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Abstract
Autoimmunity is a consequence of both genetic and environmental factors, occurring in

genetically susceptible hosts with environmental triggers. While genome-wide association

studies have revealed a number of susceptible genes contributing to etiology, the environ-

mental triggers remain poorly understood. Primary biliary cholangitis, formally known as

primary biliary cirrhosis, is considered a model autoimmune disease for which our group

has extensively evaluated environmental factors involved in its etiology. Bacterial infection

and xenobiotics have been proposed as candidate environmental factors that may explain

tolerance breakdown and production of primary biliary cholangitis-specific antimitochon-

drial autoantibodies. Large-scale case-control studies have consistently detected an asso-

ciation of primary biliary cholangitis with urinary tract infections caused by Escherichia coli,
as E. coli PDC-E2 is molecularly similar to human PDC-E2, the immunodominant target of AMAs. Another bacterium of interest is

Novosphingobium aromaticivorans, a ubiquitous xenobiotic-metabolizing bacterium that produces lipoylated proteins, which are

highly reactive with sera from primary biliary cholangitis patients. Regarding xenobiotics, case-control studies have suggested

that frequent use of nail polish is associated with an increased susceptibility to primary biliary cholangitis. We found that

2-octynamide, the conjugate derived from 2-octynoic acid present in cosmetics, lipsticks, and some chewing gums, was

unique in both its quantitative structure–activity relationship analysis and reactivity with primary biliary cholangitis sera. 2-non-

yamide is another xenobiotic that also has the optimal chemical structure for xenobiotic modification of the PDC-E2 epitope, as

demonstrated by the enhanced epitope recognition with AMA-positive PBC sera. Moreover, we found that C57BL/6 mice immu-

nized with 2-octynoic acid-BSA possess many of the features characteristic to primary biliary cholangitis.

Keywords: Environment, primary biliary cholangitis, genetic background, anti-mitochondrial autoantibodies, animal models,

autoimmune
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Introduction

Autoimmunity develops when immune responses target
self-molecules due to breakdown of self-tolerance,1 which
can lead to cellular and tissue injury in various autoim-
mune diseases.2 Accumulating evidence suggest that auto-
immune reactions develop in genetically susceptible
individuals with triggers from the environment.3,4 Recent
data from genome-wide association studies (GWAS) have
revealed that the number of genes and pathways associated
with the susceptibility or progression of autoimmune
diseases has greatly increased over the years.5 Due to the

complexity of autoimmune diseases,6 the environmental
elements triggering their development remain poorly
understood.7

Primary biliary cholangitis (PBC), formally known as

primary biliary cirrhosis, is considered a model autoim-

mune disease because of its marked female predominance,8

presence of disease-specific autoantibodies (i.e. AMAs),

dense infiltration of mononuclear cells into bile ducts,

and high prevalence of concomitant autoimmune diseases.9

Like other autoimmune diseases, PBC is a multifactorial

disease thought to be caused by interactions between

Impact statement
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xenobiotics.
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both genes and environmental triggers.10 We have

extensively evaluated environmental factors involved in

the etiology of PBC. In this mini-review, we discuss

the environmental basis of autoimmunity in PBC as a

representative autoimmune disease.

What is PBC?

PBC is a chronic cholestatic liver disease that predominant-
ly affects middle-aged females, but can occur in adults of all
ages.11 Histologically, PBC manifests as chronic non-
suppurative destructive cholangitis (Figure 1) with forma-
tion of granulomas in the liver, degeneration and necrosis
of biliary epithelial cells (BECs), and disappearance of
small or medium-sized intrahepatic bile ducts, which lead
to chronic and progressive cholestasis. Although the etiol-
ogy of PBC has not been fully defined, it is evident that
autoimmune reactivity against intrahepatic BECs plays a
key role in disease pathology.9,12 Since subjective symp-
toms are uncommon in patients with PBC, the disease is
often detected incidentally during random blood testing.
However, a substantial number of patients experience a
variety of symptoms, including pruritus, fatigue, dryness,
and body pain. Other autoimmune diseases such as rheu-
matoid arthritis, Sjogren’s syndrome, and chronic thyroid-
itis frequently coexist in patients with PBC. As the disease
progresses, jaundice and other decompensating events of
the liver develop, ultimately resulting in liver failure and
the need for liver transplantation. Ursodeoxycholic acid
(UDCA), which was previously the only approved
drug for PBC, effectively extended liver transplantation-
free survival in several clinical trials in the 1990s.
Thereafter, the use of UDCA as a first-line drug, with the
introduction of AMAs testing in clinical settings, enabled
PBC patients to be diagnosed in asymptomatic stages
before progression to cirrhosis.13 Thus, the name of the
disease was changed from primary biliary “cirrhosis” to
primary biliary “cholangitis.”14

