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Abstract

The genetic etiology of autism spectrum disorder (ASD) is multifactorial, but how combinations 

of genetic factors determine risk is unclear. In a large family sample, we show that genetic loads 

of rare and polygenic risk are inversely correlated in cases and greater in females than in males, 

consistent with a liability threshold that differs by sex. De novo mutations (DNMs), rare-inherited 

variants and polygenic scores were associated with various dimensions of symptom severity in 

children and parents. Parental age effects on risk for ASD in offspring were attributable to a 

combination of genetic mechanisms, including DNMs that accumulate in the paternal germline 

and inherited risk that influences behavior in parents. Genes implicated by rare variants were 

enriched in excitatory and inhibitory neurons compared to genes implicated by common variants. 

Our results suggest that a phenotypic spectrum of ASD is attributable to a spectrum of genetic 

factors that impact different neurodevelopmental processes.

The major risk factors for autism spectrum disorder (ASD) are genetic and include a 

variety of rare and common alleles, including rare de novo copy number variants (CNVs)1 

or protein-truncating SNPs and indels of large effect2 and common polygenic risk that 

is measured as the sum of thousands of common alleles with small effects3. Despite the 

success in identifying and characterizing multiple types of genetic risk, there is no one 

variant, gene or polygenic score (PS) that has a high predictive value for an ASD diagnosis. 

Even CNVs with large effect sizes (OR > 30) for ASD present with variable psychiatric 

traits4, and risk is attributable to a combination of rare and common variation5,6.

Sex is also a major genetic factor that influences ASD risk. Males are diagnosed with ASD 

more frequently than are females at a ratio of 4:1. A small proportion of cases are associated 

with X-linked variants7, but the male preponderance of ASD is not largely explained by 

genetic variation on sex chromosomes. We and others have hypothesized that it may instead 

be explained by sex differences in the effects of autosomal variants8–10. This hypothesis is 

supported by previous studies showing that females with ASD have a greater burden of rare 

CNVs1,11,12 and gene mutations13,14. However, gene-by-sex interactions in ASD have not 

been examined systematically.

Previous genetic studies have been focused on defining new categories of rare variant risk 

from DNA sequencing or by improving the statistical power of genome-wide association 

studies (GWAS). How combinations of multiple genetic factors contribute to risk and 
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clinical presentation is not known. Here we investigate, in a large dataset of whole genomes 

and exomes, the combined contributions of de novo, rare inherited and polygenic risk to 

ASD. We show that the genetic architecture of ASD varies as a spectrum of rare and 

common variation, each having distinct phenotypic correlates and differential effects in 

males and females.

Results

Defining multiple components of genetic risk.

We investigated the combined effects of multiple genetic factors, detectable by genome 

sequencing or a combination of exome sequencing and SNP genotyping, on risk for ASD. 

We focused on several factors that have established associations with case status, such as 

de novo protein-truncating (dnLoF) and missense (dnMIS) mutations1,2 and rare inherited 

variants15,16 that disrupt genes (inhLoF) and polygenic scoring models that have been 

associated with ASD case status, including PS for ASD (PSASD), schizophrenia (PSSZ) 

and educational attainment (PSEA)17,18 (see Methods for details on the selection of genetic 

factors).

We confirmed genetic associations by whole genome analysis of 37,375 individuals 

from 11,313 ASD families (12,270 cases, 5,190 typically-developing siblings, and 19,917 

parents). The sample was composed of three datasets, including whole genome sequencing 

(WGS) of cohorts from UCSD (https://sebatlab.org/reach-project) and the Simons Simplex 

Collection (SSC) and exomes and SNP genotyping from the SPARK study19 (see Methods 

and Supplementary Tables 1 and 2). SNP, indel, structural variant (SV), and DNM 

calling, and calculation of ancestry principal components were performed using functionally 

equivalent pipelines for each dataset as described in the Methods, and PSs were calculated 

using the polygenic scoring method SbayesR20. Rare variants were annotated for gene 

functional constraint. Analysis of protein-coding loss of function (LoF) and cis-regulatory 

(CRE) variants was restricted to variant-intolerant genes (LOEUF < 0.37) and analysis of 

missense variants was restricted to those with missense badness (MPC) scores > 2.

Association tests were performed for case-control differences in DNM burden. Association 

of inherited risk was tested by transmission disequilibrium test (TDT)15. Common variant 

associations were tested by a polygenic TDT (pTDT) that measures overtransmission of 

risk alleles as the deviation of the offspring PS from the average PS of the parents17. We 

confirmed that de novo synonymous variants were not associated with ASD in the combined 

sample (Extended Data Fig. 1a), and rates of DNMs were not influenced by batch effects or 

other confounders (Extended Data Fig. 1b,c). Results confirm significant contributions from 

genetic factors, including de novo loss of function (dnLoF) and missense (dnMIS) mutations 

(Fig. 1a and Supplementary Tables 3–6). TDT confirmed the associations of rare inherited 

protein-truncating SNVs (inhLoF) and SVs (LoFSV) (Fig. 1b and Supplementary Tables 

7–9). SVs that disrupt cis-regulatory variants (CRE-SVs) of constrained genes showed 

differential transmission in cases and controls, but the TDT test did not reach statistical 

significance in cases. Polygenic scores PSASD, PSSZ and PSEA were all significantly 

associated with ASD (Fig. 1c and Supplementary Table 10), and the polygenic contribution 

to ASD was consistent across all three cohorts (Supplementary Table 11).
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We examined the combined effects of rare and common variation. To ensure that genetic 

factors were ascertained consistently across the three cohorts, analysis was restricted to 

six categories that are detectable in exome and WGS with comparable sensitivity: dnLoF, 

dnMIS, inhLoF and polygenic scores (PSASD, PSSZ, PSEA). SVs and CNVs, variant types 

that cannot be ascertained comparably in exome and WGS datasets were not included. To 

minimize ancestry as a confounder in PSs, analysis was restricted to a subset of 7,181 

families (n = 25,391 individuals) with parents and offspring that have confirmed European 

ancestry.

The contribution of each factor individually and the additive contributions of multiple factors 

was estimated by multivariable regression (Fig. 2a). The variance explained by individual 

genetic factors in this study was consistent with previous studies. Polygenic risk explained 

2% of the variance in case status in the combined sample (Supplementary Table 12), 

consistent with the ~2% of variance explained by polygenic risk in the most recent GWAS 

meta-analysis3. The combined contribution of rare variants was similar, also explaining 2% 

of the variance in case status (Fig. 2a). Our results indicate that rare variants and polygenic 

risk form two major components of the genetic architecture of ASD, and the additive 

effects of all factors combined could be quantified in a single model (r2 = 4%, Fig. 2a and 

Supplementary Table 12). We applied the estimates of the multivariable regression to create 

composite genetic risk scores of multiple factors, including a rare variant risk score (RVRS) 

for the combination of dnMIS, dnLoF and inhLoF, a common variant risk score (CVRS) 

for the combination of PSASD, PSSZ and PSEA, and a genomic risk score (GRS) for the 

combination of all six genetic factors. For each, we calculated the case-control odds ratios at 

multiple score thresholds (Fig. 2b and Supplementary Table 13), and we found that, across 

the full distribution of risk scores, the GRS detects an effect size that is 40% stronger than 

effect sizes for RVRS or CVRS (Supplementary Table 14).

Sex differences in genetic load.

Sex differences in genetic load were evident for both polygenic and rare variant risk (Fig. 

