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E C O L O G Y

Eavesdropping on the Arctic: Automated bioacoustics 
reveal dynamics in songbird breeding phenology
Ruth Y. Oliver1,2*, Daniel P. W. Ellis3, Helen E. Chmura4†‡, Jesse S. Krause4†, Jonathan H. Pérez4†, 
Shannan K. Sweet5†, Laura Gough6, John C. Wingfield4, Natalie T. Boelman1,2

Bioacoustic networks could vastly expand the coverage of wildlife monitoring to complement satellite observa-
tions of climate and vegetation. This approach would enable global-scale understanding of how climate change 
influences phenomena such as migratory timing of avian species. The enormous data sets that autonomous record-
ers typically generate demand automated analyses that remain largely undeveloped. We devised automated signal 
processing and machine learning approaches to estimate dates on which songbird communities arrived at arctic 
breeding grounds. Acoustically estimated dates agreed well with those determined via traditional surveys and were 
strongly related to the landscape’s snow-free dates. We found that environmental conditions heavily influenced 
daily varia tion in songbird vocal activity, especially before egg laying. Our novel approaches demonstrate that 
variation in avian migratory arrival can be detected autonomously. Large-scale deployment of this innovation 
in wildlife monitoring would enable the coverage necessary to assess and forecast changes in bird migration in 
the face of climate change.

INTRODUCTION
Shifts in phenology across floral and faunal taxa are among the mostly 
widely documented biotic responses to global climate change (1). 
Migratory birds show strong phenological responses to changing 
climate (2), with many populations arriving to their breeding grounds 
earlier in association with rising spring temperatures (3). These shifts 
can influence their reproductive success (4) and may lead to adapta
tions to climate change (5). These populationspecific and often 
local responses, although important for monitoring biotic climate 
change impacts, are limited in their ability to provide globalscale 
assessments of phenological responses of avian communities to climate 
change. Largescale spatial and temporal heterogeneity in climate 
change and taxonomic variability among avian species requires a 
global approach (6). The absence of this longterm, globalscale in
formation hampers understanding of the relative influences of meteo
rological conditions, extreme events, and modes of climate variability 
(for example, El Niño Southern Oscillation), which is necessary to 
identify the avian species, populations, communities, and ecosystems 
most vulnerable to projected shifts in climate (7, 8).

To date, wildlife responses to climate change have been measured 
using in situ censuses and Global Positioning System (GPS) tracking, 
both of which function poorly in monitoring whole avian communities. 
In situ censuses provide only pointbased information, are conducted 
at infrequent snapshots in time and space, primarily due to their 
laborintensive nature, and are subject to large sampling bias be
cause of limited access to remote areas and observer differences (9). 
Although GPS tracking provides dynamic data, tagging remains 

costly, and current tracking units are too large to place on most avian 
species (10). Automated bioacoustic recorders offer a more cost 
effective alternative to sample at larger spatial, temporal, and taxonomic 
scales (9) but have yet to be widely deployed because bioacoustic data 
are complex and, despite significant advances in automated analytical 
methods, comprehensive toolsets remain largely undeveloped. Single 
recorders provide highly localized information, but recording arrays 
are being deployed across landscapes, recording sounds at the land
scape level, or recording what constitutes a soundscape (11).

Soundscapes are rich in information relating to wildlife abun
dance, community assemblage, behavior, and communication [for 
example, (12–15)]. As such, the use of bioacoustics to answer ecological 
questions has been increasing steadily (9). Many methodological 
papers have focused on comparing tallies of species presence/absence 
determined by experts listening to acoustic recordings versus tradi
tional field surveys [for example, (16)]. Other studies use acoustic 
data to test ecological hypotheses, relying on listener input from trained 
experts to identify species from recordings [for example, (17)]. Al
though listening to recorded data has proven a valuable technique 
(9), recorders typically generate enormous data sets too large to listen 
to. Considerable effort has gone into automating the extraction of 
bioacoustic information from large volumes of recorded data for use 
in ecological studies. For example, researchers developed automated 
signal processing and machine learning techniques to identify species 
specific vocalizations with great success in the study of marine mam
mals [for example, (18)], elephants [for example, (19)], and nocturnal 
avian migration [for example, (20)]. Although valuable, these tech
niques are finetuned to individual species of interest (20), which nar
rows their broad application. Further, these approaches often rely on 
recordings with limited background noise—a condition atypical of 
soundscapelevel recordings (20, 21). Other studies sidestep the direct 
identification of vocalizations and examine community level dynamics 
through various “acoustic indices” [for example, (22–25)]. This ap
proach has proven powerful because acoustic indices are relatively 
straightforward to calculate and rapidly synthesize com plex soundscapes.

