
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Improving SQL Performance Using Middleware-Based Query Rewriting

Permalink
https://escholarship.org/uc/item/5pw8w7rj

Author
Bai, Qiushi

Publication Date
2023

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at https://creativecommons.org/licenses/by-
nc-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5pw8w7rj
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Improving SQL Performance Using Middleware-Based Query Rewriting

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Qiushi Bai

Dissertation Committee:
Professor Chen Li, Chair

Professor Michael J. Carey
Professor Sharad Mehrotra

2023

© 2023 Qiushi Bai

DEDICATION

To the love of my life,
Xiaofei Zhou,

whose unconditional support, sacrifices, and belief in me
gave me the strength and motivation

to complete this journey.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES ix

ACKNOWLEDGMENTS x

VITA xi

ABSTRACT OF THE DISSERTATION xii

1 Introduction 1

2 Using Machine Learning to Rewrite Visualization Queries Under Time
Constraints 5
2.1 Introduction . 5

2.1.1 Related Work . 9
2.2 Problem Formulation . 11
2.3 Maliva: ML-based Query Rewriting . 14
2.4 MDP Model for Adding Query Hints . 16

2.4.1 MDP Model for Query Rewriting . 16
2.4.2 Query Time Estimator (QTE) . 22

2.5 Training and Using the MDP Agent . 22
2.5.1 Training the MDP Agent . 22
2.5.2 Using MDP to Rewrite Queries Online 26

2.6 Approximation Rewriting Options . 26
2.6.1 Quality-Aware MDP Model . 28
2.6.2 Quality-Aware Query Rewriter . 30
2.6.3 Differences between Maliva and Bao 32

2.7 Experiments . 32
2.7.1 Setup . 33
2.7.2 Performance on Using Query Hints 36
2.7.3 Effect of Rewrite-Option Number . 38
2.7.4 Effect of Time Budget . 39
2.7.5 Performance on Join Queries . 40
2.7.6 Additional Comparison with Bao . 41

iii

2.7.7 Unseen Queries and Other Databases 42
2.7.8 Performance of Quality-Aware Rewriting 44
2.7.9 Training Performance . 45

2.8 Conclusions . 46

3 Supporting Human-Centered Query Rewriting in Middleware 48
3.1 Introduction . 48
3.2 Limitations of Existing Solutions . 52
3.3 QueryBooster: A Human-Centered Query Rewriting Solution 55
3.4 VarSQL: A Rewriting-Rule Language . 58

3.4.1 Suitability of Existing Rule Languages 58
3.4.2 VarSQL: A Novel Rule Language . 61
3.4.3 VarSQL-Based Rewriting Engine . 66

3.5 Rule Quality and Transformations . 69
3.5.1 Quality of Rewriting Rules . 69
3.5.2 Transforming Rules to More General Forms 72

3.6 Searching For High-Quality Rules . 75
3.6.1 A Greedy Searching Framework . 76
3.6.2 Exploring Candidate Rules Adaptively 78
3.6.3 Including Query Cost in Rule Quality 80

3.7 Experiments . 81
3.7.1 Setup . 81
3.7.2 A User Study to Evaluate Rule Languages 83
3.7.3 Comparison of Rule-Searching Strategies 84
3.7.4 Effect of m in m-promising Neighbors 86
3.7.5 End-to-End Query Time Using QueryBooster 88
3.7.6 Generality of Rule Transformations 90
3.7.7 Effect of Different Rule Quality Metrics 91

3.8 Conclusions . 93

4 Supporting Middleware-Based SQL Query Rewriting as a Service 94
4.1 Introduction . 94
4.2 QueryBooster System Overview . 97
4.3 Demonstration of the User Experience . 99

4.3.1 Formulating Rules through a Rule Language 99
4.3.2 Formulating Rules by Providing Examples 102
4.3.3 Suggesting Useful Rules from Other Users 103

4.4 Supporting Management and Sharing Rewritings 104
4.4.1 Informative and Fully-Controllable Rewriting Management 106
4.4.2 Intuitive and Interactive Sharing of Rewriting Knowledge 109

4.5 Minimizing Database Intrusiveness . 114
4.5.1 Intrusiveness of SQL Query Rewriting Systems 114
4.5.2 A Survey of Database Connector Licences 117
4.5.3 Profiling Application Queries through Database Connectors 118

4.6 Conclusions . 121

iv

5 Conclusions and Future Work 122
5.1 Conclusions . 122
5.2 Future Work . 123

Bibliography 126

v

LIST OF FIGURES

Page

2.1 Equivalent rewriting option: adding query hints helps the database compute
results within a time budget (500ms). 6

2.2 Approximation rewriting option: rewriting the query to compute an approxi-
mate result within the time constraint. 7

2.3 A original query and a rewritten query. 12
2.4 The Query Rewriter acts like an agent who makes a sequence of decisions

to generate a rewritten query (with a total time ≤ 500ms). At time 0, the
agent considers rewritten query RQ1 due to its low estimation cost (estimated
25ms, the actual 30ms is updated once RQ1 is explored). After estimating
its execution time (1, 300ms), the agent knows that RQ1 is not viable since
the total time is longer than 500ms. The estimation of RQ1 affects the costs
for estimating RQ5 and RQ7. The agent explores RQ5 and then RQ7. With
the estimated execution time being 300ms and the elapsed time being 150ms,
RQ7 is decided as a viable rewritten query because the total time (450ms) is
within 500ms. 14

2.5 Overview of Maliva. 15
2.6 An MDP state in Maliva. 18
2.7 Transition after estimating execution time of RQ1. 20
2.8 The quality of RQ compared to Q using a Jaccard-based quality function as

an example. 29
2.9 One-stage MDP approach. 30
2.10 Two-stage MDP approach. After running the original agent that considers the

