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RESEARCH ARTICLE PHYSICS

Elastocaloric signatures of symmetric and antisymmetric
strain-tuning of quadrupolar and magnetic phases in DyB2C2
Linda Yea,b,1 , Yue Sunc,d ID , Veronika Sunkoc,d ID , Joaquin F. Rodriguez-Nievae ID , Matthias S. Ikedaa,b ID , Thanapat Worasarana,b , Matthew E. Sorensena,e ,
Maja D. Bachmanna,b , Joseph Orensteinc,d ID , and Ian R. Fishera,b,1 ID

Edited by John Tranquada, Brookhaven National Laboratory, Upton, NY; received February 17, 2023; accepted July 22, 2023

The adiabatic elastocaloric effect measures the temperature change of a given system
with strain and provides a thermodynamic probe of the entropic landscape in the
temperature-strain space. Here, we demonstrate that the DC bias strain-dependence
of AC elastocaloric effect allows decomposition of the latter into symmetric (rotation-
symmetry-preserving) and antisymmetric (rotation-symmetry-breaking) strain chan-
nels, using a tetragonal f -electron intermetallic DyB2C2—whose antiferroquadrupolar
order breaks local fourfold rotational symmetries while globally remaining tetragonal—
as a showcase example. We capture the strain evolution of its quadrupolar and magnetic
phase transitions using both singularities in the elastocaloric coefficient and its jumps
at the transitions, and the latter we show follows a modified Ehrenfest relation. We find
that antisymmetric strain couples to the underlying order parameter in a biquadratic
(linear-quadratic) manner in the antiferroquadrupolar (canted antiferromagnetic)
phase, which are attributed to a preserved (broken) global tetragonal symmetry,
respectively. The broken tetragonal symmetry in the magnetic phase is further
evidenced by elastocaloric strain-hysteresis and optical birefringence. Additionally,
within the staggered quadrupolar order, the observed elastocaloric response reflects a
quadratic increase of entropy with antisymmetric strain, analogous to the role magnetic
field plays for Ising antiferromagnetic orders by promoting pseudospin flips. Our results
demonstrate AC elastocaloric effect as a compact and incisive thermodynamic probe
into the coupling between electronic degrees of freedom and strain in free energy,
which holds the potential for investigating and understanding the symmetry of a wide
variety of ordered phases in broader classes of quantum materials.

antisymmetric strain | quadrupolar order | elastocaloric effect | strongly correlated electron systems

Strain—and the associated modification of lattice parameters—has long been used as
a highly effective means to tune material properties, particularly in the context of
hydrostatic pressure (1). Recent developments of piezoelectric-based devices capable of
applying uniaxial stress to materials in a nearly continuous fashion, have highlighted
the unique roles that anisotropic strain can play (2–4). Its application in strongly
correlated electron systems where competing phases are expected to be sensitively tuned
by external control parameters (5) opens up particularly exciting possibilities; in this
context, the potential of anisotropic strain as an effective tuning parameter has begun
to be demonstrated for a number of superconducting (3, 4, 6, 7), nematic (7, 8), and
charge density wave states (9–11). Uniaxial stress, like hydrostatic pressure, couples to
these phases by modifying the atomic spacing in the lattice hosts; however, an important
difference between the two as material tuning parameters is that hydrostatic pressure
should, in principle, preserve the space group symmetry, whereas strain induced by
uniaxial stress can modify the space group with relatively small lattice distortions.

Whether and how the generated lattice deformation conforms to the symmetries
of the pristine crystal structure depends on how strain/stress is implemented in given
experiments. In this context, group theoretical irreducible representations provide a basis
to decompose an arbitrary infinitesimal deformation into a superposition of orthogonal
modes categorized by how they transform under certain symmetry elements in the
original, undeformed point group (12, 13). Once the system undergoes a phase transition,
the spatial symmetry of the order parameter dictates the form of its coupling with the
irreducible strain modes. This thus motivates the notion of symmetry decomposition
that has been applied to a number of experimental strain studies in recent years:
The critical temperatures of the superconducting transition in Sr2RuO4 (3) and the
nematic transition in iron-based superconductors (8, 14) have been demonstrated to be
tuned by strains belonging to different irreducible representations in highly distinct
manners; categorizing strain-induced resistance changes (elastoresistance) also into
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irreducible representations allows the introduction of elastoresis-
tance tensor (15), whose components in distinct symmetry chan-
nels enabled distinguishing different microscopic mechanisms
of coupling between strain and conduction electrons (16–18).
These works demonstrate that decomposing an applied strain
into distinct symmetry channels provides an organizing principle
toward a systematic understanding of experimentally obtained
strain responses. This can be especially important for systems
which undergo phase transitions with spatially anisotropic or-
der parameters—examples include nematic, spin/charge density
wave, orbital and multipolar orders.

In the present work, adding to the symmetry-resolving
capabilities of anisotropic strain, we apply a symmetry-
decomposition framework to a strain-based thermodynamic
quantity, namely, the adiabatic elastocaloric coefficient. We
employ this technique to unravel the interplay between
symmetric (rotational–symmetry–preserving) and antisymmet-
ric (rotational–symmetry–breaking) strains and the underlying
anisotropic f -electron degrees of freedom in a tetragonal in-
termetallic DyB2C2. The localized f electrons in DyB2C2 are
known to host an antiferroquadrupolar order at low temperature;
here at each Dy site the local tetragonal symmetry is broken
with time-reversal symmetry intact (this is characterized by a
finite electrical quadrupolar moment), and the global tetragonal
symmetry is retained by a staggered pattern of the quadrupolar
moments along the c-axis (19). Locally resembling electronic
nematicity, a considerable coupling is expected between anti-
symmetric strains that also breaks tetragonal symmetry with the
local quadrupole moments (20), while how such coupling tunes
a staggered order has not been experimentally determined. We
therefore employ the symmetry resolution of the elastocaloric
effect to investigate how the staggered anisotropic order is tuned
in both symmetric and antisymmetric strain channels. Numerous
other strongly correlated electron systems exhibit similar spa-
tially modulated rotational–symmetry–breaking orders—such as
orbital ordering in transition metal oxides (21, 22), spin and
charge stripe order in the low temperature tetragonal phase
in La2-xBaxCuO4 (23, 24), along with a few f electron-based
“hidden order states” (25)—we anticipate the methodology
demonstrated in our study to be potentially relevant for such
systems.

