

The first cases we consider are weak and intermediate
coupling, which are labeled region I in Fig. 1. These are both
at sufficiently small γ0 that we expect MBL for the largest ac-
cessible system sizes, but for intermediate coupling (γ0 = 0.3)
the system will be near the phase transition for small L. Three
observables—the qudit variance �2

Q [Eq. (4)], the spin glass
order parameter qEA [Eq. (5)], and the entanglement entropy
of the half-chain SA [Eq. (6)]—are plotted in Figs. 3 and 4,
which correspond to identical data with different scaling of the
time axis. The origin of this scaling will be clarified shortly.

Note first that, by preparing both the qudit and the spins
in highly excited states, one would normally expect the sys-
tem to relax quickly to a featureless “infinite-temperature”
equilibrium. That is, all internal levels of the qudit should be
equally occupied, and the spins should be paramagnetic and
translationally invariant. This is not true for the disordered
system we study, as the numerics demonstrate in Fig. 3: for
sufficiently small coupling, the system shows localization in

both the qudit and its surrounding spins. The former is sig-
naled by the variance of the qudit occupations,

�2
Q ≡ 〈(τ̂ z )2〉 − 〈τ̂ z〉2, (4)

which saturates to a quantity far below that of the uniform
limit, �2

Q = (d2 − 1)/12 = 4. Furthermore, the different sys-
tem sizes exhibit scaling collapse of �2

Q up to a timescale
t ∼ 1/γ . This is a property of the scaled γ , as it implies that
the spin chain acts as a bath for the qudit with a well-defined
thermodynamic limit. More specifically, it can be shown that
the considered model with scaled coupling γ ∝ L−1/2 fulfills
linear response in the thermodynamic limit, meaning that the
effect of the spin environment on the qudit is captured by the
first two cumulants of the influence functional [35–37]. For
our model, the first cumulant vanishes and thus the reduced
qudit dynamics is determined by the second cumulant, given
by the force-force autocorrelation function of the spin chain.
This also means that one can construct an effective harmonic
bath whose correlation function is the same as that of the spin
chain resulting in the same reduced qudit dynamics [36]. For
our model, the effective harmonic bath is characterized by a
spectral density that depends in general on the initial state,
the random local fields, and the spin-spin coupling g. For the
specific initial state considered here, the spectral density of the
effective harmonic bath is equal to the probability distribution
of twice the random local fields, and thus is independent of g.

Having established scaling collapse of the qudit variance,
we now turn our attention to the dynamics of the spin chain,
starting with the spin-glass order parameter

qEA(t ) ≡ L−1
∑

i

〈ψ |σ z
i (t )σ z

i (0)|ψ〉. (5)

Unlike the qudit variance, the spin-glass order parameter
displays marked drifts with system size [see the insets of



FIG. 4. Same as in Fig. 3, but with time rescaled by the system size-dependent coupling γ . Gray dots are independent calculations using
the kernel polynomial method, aimed to extend the maximum time from �t/(2π ) ∼ 6 × 102 to �t/(2π ) ∼ 1.9 × 103. Between the weak-
coupling [(a)–(d)] and intermediate-coupling [(e)–(h)] regimes, there is a qualitative shift in the long-time behavior of both the qudit- and
spin-only observables. These data are suggestive of logarithmic growth in the entanglement entropy becoming the dominant characteristic
after t ∼ 1/γ 2. (d),(h) Occupations pn of the qudit levels, symmetrized around the middle level |nmid〉 = |4〉. While both the weak-coupling
[(d)] and intermediate-coupling [(h)] regimes have most of their populations concentrated the initial occupied level, |4〉, the latter case has a
much greater fraction of the total population in the extremes of the qudit’s states. The values of pn for |n − nmid| = 3 in the upper right panel
are too small [∼O(10−4–10−3)] for the scale.

Figs. 3(b) and 3(e)]. The tendency of qEA(t ) → 1 comes from
our choice of scaling γ , since γ controls the strength of a local
transverse field and thus governs the rate and magnitude of a
single spin’s precession. On reachable timescales t � 102, the
largest system size L = 96 has near perfect memory of the
initial state. This behavior is consistent with our claim that
the scaling of γ ∼ 1/

√
L toward zero with increased system

size is sufficiently fast that the system will flow to MBL for
arbitrary γ0, although proving MBL would require evolution
to much later times than we can access.

