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Abstract

It is well known that truncated survival data are subject to sampling bias, where the sampling 

weight depends on the underlying truncation time distribution. Recently, there has been a rising 

interest in developing methods to better exploit the information about the truncation time, thus the 

sampling weight function, to obtain more efficient estimation. In this paper, we propose to treat 

truncation and censoring as “missing data mechanism” and apply the missing information 

principle to develop a unified framework for analyzing left-truncated and right-censored data with 

unspecified or known truncation time distributions. Our framework is structured in a way that is 

easy to understand and enjoys a great flexibility for handling different types of models. Moreover, 

a new test for checking the independence between the underlying truncation time and survival time 

is derived along the same line. The proposed hypothesis testing procedure utilizes all observed 

data and hence can yield a much higher power than the conditional Kendall’s tau test that only 

involves comparable pairs of observations under truncation. Simulation studies with practical 

sample sizes are conducted to compare the performance of the proposed method with its 

competitors. The proposed methodologies are applied to a dementia study and a nursing house 

study for illustration.

Keywords

Kendall’s tau; Inverse probability weighted estimator; Outcome-dependent sampling; Prevalent 
sampling; Self-consistency algorithm

1. INTRODUCTION

The prevalent cohort design is frequently used to study the natural history of disease 

processes. A prevalent cohort consists of individuals with disease at the time of enrollment 

and is followed for the occurrence of failure events of interest. Compared to the incident 
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cohort approach, which follows initially undiseased individuals from disease onset to failure, 

the prevalent cohort approach enjoys the advantage of being more efficient and relatively 

easy to assemble through existing disease registries. However, this design is known to be 

subject to sampling bias, because diseased individuals who died before the recruitment 

period would not be qualified to enter the cohort. As a result, the sampling scheme favors 

individuals who survive longer and thus is outcome dependent. Statistically speaking, the 

survival time in a prevalent cohort study is subject to left truncation, where the truncation 

time is the duration from disease onset to enrollment. A survival time can be observed if and 

only if it is longer than the truncation time. In the case of a stable disease, the truncation 

times in the unbiased disease population are uniformly distributed under the stationarity 

assumption with respect to the disease incidence; moreover, the survival time in the 

prevalent cohort has a length-biased distribution where the probability of a survival time 

being sampled is proportional to its length (Lancaster, 1990, Chapter 3).

Statistical analysis of truncated survival time data are usually based on non-parametric and 

semiparametric conditional likelihood methods, conditioning on the observed truncation 

time (Lynden-Bell, 1971; Wang, 1991; Tsai, Jewell and Wang, 1987). As a result, the 

inference procedures do not require information about the underlying truncation time 

distribution. When such information is available, however, the conditional likelihood 

approaches are known to be inefficient (Wang, 1991) – this is in contrast with the analysis of 

right-censored survival data where the knowledge about the independent censoring time 

distribution is ancillary. For survival data collected in the prevalent cohort study of a stable 

disease, various authors, including Vardi (1989), Vardi and Zhang (1992), Asgharian, M’Lan 

and Wolfson (2002), Luo and Tsai (2009), Tsai (2009), Qin et al. (2011), Huang and Qin 

(2012), and Ning, Qin and Shen (2014), have developed more efficient methods that exploit 

the properties of uniformly distributed truncation times in the estimation procedure. Readers 

are referred to Shen, Ning and Qin (2017) for a comprehensive review of recent 

developments.

In this paper, we present a unified framework for analyzing left-truncated and right-censored 

data with unspecified or known (but not necessary uniform) truncation time distributions. 

The proposed framework is structured in a way that is easy to understand and enjoys a great 

flexibility for handling different types of models. Our idea is to treat truncation and 

censoring as “missing data mechanism” and apply the missing information principle to 

develop efficient estimation and hypothesis testing procedures. The missing information 

principle provides a general paradigm for statistical inference in missing data problems. Its 

theoretical foundation was formally established by Orchard and Woodbury (1972), whose 

idea dates back to Yates (1933) and Bartlett (1937). Later, Dempster, Laird and Rubin 

(1977) provided an extensive generalization and named the procedure EM algorithm. 

Heuristically, one may replace a complete-data estimating function or an unbiased estimator 

by their conditional expectations given the observed data to obtain unbiased inference. When 

applied to the score function, the missing in formation principle reduces to a single iteration 

of the EM-algorithm (Dempster, Laird and Rubin, 1977). It is worthwhile to point out that, 

under truncation, the number of individuals being truncated is unknown and thus the sample 

size needs to be imputed via the missing information principle, adding additional level of 

complication compared to the usual missing data problems.
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We begin by deriving score operators from the nonparametric and semiparametric full 

likelihood function based on completely observed survival data from a representative 

sample. The score functions are unbiased if there were no missing data, that is, the survival 

times are neither truncated nor censored. We then apply the missing information principle to 

the unbiased estimating function and, based on which, derive iterative self-consistency 

algorithms to obtain maximum likelihood estimation. Compared to existing likelihood-based 

methods, a major advantage of our approach is that the proposed algorithm is formulated 

based on the hazard function, making the extension from nonparametric estimation to 

semiparametric estimation of the Cox model relatively straightforward. Another important 

feature of our methodology is that, similar to Vardi (1989) and Qin et al. (2011) for survival 

data under length-biased sampling, the estimated hazard can have positive support on both 

censored and uncensored failure time points; this is in contrast with the pseudo partial 

likelihood-based approaches considered by Luo and Tsai (2009) and Tsai (2009) which only 

allow jumps at uncensored failure times.

We further demonstrate the use of the missing information principle in hypothesis testing, 

which receives less attention in the truncation data analysis literature compared to model 

estimation. Specifically, we consider testing the association between the survival time and 

the truncation time in the target population. Note that, instead of employing the conditional 

Kendall’s tau statistic based on comparable pairs of survival and truncation times in the 

prevalent cohort (Tsai, 1990), we evaluate the expected difference between the proportions 

of concordance and discordance pairs, that is, the unconditional Kendall’s tau statistics, in 

the unbiased population by applying the missing information principle. Extensive simulation 

studies shows that the new testing procedure outperforms the conditional Kendall’s tau test, 

especially in the case where the proportion of comparable pairs are small.

The rest of the article is organized as follows. We demonstrate the application of the missing 

information principle with left-truncated and/or right-censored data in the case of one-

sample estimation (Section 2) and seimiparametric estimation of the Cox model (Section 3). 

In both cases, we consider the estimation procedure with and without the knowledge of the 

truncation time distribution. In particular, self-consistency algorithms which guarantee to 

yield positive hazard function estimates are proposed to incorporate the information about 

the truncation time distribution. In Section 4, a nonparametric association test is proposed to 

illustrate the missing information principle when truncation time distribution is not 

specified. In Section 5, simulation studies are conducted to evaluate the performance of the 

proposed algorithms. In Section 6, two data examples are presented to illustrate the proposed 

approaches. A discussion follows in Section 7 to conclude the paper.