8 query-hint sets defined in Figure 2.4 without approximation rules, we cannot
find a viable RQ. We then run the new agent with the quality-aware MDP
model that considers all 8 query-hint sets combined with 3 approximation-
rule sets (e.g., substituting the tweets table with 20%, 40%, or 80% sample
tables), resulting in 24 rewritten queries in total. After spending extra time
exploring a few RQs, the quality-aware agent chooses RQ21 as the final decision. 31

2.11 Performance on the Twitter dataset (τ = 500ms). 37
2.12 Performance on the NYC Taxi dataset (τ = 1s). 37
2.13 Performance on the TPC-H dataset (τ = 500ms). 37
2.14 Performance for 16 ROs on the Twitter dataset (τ = 500ms). 39
2.15 Performance for 1-second time budget on the Twitter dataset. 40
2.16 Performance for join queries (Twitter dataset, τ = 500ms). 41

vi

2.17 Comparison with Bao on the Twitter dataset (τ = 500ms). 42
2.18 Generalization to (a) handle unseen queries and (b) use a commercial database. 43
2.19 Performance of quality-aware rewriting (Twitter, τ = 500ms). 44
2.20 Learning curve and training time on the Twitter dataset. The shaded area is

plotted with “mean + standard deviation” as the upper bound and “mean −
standard deviation” as the lower bound. 46

3.1 Query lifecycle between Tableau and Postgres. 48
3.2 An example query pair (differences shown in blue). 49
3.3 Query-rewriting solutions for databases (native solutions in brown and third-

party solutions in blue). 53
3.4 Query lifecycle of using QueryBooster to rewrite application queries. 56
3.5 Existing rule languages (shown in brown) in the lifecycle of a SQL query. . . 59
3.6 Rewriting rules to replace STRPOS functions with ILIKE predicates in two

different languages. 60
3.7 The process of pattern matching and replacing of a VarSQL rule R on an

example query Q. The gray nodes in both syntax trees of Q and the R’s
pattern are matched keywords. The colored dashed boxes show the variables
in R’s pattern and their matched Q’s elements. 63

3.8 An example rule in VarSQL that removes an unnecessary self-join. 65
3.9 An example of three possible logical plans for a single SQL query which joins

tables A, B, and C with a filtering predicate on the z column of C. 67
3.10 Two original queries that both match the pattern of the rule in Figure 3.8. . 68
3.11 Suggesting rewriting rules from user-given examples. The rule suggestor sug-

gests two rewriting rules (r1 and r2) that cover all five query rewriting pairs
provided by the user, and the total description length of r1 and r2 is minimized
compared to other suggestions. 70

3.12 Transformations on rewriting rules formulated in VarSQL. A transformation is
applied to the pattern and replacement ASTs of a rewriting rule to generalize
it into a more general rule. 73

3.13 A rule graph generated from a given rewriting pair (Q, Q′). The vertices are
generalized rules (only showing patterns due to the space limit). The solid
edges show one path of generalizing the pair into a general rule. The green
tags on the edges illustrate which transformations are applied. 74

3.14 Comparison of different candidate exploration methods to suggest the same
set of rules on the “Tableau + Twitter” workload. 85

3.15 Effect of the m value in the m-promising-neighbor searching strategy on the
WeTune workload. 87

3.16 End-to-end query time (Log-scale) using QueryBooster to rewrite queries with
WeTune-generated rules and human-crafted rules on “Tableau + TPC-H”
workload compared to original query time in PostgreSQL. 88

3.17 End-to-end query time using QueryBooster to rewrite queries with WeTune-
generated rules and human-crafted rules compared to original query time in
MySQL. 90

vii

3.18 The generality of rules generalized from the Calcite examples using different
sets of transformations. 91

3.19 Effect of different β values. 92

4.1 QueryBooster overview. 95
4.2 QueryBooster system architecture. 98
4.3 The “Query Logs” page of QueryBooster shows information about queries from

the application. 100
4.4 Alice formulates a rule to remove CAST(· · · AS TEXT) expressions using the

VarSQL language [88]. In VarSQL’s syntax, <x> is an element-variable that
represents a table, column, value, expression, predicate, or sub-query. 100

4.5 QueryBooster shows the rewriting path of a query. 101
4.6 Queries and plans before and after the rewriting of replacing the STRPOS()>0

predicate with the ILIKE predicate. 102
4.7 QueryBooster suggests a rule given a rewriting example. 103
4.8 QueryBooster suggests Bob a rewriting for a query. 104
4.9 QueryBooster suggests a rewriting for Bob’s query by applying Alice’s two rules.105
4.10 The dashboard of rewriting-rule analysis in QueryBooster. 106
4.11 The ER diagram of the database of QueryBooster. 107
4.12 An example of using macro rules to enforce a user-desired rewriting sequence

for a query. 108
4.13 QueryBooster suggests rewriting rules interactively. The user can select in-

teresting rules and see the corresponding rewritten query by applying the
rule and the estimated or real query time of both the original and rewritten
queries. Users can explore different rewriting rules and sequences based on
their database and rewriting needs. 112

4.14 The workflow of profiling the database running time of a rewritten query
generated by the QueryBooster rewriting service through a PostgreSQL JDBC
driver. 119

viii

LIST OF TABLES

Page

2.1 Datasets. 33
2.2 Number of queries in evaluation workloads. 36
2.3 Workloads with 16 rewriting options. 38
2.4 Workloads of queries where less than 50% plans were viable. 41

3.1 Suitability of existing languages for QueryBooster. 61
3.2 Variable definitions in VarSQL. 64
3.3 Workloads used in the experiments. 82
3.4 User profiles in the user study. 83
3.5 Results in the user study (% of users selected the rule language as the easiest

to understand). 84

4.1 Intrusiveness levels of systems. 115
4.2 JDBC driver licenses for database vendors. 117

ix

ACKNOWLEDGMENTS

Throughout my six-year journey as a Ph.D. student, I have been fortunate to have the
unwavering support and guidance of my advisor, Professor Chen Li. I express my deepest
gratitude to him for his invaluable contribution to every aspect of my research, including
topic selection, technique development, and paper writing. Professor Li’s visionary approach
paved the way for the successful QueryBooster project, which later evolved into the Squidster
project. His unique perspective and rigorous research methodology have profoundly impacted
my intellectual growth, molding me into an independent researcher. I owe my deepest
gratitude to him, as without his unwavering support, this dissertation would not have been
possible.