Though the usefulness of the influence functional approach
is restricted to the qudit, we should—by virtue of the fact that
the initial spin dynamics are driven by interactions with the
qudit (for initial product states like the super-Néel state we
have chosen)—find that the spin observables are linked to the
qudit’s. The spin observables should therefore enjoy a similar
limiting behavior to γ ∝ L−1/2 → 0. We indeed show this to
be the case within first-order perturbation theory. In [24], we
perform time-dependent perturbation theory using the method
of multiple scales. We solve for the time evolution operator
perturbatively by introducing new “independent” timescales
t , t ′ ≡ γ t , t ′′ ≡ γ 2t , . . ., which allow for control over sec-
ular terms growing with t . In the thermodynamic limit with
scaled coupling, we find that the dynamics of the qudit are
described perturbatively to first order up to time O(1/γ ) (dot-
ted lines in Fig. 3), providing a complementary approach to
the linear-response solution from the influence functional for-
malism. The perturbative calculation also demonstrates that
spin observables should exhibit similar gradual convergence
to a single limit up to timescales t ∼ O(1/γ ). Remarkably, the
connection between qudit variance and the spin-glass order
parameter is even more precise in this limit; they collapse
to a single, universal curve in the thermodynamic limit upon

scaling as �2
Q/γ 2

0 and (1 − qEA)L/(2γ 2
0 ), as seen in Figs. 3(a),

3(b), 3(d), and 3(e). Physically, this comes from the fact that a
single perturbative excitation of the qudit through the τ̂+ + τ̂−
component of H1 gives a single spin-flip excitation of the spin
chain through σ x

j .
Finally, we consider the entanglement entropy

SA = −Tr(ρA log2 ρA) (6)

between a contiguous half of the spins with the rest of the
system, which is a defining feature in many-body localization.
Here ρA is the reduced density matrix of half of the spin
system, e.g., sites 1 through L/2. As with the previous two
quantities, there appears to be a gradual convergence of SA to
a universal curve with increasing L, although unlike the other
observables, the entanglement depends on the strength of the
coupling prefactor γ0. By turning off the Ising interaction g
(dashed lines in Fig. 3), we see that the dynamics of entangle-
ment at short times � O(1) are unchanged—as predicted from
time-dependent perturbation theory—while growth of entan-
glement at intermediate times is dependent on this σ z

i σ z
i+1

interaction.
These observations about the short-time dynamics hold for

both weak and intermediate coupling, as seen in Fig. 3. How-
ever, we can identify a slower timescale beyond t � O(1/γ )
from first-order perturbation theory, on which the Ising inter-
actions start to play a role. In Fig. 4, the same data are plotted
upon rescaling the time by t/γ −2. The observables are seen to
roughly collapse for both the weak and intermediate couplings
and, for intermediate couplings, entanglement in particular
shows interesting intermediate-time behavior. While the col-
lapse is imperfect, we note a few salient features. First, deep
in the localized (weak-coupling) regime, the spread of the



qudit occupation, the growth of bipartite entanglement en-
tropy, and the decay of the spin-glass order parameter appear
to be arrested at long times. It is unclear whether the ob-
servables will continue to grow at later times, but our data
leave open the possibility that they saturate and that the
asymptotic value may be system-size-independent under the
chosen scaling. Second, the dynamics of the qudit appear to
be correlated with the dynamics of the spins, albeit with a
slight time delay. Finally, in the intermediate-coupling regime,
the entanglement entropy continues to grow at late times. For
L = 16, there appears to be a logarithmic growth over three
decades in rescaled time [see Fig. 4(g)]. The same may be
true for L � 24, but we have insufficient data to decisively
prove slow growth over several decades. As seen in Fig. 4(h),
the period of potentially logarithmic growth coexists with the
period of finite occupation in the edge of the qudit spectrum
(states n = 1 and d), for which the high-frequency expansion
yields all-to-all interactions [see Eq. (2)].

It is unclear what drives the logarithmic behavior. When
focusing on the bipartite entanglement entropy, two generic
mechanisms have been studied in recent years: the slow
dephasing from a quench due to interactions between ex-
ponentially localized (quasilocal) operators [38,39], and the
linearly diverging semiclassical trajectories of the collective
spin state [40] in long-ranged interacting spin systems. In
the former case, it has been found that the slope of the
logarithmic growth is independent of the strength of inter-
actions [41]. This does not appear to be the case in our
numerics, with the larger system sizes L � 24 ostensibly dis-
playing log growth with a larger prefactor than in the L = 16
case. Moreover, there does not appear to be any logarith-
mic trend when the system is deep in the localized phase
(see the top row of Fig. 4). If conserved quasilocal opera-
tors do exist in this system, then our results would suggest
that their localization lengths are strongly dependent on the
coupling γ .