2. NONPARAMETRIC ESTIMATION

2.1 Nonparametric estimation with complete data

Let T0 denote the survival time in the population of interest. Note that we use superscript 0 

for random variables in the target population. Assume that T0 is absolutely continuous and 

has a support on [0, τ], that is, T0 has a probability density function f(t), 0 ≤ t ≤ τ. Denote, 

respectively, by F(t), S(t), λ(t), and Λ(t), the distribution function, survival function, hazard 

function, and cumulative hazard function of the survival time T0. Suppose the data 
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{T1
0, …, Tn

0} from n subjects are independent and identically distributed (i.i.d.) realizations of 

T0. Following Murphy and van der Vaart (2000), we consider the nonparametric likelihood

∏
i = 1

n
Λ {Ti

0}exp{− Λ (Ti
0)}

with Λ{t} the jump size of Λ at t so that the likelihood depends smoothly on 

Λ {T1
0}, …, Λ {TN

0 }. It is easy to check that the corresponding score operator (Begun et al., 

1983) is given by

Ψ (k) = ∫0
Τ

k(u){dN0(u) − I(T0 ≥ u)d Λ (u)},

where N0(t) = I(T0 ≤ t) and κ(u) is any bounded, measurable function. Setting κ(u) = I(u ≤ t) 
motivates the unbiased estimating equation

∑
i = 1

n ∫0
t
dMi

0(u) = 0

with Mi
0(t) = Ni

0(t) − ∫ 0
t I(T i

0 ≥ u)d Λ (u). As a result, solving the complete-data estimating 

equation Σi = 1
n dMi

0(t) = 0 for all t ∊ [0, τ] is equivalent to maximizing the nonparametric 

likelihood function with respect to Λ(t).

2.2 Left-truncated data, with an unspecified truncation time distribution

We now consider the scenario where the observation of the survival time T0 is subject to an 

independent truncation time A0, that is, the pair of random variables (T0, A0) is observed if 

and only if T0 ≥ A0. We drop superscript 0 to indicate random variables in the prevalent 

population. Denote by T and A the survival time and truncation time for individuals in the 

prevalent population, then (T, A) has the same joint distribution as (T0, A0) | T0 ≥ A0. For 

simplicity, we assume that the truncation time A0 also has support on [0, τ]. In what follows, 

we consider nonparametric estimation with an unspecified truncation time distribution.

Let {(Ti, Ai), i = 1, … n} be i.i.d. copies of (T,A). Following Turnbull’s argument of ghost 

observations (Turnbull, 1976), conditioning on the truncation time Ai, the observation (Ti, 

Ai) can be considered the remnant of a group of mi unobserved subjects whose survival 

times are smaller than Ai. Specifically, let 𝒪i
∗ = {(T ij

∗, Ai), j = 1, …, mi} be the ghosts 

corresponding to (Ti,Ai), where T ij
∗ < Ai and T ij

∗ is independent of Ti given Ai for all j = 1,

…,mi. Note that, given Ai = a, the sample size mi of the group of unobserved subjects 

follows a negative binomial distribution with parameters 1 and F(a) and thus E(mi | Ai = a) = 

F(a)/S(a). Moreover, given Ai = a, the density function of T ij
∗ is f(t)F(a)−1I(t < a).
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For the ith observed subject, we define the stochastic process

Mi(t) = I(Ti ≤ t) − ∫0
t
I(Ti ≥ u)d Λ (u) .

Similarly, for truncated observations (the ghosts) 𝒪i
∗ = {(T ij

∗, Ai), j = 1, …, mi} we define

Mi j* (t) = I(Ti j* ≤ t) − ∫0
t
I(Ti j* ≥ u)d Λ (u) .

Then it follows from the unbiasedness of the score operator with complete data that 

dMi(t) + Σ j = 1
mi dMij

∗(t) has a zero-mean. Because T ij
∗’s are unobserved, we apply the missing 

information principle to replace Σ j = 1
mi dMij

∗(t) with its conditional expectation

E{ ∑
j = 1

mi
dMi j* (t)|Ai} = E(mi|Ai) ×

S(Ai)
F(Ai)

I(Ai > t)d Λ (t) = I(Ai > t)d Λ (t)

to obtain the imputed stochastic process

dMi
A(t) ≡ dMi(t) + I(Ai > t)d Λ (t) = dNi(t) − I(T i ≥ t ≥ Ai)d Λ (t) . (2.1)

Solving Σi = 1
n dMi

A(t) = 0 gives d Λ (t) = Σi = 1
n I(T i = t) Σi = 1

n I(T i ≥ t ≥ Ai). As expected, 

the application of the missing information principle to left-truncated data yields the 

asymptotically efficient nonparametric maximum likelihood estimator (NPMLE), that is, the 

Lynden-Bell estimator (Lynden-Bell, 1971).

2.3 Left-truncated data, with a known truncation time distribution

In many applications, it is reasonable to assume that the incidence of disease onset follows a 

specific distribution. As an example, several authors, including Addona and Wolfson (2006) 

and Huang and Qin (2012), have argued that the incidence of dementia onset in the 

Canadian Study of Health and Aging, one of the largest epidemiology studies of dementia 

(McDowell, Hill and Lindsay, 2001), follows a Poisson process; that is, the disease 

incidence is stable over time. Under this stable disease condition, the underlying truncation 

time is uniformly distributed and the probability of a survival time being sampled is 

proportional to its length.

Let H be the known distribution function of the underlying truncation time A0, and define 

H‒(t) = 1 − H(t). As an example, under the stable disease condition, A0 is uniformly 

distributed and hence H(t) = t/τ and H‒(t) = 1 − t τ for t ∊ [0, τ]. Applying Turnbull’s of 

ghost observations, the observed data (Ti, Ai) can be viewed as the remnant of a group of mi 
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independent subjects 𝒪i
∗ = {(T ij

∗, Aij
∗), j = 1, …, mi} whose survival times satisfy T ij

∗ < Aij
∗ are 

thus not observed. Moreover, (T ij
∗, Aij

∗) has the same joint distribution as (T0, A0) | T0 < A0. 

Note that, instead of using the conditioning argument as in Section 2.1, the ghosts 

corresponding to the observation (Ti, Ai) are not constrained to have the same truncation 

time Ai. Define α = pr(T0 < A0) = ∫ 0
τ H‒(u)dF(u) The sample size mi follows a negative 

binomial distribution with parameters 1 and α, and hence E(mi) = α/(1 − α).

Following the spirit of missing information principle, we propose to replace Σ j = 1
mi dMij

∗(t) in 

the unbiased estimating function dMi(t) + Σ j = 1
mi dMij

∗(t) with its expectation integrating over 

the given truncation time density function. Specifically, it follows from the result that T ij
∗ has 

the density function H‒(t) f (t) α that

E{ ∑
j = 1

mi
dMi j* (t)} = H(t)dF(t) − d Λ (t)∫t

τ
H(u)dF(u) /(1 − α)

and that the imputed stochastic process is

dMi
H(t) ≡ dNi(t) + H(t)dF(t)

∫ 0
τ H(u)dF(u)

− I(T i ≥ t) +
∫ t

τH(u)dF(u)
∫ 0

τ H(u)dF(u)
d Λ (t) . (2.2)

Solving Σi = 1
n dMi

H(t) = 0 would yield the nonparametric maximum likelihood estimation 

(NPMLE) of Λ(·) when the underlying truncation time distribution is known. It is easy to see 

that the estimating equation does not have a closed-form solution. We propose a self-

consistency algorithm for deriving the NPMLE.

Define the stochastic processes dη i(t) = dNi(t) + H‒(t)dF(t) ∫ 0
τ H(u)dF(u) and 

ξ i(t) = I(T i ≥ t) + ∫ t
τH‒(u)dF(u) ∫ 0

τ H(u)dF(u), so that dMi
H(t) = dη i(t) + ξ i(t)d Λ (t). We 

consider the class of distributions with jumps at the observed failure times. The self-

consistency algorithm is described below:

Step 0. Set initial values for the jumps of Λ(0)(t) at observed failure times and obtain S(0)(t) 
= exp{−Λ(0)(t)}.

Step k. For the k-th iteration, evaluate dη i
(k)(t) and ξ i

(k)(t) by replacing F(t) with 1 − S(k−1)(t) 

= 1 − exp{−Λ(k−1)(t)} in dη i(t) and ξ i(t). Update Λ(t) with

Λ(k) (t) = ∫0
t ∑i = 1

n dηi
(k)(u)

∑i = 1
n ξi

(k)(u)
.
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Iterate until a convergence criterion is met.

