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Abstract

Empirical research with Markov regime-switching models often re-
quires the researcher not only to estimate the model but also to test
for the presence of more than one regime. Despite the need for both
estimation and testing, methods of estimation are better understood than
are methods of testing. We bridge this gap by explaining, in detail, how
to apply the newest results in the theory of regime testing, developed by
Cho and White (2007). A key insight in Cho and White is to expand
the null region to guard against false rejection of the null hypothesis due
to a small group of extremal values. Because the resulting asymptotic
null distribution is a function of a Gaussian process, the critical values are
not obtained from a closed-form distribution such as the �2. Moreover,
the critical values depend on the covariance of the Gaussian process and
so depend both on the speci�cation of the model and the speci�cation of
the parameter space. To ease the task of calculating critical values, we
describe the limit theory and detail how the covariance of the Gaussian
process is linked to the speci�cation of both the model and the parameter
space. Further, we show that for linear models with Gaussian errors, the
relevant parameter space governs a standardized index of regime separa-
tion, so one need only refer to the tabulated critical values we present.
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1 Introduction

Markov regime-switching models, in which the intercept varies over regimes,
have many uses in applied econometrics. Researchers have used these models
to describe the behavior of GDP, to detect multiple equilibria and to describe
the behavior of asset prices. While estimation of these models is straightfor-
ward, testing for the possible presence of more than one regime is more di¢ cult.
Researchers are aware that test statistics could be based on a likelihood ratio,
but are generally uncertain of how to obtain critical values from the asymptotic
null distribution of the test statistics. Our goal is to enable researchers to ob-
tain critical values from the asymptotic null distribution of the test statistic to
provide valid inference regarding the presence of distinct regimes.
Cho and White (2007) provide an asymptotic null distribution that yields

the critical values on which such a test should be based. Because the result-
ing asymptotic null distribution is a function of a Gaussian process, the critical
values are not obtained from a closed-form distribution such as the �2. Fur-
ther, because the Gaussian process depends upon both the speci�ed model and
the speci�ed parameter space, the critical values di¤er across applications and
cannot be obtained from a single reference calculation, such as is the case for
the Dickey-Fuller distribution. In consequence, users face the daunting task of
linking a general Gaussian process limit result to the speci�c structure of their
model. We ease this task by detailing how the Gaussian process and, most
importantly, how the covariance among the elements of the Gaussian process
are linked to the speci�cation of the model.
For the leading case of a linear model with Gaussian errors we bring forward

three important points. First, the covariance of the Gaussian process does not
depend on the presence of covariates, so the single analytic calculation we detail
su¢ ces for all such models. Second, the parameters of the model that char-
acterize regime switching enter the covariance only through the standardized
distance between regime means. In consequence a researcher does not need
to specify the parameter space that contains the regime-speci�c intercepts, but
only the number of standard deviations that separate the regime means. The
�rst two points together imply that a researcher testing for regime switching
under a linear model with Gaussian errors can refer to the tabulated critical
values that appear in Section 4. Our third point is that these tabulated critical
values can be used for a broader class of models. Speci�cally, for a system of
two linear equations the same critical values apply, although the standardization
of the distance between regimes must account for the error variance from each
equation.
To frame the issues, consider the basic regime-switching model estimated by

Cecchetti, Lam and Mark (1990), in which the growth rate of annual, per capita
GNP, Yt, is

Yt = �0 + �St + Ut; (1)

where Ut � i:i:d:N (0; �). The unobserved state variable St 2 f0; 1g indi-
cates regimes, with St = 0 corresponding to a period of contraction in the
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economy and St = 1 corresponding to a period of economic expansion. Fur-
ther, the sequence fStgnt=1 is generated as a �rst-order Markov process with
P (St = 1jSt�1 = 0) = p0 and P (St = 0jSt�1 = 1) = p1. The empirical feature
that expansions tend to last longer than contractions is captured by p0 > p1.
A key issue is to test the null hypothesis of one regime against the alterna-

tive of Markov switching between two regimes. As � = 0 corresponds to only a
single regime, it seems natural to base such a test on the t statistic for �. Yet
the fact that the unobserved sequence fStg depends on parameters (p0; p1) that
vanish from the model if � = 0, renders standard inference with the t statistic
invalid. Tests based on the Lagrange Multiplier principle are also invalid, be-
cause the gradient of the likelihood function is identically zero when evaluated
at null estimates. Valid tests of the null hypothesis of only a single regime
are thus based on the likelihood ratio. Cecchetti, Lam and Mark estimate a
likelihood-ratio test statistic and uncover evidence of multiple regimes but, ab-
sent a method to construct critical values from the asymptotic null distribution,
use critical values that do not necessarily deliver valid inference.
To derive the asymptotic null distribution of the likelihood ratio statistic one

additional non-standard feature must be considered. This feature, emphasized
by Cho and White, is the presence of three regions in the null parameter space.
To understand the importance of accounting for all three regions, it is helpful to
present the regime-switching regression (1) in the form of conditional densities.
Let �1 denote the mean of regime 1, so that �1 = �0 + �. The conditional
densities for Yt are:

f (Yt; �0) =
1p
2��

exp

�
� 1

2�
(Yt � �0)2

�
if St = 0 (2)

f (Yt; �1) =
1p
2��

exp

�
� 1

2�
(Yt � �1)2

�
if St = 1:

Under the null hypothesis of only a single regime with mean ��, three curves
- which form the three regions of the null space - equivalently represent the
population density f (Yt; ��). The �rst curve corresponds to p0 > 0 and p1 > 0,
so that both regimes are observed with positive probability, and �0 = �1 =
��. For the remaining two curves, both regimes do not occur with positive
probability. One curve corresponds to the boundary value p0 = 0, so that regime
0 occurs with probability 1, and �0 = ��. The remaining curve corresponds to
the boundary value p1 = 0 and �1 = ��.
Ghosh and Sen (1985), who establish the importance of accounting for all

three curves, note that when the null hypothesis is true the maximum of the
likelihood will eventually be attained in a neighborhood of the union of all three
curves that represent f (Yt; ��). For this reason, attention cannot be con�ned
to the single curve that corresponds to �0 = �1 = ��. Moreover, the curves that
correspond to the values p0 = 0 and p1 = 0 play an important role in empirical
analysis. Observe that points in a neighborhood of �0 = �1 = �� correspond
to a process in which there are two regimes, with slightly separated means that
may occur with equal frequency. Points in a neighborhood of the values p0 = 0
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and p1 = 0, in contrast, correspond to a process in which there are two widely
separated regimes, one of which occurs infrequently. As false rejection of the
null hypothesis is often thought to result from the misclassi�cation of a small
group of extremal values as a second regime, it is vital to include boundary
values in the null parameter space to guard against this type of false rejection.
The probability of this type of false rejection is indeed reduced, as enlarging the
null space to include the boundary curves leads to an increase in critical values.
Cho and White �nd that when considering the likelihood for a Markov

regime-switching process including p0 = 0 and p1 = 0 in the parameter space
leads to di¢ culties in the asymptotic analysis of the likelihood ratio statis-
tic. These di¢ culties lead Cho and White to analyze a quasi-likelihood ratio
(QLR) statistic. In consequence they approximate the likelihood with a quasi-
likelihood that corresponds to a process in which fStg is a sequence of i.i.d.
random variables with P (St = 1) = �, where the stationary probability � equals
p0= (p0 + p1). While the resulting quasi-likelihood ignores certain correlation
properties implied by the Markov structure, it yields a tractable factorization
of the likelihood and avoids the di¢ culties arising from the asymptotic null
distribution of the score on the boundary of the parameter space.
Because � = 1 if and only if p1 = 0 (and � = 0 if and only if p0 = 0), the null

hypothesis for test of one regime against two regimes is again expressed with
three curves. The null hypothesis is, H0 : �0 = �1 = �� (curve 1), � = 0 and
�0 = �� (curve 2), � = 1 and �1 = �� (curve 3). The alternative hypothesis
is H1 : � 2 (0; 1) and �0 6= �1. In Figure 1 we depict the null space together
with local neighborhoods for two points in this space. The two neighborhoods
illustrate the role of each curve in the null space. Points in the circular neigh-
borhood surrounding the point on �1 � �0 = 0, have slightly separated regimes
as they lie near �0 = �1. Points in the semicircular neighborhood around the
point on � = 1, are infrequently drawn from the distribution with mean �0 as
they lie near � = 1.
The two neighborhoods also illustrate the issues of identi�ability. Un-

der the alternative hypothesis switching occurs between two regimes, but the
regimes are identi�ed only up to labeling - as one could re-label (�; �0; �1) as
(1� �; �1; �0). Ignoring labeling, the parameters (�; �0; �1) are identi�ed under
H1. Under the null hypothesis the identi�cation issues are more complex. On
the curve �0 = �1, the parameter � is not identi�ed. On the curve � = 0,
�1 is not identi�ed and on the curve � = 1 the parameter �0 is not identi�ed.
Further, each null distribution can be equivalently represented by a point on
each of the three curves. It is these identi�cation issues that give rise to the
complex null distribution that Cho and White derive.
While Cho and White consider all three regions of the null space in deriving

an asymptotic distribution, earlier researchers focused only on the region �1 �
�0 = 0, together with the identi�ability condition that � 2 (0; 1). As the
boundary regions � = 1 and � = 0 do not appear, the likelihood, rather than
the quasi-likelihood, is the object of analysis. Hansen (1992) obtains a bound
on the asymptotic null distribution of a likelihood ratio statistic; this bound is
a Gaussian process. Garcia (1998) obtains a �2 process as the asymptotic null
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distribution of a likelihood ratio statistic, but to do so he requires that the matrix
of second derivatives of the likelihood be non-singular when evaluated at the null
estimates. As he notes (p. 764) this condition does not hold for the Markov
regime-switching process he considers, which has Gaussian innovations with a
regime-varying scale parameter. As we describe in Section 2, the presence of
boundary values, together with a singular matrix of second derivatives, results
in an asymptotic null distribution that is a function of a Gaussian process rather
than a �2 process.