The article is organized as follows: We first discuss the
elastocaloric effect itself and its symmetry properties in Section ;

in Sections and , we use the elastocaloric effect to categorize the
symmetric and antisymmetric strain effects to the quadrupolar
and magnetic phase transitions in the system; we then focus
on the antisymmetric strain responses away from the phase
transitions in Section and in Section discuss broader scopes
of using the symmetry decomposition aspect of the elastocaloric
effect as an experimental probe of spatially anisotropic orders and
fluctuations.

Elastocaloric Effect and Its Symmetry
Decomposition

The adiabatic elastocaloric coefficient is defined as the temper-
ature T change of a given system in response to strain � as
(∂T /∂�)S , and it has recently emerged as an incisive tool for
the study of strain responses of a number of quantum materials
(26, 27). In these studies, the elastocaloric coefficients are ex-
perimentally probed through the measurement of a temperature
oscillation in response to an AC strain, at a frequency such that
a quasi-adiabatic condition is achieved (26). To illustrate the
physical origin of the elastocaloric effect, in Fig. 1A we depict
with a thick two-headed arrow the thermodynamic trajectory
of an AC elastocaloric measurement on a generic system in
the T -� phase space. As adiabatic processes are confined along
the black solid isentropic contours, the normalized temperature
oscillation (adiabatic elastocaloric coefficient) can be related to
the �-derivative of entropy S in the isothermal condition (26):(

∂T
∂�

)
S

= −
T
C�

(
∂S
∂�

)
T

. [1]

Here C� is the heat capacity at fixed �. Eq. 1 implies that
the elastocaloric effect can be in turn used to characterize the
entropy landscape with �. We note that strictly speaking strain
�ij is a 3 × 3 tensor and in Eq. 1 we use � to denote the
experimentally generated linear combinations of �ij components;
the �-derivatives (∂T /∂�)S and (∂S/∂�)T are defined for all
other components of �ij being held to zero. We return to the
specific combination of strain tensor components shortly. Unlike
transport-based strain derivatives such as elastoresistivity, whose
interpretation requires an understanding of the conduction
electron scattering processes (15), (∂T /∂�)S provides a direct
thermodynamic probe into the coupling between strain and

T

ϵ

S

A B

(ϵxx + ϵyy)/2 (ϵxx - ϵyy)/2
C4 symmetric C4 antisymmetric

DC

S

ϵ
0 0

0

dT
/d
ϵ

ϵ

T =
const.

T =
const.

xz

y ϵB1g

ϵB1g

ϵA1g

ϵA1g

ϵB1g

ϵA1g

Fig. 1. Adiabatic elastocaloric effect and its symmetry properties. (A) Schematic of adiabatic AC elastocaloric effect in a temperature (T )-strain (�) phase space,
where the black solid lines are isentropic contours. The intensity of gray shade indicates the value of entropy S. The colored arrow illustrates the temperature
oscillation induced by AC strain along the isentropic lines. (B) Schematic of 1

2 (�xx + �yy ) (�A1g , blue box) and 1
2 (�xx − �yy ) (�B1g , red box). The gray dashed box

indicates an undeformed tetragonal lattice. (C and D) Schematic of the lowest-order evolution of S (C) and dT/d� (D) with � in the respective symmetric �A1g
(blue) and antisymmetric �B1g (red) strain channels (see text).
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underlying degrees of freedom in a given system in free energy
(28). Eq. 1 further suggests that (∂T /∂�)S · T−1, which we
can extract from a single experiment, may be viewed as a
Grüneisen parameter with respect to �, Γ� , analogous to that
defined in the context of hydrostatic pressure and magnetic field
(27–30).

In the following, we lay out how spatial symmetry operations
constrain the form of the elastocaloric coefficient (∂T /∂�)S ,
using the fourfold rotational symmetry C4 as an example. For a
system with C4 as one of its symmetry elements (we take z as the
fourfold axis and assume that for simplicity, the system preserves
inversion symmetry and mirror symmetry as well, forming the
point group D4h), the irreducible representations of strains are
1
2 (�xx+�yy), �zz (A1g ) and 1

2 (�xx−�yy) (B1g ), �xy (B2g ) and �xz , �yz
(Eg ). In the following, we restrict ourselves to normal strains and
the shear strain components �xz , �yz , �xy are kept zero. In Fig. 1B,
we contrast two of the in-plane strain modes 1

2 (�xx + �yy) and
1
2 (�xx − �yy), which belongs to A1g and B1g representations of
D4h, respectively; under a �/2-rotation (x → y, y → −x), the
former is symmetric ( 1

2 (�xx + �yy) → 1
2 (�xx + �yy)) while the

latter is antisymmetric ( 1
2 (�xx − �yy)→− 1

2 (�xx − �yy)). Since S
as a scalar remains invariant under C4, the lowest order allowed
dependence of S on �A1g (�B1g ) is linear (quadratic) in a Taylor
expansion:

S = S0 + SA
1
1g �A1g + SA

2
1g �2

A1g
+ SB

2
1g �2

B1g
+ ... [2]

Here SX
i

are �-independent coefficients for �iX (X = A1g , B1g)
and in Eq. 2 we only enumerate up to quadratic terms. These
contributions give ∂T /∂� the following form:(

∂T
∂�

)
S

= DA0
1g + DA1

1g �A1g + DB1
1g �B1g + ..., [3]

where DX i are �-independent coefficients. From Eq. 3, we
see that an �-independent, constant response in (∂T /∂�)S
necessarily arise from �A1g , while an �-linear contribution may
either originate from �A1g or �B1g .