3a,b). Female cases had significantly increased CVRS (P = 5.96 × 10−4; Fig. 3b) and RVRS 

(P = 4.32 × 10−7; Fig. 3a) compared to male cases. A similar trend was seen for polygenic 

risk in controls, with female controls having a greater CVRS than males (P = 0.026; Fig. 

3b). These results are consistent with a “female protective effect” in which females in the 

general population tolerate a greater genetic load of ASD risk, and likewise a greater genetic 

load is required for females to meet diagnostic criteria for ASD case status21. The full 

distribution of GRS is skewed upward in females compared to males (Fig. 3c), which is 

further highlighted by a fill plot comparing the densities of distributions of GRS between 

groups (Fig. 3d). As expected, the distribution of GRS is bimodal, with a subset of DNM 

carriers having the highest scores and the greatest enrichment of female cases.

According to a liability-threshold model for ASD22,23, a total genetic load sufficient to 

meet diagnostic criteria can be reached through differing combinations of rare and common 

variation. Subjects having a greater rare variant load may require less polygenic load5 

and vice versa. In this study, cases who carry de novo damaging mutations (dnLoF or 

dnMIS) had a combined polygenic load that was reduced compared to cases that do not 

Antaki et al. Page 4

Nat Genet. Author manuscript; available in PMC 2022 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



carry damaging DNMs (Fig. 4). A similar trend was seen in both sexes, but the effect was 

not statistically significant in females. Thus, in the presence of a damaging DNM, less 

polygenic risk is required to meet diagnostic criteria for ASD. The negative correlation of 

the composite risk scores RVRS and CVRS (P = 0.0037, Pearson correlation = −0.015) was 

stronger than for the pairwise correlations of individual factors (Fig. 4b and Supplementary 

Table 15), consistent with liability being attributable to the additive effects of multiple rare 

and common genetic factors. Also consistent with a liability threshold model, rare inherited 

variants (inhLoF) were negatively correlated with DNMs (P = 0.03; Extended Data Fig. 2a).

The strength of the threshold effect in Figure 4b did not differ significantly by sex. This 

is in contrast to our previous analysis of this dataset using the polygenic scoring method 

PRSice, which found evidence that the anti-correlation of CVRS and RVRS was stronger 

in males24 than in females (Extended Data Fig. 3). Evidence for sex differences in the 

strength of this negative correlation is therefore not robust across multiple polygenic scoring 

methods. Evidence for sex-biased transmission of rare inhLoF variants within families was 

similarly weak. For instance, we did not observe a biased transmission of risk from the 

more “protected” parent (mothers) to the more susceptible offspring (male cases) (Extended 

Data Fig. 2b), as we have previously hypothesized8. Thus, we do not find evidence that 

gene-by-sex effects result in dramatic biases in the transmission of risk from parent to child 

(see Supplementary Note for additional discussion).

Differential effects of genetic factors on behavioral traits.

We hypothesize that the differences in genetic architecture that we observe in this study 

could underlie broad variation in clinical phenotype across the autism spectrum. DNMs 

have been associated with a more severe clinical presentation of ASD characterized by 

greater intellectual impairment2,25 and delays in meeting developmental milestones 26,27. 

PSs for cognitive traits have been associated with a clinical subtype of high-functioning 

“Asperger” cases18. We investigated behavioral correlates of genetic factors in quantitative 

phenotype data on cases, sibling controls and parents that were available in the SSC and 

SPARK cohorts. Phenotypic measures in offspring included repetitive behavior (RBS), 

social responsiveness (SRS), social communication (SCQ), adaptive behavior (VABS) 

and motor coordination (DCDQ). Behavioral traits in parents, included ASD symptoms 

(SRS, BAPQ), educational attainment (EA), and parental age at birth of the proband 

(Supplementary Table 16). Genetic effects were tested by linear regression controlling for 

cohort, age, sex and principal components, and effects were also tested for gene-by-sex 

interactions (Supplementary Table 17).

Multiple genetic risk factors contributed to dimensions of ASD symptom severity in cases 

and in their typically developing sibling and parents. Six gene-trait correlations were 

significant after Bonferroni correction for 72 tests (Fig. 5a), and 18 showed nominal 

associations (P ≤ 0.05). Social deficits (SCQ, SRS) in offspring were associated with 

polygenic risk (PSASD) and de novo mutations (dnLoF), and the same factors influenced 

social behavior (SRS, BAPQ) in parents (Fig. 5b), with PSASD associated with social 

deficits and dnLoF correlated with reduced symptom severity in parents consistent with a 

de novo etiology. Deficits in adaptive behavior (VABS) in offspring were weakly correlated 
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with dnLoF and polygenic risk (PSASD, PSSZ). Deficits in motor coordination (DCDQ) 

were associated with rare variants (dnMIS, dnLoF, inhLoF) but not with polygenic scores. 

PSEA was protective for core ASD symptoms of repetitive behavior (RBS) and social 

communication deficits (SCQ) in offspring and was also associated with reduced symptom 

severity in parents (BAPQ, EA). Intriguingly, multiple inherited genetic factors in parents 

(inhLoF, PSEA, PSSZ) were associated with parental age.

The correlations of genetic factors with behavioral traits were weakly sex biased. Eleven 

gene-trait relationships showed nominal evidence for an interaction by sex, but none were 

statistically significant after correction for multiple testing. These results suggest that the 

effects of most genetic factors on behavioral traits were similar in females and males. 

Among the weak interactions that were observed, a majority of gene-by-sex effects (8/11) 

were observed in controls or in parents. This may be attributable to a reduced power to 

detect sex differences in case samples that are predominantly male, or it could be due to 

the homogenizing effects of clinical ascertainment of ASD cases. Sex-differences in genetic 

effects were not exclusively male-biased (5/11 had stronger effects in females). For example, 

genetic effects on social communication (SCQ) in cases included two factors that were 

male-biased (PSASD and PSSZ) and two that were female-biased (inhLoF and PSEA) (Fig. 

5a). Perhaps the most striking example of gene-by-sex interaction was that all six factors 

showed evidence for differential effects on maternal and paternal age (Fig. 5b).

Multiple genetic factors contribute to parental-age effects.

We and others have demonstrated that advanced paternal age correlates with increased rates 

of germline mutation in offspring28–30, consistent with parental age effects being attributable 

in part to de novo mutations that accumulate in the paternal germline. An alternative model 

by Gratten et al. has postulated that advanced paternal age could itself be a trait that is 

directly influenced by genetic liability for ASD that is carried by the father31. A recent 

study has found evidence that PSASD is positively correlated with paternal age32, providing 

support for the Gratten et al. model.

Our results demonstrate that the genetic basis of the parental age effect in ASD is 

highly multifactorial with contributions from de novo mutation, rare-inherited variants and 

polygenic risk. For example, common (PSEA) and rare (inhLoF) variation in fathers were 

associated with older and younger paternal age respectively (Fig. 6a), and the correlation of 

PSEA with advanced parental age was even stronger for mothers (Fig. 6a and Supplementary 

Table 18). As expected, the rate of de novo SNVs increased with paternal age in the 

combined dataset (r2
paternal = 0.42, r2

maternal = 0.27; Extended Data Fig. 4), and dnLoF and 

dnMIS variants mirror this effect (Fig. 6a).