We took a novel approach to analyzing bioacoustic data by lever
aging signal processing and machine learning techniques—borrowed 
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Fig. 1. Outline of bioacoustic methodology. We present two analytical approaches, supervised and unsupervised classifications. Both approaches rely on the same initial 
statistical characterization of the acoustic data set to identify songbird vocalizations, regardless of species. The supervised approach used a linear classifier to classify every 4-s 
segment of the data set for the presence/absence of songbird vocalizations, trained on a subset of listener-determined scores (<1% of data set). We used the proportion of 
segments per day containing songbird vocalizations as a relative score, referred to as the VAI. We estimated the arrival dates as the first date that exceeded 50% of the maximum 
value of the VAI. The unsupervised approach used a series of signal processing and machine learning techniques to cluster the acoustic data into potential physical sources (for 
example, vocalizations, wind, and trucks) without training from listener input. Because the number of physical sources is not known a priori, we initially clustered the data into 
100 clusters. We then performed principal components analysis on the histograms of cluster assignments to reduce data to 20 dimensions. We estimated the arrival dates as 
the optimal segmentation boundary in principal components, as measured by the fit of Gaussian distributions on either side of the boundary (see the Supplementary Materials).
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from human speech recognition applications—to develop automated 
monitoring of migratory songbird communities breeding in arctic 
Alaska. Specifically, we quantified spatiotemporal dynamics in vocal 
activity and estimated the date on which songbird communities ar
rived to their breeding grounds in each of five consecutive springs.

RESULTS AND DISCUSSION
Quantifying songbird community vocal activity
We programmed autonomous acoustic recorders to collect 1200 hours 
of soundscapelevel data on a subdaily basis, over 30 consecutive 
days during the springs of 2010 through 2014, at four sites in the 
vicinity of Toolik Field Station (TLFS), Alaska (fig. S1) (see the Sup

plementary Materials). We explored both supervised (includes listener 
input) and unsupervised (no listener input) classification approaches 
(Fig. 1) to build seasonal time series of daily avian vocal activity 
(Fig. 2). The supervised classification yielded a score of the relative 
proportion of segments containing songbird vocalizations each day—
the Vocal Activity Index (VAI)—which agreed well with our listener 
generated scores [R2 = 0.65, root mean square error (RMSE) = 0.19] 
(fig. S2). The unsupervised classification yielded a weighted sum of 
principal components that were strongly related to results from the 
supervised approach (R2 = 0.7, RMSE = 0.11) (fig. S2). Time series 
generated by both approaches showed substantial variation in the 
songbird community vocal activity levels among days, weeks, years, 
and recording sites (Fig. 2 and figs. S3 to S5).
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Fig. 2. Songbird community vocal activity estimated by supervised and unsupervised approaches. (A to E) Songbird daily VAI, snow cover (blue), and air temperature 
(red) near TLFS between 2010 and 2014. (F to J) Weighted sums of the first five principal components at the same site and time. Gray boxes identify the available recording 
period for acoustic data. Daily VAI and weighted sums for the entire data set at all field sites can be found in the Supplementary Materials (figs. S3 to S5).
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Influence of environmental conditions and breeding 
phenology on vocal activity
We found that daily fluctuations in snow cover, air temperature, 
wind speed, atmospheric pressure, and precipitation had a significant 
impact on the VAI and explained a large proportion of variance (R2 = 
0.52 ± 0.06) (Fig. 3 and fig. S6). Our acoustically derived findings 
agree with previous in situ work showing that breeding songbirds 
require snowfree patches of tundra to supply critical food and shelter 
(26–28), while cold conditions exacerbate the high energetic costs 
associated with singing (29, 30), suggesting that songbirds are either 
absent or silent during unfavorable conditions.