Another possibility for the appearance of logarithmic
growth of SA could come from the mediated all-to-all in-
teractions predicted in the effective Hamiltonian [Eq. (2)].
In our qudit system, long-ranged interactions begin to play
a significant role when the extremal states of the qudit
are occupied (see the discussion in Sec. II). It was ar-
gued that these mediated interactions are responsible for the
localization-delocalization transition upon decreasing d/

√
L,

shown in Fig. 1. Consistent with this, we see significantly
greater occupation in the extremal qudit states for intermedi-
ate couplings—where logarithmic growth is seen—compared
to weak couplings [see Figs. 4(d) and 4(h)]. It is also clear
that the slow growth of �2

Q for intermediate couplings is due
in part to the slow growth in the occupations of the |1〉 and |7〉
states.

Regardless of the origin of slow growth, finite occupation
at the extremes of the qudit spectrum implies a departure
from the Floquet regime. Our finite-time numerics are un-
able to resolve whether this implies delocalization. Should
this mechanism give rise to a sharp localization transition, it
would possibly be of a different character from the extensively
studied MBL transition based on ergodic grains thermaliz-
ing nearby insulating regions through short-range interactions
[42–45].
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FIG. 5. Dynamics for strong coupling, γ = 0.7/
√

L/12. (a) Qu-
dit variance �2

Q and (b) bipartite entanglement entropy SA. Results
from ML-MCTDH are not included for �2

Q as they are not con-
verged. For system sizes where the dynamics can be computed
exactly (dot-dashed lines), SA saturates the Page bound SA ∼ L/2.
The curves from ML-MCTDH (solid lines), corresponding to L � 24,
saturate the bound set by the number of single-particle functions in
the second layer, log2 χ2 (dotted lines).

B. Strong coupling (region II)

In the strong-coupling regime (Fig. 5), our phase diagram
suggests that the system lies deep within the thermalizing
phase for our available system sizes due to strong delocalizing
interactions between the spins induced by the central qudit.
Our data are consistent with this expectation, but we note
two effects. First, despite the fact that spins thermalize, we
observe that the asymptotic distribution of qudit occupations
is nonuniform, similar to the athermal qudit regime found in
[12]. In Sec. IV of [24] we introduce a phenomenological pic-
ture to explain this based on random matrix theory, suggesting
that it is rare for the qudit to make transitions between widely
separated states.

Second, we note that due to the ergodic character of
the dynamics in the strong-coupling thermalizing regime,
the accurate treatment of the dynamics represents a signif-
icant challenge for the ML-MCTDH approach and cannot
be converged for longer times [46]. This well-known limi-
tation of the ML-MCTDH method and other tensor network
approaches is due to the following reason. Within the ML-
MCTDH approach, the wave function of the system is
represented in each layer by sums of Hartree products, the
total number of which is determined by the number Nn of SPFs
employed in a given layer n for each degree of freedom. For
example, in the binary tree depicted in Fig. 2, N2 SPFs are
used in the second layer to represent each of the two parts of
the spin chain resulting in (N2)2 Hartree products that repre-
sent the spin system in the second layer. As a consequence,
the entanglement entropy between the different constituents
of the system is bounded by log N2. However, for ergodic sys-
tems, the entanglement entropy is extensive, and thus, starting
from an uncorrelated state, the entanglement entropy grows
and eventually exceeds the limit of log N2. This implies that,
for longer times, the wave function of the system cannot be
represented accurately. The application of the ML-MCTDH
formalism in the ergodic phase is thus restricted to short times.
Therefore, the results for the qudit variance depicted in Fig. 5



have been obtained by exact diagonalization and the kernel
polynomial method.

Despite this limitation of ML-MCTDH, we are still able
to find signatures of thermalization by examining the depen-
dence of the dynamics on N2. In the right panel of Fig. 5, we
see that the bipartite entanglement entropy is upper bounded
by log2 N2, corresponding to a maximal entropy state within
our variational ansatz. We observe a similarly strong depen-
dence of qEA when increasing N2, which drifts toward zero
to indicate paramagnetic behavior in the spin chain. Other
observables, such as the populations of the qudit levels, cannot
be converged, implying that information about the ergodic
state is present but limited.

