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Gut microbiome and microbial
metabolites in NAFLD and after
bariatric surgery: Correlation
and causality
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1Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of
Medicine, Hangzhou, China, 2Department of Endoscopy Center, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, China

Non-alcoholic fatty liver disease (NAFLD) is currently related to a heavy

socioeconomic burden and increased incidence. Since obesity is the most

prevalent risk factor for NAFLD, weight loss is an effective therapeutic

solution. Bariatric surgery (BS), which can achieve long-term weight loss,

improves the overall health of patients with NAFLD. The two most common

surgeries are the Roux-en-Y gastric bypass and sleeve gastrectomy. The

gut-liver axis is the complex network of cross-talking between the gut, its

microbiome, and the liver. The gut microbiome, involved in the homeostasis

of the gut-liver axis, is believed to play a significant role in the pathogenesis

of NAFLD and the metabolic improvement after BS. Alterations in the

gut microbiome in NAFLD have been confirmed compared to that in

healthy individuals. The mechanisms linking the gut microbiome to NAFLD

have been proposed, including increased intestinal permeability, higher

energy intake, and other pathophysiological alterations. Interestingly, several

correlation studies suggested that the gut microbial signatures after BS

become more similar to those of lean, healthy controls than that of

patients with NAFLD. The resolution of NAFLD after BS is related to

changes in the gut microbiome and its metabolites. However, confirming

a causal link remains challenging. This review summarizes characteristics

of the gut microbiome in patients with NAFLD before and after BS and

accumulates existing evidence about the underlying mechanisms of the

gut microbiome.
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bariatric surgery, non-alcoholic fatty liver disease, metabolites, gut microbiome, gut-
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Introduction

Non-alcoholic fatty liver disease (NAFLD) includes a
spectrum of liver conditions ranging from hepatic steatosis
to non-alcoholic steatohepatitis (NASH), with or without
fibrosis, that can develop into liver cirrhosis or hepatocellular
carcinoma (Byrne and Targher, 2016). NAFLD is diagnosed
by imaging or histological evidence of hepatic steatosis
and the lack of secondary causes, such as excessive alcohol
consumption, hepatitis, or hereditary disorders (Chalasani
et al., 2018). Approximately 25% of the global adult population
is affected by NAFLD, which confers a heavy socioeconomic
pressure, comprising a predicted annual cost of $292 billion
in the United States (Younossi et al., 2016; Huang et al.,
2021). A relationship between NAFLD and metabolic
comorbidities, including obesity and diabetes mellitus, has
been established; additionally, obesity is the most documented
and prevalent risk factor for NAFLD (Loomba et al., 2021).
Therefore, the NAFLD population is predicted to increase
by 18% by 2030 in correspondence with the increasing
incidence of obesity and type 2 diabetes (Estes et al., 2018;
Younossi et al., 2018).

Studies suggest that weight loss and healthy lifestyles can
reverse NAFLD at an early stage (Romero-Gómez et al., 2017;
Younossi et al., 2021). Bariatric surgery (BS) is the most
efficient strategy for achieving long-term weight loss that also
improves the overall health of patients with NAFLD (Cotter and
Rinella, 2020; Syn et al., 2021). A systematic review and meta-
analysis of data from 32 cohort studies comprising 3,093 biopsy
specimens found that BS resulted in the biopsy-confirmed
resolution of steatosis and fibrosis in 66 and 40% of patients
with NAFLD, respectively. Furthermore, mean NAFLD activity
scores are considerably reduced in patients after BS (Lee et al.,
2019a).

However, the complex mechanisms of NAFLD
improvement by BS remain to be clarified. Previous studies
have elucidated the critical role of the gut microbiome (GM)
in the homeostasis of the gut-liver axis and the pathogenesis
of NAFLD (Tarao et al., 1977; Triger et al., 1978; Albillos
et al., 2020). The gut microbial dysbiosis might contribute
to NAFLD through several mechanisms, including increased
energy harvesting and altered microbial production (Krawczyk
et al., 2010). Indeed, some microbial changes in NAFLD,
such as low microbial diversity and richness, can be reversed
by BS. Also, altered microbial signatures are associated with
metabolic improvements in NAFLD patients undergoing
BS. Therefore, BS improves gut microbial dysbiosis, which
may participate in NAFLD alleviation (Sun et al., 2019;
Cerreto et al., 2021).

Here, we discuss the relationship between NAFLD and the
gut microbiota and summarize recent advances in correlative
and causality studies focusing on the role of the gut microbiome
in NAFLD resolution after BS (Figure 1).

Non-alcoholic fatty liver disease
and gut microbiome

The gut microbiome

The GM is a complex ecosystem consisting of bacteria,
archaea, protists, fungi, and viruses living in the human gut
(Martinez et al., 2016; Sender et al., 2016). The GM contains
at least 40 trillion microorganisms comprising >1,000 species,
approximately 90% of which are Bacteroidetes and Firmicutes,
followed by Proteobacteria and Actinobacteria (Eckburg et al.,
2005). Moreover, the gut microbiome plays an important role in
host metabolism and homeostasis, including the prevention of
pathogen colonization and coordination with immune reactions
(Guarner and Malagelada, 2003). In addition, through a massive
contribution to the pool of metabolites in the human systemic
circulation, microbial metabolites systemically influence host
metabolism and inflammation (Leung et al., 2016; Kolodziejczyk
et al., 2019; Wu et al., 2021). Gut dysbiosis, which refers
to the perturbation of the healthy gut microbiota, has been
identified as a potential contributor to the development of many
metabolite diseases, such as NAFLD, obesity, and diabetes (Qin
et al., 2012; Liu et al., 2017). Recently, the development of
methods to determine microbiome composition, such as the
16S ribosomal RNA (16S rRNA) sequencing and whole-genome
shotgun sequencing, and functional analysis to determine
microbial metabolic capacity have provided significant insight
into the associations between the gut microbiota and related
diseases (Hoozemans et al., 2021).

Gut microbial signatures in
non-alcoholic fatty liver disease

The gut microbial alterations in NAFLD patients have
been observed in many clinical studies (Table 1). Gut
microbial profiles differ, and the species richness notably
decreases in patients with NAFLD. Compared with healthy
persons, gram-negative (G−) bacteria are significantly enriched,
while gram-positive (G+) bacteria are decreased in patients
with NAFLD (Wang et al., 2016; Loomba et al., 2017).
Specifically, Bacteroidetes and Proteobacteria are increased,
whereas Firmicutes are decreased at the phylum level in patients
with NAFLD (Zhu et al., 2013). Therefore, the ratio of Firmicutes
to Bacteroidetes is an important factor in differentiating the
gut microbiome of patients with NAFLD from that of healthy
persons. However, trends can differ even among different
families and genera in the same phylum. If only the phylum-
level data are considered, changes in genera and families would
be obscured, which is a disadvantage for distinguishing disease
states based on higher phylogenetic levels (Raman et al., 2013).
A decrease in the level of Lachnospiraceae, Ruminococcaceae,
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FIGURE 1

Overview of the gut microbial alteration and microbiome-derived mechanisms in NAFLD and after BS. NAFLD, non-alcoholic fatty liver disease;
SCFA, short-chain fatty acids; TBA, total bile acids.

and Veillonellaceae families can explain the obvious depletion
of the Firmicutes phylum in patients with NAFLD. The
genus Lactobacillus (family Lactobacillaceae) is noticeably
increased. The increased abundance of Proteobacteria in
patients with NAFLD is mainly explained by that of the genus
Escherichia (family Enterobacteriaceae) (Raman et al., 2013;
Zhu et al., 2013).

Changes in the gut microbiome composition of adults
and children with NAFLD are similar. A comparison of the
gut microbiomes between children with and without NASH
found that NASH is associated with specific enterotypes of the
gut microbiome. Most healthy gut microbiomes are classified
as enterotypes 1 (enriched in Bacteroides) and 3 (diminished
in Bacteroides and Prevotella), whereas obese and NASH gut
microbiomes are more frequently classified as enterotype 2
(enriched in Prevotella) (Zhu et al., 2013). The Gamma- and
Epsilon-proteobacteria at the phylum level and Prevotella at the
genus level are more abundant in children with NAFLD than in
healthy children. Prevotella is a typical genus in children with
NAFLD (Michail et al., 2014).