Figure 1 depicts all three regions of the null hypothesis H0 : � = 0 and
�0 = ��; � = 1 and �1 = ��; or �0 = �1 = �� together with local

neighborhoods of � = 1 and �0 = �1 = ��. Note that, in terms of the Markov
model, � = 1 corresponds to p1 = 0 and � = 0 corresponds to p0 = 0:

We organize the results as follows. In Section 2 we present the single and
multiple equation linear models we consider, together with the QLR statistic.
We also present the asymptotic null distribution of the statistic, as derived by
Cho and White, and detail how a Gaussian process enters the limit distribu-
tion. In doing so, we highlight the need to calculate the covariance between
the random variables that enter the asymptotic null distribution. In Section 3
we derive the covariance structure of the Gaussian process that appears in the
asymptotic null distribution and detail how to construct the structure for linear
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models with Gaussian errors. Due to the covariance structure of the Gaussian
process the critical values cannot be calculated directly, so in Section 4 we show
how to numerically approximate the critical values. We focus on linear models
with Gaussian errors and, for a set of standardized distances between regime
means, we present a table of critical values. Finally, we link the simulation
discussion to pseudo-code contained in the Appendix (and reference programs
in Matlab, R and Stata) so that researchers are able to construct critical values
for other sets of standardized distances.

2 A QLR Test for Regime Switching

The class of Markov regime-switching processes for which Cho and White es-
tablish consistency of a QLR test includes far more than the structure analyzed
by Cecchetti, Lam and Mark. In this section we provide leading examples of
allowable processes together with the asymptotic null distribution of the QLR
statistic, deferring the formal conditions under which the distribution is derived
to the Appendix. The process (1) can be augmented with covariates Zt,

Yt = �0 + �St + Z
0
t� + Ut: (3)

There are two further generalizations of (3) that broaden the scope of applica-
tion. First, the error density may be any element from the exponential family.
Second, the dependent variable can be vector valued, although the di¤erence be-
tween distributions in the mixture model must be in only one mean parameter.
One example of such a system of equations is the structural model

Yt1 = �0 + �St + �12Yt2 + Z
0
t1�1 + Ut1 (4)

Yt2 = �+ �21Yt1 + Z
0
t2�2 + Ut2:

For any of the allowable processes, let the conditional densities be f (YtjZt; ; �j)
with j = 0; 1 where Zt = (Z 0t; : : : ; Z1) and  includes other parameters of the
conditional density (e.g.  =

�
�; �0

�
). The quasi-log-likelihood analyzed by

Cho and White, which ignores the Markov structure and treats fStg as i.i.d.
with P (St = 1) = �, is

Ln (�; ; �0; �1) =
1

n

nX
t=1

lt (�; ; �0; �1) ;

where lt (�; ; �0; �1) := log ((1� �) f (YtjZt; ; �0) + �f (YtjZt; ; �1)). The
use of this quasi-log-likelihood to form the quasi-maximum likelihood estimator
(QMLE) leads to an important restriction on (3). Carter and Steigerwald (2010)
establish that the QMLE is inconsistent in the presence of Markov switching if
Zt includes lagged values of Yt. For this reason, the processes under study do
not include autoregressions.
To describe the asymptotic null distribution of the QLR statistic, we �rst

note that the null distribution is largely determined by the behavior of the
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statistic in a neighborhood of the null region � = 1. The asymptotic null
distribution is complicated by the fact that �0 is not identi�ed if � = 1, so
changes in the value of �0 do not alter the asymptotic null distribution. This
stands in contrast to the identi�ed parameters �1 and , for which changes in
their value do alter the asymptotic null distribution of the QLR statistic. In
consequence, if �̂ is close to 1 we expect �̂1 and ̂ to be close to their population
values, while there is no population value that �̂0 should be close to.

De�ne
�
�̂; ̂; �̂0; �̂1

�
as parameter values that maximize the Ln function.

Let
�
1; ~; �; ~�1

�
be parameter values that make Ln as large as possible over the

null hypothesis that � = 1. The QLR statistic is

QLRn = 2n
�
Ln

�
�̂; ̂; �̂0; �̂1

�
� Ln

�
1; ~; �; ~�1

��
: (5)

We investigate the behavior of the distribution of QLRn in a neighborhood of
the null region corresponding to � = 1, for which the alternative hypothesis is
� < 1. Observe that, although � is a probability, it is possible that �̂ > 1.
Thus �̂ should be subject to a boundary condition.
At �rst we ignore the boundary condition on �̂. If we �x �0 at �

0
0, the

regularity conditions imply that the asymptotic null distribution of QLRn is
�2, with one degree-of-freedom. As the value �00 is arbitrary, the distribution
of QLRn depends on the stochastic process formed from the sequence of �2

random variables, each indexed by a particular value of �0. Moreover, the
elements of the �2 process are dependent upon each other. The dependence
arises in the following way. For a �xed value �00, the maximum of the likelihood

is Ln
�
�̂
�
�00
�
; ̂
�
�00
�
; �00; �̂1

�
�00
��
. If we �x the value at �

00

0 , then the estimates

that maximize the likelihood are
�
�̂
�
�000
�
; ̂
�
�000
�
; �̂1
�
�000
��
. Because these two

sets of estimates of (�; ; �1) (at both �
0
0 and �

00
0) are calculated from the same

sample, the corresponding sequences �2
�
�00
�
and �2

�
�000
�
are dependent.