V. RESULTS FOR UNSCALED COUPLING

The dynamics of our system with scaled coupling, γ ∼
1/

√
L, is perhaps most interesting because it gives a well-

defined thermodynamic limit for the qudit. However, it is
also important to understand the dynamics when the coupling
is held fixed instead of being scaled by system size, corre-
sponding to the dashed horizontal line in Fig. 1. Fixing the
coupling strength may be easier to implement experimentally,
for example in cavity QED where the coupling is governed
by the position-dependent electric field strength. Doing so,
however, means that we can no longer easily separate dy-
namics occurring on different timescales as in the previous
section. Furthermore, we predict that in the thermodynamic
limit this will eventually result in thermalization, as the long-
range interactions induced by the central qudit will eventually
dominate at large enough times and system sizes. We choose
the fixed value γ = 0.106 07, which precisely matches the
intermediate scaled coupling for our largest system size, and
therefore lives within the predicted MBL phase for all acces-
sible system sizes.

The dynamics with fixed coupling, shown in Fig. 6, looks
similar to the data at intermediate scaled coupling but without
as clear a separation of timescales or data collapse. We note
that it is harder to detect the sort of logarithmically slow delo-
calization as seen in qEA in Fig. 4(f) [cf. Fig. 6(a)]. The story is
the same with the qudit variance, which is similar to 1 − qEA

when divided by L. However, with the fixed coupling, the
entanglement entropy reflects a qualitative change in behavior
at large enough system sizes.

We see that at times �
2π

t ∼ 6 × 101 in the localized phase
(Fig. 6), the smaller system sizes L � 16 establish a subex-
tensive amount of entanglement entropy. Numerics from
ML-MCTDH seem to counter this trend, with SA continu-
ing to grow slowly beyond this timescale. The rate of this
growth increases with L, which is consistent with it arising
from stronger effective all-to-all interactions described by the
high-frequency expansion [Eq. (2)]. It also appears to show
strong system size dependence at short times, where a subex-
tensive amount of entanglement is established. This should be
contrasted with models of MBL without central coupling, in
which the short-time behavior is system-size-independent.

As a final note, we point out that the entanglement entropy
at fixed γ is subextensive, such that SA/L appears to be trend-
ing toward zero with increasing system size. This should be
contrasted with mutual information between the two halves of
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FIG. 6. Dynamics with unscaled coupling, γ = 0.106 07. On the
reachable timescales, the spin-glass order parameter qEA (a) does not
show a significant system size dependence. However, the bipartite
entanglement entropy (b), in addition to being subextensive—SA ∝
Lα , 0 < α < 1—at short times, already shows qualitatively different
behavior at intermediate time for L � 24. Inset: Mutual information
MI ≡ I (A, B) between two contiguous halves A and B of the spin
chain (see the main text).

the spin chain,

I (A, B) = S(A) + S(B) − S(A ∪ B),

which is extensive. In Ref. [12], mutual information was used
as a proxy for entanglement between the two halves of the
spin chain, as it nominally removes “unimportant” entangle-
ment with the central qudit. However, since entanglement
must be subextensive—indeed, system-size-independent—in
the MBL phase, our data indicate that entanglement entropy is
a better metric than mutual information for capturing this. Our
initial expectation was that mutual information would become
subextensive at larger system size, but the results obtained
with the ML-MCTDH method rule out that possibility.

VI. CONCLUSIONS

In this paper, we have studied the dynamical behavior of a
qudit coupled to a disordered, interacting bath of up to L = 96
spins-1/2, which altogether can exhibit localization at strong
disorder. Using a combination of exact propagation meth-
ods and the tensor network-based ML-MCTDH approach,
we find evidence of qualitatively different dynamical signa-
tures in local observables such as the spin-glass order of the
bath and the qudit variance, consistent with a rough phase
diagram (Fig. 1). Most notably, we find hints of logarithmi-
cally slow decay of localization near the onset of all-to-all
interactions in the bath. This behavior was found to occur
after timescales t ∼ O(1/γ 2), where γ is the qudit-spin bath
coupling.

The behavior of the qudit observed here is, we believe,
not specific to this model. Our conclusions should apply
equally well to the cases of a cavity photon with rescaled
raising/lowering operators a† → (N0)−1/2a† or central spin-S
systems with operators rescaled as Ŝ → [S(S − 1)]−1/2Ŝ. The
feature of these systems is that the fundamental commutation



relation between the raising and lowering operators vanishes
in the limit of large S or large N0. This fact allows for ex-
act cancellation between processes that raise or lower the
qudit state. However, this mechanism only serves to protect
localization for sufficiently large “magnetic field” �; it is
unclear how these systems interpolate between the � = 0
limit and the � > |g|, |hi|, . . . limit. We note additionally
that the limitations of ML-MCTDH for these types of cen-
trally coupled systems with many-body interacting baths in
the strong-coupling regime require more clarification. Such
clarification may be necessary to extend the effectiveness of
the method into the thermalizing regime on the left side of the
phase diagram 1, which remains numerically inaccessible and
thus poorly understood.
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