Interestingly, when the distribution of the truncation time A0 is known, the construction of 

imputed stochastic process dMi
H(t) does not require A being observed. A closer examination 

reveals that dMi
H(t) can be re-expressed as

dMi
H(t) = dMi

A(t) + I(Ai > t) − ∫t

τ
S(u)dH(u)/∫0

τ
S(u)dH(u) d Λ (t),

where dMi
A(t) is given by (2.1) for left-truncated data with a unspecified truncation time 

distribution, and the function in the brackets is simply the empirical estimate of the survival 

function subtract the conditional survival function of A0 given T0 ≥ A0.

Recognizing that Ti’s can be viewed a biased sample from f(t) with a sampling weight 

function H(t), an inverse-probability weighted estimator for Λ(t) (Wang, 1996) can be given 

by

∫0
t ∑i = 1

n dNi(u)

∑ j = 1
n I(T j ≥ u)H(u)/H(T j)

.

The assigned weight is inversely proportional to the probability of a subject being sampled. 

As a result, the weighted risk set has the same probability structure as that that would be 

formed by an incidence cohort. In most cases, this simple estimator, though consistent for 

Λ(t), is not identical to the NPMLE obtained by solving Σi = 1
n dMi

H(t) = 0 and hence is not 

expected to be fully efficient.

2.4 Left-truncated and right-censored data, with an unspecified truncation time 
distribution

The observation of left-truncated survival time is usually subject to right censoring due to 

loss to follow-up or end of study. Let C be the censoring time for the residual survival time 

V = T − A, where C is assumed to be independent of V given A. Hence we observe {(Ai, Yi, 

Δi), i = 1, …, n}, where Yi = min(Ti, Ai+Ci) and Δi = I(Ti ≤ Ai + Ci). For censored 

individuals, the values of dNi(t) and I(Ti ≥ t) in dMi
A(t) given by (2.1) can not be determined 

completely. It can be verified that 

E{dNi(t) ∣ Ai, Y i, Δi } = dNi(t) + (1 − Δi )I(Y i < t)dF(t) S(Y i) and E{I(Ti ≥ t) | Ai, Yi, Δi} = 

I(Yi ≥ t) + (1 − Δi)I(Yi < t)S(t)/S(Yi), with Ni(t) = ΔiI(Yi ≤ t). We apply the missing 

information principle to dMi
A(t) by replacing dNi(t) and I (Ti ≥ t) with their conditional 

expectations to yield the imputed stochastic process

dMi
A(t) ≡ dNi(t) − I(Y i ≥ t ≥ Ai)d Λ (t) . (2.3)
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It is easy to see that solving Σi = 1
n dMi

A(t) = 0 yields the Nelson-Aalen estimator, that is, the 

NPMLE, for left-truncated and right-censored data with unspecified truncation time 

distribution.

2.5 Left-truncated and right-censored data, with a known truncation time distribution

When the truncation time A0 follows a known distribution function H, applying the missing 

information principle to replace dNi(t) and I(Ti ≥ t) in dMi
H(t) in (2.2) with their conditional 

expectations yields

dMi
H(t) ≡ E{dNi(t)|Y i, Δi} + H(t)dF(t)/∫

0

τ
H(u)dF(u)

− E{I(T i ≥ t)|Y i, Δi} + ∫
t

τ
H(u)dF(u)/∫

0

τ
H(u)dF(u) d Λ (t)

= dηi(t) − ξi(t)d Λ (t),

(2.4)

where dηi(t) = dNi(t) + (1 − Δi )I(Y i < t)S(t) S(Y i)d Λ (t) + H‒(t)dF(t) ∫ 0
τ H(u)dF(u) and 

ξi(t) = I(Y i ≥ t) + (1 − Δi )I(Y i < t)S(t) S(Y i) + ∫ t
τH‒(u)dF(u) ∫ 0

τ H(u)dF(u). Similar to (2.2), 

the evaluation of the imputed process (2.4) does not require Ai being observed.

At any time point t* that no failure event was observed, that is, Σi = 1
n dNi(t

∗) = 0, the equality 

Σi = 1
n dMi

H(t∗) = 0 can be implied by either dΛ(t*) = 0 or 

n−1 Σi = 1
n I(Y i ≥ t∗) = ∫

t∗
τ S(u)dH(u) ∫ 0

τ S(u)dH(u). In other words, the NPMLE may have 

jumps at censored survival times. This is in contrast to right-censored survival data, where 

the NPMLE has jumps at only uncensored failure times.

Similar to Section 2.3, a self-consistency algorithm can be derived to solve Σi = 1
n dMi

H(t) = 0. 

Here in all iterative steps the cumulative hazard function Λ(k)(t) for k ≥ 0 are allowed to have 

jumps at all censored and uncensored failure times. Specifically, in the kth iteration, we 

evaluate

Λ(k) (t) = ∫
0

t ∑i = 1
n dηi

(k)(u)
∑i = 1

n ξi
(k)(u)

, (2.5)

where dηi
(k)(t) and ξi

(k)(t) are obtained by substituting F(t) with 1 − S(k−1)(t) in dηi(t) and ξi(t).

REMARK 2.1. It is worthwhile to point out that the proposed method can be applied to analyze 

right-censored survival data under biased sampling, where the sampling weight is 

proportional to a known function H(t). Luo and Tsai (2009) considered this setting and 

proposed a pseudo-partial likelihood approach that allows for jumps only at uncensored 
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failure times. Their estimation procedure, however, requires estimation of the censoring time 

distribution. In contrast, the proposed estimator is derived directly from the full likelihood of 

complete data and thus is expect to be more efficient.

3. SEMIPARAMETRIC ESTIMATION OF THE COX MODEL

In this section, we apply the missing information principle, along the same line as 

nonparametric estimation, to estimate the Cox proportional hazards model with left-

truncated and right-censored data. To proceed, we assume that, given the p-dimensional 

covariate vector Z0 = z, the conditional hazard function of the survival time T0 in the target 

population, Λ(t | z), follows the proportional hazards model, that is, λ(t | z) = λ(t) exp(β′z), 

where λ(t) is an unspecified baseline hazard function and β is a vector of p × 1 regression 

parameters.

We begin by deriving the unbiased estimating equations based on complete data. Let the 

complete data {(T i
0, Zi

0), i = 1, …, n} be i.i.d. copies of (T0, Z0). Define the stochastic 

process M0(t, β) = N0(t) − ∫ 0
t exp(β′Z0)I(T0 ≥ u)λ(u)du, with Λ (t) = ∫ 0

t λ(u)du. Denote by Λ{t} 

the jump size of Λ at t. The score operators for β and Λ derived from the semiparametric 

likelihood

∏
i = 1

n
Λ {Ti

0}exp(β′Zi
0)exp{− Λ (Ti

0)exp(β′Zi
0)}

are given by Ψβ = ∫ 0
τ Z0dM0(u, β) and ΨΛ (κ) = ∫ 0

τ κ(u)dM0(u, β), with κ an arbitrary bounded, 

measurable function. Setting κ(u) = I(u ≤ t) and solving the system of estimating equations 

Σi = 1
n ∫ 0

τ ZidMi
0(u, β) = 0 and Σi = 1

n ∫ 0
t dMi

0(u, β) = 0, for all t ∊ [0, τ], yields the 

semiparametric maximum likelihood estimator.

3.1 Semiparametric estimation with left-truncated data

Under left truncation, we observe (T0, A0, Z0) if and only if T0 ≥ A0, so the observed triplet 

(T, A, Z) has the same joint distribution as (T0, A0, Z0) | T0 ≥ A0. Let {(Ai, Ti, Zi), i = 1, …, 

n} be i.i.d. copies of (A, T, Z). We impose the usual independent truncation assumption by 

assuming that A0 is independent with T0 conditional on Z0.