We found that the VAI was more strongly influenced by environ
mental conditions before egg laying dates, rather than by conditions 
after egg laying, for two of the most abundant songbird species in the 
region—Lapland longspurs (Calcarius lapponicus) and Gambel’s white
crowned sparrows (Zonotrichia leucophrys gambelii) (R2 = 0.62 ± 0.07 
versus 0.21 ± 0.08, respectively; P < 0.1). We attribute this pattern to the 
fact that vocal activity changes with male pairing status and breed
ing phenology, with singing decreasing markedly after egg laying (31). 
Our findings demonstrate that the correct interpretation of avian vocal 
activity to estimate relative songbird abundance requires pairing of 
acoustic data collection with meteorological data, as well as consider
ation of the study communities’ breeding phenology. This analytical 
need could be partially realized by leveraging existing environmental 
monitoring networks [for example, National Science Foundation’s 
Arctic Observing Network (AON), National Ecological Observing 

Network, and Long Term Ecological Research network], which could 
be expanded to include and power microphone and recording arrays.

Songbird community arrival dates
Across our five study years, acoustically derived estimates of arrival 
dates were strongly related to those determined via traditional avian 
surveys of two of the most locally abundant species (supervised: RMSE, 
3.02 days; unsupervised: RMSE, 1.88 days) (Fig. 4 and fig. S7). This 
success derives from the fact that migratory songbirds vocalize in
tensely soon after they arrive to suitable breeding territories because 
of the immense pressure to initiate breeding in the Arctic (26). To 
assess the accuracy of our acoustically derived arrival date estimates, 
we compared them to an alternative method to estimate arrival timing 
based on traditional avian surveys. Differences in arrival estimates 
between these two methods may be due, in part, to the fact that acoustic 
sensors were able to sample more frequently than human observers. 
However, the inability of bioacoustic methods to distinguish absence 
from silence limits their accuracy. Using multiple techniques in tandem 
could help quantify uncertainty in available methods in the short 
term and inform interpretation of results. This approach is particularly 
important for assessing variability and trends in songbird phenology 
in light of global climate change.

Further, in each study year, acoustically derived arrival dates dif
fered among our four recording sites, which were spread along a 
70km transect, with the earliest arrivals occurring at the southernmost 
site in almost all cases. Relative to other study years, in 2013 [a spring 
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characterized by persistent snow cover and cold temperatures (28, 30)], 
our bioacoustic approaches identified a 1 to 9day delay in the ar
rival of songbird communities to their breeding grounds (Fig. 4). In 
addition, using our supervised approach (R2 = 0.59, P < 0.01) inter
annual and spatial differences in arrival dates were strongly related 
to the date on which the landscape surrounding each microphone 
became snowfree (that is, snow cover of <10%) (Fig. 4). The relation
ship between snowfree and arrival dates for the unsupervised approach 
was relatively weak (R2 = 0.13, P = 0.15), suggesting that the unsuper
vised approach is less sensitive to small variations in snow free dates 
than the supervised approach. This disparity is most likely due to meth
odological differences in estimating arrival dates between the super
vised and unsupervised approaches. Arrival date estimates from the 
supervised approach are based solely on the VAI, whereas the unsuper
vised approach estimates arrival by incorporating information from 
other acoustic sources, which may dampen the seasonal transi tion in 

songbird vocal activity (for more information, see Materials and 
Methods). Our results suggest that, while both bioacoustic methods 
successfully estimated large differences in arrival dates, the super
vised approach may be superior to the unsupervised approach in 
estimating arrival timing in response to small spatiotemporal differ
ences or changes in snow melt timing resulting from climate change. 
Again, quantifying error associated with arrival estimates by com
paring alternate methods could improve our ability to assess trends 
related to global change.