I express my sincere gratitude to Professor Michael J. Carey and Professor Sharad Mehrotra
for serving on my doctoral committee. Their expertise and insightful feedback have consis-
tently strengthened my work, and I am honored to have had the opportunity to learn from
them.

I am immensely grateful to my Master’s degree advisor, Professor Ge Yu, and my Bachelor’s
degree advisor, Professor Yunzhou Zhang, whom I met while at Northeastern University
in China. Their helpful guidance and support have played a pivotal role in shaping my
academic journey, and without them, I would not have had the opportunity to pursue this
path.

I would like to thank Dr. Jianfeng Jia and Dr. Taewoo Kim for their kind assistance during
my initial days with the team. Our collaboration on the Cloudberry project enabled me to
assimilate the Ph.D. study style at UC Irvine quickly.

I am grateful to all my collaborators who have been a part of my Ph.D. work at UC Irvine, in-
cluding Sadeem Alsudais, Professor Shuang Zhao, Dr. Liming Dong, Niklas Stoehr, Professor
Taiji Chen, Lu He, Yicong Huang, Professor Suellen Hopfer, Dr. Ted Grover, and Professor
Gloria Mark. Their contributions have been instrumental in advancing my research.

I also express my gratitude to my colleagues at UC Irvine who have made my Ph.D. journey
an enriching experience, including Dayue Bai, Yang Cao, Teyu Chen, Rui Guo, Shanshan
Han, Dr. Avinash Kumar, Yue Leng, Xinyuan Lin, Fangqi Liu, Xiaozhen Liu, Chenhan
Lyu, Dr. Chen Luo, Ian Maxon, Raj Mohanty, Shengquan Ni, Professor Weifeng Shan,
Baihao Wang, Guoxi Wang, Tao Wang, Dr. Zuozhi Wang, Qiancheng Wu, Tejia Zhang, and
Tiancheng Zheng. Their support and camaraderie have been invaluable to me.

x

VITA

Qiushi Bai

EDUCATION

Doctor of Philosophy in Computer Science 2023
University of California, Irvine Irvine, CA

Masters in Computer Science 2023
University of California, Irvine Irvine, CA

Masters in Computer Software and Theory 2012
Northeastern University Shenyang, China

Bachelors in Computer Science and Technology 2010
Northeastern University Shenyang, China

SELECTED PUBLICATIONS

Maliva: Using Machine Learning to Rewrite Visualiza-
tion Queries Under Time Constraints.

2023

Qiushi Bai, Sadeem Alsudais, Chen Li, Shuang Zhao. In Proceedings 26th International
Conference on Extending Database Technology (EDBT)

Demo of VisBooster: Accelerating Tableau Live Mode
Queries Up to 100 Times Faster.

2022

Qiushi Bai, Sadeem Alsudais, Chen Li. In Proceedings of the Workshops of the
EDBT/ICDT Joint Conference

Rainbow: A Rendering-Aware Index for High-Quality
Spatial Scatterplots with Result-Size Budgets.

2022

Qiushi Bai, Sadeem Alsudais, Chen Li, Shuang Zhao. In Proceedings of the 22nd
Eurographics Symposium on Parallel Graphics and Visualization (EGPGV@EuroVis)

GSViz: progressive visualization of geospatial influences
in social networks

2022

Sadeem Alsudais, Qiushi Bai, Shuang Zhao, Chen Li. In Proceedings of the 30th Inter-
national Conference on Advances in Geographic Information Systems (SIGSPATIAL)

Marviq: Quality-Aware Geospatial Visualization of
Range-Selection Queries Using Materialization.

2020

Liming Dong, Qiushi Bai, Taewoo Kim, Taiji Chen, Weidong Liu, Chen Li. In Proceed-
ings of the 2020 International Conference on Management of Data (SIGMOD) Confer-
ence

xi

ABSTRACT OF THE DISSERTATION

Improving SQL Performance Using Middleware-Based Query Rewriting

By

Qiushi Bai

Doctor of Philosophy in Computer Science

University of California, Irvine, 2023

Professor Chen Li, Chair

Query performance is critical in database-supported applications where users need answers

quickly to make timely decisions. For decades, databases have relied heavily on query rewrit-

ing to optimize SQL query performance. However, with the current prevalent use of business

intelligence and interactive visualization systems, purely relying on the rewriting capabilities

inside databases is insufficient to optimize queries generated by those modern applications.

On the one hand, different applications have various performance requirements. Some ap-

plications prioritize responsiveness, requiring queries to be executed within strict time con-

straints, and others may prioritize accuracy. Traditional database-centric approaches fail to

exploit such information and adapt to diverse application requirements. On the other hand,

developers and domain experts possess valuable insights into the data and query patterns

specific to their applications. However, the query optimization techniques customized using

domain knowledge can be infeasible inside databases.