When we impose the boundary condition on �̂, the asymptotic null distri-
bution of QLRn is no longer a �2 process.1 To see this, note �rst that the
boundary condition � � 1 implies that if �̂ > 1, then the estimate of � is trun-
cated back to �̂ = 1 and QLRn = 0. The event that �̂ > 1 is closely tied to the
asymptotic null distribution for QLRn. If �0 is �xed at �

0
0, then the asymptotic

null distribution of QLRn that occurs in the absence of the boundary condi-
tion can be expressed as G

�
�00
�2
, where G

�
�00
�
� N (0; 1), and the estimator

�̂ is asymptotically equal to 1 + cG
�
�00
�
, where c is a positive constant. In

consequence, if G
�
�00
�
> 0 then �̂ > 1. Thus, when the boundary condition

is imposed the asymptotic null distribution of QLRn has point mass at 0 and
the remainder of the null distribution is governed by the negative part of the
Gaussian process, G (�0).
Let � de�ne the set of possible values of �0. The procedure of �rst max-

imizing Ln for a �xed value of �0 and then obtaining the supremum over �,
1This is similar to the behavior of a one-sided likelihood ratio test (van der Vaart (1998)

p. 235).
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yields the asymptotic null distribution (Cho and White Theorem 6(a), p. 1692)

QLRn ) sup
�
(min [0;G (�0)])2 : (6)

The critical value corresponds to a quantile for the largest value, over �, of�
G (�0)�

�2
, where G (�0)� := min [0;G (�0)]. As we show below for Gaussian

error densities, the sign of G (�0) switches at the origin, so the quantile exceeds
0 with probability 1 if � contains both positive and negative values.
One important wrinkle still remains. While (6) provides the asymptotic null

distribution for many experiments, it does not provide the full distribution for
all Gaussian experiments. If Ut � i:i:d:N (0; �) the asymptotic null distribution
of QLRn is not determined solely by the behavior in a neighborhood of � = 1.
If �0 is su¢ ciently close to �1 and � = 1

2 , then the asymptotic null distribution
has an additional term (Cho and White Theorem 6(b), p. 1692)

QLRn ) max

�
[max (0; G)]

2
; sup
�

�
G (�0)�

�2�
: (7)

Here G is a standard Gaussian random variable that is correlated with G (�0).
The critical value for a test based on QLRn corresponds to a quantile for the

largest value over max (0; G)2 and sup�
�
G (�0)�

�2
. To determine this quantity

one must account for the covariance among the elements of G (�0) together with
their covariance with G. Because the covariance among the elements of G (�0)
depends on the assumed process for Yt, we show how to analytically calculate
this covariance in the next section.

3 Gaussian Process Covariance

The �rst step in obtaining critical values from the asymptotic null distribution
is to analytically derive the covariance function of G (�0). To do so, we �rst
present the Gaussian process, G (�0), as a normalized score function, together
with the expression for the covariance of the process across the values of �0. The
subsections contain the explicit calculations of this covariance for the models
(3) and (4).
Because the Gaussian process G (�0) arises from the behavior of QLRn in

a neighborhood of the null region � = 1, the component of the gradient that
determines G (�0) is the score for � evaluated at (1; ; �0; ��) (which are the
population values under the null hypothesis that � = 1)

S (�0) = @
@� lt

��
(1;;�0;��)

:

Because S (�0) � N (0;V (�0)), the standardized process G (�0) is a scaled score
function

G (�0) = V (�0)�
1
2 S (�0) :

The asymptotic variance of S (�0) is
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V (�0) = I11 (�0) ;

where I11 (�0) is the (1,1) element of I (�0)�1 and

I (�0) = E
h
(O�;;�1 lt (�0)) (O�;;�1 lt (�0))

T
i
:

Here O�;;�1 lt denotes the gradient with respect to �,  and �1 evaluated at
(�; ; �0; �1) = (1; ; �0; ��).2 From the partitioned inverse formula (Theil 1971,
p. 18), V (�0) is

V (�0) =
�
I11 (�0)� I1 (�0) [I2 (�0)]�1 I1 (�0)T

��1
;

where I =
�
I11 I1
IT1 I2

�
.

Because the process G (�) is a Gaussian process, the dependence among the
elements of G (�) is captured by the covariance among the elements of G (�). If
we let �0 and �

0
0 denote two distinct elements of the process G (�), then the

covariance E
�
G (�0)G

�
�00
��
is derived from the covariance E

�
S (�0)S

�
�00
��
as

E
�
G (�0)G

�
�00
��
= V (�0)�

1
2 V
�
�00
�� 1

2 E
�
S (�0)S

�
�00
��
: (8)

The covariance E
�
S (�0)S

�
�00
��
is the (1,1) element of

I
�
�00
��1 I ��0; �00� I (�0)�1 :

The matrix I
�
�0; �

0
0

�
is obtained by evaluating the gradient at distinct points:

I
�
�0; �

0
0

�
= E

h
(O�;;�1 lt (�0))

�
O�;;�1 lt

�
�00
��T i

. We next show how to calcu-

late these quantities for each class of data generating processes.