In many material systems, Eqs. 2 and 3 may be further
simplified via comparison with hydrostatic pressure experiments,
which exclusively probe A1g effects. In particular, the strain-
dependence of critical temperature Tc of given phase transitions
can often be regarded as an indicator of wider free energy
landscape; when Tc evolves linearly with pressure, �2

A1g
terms in

thermodynamic variables and �A1g -linear term in (∂T /∂�)S can
reasonably be excluded for proximate regions in the �–T plane.*
Under such circumstances including the subject of this study
(31), we may attribute the �-quadratic and -linear components
in S to antisymmetric and symmetric channels illustrated
respectively in red and blue in Fig. 1C. The corresponding
constant and �-linear components of (∂T /∂�)S are illustrated
in Fig. 1D. This suggests that by examining (∂T /∂�)S over an
extended �-range, the constant/linear (even/odd) responses of
dT /d� can be used to distinguish contributions from symmetric
and antisymmetric strains. We note that as the out-of-plane

*We note that a linear-dependence of Tc with pressure may also arise from a mutual
cancelation between quadratic terms of the two independent A1g components 1

2 (�xx +
�yy ) and �zz , while this requires an unlikely degree of fine-tuning. As a second note, Tc only
puts constraints on the free energy close to phase transitions; we hypothesize that when
Tc is not strongly modified by � and �2

A1g
terms are excluded near the phase transition,

the presence of such terms in the free energy away from Tc is also unlikely.

mode �zz transforms identically with 1
2 (�xx + �yy) under C4,

the above arguments about 1
2 (�xx + �yy) also applies to �zz .

Before applying this constant/linear criterion to our experimental
observations, we note that we have adopted a number of
assumptions here, including 1) that the different symmetry
channels are independent (i.e. higher-order terms like �A1g �2

B1g

are not considered here), 2) that C� does not depend strongly on
�, which we return to below.

Elastocaloric Effect in DyB2C2: Symmetric and
Antisymmetric Strain-Tuning of the
Antiferroquadrupolar (AFQ) Phase Transition

Having outlined the symmetry properties of the elastocaloric
effect, we apply the above framework to investigate the strain re-
sponse of a tetragonal rare earth intermetallic DyB2C2. DyB2C2
crystallizes in the space group P4/mbm; as shown in Fig. 2A, the
Dy square lattice layers are spaced by planar networks of B-C
octagon and parallelogram motifs. In Fig. 2B, we show an optical
image of the experimental setup, where a piece of DyB2C2 single
crystal shaped into a long, thin plate is mounted on a strain cell
and the stress thus experienced by the sample is uniaxial along
the in-plane [100] axis (which we denote as x). The temperature
oscillation generated by the AC strain via the elastocaloric effect is
measured using the thermometer/thermocouple attached to the
surface of the sample, and the AC strain frequency is selected
such that the system approaches a quasi-adiabatic condition
(Materials and Methods and SI Appendix). In this experiment, we
control and measure �xx , while �zz and �yy are left unconstrained;
based on Poisson ratios �12 = −d�yy/d�xx = 0.45 and �13 =
−d�zz/d�xx = 0.08 estimated from the elastic moduli tensor
of LuB2C2 (32) (Materials and Methods and SI Appendix), we
linearly decompose the induced deformation into its components
in symmetric and antisymmetric channels with their relative
strength as 1

2 (�xx − �yy) : 1
2 (�xx + �yy) : �zz = 0.72 :

0.28 : −0.08 (these numbers are normalized with respect to
�xx). The decomposition is schematically illustrated in Fig. 2C :
The experimentally generated deformation is shown as a green
cuboid and its symmetric A1g (antisymmetric B1g ) component
as blue (red) cuboids. We report the measured elastocaloric
coefficient as the oscillation amplitude of T normalized by that
of �xx which we experimentally control (therefore the measured

quantity can be expressed as
dT
d�xx

∣∣∣ �ij=0
except
�xx

S=const.
); hereafter we denote

this as dT /d�xx unless otherwise stated. We note that dT /d�xx
thus defined contains both �A1g - and �B1g -components (Materials
and Methods).

The Dy sites in DyB2C2 possess a tetragonal local symmetry
and the crystal field ground state of Dy3+ (4f 9) is a quasi-
quartet Jz ≈ | ± 1

2 〉, | ±
3
2 〉 within the J = 15

2 manifold
(33). Here J is the total angular momentum operator. This f -
electron quartet provides a basis for a two-step phase transition
to fully release the R ln 4 entropy (R is the gas constant) and
an avenue to order in a time-reversal-symmetric quadrupolar
channel (order parameter characterized by Ox2−y2 ≡ J2

x − J2
y

and Oxy ≡ JxJy + JyJx) prior to magnetic order (order parameter
characterized by Jx , Jy, Jz). In the quadrupolar order that sets
in at about 25 K, the charge distribution of the f electrons
breaks the high-temperature local fourfold rotational symmetry
and the resulting quadrupole moments (linear superposition of
Ox2−y2 and Oxy) in neighboring layers are orthogonal to each
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Fig. 2. Elastocaloric effect, quadrupolar and magnetic orders in DyB2C2. (A) Crystal structure of DyB2C2 where Dy atoms are shown in green, B atoms in
brown and C atoms in black. The bonds between B and C atoms are also depicted. (B) Optical image of a piece of DyB2C2 single crystal mounted on a strain
cell (see text). The scale bar stands for 1 mm. (C) Decomposition of the experimentally generated deformation (green cuboid) into symmetric �A1g (blue cuboid)
and antisymmetric �B1g (red cuboid) strain channels. The gray box indicates the undeformed tetragonal structure. (D and E) Heat capacity Cp (D) and dT/d�xx
measured without bias strain (E) of DyB2C2. The location of TQ and TN are indicated by gray dashed lines in (D) and (E).