Millions of songbirds migrate each spring to breed in the Arctic 
(32). Although the onset of spring migration is cued by photoperiod 
(33), arrival and settlement are influenced by environmental condi
tions en route and on breeding grounds (28, 30, 34). Shifts in the 
arrival of spring due to climate change may be spatially heteroge
neous along migratory routes (35). While traditional avian surveys 
as far back as the 19th century [for example, (36)] have used timing 
of the onset of singing to estimate dates of migratory species’ arrival 
to breeding grounds, efforts to extract arrival timing from digital 
acoustic data sets have been rare [for example, (37)]. We contend that 
arctic ecosystems in particular merit autonomous methods of data 
collection because they are changing rapidly and are vast, remote re
gions that are difficult to survey (38). Climate impacts on arrival timing, 
which may influence breeding success, could reverberate globally, 
as Arcticbreeding songbirds perform important ecosystem services 
worldwide (39).

CONCLUSIONS
The direct application of our automated analytical approaches to 
monitoring avian phenology may be possible in other ecosystems and 
for the study of other vocal taxa (for example, insect or amphibian 
species). Our unsupervised approach is likely to work best in eco
systems with similar high seasonality in vocal activity, such as along 
migratory stopovers or in other ecosystems with strong seasonality 
in environmental conditions. Our supervised approach can be easily 
calibrated for other ecosystems and species via some initial listener 
input and training. Automated bioacoustic networks present an ad
vantage over traditional surveys because they can be deployed to 
sample more economically over longer periods and in more remote 
areas and they preserve a longterm observational data set that can 
be reanalyzed and thus reduce observer biases (9). Our success demon
strates that automated bioacoustic networks are well poised to integrate 
with groundbased and remotely sensed observations of environmen
tal conditions and vegetation to enhance understanding of how climate 
influences phenological responses of wildlife that uses vocal forms of 
signaling and communication such as birds, amphibians, social mam
mals, insects, and many other species.

MATERIALS AND METHODS
Study design
This study was focused on four research sites in the foothills of the 
Brooks Range, Alaska (68°38′N, 149°34′W; elevation, 760 m) in a 
35km radius of TLFS (fig. S1). Data were collected over a 5year 
period (2010–2014) at Roche Moutonee Creek (ROMO), Imnavait 
Creek (IMVT), TLFS, and Sagavanirktok Department of Transporta
tion (SDOT). For a full description of sites, see (40).

Although the acoustic analyses presented in this study did not 
discriminate between species, we did compare our results to traditional 

A

B

Fig. 4. Acoustically derived estimates of songbird arrival to breeding grounds 
and relationship to snow-free dates. (A) Songbird community mean arrival dates to 
their breeding grounds near TLFS, Alaska over a 5-year period (2010–2014) using 
supervised and unsupervised bioacoustic approaches compared to traditional avian 
surveys. SE bars reflect averages across four recording sites for acoustically derived 
estimates. (B) Songbird community arrival dates for at each site over a 5-year period 
(2010–2014) estimated from supervised and unsupervised bioacoustics approaches 
compared to the date on which the landscape surrounding the recording unit fell 
below 10% snow coverage.
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avian surveys of the two most abundant species in our study region. 
Lapland longspurs (C. lapponicus) and Gambel’s whitecrowned 
sparrows (Z. leucophrys gambelii) are both longdistance migratory 
passerines, which winter in the contiguous United States (33, 41) 
and migrate to breed in northern Alaska (32, 40) where they capitalize 
on the brief but large pulse of food resources and the relatively low pred
atory risk that Arctic summers offer as compared to more southern 
ecosystems (32, 41, 42). Typically, arrival occurs in early to midMay 
(26, 28). Arrival timing is of critical importance to Arcticbreeding 
birds who must quickly initiate clutches and complete their breeding 
cycles before winter’s onset (~90 days) and ensure that their young 
hatch at the peak of nutritious arthropod biomass (3, 43).

Automated collection of landscape-level acoustic data
Acoustic recordings were taken over five breeding seasons (2010–
2014) between early May and mid/late June of each study year, thereby 
including the arrival, territory establishment, and clutch initiation 
of our two focal species (28). Thirtyminute recordings were made 
four times daily (2:00, 6:00, 9:00, and 21:00) to capture diurnal varia
tion in vocal activity. Recordings were made using a digital audio 
recorder (722, Sound Devices LLC) and two microphones (MKH30 
and MKH40, Sennheiser Electronic GmbH and Co. KG) at a 48kHz 
sample rate. The acoustic data set contained 1200 hours of recordings 
capturing sounds from a range of typical local sources including rain, 
wind, truck traffic along the nearby Dalton Highway, mosquitoes, 
and a variety of bird species.