The single strongest inherited factor that influenced parental age was PSEA (r2 = 0.017; 

Supplementary Table 17), while PSASD and PSSZ showed much weaker correlations (r2 

≤ 0.0006). Consistent with these results, parents’ levels of education were significantly 

correlated with parental age in our sample and maternally biased (r2
maternal = 0.066, r2

paternal 

= 0.023), but social deficits in parents were not correlated with parental age (Supplementary 

Table 19). To further examine what behavioral traits in parents may explain inherited 

mechanisms of parental age effects, we compared the relative effects of genetic factors 
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on the age, education and social behavior of parents (Fig. 6b,c). The effects of six genetic 

factors on parental age were positively correlated with their effect sizes for educational 

attainment of parents (PCC = +0.76, P = 0.0039; Fig. 6b) and negatively correlated with 

their effect sizes for social deficits (PCC = −0.66, P = 0.016; Fig. 6c). These results suggest 

that inherited mechanisms of parental age effects on ASD risk in offspring may be driven by 

genetic effects on learning and education in parents rather than by effects on parental social 

behavior.

Rare variant risk is enriched in neurons of the fetal cortex.

ASD susceptibility genes are preferentially expressed in the developing brain18,27. We 

hypothesize that differences in effect sizes and associated phenotypes between common 

variants and rare variants may be attributable, in part, to differences in the brain expression 

of their respective genes. Here we confirmed that ASD susceptibility genes are enriched 

in fetal cortex and cortical cell types, and compared the degree of enrichment between 

protein-coding genes implicated by rare variants or by GWAS.

We applied a rare-variant transmission and de novo association (TADA) test33 to the 

combined data in this study to define a set of 125 ASD susceptibility (TADA genes) with 

FDR < 0.05, and we obtained a set of 114 high-confidence protein-coding genes identified 

in a previous GWAS by Grove et al.18 (GWAS genes). To define a null distribution of 

expression values across developmental periods and cell types, 1,000 protein-coding genes 

were randomly sampled from the expression datasets. The three gene lists are provided 

in Supplementary Table 20. The expression of TADA genes and GWAS genes were then 

compared to the null distribution in cortex bulk tissue data from the BrainSpan transcriptome 

atlas34 and cell-type expression data obtained from the Cortical development expression 

(CoDEx) resource35.

In bulk human cortex, GWAS genes were more highly expressed (expression across all 

cortex samples and periods) compared to the null distribution, and TADA genes were further 

enriched (Fig. 7a). After normalizing cortex expression of each gene across periods, GWAS 

genes show increased relative expression during fetal development (Fig. 7b) compared to 

the null, and again TADA genes showed a further enrichment in fetal cortex. At the level of 

cortical cell types, the expression of TADA genes was significantly (~2 fold) greater than the 

null in excitatory and inhibitory neurons (Fig. 7c and Supplementary Table 21), and GWAS 

genes did not show a significant enrichment of expression by cell type. These results are 

consistent with rare variants of large effect impacting genes that have key roles in early fetal 

brain development.

Discussion

Whole genome analysis of a large ASD family cohort demonstrates how the genetic basis of 

ASD consists of multiple genetic components, including DNMs, rare inherited variants and 

polygenic scores for psychiatric and behavioral traits. In this study, the predictive accuracies 

of polygenic scores and rare variants were similar, each explaining 2% of variance in case 

status. As new sequencing technologies continue to chip away at the missing heritability of 

ASD, additional genetic factors could be incorporated into the composite GRS to further 
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improve upon this simple model. Furthermore, when WGS sample sizes become larger, 

more accurate estimates of the heritability explained by rare and common variants36 could 

be feasible.

The genetic architectures of ASD vary across cases, which is evident by an inverse 

correlation of rare variants and polygenic scores, consistent with a liability threshold model. 

This suggests that the genetic architectures of cases represent a spectrum of genetic loadings 

that span between extremes of polygenicity and monogenic disease. Furthermore, female 

cases have a significantly greater overall genetic load of polygenic and rare variation 

than male cases, confirming that a “female protective effect”, in which females display a 

greater tolerance for ASD risk alleles, applies generally to all components of the genetic 

architecture.

The spectrum of genetic architectures that we observe contributes to phenotypic variation 

across the cohort. Multiple genetic factors influence ASD symptom severity in cases and in 

their typically developing siblings and parents, with each factor having a different pattern of 

trait-association. Considering core symptom domains such as social deficits and repetitive 

behavior, PSASD and dnLoF were associated with severity in social deficits, and PSEA was 

protective for these traits. Several factors were weakly correlated with adaptive behavior, and 

deficits in developmental motor coordination were attributable solely to rare variants. For 

most gene-trait relationships, genetic effects on symptom severity paralleled their effects on 

case status. The one exception was PSEA, which was negatively correlated with symptom 

severity in offspring and parents but was positively correlated with case status. Thus, the 

association of PSEA with ASD could not be explained by any of the behavioral traits that 

were measured in this study. Potentially, SNPs that are captured by PSEA may influence 

dimensions of social cognition that were not tested in this study, or they may contribute to 

a clinically distinct subtype of high-functioning ASD. Consistent with the latter hypothesis, 

Grove et al. reported that the effect size for PSEA was strongest in the “Asperger syndrome” 

clinical subtype18.

Based on the evidence for a “female-protective effect” on the genetic load in cases, one 

might predict that genetic effects on social behavior would be stronger in males than in 

females. However, gene-trait relationships did not consistently follow this pattern. Most 

gene-trait correlations did not differ by sex. Genetic effects on social communication in 

cases consisted of two factors with evidence of a male bias (PSASD and PSSZ) and two 

with evidence of a female bias (inhLoF and PSEA). Genetic correlations with parental age 

consisted of four factors that were paternally biased (dnMIS, dnLoF, inhLoF and PSASD) 

and two that were maternally biased (PSEA and PSSZ). The observation that gene-by-sex 

effects go both ways is consistent with studies that have found preliminary evidence that 

some ASD genes are prevalent in female cases and others are prevalent in males37. Caution 

is warranted when interpreting gene-by-sex interactions. Given that all ASD GWASs have 

included case samples that were predominantly male, PSASD may be over-represented in 

male-biased SNP effects. In addition, genetic effects that differ by sex could reflect the 

influences of social factors or clinical ascertainment38. For example, a female bias in the 

effects of inhLoF variants might be expected if the clinical ascertainment of females is 

biased toward subjects with greater symptom severity and greater rare variant load39.
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Multiple genetic factors were associated with parental age with effects that differed by 

sex. These results provide new insights into the genetic mechanisms of parental-age effects 

on ASD risk in offspring40. Parental age effects are attributable to multiple mechanisms, 

including: (1) a de novo mutation mechanism (dnMIS, dnLoF) in which new mutations 

accumulate with age in the germline as fathers age28,41; (2) inherited rare-variants that 

directly contribute to parental age behavior in fathers, and; (3) a polygenic mechanism that 

influences parental age in mothers and fathers31 with PSEA having by far the strongest 

effect. Our genetic findings support a model in which the combined effects of inhLoF, 

DNMs and polygenic scores contribute to a U-shaped effect of parental age and genetic risk 

for ASD. This model is consistent with several previous studies that have found evidence for 

a U-shaped relationship of parental age and risk for ASD or other developmental disorders 

in offspring42–46.

The effects of genetic factors on parental age were positively correlated with their effects 

on educational attainment. Rare inhLoF variants were associated with early paternal age, 

and fathers that carried inhLoFs had reduced educational attainment, but this association 

was not statistically significant (P < 0.058; Supplementary Table 18). The single strongest 

predictor of advanced parental age, particularly for mothers, was PSEA. We confirmed in our 

dataset a significant correlation of parental education and parental age47 that was stronger 

for mothers (r2 = 0.06, P = 3.5 × 10−52; Supplementary Table 19) than for fathers (r2 

= 0.03, P = 1.3 × 10−23). By contrast, measures of social impairment in parents (SRS, 

BAPQ) were not associated with advanced parental age. Our results support a hypothesis 

that inherited mechanisms of parental-age effects are mediated by genetic effects on learning 

and education in parents.