other, forming an antiferroquadrupole (AFQ) state (19, 34).
In this AFQ state, a combined C4 and translational symmetry
(translation operation performed along c) is preserved, analogous
to the combined time-reversal and translational symmetry of
a Néel order. At 16 K an additional phase transition into
a noncollinear canted antiferromagnetic (CAFM) phase takes
place; there magnetic moments develop within the ab-plane and
approximately perpendicular to the charge clouds, resulting in a
net magnetization along the {100} axes (19, 35). The two-phase
transitions can be traced in the heat capacity Cp (measured using
a relaxation method) in Fig. 2D (36). We define the higher and
lower T anomalies as TQ (AFQ) and TN (CAFM), respectively;
both phase transitions have been reported to be of second-order
nature (19).

In Fig. 2E, we show dT /d�xx taken at nominally zero bias
strain �xx = 0. We observe two anomalies with opposite signs in
the T -dependence of dT /d�xx , corresponding to TQ and TN in
Cp in Fig. 2D. The qualitative resemblance of the singularities in
dT /d�xx and Cp is related to the fact that both Cp and dT /d�xx
are second-order derivatives of thermodynamic potentials. In
analogy to the Ehrenfest relation in thermal expansion at second-
order phase transitions (37), we derive a modified Ehrenfest
relation for dT /d�xx (see SI Appendix A):

dTC

d�xx
=

Δ[C(dT /d�xx)]
ΔC

, [4]

where the evolution of critical temperature TC with strain
dTC/d�xx is related to the jump of C(dT /d�xx) along with
that in the heat capacity C at the phase transition. From
dT /d�xx shown in Fig. 2E and assuming Cp in Fig. 2D provides
a reasonable approximation for C in Eq. 4 given the small

compressibility of solids, we estimate dTN /d�xx = 45 K and
dTQ/d�xx = −35 K near �xx = 0.

Having demonstrated that dT /d�xx can be used to trace both
AFQ and CAFM phase transitions in DyB2C2, we proceed to
the evolution of dT /d�xx under bias �xx . We first focus on the
higher T AFQ phase transition and show the T -dependence of
dT /d�xx between 20 K and 30 K at selected �xx in Fig. 3A. A
nonzero �xx introduces a number of changes, which we outline as
follows. First, the location of TQ (marked by arrows in Fig. 3A)
moves with �xx , and the trend is summarized in Fig. 3B. Second,
at TQ , a deep, negative jump at the most tensile �xx gradually
evolves into a positive, step-like feature at the most compressive
�xx . We note that there are intermediate �xx values (between
−0.15% and−0.21%) where the singularity associated with TQ
appears vanishingly small; the �xx-evolution of the jump at TQ of
dT /d�xx (i.e. Δ(dT /d�xx), estimated as dT /d�xx(T = TQ) −
dT /d�xx(30 K)) is summarized in Fig. 3C. Finally, away from the
phase transitions both above and belowTQ , we observe a continu-
ous variation of dT /d�xx with �xx ; we return to these behaviors in
section 4.

Eq. 4 suggests that given dT /d�xx traces at various bias �xx ,
two independent means exist to trace the strain-dependence of
a phase transition: either focusing on the singularity in dT /d�xx
marking TQ , or the size of jump in dT /d�xx in conjunction
with C at TQ . The former and latter views of the AFQ phase
transition are contrasted in Fig. 3B and Inset ofC, respectively. In
the latter, we assume that C for both the ordered and disordered
phases near TQ are independent of �. In Fig. 3B, TQ appears to
evolve with �xx both in a linear �xx and quadratic �2

xx manner.
Alternatively, Δ[C(dT /d�xx)]/ΔC shown in Fig. 3 C, Inset
appears linear with �xx over the entire �xx range, and a linear
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Fig. 3. Strain tuning of the antiferroquadrupolar (AFQ) phase transition in DyB2C2. (A) T -dependence of dT/d�xx at selected bias strain �xx . At �xx = ±0.26%,
we highlight the discontinuities at TQ with arrows. (B and C) Evolution of TQ (B) and dT/d�xx jump Δ(dT/d�xx) ≡ dT/d�xx(T = TQ) − dT/d�xx(30 K) (C) with �xx .
Inset of (C) shows Δ[C(dT/d�xx)]/ΔC at TQ. The solid curve in (B) is inferred from the linear fit shown as a black solid line in (C) Inset (see text). (D) Leading
coupling between �A1g (�B1g ) and the staggered quadrupolar order parameter q in the free energy enclosed in a blue (red) box.

fit A + B�xx yields A = −47.1(7), B = −2.49(4) × 104.
Following Eq. 4, Δ[C(dT /d�xx)]/ΔC should reflect the �xx-
evolution of dTQ/d�xx : in Fig. 3B we compare an integration of
A + B�xx multiplied by a factor to account for the imperfect
adiabaticity in our experiments (black solid curve) with the
directly traced TQ(�xx) (blue symbols).† That the integrated
curve agrees with the bare �xx-dependence of TQ provides an
experimental demonstration of the validity of the modified
Ehrenfest relation Eq. 4 and additionally suggests that our
assumption that the heat capacity is not strongly affected by
� is valid. We note that a direct polynomial fit to TQ(�xx)
yields uncertainties of the �xx(�2

xx)-coefficients to be 6% (27%);
thanks to its strain-derivative nature, the elastocaloric coefficient
at TQ provides with significantly improved accuracy (1–2% for
both �xx and �2

xx terms) a view of the evolution of TQ with
strain.