We first consider the case where the distribution of A0 is left unspecified. Arguing as in 

Section 2.2, the observation (Ti, Ai, Zi) corresponds to mi unobserved ghosts {(T ij
∗, Ai, Zi), j 

= 1, …, mi}, where T ij
∗ < Ai and T ij

∗ is independent of Ti given (Ai, Zi). Conditioning on Ai = 

a and Zi = z, the sample size mi follows a negative binomial distribution with parameters 1 

and F(a | z) = 1 − exp{−Λ(a | z)}, where Λ (a ∣ z) = ∫ 0
aλ(u ∣ z)du. Hence we have E(mi | Ai, Zi) 

= F(Ai | Zi)/S(Ai | Zi).
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Define the stochastic processes Mi(u, β) = I(T i ≤ t) − ∫ 0
t exp(β′Zi)I(T i ≥ u)d Λ (u) for observed 

data and Mij
∗(t, β) = I(T ij

∗ ≤ t) − ∫ 0
t exp(β′Zi)I(T ij

∗ ≥ u)d Λ (u) for ghost observations. Following 

the unbiasedness of the score operators with complete data, we have 

E[∫ 0
τ Zi{dMi(u, β) + Σ j = 1

mi dMij
∗(u, β)}] = 0 and E∫ 0

t {dMi(u, β) + Σ j = 1
mi dMij

∗(u, β)} = 0. In the 

spirit of missing information principle, we replace Σ j = 1
mi dMij

∗(t, β) with its conditional 

expectation to obtain the imputed stochastic process

dMi
A(t, β) ≡ dMi(u, β) + E{ ∑

j = 1

mi
dMi j* (t, β)|Ai, Zi}

= dNi(t) − exp(β′Zi)I(Ti ≥ t ≥ Ai)d Λ (t) .

As expected, solving the imputed estimating equations Σi = 1
n ∫ 0

τ ZidMi
A(t, β) = 0 and 

Σi = 1
n ∫ 0

t dMi
A(u, β) = 0 for all t ∊ [0, τ] yields the maximum partial likelihood estimator 

(Wang, Brookmeyer and Jewell, 1993) that is the solution of the partial score equation

∑
i = 1

n ∫0
τ

Zi −
∑ j = 1

n Z jexp(β′Z j)I(T j ≥ t ≥ A j)

∑ j = 1
n exp(β′Z j)I(T j ≥ t ≥ A j)

dNi(t) = 0.

Next, we consider the case where A0 has a known distribution function H(t). Integrating over 

the given truncation time density function, straightforward algebra gives

E{ ∑
j = 1

mi
dMi j* (t)|Zi} =

H(t)dF(t|Zi)

∫ 0
τ H(u)dF(u|Zi)

−
∫ t

τH(u)dF(u|Zi)

∫ 0
τ H(u)dF(u|Zi)

d Λ (t) .

Thus, by replacing Σ j = 1
mi dMij

∗(t) with its expectation in the unbiased stochastic process, we 

obtain the imputed stochastic process

dMi
H(t, β) ≡ dMi(t, β) + E{ ∑

j = 1

mi
dMi j* (t, β)|Zi}

= dNi(t) +
H(t)dF(t|Zi)

∫ 0
τ H(u)dF(u|Zi)

− I(Ti ≥ t) +
∫ t

τH(u)dF(u|Zi)

∫ 0
τ H(u)dF(u|Zi)

d Λ (t) .

Solving Σi = 1
n ∫ 0

τ ZidMi
H(t, β) = 0 and Σi = 1

n ∫ 0
t dMi

H(u, β) = 0 for all t ∊ [0, τ] would yield the 

semiparametric maximum likelihood estimator when the distribution of A0 is known.
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Define the stochastic processes dη i(t, β) = dNi(t) + H‒(t)dF(t ∣ Zi) ∫ 0
τ H(u)dF(u ∣ Zi) and 

ξ i(t, β) = I(T i ≥ t) + ∫ t
τH‒(u)dF(u ∣ Zi) ∫ 0

τ H(u)dF(u ∣ Zi). The solution to Σi = 1
n ∫ 0

t dMi
H(u, β) = 0

and Σi = 1
n ∫ 0

τ ZidMi
H(t, β) = 0 satisfies

d Λ (t) =
∑i = 1

n dηi(t, β)
∑i = 1

n exp(β′Zi)ξi(t, β)
, (3.1)

and

∑
i = 1

n ∫
0

τ
Zi −

∑ j = 1
n Z jexp(β′Z j)ξ j(t, β)

∑ j = 1
n exp(β′Z j)ξ j(t, β)

dηi(t, β) = 0. (3.2)

Based on (3.1) and (3.2), we propose the following iterative algorithm to obtain estimates of 

β and Λ(t). As before, we consider the family of Λ that only jumps at the unique failure 

times in the following algorithm.

Step 0. Set initial values for β(0) and the jumps of Λ(0)(t) at observed failure times. Compute 

S(0)(t ∣ Zi) = exp{ − Λ(0) (t)exp(β(0)′Zi)}.

Step k. For the k-th iteration, evaluate dη i
(k) and ξ i

(k) by replacing F(t | Zi) with 1 − S(k−1)(t | 

Zi) = 1 − exp{−Λ(k−1)(t)exp(β(k−1)′)Zi} in dη i and ξ i. Solve

∑
i = 1

n ∫0
τ

Zi −
∑ j = 1

n Z jexp(β′Z j)ξ j
(k)(t, β(k − 1))

∑ j = 1
n exp(β′Z j)ξ j

(k)(t, β(k − 1))
dηi

(k)(t, β(k − 1)) = 0.

for β to obtain β(k), and update Λ(t) with

Λ(k) (t) = ∫0
t ∑i = 1

n dηi
(k)(u, β(k − 1))

∑i = 1
n exp{β(k)′Zi}ξi

(k)(u, β(k − 1))
.

Iterate until a convergence criterion is met.

3.2. Semiparametric estimation with left-truncated and right-censored data

In the presence of right censoring C in addition to left truncation, the observed data {(Ai, Yi, 

Δi, Zi)}, i = 1, …, n} are i.i.d copies of (A, Y, Δ, Z), where Y = min(T, A + C) and Δ = I(A + 

C ≥ T). We assume that the censoring time C is independent of (A, T) given Z. As pointed 

out by one reviewer, one may also assume that C is independent of T given (A, Z). We adopt 

the former assumption to be consistent with the existing literature.
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We now consider the case where the distribution of the underlying truncation time A0 is not 

specified. Similarly as before, it can be verified that 

E{dNi(t) ∣ Ai, Y i, Δi , Zi} = dNi(t) + (1 − Δi )I(Y i < t)dF(t ∣ Zi) S(Y i ∣ Zi) and E(I(Ti ≥ t) | Ai, 

Yi, Δi, Zi} = I(Yi ≥ t) + (1 − Δi)I(Yi < t)S(t | Zi)/S(Yi | Zi). Applying the missing information 

principle to dMi
A(t, β) by replacing dNi(t) and I(Ti ≥ t) with their conditional expectations 

yields

dMi
A(t, β) = dNi(t) − exp(β′Zi)I(Yi ≥ t ≥ Ai)d Λ (t) .

As expected, solving the system of imputed estimating equations Σi = 1
n ∫ 0

τ ZidMi
A(t, β) = 0

and Σi = 1
n ∫ 0

t dMi
A(u, β) = 0 for all t ∊ [0, τ] yields the maximum partial likelihood estimator, 

which is the solution of the partial score equation

∑
i = 1

n ∫0
τ

Zi −
∑k = 1

n Zkexp(β′Zk)I(Yk ≥ t ≥ Ak)

∑k = 1
n exp(β′Zk)I(Yk ≥ t ≥ Ak)

dNi(t) = 0.