Differences in cognitive traits associated with rare variants and polygenic risk may be in 

part attributable to expression patterns of the respective genes during fetal development. 

By comparing the expression of GWAS and TADA genes in transcriptome data from bulk 

tissue and single cells of the developing cortex, genes implicated by rare variants were 

more strongly enriched during fetal development, specifically within neurons. These results 

are consistent with polygenic models in which rare variants impact genes that play key 

roles in neurodevelopment, while the effects of common risk alleles are distributed more 

broadly across genetic regulatory networks48,49. Given that much of the polygenic risk 

influences non-coding regulatory elements of genes50, it is possible that the brain and 

cell-type enrichment of common variant effects may be greater for the underlying regulatory 

elements than for the transcripts as a whole. However, these results do highlight one aspect 

of the genetic architecture: polygenic risk for ASD is not restricted to a narrowly defined 

brain region, cell type or pathway.

The results described here highlight how an integrated analysis of multiple genetic factors 

can improve our understanding of the genetic basis of ASD. While most of the heritability 

of ASD remains unexplained, the expanding arsenal of sequencing platforms and methods of 

variant detection promise to expand the range of genetic factors that can be captured from 

a genome. The growing cohorts of ASD19 as well as individual rare diseases51 promise to 

improve knowledge of the effects of risk alleles on psychiatric traits and how their combined 

effects determine clinical outcome.
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Methods

Our research complies with all relevant ethical regulations as approved by the institutional 

review board (IRB) of the UC San Diego School of Medicine.

Datasets.

The sample was comprised of three datasets, including whole genome sequencing of 

cohorts from the REACH project at UCSD (https://sebatlab.org/reach-project) and the 

Simons Simplex Collection (SSC) and a dataset of exomes and SNP genotyping from the 

SPARK study19. The combined sample of 11,313 ASD families consisted of a total 37,375 

individuals, including 12,270 cases, 5,190 typically developing siblings, and 19,917 parents 

(Supplementary Tables 1 and 2). All categories of genetic risk to be evaluated in this study 

were confirmed previously within smaller cohorts of this study (REACH or SSC). Thus, the 

combined sample provides improved power to determine effect sizes for the same genetic 

factors. See Data and Code Availability for details on data access.

Processing of DNA sequence data.

Each of the three datasets consisted of Illumina paired-end sequence data, which were 

processed by BWA alignment and variant calling using GATK best practices. Specific 

differences between datasets include library prep (PCR vs. PCR free, WGS vs. exome) 

and differences in software version. Details are provided in the sections below. Analysis 

was carried out with SNP, indel and SV variant calls mapped to GRCh38. All calls were 

generated from sequence aligned to GRCh38. Jointly called VCFs from the REACH cohort 

were lifted over from GRCh37 to GRCh38 prior to annotation and analysis.

REACH cohort.—Whole genome sequencing was performed on blood-derived genomic 

DNA as described in our previous publication52. Standard quality control steps were 

carried out to ensure proper relatedness and genetic sex concordance with the sample 

manifest. Sequencing reads were aligned to the GRCh37 reference genome using bwa-

mem (v0.7.12). Subsequent processing of the alignments followed GATK Best Practices 

guidelines including sorting, marking duplicate reads, indel realignment, and base quality 

score recalibration.

To ensure functional equivalency with other cohorts in our dataset, we applied the same 

SNV/indel variant calling pipeline used on the SSC cohort (see SSC section below 

for details). We utilized GATK HaplotypeCaller (v4.1) to first call SNVs and indels in 

individual samples. GRCh38 GVCFs were then combined using CombineGVCF and jointly 

genotyped. Variants quality score recalibration (VQSR) was then performed on the joint 

VCF. The VQSR model was trained with the parameter “maxGaussians=8” for SNVs and 

“maxGaussians=4” for indels. Variant scores were recalibrated with the truth sensitivity 

level of 99.8% for SNVs and 99.0% for indels. Sample-level filtering converted genotypes to 

noncalls (“./.”) if the GQ < 20 or the DP < 10. Before proceeding with variant annotation, 

variants were lifted over from GRCh37 to GRCh38 with the GATK LiftoverVcf command.
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Simons Simplex cohort.—Whole genome sequencing was performed at the New York 

Genome Center (NYGC) on an Illumina HiSeq X10 sequencer using 150-bp paired-end 

reads to an average depth of 40x. Reads were aligned to the GRCh38 reference genome 

using bwa-mem with subsequent processing of alignments in line with GATK Best Practices 

for functional equivalence.

Jointly-called vcfs containing SNV and indel calls were provided by the NYGC (dated 

2019–03-21). Briefly, variant calling was performed using GATK (v3.5). Variant discovery 

implemented HaplotypeCaller in GVCF mode. Variant quality scores were recalibrated by 

VQSR with the truth sensitivity level of 99.8% for SNVs and 99.0% for indels. Low 

quality genotype calls were defined as GQ < 20 or DP < 10 and were converted to 

missing genotypes (“./.”). Only variants that had “PASS” entries in the FILTER column 

were considered for analysis of inherited variants. Further details on the generation of the 

SSC SNV and indel joint calls can be found in the PDF accompanying the data release 

from the Simons Foundation. WGS SNP genotypes and GWAS imputed genotypes were 

subsequently merged in PLINK 1.953 for generation of PCs and polygenic scores.

SPARK cohort.—The publicly available SPARK dataset consisted of SNP genotyping 

(Illumina global screening array GSA-24v1–0) and exomes (IDT xGen capture sequenced 

on the Illumina NovaSeq 6000 using 2/S4 flow cells). Imputation of SNP genotypes 

was performed using the RICOPILI pipeline (https://sites.google.com/a/broadinstitute.org/

ricopili/imputation)54.

Downstream processing of exome data was performed as follows. Per-sample GVCFs 

were obtained from the SPARK September 2019 data release in which GVCFs had been 

generated with GATK v4.1.2.0 HaplotypeCaller from CRAM files aligned to GRCh38 with 

bwa-mem. Joint genotyping and QC of SNP and indel variant calls was performed at UCSD 

in batches of 100 families the same GATK pipeline that was used for the REACH and SSC 

WGS. Variants with “PASS” in the FILTER column were retained for analysis. Likewise, 

indel calls with QD < 7.5 were omitted.

Principal components (PCs) calculation.

Genotype data was LD pruned to a set of 100,370 unambiguous markers with minor allele 

frequency > 5% in PLINK 1.9, using the --indep-pairwise command with a 200 variant 

window, shifting the window 100 variants at a time, and pruning variants with r2 > 0.2. 

KING version 2.2.4 (https://doi.org/10.1093/bioinformatics/btq559) was used to identify a 

set of unrelated individuals (1st and 2nd degree relatives removed). PCs were calculated 

in the unrelated individuals based on LD pruned data using FlashPCA2 (https://doi.org/

10.1093/bioinformatics/btx299) and related individuals were then projected onto the PCs.

Polygenic score (PS) calculation.

PSSZ was calculated based on current schizophrenia summary statistics from the 

psychiatric genomics consortium (https://www.med.unc.edu/pgc/download-results/). PSASD 

was calculated from summary statistics in Grove et al.18 after excluding the SSC dataset 
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used in this study. PSEA was calculated from summary statistics of the recent GWAS 

meta-analysis of educational attainment by Lee et al.55.