Following the symmetry-decomposition framework we laid
out in Section , we assign the �xx and �2

xx terms in TQ to
the symmetric (�A1g ) and antisymmetric (�B1g ) strain channels,
respectively. They are expected to result from leading terms
in the free energy of the form �A1g q2 (�2

B1g
q2) for �A1g (�B1g ),

as shown in Fig. 3D (q represents the staggered quadrupolar
order parameter). The absence of an �2

A1g
term in TQ is

corroborated by the linear pressure-evolution of TQ up to
hydrostatic pressure of 8 GPa, where the in-plane �A1g component
1
2 (�xx + �yy) reaches −0.8% (14, 31). The above symme-
try decomposition allows us to conclude that antisymmetric
strain suppresses TQ in a quadratic manner and that at the
highest strain in our experiments (both compressive and ten-
sile), the antisymmetric strain contribution (�2

xx term) becomes
comparable and exceeds the symmetric strain contribution
(�xx term).

†The black solid curve is scaled along the temperature axis by a factor of 4, which we
hypothesize originates from an imperfect adiabaticity of our experiments.

Tetragonal-Symmetry-Breaking in the Canted
Antiferromagnetic (CAFM) Phase

Having identified considerable contributions from both �A1g and
�B1g in the strain-modulation of TQ , we turn to the lower CAFM
phase transition. In Fig. 4A, starting from �xx on the tensile side
�xx = 0.26% (black curve), the peak in dT /d�xx at TN sits
on top of a continuously varying background, and its height is
initially not much varied by decreasing �xx ; below �xx = −0.1%,
however, a downward peak resembling a horizontal mirror image
of the peak at �xx > 0 abruptly emerges. This can be contrasted
with the continuous variation of the phase transition jumps atTQ
in Fig. 3A. In Fig. 4 B and C, we trace the location of these peaks
in dT /d�xx and the height of the associated jumps Δ(dT /d�xx),
respectively. Due to the presence of multiple singular features at
�xx = −0.2 ∼ −0.13%, in Fig. 4 B and C we mark the peaks
with the respective symbol sizes proportional to their peak widths
(SI Appendix).

In Fig. 4B, we can identify a “V-shape” in the T − �xx
plane with its two branches marked by the primary positive and
negative peak features, respectively; this is accompanied by a
step-wise structure of Δ(dT /d�xx) as a function of �xx displayed
in Fig. 4C. The “branched” phase boundary structure prompts
us to propose the emergence of two distinct sets of domains
below TN that are strain-selective. Above �xx = −0.13%,
a linear fit to Δ[C(dT /d�xx)]/ΔC (Fig. 4 C, Inset) yields
A = 66.6(8), B = −3(6) × 102 (A + B�xx), which via Eq.
4 suggests a linear dependence of TN with �xx , consistent with
our observation (Fig. 4B‡; we note that the B coefficient, which
via Eq. 4 is associated with a potential �2

xx term in TN (�xx),
cannot be distinguished from zero and is at least two orders of
magnitude smaller than its counterpart in TQ(�xx).

‡To quantitatively compare A�xx with TN(�xx) in Fig. 4B, an additional factor 2.3 is required
in front of A. We note that this factor introduced to account for imperfect adiabaticity is
comparable with that used above for TQ . The difference between the two factors may arise
from a T -dependence of the thermal conditions (thus the adiabaticity) of the experimental
setup.
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net moment m to the leading order: �B1g (m2
x −m2

y ) (red box) and �A1g (m2
x +m2

y ) (blue box).

Below, we discuss the nature of the strain-selective domains
and the linear evolution of TN with �. In the CAFM phase of
DyB2C2, it is known that there exists net magnetization m along
in-plane {100} directions (19, 35); via magnetoelastic coupling
(38), these domains can distort along {100} below TN , providing
a natural origin for the proposed strain-selective domains. The
lowest order magnetoelastic coupling is required to take the form
of �m2 to be invariant under time-reversal symmetry (38), and
we group the four {100} magnetic domains into subgroups with
m along ±x and ±y, as illustrated in Fig. 4D. Additionally
taking into account C4 (for discussions hereafter, we still adopt
the convention of the high T D4h group), we may decompose
�m2 into terms containing antisymmetric �B1g (m2

x − m2
y ) and

symmetric strain �A1g (m2
x + m2

y ), respectively (39). We note
that the consequences of the �B1g term are twofold: It selects
among the differently distorted domains, and promotes the
order within the favored domains while suppressing that of
the other type (both in an �-linear fashion), as we illustrate
in Fig. 4E ; joining TN (�B1g ) of the favored domains yields
a V-shape, akin to that observed in Fig. 4B. We note that
similar phase diagrams have been discussed for antisymmetric
strain manipulation of in-plane charge density wave orders in
tetragonal (Er,Tm)Te3 (10) and in the context of px ± ipy-type
multicomponent superconducting phases (3), both with similar
forms of order parameter-antisymmetric strain coupling. We note
that the deviation of the center of the “V-shape” in Fig. 4B from
zero bias strain (nominally defined as the state the system is cooled
down to with zero bias voltage on the piezoelectric stacks) may
result from a differential thermal contraction between the strain
cell and the sample.

In Fig. 5A, we show dT /d�xx taken in strain scans at selected
T : aboveTN dT /d�xx appears linear in � over the measured strain

range, while below TN a nonlinear component develops; below
12 K a strain-hysteresis additionally opens up. Both nonlinearity
and hysteresis in dT /d�xx(�xx) are consistent with �-selectivity of
the CAFM domains: We attribute the positive strain limit where
the system reaches a constant slope to a state with a single type
of orientational domains, which is separated by a multidomain
state from a state with the alternative set of orientational domains
(see Insets of Fig. 5 A). The domain selection necessarily arises
from antisymmetric strain and requires an �B1g lattice distortion
in each of the domains, and is also consistent with strain (or more
precisely, one component of the strain tensor), instead of stress,
being the thermodynamic quantity that is held constant in our
experiments (40).