Furthermore, gut microbiomes differ among patients
with different NAFLD manifestations. The gut microbiome
of patients with NAFLD becomes less diverse as NAFLD
progresses with worsening fibrosis. A study of the association
between gut dysbiosis and NAFLD severity found that
Bacteroides and Ruminococcus are more prevalent, while
Prevotella is less abundant in patients with F ≥ 2 fibrosis.
Among these bacteria, the abundance of Ruminococcus and

Bacteroides were independently associated with significant
liver fibrosis (≥F2) and NASH, respectively (Boursier et al.,
2016). A comparison of the gut microbiomes of patients
with different stages of NAFLD found that the abundance of
37 species, including Ruminococcus CAG: 39 and Bacteroides
caccae, differed among mild, moderate, and advanced stages
of NAFLD. A random forest classifier model has been
constructed by identifying 40 features, including 37 bacterial
species, to detect advanced fibrosis in NAFLD with diagnostic
accuracy (Loomba et al., 2017). Moreover, the gut microbiome
changes in NAFLD-related hepatocellular carcinoma (HCC),
which might participate in NAFLD progression to HCC.
The expansion of Enterobacteriaceae and Eubacteriaceae
characterizes NAFLD-HCC and NAFLD-cirrhosis, respectively
(Behary et al., 2021).

Interestingly, lean patients with NAFLD have different
gut microbiota signatures and a more favorable metabolic
profile than obese patients with NAFLD. Compared to obese
patients with NAFLD, a marked deficiency in Ruminococcus
and Lactobacillus genera and increase in the Clostridium genus
and Ruminococcaceae family were found in lean patients with
NASH (Duarte et al., 2018; Yun et al., 2019). The abundance of
Ruminococcus might explain the smaller proportion of patients
with liver fibrosis among lean patients with NAFLD. The
Ruminococcaceae and Clostridium genera are involved in the
formation of bile acids (BAs), which mediate resistance to
diet-induced obesity (Watanabe et al., 2011; Chen F. et al.,
2020). Compared with healthy controls, lean patients with
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TABLE 1 Clinical studies of the gut microbial changes in NAFLD patients.

Study Groups Microbiome Metabolites

Rau et al., 2018 Healthy control (n= 27); NAFL
(n= 14);
NASH (n= 18)

NASH (compared to NAFL): α-diversity↓;
Fusobacteria↑; Fusobacteriaceae↑;
Fusobacterium↑; Prevotella, ↑; Eubacterium
biforme↑
NASH (compared to HC): Fusobacteriaceae↑;
Prevotellaceae↑
NAFL (compared to control): Prevotellaceae↑

NAFL and NASH (compared to control):
Stool: propionate↑, butyrate↑, acetate↑

Kim et al., 2019 Non-NAFLD (G0) (n= 453);
Developed NAFLD (G1) (n= 40);
Regressed NAFLD (G2) (n= 35);
Persistent (G3) (n= 238)

G3 (compared to G0): β-diversity↓,
Christensenellaceae↓, Odoribacteraceae↓,
Oscillospira↓, Odoribacter↓, Coprococcus↓,
Ruminococcaceae↓, Porphyromonadaceae↓,
Christensenellaceae↓, Oscillospira↓,
Ruminococcus↓, Coprococcus↓

Not described

Caussy et al., 2019 Non-NAFLD control (n= 54);
NAFLD without advanced
fibrosis (n= 18);
NAFLD-cirrhosis (n= 26)

NAFLD-cirrhosis (compared to control):
Streptococcus↑, Megasphaera↑, Bacillus↓,
Lactococcus↓,Gallibacterium↑, Faecalibacterium
prausnitzii↑, Catenibacterium↑, Rikenellaceae↑,
Mogibacterium↑, Peptostreptococcaceae↑

Not described

Chen F. et al., 2020 Lean control (n= 30); non-lean
control (n= 46); Lean NAFLD
(n= 99)

Lean NAFLD (compared to control): Dorea↑,
Marvinbryantia↓, Christensenellaceae R7↓

Lean NAFLD (compared to control):
higher total BA↑, total primary BA↑, total
secondary BA↑, CDCA↑, DCA↑

Adams et al., 2020 Control (n= 55); NAFLD
Fibrosis F0-2 (n= 58); NAFLD
Fibrosis F3/4 (n= 9)

Increased NAFLD severity: α-diversity↓
Firmicutes↑, Proteobacteria↑, Actinobacteria↑;
Bacteroidetes↓, Actinomycetaceae↑,
Lachnospiraceae↑, Bacteroidaceae↓

Increased NAFLD severity:
serum: total BA↑, primary conjugated
BA↑, GCA↑, secondary conjugated BA↑;
stool: total BA↑, DCA↑

Behary et al., 2021 Non-NAFLD control (n= 30);
NAFLD-fibrosis (n= 28);
NAFLD-HCC (n= 32)

NAFLD-HCC (compared to non-NAFLD):
Proteobacteria↑, Enterobacteriaceae↑,
Oscillospiraceae↓, Erysipelotrichaceae↓,
NAFLD-cirrhosis (compared to non-NAFLD):
Eubacteriaceae↑, Coriobacteriaceae↓,
Muribaculaceae↓, Odoribacteraceae↓,
Prevotellaceae↓
NAFLD-HCC (compared to NAFLD-cirrhosis):
Bacteroides caecimuris↑, Veillonella parvula↑

NAFLD-HCC (compared to
non-NAFLD):
Stool: oxaloacetate↑, acetylphosphate↑,
isocitrate↑, acetate↑, butyrate↑, formate↑
Serum: butyrate↑, propionate↑

Demir et al., 2022 Controls (n= 16); NAFL
(n= 24); NASH (n= 54)

Non-obese F2-4 fibrosis (compared to non-obese
F0-1): Mucor sp.↑, Cyberlindnera jadinii↑, C.
albicans↑, Salinispora sp.↑, Babjeviella
inositovora↑

Not described

SS, simple steatosis; NASH, non-alcoholic steatohepatitis; NAFLD, non-alcoholic fatty liver disease; HCC, hepatocellular carcinoma; HC, healthy control; BA, bile acid; CDCA,
chenodeoxycholic acid; DCA, deoxycholic.

NAFLD have an increased abundance of Dorea, suggesting
NASH progression, and a decreased abundance of several
species that protect against NAFLD, such as Marvinbryantia
and Christensenellaceae R7 group (Del Chierico et al., 2016;
Zhou et al., 2017). Although enriched pathogenic bacteria in
the gut microbiome play an important role in the increased
susceptibility of non-obese persons at high risk for NAFLD,
their gut microbiomes also change to maintain homeostatic
responses. As NAFLD develops, interactions among complex
systemic processes lead to the failure of metabolic adaptation in
lean patients with NAFLD (Chen F. et al., 2020).

Consistent microbiota features have not been identified in
NAFLD because of controversial microbiome profiles among
studies. Such inconsistency might be due to factors, including
different methodology, characteristics of NAFLD patients, such

as ethnicity, diet, environment, disease stages, and associated
comorbidities, such as diabetes and other metabolic syndromes,
and so on (Raman et al., 2013). Therefore, the microbial
signatures in NAFLD require further homogeneous and large-
scale investigation.