Traditional avian surveys
The dates of mean arrival of Lapland longspurs and Gambel’s white 
crowned sparrows to the study region were determined by the mean 
date on which individuals were captured in mist nests at the four 
sites in 2011–2014. No Lapland longspurs were captured in 2010, so 
the mean arrival date was determined from road surveys in that year. 
The date of mean arrival of the songbird community to the region 
was determined by calculating the mean between species and sites. 
The mean dates of egg laying for all located nests of each species 
were determined on the basis of observations of egg laying, hatching, 
and fledging in 2011–2014. The mean date of egg laying of the song
bird community was determined by calculating the mean dates be
tween species for each year. For full details, see (28).

Environmental data collection
Air temperature, precipitation, atmospheric pressure, and wind speed 
data at ROMO and SDOT were collected. Environmental data for 
TLFS and IMVT were downloaded from the Environmental Data 
Center (2014) at TLFS and Imnavait AON Tussock Site, respectively. 
Snow cover was determined as the percentage of ground covered by 
snow in automated photographs. Snow cover data were only collected 
at two study sites (ROMO and TLFS) in 2010. For full details, see (28).

Acoustic analysis overview
Our primary objectives were to (i) estimate the arrival date of the 
songbird community to their arctic breeding grounds in each of our 
five study years and (ii) determine the influence of both environ
mental conditions and songbird phenology on estimates of song
bird vocalizations through the breeding season. We presented two 
analytical approaches, supervised (includes listener input) and un
supervised classifications (no listener input), using a data set col
lected at subdaily intervals over five consecutive breeding seasons 

(Fig. 1). Both approaches relied on the same initial statistical char
acterization of the acoustic data set to identify the presence of song
bird vocalization, regardless of species.

The supervised classification approach used a linear classifier, trained 
on a subset of listenerdetermined presence/absence of songbird 
vocalizations, to classify every 4s segment of the data set for the 
presence/absence of songbird vocalizations. The proportion of seg
ments per day containing songbird vocalizations was then used as a 
relative measure of daily songbird vocal activity, referred to as the 
VAI. The performance of the classifier was assessed by the relation
ship between the VAI and the training data set (fig. S2). Daily time 
series of VAI was created for each recording site and study year 
(Fig. 2 and figs. S3 to S5). To understand and interpret daily varia
tion the VAI, we used linear models to quantify relationships be
tween the VAI and local environmental conditions and how these 
relationships change based on songbird breeding phenology (Fig. 3 
and fig. S6). Finally, we used the VAI to estimate the arrival date of 
songbirds to their breeding grounds in each study year and com
pared these estimates to avian surveys conducted concurrently with 
acoustic recordings (Fig. 4).

In contrast, the unsupervised classification approach used a se
ries of signal processing techniques and machine learning algorithms 
to cluster the acoustic data into potential physical sources (for ex
ample, bird vocalizations, wind, and trucks on the nearby Dalton 
Highway) without any training from listener input. Because the 
number of physical sources, and thus clusters, was not known a priori, 
we initially clustered the data into 100 clusters and calculated the 
proportion of recording segments that fell into each cluster. We 
then performed principal components analysis on the cluster as
signment histograms to reduce the cluster assignment histograms 
to 20 dimensions. To identify the principal components that con
tained information about songbird vocalizations, we quantified the 
relationship between the principal components, added in succession, 
and the VAI (fig. S2). This approach resulted in a time series of song
bird vocalizations, as determined by a weighted sum of the first five 
principal components (Fig. 2 and figs. S3 to S5). Independent of this 
procedure, we used the transition in acoustic sources, as measured 
by the first 20 principal components, over time to estimate arrival 
date of songbirds in each study year by finding the optimal bound
ary and compared these estimates to avian surveys (Fig. 4).