The symmetry-lowering at the CAFM phase is additionally
evidenced by the mapping of thermally modulated optical
birefringence shown in Fig. 4 B–D; a similar technique had been
used to image nematic domains in other systems (41) (Additional
information on the optical setup can be found in SI Appendix).
In Fig. 4B, two types of domains with their principal axes near
the crystallographic {100} orientations (Fig. 4 C and D) can be
identified, and their domain wall appears to run approximately
45◦ between the principal axes. The birefringence imaging
confirms the broken C4 with an orthorhombicity developing
along {100} below TN , and complements the above thermody-
namic evidence of tetragonal symmetry-breaking in the CAFM
phase. The observed diagonal domain wall is also consistent
with that commonly observed on surfaces of ferromagnets with
fourfold easy axes in the plane (42). It has been suggested
previously that magnetic order in DyB2C2 is accompanied
by slight rotation of quadrupole moments from a staggered
arrangement due to a competition between quadrupolar exchange
and magnetic exchange interactions, and as a result, the crystalline
symmetry is lowered from tetragonal to orthorhombic (35); that
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the CAFM phase is potentially monoclinic is proposed in a
thermal expansion study (43). Our experimental observations
at present cannot rule out a monoclinic nature of the CAFM
phase, while we can set a bound that the highest point group
symmetry of the CAFM phase is orthorhombic with the in-
plane principal axes along the high-temperature tetragonal {100}
orientations.

Antisymmetric Elastocaloric Effect from
Staggered Quadrupole Moments

In the preceding sections, we focused on the strain tuning of
TQ and TN ; in the following, we examine the overall strain
responses in the system not limited to the proximity of the phase
transitions. The intertwined magnetic and quadrupolar degrees
of freedom motivate us to use a small polarizing magnetic field
to eliminate complications from hysteretic and multidomain
behaviors. dT /d�xx obtained with a magnetic field of 0.3 T
parallel to [100] (also the stress direction) are summarized in
Fig. 6A (see SI Appendix for M(H) hysteresis of an unstrained
sample). We note that the application of H appears to simplify
dT /d�xx near TN as compared to the zero field responses (i.e.,
the peak does not reverse in sign as a function of �xx , in contrast to
the zero field cases seen in Fig. 4A and SI Appendix, Fig. S6) and
that the peak atTN inH is rounded due to the presence of a finite
net magnetization. dT /d�xx at different �xx in Fig. 6A appear to
be composed of an �xx-independent contribution to dT /d�xx
(which can be approximated by the blue trace at �xx = 0.01%)
and a component that varies monotonically with �xx . In Fig.
6B, we examine constant-T �xx cuts of dT /d�xx . The �xx-linear
dependence of dT /d�xx over the entire strain-range at all T in

Fig. 6B can be contrasted with the nonlinear dT /d�xx in Fig. 5A,
and is consistent with a single domain state below TN in field.

Results of linear fits to �xx-cuts of dT /d�xx at 0.3 T are
summarized in Fig. 6C ; in Fig. 6C, we also include both the
intercept and slope extracted from zero field dT /d�xx above
TN as dark blue circles: The close comparison between 0 T and
0.3 T responses above TN is consistent with the time-reversal-
symmetric nature of the quadrupolar order. That the T -trace of
the intercept of dT /d�xx (Fig. 6 C, Inset) compares closely to
the responses at TN on the tensile strain side at zero field (Fig.
4A) suggests that the magnetic domain favored by H coincides
with that favored by tensile �xx , from which we infer that the
long axis of the distorted unit cell is along m (Fig. 6 A, Inset).
Hereafter we focus on the �xx-slope of dT /d�xx (main panel
of Fig. 6C ). As we invoke above, the �-odd component in
dT /d� by symmetry originates from antisymmetric strain (Fig.
1G), which in the present case is �B1g : Viewed alongside Eq. 1,
above TQ , d2T /d�2 > 0 indicates a quadratic decrease of S
with �B1g , consistent with strain suppression of paraquadrupolar
fluctuations; similar �-dependence of S has been reported in
iron-based superconductors above the nematic phase transition
and attributed to a bilinear coupling between antisymmetric
strain and underlying nematic fluctuations (28). Below TQ ,
d2T /d�2 < 0 implies on the contrary a quadratic increase of
S with �B1g . In Fig. 6D, we show a contour plot of the entropy
landscape with �B1g inferred from the slope in Fig. 6C and the
zero strain heat capacity (see SI Appendix for the procedure to
extract S(�, T ) and thus deduce C(�, T ) (27)) near TQ , where a
curvature change in the entropy landscape across TQ is apparent.

To shed light on the antisymmetric strain effects on the AFQ
order and the underlying staggered quadrupolar arrangement, we
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introduce the following Hamiltonian

H = K
∑
<i,j>

OiOj − g�B1g

∑
i

Oi [5]

where the first term describes the quadrupole-quadrupole inter-
action between the nearest neighbors (K > 0 gives an AFQ
order) and the second term the quadrupole-strain coupling with
g > 0 (13, 44). Eq. 5 can be further mapped onto an effective
AFM Ising model with the quadrupole moments O mapping

T / J

S /R ln2

H
z

/J

Hz

A B

0 1

1

-1

0

1.50.5

(ϵxx - ϵyy)1
2

Fig. 7. Antiferromagnetic (AFM) Ising model. (A) Schematic of an effective
AFM Ising model where an antiferromagnetic spin arrangement corresponds
to the antiferroquadrupole order in DyB2C2 and the effective magnetic field
Hz corresponds to �B1g (see text). (B) Entropy landscape of the AFM Ising
model in the Hz − T plane. The black solid curve in (B) marks the phase
boundary between the AFM and paramagnetic phases. An Hz-independent
phonon contribution is also included in order to obtain (B).

onto Ising spins Sz and �B1g mapping onto an effective magnetic
field Hz (J > 0) (Fig. 7A):