3.1 Single Equation Linear Model

For the single equation linear model (3) with Ut � i:i:d:N (0; �), which excludes
lagged values of Yt as covariates, we show that E

�
G (�0)G

�
�00
��
does not depend

on Zt. Thus whether one has an extensive set of covariates, or none as in
Cecchetti, Lam and Mark (1), the following calculation is all that is needed.
For this model

S (�0) = 1� exp
�
(�0 � ��)

�

�
Yt � Z 0t� �

�0 + ��
2

��
:

From the derivative calculations in the Appendix the asymptotic variance of
S (�0) is

V (�0) =
 
e
1
� (�0���)

2

� 1� (�0 � ��)
2

�
� (�0 � ��)

4

2�2

!�1
:

2The element of the gradient corresponding to �0 is identically zero when evaluated at
� = 1 and so is deleted from the vector that forms I (�0) (Cho and White, Assumption A.6
p. 1678).
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To obtain the largest value of
�
G (�0)�

�2
over �, we must also know the

covariance of G (�0), which depends on the covariance of S (�0). The covariance
of the score, E

�
S (�0)S

�
�00
��
, in turn requires

I
�
�0; �

0
0

�
=

266664
e
1
� (�0���)(�

0
0���) � 1 � (�

0
0���)

2

2�2 E [Z 0t]
�00���
�

�00���
�

� (�0���)2
2�2

1
2�2 0 0

E [Zt] �
0
0���
� 0 E [Z 0tZt] 1� E [Z 0t] 1�

�0���
� 0 E [Zt] 1�

1
�

377775 ;

so I11
�
�0; �

0
0

�
= e

1
� (�0���)(�

0
0���)�1. Then E

�
S (�0)S

�
�00
��
equals V (�0)V

�
�00
�

times the following term

e
1
� (�0���)(�

0
0���) � 1�

(�0 � ��)
�
�00 � ��

�
�

�
(�0 � ��)2

�
�00 � ��

�2
2�2

:

Because neither E
�
S (�0)S

�
�00
��
nor V (�) is a function of Zt, the covariance

of the Gaussian process, E
�
G (�0)G

�
�00
��
given by (8), is independent of the

covariates that enter the model. Hence the calculations we detail here provide
the covariance of the Gaussian process for all models of the form of (3).
Next observe that the regime-speci�c parameters �0 and �� enter E

�
S (�0)S

�
�00
��

and V (�) only through � = �0���p
�
. Hence the covariance of the Gaussian process

is given by

E
�
G (�0)G

�
�00
��
=

e��
0 � 1� ��0 � (��

0)
2

2�
e�2 � 1� �2 � �4

2

� 1
2
�
e(�0)

2 � 1� (�0)2 � (�0)4

2

� 1
2

; (9)

where �0 = �00���p
�
. The quantity sup�

�
G (�0)�

�2
that appears in the asymptotic

null distribution is determined by the covariance E
�
G (�0)G

�
�00
��
. Because

the regime-speci�c parameters enter (9) only through �, a researcher need only
specify the set that contains �. That is, to calculate sup�

�
G (�0)�

�2
a researcher

does not need to specify the parameter space � that contains the regime-speci�c
intercepts, but need only specify the set H that contains the number of standard
deviations that separate the regime means.

3.2 Simultaneous Equations Linear Model

For the simultaneous equations linear model (4), let (Ut1; Ut2) be multivariate
Gaussian random variables with zero mean, V ar (Uti) = �i and Cov (Ut1; Ut2) =
�12. The (canonical) reduced form of the multivariate random variable Yt :=
(Yt1; Yt2)

0 is

Yt = A
�1
�
�0
�

�
+A�1St

�
�
0

�
+A�1

�
Z 0t1 0
0 Z 0t2

��
�1
�2

�
+A�1

�
Ut1
Ut2

�
;
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where A =
�

1 ��12
��21 1

�
. As we detail in the Appendix, the covariance

of the Gaussian process takes the form

E
�
G (�0)G

�
�00
��
=V (�)�

1
2 V (�0)�

1
2

�
exp (��0)� 1� ��0 � 1

2
(��0)

2
�
;

with � = �0���p
�1(1��2)

and � = Corr (Ut1; Ut2). We see that the standardized

distance between regimes is altered in a natural way, as �1
�
1� �2

�
is the vari-

ance of Y1t conditional on Y2t, and that the form of the covariance function
is identical to that of the single equation model. Moreover, the index of the
standardized distance between regimes does not depend on A, so that the same
calculations apply to a triangular system (�21 = 0) and to a system of seem-
ingly unrelated equations (�12 = �21 = 0). As in the case of the single equation
model, calculation of the critical values only requires speci�cation of the interval
H that contains the standardized distance between regimes.

4 Quantile Simulation

The second step in obtaining a critical value is to construct the appropriate
quantile from the asymptotic null distribution. For a QLR test with size 5
percent, the critical value corresponds to the .95 quantile of the limit distribution
given on the right side of either (6) or (7). Because the dependence in the
process G (�0) renders numeric integration infeasible, we construct the quantile
by simulating independent replications of a process. For the linear model with
Gaussian errors, as the covariance of G (�0) depends only on an index �, while
G itself depends on (�; �; �0; ��) through the score S (�0), we do not simulate
G (�0) directly. Instead we simulate GA (�), which has the same covariance
structure as G (�0) and so delivers the same quantile, but which depends only
on the index.
To construct GA (�) for the covariance structure in (9) recall that, by a

Taylor-series expansion, e� = 1+�+ �2

2! +� � � . Hence, for f�jg
1
j=0 � i:i:d:N (0; 1):