In this thesis, we focus on providing middleware-based query-rewriting techniques to help

databases seize opportunities to optimize queries.

First, for many applications with stringent response time constraints, such as interactive

visualization systems, we propose a machine learning-powered query rewriting framework

(called Maliva) to rewrite the queries with various options and help the databases generate

xii

efficient plans. Maliva leverages those expensive and high-accuracy query cost estimators to

guide their rewriting process. By considering a pre-defined time constraint,Maliva judiciously

explores different rewriting options and balances the query planning time and the execution

time to find an efficient rewritten query that meets the time constraint.

Second, in many cases, developers want to use their domain knowledge about the applications

and datasets to rewrite queries for better performance. We propose a human-centered query

rewriting solution (called QueryBooster) to provide users with an express and easy-to-use rule

language to define rewriting rules. In addition, QueryBooster allows users to express their

rewriting intentions by providing example query pairs. QueryBooster then automatically

generalizes them into rewriting rules and suggests high-quality ones to the users.

Finally, to lower the bar of users adopting the proposed rewriting framework, we implemented

QueryBooster as middleware-based multi-user system to provide query rewriting between

applications and databases as a service. Treating both the applications and databases as

black boxes, QueryBooster requires no code modifications to them. To use the service, users

only need to replace the database connector between the application and the database with

a customized version provided by QueryBooster. The customized connector automatically

intercepts application queries and sends them to QueryBooster to rewrite them based on

user-defined rewriting rules. QueryBooster’s service model brings SQL query rewriting to a

new paradigm where (1) users can easily formulate, control, and monitor query rewriting;

(2) they can share rewriting knowledge and benefit from the wisdom of the crowd; and (3)

they enjoy the non-intrusiveness security and pay-as-you-go convenience.

xiii

Chapter 1

Introduction

Data analytics has emerged as an important discipline in today’s digital era. As information

permeates every aspect of our lives, organizations increasingly recognize the pivotal role

of data-driven insights in shaping strategic decisions and driving growth. At the heart of

this data revolution lies a crucial element: database-supported applications. Ranging from

business intelligence (BI) platforms to visualization systems, these tools enable organizations

to uncover meaningful patterns, extract actionable insights, and make informed decisions. As

organizations deal with ever-increasing volumes of data, the ability to efficiently retrieve and

process data becomes critical. The speed of query execution directly impacts the timeliness

of gaining insights, making decisions, and the overall user experience.

For decades, databases have relied heavily on query rewriting to optimize SQL query per-

formance. However, with the current prevalent use of business intelligence and interactive

visualization systems, purely relying on the rewriting capabilities inside databases is insuf-

ficient to optimize queries generated by those modern applications. There are two main

Challenges. (C1) On the one hand, different applications have various performance require-

ments. Some applications prioritize responsiveness, requiring queries to be executed within

1

strict time constraints, and others may prioritize accuracy. Traditional database-centric

approaches fail to exploit such information and adapt to diverse application requirements.

(C2) On the other hand, developers and domain experts possess valuable insights into the

data and query patterns specific to their applications. However, the query optimization

techniques customized using domain knowledge can be infeasible inside databases.

To seize those opportunities to help databases optimize application queries, we focus on

middleware-based query rewriting solutions, which have a few unique advantages. First,

unlike the approach of modifying the application or database code, which is time-consuming

and error-prone, middleware can be seamlessly integrated into the existing infrastructure.

Second, middleware can be tailored to address specific application needs by taking into

account factors such as response time and query accuracy to rewrite queries. Finally, sitting

in between the application and database, middleware can facilitate domain-specific query

optimization techniques by rewriting application queries before sending them to the database

with developer-customized rewriting rules. In this thesis, we proposed two solutions to

address the aforementioned two challenges.

1. Maliva: Using Machine Learning to Rewrite Visualization Queries Under Time

Constraints. Visualization is becoming increasingly important in the Big Data era as a

powerful way for people to gain insights from data quickly and intuitively. Responsiveness is

critical in visualization applications, and a request needs to be served within a time budget,

e.g., 500ms. This requirement is especially challenging when the data volume is large and the

user request has ad-hoc conditions on attributes of various types. In Chapter 2, we study the

problem of answering visualization requests with a predetermined time constraint. We focus

on middleware-based solutions, with the advantage that they treat the backend database as

a black box without changes and can leverage computing capabilities to do in-situ analytics.

We consider rewritings that return exact results and rewritings that return approximate

results. We propose a machine learning-powered query rewriting framework (called Maliva)

2

to rewrite the queries with various options and help the databases generate efficient plans.

Maliva leverages expensive and high-accuracy query cost estimators to guide their rewriting

process. By considering a pre-defined time constraint, Maliva judiciously explores different

rewriting options and balances the query planning time and the execution time to find an

efficient rewritten query that meets the time constraint. Our experiments on both real and

synthetic datasets show that Maliva performs significantly better than a baseline solution

that does not do any rewriting in terms of the probability of serving requests interactively

and query execution time.

2. QueryBooster: Improving SQL Performance Using Middleware Services for

Human-Centered Query Rewriting. In a wide range of database-supported systems,

there is a unique problem where both the application and database layer are black boxes,

and the developers need to use their knowledge about the data and domain to rewrite queries

sent from the application to the database for better performance. For example, in one of

our experiments using Apache Superset to analyze social media tweets on top of a MySQL

database, a human-crafted rewriting rule that translates the textual filtering condition from

a LIKE predicate to a full-text search predicate can improve the query performance by 100

times faster. However, since this rewriting is valid only for a particular dataset, it cannot be

adopted by native optimizers inside databases. In addition, existing query rewriting solutions

inside and outside databases do not give the users enough freedom to express their rewriting

needs. In both Chapter 3 and Chapter 4, we propose a middleware-based human-centered

query rewriting system (called QueryBooster) to address this problem.