Two polygenic scoring methods were evaluated, and the method with the greatest prediction 

accuracy for ASD case status was selected for all analyses described here. Prior to 

manuscript submission, polygenic scores were calculated from summary statistics using 

the method PRSice (version 2.3.0)56, and the results of this analysis are posted to 

MedRxiv24. As recommended during peer review, PSs were recalculated using a newer 

method SbayesR20. The recalculated polygenic scores, particularly PSASD, had greater 

predictive value for case status (Extended Data Fig. 5), and overall results were highly 

consistent between both PS methods. A comparison of the two is discussed in further detail 

in the Supplementary Note. SBayesR polygenic scores were used for all analyses presented 

here.

SBayesR.—Polygenic scores were calculated using SBayesR20, a polygenic scoring 

method that provides an advantage over “clumping and thresholding” methods such as 

the method PRSice56. SBayesR utilizes all SNPs, and SNP effect sizes are re-scaled using 

a Bayesian (multiple regression) posterior inference model. SBayesR was implemented 

according to default settings as described in the software tutorial https://cnsgenomics.com/

software/gctb/#Tutorial using the Banded LD matrix provided https://cnsgenomics.com/

software/gctb/#LDmatrices. We used the --exclude-mhc argument, which excludes variants 

in the Major Histocompatibility Complex. Polygenic risk scores were calculated from the 

SBayesR summary statistics using PLINK.

PRSice version 2.3.0 (https://doi.org/10.1093/gigascience/giz082).—Only 

unambiguous variants with MAF > 1% in the reference dataset were included. Variants 

were LD clumped over a 250-kb window with an r2 value of 0.1. PSs were calculated at 

multiple P-value thresholds (0.01–0.9) to determine the optimal threshold. The best fitting 

PS for each trait was selected based on significance level of a TDT test carried out in autism 

cases (P-value threshold = 0.1 for ASD and SCZ, P-value threshold = 0.05 for EA). The best 

fitting PS was carried forward for all subsequent statistical analyses.

SV calling.

SV calls were only produced for the WGS datasets REACH and SSC. Our SV calling and 

filtering workflow has been described in detail in our previous publication52. Briefly, we ran 

ForestSV, LUMPY, and Manta on each sample calling deletions and duplications. ForestSV 

mainly relies on coverage as a feature to call SVs, resulting in segmented calls for large 

events that span repetitive elements such as segmental duplications. Because of this, we 

applied a stitching algorithm to ForestSV calls, combining calls of the same SV class if they 

were ≤10 kb apart. As a preliminary filter, we omitted any variant that overlapped more 

than two-thirds of the SV length to centromeres, telomeres, segmental duplications, regions 

with low mappability with 100-bp reads, antibody parts, T-cell receptors, and other assembly 

gaps.

The resulting calls were genotyped using SV2 and SVTyper within each sample. SVs 

and genotypes were then collapsed for overlapping calls. The collapsing algorithm first 
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prioritized the breakpoint confidence intervals if both the start and end confidence intervals 

provided by LUMPY and/or Manta overlapped. For ForestSV calls, the confidence interval 

was defined as +/− 100 bp from the start and end positions. The consensus position 

determined for a collapsable cluster was determined by the SV position with the highest 

number of overlaps. In the case of a tie, the median position was recorded. This method 

allows for collapsing of common SVs that “tile” across a region, which rarely occurs outside 

of variable regions such as the HLA locus. The resulting calls were then subject to a further 

round of collapsing, this time reducing calls to a consensus position if they overlapped 

80% reciprocally with each other. This method was applied recursively until no more calls 

could be collapsed. As for confidence interval collapsing, the consensus position reported 

was the SV with the highest number of overlaps. Variant level genotype likelihood scores 

were generated with SV2 by pooling all features from REACH and SSC samples. If the 

SV2 variant score was not “PASS” then the SVTyper or Manta genotypes were recorded, as 

previously described52. Samples without a genotype call were considered as missing (“./.”).

DNM calling.

DNMs were called using the synthDNM software57. SynthDNM is a random forest (RF)-

based classifier which uses only a pedigree file (PED/FAM) and VCF files as input and 

can be readily optimized for different technologies or variant calling pipelines. For WGS 

datasets (REACH and SSC), we used the default SynthDNM classifier (SSC1 GATK), which 

was trained on GATK variant calls from >30X Illumina WGS data. This default classifier 

had high accuracy (AUC = 0.997) for detecting a truth-set of orthogonally validated de novo 

SNVs and indels from SSC57. For the exome dataset (SPARK), we trained an additional four 

classifiers, one for each set of variant calls: DeepVariant, WeCall, SPARK GATK, and SSC 

GATK. To maximize sensitivity while controlling for false positives, we retained DNMs 

if they were called by three out of the five classifiers. To further confirm the accuracy of 

SPARK DNM calls, we compared the de novo SNV and indel calls on the SPARK dataset 

to a set of validated DNMs that were confirmed by Sanger sequencing from a previous 

pilot study58. For SNVs, the recall rate for SNVs ranged from 92.6% to 98.2% (n = 117), 

while for indels the recall range from 98.6 to 100% (n = 107). For further details of the 

methodology and performance of SynthDNM, refer to our companion paper57.

De novo SVs were defined as events with heterozygous genotypes in offspring and 

homozygous reference calls in parents. We only considered variants that passed the stringent 

“DENOVO_FILTER” filter produced by SV259. We applied our standard filtering guidelines 

detailed below to omit variants present in regions known to produce spurious calls. We also 

supplemented our de novo calls with the de novo CNV calls generated from microarrays 

in SSC samples from Sanders et al.11 since many of these calls are likely to be missed by 

paired-end SV callers. We then manually inspected the list of de novo SVs and stitched calls 

together if they were separated by segmental duplications greater than 10 kb (the maximum 

stitching requirement for ForestSV calls detailed in the section below).

Variant annotation.

Variant Effect Predictor (VEP) v97 along with transcript annotations from Gencode 

v31 were used in annotation of SNVs and indels. Variants were flagged as 
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“LoF” if the functional consequence one of the following: “transcript_ablation”, 

“splice_acceptor_variant”, “splice_donor_variant”, “stop_gained”, “frameshift_variant”, 

“stop_loss”, “start_loss”. LoF variants exclusive to nonsense mediated decay transcripts 

were omitted from subsequent analysis. SVs were annotated by overlap to exons and 

proximal cis-regulatory elements including 5’UTRs, transcription start sites, and fetal brain 

promoters. Since the list of annotated proximal cis-regulatory elements were in GRCh37, we 

lifted over the GRCh38 SV calls to GRCh37 for all subsequent analysis.

We assigned gnomAD LOEUF scores (v2.1.1) to each LoF variant and CRE-SV. If a variant 

overlapped more than one gene, as in the case for large SVs, we recorded the minimum 

(most constrained) LOEUF score to that variant. Constraint was quantified for missense 

variants using the “Missense Badness, PolyPhen-2, and Constraint” (MPC) scores60. These 

scores are available for the GRCh37 build of the human genome and were transposed to 

GRCh38 for analysis. Missense variants without MPC scores due to updates to the reference 

genome were not used in subsequent analysis. The recommended cutoffs to enrich for the 

top tier of constraint (LOEUF < 0.37; MPC > 2) was applied to de novo and rare inherited 

LoF variants.

Association tests.

Selection of variant types to be tested.—For this study, we sought to define several 

major categories of rare variant and common variant risk and to investigate their combined 

effects on ASD risk and behavioral traits. We settled on six categories (three rare and three 

common) that all have a strong prior evidence for their contribution to ASD.