H = J
∑
<i,j>

Szi S
z
j −Hz

∑
i

Szi , [6]

whose mean-field entropy landscape is shown in Fig. 7B (here
we also include a field-independent phonon background, see
SI Appendix). In Fig. 7B, Hz appears to suppress the critical
temperature of the AFM order (similar to �B1g for the AFQ order),
near which the curvature of the isentropic contours exhibits a
sharp change, giving rise to a sign reversal of the antisymmetric
slope (SI Appendix) similar to that observed experimentally in Fig.
6 C and D. The comparison suggests that within the ordered
state, the antisymmetric strain (�B1g in this case) destabilizes
and therefore suppresses the staggered AFQ order akin to how
magnetic field destabilizes a staggered Ising antiferromagnetic
order by exciting pseudospin flips (quadrupole flops). The
nonmonotonic shape of the phase boundary in the (T,Hz)
plane near T = 0 has been discussed before for AFM Ising
models and attributed to an order-by-disorder effect (45, 46).
We note that the effective AFM Ising model has only taken into
account the quadrupolar degrees of freedom; the continuity of the
observed antisymmetric response above and belowTN aside from
a small kink at TN in Fig. 6C implies that the overall staggered
quadrupole configuration is likely not fundamentally modified (a
weak relative reorientation of the quadrupole moments has been
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suggested by ref. 35) by the magnetic order and is the source of
the observed �-linear responses in dT /d�.

Discussion and Summary

In summary, we have employed the AC elastocaloric effect
to investigate the strain responses of the f -electron antiferro-
quadrupolar order in DyB2C2. The strain-dependence of both
the quadrupolar and magnetic phase transitions in the system
can be precisely characterized by the jump of the elastocaloric
signals—the former contains both linear and quadratic strain-
dependences while the latter remain linear over the explored
strain range. While symmetric strain �A1g always appears to tune
both TN and TQ in a linear manner, the antisymmetric strain
�B1g , which is inaccessible in hydrostatic pressure experiments,
plays an indispensable and more versatile role in controlling TQ
and TN : for the AFQ phase, �B1g suppresses TQ in a quadratic
manner, while for the CAFM order, the primary role of �B1g is
found to be twofold: domain selection as well as linearly tuning
TN . The distinct behavior of the two phase transitions with
�B1g lies in the different forms of coupling between �B1g and the
underlying order parameters �2

B1g
q2 and �B1g (m2

x − m2
y ) (Figs.

3D and 4F ); in this context, we may in turn use the evolution of
critical temperatures with antisymmetric strain to place strong
constraints on the spatial/lattice symmetry of the underlying
order parameters given a generic phase transition.

From a symmetry perspective, f -electron-based quadrupolar
orders can be viewed as a close analogue of the nematic
phases observed in a number of transition-element-based strongly
correlated electron systems (18, 47). The relatively well-localized
nature of the electronic degrees of freedom and the strong
magnetoelastic coupling of f -electrons marks them as model
systems to drive quantum phase transitions with strain. For
instance, it has been proposed that antisymmetric strain orthog-
onal to a globally uniform ferroquadrupolar order couples to
the latter as an effective transverse field, therefore promoting
quantum fluctuations and ultimately driving a quantum phase
transition into the Ising nematic order (20). In the present
case of an antiferroquadrupolar order, we demonstrate that
the antisymmetric strain suppresses the AFQ phase transition,
likely through introducing quadrupole flops (pseudospin flips)
as an effective “longitudinal field” in the AFM Ising model
(we note that we do not exclude transverse field-like effects
akin to those proposed in ref. 20). Extrapolating from the
measured TQ(�B1g ), we expect that antisymmetric strain on
the order of 3–4% may be required to completely suppress
the AFQ order and drive a quantum phase transition in the
present system. Our study provides a proof-of-principle example
of employing antisymmetric strain as a means of driving quantum
phase transitions in spatially varying anisotropic electronic orders
beyond a uniform rotation–symmetry–breaking nematic order;
as briefly discussed in the introduction, examples of systems
to which we can extend the above study include orbital order
(21, 22), spin and charge stripe order (23, 24), and “hidden,”
multipolar orders (25).

Viewed alternatively from the perspective of employing
elastocaloric effect as a tool to study strain responses, our
results establish that the elastocaloric coefficients provide a
refined picture of strain-evolution of given phase transitions,
via a modified Ehrenfest relation thanks to its thermodynamic
and strain-derivative nature. Additionally, our case study here

demonstrates that extending the elastocaloric measurement over a
range of strain values provides a pathway to systematically extract
effects from spatially symmetric and antisymmetric strains; we
anticipate that this framework can be applied as a powerful
organizing principle for exploring strain responses of extended
classes of quantum materials.

Materials and Methods
Single-Crystal Growth and Characterization. The experiments reported in
this paper were performed using high-quality single-crystal samples of DyB2C2.
Polycrystalline DyB2C2 was first prepared by melting together Dy ingots, B
pellets and graphite rods in a monoarc furnace. Single crystals of DyB2C2 were
then grown using the Czochralski method in a tetra arc furnace (GES Corporation,
TAC-35325J) in an Ar atmosphere. Typical current used during the growth is
25 A per arc, and single crystalline rods were pulled out from the melt at a
rate of approximately 4 mm/h. The obtained rods cleave along (001) planes,
and we confirmed the phase and orientation of the obtained crystals using X-ray
diffraction. Magnetization measurements were performed in a Quantum Design
MPMS-3 SQUID Magnetometer.