Genetic background – “Bad gene”

PBC results from a combination of “bad genes and bad
luck”; individuals with a genetic predisposition to the dis-
ease develop PBC due to environmental triggers. The rele-
vance of genetic predisposition in PBC is evident with
familial clustering, in which the prevalence of PBC patients
increases among first-degree relatives and siblings of index
patient.15–18 The concordance rate of PBC is 63% in mono-
zygotic twins, which is higher than that of other autoim-
mune diseases.19 Case-control studies and studies using
modern technology such as GWAS have shown that HLA
alleles possess the strongest link to PBC susceptibility, with
more than 40 non-HLA alleles contributing as well.20

Although these risk alleles differ among studies and pop-
ulations, pathways involving identified genes are largely
shared among populations and related to antigen presen-
tation and production of interleukin (IL)-12 (IRF5, SOCS1,
TNFAIP3,NFjB, IL-12A), activation of Tcells and interferon
(IFN)-c production (TNFSF15, IL12R, TYK2, STAT4, SOCS1,
NFjB, TNFAIP3), and activation of B cells and production
of immunoglobulins (POU2AF1, SPIB, PRKCB, IKZF3,
ARID3A). Thus, these immune pathways are thought to
be important in the pathogenesis of PBC. However, as
with other autoimmune diseases, GWAS have not been
able to identify a “smoking gun” of the genetic basis for
PBC, suggesting that environmental factors, particularly
epigenetics, play a crucial role.21

Environmental basis – “Bad luck”

It is clear that PBC risk is not defined exclusively by genetic
predisposition. Only two-thirds of monozygotic twins
share PBC and not all family members develop PBC, even
in a family tree with heavy clustering.15,19 According to
recent epidemiological studies, the risk of developing
PBC in first-degree relatives of the indicated patient was
relatively low during eight years of follow-up.22 Therefore,
environmental factors likely play a significant role in the
development of PBC in addition to genetic factors.
Researchers, including our group, have mainly focused
on the implications of bacterial infection and xenobiotics

Figure 1. Liver histology from healthy individuals (a) and PBC patients (b). Note intact biliary epithelial cells (arrows) in livers from healthy individuals (a) but the bile

ducts are collapsed, BECs are irregularly shaped (arrows), with massive infiltrates of lymphocytes aggregated in the vicinity of BECs in PBC liver (hematoxylin and eosin

staining). (A color version of this figure is available in the online journal.)
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as candidate environmental factors. These may provide
insight into the precise mechanism of tolerance breakdown
against autoantigens leading to the production of AMAs.

AMAs

AMAs are the most disease-specific autoantibodies in
human immunopathology and are detected in 90–95% of
PBC patients.23,24 The immunodominant epitopes of AMAs
were identified as the pyruvate dehydrogenase complex E2
subunit (PDC-E2) by cDNA cloning.25 AMAs recognize a
family of enzymes in the 2-oxo-acid dehydrogenase com-
plex (2-OADC) located in the inner mitochondrial mem-
brane, including PDC-E2, branched-chain 2-OADC,
2-oxo-glutaric acid dehydrogenase complex, and dihydro-
lipoamide dehydrogenase binding protein.26 These E2
enzymes all share a common protein structure consisting
of an N-terminal domain with a single or multiple attach-
ment sites to a lysine (173K in mammalian PDC-E2) in lipoic
acid (LA) (Table 1). The dominant AMA epitope was
mapped within the inner lipoyl domains of the enzyme
complex27–29 and the amino acid residues critical for main-
taining the structural integrity of the PDC-E2 lipoyl domain
have been determined by site-directed mutagenesis.30

Interestingly, epitopes of both autoreactive PDC-E2-
specific CD4þ and CD8þ T cells, which are crucial to the
pathogenesis of PBC, were also mapped in the same region
of human PDC-E2.31,32 This suggests that AMAs recogniz-
ing mitochondrial autoantigens, particularly PDC-E2, are
not simply serological markers for diagnosis but important
drivers of PBC immunopathology as well.33

Bacterial infection

Large-scale case-control studies have consistently found an
association between PBC and urinary tract infections caused
by Escherichia coli.16,34–36 Human PDC-E2 is molecularly sim-
ilar to E. coli PDC-E2 (Table 1). In particular, the entire ExDK
sequence, reported to be essential for recognition of CD4þ

PDC-E2-specific T cells, is shared by both human and E. coli
PDC-E2.32 Thus, an E. coli infection may trigger the break-
down of immunological tolerance against human PDC-E2
through molecular mimicry and cross-reactivity.