In Chapter 3, we focus on the core technical aspects of the QueryBooster system. Query-

Booster provides users with an express and easy-to-use rule language (VarSQL) to define

rewriting rules. In addition, QueryBooster allows users to express their rewriting intentions

by providing example query pairs. QueryBooster then automatically generalizes them into

rewriting rules and suggests high-quality ones to the users. A user study and experiments on

3

various workloads show the benefit of using VarSQL to formulate rewriting rules, the effective-

ness of the rule-suggestion framework, and the significant advantages of using QueryBooster

to improve the end-to-end query performance.

In Chapter 4, we focus on the system design aspects of the QueryBooster system to provide

query rewriting between applications and databases as a service. QueryBooster requires

no code modifications to the applications and databases. To use the service, users only

need to replace the connector between the application and the database with a customized

connector provided by QueryBooster. This connector automatically intercepts application

queries and sends them to QueryBooster to rewrite them based on user-defined rewriting

rules. QueryBooster’s service model brings SQL query rewriting to a new paradigm where

(1) users can easily formulate, control, and monitor query rewriting; (2) they can share

rewriting knowledge and benefit from the wisdom of the crowd; and (3) they enjoy the

non-intrusiveness security and pay-as-you-go convenience.

In Chapter 5, we conclude the thesis, and we identify several interesting research opportu-

nities as future work.

4

Chapter 2

Using Machine Learning to Rewrite

Visualization Queries Under Time

Constraints

2.1 Introduction

As a powerful way for people to gain insights from data quickly and intuitively, visualization

is becoming increasingly important in the Big Data era. A common architecture to support

data visualization has three tiers: a backend database, a middleware layer, and a user-facing

frontend. The middleware translates a visualization request to a query (typically in SQL)

to the database and sends the query answers to the frontend to display. This architecture

is widely used due to its benefits of supporting in-situ analytics at the data source, and

utilizing the database’s built-in capabilities of efficient storage, indexing, query processing,

and optimization. Responsiveness is critical in these systems [56, 21, 13], and a request needs

to be served within a time budget, e.g., 500ms. This requirement is especially challenging

5

when the data volume is large, and the user request has ad-hoc conditions on attributes of

various types.

In this chapter, we study the problem of answering visualization requests with a predeter-

mined time constraint. We focus on middleware-based solutions, with the advantage that

they treat the backend database as a black box without changes, and can leverage the com-

puting capabilities to do in-situ analytics. We consider both rewritings that return exact

results and rewritings that return approximate results. As a motivating example, consider a

system that visualizes social media tweets on the US map with a time constraint of 500ms.

Its backend database has a tweets table with attributes Content, Location, and CreateAt.

Database

Traditional middleware

SELECT BIN_ID, COUNT(*)
 FROM tweets
WHERE Content contains "covid"
AND Location in ((-124.4, 32.5),
 (-114.1, 42.0))
AND CreateAt on Nov-26-2020
GROUP BY BIN_ID(Location);

(a) The original SQL query takes 3.35s.

Database

Maliva: ML-based middleware

/*+ Index-Scan(CreateAt) */
SELECT BIN_ID, COUNT(*)
 FROM tweets
WHERE Content contains "covid"
AND Location in ((-124.4, 32.5),
 (-114.1, 42.0))
AND CreateAt on Nov-26-2020
GROUP BY BIN_ID(Location);

(b) A rewritten query with a hint takes 0.33s.

Figure 2.1: Equivalent rewriting option: adding query hints helps the database compute
results within a time budget (500ms).

Equivalent rewriting options. Suppose a user asks for a spatial heatmap of tweets

containing the keyword covid on the Thanksgiving day of 2020 in a region. The middleware

creates a SQL query shown in Figure 2.1(a), which takes 3.35 seconds to execute. For this

query, the physical plan generated by the database uses the keyword to access the inverted

6

index on the Content attribute to retrieve candidate records, then filters them using the

other two conditions. If we rewrite the query to an equivalent query by adding a hint

(Figure 2.1(b)), the rewritten query takes only 0.3 seconds, as the hint helps the database

generate a more efficient physical plan that uses the temporal filtering condition to access

the B+ Tree index on the CreateAt attribute.

Approximation rewriting options. Figure 2.2(a) shows another visualization request

on a larger region, which takes at least 4.28s for the database to run, no matter what

hints we add. In this case, we rewrite the query by using random sampling, resulting in an

approximation query that takes only 0.45s to run (see Figure 2.2(b)).

Database

Traditional middleware

SELECT Id, Location
 FROM tweets
WHERE Content contains "covid"
AND Location in ((-132.6, 27.7),
 (-103.5, 40.0))
AND CreateAt on Nov-26-2020;

(a) The query takes 4.28s (no hints can re-
duce it).

Database

Maliva: ML-based middleware

SELECT Id, Location
 FROM sample_tweets
WHERE Content contains "covid"
AND Location in ((-132.6, 27.7),
 (-103.5, 40.0))
AND CreateAt on Nov-26-2020;

(b) A rewritten query using a sample table
takes 0.45s.

Figure 2.2: Approximation rewriting option: rewriting the query to compute an approximate
result within the time constraint.

Why does the database fail? For the query in Figure 2.1(a), there are many reasons the

database can fail to generate an efficient plan. One is the estimation error of the query cost

due to an underestimation of the keyword covid’s selectivity. The cost-estimation problem in

optimizers is notoriously hard [58]. For example, in our experiments (Section 3.7), out of the

7

602 visualization queries that had at least one physical plan that could finish within 500ms,

PostgreSQL failed to choose an efficient plan for 269 queries due to its cost-estimation errors.