Statistical characterization to determine the presence/
absence of songbird vocalizations
To identify the presence of songbird vocalizations, regardless of species, 
we segmented the acoustic data set into 4s segments (the typical du
ration of a songbird vocalization phrase) with 2 s between consecutive 
clips. Each 30min recording contributed 898 4s segments, and thus a 
30day period at a single recording site amounted to more than 100,000 
segments. Each 4s segment was described by a set of 54 statistical 
texture features known to be important for human auditory recog
nition: mean, variance, and subband entropy within auditory 
scaled frequency bands (44). The lowest five frequency bands (0 to 
630 Hz) were excluded from the analysis because songbird vocaliza
tions are not produced at these frequencies.

Identifying songbird vocalizations
Supervised classification
We used linear discriminant analysis to develop a linear classifier to 
determine the presence/absence of songbird vocalizations in each 
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segment based on their associated texture features. The linear clas
sifier was trained using a random subset of recording segments 
manually scored for the presence/absence of songbird vocalizations 
based on listener input. The training data set consisted of 6000 ex
ample segments (<1% of the total data set).

A hyperplane was fit to the training data set to separate the two 
classes (presence/absence of songbird vocalizations) based on their 
texture features. A receiver operating characteristic curve was used 
to investigate the performance of the classifier as the decision 
threshold was varied and to find the area under the curve, a measure 
of the classifier’s performance above random classification. The 
classifier’s decision threshold was adjusted to the equal area rate, 
where the truepositive rate and truenegative rate are equal. The 
resulting classifier was used to classify the entire acoustic data set 
for the presence/absence of songbird vocalizations. Calculating the 
proportion of 4s segments per day containing songbird vocaliza
tions gave a score of relative vocal activity, the VAI. The VAI ranges 
from 0 to 1, where 0 represents no songbird vocalizations in any 
segments recorded in a day, and 1 means that all segments con
tained vocalizations.

The performance of the classifier was assessed by comparing the 
proportion of segments containing songbird vocalizations in a 30min 
recording, as determined by the classifier and by listening. The 
closeness of fit to a linear relationship was quantified with a linear 
regression. The difference between the values from the classification 
output and the manual listening was measured as the RMSE. Although 
each 4s segment was scored for the presence/absence of songbird 
vocalization, for the remaining analysis, we reduced the temporal 
resolution to a daily VAI.
Unsupervised classification
To identify 4s segments with similar acoustic characteristics with
out listener input, we used vector quantization to cluster segments 
based on their associated texture features for each 30day recording 
period independently. Vector quantization reduced multidimensional 
data by grouping neighboring vectors, in this case, texture features, 
to a predefined number of prototype vector codewords or clusters 
(45, 46). A codebook of 100 characteristic vectors was trained using 
10,000 randomly selected texture feature vectors from each 30day 
recording period. The training vectors were grouped using the 
Kmeans clustering algorithm, which iteratively updates the location 
of the codeword vectors until the average Euclidean distance to the 
associated training vectors falls below a predetermined threshold 
(46). The entire 30day recording period was then quantized into 
the 100 codewords by minimizing the Euclidean distance of each 
4s segment’s texture feature vector to the codewords. This associated 
each 4s segment with a codeword. The codeword assignments of 
the entire data set were summarized by histograms of codeword as
signments over 100 4s segments (approximately 10 min).

The codeword histograms were reduced through principal com
ponents analysis via singular value decomposition, which lowered 
the dimensionality of a data set by finding the optimal subspace, based 
on minimizing the sum of the square perpendicular distances of the 
given set of points to the subspace (47). Principal components analysis 
was performed for each 30day recording period independently. On 
average, the first 20 principal components explained 72% of the 
variability in the codeword data sets; we thus restricted each 30day 
period to the first 20 principal components.

To investigate the relationship of the resulting principal compo
nents to the presence of songbird vocalizations, we compared their 

scores to the VAI. To match the temporal resolution of the VAI, 
principal component scores were averaged to give mean daily scores. 
A series of linear models were used to quantify the relationship be
tween the VAI and the principal components added in succession 
for each 30day recording period independently. For example, the 
VAI of each 30day recording period was predicted by linear models 
based on the following: (i) the first principal component’s scores, 
(ii) the first two principal components’ scores, etc. The mean and 
SE of R2 values were found for model input configuration replicates 
across study years and sites. The appropriate number of principal 
components to use in a time series of songbird vocalizations was 
considered the first combination that, on average, explained 70% of 
the variance in the VAI. The fitted values from the multivariable 
models were used to generate a time series of the weighted sum of 
the selected principal components. The ability of the weighted sum 
of principal components to replicate the VAI was measured by the 
RMSE.