Another bacterium thatmay be involved in the etiology of
PBC through cross-reactivity is Novosphingobium aromatici-
vorans, a ubiquitous xenobiotic-metabolizing bacterium that

has been identified by protein homology searching of human
PDC-E2 (Table 1). Immunological studies demonstrated that
N. aromaticivorans contains lipoylated proteins, which are 100
to 1000-fold more reactive with PBC patient sera than those
of E. coli.37 N. aromaticivorans is thus a potential trigger for
PBC due to its higher reactivity compared to E. coli, capacity
to metabolize xenobiotics, and presence in feces.

Besides bacteria, the involvement of endogenous retro-
viruses in PBC immunopathology has also been studied.
Nucleic acid sequences of the human betaretrovirus homol-
ogous to those of the mouse mammary tumor virus and
human breast cancer-derived retrovirus have been cloned
from the lymph nodes of PBC patients.38

Xenobiotics

Extensive amount of epidemiological data indicate that
xenobiotics are likely involved in the development of PBC.
Case-control studies have analyzed various lifestyle factors
involved in PBC, and found that frequent use of nail polish
was associated with increased PBC susceptibility.35

Furthermore, PBC patients tend to be geographically concen-
trated near toxic waste sites.39–41 Since AMAs are known to
be important in the immunopathology of PBC, researchers
also examined environmental mimotopes in the form of
xenobiotics. A detailed, quantitative structure–activity rela-
tionship analysis of 107 potential xenobiotic mimics coupled
to the lysine residue of the immunodominant 15-amino-acid
peptide of the PDC-E2 inner lipoyl domain (ILD) revealed
that 2-octynamide, the conjugate derived from 2-octynoic
acid (2-OA) present in cosmetics, lipsticks, and some chew-
ing gums, stood out in both its quantitative structure–activity
relationship analysis and reactivity with PBC sera.42

Furthermore, another xenobiotic, 2-nonyamide has the opti-
mal chemical structure for xenobiotic modification of the
epitope, which has been demonstrated by enhanced recog-
nition with AMA-positive PBC sera.43 Significant molecular
mimicry between lipoamide and 2-nonynamidewas indeed
observed (Figure 2). These findings suggest that PDC-E2
modified with chemicals abundantly found in daily life
can generate immunogenic neoantigens that breach toler-
ance in PBC. Furthermore, monoclonal antibodies cross-
reactive with both native PDC-E2 and 2-OA also recognize
LA.44 Recent structural studies have demonstrated that the
conformation of PDC-E2 ILD is altered when conjugated
with 2OA and not LA,30,45 which further supports the

Table 1. Molecular mimicry and immunodominant epitopes of human PDC-E2 amino acid residue 155–185.a

Human PDC-E2 K V G E K L S E G D L L A E I E T D K A T I G F E V Q E E G Y

B cell epitope K V G E K L S E G D L L A E I E T D K A T I G F E V Q E E G Y

CD4 T cell epitope K V G E K L S E G D L L A E I E T D K A T I G F E V Q E E G Y

CD8 T cell epitope K V G E K L S E G D L L A E I E T D K A T I G F E V Q E E G Y

E coli L1 - - - D - V E A E Q S - I T V - G - - - S M E V P S P Q A - I

E coli L2 - - - D - V E A E Q S - I T V - G - - - S M E V P A P F A - T

E. coli L3 - - - D - V A A E Q S - I T V - G - - - S M E V P A P F A - V

Novosphongobium

aromaticivorans

- A - D E V R S - - I - A E I - T - - - T M E F E A V D E - V

aThe lysine residue K denotes 173lysine; the lipoic acid binding site of human PDC-E2.

Note: The CD4 T cell and CD8 T cell epitope are BOLDED in italics.