1X
j=3

�jp
j!
�j � N

�
0; e�

2

� 1� �2 � �
4

2

�
;

so V (�0)
P1

j=3
�jp
j!
�j has the same covariance structure as S (�0). The simulated

process is

GA (�) =
�
e�

2

� 1� �2 � �
4

2

�� 1
2 J�1X
j=3

�jp
j!
�j ;

where J determines the accuracy of the Taylor-series approximation. To cap-
ture the behavior of the limit distribution in (7), we must also account for the
covariance between G and G (�0). As this covariance is a function of �4, whose

11



corresponding value is �4 in the expression for GA (�), we set G = �4 so that
Cov (G;G (�0)) = Cov

�
G;GA (�)

�
.3

For each replication, we calculate GA (�) at a �ne grid of values over H.
To do so, we must specify three quantities: the interval H, the grid of values
over H (given by the grid mesh) and the number of terms in the Taylor-series
approximation, J . To understand the interplay in specifying these three quan-
tities, suppose that �0 is thought to lie within 3 standard deviations of �1. The
interval is H = [�3:0; 3:0] and, with a grid mesh of .01, the process is calculated
at the points (�3:00;�2:99; : : : ; 3:00). Because the process is calculated at only
a �nite number of values, while the maximum that appears in the limit distri-
bution is obtained over a continuum of values, the accuracy of the calculated
maximum increases as the grid mesh shrinks. For this reason we recommend a
grid mesh of .01 (as do Cho and White, p. 1693).

To determine the value of J , let �J;� =
�
e�

2 � 1� �2 � �4

2

�� 1
2 P1

j=J
�jp
j!
�j

be the approximation error. Because f�jg is a mean zero process, it is the
variance of �J;� that provides information about the magnitude of the approxi-

mation error. When � > 0, e� = 1 + � � �+ �J�1

(J�1)! + e
�� �

J

J! for some 0 < �
� < �.

The variance of �J;� is then bounded by
�
e�

2 � 1� �2 � �4

2

��1
e�

2 �2J

J! so, by

Stirling�s formula,

log V ar
�
�J;�

�
� 2J �log ��

�
J +

1

2

�
log J+J�log

p
2�+log

"�
e�

2

� 1� �2 � �
4

2

��1
e�

2

#
:

For large J , V ar
�
�J;�

�
is governed by

V ar
�
�J;�

�
� e2J log ��J log J ;

so �2

J << 1 to ensure that the variance of �J;� declines rapidly to 0 as J grows.

The value of J is then determined such that (maxH j�j)2 << J . In practice,
we recommend that (maxH j�j)2 =J � 1=2.4
The critical value that corresponds to (7) for a test size of 5 percent is the

.95 quantile of the simulated value

max

�
[max (0; �4)]

2
;max
�2H

�
min

�
0;GA (�)

��2�
:

In Table 1 we present the critical value for speci�ed intervals, which correspond
to regime separations that range from 1 to 10 standard deviations. For the
reported values we set J = 150 and use a grid mesh of .01. Both settings
correspond to the values in Cho and White. We �nd that critical values are
little impacted by use of a �ner grid mesh of .001. A far more important

3Cho and White (p. 1693) show Cov (G;G (�0)) =
�
e�

2 � 1� �2 � �4

2

�� 1
2
�4.

4Cho and White select J = 150 and consider a maximal value of � = 5, so �2=J � 1=6.
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setting is the number of replications. Cho and White use 10,000 replications
but we �nd that this number of replications does not produce stable critical
values. To show this, we calculate the critical values from 10,000 simulations
each based on 10,000 replications. The length of the interquartile range of
10,000 calculated critical values is on the order of .1 (e.g. for H = [�3; 3]
the length of the interquartile range is .11). If we increase the number of
replications used to calculate the critical value to 100,000, the length of the
interquartile range shrinks by an order of magnitude. Hence the critical values
we report are based on 100,000 replications. To directly show the impact on
calculated critical values, we also list the critical values reported by Cho and
White in the row corresponding to 10,000 replications. Finally, as researchers
may need critical values for other speci�ed intervals, we present pseudo-code for
the simulation in the Appendix. In addition, simulation programs in Matlab,
R and Stata are available from the authors.

Table 1: Critical Values for Linear Models with Gaussian
Errors5

H [�1; 1] [�2; 2] [�3; 3] [�4; 4] [�5; 5] [�10; 10]
Replications
100,000 5.03 5.54 6.18 6.67 7.03 8.31
10,000 5.01 5.61 6.35 6.54 7.06

To understand how to employ these critical values, we return to the study
by Cecchetti, Lam and Mark. If we assume that the mean growth rate of an-
nual, per capita GNP di¤ers by no more than 5 standard deviations between
expansions and contractions, then 7.03 is the critical value for a test with size
5 percent. (The estimated means di¤er by slightly less than 4 standard devia-
tions.) As the estimated value of the test statistic is 28, the null hypothesis of
only a single regime is clearly rejected for their analysis.