Microbiome-derived mechanisms
in non-alcoholic fatty liver disease

The underlying mechanisms of the gut microbiome
and related metabolites in NAFLD have been investigated
in recent years. Suggested mechanisms include increased
intestinal permeability, increased dietary energy harvest,
altered microbial metabolites, such as short-chain fatty
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FIGURE 2

The role of the gut microbiome in the pathogenesis of NAFLD. Gut dysbiosis leads to increased intestinal permeability, increased dietary energy
harvest, altered microbial metabolites including SCFAs, BAs, TMA, and ethanol, and increased microbial endotoxins. The communication via
systemic mediators is not shown. LPS, lipopolysaccharide; SCFAs, short-chain fatty acids; SBAs, secondary bile acids; PBAs, primary bile acids;
TMA, trimethylamine; VLDL, very low-density lipoprotein.

acids (SCFAs) and BAs, and increased microbial endotoxins
(Figure 2).

Increased intestinal permeability

The intestinal barrier, as part of the gut-liver axis, consists
of the structural elements including tight junctional complexes
and mucus layer, immune cells, and soluble mediators
such as antimicrobial peptides (De Munck et al., 2020).
A healthy intestinal barrier separates the host from the gut
contents (Kolodziejczyk et al., 2019). An imbalance in the gut
microbiome composition and function leads to a disrupted
intestinal barrier, which increases intestinal permeability (Safari
and Gérard, 2019). Enhanced intestinal permeability leads
to the translocation of bacteria and their products into the
portal circulation, and increases hepatic exposure to injurious
substances that might subsequently cause the development
of NAFLD (Turner, 2009). A meta-analysis based on 14
studies showed that intestinal permeability increased in NAFLD
patients compared to healthy controls and was associated with
the degree of hepatic steatosis (De Munck et al., 2020). Also,
the decreased expressions of major tight junction proteins,
zonula occludens-1 (ZO-1), and junctional adhesion molecule
A (JAM-A) have been found in the intestinal mucosa of NAFLD
patients (Miele et al., 2009; Rahman et al., 2016).

The role of the gut microbiome on the mucus layer and
the epithelial and vascular barriers has been studied in mice
and humans. Mice fed with a high-fat diet (HFD) are protected
from increased intestinal permeability in the absence of the
gut microbiota (Thaiss et al., 2018). The permeability of the
small intestine of patients with NAFLD is decreased after
receiving an allogenic fecal microbiota transplant (FMT) from
lean, healthy donors (Craven et al., 2020). This revealed a
relationship between gut dysbiosis and intestinal permeability.
Gut microbiome dysbiosis degrades mucus or inhibits its
production, thus altering the mucus layer (Groschwitz and
Hogan, 2009).

While the relationship between the gut microbiome and
intestinal permeability has been verified, the relationship
between gut barrier dysfunction and NAFLD remains unclear.
A diet-induced (methionine-and-choline-deficient; MCD)
murine model of NASH showed liver injury in the early stage
before any change in intestinal permeability. This suggested
that the initial liver damage phase might be contributing to the
observed intestinal permeability (Luther et al., 2015). However,
JAM-A-deficient mice with defects in intestinal epithelial
permeability developed more severe steatohepatitis than control
mice after a high-fat, fructose, and cholesterol diet (Rahman
et al., 2016). Therefore, further investigation is required to
confirm the mechanisms underlying gut permeability and
NAFLD.
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Increased energy harvest

The human gut microbiome contributes to the processing
of dietary components, such as fats and carbohydrates
that influence energy harvesting and lead to metabolic
syndromes. Patients with NAFLD have more pathways of energy
production and conversion, which indicate increased energy
and caloric retention.

Altered gut microbiomes play key regulatory roles in
energy extraction and are closely associated with fat deposition
in the livers of patients. The gut microbiome is enriched
in six functional categories associated with carbohydrate
metabolism, lipid synthesis, amino acids metabolism, and
secondary metabolism in patients with NASH (Boursier
et al., 2016). Pathways associated with energy production and
conversion are notably more abundant in obese than in lean
patients with NAFLD, which might explain why obese children
with NAFLD gain weight even when their dietary intake is
similar to that of healthy children (Michail et al., 2014).
Furthermore, total body fat significantly increases in germ-free
(GF) mice transplanted with gut microbiome from obese mice
as compared with that from lean mice with similar food intake
(Turnbaugh et al., 2006).

Altered microbial metabolites

Gut microbial metabolites function as bacterial messengers
in the gut microbiota and host metabolism. Several metabolites
contribute to NAFLD pathogenesis in animals.

Short-chain fatty acids
Short-chain fatty acids, including acetate, butyrate, and

propionate, fermented from indigestible dietary fibers by
intestinal bacteria, are among the most abundant microbial
metabolites in the gut. Bacteroides, Anaerostipes, and other
gut bacteria are primarily involved in the production of
SCFAs that play important roles in gut integrity, lipid
metabolism, glucose homeostasis, appetite regulation, and
immune responses (Morrison and Preston, 2016). The fecal
concentration of SCFAs is higher and SCFA-producing bacteria
are more abundant in patients with NAFLD than in healthy
controls. Fecal propionate levels gradually increase with the
increasing severity of fibrosis in patients with NAFLD (Lee G.
et al., 2020). A study of patients and healthy controls matched
for body mass index (BMI) to exclude the influence of obesity on
SCFA found higher concentrations of fecal acetate, butyrate, and
formate, as well as serum butyrate and propionate in patients
with NAFLD-HCC than in patients with NAFLD-cirrhosis and
healthy controls (Behary et al., 2021).

Short-chain fatty acids are associated with NAFLD via
several mechanisms. They increase insulin sensitivity and
reduce hepatic fat storage. Their effects are exerted mainly

through activation of the G protein-coupled receptors (GPCRs),
GPR41, and GPR43 that induce peptide YY (PYY) release
and increase the secretion of glucagon-like peptide 1 (GLP-1)
(Samuel et al., 2008; Bellahcene et al., 2013). Both PYY and
GLP-1 impede gastric emptying and increase satiety (Svegliati-
Baroni et al., 2011). SCFAs also inhibit chylomicron secretion,
promote lipid oxidation, and alleviate insulin resistance via an
adenosine monophosphate-activated protein kinase (AMPK)-
dependent mechanism. Moreover, SCFAs help to maintain the
gut barrier permeability and decrease lipopolysaccharide (LPS)
concentrations in the portal vein by improving transepithelial
electrical resistance (Zhao et al., 2018). They also inhibit liver
inflammation by negatively regulating NF-κβ and decreasing the
secretion of pro-inflammatory factors, such as TNF-α and IL-
1β (Park et al., 2019). However, excessive SCFAs may inhibit
AMPK in the liver and increase the accumulation of hepatic
free fatty acids (FFA) via β-oxidation (Leung et al., 2016).
SCFAs also induce pro-inflammatory T cells, such as Th1 and
TH17, under specific conditions. Fecal propionate and acetate
concentrations significantly and positively correlate with the
peripheral Th17/resting-Treg (rTreg) ratio and negatively with
peripheral rTregs that are the immunological features of a
progressive disease (Rau et al., 2018).

Thus, the role of SCFAs in patients with NAFLD
remains controversial. The contradictory results of
preclinical and clinical studies warrant further investigation
to identify the molecular mechanisms of SCFAs in
NAFLD pathogenesis.

Bile acids
The liver synthesizes BAs from cholesterol as primary bile

acids (PBAs), such as cholic acid (CA) and chenodeoxycholic
acid (CDCA). These are deconjugated and dehydroxylated
by the gut microbiota to secondary bile acids (SBAs), such
as deoxycholic (DCA) and lithocholic (LCA) acids, that are
reabsorbed in the distal ileum and returned to the liver through
the portal vein (Santos et al., 2020). Specific gut microbes, such
as Bacteroidaceae (order Bacteroidales) and Lachnospiraceae
families, correlate with fecal BA concentrations (Adams et al.,
2020). Bile acids play important roles in the pathogenesis and
development of NAFLD and act as a bridge between the gut
microbiome and liver.