“-” denotes the E. coli PDC-E2 and N. aromarticivorans PDC-E2 amino acid residues that are identical with human PDC-E2 lipoyl domain.
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hypothesis that xenobiotically modified LA is the initial
target of autoimmunity in PBC.

Other candidate environmental factors

Genome-wide epigenetic analysis revealed significant differ-
ences in methylation profiles, copy number variation, and
gene expression in three monozygotic twins and eight sib-
ling pairs discordant for PBC.46 Moreover, aberrant demeth-
ylation of the CXCR3 promoter of the X chromosome was
noted in patients with PBC.47 However, since these findings
are only descriptive, further studies are needed to determine
the etiological implications of epigenetics.48 Finally, involve-
ment of gut microbiota in the pathogenesis of autoimmune
disease has been suggested as well.49,50 One comparative
study found gut dysbiosis in PBC patients, which was
partially resolved with UDCA treatment.51

Xenobiotic-triggered murine models of PBC

In addition to in vitro studies, murine models are important
for understanding the etiology and natural history of PBC.
Since patients with newly diagnosed PBC are well beyond
the initial stage of loss of tolerance, there is likely a long
latency period between the appearance of autoantibodies
and clinical symptoms/disease.52 Therefore, animal models

that reflect many important aspects of the disease are needed
to explore the initiating events and interactions between
genetic and environmental factors. The animal model
should have the same physiological mechanisms observed
in human PBC, such as female predominance, chronic cho-
lestasis, AMA production, bile duct involvement, and histo-
logical features including lymphocyte infiltration into the
liver.53 To date, several murine models that develop autoim-
mune cholangitis resembling PBC have been established
spontaneously or through xenobiotic induction (Table 2).
These mice share some of the important clinical phenotypes
of PBC.54 In particular, immunization of mice with 2-OA, a
potential environmental trigger for PBC, induced autoim-
mune cholangitis mimicking PBC and AMA seropositivity.

Our group immunized C57BL/6 mice with 2-OA conju-
gated to bovine serum albumin (BSA) and found that anti-
PDC-E2 antibodies were developed as early as four weeks
after 2OA-BSA immunization, indicating a loss of tolerance
to PDC-E2 with xenobiotic immunization. In addition,
these mice demonstrated portal infiltration of CD4þ and
CD8þ T cells, granulomas, and elevated tumor necrosis
factor-a and IFN-c expression levels.55 Using several
unique gene-deleted mice immunized with 2-OA-BSA,56

we revealed that both IL-12/T helper type 1 (Th1) and
IL-23/Th17 were involved in autoimmune cholangitis.

Table 2. Characteristics of PBC mouse models.

Spontaneous models Induced model

NOD.c3c4 dnTGFbRII IL-2Ra 2/2 ARE Del2/2 2-OA–BSA immunized

Female dominance Yes No No Yes No

Cholestasis – þ – þ þ
AMA seropositivity 50–60% 100% 100% 100% 100%

Portal inflammation þþþ þþþ þþþ Yes þ
Granulomas þ � � þ þ
Other features Biliary polycystic

lesions

Moderate

colitis

Severe anemia,

inflammatory bowel

diseases, and short

life span

Peritonitis

References (58) (59) (60) (61,62) (55)

PBC: primary biliary cholangitis; 2-OA: 2-octynoic acid; BSA: bovine serum albumin; ARE: adenylate uridine-rich element; AMA: anti-mitochondrial autoantibody.

Figure 2. Molecular mimicry between lipoamide and 2-nonynamide. Superimposed models of lipoamide (dotted) and 2-nonynamide, in space-filled and bond

representations with 2-nonynamide in either “corkscrew” (a) or straight chain conformation (b). (A color version of this figure is available in the online journal.)
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The IL-12/Th1 signaling pathway elicited the pathology,
whereas deletion of IFN- c prevented autoimmune cholan-
gitis. Although these mice lack several characteristics of
PBC such as female dominance, they clearly demonstrate
the etiological importance of 2-OA in PBC.

Concluding remarks

The prevalence of autoimmune diseases including PBC is
increasing worldwide,57 possibly due to increased amount
of environmental exposure to xenobiotics. Large-scale,
multi-center case-control studies are needed to identify
xenobiotic factors and examine their roles in the develop-
ment of autoimmune diseases. International collaboration
in this subject should also take into account the ethnic
diversity in genetic predisposition. Immunological investi-
gations and establishment of relevant animal models will
be critical to decipher how environmental factors play a
role in natural history of autoimmune diseases.
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