5 Remarks

The asymptotic null distribution that Cho and White establish provides valid
inference for a test of more than one regime. The distribution depends both on
the structure of the model and on the parameter space that contains the regime-
speci�c intercepts. We show that for the class of linear models with Gaussian
errors the dependence of the asymptotic null distribution on the parameter
space and model structure is simpli�ed. First, the regime-speci�c intercepts
enter through an index that captures the standardized distance between regimes.
Second, the presence of covariates does not a¤ect the critical values. Together,
these two points imply that the tabulated critical values we present deliver valid
inference for all models within the class.
A question naturally arises: Can the QLR test proposed here be used if, in

addition to the intercept, slope coe¢ cients also vary over regimes? The answer

5Nominal level 5 percent; J = 150; grid mesh of .01, 100,000 replications; critical values
corresponding to 10,000 replications are from Cho and White Table I, p.1694.
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is yes. Because the null hypothesis is unaltered, the critical values we report
deliver a test with correct size. Note that the test maximizes the QL statistic in
which only the intercept varies over regimes, so the test may lose power against
certain elements of the larger class of alternatives.
To obtain valid inference with the critical values in Table 1, a researcher

must, prior to estimation, specify a set of values that contains the standardized
distance between regimes. The speci�ed set takes the form of an interval
[�c; c] in which the index � must lie, so the estimate �̂ must also lie in the
interval. If the population value of � lies outside the selected interval, then the
estimated value of � will be constrained to lie on the boundary of the selected
interval, which in turn leads to an increased estimate of the variance �. The
resultant upwardly biased estimate of � reduces the power of the test to detect
multiple regimes. To avoid the issues that arise when the estimate of � is
constrained, a researcher can select a large value of c. Yet, as the critical value
rises monotonically with c, a large selected interval also leads to a loss of power.
This raises an interesting question: Can an alternative method be used to obtain
asymptotically valid critical values for the QLR test of regime switching?
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6 Appendix

6.1 Formal Conditions

We present the assumptions that de�ne a class of processes to which the asymp-
totic theory presented in Section 2 applies. The two assumptions presented here
combine A1-A2(i) from Cho and White with A2(ii) from Carter and Steigerwald
(2010).

Assumption 1:
(i) The observable random variables

�
(Y 0t ; Z

0
t)
0 2 Rd

	n
t=1
, d 2 N, are gener-

ated as a sequence of strictly stationary �-mixing random variables such that
for some c > 0 and � 2 [0; 1) the beta-mixing coe¢ cient, g� , is at most c�� .
(ii) The sequence of unobserved state variables that indicate regimes, fSt 2 f0; 1ggnt=1,

is generated as a �rst-order Markov process such that P (St = 1jSt�1 = 0) = p0
and P (St = 0jSt�1 = 1) = p1 with pi 2 [0; 1] (i = 0; 1).
(iii) The given

�
(Y 0t ; Z

0
t)
0	 is a Markov regime-switching process. That is,

for some (; �0; �1) 2 Rr0+2,

YtjFt�1 �
�
F (�jZt; ; �0) if St = 0
F (�jZt; ; �1) if St = 1

;

where Ft�1 := �
�
Y t�1; Zt; St

�
is the smallest �-algebra generated by

�
Y t�1; Zt; St

�
:=�

Y 0t�1; : : : ; Y
0
1 ; Z

0
t; : : : ; Z

0
1; St; : : : ; S1

�
; r0 2 N; and the conditional cumulative

distribution function of YtjF , F (�jZt; ; �j) has a probability density function
f (�jZt; ; �j) (j = 0; 1). Further, for (p0; p1) 2 (0; 1]�(0; 1] n f(1; 1)g, (; �0; �1)
is unique in Rr0+2.
The vector  captures all parameters of F (�), including the scale parameter,
that do not vary across regimes. The point p0 = p1 = 1 is excluded from the
parameter space to rule out a deterministically periodic process for fStg, which
would imply that fYtg is not strictly stationary.
The model for the data generating process speci�es a compact parameter

space.

Assumption 2:
(i) A model for f (�jZt; ; �j) is

n
f (�jZt; ; �j) : (; �j) 2 ~�

o
, where ~� :=

��� 2 Rr0+1, and � and � are convex and compact sets in Rr0 and R, respec-
tively. Further, for each (; �j) 2 ~�, f (�jZt; ; �j) is a measurable probability
density function, where the support of f (�jZt; ; �j) is the same for all ~�, with
cumulative distribution function F (�jZt; ; �j) (j = 0; 1).
(ii) The covariates are exogenous in the sense that P (St = jjFt�1) is inde-

pendent of Zt for (j = 0; 1).

Additional continuity and bounded derivative conditions are needed to obtain
(7) (Cho and White, p. 1687), which hold for a Gaussian density.