As signaling molecules that regulate glucose, lipid, and
inflammation, BAs contribute to hosting metabolism mainly
via Farnesoid X receptor (FXR) and Takeda G-protein-coupled
receptor 5 (TGR5). Upon activation, mainly, by PBAs, FXR
induces fibroblast growth factor 19 (FGF19) to enhance glucose
uptake in adipocytes by activating the mammalian target of
rapamycin complex 1 (mTORC1) via mitogen-activated protein
kinase (MAPK). However, FXR also inhibits the expression
of sterol regulatory element-binding protein 1c (SREBP-1c)
and induces FXR-dependent peroxisome proliferator-activated
receptor alpha (PPARα) to limit hepatic lipid accumulation
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and increase fatty acid β-oxidation (Watanabe et al., 2004;
Carr and Reid, 2015; Fuchs et al., 2016). An FXR agonist
exerts antisteatotic effects in mice fed with HFD, which inhibits
the expression of perilipin 2, a lipid droplet protein that is
abundantly expressed in patients with NAFLD (Liu et al., 2014).
In contrast, the TGR5 activated by SBAs induces the release
of glucagon-like peptide-1 (GLP-1), which increases insulin
synthesis and decreases appetite and food intake (Lund et al.,
2020). In addition, the activation of FXR and TGR5 suppresses
the expression of cholesterol 7α-hydroxylase (CYP7A1), which
is the rate-limiting enzyme in synthesis, to achieve BA feedback
regulation.

However, gut dysbiosis increases the PBA/SBA ratio and
influences the functions of BAs via TGR5 and FXR in patients
with NAFLD. Serum and fecal BA concentrations increase in
patients with NAFLD. Increased serum BAs are driven by
primary and secondary conjugated BAs, whereas fecal BAs are
driven by secondary unconjugated BAs (Adams et al., 2020).
During NAFLD development, total primary BAs increase and
total secondary BAs decrease stepwise from healthy controls to
NAFLD to NASH (Puri et al., 2017). Specifically, the proportions
of serum glycocholic (GCA) and glycodeoxycholic (GDCA)
acids in total PBAs and SBAs are respectively associated with
advanced liver fibrosis in NAFLD. Furthermore, fecal DCA
is associated with advanced fibrosis (Adams et al., 2020).
The concentration of total serum SBAs containing GCA is
notably higher in lean than in obese patients with NAFLD
(Chen F. et al., 2020). Although BA levels are increased in
patients with NAFLD, FXR-mediated signaling is inhibited,
and the concentration of circulating FGF19 is decreased (Jiao
et al., 2018; Nobili et al., 2018). The composition of BAs is
significantly changed and weight gain and hepatic steatosis are
promoted in FXR-deficient mice fed with an HFD (Parséus
et al., 2017). The expression of CYP7B1 is upregulated in
hamsters with an ablated gut microbiota fed with HFD,
which leads to a more hydrophilic BA composition with an
increased abundance of tauro-β-muricholic acid (TβMCA), an
endogenous FXR antagonist. In addition, inhibited hepatic
FXR signaling in hamsters treated with antibiotics is associated
with increased TβMCA and reduced DCA and LCA. These
findings highlighted microbial BA modulation as an underlying
mechanism of obesity-induced metabolic disorders through
influencing intestinal FXR (Sun et al., 2019).

Choline and trimethylamine-N-oxide
Choline is an important metabolite obtained via dietary

intake and endogenous synthesis that is implicated in the
pathogenesis of NAFLD and NASH. Choline is an essential
cell membrane phospholipid required for hepatic low-density
lipoprotein (VLDL) production (Corbin and Zeisel, 2012).
Therefore, a choline deficiency might lead to decreased hepatic
VLDL production along with triglyceride (TG) accumulation

that further causes liver steatosis and NASH (Yao and Vance,
1990; Li et al., 2019).

The gut microbiome can convert choline to trimethylamine
(TMA) and phosphatidylcholine. Trimethylamine is further
oxidized by hepatic monooxygenase and metabolized to
trimethylamine-N-oxide (TMAO) in the liver (Wang et al.,
2011). The features of microbiota-driven choline metabolism
in patients with NASH are increased conversion of choline to
TMA and decreased choline bioavailability. The major bacterial
phyla contributing to this are Proteobacteria, Firmicutes, and
Actinobacteria. The increased concentrations of TMA and
TMAO are associated with an elevated ratio of Firmicutes
to Bacteroidetes, which is also a feature of the gut microbial
composition in patients with NAFLD (Falony et al., 2015;
Martínez-del Campo et al., 2015; Cho et al., 2017). Increased
serum TMAO concentrations in patients with NAFLD
compared with healthy controls are also related to the severity
of NAFLD (Chen et al., 2016). A specific cut-off for TMAO
might help to identify individuals at high risk for NAFLD
who required specific nutritional intervention (Barrea et al.,
2018). Although the mechanism of the TMAO contribution to
NAFLD remains unclear, a high urinary excretion of TMAO
is associated with insulin resistance in mice fed with HFD
(Dumas et al., 2006). Administering TMAO to mouse models
of HFD-induced NAFLD and aggravated liver steatosis by
shifting the hepatic BA composition to FXR-antagonism
and inhibiting the hepatic FXR signaling that consequently
upregulates lipogenesis (Tan et al., 2019). Furthermore,
TMAO increases serum cytokine C-C motif chemokine 2
(CCL2) levels and causes inflammation in adipose tissues
(Gao et al., 2014).

Endogenous ethanol
Ethanol is a microbial metabolite found mainly in

human blood. Its concentration is remarkably increased by
consuming carbohydrate-rich diets (Sarkola and Eriksson,
2001). Patients with NAFLD harbor an increased abundance
of alcohol-producing gut bacteria, such as Escherichia,
Gammaproteobacteria, and Prevotella, compared with healthy
controls (Ren et al., 2007; Jiang et al., 2015). Three major
hepatic alcohol metabolizing pathways are also upregulated
in patients with NAFLD (Baker et al., 2010; Zhu et al., 2016).
These changes lead to an increased concentration of blood
ethanol in patients with NASH who do not consume alcohol
(Zhu et al., 2013; Aragonès et al., 2020). Blood levels of ethanol
are significantly increased and positively associated with blood
levels of insulin, leptin, and triglycerides in children with NASH
(Engstler et al., 2016).

Ethanol is related to the pathogenesis and development of
NASH and NAFLD. Ethanol metabolism stimulates lipogenesis
de novo and decreases fatty acid (FA) oxidation, both of which
result in liver steatosis (Lee et al., 2019b). Furthermore, ethanol
increases gut permeability, causes endotoxemia by inducing
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inflammatory cytokine expression via the NF-κB pathway,
and disrupts the apical junctional complexes in the colonic
epithelium (Rao et al., 2004). Ethanol metabolism also produces
reactive oxygen species (ROS) and aggravates oxidative stress
by inducing the cytochrome P450 2E1 (CYP2E1) expression,
which leads to liver injury (Lieber, 1999). Endogenous ethanol
produced by bacteria impairs mitochondrial integrity and
contributes to NAFLD development by inducing mitochondrial
ROS production and mitochondrial DNA damage (Chen X.
et al., 2020). Moreover, acetaldehyde produced from ethanol
catalyzed by alcohol dehydrogenase (ADH), is converted
to acetate by CYP2E1. When this pathway is saturated,
acetaldehyde accumulates and causes hepatotoxicity (Miura,
2014).

In conclusion, high levels of endogenous ethanol are
produced by the gut microbiome, as gut dysbiosis induces
the pathogenesis and development of NAFLD by impairing
the intestinal barrier, increasing toxicity in hepatic cells, and
inducing inflammation. Further studies are needed to determine
the underlying mechanisms of ethanol and confirm its functions
as a therapeutic target for NAFLD.

Microbial endotoxins

Blood concentrations of endotoxic lipopolysaccharides
(LPS) released from the cell walls of G− bacteria are low in
healthy persons because the gut microbiome not only safeguards
the gut barrier integrity but also has anti-inflammatory
functions. However, an increased abundance of G− bacteria,
such as Proteobacteria, Enterobacteria, and Escherichia, with gut
permeability leads to increased LPS levels in the gut and blood of
patients with NAFLD. Plasma endotoxin levels and markers of
inflammation are significantly higher in patients with NAFLD
than in age-matched controls, which increase with the severity
of hepatic steatosis (Nier et al., 2020). Non-virulent endotoxin-
producing microbial species of pathogenic species overgrowing
in the obese human gut cause the induction of NAFLD.
Therefore, the overgrowth of these bacteria might collectively
serve as a predictive biomarker of NAFLD (Fei et al., 2020).