Although there are many higher-accuracy estimators such as [124, 125, 107, 64, 78, 36, 62],

their higher estimation cost prevents them from being adopted by a general-purpose database

to meet the visualization need. In particular, for OLTP queries that need to be finished within

milliseconds, spending tens of milliseconds for the cost estimation is unacceptable. A key

observation is that for visualization applications where requests come with a time constraint,

the middleware can afford to spend more time (e.g., 300ms) on the cost-estimation using the

high-accuracy estimators to find efficient plans (e.g., within 50ms), while it can still answer

requests within a given time constraint (e.g., 500ms).

Challenges. We may enumerate all possible rewritten queries by applying different hints

to a given query. We then use one of the aforementioned query-time estimators (“QTE”

for short) to estimate the execution time of these rewritten queries and choose the most

efficient one. There are several challenges in using this approach in the context of interactive

visualization. (C1) A main challenge is that the cost of estimating the execution time of a

rewritten query can be significant given a tight time constraint. For example, in Bao [62],

estimating the execution time of all rewritten queries for one original query can take up

to 230ms in their experiments. (C2) Another challenge is the uncertainty caused by the

estimation error of the QTE, and the fact that the backend database may or may not follow

the provided hints to generate a physical plan. (C3) The third challenge is quality. For

queries without equivalent rewritten queries that can meet the time constraint, approximate

rewriting options need to be explored. It is critical to maximize the quality of the result

while ensuring the query time is within the time constraint.

We address these challenges by introducing a novel machine-learning-based technique called

Maliva, which stands for “Machine Learning for Interactive Visualization.” The technique

formulates the middleware task as a Markov Decision Process (MDP). For a given time

8

budget, we train an MDP agent to balance the planning time and the execution time of the

rewritten queries. By learning from previous experiences, the MDP agent judiciously explores

different rewriting options, so that the total time (including planning and query execution) is

within the time limit. (We address challengeC1 in Section 2.4.) Using reinforcement learning

to train the models, Maliva can handle the uncertainties introduced by the inaccurate time

estimation and the fact that the database could ignore the query hints. (We address challenge

C2 in Section 2.5.) By considering visualization qualities of rewritten queries in the reward

design of the MDP model, Maliva makes the best effort to maximize the result’s quality while

ensuring the query time is within the time limit. (We address challenge C3 in Section 2.6.)

Our experiments show that Maliva has a much higher chance (70×) than the original query

to generate an execution plan such that the total time is within a time limit. Interestingly,

it can also reduce query execution time. Both improvements show the significant benefits of

adding learning capabilities to the middleware to support responsive visualization.

The rest of the chapter is organized as follows. After formulating the middleware query-

generation problem in Section 2.2, we give an overview of Maliva in Section 2.3. We present

the details of this MDP-based solution, including its states, actions, transitions, and rewards

(Section 2.4). We present how Maliva trains an MDP agent offline and uses it to gener-

ate a rewritten query online (Section 2.5). We generalize the MDP-based solution to be

quality-aware by considering approximation rewriting (Section 2.6). Lastly, we report the

results of a thorough experimental evaluation of Maliva to show its performance and benefits

(Section 3.7).

2.1.1 Related Work

Visualization is a broad topic studied in many communities, and here we focus on efficiency-

related works. A survey [31] summarized studies on interactive data analytics and visualiza-

9

tion, and there are several recent studies on this topic [44, 87, 53, 50].

Approximate Query Processing (AQP). There are many techniques for computing approxi-

mate answers to queries [130, 129, 69, 77, 54, 34, 76, 117, 25, 92, 80, 15]. These approaches

focus on developing approximation solutions to compute high-quality visualization. Existing

solutions can be adopted as approximation rules in Maliva, such as Sample+Seek [25], which

generates error-bounded visualization results by running queries on a small sample table.

Datacube-based approaches. Related studies include [55, 24, 120, 57, 43, 21, 46, 68]. In these

approaches, the predefined cube intervals cannot support visualization queries with arbitrary

numerical range conditions. The proposed Maliva system efficiently computes results for

visualization queries with arbitrary conjunctive selection conditions.

Progressive visualization. There are solutions to show visualization results progressively [67,

42, 20, 29, 21, 15]. For instance, DICE [21] uses random and stratified samples to present an

approximate result and then incrementally updates the result. These progressive visualiza-

tion systems can adopt the proposed Maliva middleware to further optimize the intermediate

queries to increase their efficiency.

Prefetching-based approaches. Techniques including [12, 126, 97, 3] accelerate visualization

queries by prefetching or caching their results. For example, ForeCache [12] divides visualiza-

tions into tiles and prefetches them based on predicted user behaviors. Maliva is orthogonal

to these techniques, and it can be adopted by them to further optimize the database queries.

Visualization using big data systems. These techniques use Hadoop, Spark, and Hive to sup-

port visualizations [127, 15, 110, 26, 16]. For instance, HadoopViz [26] and GeoSparkViz [127]

use Hadoop and Spark to generate high-resolution visualizations. Their focus is on offline

construction, not on an interactive visualization for queries with ad-hoc conditions. The

proposed Maliva middleware technique is complementary to these solutions.

10

ML for visualization. A survey by Wang et al. [118] summarized studies of applying ML

techniques to different stages during the whole visualization pipeline. Examples are [59, 119]

for data cleaning and preparation and [40, 89, 60] for visualization recommendation. Our

proposed system focuses on applying ML techniques to solve performance issues at the

middleware.