Finally, we consider the case where the distribution of A0 is known to be H. Replacing dNi(t)

and I(Ti ≥ t) with their conditional expectations in dMi
H(t, β) yields

dMi
H(t, β) = dηi(t, β) − ξi(t, β)exp(β′Zi)d Λ (t),

where

dηi(t, β) = dNi(t) + (1 − Δi)I(Yi < t)
dF(t|Zi)
S(Yi|Zi)

+
H(t)dF(t|Zi)

∫ 0
τ H(u)dF(u|Zi)

ξi(t, β) = I(Yi ≥ t) + (1 − Δi)I(Yi < t)
S(t|Zi)

S(Yi|Zi)
+

∫ t
τH(u)dF(u|Zi)

∫ 0
τ H(u)dF(u|Zi)

.

Solving the imputed estimating equations Σi = 1
n ∫ 0

τ ZidMi
H(t, β) = 0 and Σi = 1

n ∫ 0
t dMi

H(u, β) = 0

for all t ∊ [0,τ] gives estimates of β and Λ(t). Because a closed solution does not exist, we 

develop a self-consistency algorithm for model estimation.

Arguing as in Section 2.5, the estimated baseline cumulative hazard function obtained by 

solving the imputed estimating equations may have jumps at censored survival times. Hence 

in all iterative steps the baseline cumulative hazard function Λ(k)(t) for k ≥ 0 are allowed to 

have jumps at all censored and uncensored failure times. At the kth iteration, we compute 

dηi
(k)(t, β(k − 1)) and ξi

(k)(t, β(k − 1)) by substituting, {β, F(t | z)} in dηi(t,β) and ξi(t,β) by the 

estimates from the (k − 1)th iteration, and solve the equations along the same line as those in 
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Step k of the algorithm in Section 3.1, where dη i
(k)(t, β(k − 1)) and ξ i

(k)(t, β(k − 1)) are replaced 

by ξi
(k)(t, β(k − 1)) and dηi

(k)(t, β(k − 1)). Interestingly, in the special case where H is the 

distribution function of an uniform random variable, the proposed self-consistency algorithm 

will converge to the semiparametric MLE described in Qin et al. (2011).

Denote by (β, Λ) the estimators obtained by the proposed self-consistency algorithm and by 

(β0, Λ0) the true parameter values. The large-sample properties of (β, Λ) is summarized in 

Theorem 3.1, with regularity conditions and asymptotic distribution given in the Appendix. 

The proof closely follows Theorems 1 and 2 in Qin et al. (2011) and thus is omitted in this 

article.

THEOREM 3.1. Under the regularity conditions (A1)~ (A6), 
n{β − β0, Λ (t) − Λ0 (t)}(t ∈ (0, τ]) converges weakly to a zero-mean Gaussian process 

defined in the Appendix as n → ∞.

REMARK 3.1. The self-consistency algorithm described in this section can also be applied to 

right-censored survival data under biased sampling. For this problem, Tsai (2009) proposed 

a pseudo-partial likelihood approach to incorporate the knowledge about the sampling weght 

function H(t) in the estimation procedure. This approach, however, involves estimating the 

random censoring time distribution and can be inefficient when the censroing proportion is 

high. Our estimator, on the other hand, naturally accounts for covariate-dependent censoring 

and is in general more efficient as it is derived from the full likelihood of complete data.

When the underlying truncation time distribution depends on the covariates and is left 

unspecified, application of the MIP results in the conditional likelihood approach. When the 

underlying truncation time distribution depends on the covariates and is specified, the self-

consistency algorithm can be easily extended to gain efficiency. For example, suppose the 

cumulative distribution function of A0 conditional on Z0 = z is H(· | z), we can replace H(·) 

in ηi(t, β) and ξi(t, β) with H(· | Zi) to estimate β and Λ. However, this approach is not 

practically interesting, since H(· | z) is usually treated as a nuisance function.

4. NONPARAMETRIC ASSOCIATION TEST FOR INDEPENDENT 

TRUNCATION

The preceding sections illustrate the application of the missing information principle in 

model estimation. In this section, we consider nonparametric test for the association between 

the underlying truncation time and the failure time. Under left truncation, the validity of 

most statistical methods for left-truncated survival time data requires the assumption of 

quasi-independence to hold, that is, the failure time and the truncation time are independent 

in the observable region. In the literature, Kendall’s tau (Kendall and Gibbons, 1990) is a 

popular nonparametric measure of association between two failure time random variables 

because of its rank-invariance property. To measure the association between the underlying 

truncation time A0 and the underlying survival time T0, Kendall’s tau can be defined as 

K = E[sgn{(A1
0 − A2

0)(T1
0 − T2

0)}], where sgn(u) is the sign of u. Clearly, K does not depend on 
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the marginal distribution; moreover, −1 ≤ K ≤ 1 and K = 0 when A0 and T0 are independent. 

For completely observed data, K can be consistently estimated by

K = 1

n
2

∑
i < j

sgn{(Ai
0 − A j

0)(Ti
0 − T j

0)} .

A pair of subjects (i,j) is said to be concordant if (Ai
0 − A j

0)(T i
0 − T j

0) > 0, and discordant if 

(Ai
0 − A j

0)(T i
0 − T j

0) < 0. As pointed out by many authors, including Tsai (1990), Martin and 

Betensky (2005), and Oakes (2008), Kendall’s tau is not directly applicable to left truncated 

data, as the observed data (A, T) are a biased sample of (A0, T0); moreover, association in 

the observed bivariate random variable (A, T) arises naturally due to sampling constraint. 

Failing to account for sampling bias in the construction of test statistics usually leads to 

incorrect conclusions.

In the absence of right censoring, Tsai (1990) considered conditional Kendall’s tau

Kc = E{sgn(A1 − A2)sgn(T1 − T2)|max(A1, A2) ≤ min(T1, T2)},

for testing the association between A0 and T0 under left truncation. It is easy to see that 

independence of A0 and T0 in the observable region {(a,t) : 0 ≤ a ≤ t ≤ τ} implies Kc = 0 (but 

not vice versa). Estimation of the conditional Kendall’s tau is based on comparable pairs 

{(Ai, Ti), (Aj, Tj)} that satisfy max(Ai, Aj) ≤ min(Ti,Tj) (Bhattacharya, Chernoff and Yang, 

1983), and thus can be very inefficient when the number of comparable pairs is small. 

Specifically, with a negative correlation between the underlying truncation time and survival 

time, Ai ≥ Aj implies that Ti is likely to be smaller than Tj. As a result, the comparability 

condition is likely to be satisfied and the conditional Kendall’s tau is likely to utilize most 

available information. On the other hand, with a positive correlation, fewer pairs are 

expected to satisfy the comparability condition, as the condition further requires Ai ≤ Tj 

when Ai ≥ Aj. In what follows, we consider alternative tests that can better utilize the 

observed data.

Instead of employing the conditional Kendall’s tau for testing association, we propose to 

apply the missing information principle to construct new test statistics. Arguing as before, 

we begin by deriving the test statistic using complete data from enrolled individuals and 

their corresponding (unobserved) ghosts, that is, {(Ai, Ti)(Ai, T ip
∗ ); p = 1, …, n}. If the 

compete data were observed, the contribution of any pair of subjects (i,j) to the construction 

of Kendall’s tau statistic is given by uij = uij
(0) + uij

(1) + u ji
(1) + uij

(2), where
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ui j
(0) = sgn(Ai − A j)sgn(Ti − T j),

ui j
(1) = ∑

p = 1

mi
sgn(Ai − A j)sgn(Tip* − T j),

ui j
(2) = ∑

p = 1

mi
∑

q = 1

m j
sgn(Ai − A j)sgn(Tip* − T jq* ) .