The main mechanism of NASH is associated with LPS
and other bacterial products, such as peptidoglycan, flagellin,
and bacterial DNA, which are recognized by the Toll-like
receptors (TLRs), including TLR2, TLR4, TLR5, and TLR9
(Kawai and Akira, 2009, 2010; Miura et al., 2010). Mice with
NAFLD accompanied by a TLR4 deficiency have less liver
injury, inflammation, and lipid accumulation than wild-type
mice with NAFLD (Rivera et al., 2007). Ligands of TLR stimulate
cells, such as macrophages, to express TLR by activating
NF-κβ to produce pro-inflammatory cytokines including tumor
necrosis factor α (TNFα) and interleukin-1β (IL-1β), which
participate in lipid metabolism and induce hepatocyte cell death
(Hotamisligil et al., 1994; Carpino et al., 2020). Macrophages

also generate chemokines, such as monocyte chemoattractant
protein-1 (MCP-1), to recruit inflammatory macrophages,
which stimulate hepatic stellate cells and lead to liver fibrosis
together with specific TLR ligands (Stienstra et al., 2010; Miura,
2014). In addition, a “leaky gut” leads to bacterial translocation,
which is the migration of viable bacteria and their products
from the intestinal lumen to the mesenteric lymph node
complex (Festi et al., 2014). High concentrations of LPS and
other bacterial metabolites cause endotoxemia and stimulate
the transcription of inflammatory genes through the NF-κB
pathway (Brun et al., 2007; Compare et al., 2016). Furthermore,
LPS and other bacterial products can be detected by NOF-
like receptor pyrin domain-containing 3 (NLRP3), which
might form inflammasomes with other proteins and stimulate
immunity (Yang et al., 2016). The NLRP3 selective inhibitor,
MCC950 (also known as the cytokine release inhibitory drug
3; CRID3) improves NAFLD pathology and fibrosis in obese
diabetic mice (Mridha et al., 2017). These mechanisms explain
the effects of endotoxins on the pathogenesis of NAFLD.

Bariatric surgery and
non-alcoholic fatty liver disease

Overview of bariatric surgery

Bariatric surgery is a proven, effective, and durable therapy
for patients with BMI ≥ 40 kg/m2, BMI between 35 and
39.9 kg/m2, and poor glycemic control (Cummings and Rubino,
2018). Moreover, BS is classified into the following categories
according to the applied procedures as:

1. Restrictive procedures to decrease stomach size and
restrict food intake, such as vertical banded gastroplasty
(VBG), gastric banding (GB), sleeve gastrectomy (SG), and
gastric imbrication.

2. Malabsorptive procedures that short the small intestine to
decrease the absorption of nutrients.

3. Biliopancreatic diversion (BPD), Roux-en-Y gastric bypass
(RYGB), and single-anastomosis gastric bypass (SAGB)
(Cerreto et al., 2021).

The RYGB and SG procedures are the most frequently
applied types of BS worldwide and are addressed here (Nguyen
and Varela, 2017). In the past years, SG has been the primary
BS, and studies on SG compared to RYGB are still missing. The
RYGB involves a gastric pouch creation that is anastomosed
to the distal jejunum by the Roux limb. Restrictive and
malabsorptive strategies are combined in the RYGB procedure
to achieve weight loss. They include reduction of the stomach
volume and the consequent slow the gastric pouch emptying,
which leads to early satiation and decreased food and energy
intake while bypassing the distal stomach, duodenum, and
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jejunum, to reduce the digestion and absorption of micro- and
macronutrients (Cerreto et al., 2021). SG is a purely restrictive
procedure in which approximately removes 80% of the stomach
and the remainder of the stomach is fashioned into a narrow
tube or sleeve to reduce food intake (Bult et al., 2008). Both
RYGB and SG alter the secretion of the gut hormones. Decreased
levels of ghrelin and increased levels of GLP-1 and PYY reduce
hunger and increase satiation and satiety independently of
weight loss for up to 10 years (Dar et al., 2012; Yousseif
et al., 2014). Changes in the composition and circulating
concentrations of BAs after RYGB and SG also contribute to
postoperative metabolic effects (Steinert et al., 2013).

Resolution of non-alcoholic fatty liver
disease after bariatric surgery

Lifestyle modifications focused on weight loss remain the
cornerstone of NAFLD management (Romero-Gómez et al.,
2017). The most effective method to achieve long-term weight
loss is BS (Cornejo-Pareja et al., 2021). In addition, BS modulates
metabolic factors, such as glycemia, insulin sensitivity, and
lipid metabolism (Hutch and Sandoval, 2017). Additionally, BS
confers benefits on NAFLD by improving hepatic injury, hepatic
fat, and the histological features of NAFLD, independently of
weight loss. Clinical, biological, and histological data collected
from 109 morbidly obese patients with biopsy-proven NASH
revealed that the mean NAFLD scores were reduced from 5
to 1, and that mild and severe NASH disappeared in 94 and
70% of patients, respectively, a year after the surgery (Lassailly
et al., 2015). Histological remission of NASH has been identified
in liver samples from 84% of patients 5 years after BS; fibrosis
becomes progressively reduced over 1 to 5 years (Lassailly et al.,
2020). A retrospective analysis also independently associated BS
with a decreased risk of developing cirrhosis in 2,942 patients
with NAFLD (Wirth et al., 2020). The degree of weight loss
after BS predicts the extent of improvement in NAFLD fibrosis
scores (Yeo et al., 2019). The nature of BS procedures appears
to have different effects on NAFLD. For example, liver stiffness
is improved in patients after RYGB than laparoscopic sleeve
gastrectomy (LSG) (Nickel et al., 2018). A systematic review and
meta-analysis found that NAFLD resolution is more complete
in proportion to RYGB across all liver histological features,
including steatosis and inflammation, compared with combined
analyses (Lee et al., 2019c). However, another meta-analysis
found no differences in the histopathological outcomes of RYGB
and SG in patients with NAFLD. Therefore, large-scale studies
and more rigorous analyses are needed to confirm the effects of
BS on NAFLD (de Brito et al., 2021).

The underlying mechanisms of NAFLD resolution by
BS have been investigated. Obese rats on HFD underwent
a duodenojejunal bypass (DJB) or sham operations, and
were pair-fed for 15 weeks postoperatively to match their
weight. The results proved that BS directly affected hepatic

fat accumulation and insulin resistance independent of weight
reduction (Angelini et al., 2020). Further investigation in
rodents and humans has revealed that reduced caloric intake
after SG increases the expression of phosphorylated AMPK,
which is a crucial step in Plin2-LAMP2A binding; this leads to
enhanced autophagy of Plin2 that exposes LD triglycerides to
intracellular lipases (Angelini et al., 2019). Both SG and RYGB
induce the downregulation of angiopoietin-like 8 (ANGPTL8),
which inhibits lipogenesis in human hepatocytes when exposed
to lipotoxic conditions and is associated with the degree of
steatosis in the livers of rats with diet-induced obesity. These
findings support the suppose that ANGPTL8 partly improves
NAFLD after BS by improving hepatic lipid metabolism
(Perdomo et al., 2021). Bile acid signaling also contributes
to the resolution of NAFLD after BS, as RYGB causes an
increase in total BAs, and this is related to the normalized
accumulation of liver fat. Improvements in NAFLD after RYGB
are attenuated by inhibiting PPARα (Mazzini et al., 2021). The
complex mechanisms of BS in resolving NAFLD, including
the gut microbiome and gastrointestinal hormones, require
comprehensive investigation.