Rare variants.—The major categories of rare variants that have been reproducibly 

associated with associated with ASD include: (1) de novo protein truncating/loss-of-function 

mutations (dnLoF), a category where genetic association is concentrated within genes that 

are loss-of-function intolerant61; (2) de novo missense variants (dnMIS), a category where 

genetic association is concentrated within genes that show missense constraint60 and; (3) 

inherited loss-of-function (inhLoF) variants in LOF-intolerant genes16,52. In our analysis of 

genetic association, we confirmed the association of SNPs, indels and SVs within the above 

categories (Fig. 1). Analysis of the interactions between factors and correlations of genetic 

factors with behavioral traits across multiple cohorts was restricted to SNP and indel variants 

that can be detected across cohorts with comparable sensitivity.

Polygenic scores.—Across a series of studies, schizophrenia62,63 and educational 

attainment63,64 have stood out as traits that are correlated with polygenic risk for ASD. 

PSSZ and PSEA may not be the psychiatric trait scores that are most highly correlated with 

PSASD, but they are among the most well powered GWASs. For this reason, these polygenic 

scores were selected for the first family-based study that applied a polygenic TDT test (also 

used in this study) to demonstrate an overtransmission of PSASD, PSSZ and PSEA to cases17. 

This established for us the proof of concept for their inclusion in this study. Given the high 

intercorrelation of genetic risk for a variety of other psychiatric disorders and traits62, a 

rationale could be made for examining several more polygenic scores, but given the wide 

variety of equally valid and highly correlated traits and polygenic scores to choose from, we 
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sought to err on the side of simplicity and included these three as the main polygenic factors 

of interest.

Definitions of variant types—. All rare variant categories described below consisted of 

private variants in which the alt allele was present in only one family in this study and had 

an allele frequency <1% in gnomAD (v2.1.1). Target categories included only variants in 

functionally constrained genes as defined below.

dnMIS variants were defined as all private de novo missense SNVs with MPC scores 

> 2. dnLoF variants were defined as variant calls that were predicted to result in loss 

of protein function (truncation of a protein) and included stop-gain, frameshift, splice 

site and exonic deletion in a loss-of-function intolerant gene defined as LOEUF < 0.37, 

per recommendations from gnomAD. SVs that intersected more than one gene were 

assigned minimum LOEUF score (corresponding to the most constrained gene). De novo 

synonymous variants (dnSyn), and this category included all private de novo synonymous 

SNVs.

InhLoF variants were defined as private SNV or indel variants with a “PASS” entry in the 

“FILTER” column and we removed variants with ≥5% missing calls across the cohorts. 

For inhLoF variants in the SPARK dataset, we applied one additional filter removing indel 

variants with QD scores less than 7.5.

For dnSVs and inherited LOF SVs, we included only private exonic SVs > 50 bp in length 

and CRE-SVs ≥ 2.5 kb that passed the “DENOVO_FILTER” from the SV2 software which 

is a stringent filter recommended for ultra-rare variants.

De novo association.—The burden of damaging DNMs (dnLoF, dnMIS) was compared 

between cases and controls by a two-sample independent t-test reporting the two-sided 

P-values. Results are provided for the set of de novo mutations in the combined sample. 

In addition, to evaluate the consistency of DNM ascertainment between the REACH, SSC 

and SPARK cohorts, dnLoF, dnMIS and dnSyn variants in all cohorts were compared by 

restricting DNMs to a common set of exome targets that was used in a previous publication 

by Iossifov et al.2. dnSyn variants did not differ significantly between cases and controls 

in the combined sample (Extended Data Fig. 1a). In the SPARK cohort we observed a 

1.1-fold excess of synonymous variants in cases (OR = 1.1, P = 0.02). This trend could be 

attributable to other factors, including chance or true causal noncoding variants enriched in 

cases. No quality metrics that were tested were correlated with case status in the SPARK 

dataset including coverage, transition:transversion (Ti/Tv) ratio, ratio of heterozygous to 

homozygous genotypes (Extended Data Fig. 1b) and paternal age (Extended Data Fig. 1c). 

Thus, variables could not be identified that explain a subtle baseline difference in dnSyn 

burden, which could be included as covariates in a regression model. However, this very 

subtle effect does not contribute to a bias in the combined sample and cannot explain the 

strong associations reported for other categories of de novo mutation (Fig. 1).

Inherited rare variant association.—The number of transmissions and 

nontransmissions from parent to offspring was obtained using plink’s “--tdt poo” 
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command (v1.9). Pooling of transmission and nontransmission counts for the transmission 

disequilibrium test (TDT) was done using the pytdt python package (https://github.com/

sebatlab/pytdt). This package takes as input a data table containing a unique variant ID 

and counts for transmissions and nontransmissions in fathers and mothers for both cases 

and controls. Pytdt performs the pooling or group-wise analysis of private LoF variants and 

CRE-SVs by summing the counts of transmissions and non-transmissions for all variants 

encompassing a group. The package also reports odds ratios, confidence intervals, and other 

statistics commonly used for TDT analysis. We also conditioned the TDT according to 

damaging DNM burden in the offspring using a binomial test for statistical significance of 

transmission distortion of private variants to cases or controls separately. For a summary of 

the TDT results and a list of all the private variants tested in the analysis, see Supplementary 

Tables 7–9.

Polygenic TDT.—Per methods from Weiner et al.17, trio-based association of polygenic 

scores (PSASD, PSSZ, PSEA) with ASD was tested with the polygenic TDT (pTDT), which 

tests the significance of the deviation of the child PS from the average PS of the parents.

pTDT − dev = cℎild PS − midparent PS

P-value was then calculated with a one-sample t-test of pTDT-dev (Fig. 1c) with a 

population mean of 0. Results of the pTDT are reported in Supplementary Table 10.

Calculating composite risk scores RVRS, CVRS and GRS.—We used 

multivariable regression to capture the combined effects of multiple genetic factors on 

case status. For rare variant factors, the predictor variables in the model consisted of rare 

variant burden counts for dnMIS, dnLoF and inhLoF. For polygenic scores PSASD, PSSZ and 

PSEA, the predictor variables consisted of the pTDT-dev values of the trios. To calculate a 

composite genetic risk score, each predictor variable was first residualized for PCs and sex. 

Then estimates were calculated from a generalized linear model as follows

y x1 + x2 + x3 + PCs + sex

where y is case status and x1, x2 and x3 are residualized predictor variable for three genetic 

factors. PCs for all regression models consisted of the first 10 principal components from the 

PCA. Then, the composite risk score (RS) is calculated using r as

RS = predict(model, type = “response”)

Each RS was than standardized by Z-transformation. Predictor variables (x1, x2, x3, etc.) for 

each risk score consisted of

Rare Variant Risk Score (RVRS): dnMIS + dnLoF + inℎLoF
Common Variant Risk Score (CVRS): PSASD + PSSZ + PSEA
Genomic Risk Score (GRS): dnMIS + dnLoF + inℎLoF + PSASD + PSSZ + PSEA
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To compare the effect sizes on case status for the genetic factors and the composite 

risk scores (Fig. 2b), Nagelkerke’s r2 values were calculated for each of the residualized 

predictor variables and for each composite risk score.

Pairwise correlations of rare variants and polygenic risk.—To test the correlations 

between rare variants and polygenic risk, we constructed pairwise linear models

y x + sex + coℎort + case.status + PCs

where the variable y is a polygenic score (PSASD, PSSZ, PSEA or CVRS) and x is a measure 

of rare variant load (dnLoF, dnMIS, inhLoF or RVRS). Gene-by-sex interaction was then 

tested in the following model.

y x + sex + x*sex + coℎort + case . status + PCs

Supplementary Table 15 contains the full results for all pairwise correlation of rare and 

polygenic risk conditioned on sex.