ML-based query optimization. ML has recently used in database optimizers [62, 63, 128, 64,

101, 51, 115], selectivity estimation [78, 36], and cost estimation [107]. Comparison with

Bao: The recent Bao technique [62] uses hints to generate optimized queries by modeling

the optimization as a multi-armed bandit problem. It applies Thompson sampling to min-

imize the training time and maximize the accuracy of its neural-network-based query time

estimator (QTE). We have a detailed discussion about the differences between Maliva and

Bao in Section 2.6.3. We also conducted extensive experiments in Section 3.7 to compare

their performance, and the results show Maliva outperformed Bao in various metrics (See

Section 2.7.6).

2.2 Problem Formulation

Visualization architecture. We consider a typical three-tier data-visualization system

that consists of a backend database, a middleware layer, and a frontend. For each frontend

visualization request, let Q be the original SQL query for the request. Let τ be a time limit

that quantifies the expected responsiveness of the system. Ideally, we want the total delay,

from the time the user submits a request to the time the result is shown on the frontend, to

be within τ . The original query Q may not meet the time-limit constraint when the backend

database cannot generate a physical plan that is fast enough. To solve this problem, Maliva

rewrites Q with two kinds of options: query hints and approximation rules. By adding a

query hint to Q, Maliva can help the backend database generate an efficient physical plan

11

that computes the result within the time limit. For expensive queries where no physical plan

can meet the time limit, Maliva can add an approximation rule to the original query such

that the backend database computes an approximate result to trade the visualization quality

for responsiveness. Note that the proposed approach also works in a more general setting of

approximate query processing (AQP) where a time constraint is given.

Query hints. A query hint in a database is an addition to the SQL statement that instructs

the database engine on how to execute the query. For example, a hint may tell the engine

to use or not to use an index (even if the query optimizer would decide otherwise) [38]. A

query hint does not change the semantic meaning of the query, i.e., the result computed

by the database engine with the hint remains the same. Databases such as AsterixDB [9],

MySQL [71], Oracle [75], PostgreSQL [86], and SQL Server [105] support a variety of query

hints. For example, in Figure 2.3(b), Maliva adds two hints + Index-scan(t CreateAt) and

Nest-Loop-Join(t u) to the original query. They suggest the engine to use the index on the

CreateAt attribute to scan the table t, and do a nest-loop join on tables t and u.

(a) Original Query (Q)

SELECT BIN_ID, COUNT(∗)
FROM tweets t, users u

WHERE t.Content contains ”covid”
AND t.Location in ((-124.4, 32.5),

(-114.1, 42.0))
AND t.CreateAt on ’Nov-26-2020’
AND u.TweetCnt in [100, 5000]
AND t.user_id = u.id

GROUP BY BIN_ID(t.Location);

(b) Rewritten Query (RQ)

/∗+ Index−scan(t CreateAt),
Nest−Loop−Join(t u) ∗/

SELECT BIN_ID, COUNT(∗)
FROM tweetsSample20 t, users u

WHERE t.Content contains ”covid”
AND t.Location in ((-124.4, 32.5),

(-114.1, 42.0))
AND t.CreateAt on ’Nov-26-2020’
AND u.TweetCnt in [100, 5000]
AND t.user_id = u.id

GROUP BY BIN_ID(t.Location);

Figure 2.3: A original query and a rewritten query.

Approximation rules. An approximation rule is a method to rewrite the original SQL

query to compute an approximate result, and the new query takes less time. There are

various approximation rules available in database systems, such as adding a “Limit” clause,

applying a SQL-standard “TableSample” operator on a table, or substituting a table with

12

a smaller table randomly sampled from the original table. For example, in Figure 2.3(b),

Maliva rewrites the original query by substituting the table tweets with a sample table

tweetsSample20 with 20% randomly selected records.

Now we formally define rewriting options, rewritten queries, and the query-rewriting prob-

lem.

Definition 2.1. (Rewriting Option) Let H be a set of query-hint sets and A be a set of

approximation-rule sets. A rewriting option (“RO” for short) is a tuple (h, a), where h ∈ H

and a ∈ A. Note that both h and a can be the empty set ∅.

For instance, the rewriting option in Figure 2.3(b) is a tuple with a query-hint set of “use

the index on CreateAt and do a nest-loop join on t and u” and an approximation-rule set

of “substituting the table tweets with the sample table tweetsSample20”. We assume the

user-defined candidate set of rewriting options does not contain invalid query-hint sets or

approximation rules. A query-hint set is considered to be invalid if it contains conflicting

hints, e.g., Nest-Loop-Join(t u) and Hash-Join(t u).

Definition 2.2. (Rewritten Query) Given an original SQL query Q and a rewriting option

RO, a rewritten query (“RQ” for short) is a new SQL query generated by applying RO onto

Q. If RO = (∅, ∅), then RQ = Q.

For example, Figure 2.3(b) is a rewritten query for the original query in Figure 2.3(a).

Query-rewriting problem. Given a visualization request’s original SQL query Q, and

a time limit τ , we want to generate a rewriting option, such that the total time of the

corresponding rewritten RQ, including planning and query execution, is within τ and the

quality of RQ’s result is maximized. To quantify the quality, we assume a given visualization

quality function F . Let r(Q) be the result of the original query Q and r(RQ) be the result

of the rewritten query RQ. Then F (r(Q), r(RQ)) computes the quality of r(RQ).