Role of gut microbiome in
non-alcoholic fatty liver disease
resolution after bariatric surgery

As environmental factors and anatomical structures
change in the digestive tract, BS modifies obesity-related
metabolomic fingerprints, especially those associated with
the gut microbiota and microbial metabolites, and induces
metabolic improvements by mimicking the metabolome and
microbiome associated with a healthy gut (Liu et al., 2017;
Sánchez-Alcoholado et al., 2019; Chaudhari et al., 2021a).
Correlations between causal factors and microbiome-linked
diseases have recently been revealed (Chaudhari et al., 2021b).
Therefore, this section explores the influence of gut microbiome
on the resolution of NAFLD after BS from the viewpoints of
correlations and causality (Figure 3).

Correlation studies

Table 2 selectively lists some clinical studies evaluating the
gut microbial alterations after BS.

Gut microbial composition after bariatric
surgery

Gut microbial signatures become similar to those of lean,
healthy controls than that of patients with NAFLD. Some
microbial changes, such as decreased Lactobacillales and
increased Dorea as deleterious consequences of NAFLD, can
be reversed after BS. Systematic reviews of clinical studies
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FIGURE 3

A framework to study the role of the gut microbiome on the resolution of NAFLD after BS from correlation to causation. Correlations studies
revealed the gut microbial alterations after BS in NAFLD patients and mice. In causality studies, firstly, antibiotic treatment attenuates the
metabolic improvement of BS in NAFLD. Secondly, the metabolic benefits of BS are transferred using FMTs. Finally, microbial strains or
molecules enhanced the effects of BS. Moreover, gene-knockout mice are used to find the molecular mechanism of the gut microbiome. FMT,
fecal microbiota transplant.

and animal experiments have found increased microbial
diversity and richness after BS compared with that in patients
with NAFLD. In addition, the abundance of Bacteroidetes,
Fusobacteria, Verrucomicrobia, and Proteobacteria phyla
increases after surgery. The abundance of Lactobacillales,
Enterococcus, Gammaproteobacteria, Akkermansia, and
Enterobacteriales phyla also increases; however, that of
Firmicutes, Clostridiales, Clostridiaceae, Blautia, and Dorea
phyla decreases (Guo et al., 2018). However, RYGB causes
more alterations in the gut microbial composition than SG.
Decreases in the abundance of Firmicutes is more significant
after SG, whereas increase in the concentration of Bacteroidetes
and Proteobacteria are more remarkable after RYGB (Davies
et al., 2019). Because of the different changes in anatomical
structures and gut environments between RYGB and SG,
aero-tolerant bacteria, such as Streptococcus and Veillonella spp.,
become more abundant after RYGB, whereas anaerobes, such as
Clostridium, become more abundant after SG (Farin et al., 2020).
In addition, weight-loss-associated oral microbial phylotypes
are increased in the fecal microbiome after RYGB, which might
be due to decreased gastric acid exposure (Ilhan et al., 2017).
Unlike energy restriction, BS leads to long-term effects on the
gut microbiome, which result in the remission of metabolic
diseases. A 12-year follow-up study of patients after RYGB
uncovered a higher concentration of Verrucomicrobiaceae and
Streptococcaceae and a lower abundance of Bacteroidaceae
10.6 years after RYGB as compared with controls.

Altered microbial signatures are associated with metabolic
improvements in patients undergoing BS. Changes in the gut
microbiome are related to host metabolic parameters after
BS. Blautia and Streptococcus are positively and negatively
associated with high-density lipid-cholesterol (HDL-C),

respectively. Bacteroides correlates with heptanoate levels.
Bifidobacterium correlates with total cholesterol, low-density
lipoprotein cholesterol (LDL-C), and weight loss, whereas
Butyricimonas correlates negatively with HDL-C (Shen et al.,
2019; Steinert et al., 2020). Postoperative decrease in BMI is
significantly and inversely associated with Faecalibacterium,
Lachnospira, and Acidaminococcus. The reduction in body
fat mass is closely associated with Bilophila, Enterococcus,
and Anaerostipes, which is directly correlated with hunger
levels. A reduced desire to consume sweet foods after surgery
inversely correlates with changes in the abundance of Bulleidia.
Thus, circulating biomarkers and weight loss after BS in
patients with NAFLD might be predicted by postsurgical gut
microbial changes. In contrast, several bacterial functional
metabolic pathways significantly differ after BS. The gut
microbiome has a decreased capacity for bacterial toxin
production as well as amino acid and carbohydrate metabolism,
whereas aminoacyl-transfer-RNA biosynthesis, degradation of
aromatic compounds, tyrosine metabolism, and glutathione
metabolism pathways are upregulated after RYGB (Murphy
et al., 2017; Sánchez-Alcoholado et al., 2019; Dang et al., 2022).
Thus, combined proteomic and metabolomic findings have
indicated that the postsurgical gut environment generates
less energy and better redox and redox counterbalance
systems, which might contribute to NAFLD remission
(Sanchez-Carrillo et al., 2021).

Gut microbial metabolites after bariatric
surgery

Gut microbial metabolites are also involved in NAFLD
pathogenesis. With changes in the gut microbiome after BS,
altered metabolite production contributes to host metabolic
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TABLE 2 Clinical studies evaluating the gut microbial alterations after bariatric surgery.

Study Groups Follow-up Microbiome Metabolites

Liu et al., 2017 SG (n= 23); 3 months C. comes↑, D. longicatena↑, Clostridiales↑,
Anaerotruncus↑, colihominis↑, A.
muciniphila↑,
B. thetaiotaomicron↑

AAA↓, methionine↓, alanine↓,
lysine↓, serine↓, glutamate↓,
acetyglycine↑, glycine↑; The
increase in abundance of
B. thetaiotaomicron after SG
was associated with the
decrease in circulating
glutamate levels.

Ilhan et al., 2017 RYGB (n= 24);
LAGB (n= 14)

/ RYGB vs. obesity patients: Bacilli↑,
Gammaproteobacteria↑, Prevotellaceae↑,
Trabulsiella↑, Coprococcus↑, Oscillospira↓,
Coprobacillus↓, Holdemania↓, Bacteroides↓
RYGB vs. LAGB: Microbiota diversity↑,
Gammaproteobacteria↑,
Bacilli↑Bacteroidaceae↑, LAGB vs. obesity
patients: Flavobacteriia↑
Porphyromonadacea↑

Increased abundance of
butyrate, propionate and
branched chain fatty acids only
be found in RYGB group

de Jonge et al., 2019 the duodenal–
jejunal bypass liner
(DJBL) (n= 17)

6 months 6 months: Lactobacillus gasseri↑, Lactobacillus
plantarum↑, Veillonella spp.↑, Enterobacter
aerogenes↑
Escherichia coli↑, Serratia↑

Not described

Sánchez-Alcoholado
et al., 2019

RYGB (n= 14); LSG
(n= 14)

3 months LSG: Lentisphaerae↑, Victivillaceae↑,
Akkermansi↑, Eubacterium↑, Blautia↑,
Haemophilus↑, Clostridiaceae↓,
Anaerostipes↓Bififidobacterium↓,
Bififidobacteriaceae↓
RYGB: Fusobacteriaceae↑, Clostridiaceae↑,
Enterobacteriaceae↑,
Proteobacteria↑Bififidobacteriaceae↓
Peptostreptococcaceae↓, Collinsella↓,
Clostridium↑,
Veillonella↑, Fusobacterium↑, Slackia↑,
Granucatiella↑
Oscillospira↑

Not described

Fouladi et al., 2019 RYGB (n= 12) 3 days post-RYGB patients who experienced
successful weight loss:
Verrucomicrobiae↑, Bacilli↑,
Lactobacillales↑Enterobacteriales↑,
Senegalimassilia↑, Rothia↑
post-RYGB patients who experienced poor
weight loss:
Bacilli↑, Lactobacillales↑, Enterobacteriales↑,
Rothia↑
Streptococcus↑

post-RYGB: CA, CDCA, DCA,
TBA↑

Lee et al., 2019a AGB (n= 4); RYGB
(n= 4);
Medical weight loss
(MWL, n= 4)

until 10% weight
loss

RYGB: alpha diversity↑, Proteobacteria↑,
Actinobacteria↑Faecalibacterium↑; AGB:
Proteobacteria↑; MWL: alpha diversity↑