6.2 Gaussian Process Covariance

Single Equation - Derivative Calculations
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For the process given by (3) with Ut � i:i:d:N (0; �), the quasi-log-likelihood for
observation t, lt, equals

log

�
(1� �) exp

�
2�0 (Yt � Z 0t�)� �20

2�

�
+ � exp

�
2�1 (Yt � Z 0t�)� �21

2�

��
�1
2
log (c�)� 1

2�
(Yt � Z 0t�)

2
;

where c = 2 � pi.
The gradient of lt evaluated at (1; ; �0; ��) contains

@

@�
lt = 1� ebt ;

where bt = (Yt � Z 0t�)
�
�0���
�

�
�
�
�20��

2
�

2�

�
. The remaining elements of the

gradient are

@

@�
lt =

(Yt � Z 0t� � ��)
2

2�2
� 1

2�
;
@

@�
lt =

Zt (Yt � Z 0t� � ��)
2

�
;
@

@�1
lt =

Yt � Z 0t� � ��
�

:

We analyze the behavior of ebt in detail, as this forms the heart of the calcula-
tions for I (�0) = I (�0; �0). Further detail, covering the remaining calculations,
can be found in Steigerwald and Carter (2011).
To determine the behavior of ebt , �rst note that because (Yt � Z 0t�) �

N (��; �) the de�nition of a moment generating function yields E [exp ((Yt � Z 0t�) s)] =
exp

�
��s+

1
2�s

2
�
for any real number s. Let s = �0���

� , so exp
�
��s+

1
2�s

2
�
=

exp
�
1
2�

�
�20 � �2�

��
. Hence

E
�
ebt
�
= E

h
e(Yt�Z

0
t�)s� 1

2� (�
2
0��

2
�)
i
= 1:

In similar fashion, 2bt = (Yt � Z 0t�)�2s�
�
�20��

2
�

�

�
and E [exp ((Yt � Z 0t�) � 2s)] =

exp
�
�� � 2s+ 1

2� (2s)
2
�
, hence

E
�
e2bt

�
= e

1
� (�

2
0��

2
�):

We also need to calculate E
�
ebt (Yt � Z 0t�)

�
and E

h
ebt (Yt � Z 0t� � ��)

2
i
.

For the �rst quantity,

E
�
ebt (Yt � Z 0t�)

�
=
R
(y � Z 0t�) ebtce�

1
2� (y�Z

0
t����)

2

dy;

where c = (2pi � �)�
1
2 . Note ebte�

1
2� (y�Z

0
t����)

2

= e�
1
2� (y�Z

0
t���0)

2

, so

E
�
ebt (Yt � Z 0t�)

�
=

Z
(y � Z 0t�) ce�

1
2� (y�Z

0
t���0)

2

dy = �0:

For the second quantity,

E
h
ebt (Yt � Z 0t� � ��)

2
i
=

Z
(y � Z 0t� � ��)

2
ce�

1
2� (y�Z

0
t���0)

2

dy:

Because (y � Z 0t� � ��)
2
= (y � Z 0t� � �0)

2
+2 (y � Z 0t� � �0) (�0 � ��)+(�0 � ��)

2,
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E
h
ebt (Yt � Z 0t� � ��)

2
i
= � + (�0 � ��)2.

With these calculations in hand, the elements of the �rst row of I (�0) are

(1; 1) E
�
1� 2ebt + e2bt

�
= e

1
� (�

2
0��

2
�) � 1

(1; 2) E
h�
1� ebt

�
1
2�2

�
(Yt � Z 0t� � ��)

2 � �
�i
= � 1

2�2 (�0 � ��)
2

(1; 3) E
��
1� ebt

�
1
�Z

0
t (Yt � Z 0t� � ��)

�
= �Z0t

� (�0 � ��)
(1; 4) E

��
1� ebt

�
1
� (Yt � Z

0
t� � ��)

�
= � 1

� (�0 � ��) :

Simultaneous Equations - Covariance Calculations
From the reduced form, the coe¢ cient on the state variable, St, is d = �A�1

�
1 0

�T
and the covariance matrix of the errors is 
�1 = A�1�

�
A�1

�T
with � =�

�1 �12
�12 �2

�
. As detailed in Steigerwald and Carter, the covariance of the

Gaussian process is

E [G (d1)G (d2)]=V (d1)�
1
2 V (d2)�

1
2

�
exp

�
dT1 
d2

�
� 1� dT1 
d2 �

1

2

�
dT1 
d2

�2�
;

where V (d1) = exp
�
dT1 
d1

�
� 1� dT1 
d1 � 1

2

�
dT1 
d1

�2
.6 The quantity dT1 
d2

simpli�es as

dT1 
d2 = �1
�
1 0

� �
A�1

�T
AT��1AA�1

�
1 0

�T
�2

= �1
�
1 0

�
��1

�
1 0

�T
�2 =

�1�2
�1 (1� �2)

:

6.3 Pseudo-Code

Prior to the �rst iteration, the researcher must select the set H that contains �,
the resolution of the grid of values in H (we recommend .001) and the number
of normal random variables, J , used to approximate the Gaussian process co-
variance (we detail how to select J on page 12, for many applications J = 150
is su¢ cient). For each of r = 1; : : : ; R iterations:

1. Generate f�jgJj=0 � i:i:d:N (0; 1)

2. For each value of � in the grid mesh, construct GA (�) =
�
e�

2 � 1� �2 � �4

2

�� 1
2 PJ�1

j=3
�jp
j!
�j

(the equation for GA (�) appears at the top of page 12)
3. Obtain mr = max

n
[max (0; �4)]

2
;max�

�
min

�
0;GA (�)

��2o
(use of �4 is described at the top of page 11; the formula for mr

corresponds to the right side of (7))
This yields fmrgRr=1. Let

�
m(r)

	R
r=1

be the ordered values from which the
critical value for a test with size 5 percent is m[:95R].

6 If the errors are homoskedastic, so that �1 = �2, then the covariance contains an additional
term, see Steigerwald and Carter for details.
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