Under the null hypothesis that A0 and T0 are independent, it is easy to see that uij has mean 

zero. Thus a Kendall’s tau type test statistic based on the observed data and “ghost” data is 

given by

K0 =
∑i = 1

n ∑ j = i + 1
n ui j

∑i = 1
n ∑ j = i + 1

n (mi + 1)(m j + 1)
,

and the denominator Σi = 1
n Σ j = i + 1

n (mi + 1)(m j + 1) is the number of comparable pairs and 

normalize K0 to be in [−1, 1].

In the absence of right censoring, we apply the missing information principle and replace the 

unknown quantities in uij with their expectations conditioning on the observed data. Under 

the null hypothesis, following the arguments in Section 2.2, it can be verified that the 

conditional expectations of uij
(k), k = 0, 1, 2, given the observed pair (Ai, Ti) and (Aj, Tj) is

υi j
(0) = E{ui j

(0)|Ai, Ti, A j, T j} = sgn(Ai − A j)sgn(Ti − T j) = ui j
(0),

υi j
(1) = E{ui j

(1)|Ai, Ti, A j, T j}

= sgn(Ai − A j) sgn(Ai − T j)
F(Ai)
S(Ai)

− 2I(Ai > T j)
F(T j)
S(Ai)

− I(Ai = T j)
F(Ai)
S(Ai)

,

υi j
(2) = E{ui j

(2)|Ai, Ti, A j, T j}

= sgn(Ai − A j)
∫ 0

A j∫ 0
A jsgn(u − υ)dF(u)dF(υ)

S(Ai)S(A j)
.

Moreover, the quantity (mi + 1)(mj + 1) can be imputed as

mi j = E{(mi + 1)(m j + 1)|Ai, A j} = 1 +
F(Ai)
S(Ai)

+
F(A j)
S(A j)

+
F(Ai)F(A j)
S(Ai)S(A j)

.
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Define vij = vij
(0) + vij

(1) + v ji
(1) + vij

(2), then the imputed test statistic given the observed left 

truncated data is given by KA = Σi = 1
n Σ j = i + 1

n vij Σi = 1
n Σ j = i + 1

n mij.

When the observation of left-truncated survival times is further subject to independent right 

censoring, we apply the missing information principle to obtain the imputed test statistic 

KA = Σi = 1
n Σ j = i + 1

n kij Σi = 1
n Σ j = i + 1

n mij, where kij = kij
(0) + kij

(1) + k ji
(1) + kij

(2) with

ki j
(0) = E{υi j

(0)|Ai, Yi, Δi , A j, Y j, ΔJ}

= sgn(Ai − A j) Δi Δ j sgn(Yi − Y j)

+ Δi (1 − Δ j) I(Yi ≥ Y j)
S(Y j) − S(Yi)

S(Y j)
−

S(Yi ∨ Y j)
S(Y j)

+ (1 − Δi) Δ j
S(Yi ∨ Y j)

S(Yi)
− I(Yi ≤ Y j)

S(Yi) − S(Y j)
S(Yi)

+ (1 − Δi)(1 − Δ j)
∫ Yi

τ ∫ Y j
τ sgn(u − υ)dF(u)dF(υ)

S(Yi)S(Y j)
,

ki j
(1) = E{υi j

(1)|Ai, Yi, Δi , A j, Y j, Δ j}

= sgn(Ai − A j) Δ j sgn(Ai − Y j)
F(Ai)
S(Ai)

− 2I(Ai > Y j)
F(Y j)
S(Ai)

+ (1 − Δ j) I(Y j ≤ Ai)
S(Y j) − S(Ai)

S(Y j)
−

S(Ai ∨ Y j)
S(Y j)

F(Ai)
S(Ai)

− 2(1 − Δ j)I(Ai > Y j)
∫ Y j

Ai F(u)dF(u)

S(Y j)S(Ai)
,

ki j
(2) = E{υi j

(2)|Ai, Yi, Δi , A j, Y j, Δ j} = υi j
(2)

The test statistic involves the unknown functions S and F = 1 − S. Intuitively, one may 

replace the survival function S by the product-limit estimator for left-truncated and right-
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censored data. Our simulation shows that the type I error rate of the test is close to the pre-

specified nominal level. Denote by KA the test statistic with S replaced by the product limit 

estimator. Following a standard argument and applying the functional delta method, we can 

show that n−1 2KA converges to a zero-mean normal distribution under the null hypothesis. 

The formula of the asymptotic variance is very complicated, hence we recommend using 

nonparametric bootstrap method to obtain the confidence interval of the test statistic and 

reject the null hypothesis at a significance level of 0.05 if the 95% confidence interval does 

not cover 0.

Note that because a small value of S(A) in the denominator can result in a very large kij
(m)(m 

= 1, 2), in practice, to stabilize the test statistic, we only evaluate Kendall’s tau on the region 

{(a, t) : 0 ≤ a ≤ τ0}, where τ0 is an arbitrary constant smaller than τ. Specifically, define 

Kτ0
A = Σi = 1

n Σ j = i + 1
n kijI(Ai ≤ τ0, A j ≤ τ0) Σi = 1

n Σ j = i + 1
n mijI(Ai ≤ τ0, A j ≤ τ0), and we 

use Kτ0
A  with estimated survival function S as the testing statistics.

5. SIMULATION STUDY

Numerical simulations were carried out to evaluate the performance of the nonparametric 

and semiparametric estimators from the iterative algorithms in Section 2.5 and Section 3.2. 

We considered the following two scenarios for the underlying truncation time random 

variable: (I) A0 follows an exponential distribution with with survival function 

H‒(t) = exp( − t); (II) A0 follows a Weibull distribution with survival function 

H‒(t) = exp( − t2 4). The time from enrollment to loss to follow-up was generated from a 

uniform distribution so that the censoring rate was approximately 25% and 50%. We 

generated 1000 datasets, each with a sample size of n = 100 and 400.

We first evaluated the nonparametric estimation procedure for left-truncated and right-

censored data given in Section 2.5. To simulate left-truncated data, we generated the 

unbiased survival time T0 from a Weibull distribution with hazard function 0.5t repeatedly 

until there are n subjects satisfying the sampling constraint A0 < T0, where A0 were 

simulated under Scenarios (I) and (II). Table 1 reports the summary statistics for the 

proposed nonparametric estimator. We compared the proposed estimator S(t) with the 

product-limit estimator SPL(t) for left-truncated and right-censored data, and the 

nonparametric pseudo partial likelihood estimator SPPL(t) proposed by Luo and Tsai (2009). 

It can be seen that both S  and SPPL have smaller mean square error than SPL in all the 

scenarios, thus improvement is gained by using information from the underlying truncation 

time distribution. In Scenario I, the proposed estimator S  has similar performance as SPPL; in 

Scenario II, S  has smaller variance and larger bias compared to SPPL and SPL, and S

performs best in terms of mean square error. For all the three estimators, the bias decreases 

as sample size increase.
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In the second set of simulation studies, we evaluated the semiparametric estimation 

procedure presented in Section 3.2. We generated the unbiased failure time T0 from the 

proportional hazards model with two covariates, where the continuous covariate Z1 follows a 

uniform distribution on [0, 1], the binary covariate Z2 follows Bernoulli distribution with 

success probability 0.5. The coefficients are set to be β = (1, 1) and the baseline hazard 

function is set to be 2t. The variance estimation follows a perturbation procedure in Qin et 

al. (2011). We compared the proposed estimator β in Section 3.2 with the pseudo partial 

likelihood estimator βPPL proposed in Tsai (2009) and the partial likelihood estimator βPL
for left-truncated and right-censored data. Table 2 reports the summary statistics for the three 

estimators. It can be observed that our proposed method has negligible bias, and, as 

expected, the bias decreases with sample size. The variance of β is smaller than that of both 

βPL and βPPL, and the coverage probability is close to the nominal level with moderate 

sample sizes.