Arrival date estimation
Supervised classification
Arrival date of the bulk of the songbird community breeding in the 
vicinity of our four recording sites was calculated as the first recording 
date on which a given site’s VAI exceeded 50% of its maximum value 
for that year. The sensitivity of arrival date estimates to thresholds 
ranging from 30 to 70% was investigated.
Unsupervised classification
The songbird community arrival date was estimated by analyzing 
scores of the first 20 principal components over time and finding 
the optimal segmentation boundary at each site for each year. We 
constrained our analysis to the time period before May 25th because 
songbirds are known to arrive to our study site in this time window 
(26, 28). Despite identifying the principal components that were strongly 
related to the VAI, and thus songbird vocalization, we included the 
first 20 principal components in this portion of the analysis to de
velop an arrival date estimation procedure that is independent of any 
listener input.

The optimal segmentation boundary in the principal components 
scores was found using a Bayesian Information Criterion (BIC)–
based algorithm, a common approach to segmenting audio informa
tion (48). Our BIC segmentation tested all possible segmentation 
boundaries up to May 25th by fitting Gaussian mixture models on 
either side of the boundary. Boundary placements were scored by 
the sum of the negative log of the likelihoods of the associated models. 
We considered the optimal boundary placement to be that which 
minimized the score criterion. Songbird community arrival date was 
estimated as the date of the optimal segmentation boundary.

To validate both the supervised and unsupervised classification 
approaches to estimating the songbird community arrival date, we 
averaged arrival date estimates among recording sites for each year 
and compared them to avian survey estimates conducted concurrently 
(although at a coarser spatial resolution; see “Traditional avian sur
veys” section). The RMSE was used to quantify the ability of both 
classification approaches to replicate survey estimates.

The influence of environmental conditions and songbird 
phenology on VAI
Relationships between the VAI and environmental conditions were 
investigated at each site and year (20 replicates) with linear models. 
To identify which covariates were significantly predictive of the 
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VAI, we used stepwise regression with backward variable selection. 
Multivariable linear models were built for each 30day recording 
period independently with the following suite of environmental co
variates as predictor variables: snow cover, temperature, wind speed, 
atmospheric pressure, and precipitation. Predictor variables were 
iteratively removed by the following procedure: (i) generating a linear 
model using all available environmental covariates, (ii) performing 
a F test, and (iii) eliminating variables one at a time that were not 
statistically significant (P < 0.1). This procedure was repeated until 
only the environmental covariates that had a statistically significant 
linear relationship to the VAI remained. Models for 2010 at the SDOT 
and IMVT sites did not include snow cover as a potential covariate 
because data were not available (see “Environmental data collection” 
section).

Linear models were built for each of the 20 (four sites, 5 years) 
30day recording periods using only the environmental covariate(s) 
determined to be statistically significant, hereafter referred to as sig
nificant multivariable models. Linear models were also built for each 
30day period between VAI and each environmental covariate in 
isolation, hereafter referred to as singlevariable models.

Songbirds’ propensity to vocalize is known to change through
out their breeding season—with higher levels of singing when indi
viduals are searching for mates and lower levels after clutches are 
initiated (31). We explored how relationships between the VAI and 
environmental conditions changed on the basis of songbird phenology. 
The 30day recording periods were segmented on the basis of the mean 
clutch initiation date for Lapland longspurs and whitecrowned 
sparrows, as determined by avian surveys (see “Traditional avian 
surveys” section). The same suite of significant multivariable and 
singlevariable linear models, described above, was constructed for 
the time window before clutch initiation (on average, 22 days) and 
the time window following clutch initiation (on average, 8 days). 
This analysis was only performed for the years 2011–2014 because 
clutch initiation dates were not available for 2010 (see “Traditional 
avian surveys” section).

The proportion of variance (R2) explained by the predictor variables 
was found for each model. The mean and SE of R2 values were found 
for model input configuration replicates. Twosample t tests of mean 
R2 values were performed to compare model input configurations.
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