Effects of genetic factors on behavioral traits.

The effects of genetic factors on behavioral traits were investigated in the SSC and 

SPARK cohorts using clinical phenotype data available from SFARI (see Data and Code 

Availability). To eliminate confounders due to ancestry, only individuals of European 

ancestry confirmed by PCA were included. Clinical measures of ASD symptoms and 

related behaviors were selected that were available for cases, typically developing sibling, 

or parents. Phenotype measures consisted of the summary scores from the developmental 

coordination disorder questionnaire (DCDQ) of motor function and the Repetitive Behavior 

Scale (RBS) that were available on cases; the Vineland Adaptive Behavior Scale (VABS), 

Social Communication Questionnaire (SCQ) and Social Responsiveness Scales (SRS) 

that were available on both cases and TD siblings. Behavioral phenotypes available on 

parents included the Broad Autism Phenotype Questionnaire (BAPQ), parental educational 

attainment (from the background history questionnaire) and parental age at birth (for the 

children with ASD diagnosis). Phenotype measures that were available for both the SSC and 

SPARK cohorts were normalized within cohort by Z-transformation, then combined, and 

cohort was included as a covariate in the downstream analyses. A summary of the sample 

sizes available for each phenotype measure is provided (Supplementary Table 16).

Association of genetic factors with developmental traits was tested by linear regression 

controlling for sex, cohort and principal components. In addition, a gene-by-sex interaction 

was tested to determine if genetic effects on cognitive traits differed for males and females. 

Phenotypes in offspring (cases and siblings) were tested using the model

y x + sex + age + coℎort + PCs
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where y is the phenotype variable and x is the genetic factor (DNMs, inhLoFs and PSs). In 

addition, a gene-by-sex interaction was then tested in this model.

y x + sex + x*sex + age + coℎort + PCs

Brain and cell-type expression of ASD susceptibility genes.

The lists of TADA, GWAS and randomly selected protein-coding genes are provided in 

Supplementary Table 20. The expression of TADA genes and GWAS genes were compared 

in the developing human brain using the publicly available gene expression matrix from 

BrainSpan34. The two gene sets were also compared across 16 cell types in the human 

cortex using cell type expression data available from the CoDEx dataset35.

TADA genes.—We defined a set of genes implicated by rare variants with the transmission 

and de novo association test (TADA)33 in our combined sample, using the recommended 

parameters for ASD relative risk and using mutational rates for LoF and missense variants 

calculated by Samocha et al.65. TADA genes were defined as a set of 113 ASD genes that 

were associated with ASD at an FDR < 0.05.

GWAS genes.—We obtained the list of high confidence genes that were implicated by 

GWAS associations and described by Grove et al.18 (GWAS genes). Briefly, genes that are 

likely contributors to GWAS associations were defined with H-MAGMA, a method that 

assigns noncoding SNPs to their genes based on long-range interactions detected by Hi-C 

in fetal and adult brain66. A list of 121 GWAS genes was provided by the authors (Hyejung 

Won, personal communication). To facilitate a valid comparison of genes implicated by rare 

variants and common variants, the GWAS gene set was restricted to a subset of 114 genes 

that were protein coding according grch38 Ensembl gene annotations.

Random genes.—Patterns of expression across developmental periods (Fig. 7b) and cell 

types (Fig. 7c) for GWAS genes and TADA genes were compared to null distributions 

obtained by randomly sampling 1,000 protein-coding genes from the BrainSpan and CoDEx 

datasets.

Analysis of gene expression in bulk tissue (BrainSpan).—The Developmental 

transcriptome dataset was downloaded from BrainSpan (https://www.brainspan.org/static/

download.html), which consisted of normalized gene expression data from 26 brain 

structures (including 21 within the cortex) across 31 developmental time periods. Overall 

expression of GWAS and TADA genes in the developing cortex were compared by 

combining expression values across cortex samples, and gene sets were compared to 

the null distribution by Student’s t-test. Likewise, patterns of expression in cortex across 

developmental time periods was compared between gene sets by first normalizing the cortex 

expression of each gene to its mean across cortex samples, and then fitting the expression 

values of each gene set by lowess smoothing using the “lowess” function described here 

https://james-brennan.github.io/posts/lowess_conf/.
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Analysis of gene expression in 16 cell types from fetal cortex (CoDEx).—
Analysis was performed on cell type gene expression values provided in the CoDEx 

dataset35, which consisted of single cell RNA-seq (scRNA-seq) obtained by DropSeq 

analysis of sections of germinal zone and ventricular zone tissue from mid-gestation fetal 

cortex67. Briefly, in Polioudakis et al., raw counts were normalized and cells were clustered 

using Seurat (v2.3.4)68, and mean gene expression values per cell were calculated for genes 

in 16 cortical cell types. Cell-type expression values were obtained from the “Genes” table 

on the CoDEx web interface (http://solo.bmap.ucla.edu/shiny/webapp/) for TADA genes, 

GWAS genes, and these were compared to a random sampling of 1,000 protein-coding 

genes.

Extended Data

Extended Data Fig. 1. Rates of de novo mutations stratified by cohort and evaluation of potential 
confounders.
a, Rates of de novo synonymous (dnSyn) variants were not associated with ASD in the 

combined sample, but were enriched 1.1-fold in the SPARK cohort (P = 0.021). b, We 

evaluated whether quality metrics or other confounders could explain the slight excess 

of dnSyn variants in SPARK cases. Quality metrics did not differ in cases and controls 

including coverage, transition:transversion ratio (Ti/Tv) or ratio of heterozygous calls (Het/

Hom). c, Paternal age did not differ significantly between cases and controls.
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Extended Data Fig. 2. The combined effects of dnLoF, inhLoF and sex on the transmission of 
rare variants in families.
a, A significant liability threshold for rare variants was evident based on a negative 

correlation of dnLoF and inhLoF (linear regression P = 0.03), and this effect did not 

differ significantly by sex. b, Case-control odds ratios were compared for the transmission 

rates in families by sex (father-daughter, mother-daughter, father-son, mother-son). Both 

maternal and paternal rare variants contribute to ASD with a significant over-transmission 

from mother to daughter and from father to son. We did not observe a significant sex bias 

in the transmission of rare variants in families. In particular, we did not observe an enriched 

transmission from mother to male cases as we have previously hypothesized8.
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Extended Data Fig. 3. Sex differences in the correlation of rare variant and common variant risk 
was not robust across multiple polygenic scoring methods.
a, An early analysis of this dataset using polygenic score estimates from PRSice observed 

that the negative correlation of RVRS and CVRS was stronger in males than in females, 

consistent with males having less tolerance of genetic risk. The heatmap displays the 

correlations between polygenic scores and rare variants in males and females separately. 

Correlations were tested by linear regression controlling for cohort, case status and ancestry 

PCs, and a gene-by-sex interaction was tested in the combined sample (ǂgene-by-sex P < 

0.05). b, With polygenic scores calculated using SBayesR, there was a similar trend with 

the correlation of CVRS and RVRS being stronger in males; however, the gene-by-sex 

interaction was not statistically significant.
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Extended Data Fig. 4. Correlation of de novo mutation rate with parental age.
a,b, Correlation of total autosomal de novo SNVs with age of fathers (a) and mothers (b). 

See also Figure 6a. n = 4,518 trios for which age-at-birth was available for the mother and 

father.