Elastocaloric Measurements. Elastocaloric measurements at cryogenic tem-
peratures were performed using a Razorbill CS-100 uniaxial stress cell in a
Quantum Design Physical Property Measurement System (PPMS). The crystals
were shaped into long rectangular plates and attached to Ti plates using Stycast
FT-2850 cured at 80◦C for at least 3 h. In main text Fig. 2B, we show an optical
image of a DyB2C2 crystal used in the elastocaloric measurements. The single
crystalline piece of DyB2C2 is mounted on the strain cell with the uniaxial
stress applied along the in-plane [100] direction. The sample dimension was
2.66 mm×0.43 mm×0.032 mm,andtheeffectivestrainedlengthbetweenthe
two Ti mounting plate is 1.628 mm. The temperature oscillations were measured
using either an Au(0.07%Fe)-chromel thermocouple or a RuOx thermometer (for
clarity, the experimental data shown in the main text are all obtained from the
latter); the former is attached to the sample via a thin layer of AngstromBond
AB9110LV (Fiber Optic Center) while the latter is thermally connected to the
sample via a 50μm-gold wire. Additional silver paste (Dupont 4929N) is applied
onto the gold wire to enhance the thermal coupling between the sample and the
thermometer. The thermometer near the sample is connected to three identical
thermometers thermally anchored at the bath forming a full Wheatstone bridge
to single out the temperature oscillation in response to the applied AC strain. In
the experiments, an AC strain with a frequency!� is applied through the outer
stack of CS-100, and the sine-out output of lock-in amplifier SR860 (Stanford
Research Systems) is first amplified with TEGAM-2350 High-Voltage Power
Amplifier (by a factor of 50) before reaching the piezoelectric stacks. The inner
piezoelectric stack is powered through an auxiliary DC output of SR860 amplified
via an SVP 150 bip/1 High-Voltage Amplifier (Piezomechanik) by a factor of 50.
Typical AC strain oscillation amplitude used in the experiments is approximately
5 × 10−5. The temperature (voltage) responses from the thermocouple are
captured at the frequency !� while that from the thermometer is captured at
the frequency (!� − !I) where !I is the AC current excitation applied to the
bridge circuit. We used current frequency of 1.4 kHz and AC strain frequency of
27.1 Hz in data shown in Figs. 2–5 and 6 A and B while the low temperature
(T < 12 K) slope in Fig. 6C are extracted from measurements taken with AC
strain frequencies adjusted for each temperature to account for the shifting
optimal frequency windows (SI Appendix).

Mechanical State in the Elastocaloric Experiments. In our experiments, the
longitudinal strain �xx is the thermodynamic control parameter, and the sample
is under such a mechanical state that the only finite component in the stress
tensor�ij is�xx . The measured elastocaloric coefficient is denoted as (dT/d�xx)
for simplicity while we note that it is a linear combination of the following partial
derivatives multiplied by the respective Poisson ratios:

dT
d�xx

=

(
∂T

∂�xx

)
S
+

(
∂T

∂�yy

)
S

d�yy
d�xx

+

(
∂T
∂�zz

)
S

d�zz
d�xx

. [7]
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The Poisson ratios between �xx,yy,zz under our experimental condition can
be solved from the following set of linear equations through the elastic moduli
tensor of LuB2C2 (32):�xx0

0

 =

525 243 34
243 525 34
34 34 224

 [GPa]×

�xx�yy
�zz

 , [8]

from �yy = �zz = 0 we obtain �13 = −�zz/�xx = 0.08, �12 = −�yy/
�xx = 0.45.

Eq. 7 can be alternatively expressed in its symmetric and antisymmetric
components (here �x2+y2 = 1

2 (�xx + �yy) and �x2−y2 = 1
2 (�xx − �yy)):

dT
d�xx

=

(
∂T

∂�x2+y2

)
S

d�x2+y2

d�xx
+

(
∂T
∂�zz

)
S

d�zz
d�xx

+

(
∂T

∂�x2−y2

)
S

d�x2−y2

d�xx
, [9]

where d�x2+y2/d�xx = 1−�12
2 and d�x2−y2/d�xx = 1+�12

2 . The first
(second) row of Eq. 9 denotes the symmetric �A1g (antisymmetric �B1g)
responses.

�–T Ehrenfest Relation. Here, we consider in the �–T plane two phases 1 and
2 that are separated from each other by a second-order phase transition with
critical temperature TC(�). The state variables of the two phases, such as entropy
S1,2, should be continuous everywhere along the phase boundary TC(�) in the
� − T plane (S1 = S2|TC ). Taking an infinitesimal variation of both S1 and S2
along TC(�) results in dS1 = dS2|TC , which requires(

∂S1
∂T

)
�
dT +

(
∂S1
∂�

)
T
d� =

(
∂S2
∂T

)
�
dT +

(
∂S2
∂�

)
T
d�, [10]

along TC(�). This suggests that

dTC
d�

=
(∂S1/∂�)T − (∂S2/∂�)T
(∂S2/∂T)� − (∂S1/∂T)�

. [11]

Using TdS = C�dT and Eq. 1 we get

dTC
d�

=
C1(∂T1/∂�)S − C2(∂T2/∂�)S

C1 − C2
, [12]

where C1 and C2 are the heat capacity of the two phases at TC . Eq. 12 may be
reformulated as

dTC
d�

=
Δ[C(∂T/∂�)S]

ΔC
, [13]

analogous to the Ehrenfest relation relating the phase boundary with respect to
uniaxial pressure TC(Pi) to the jumps at thermal expansion�i and heat capacity
(37):

dTC
dPi

= VmTC
Δ�i
ΔC

, [14]

Here Vm is the molar volume.
The above derivation is based on a generic form of applied �. Taking

into account the experimentally relevant linear combination of strain modes
discussed in the main text, the modified Ehrenfest relation in the context of our
experiments can be expressed as

dTC
d�xx

∣∣∣
�=�xx

=
Δ[C(dT/d�xx)|�=�xx ]

ΔC
, [15]

where (dT/d�xx)|�=�xx is the experimentally measured elastocaloric coeffi-
cient.

Data, Materials, and Software Availability. Spreedsheet data have
been deposited in Stanford Digital Repository (https://doi.org/10.25740/
wy533np2837) (36).
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