Not described

Mabey et al., 2020 RYGB (n= 16); 13 years Post-RYGB: Verrucomicrobiaceae↑,
Streptococcaceae↑, Bacteroidaceae↓

Not described

Li et al., 2021 RYGB (n= 68); SG
(n= 10); LGB
(n= 6)

12 months Post RYGB: Klebsiella↑, Escherichia_Shigella↑
Streptococcus↑, Veillonella↑, Adlercreutzia↑,
Alistipes↑, Barnesiella↑, Parabacteroides↑,
Clostridium_XIVa↑, Coprococcus↑

Post RYGB: Urinary excretion
of 4-hydroxyphenylacetate,
phenylacetylglutamine,
4-cresylsulfate, and indoxyl
sulfate↑; Fecal excretion of
tyramine and phenylacetate↑;
circulating levels of dimethyl
sulfone↑ and BCAAs↓

(Continued)
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TABLE 2 (Continued)

Study Groups Follow-up Microbiome Metabolites

Fukuda et al., 2022 LSG (n= 10) 12 months Bacteroidetes↑, Fusobacteria↑, alpha
diversity↑

Not described

Scheithauer et al.,
2022

RYGB (n= 40) 12 months Proteobacteria↑, Firmicutes↓, alpha diversity↑
most anaerobic bacteria↑

Not described

Han et al., 2022 RYGB (n= 22), SG
(n= 30)

12 months Post-surgery: Fusobacteria↑, Proteobacteria↑,
Verrucomicrobia↑, Streptococcus↑,
Oscillospirav↑, Akkermansia↑,
Bifidobacterium↓, Turicibacter↓, Prevotella↓

Post-surgery: BCAAs↓, AAAs↓,
isoleucine↓, leucine↓, valine↓,
tyrosine↓, alanine↓, glucose↓,
glutamate↓, lactate↓, mannose↓,
DMSO2↑, glycine metabolites↑,
TBA↑, GDCA↑, TDCA↑, LCA↑,
GLCA↑, TLCA↑

LAGB, laparoscopic adjustable gastric banding; RYGB, Roux-en-Y gastric bypass; LSG, laparoscopic sleeve gastrectomy; AAA, aromatic amino acids; BCAA, branched-chain amino acids;
CA, cholic acid; DCA, deoxycholic acid; CDCA, chenodeoxycholic acid; TBA, total bile acid; GDCA, glycodeoxycholic acid; TDCA, tauroursodeoxycholic acid; LCA, lithocholic acid;
GLCA, Glycocholic acid; TLCA, Taurolithocholic acid.

improvement in patients with NAFLD after BS. An increased
abundance of phylotypes produces SCFAs and branched-chain
fatty acids (BCFAs) that are involved in the production of
vitamins and fermentation of carbohydrates and proteins in
patients after RYGB. Microbial phylotypes enriched after RYGB,
such as Veillonella, Prevotella, Escherichia, and Streptococcus,
convert amino acids and carbohydrates into SCFAs and
BCFAs, which explains the increased fecal concentrations of
butyrate, propionate, and BCFAs (Ilhan et al., 2017). SCFAs
can protect the gut barrier and improve stability by reducing
LPS translocation into the blood circulation and alleviating liver
injury. Furthermore, higher ratios of butyrate and propionate
to acetate among the SCFAs in feces after RYGB compared
with the baseline value indicate a shift in microbial metabolism
from acetate to butyrate and propionate production. As signal-
free fatty acid receptors, butyrate with propionate induces a
satiety response in the mouse brain, which contributes to
weight loss and NAFLD alleviation after RYGB (Lin et al.,
2012).

Serum levels of branched-chain amino acids (BCAAs)
and the aromatic amino acids (AAAs) isoleucine, leucine,
and tyrosine are greatly decreased after BS. Concentrations
of metabolites associated with energy metabolism, such as
alanine, glucose, and mannose, are also decreased (Han
et al., 2022). Reduced levels of BCAAs and glucose are
related to a decreased abundance of Roseburia, R. faecis, and
D. longicatena, which are all positively associated with obesity-
related microbial dysbiosis (Duncan et al., 2007). In addition,
increased serum glycine concentrations with anti-obesity effects
are remarkable after BS. Glycine metabolites are positively
associated with the gut microbiota, such as Actinobacteria
and Bifidobacteria, which contribute to the amelioration of
obesity-related metabolic disorders. Changes in the intestinal
environment are associated with altered circulating glycine
concentrations in obese Korean patients (Shin et al., 2019).
Plasma levels of the bacterial indole derivative indole-3-
propionic acid (IPA) and tryptamine also increase after RYGB,

and this improves intestinal permeability in human intestinal
epithelial cell monolayers (Jennis et al., 2018).

Primary and secondary BAs in feces are both diminished
after RYGB, and their abundance are similar to those in
individuals of normal weight. A co-occurrence network analysis
of fecal microbial phylotypes at the genus level and BAs
has shown that enriched microbial phylotypes, Fusobacterium,
Veillonella, Enterococcus, and Akkermansia after RYGB and
Streptococcus negatively correlate with various BAs in feces, such
as tauroursodeoxycholic acid, LCA, and taurochenodeoxycholic
acid (Ilhan et al., 2020). Plasma levels of total BAs are increased
and PBA/SBA ratios are decreased at 1 and 5 years after RYGB
and SG (Dutia et al., 2015; Risstad et al., 2017; Sung et al.,
2018; Ben Izhak et al., 2021). Both GCA and Taurocholate
acid (TCA) are decreased, whereas glycoursodeoxycholic acid
(GUDCA) is increased in patients after LSG, and these are
related to inflammatory cytokines and markers of liver injury
(Belgaumkar et al., 2016). GUDCA is a UDCA metabolite
that reduces liver steatosis in rat models of NASH and might
have the potential to treat NAFLD (Buko et al., 2011). The
hepatic BA synthesis inhibitor fibroblast growth factor (FGF)-
19 is notably elevated after BS, indicating increased activity
of ileal FXR (Jansen et al., 2011). Increased FGF-19 levels are
associated with improved hepatic steatosis and lipid profiles
(Potthoff et al., 2011). Given the connection between BAs
and gut microbiota, postoperative microbial species better
suited to the conversion of PBA into SBA might lead to the
passive absorption of SBA, changes in the activation of FXR
and TGR5, and metabolic improvement (Park et al., 2016;
Talavera-Urquijo et al., 2020).

Levels of metabolites are associated with clinical parameters
after BS. Reduced circulating glutamate concentrations after SG
are associated with improved hyperglycemia, insulin resistance,
serum leptin concentrations, and inflammation markers (Liu
et al., 2017). Total basal plasma BA concentrations, BMI,
and total cholesterol correlate in patients after RYGB and SG
(Steinert et al., 2013; Risstad et al., 2017). In addition, glucose
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and HDL-C are closely associated with secondary bile acids
(Ocaña-Wilhelmi et al., 2021). Branched-chain amino acids,
glucose, and mannose positively correlate with total cholesterol,
LDL-C, and triglycerides, which are related to lipid metabolism
(Han et al., 2022).

However, levels of some metabolites associated with
inflammation also increase after BS. Increased urinary and
serum concentrations of TMAO positively correlate with
Enterobacter, Escherichia, Shigella, and Klebsiella (Li et al., 2021).
The abundance of pro-inflammatory fecal LPS and flagellin is
increased after RYGB owing to an increase in Proteobacteria.
Nevertheless, increased levels of antibodies against LPS and
flagellin and systemic IgA against LPS might play roles in
maintaining the intestinal barrier function after BS. Serum
concentrations of LPS decrease after BS, possibly due to
decreased gut permeability (Monte et al., 2012).