We also evaluated the nonparametric test in Section 4 via a series of simulations. We 

compared the power of our proposed test with the conditional Kendall’s tau test in Tsai 

(1990). We generated (A0, T0) from bivariate log-normal distribution truncated at τ, and the 

associated normal distribution has mean (μ1, μ2) and variance-covariance matrix (σij)2×2. 

The censoring time C was generated from uniform distribution to produce different 

censoring rate. In all the scenarios, we set σ11 = σ22 = 0.5, and the other parameters are set 

to produce different associations and truncation proportions α = P(A0 > T0). We set τ = 4 

when μ2 = 0 and 6 when μ2 = 0.5. The results are presented in Table 3, with a sample size of 

100 and 1000 iterations. Both tests maintains the nominal level under the null hypothesis. As 

expected, the proposed test substantially outperforms the conditional Kendall’s tau test when 

the rate of truncation is high and the correlation is positive, while the two tests have similar 

performance when the correlation is negative.

6. DATA ANALYSIS

6.1 Analysis of Canadian Study of Health and Aging

In this section, we illustrate the proposed methods by analyzing data from the Canadian 

Study of Health and Aging (CSHA), one of the largest epidemiology studies of dementia 

(Wolfson et al., 2001; McDowell, Hill and Lindsay, 2001). CSHA recruited a prevalent 

cohort of individuals aged 65 and older with dementia during the period between February 

1991 and May 1992. In our data analysis, the survival time of interest is the time from onset 

to death and the truncation time in the prevalent cohort is the duration from the onset of 

dementia to study enrollment. A total of 807 subjects were analyzed; among them, 249 were 

diagnosed with possible Alzheimer’s disease, 388 had probable Alzheimer’s disease, and 

170 had vascular dementia.

To assess the effect of dementia subtypes on mortality, we fit a Cox proportional hazards 

model with indicators of probable Alzheimer (X1) and vascular dementia (X2) as covariates. 

Several authors, including Addona and Wolfson (2006) and Huang and Qin (2012), have 

examined the stationarity assumption with respect to disease incidence and found that the 

stable disease condition holds approximately. Instead of imposing an uniform distribution 
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for the underlying truncation time distribution, however, for illustrative purpose we apply the 

result obtained in Huang, Ning and Qin (2015) to employ the density function h(t) ∝ 
exp(0.183t−0.028t2+0.001t3)I(0 ≤ t ≤ τ), with τ = 19.85 years. Note that h(t) is a member of 

Neyman’s smooth alternative which includes uniform distribution as a special case.

We compare the proposed method to the pseudo partial likelihood approach (Tsai, 2009) by 

using the same truncation time density function h(t) in both estimation procedures. Applying 

the proposed self-consistency algorithm described in Section 3.2, the estimated regression 

coefficients are 0.151 (asymptotic standard error [ASE], 0.065; 95% confidence interval 

[CI], 0.023 to 0.278) for probable Alzheimer and 0.229 (ASE, 0.079; 95% CI, 0.074 to 

0.384) for vascular dementia. The estimated covariate effects are similar to the maximum 

likelihood estimator reported in Qin et al. (2011) obtained under the stable disease 

assumption. Thus our analysis suggests that probable Alzheimer and vascular dementia are 

associated with significantly worse survival compared to possible Alzheimer. On the other 

hand, the pseudo partial likelihood method gives regression coefficient estimates 0.064 

(ASE, 0.082) for probable Alzheimer and 0.161 (ASE, 0.106) for vascular dementia. It is 

easy to see that both regression coefficients are not significantly different from 0 using 

Tsai’s method.

6.2 Testing independent truncation for nursing home data

We next illustrate the proposed test of independence by analyzing the well-known Channing 

House data (Hyde, 1977). The study recorded age at entry and age at death for 462 residents 

of a retirement center, Channing House, from 1964 to 1975. The survival time is left-

truncated by study entry and right-censored by end of study or loss to follow-up. We apply 

the testing statistic KA in Section 4 to test the null hypothesis that the underlying survival 

time and underlying the truncation time are independent of each other within each gender 

group.

Because the variance of the proposed testing procedure is quite complicated, we adopt the 

nonparametric bootstrap method with 1000 replicates to construct the 95% bootstrap CI for 

the test statistic. The value of the proposed test statistic is 0.005 (95% bootstrap CI, 0.003 to 

0.039) for males and is −0.004 (95% bootstrap CI, −0.025 to 0.014) for females. Thus we 

conclude that the association between the underlying survival time and the underlying 

truncation time was significantly different than 0 in the male group, whereas the association 

was not significant in the female group. For comparison, we also apply the conditional 

Kendall’s tau test statistic developed by Tsai (1990). The conditional Kendall’s tau is 0.198 

(95% bootstrap CI, 0.003 to 0.362) for males and 0.051 (95% bootstrap CI, −0.046 to 0.164) 

females. Hence the results of our proposed test are consistent with that based on conditional 

Kendall’s tau test.

7. REMARKS

The main goal of this paper is to develop a unified framework for analyzing left-truncated 

and right-censored data with an unspecified or known truncation time distribution. Our 

methodologies are developed based on the idea of treating truncation and censoring as 
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“missing data mechanisms” and applying the missing information principle to unbiased 

estimating equations obtained in the absence of left truncation and right censoring. 

Specifically, we derived imputed estimating function from the score function derived from 

the full nonparametric likelihood (Section 2) and semiparametric likelihood (Section 3) with 

complete data. This is in contrast with the estimation procedure developed in Luo and Tsai 

(2009) and Tsai (2009), where the authors derived a pseudo-partial likelihood by integrating 

the partial likelihood over the given truncation time distribution. As a result, their estimators 

are not expected to be more efficient than the proposed estimators which are based on the 

full likelihood of complete data. Moreover, the evaluation of pseudo-partial likelihood 

requires estimation of the censoring time distribution and is thus less desirable.

In addition to model estimation, we also demonstrate the use of the missing information 

principle to hypothesis testing problem. In particular, in Section 4 we derive a new 

nonparametric test for checking the independence between the underlying survival time and 

the underlying truncation time based on Kendall’s tau statistic. Unlike the conditional 

Kendall’s tau test that are constructed based on comparable pairs subject to truncation and 

censoring, our new testing procedure utilizes data from all individuals and hence is expected 

to be more efficient. Results of simulation studies show that the proposed test enjoys a 

substantial gain in power, compared to the conditional Kendall’s tau test, when the 

underlying truncation time and survival time random variables are positively correlated.

Finally, with minor modifications, the missing information principle can be applied to 

handle more complicated data structures, such as double truncation and competing risk 

models, as well as non-Cox models, such as accelerated failure time models and additive 

hazards models. Further research is warranted.
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APPENDIX

Define θ = (β, Λ ), θ0 = (β0, Λ0), S(· | Z) = exp{−Λ(·) exp β′Z} and 

S0( ⋅ ∣ Z) = exp{ − Λ0 ( ⋅ )expβ0′ Z}. The log-likelihood function based on the observed data is

l(θ) = ∑
i = 1

n ∫0
τ
{β′Zi + logd Λ (u)}dNi(u) − ∫0

τ
I(Yi ≥ t)exp{β′Zi}d Λ (u) − log∫0

τ
S(u|Zi)dH(u) .

The score function of (β, Λ) is Un(β, Λ) = (U1n(β, Λ), U2n(·, β, Λ)), where
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U1n(β, Λ) = 1
n ∑

i = 1

n ∫0
τ
ZidNi(t) − ∫0

τ
Zi I(Yi ≥ t) −

∫ t
τS(u|Zi)dH(u)

∫ 0
τ S(u|Zi)dH(u)

exp{β′Zi}d Λ (t) ,

U2n(t, β, Λ) = 1
n ∑

i = 1

n ∫0
t
dNi(u) − ∫0

t
I(Yi ≥ u) −

∫ u
τ S(υ|Zi)dH(υ)

∫ 0
τ S(υ|Zi)dH(υ)

exp{β′Zi}d Λ (u) .