Extended Data Fig. 5. Comparison of the predictive values of polygenic scoring methods PRSice 
and SBayesR.
Polygenic scores calculated using SBayesR had greater predictive value for polygenic scores 

for ASD (PSASD), schizophrenia (PSSZ) and educational attainment (PSEA).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. Risk for ASD is attributable to multiple genetic factors including DNMs, rare 
inherited variants and polygenic risk.
Multiple genetic factors that have been previously associated with ASD were confirmed in 

our combined sample. “**” denotes associations that were significant after correction for 11 

tests (P < 0.0045). Error bars represent the 95% confidence intervals. a, Damaging DNMs in 

genes that are functionally constrained (LOEUF < 0.37 and MPC ≥ 2), including missense 

variants (dnMIS), and protein-truncating SNVs and indels (dnLoF) and SVs (dnSV), occur 

at higher frequencies in cases than in sibling controls. P-values were based on two-sided 

t-tests. b, Protein-truncating SNVs and indels (inhLOF) and SVs (SVLoF) and non-coding 

SVs that disrupt cis-regulatory elements (CRE-SVs) were associated with ASD based on 
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a TDT test. c, Polygenic TDT (pTDT) was significant for all three polygenic scores for 

autism (PSASD), schizophrenia (PSSZ), and educational attainment (PSEA). Rare variant 

associations (a,b) were tested in the full sample (n = 37,375). Polygenic pTDT association 

was tested in samples of European ancestry (n = 25,391). Results for a-c and full lists of rare 

de novo and inherited variants in constrained genes are provided in Supplementary Tables 

3–10.
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Figure 2 |. Multivariable regression of six genetic factors to create a composite genomic risk 
score.
a, Variance in case status explained (r2 and 95% CI) by each genetic factor individually and 

in combination. Combined effects of rare variants (Rare combined) polygenic scores (PS 

combined) and all genetic factors (All combined) were estimated in the European-ancestry 

sample (n = 25,391) by multivariable logistic regression controlling for sex, cohort and 

principal components. b, log10 odds-ratios of case/control proportions for the composite 

genetic risk scores RVRS, CVRS, and GRS at multiple thresholds (deciles). Across all 

thresholds, effect sizes for the GRS was 41–42% greater than for RVRS or CVRS alone. See 

results in Supplementary Tables 13 and 14.
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Figure 3 |. Increased genetic load in females with ASD compared to males.
a,b, Increased burden of genetic risk in female cases compared to male cases is evident for 

combined rare de novo and inherited variants (RVRS) (a) and combined polygenic scores 

(CVRS) (b). P-values from a two-sample t-test are shown. Participants consisted of 5,247 

cases (4,256 males and 991 females) and 3,054 controls (1,504 males and 1,550 females) of 

European ancestry. c, Sex differences in the combined genetic load (GRS) is evident across 

the full distribution. d, A fill plot comparing the densities of distributions illustrates that the 

GRS of females (cases and controls) are skewed upward relative to males.
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Figure 4 |. Negative correlation of rare variants and polygenic risk is consistent with a liability 
threshold model.
a, Transmission of polygenic risk (pTDT) is reduced to cases that carry damaging DNMs 

(dnLoF and dnMIS combined), but the result was not significant in females. P-values were 

based on two-sided t-tests. n = 4,256 male cases (423 DNM and 3,833 no DNM) and 991 

females (1,504 DNM and 1,550 no DNM) of European ancestry. b, A heatmap displaying 

the strength of the correlations between polygenic scores and rare variants. P-values were 

derived from linear regression. Results are provided in Supplementary Table 15.
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Figure 5 |. Differential effects of rare and common variation on behavioral traits in cases, sibling 
controls and parents.
a, The effects of genetic factors were tested on five phenotype measures in children: 

repetitive behavior (RBS), social responsiveness (SRS), social communication (SCQ), 

vineland adaptive behavior (VABS) and developmental motor coordination (DCDQ). Note 

that RBS, SRS, SCQ and BAPQ are measures of “deficit”; thus, in the heatmap, red 

corresponds to increased severity. VABS and DCDQ are measures of “skill”; thus, blue 

corresponds to increased severity on these two instruments. Gene-phenotype correlations 

were tested by linear regression controlling for sex, age, cohort and PCs. Effect size is 

given as standard deviation (sd) of phenotype per unit of genetic factor. b, Genetic effects 
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on parental behavior were tested for autism-related symptoms (BAPQ, SRS), educational 

attainment and parental age. In total, six gene-trait correlations were significant after 

Bonferroni correction for 72 tests (**P ≤ 0.0007), 18 were nominally significant (*P ≤ 

0.05), and 11 showed evidence of sex-biased effects (gene-by-sex interaction P ≤ 0.05). 

Male or female sex bias indicates which sex had the greatest absolute value of effect size. 

Sample sizes for each phenotype ranged from 3,429 to 11,485. Sample numbers and results 

are summarized in Supplementary Tables 16 and 17. Analysis was restricted to individuals 

of European ancestry.
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Figure 6 |. The genetic basis of parental-age effects on ASD risk in offspring is multifactorial.
a, Multiple genetic risk factors for ASD are correlated with parental age with effects that 

differ by sex. Correlations of genetic factors with parental age (standard deviation of age 

per unit of genetic load) were estimated for 11,485 individuals (5,749 mothers and 5,736 

fathers). P-values based on linear regression are given for individual effects with P < 0.05. 

Sex-stratified results for genetic effects on parental age are in Supplementary Table 18. b, 

The effects of six genetic factors on parental age were positively correlated with their effects 

on educational attainment, and the strongest correlate of parental age was PSEA. c, The 

effects of six genetic factors on parental age were negatively correlated with their effects on 
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the SRS in parents. P-values were derived from linear regression. Whiskers represent 95% 

confidence intervals.
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Figure 7 |. ASD susceptibility genes implicated by rare variants are enriched in neuronal cell 
types of the developing brain.
Expression levels of protein-coding genes in bulk tissue (BrainSpan) and in 16 cortical cell 

types (CoDEx) were compared between 115 genes identified with a rare variant association 

test in this study (TADA) and 114 genes implicated by common variants in Grove et al.18 

(GWAS). a, Expression of GWAS genes across all periods and brain regions was enriched 

relative to the full distribution, and the expression of TADA genes was further enriched 

relative to GWAS. Boxes and whiskers represent the interquartile range (IQR) and 1.5*IQR, 

respectively. b, The expression of ASD genes in the developing cortex (after normalizing 

genes in BrainSpan to mean expression of 1 across periods) was enriched during prenatal 

development relative to null distribution consisting of 1,000 randomly protein-coding genes, 

with TADA genes being enriched to a greater extent. Shaded regions represent mean of the 

95% CI from lowess smoothing. c, Mean expression of the GWAS and TADA genes were 
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estimated within 16 cell types in the CoDEx datset and compared to the null distribution of 

randomly sampled genes (811/1,000 genes that were included in CoDEx) by a two-sample 

t-test. After Bonferroni correction for 32 tests (*P ≤ 0.0016), expression of TADA genes was 

significantly increased relative to the null in five neuronal cell types. Error bars represent 

standard error of the mean (s.e.m.), and P-values were derived from two-sided t-test. Gene 

sets and cell-type expression results are provided in Supplementary Tables 20 and 21. RG, 

radial glia; MP, mitotic progenitor; IP, intermediate progenitor; EN, excitatory neuron; IN, 

interneuron; O, oligodendrocyte precursor; E, endothelial cell; P, pericyte; M, microglia.
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