Causality studies

Gut microbiota dysbiosis is an important mechanism
underlying obesity and NAFLD. Although gut microorganisms
associated with the resolution of NAFLD after BS have been
identified, confirming a causal link between the gut microbiota
and diseases remains challenging. A proposed general strategy
to investigate evidence connecting the microbiome to human
diseases has been applied in microbiota-related studies of
patients with NAFLD undergoing BS (Chaudhari et al., 2021b).

The phenotypes of humans, mice, and GF mice treated with
antibiotics are altered during the first stage of the strategy. Mice
undergoing vertical sleeve gastrectomy treated with antibiotics
develop increased subcutaneous adiposity and reduced alpha

diversity of the microbiota, proving that the gut microbiome
plays an important role in the effects of BS (Jahansouz et al.,
2019). Also, microbial depletion by antibiotics attenuated weight
loss and metabolic improvement following RYGB in obese mice
(Münzker et al., 2022). During the second stage, phenotypes
are transferred using FMTs. Applying FMTs from donor rats
that were fed with an HFD and underwent DJB attenuated
hepatic steatosis in HFD-fed rats without DJB (Fouladi et al.,
2019). GF mice colonized with stools from patients after RYGB
and VBG gained less fat mass. A lower respiratory quotient,
indicating decreased utilization of carbohydrates as fuel, is also
been found in these mice (Liou et al., 2013; Tremaroli et al.,
2015). In addition, mice gained more weight when colonized
with gut microbiota from patients who did not lose weight after
BS compared with those who did (Fouladi et al., 2019). The
altered gut microbiota was sufficient to induce decreased host
weight and adiposity, which indicated a causal link between
the gut microbiota and the effects of BS. During the third and
fourth stages, the microbial strains and molecules produce a
phenotype. The amount of LCA increases in murine portal
veins after SG, vitamin D receptors are activated, and the
production of gut-restricted TGR5 agonist cholic acid-7-sulfate
(CA7S) is induced (Chaudhari et al., 2021a). Higher levels of
CA7S increase GLP-1 secretion in human enteroendocrine cells,
which provides a mechanistic link between BA alterations and
the metabolic improvement of SG (Chaudhari et al., 2021a).
Moreover, weight loss and metabolic improvement benefiting
from RYGB microbiota transfer were compromised in intestine-
specific FXR inhibitor-treated and Tgr5−/− mice, indicating
that intestinal FXR and systemic TGR5 are critical molecular
targets for RYGB microbiota transfer in protecting against
adiposity and metabolic (Münzker et al., 2022).

TABLE 3 Alteration in human microbiome and related metabolites in NAFLD and after bariatric surgery.

Gut microbiome Gut microbial metabolites

Increased abundance Decreased abundance Increased
abundance

Decreased
abundance

NAFLD Bacteroidetes, Proteobacteria, Dorea,
Lactobacillus, Clostridium, Ruminococcus,
Prevotella

Firmicutes, Lactobacillales,
Lachnospiraceae,
Ruminococcaceae,
Lactobacillaceae, Veillonellaceae

SCFA, Total fecal BAs,
PBA/SBA ratio, DCA,
TMAO, endogenous
ethanol, LPS

Choline, indole

BS Bacteroidetes, Fusobacteria,
Verrucomicrobia, Proteobacteria,
Lactobacillales, Enterococcus,
Gammaproteobacteria, Akkermansia,
Enterobacteriales;
Anaerobes, such as Clostridium become
more abundant in SG whereas
aero-tolerant bacteria such as
Streptococcus and Veillonella, become
more abundant after RYGB

Firmicutes, Clostridiales,
Clostridiaceae, Blautia, and Dorea

BCFAs, butyrate,
propionate, total plasma
BAs, GUDCA,
indole-3-propionic acid
(IPA)

BCAAs, AAAs, PBA/SBA
ratios, GCA, TCA,
acetate, plasma LPS

NAFLD, non-alcoholic fatty liver disease; BS, bariatric surgery; RYGB, Roux-en-Y gastric bypass; SG, sleeve gastrectomy; AAA, aromatic amino acid; BCAA, branched-chain amino acid;
TCA, taurocholate acid; GUDCA, glycoursodeoxycholic acid; DCA, deoxycholic; SCFAs, short-chain fatty acids; PBA, primary bile acid; SBAs, secondary bile acid; GCA, glycocholic acids;
TMAO, trimethylamine-N-oxide; BCFAs, branched-chain fatty acids; LPS, lipopolysaccharides.
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In conclusion, increasing evidence indicates that NAFLD
improvement after BS correlates and is causally linked to the
gut microbiome. Further investigation is needed to elucidate
the causal relationship between NAFLD resolution and gut
microbiome after BS.

Future perspectives and
conclusion

Changes in the gut microbiome and related metabolites in
patients with NAFLD before and after BS have been investigated
(Table 3). However, contradictions have been inevitable due
to interventions, samples, study population, time points after
surgery, and other factors that influence research results
(Hoozemans et al., 2021). Accurate experimental designs should
include specific sample sizes and validated results. In addition,
metabolic diseases and lifestyle factors, such as smoking, that
can lead to gut microbiome dysbiosis, underlying diseases, and
personal history, should all be considered in NAFLD- and BS-
related gut microbial investigations (Aron-Wisnewsky et al.,
2020; Lee G. et al., 2020). More objective and rigorous studies
are required to confirm the microbiome signatures in NAFLD
before and after BS.

Although the gut microbiota is a promising research
topic, some major concerns require emphasis. The results
of most studies on the gut microbiomes of patients with
NAFLD correlate, and the involvement of gut microbiome-
related mechanisms in other metabolic diseases, such as
type 2 diabetes, has recently been revealed (Ridlon et al.,
2006; Ridaura et al., 2013; Müller et al., 2019). However,
the specific functions and mechanisms of action of bacterial
strains and molecules in NAFLD and BS have not been
explored in detail. Further investigation into the molecular
mechanisms linking functional microbiomes and microbial
metabolites to NAFLD and BS is needed to define the
roles of the gut microbiome (Cerreto et al., 2021). Given
the functions of the gut microbiome in NAFLD and BS,
achieving clinical translation is important. Manipulation of
the microbiome to treat diseases and improve the effects of
BS is a concern (Rossell et al., 2020). The value of FMT has
been clinically validated, and it can improve the metabolism
of recipients after BS (Fouladi et al., 2019). Microbiome-
directed therapies beyond FMT include commensal bacteria,
microbial consortia, food, prebiotics, engineered symbiotic
bacteria, and microbiota-derived proteins and metabolites
aimed at reconstituting or altering the intestinal microbiome
with specific bacterial species (Sorbara and Pamer, 2022).
A controlled diet after BS has proven beneficial to the recovery
of a healthy body weight after BS (Rossell et al., 2020).
Probiotic Lactobacillus bulgaricus, Lactobacillus helveticus,
and Pediococcus pentosaceus KID7 alleviate steatohepatitis in
mice fed with an HFD by modulating the gut microbiota

composition and inflammatory pathways involved in the gut-
liver axis of NAFLD (Lee N. Y. et al., 2020). However,
all therapies face considerable challenges and follow a long
and clinical treacherous path. Preclinical and clinical studies
are required before microbiome-related therapy can become
optimized.

In conclusion, changes in the gut microbiome are related
to NAFLD pathogenesis and development. The most effective
treatment is BS, resulting in significant weight loss in patients
with obesity and related diseases, as it alleviates hepatic steatosis
and improves host metabolism in patients with NAFLD. This
surgery also leads to modifications of the gut microbiota.
Changes in the gut microbiome and related metabolites are
associated with NAFLD resolution after BS. However, the
mechanisms underlying how the gut microbiome improves
NAFLD after BS remain unclear. Achieving clinical translation
based on microbiota-related mechanisms remains challenging.
Thus, future investigations should focus on these targets to learn
more about the composition and function of the microbiota to
benefit patients.
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