We assume the following regularity conditions for Theorem 3.1.

(A1) The true value of λ0 is continuously differentiable. In addition, the upper bound τ of 

the support is finite. The parameter space of Λ contains all the nondecreasing functions Λ 
satisfying Λ(0) = 0 and Λ(τ) < ∞.

(A2) The true value of β0 is in a compact parameter space ℬ.

(A3) The truncation time distribution H has a density h on [0, τ].

(A4) The residual censoring time C has a continuous survival function SC.

(A5) The covariate Z is bounded.

(A6) The matrix − ∂EU1n(β, Λ ( ⋅ , β)) ∂β evaluated at β0 is positive definite.

Condition (A6) implies that the information matrix of the profile likelihood evaluated at the 

true value β0 is positive definite, which is a classical condition that appears in the study of 

the Cox model for traditional survival data (Andersen et al. (1993), page 497). (A6) 

guarantees the existence and uniqueness of the solution β in large samples. (A6) also implies 

that J0, the fisher information matrix of β for known Λ0 is positive definite and thus the map 

σ11 defined below is invertible.

Following Qin et al. (2011), it can be shown that nUn(θ0) converges weakly to W = (W1, 

W2), where W1 is a zero mean Gaussian random vector and W2 is a zero mean Gaussian 

process. Define μ0(Z) = ∫ 0
τ S0(t ∣ Z)dH(t), and

K1
(l)(t) = E Z ⊗ lexp{β0′ Z}S0(t|Z)μ0(Z)−1∫0

t
SC(u|Z)dH(u) ,

K2
(l)(t, u) = ∫u

τ
E Z ⊗ lexp{2β0′ Z}S0(υ|Z)μ0(Z)−1 .

Λ0 (t ∧ υ) − ∫0
t ∫S

τ
S0(w|Z)dH(w) d Λ0 (s)μ0(Z)−1 dυ .

Then the Frechet derivative U
.
ψ0

 is

U̇ψ0
(β, Λ) = − (σ11(β) + σ12( Λ ), σ21(β)( ⋅ ) + σ22( Λ )( ⋅ ))
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where

σ11(β) = J0β, J0 = ∫0
τ
K1

(2)(u)d Λ0 (u) + ∫0
τ
K2

(2)(τ, u)d Λ0 (u),

σ12( Λ ) = ∫0
τ
K1

(1)(u)d Λ (u) + ∫0
τ
K2

(1)(τ, u)d Λ (u),

σ21(β)(t) = ∫0
t
K1

(1)(u)d Λ0 (u) + ∫0
τ
K2

(1)(t, u)d Λ0 (u) ′β,

σ22( Λ )(t) = ∫0
t
K1

(0)(u)d Λ (u) + ∫0
τ
K2

(0)(t, u)d Λ (u) .

The inverse of Frechet derivative is

U̇ψ0
−1(β, Λ) = −

σ11
−1 + σ11

−1σ12 Φ−1 σ21σ11
−1 −σ11

−1σ12 Φ−1

− Φ−1 σ21σ11
−1 Φ−1

β
Λ ,

where σ11
−1(β) = J0

−1β, the functional Φ = σ22 − σ21σ11
−1σ12 and Φ−1 exists by applying the 

Fredholm integral equations of the second kind. Thus n(θ − θ0) converges weakly to a tight 

mean zero Gaussian process −U
.
ψ0
−1(W1, W2).
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Table 1

Simulation summary statistics of S(t),SPPL(t) and SPL(t)

S(t) SPPL(t) SPL(t)

n Cen S(t) Bias SE ESMSE Bias SE ESMSE Bias SE ESMSE

Scenario I

100 25% 0.75 6 55 55 5 56 56 1 60 60

0.5 5 56 56 4 56 56 2 60 60

0.25 3 47 47 3 46 47 4 49 49

50% 0.75 5 57 58 6 58 58 0.4 62 62

0.5 −1 61 60 3 61 61 1 64 64

0.25 −10 55 56 5 56 56 7 59 60

400 25% 0.75 1 28 28 1 28 28 −0.3 30 30

0.5 1 28 28 0.3 28 28 0.1 29 29

0.25 0.4 23 23 1 23 23 2 24 24

50% 0.75 0.4 29 29 1 29 29 −1 31 31

0.5 −2 30 30 0.3 30 30 0.2 32 32

0.25 −6 27 28 2 28 28 4 29 30

Scenario II

100 25% 0.75 61 70 93 33 92 97 17 108 109

0.5 48 69 84 27 79 84 16 91 93

0.25 25 47 53 10 50 51 10 56 57

50% 0.75 59 74 94 45 91 101 17 111 112

0.5 45 72 85 37 83 91 16 95 96

0.25 20 54 58 13 59 60 12 65 66

400 25% 0.75 30 42 51 12 55 56 2 64 64

0.5 22 36 42 10 43 44 3 50 50

0.25 10 23 25 2 25 25 1 30 30

50% 0.75 30 43 52 19 56 59 2 65 65

0.5 22 38 44 15 45 48 4 52 52

0.25 8 25 27 1 28 28 1 33 33

Note: Cen is the censoring rate; Bias is the empirical bias (×1000); SE is the empirical standard error (×1000); ESMSE is the square root of 

empirical mean square error (×1000). S(t) is the proposed estimator; SPPL(t) is the pseudo partial likelihood estimator; SPL(t) is the partial 

likelihood estimator.
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Table 2

Simulation summary statistics of β, βPPL and βPL

β βPPL βPL

n Cen Bias SE SEE CP Bias SE Bias SE

Scenario I

100 25% (2,1) (38,25) (37,23) (95,93) (3,3) (40,26) (3,3) (45,28)

50% (11,4) (41,28) (40,26) (94,92) (3,4) (50,31) (2,4) (55,33)

400 25% (2,0.3) (18,12) (18,11) (95,94) (1,1) (19,12) (0.5,1) (21,13)

50% (6,2) (21,14) (21,13) (93,93) (1,1) (23,14) (0.3,1) (25,16)

Scenario II

100 25% (0.3,2) (35,23) (33,22) (94,94) (5,4) (39,25) (5,3) (46,29)

50% (6,0.4) (37,26) (35,23) (92,93) (9,8) (53,32) (5,3) (55,35)

400 25% (0.3,0.1) (16,11) (16,11) (95,95) (3,2) (18,11) (1,1) (21,14)

50% (3,1) (18,12) (18,11) (94,95) (5,4) (24,15) (1,0.4) (26,16)

Note: Cen is the censoring rate; Bias is the empirical bias (×100); SE is the empirical standard error (×100); SEE is the empirical mean of the 

standard error estimates; CP is the empirical coverage probability (×100) of the 95% confidence interval. β  is the proposed estimator; βPPL is the 

pseudo partial likelihood estimator; βPL is the partial likelihood estimator.
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Table 3

Simulated power of the proposed test and conditional Kendall’s tau test

Proposed test Tsai’ test

(μ1, μ2) σ12 α 0% 25% 50% 0% 25% 50%

(0,0) 0.3 0.51 98 87 32 44 27 16

(0,0) 0 0.51 6 7 4 5 6 4

(0,0) −0.3 0.51 84 74 74 85 71 57

(0,0.5) 0.3 0.22 91 80 40 76 64 47

(0,0.5) 0 0.32 6 5 7 5 5 4

(0,0.5) −0.3 0.36 93 87 82 93 86 73

Note: Tsai’s test is based on conditional Kendall’s tau (Tsai, 1990). 0%, 25% and 50% are the censoring rates. α is the proportion of truncation. 
The table presents power (×100) in each scenario.
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