13

0 30 90 150 Time (ms)

RQ Index on
Content

Index on
CreateAt

Index on
Location

RQ0 ✘ ✘ ✘
RQ1 ✘ ✘ ✓
RQ2 ✘ ✓ ✘
RQ3 ✘ ✓ ✓
RQ4 ✓ ✘ ✘
RQ5 ✓ ✘ ✓
RQ6 ✓ ✓ ✘
RQ7 ✓ ✓ ✓

RQ Estimation
Cost

Estimated
Time

RQ1 30 1300
… … …

RQ5 60 N/A
… … …

RQ7 120 N/A

RQ Estimation
Cost

Estimated
Time

RQ1 25 N/A
… … …

RQ5 90 N/A
… … …

RQ7 150 N/A

RQ Estimation
Cost

Estimated
Time

RQ1 30 1300
… … …

RQ5 60 1000
… … …

RQ7 60 N/A

* Hint of using (✓) or not using (✘) index in a rewritten query.Agent

450Estimate
RQ1

Estimate
RQ5

Estimate
RQ7 Run RQ7

Figure 2.4: The Query Rewriter acts like an agent who makes a sequence of decisions to
generate a rewritten query (with a total time ≤ 500ms). At time 0, the agent considers
rewritten query RQ1 due to its low estimation cost (estimated 25ms, the actual 30ms is
updated once RQ1 is explored). After estimating its execution time (1, 300ms), the agent
knows that RQ1 is not viable since the total time is longer than 500ms. The estimation of
RQ1 affects the costs for estimating RQ5 and RQ7. The agent explores RQ5 and then RQ7.
With the estimated execution time being 300ms and the elapsed time being 150ms, RQ7 is
decided as a viable rewritten query because the total time (450ms) is within 500ms.

In Sections 2.3, 2.4, and 2.5, we study the case of using query hints only (i.e., without

changing query results). In Section 2.6, we study the case where approximation rules are

also used.

2.3 Maliva: ML-based Query Rewriting

We now introduce the middleware technique called “Maliva” to solve the aforementioned

query-rewriting problem. We first give an overview of the technique, then use an example

to explain the details.

Overview. As illustrated in Figure 2.5, Maliva rewrites the original SQL query to answer a

visualization request within a time budget. It considers a predefined set of rewriting options,

which we denote as Ω = {RO1, . . .}. For each ROi, the rewritten query is denoted as RQi.

The set of candidate rewritten queries is Φ = {RQ1, . . .}.

Maliva has a Query Rewriter that enumerates possible RQs and uses a Query Time Estimator

14

Frontend Maliva-based Middleware

MDP-based Query Rewriter

Database

Rewritten
Query

RQi

 Estimated
Time
of RQi

…

Statistics

Query Results Handler
Results

Visualization

Request

Visualization

Results

 Query Time Estimator

Rewritten

Query

Data

Figure 2.5: Overview of Maliva.

(QTE) to estimate the execution time of each of them. The Query Rewriter uses the best

effort to choose an RQ such that the total time, including the planning process and query

execution, is within the time budget τ . Such an RQ is called viable. The middleware then

sends the rewritten query to the database. The Query Result Handler sends the retrieved

result to the frontend to visualize.

Näıvely enumerating all available RQs in Φ is computationally prohibitive due to two reasons.

First, the cost of Query Time Estimator to estimate the execution time of a rewritten query

is not negligible. For instance, in some cases it could take up to 70ms [107] on a 7GB dataset

or 300ms [124] on a 10GB dataset. Second, the number of RQs increases exponentially when

the number of applicable indexing choices increases. For example, consider a selection query

on a table with filtering conditions on m attributes, and the database has an index on each

attribute. The number of query-hint sets in H would be 2m, since the database can use any

subset of the m indexes to do filtering and then intersect the record lists to compute the

final result. Therefore, the Query Rewriter needs to balance the exploration time for query

estimation and the execution time of each chosen RQ to find a viable RQ.

An example. Maliva views query rewriting as a Markov decision process (MDP) [108]

and adopts machine learning (ML) to solve this problem. We use the running example in

15

Section 2.1 to illustrate how Maliva uses an MDP agent to make a sequence of decisions to

find a viable RQ. For simplicity, we assume the rewrite-options (RO) set to involve query

hints only. We will generalize the technique to consider approximation rules in Section 2.6.

As shown in Figure 2.4, a query has three selection conditions on three attributes, and each

of which has an index. Suppose in the set H of query-hint sets, each attribute has a query

hint of using or not using the index. Thus, we have 23 = 8 query-hint sets to choose from.

The agent makes a sequence of decisions to estimate the execution times of several rewritten

queries and find a viable one RQ7 (that uses the indexes on all three attributes). Next, we

present the details of this MDP-based technique.

2.4 MDP Model for Adding Query Hints

In this section, we present the details of using an MDP model in Maliva to solve the query-

rewriting problem and discuss how to implement the Query Time Estimator (QTE).

2.4.1 MDP Model for Query Rewriting

MDP [108] is a formalization of sequential decision-making problems where an agent learns

to achieve a goal from interaction with an environment. At each time step, the agent is in a

state s, and chooses an action a available in state s. The environment transits the agent to

a new state s′, and gives the agent a corresponding reward R(s, a). To train an MDP agent

is to find a good policy π∗ such that if the agent follows the policy to choose an action for

each state, it maximizes the total reward.

Motivation of using MDP. In the example shown in Figure 2.4, we observed some unique

properties in the decision-making process. (1) The rewritten queries considered earlier can

influence the agent’s later decisions because exploring earlier queries also provides additional

16

information. (2) Since the agent’s goal is to find a viable rewritten query of which the total

time is within the time budget, it has to balance between the time spent to estimate rewritten

queries and their execution time. Based on these observations, instead of machine learning

models that decide on a rewritten query directly by looking at the query itself, MDP is a

promising candidate mathematical model that captures those properties.

We use the MDP model to solve the query-rewriting problem. For simplicity, we first focus

on the case where rewriting options do not contain any approximation rules, which means

no rewritten queries have quality loss. We will generalize the technique to consider approx-

imation rules in Section 2.6. Without considering quality loss, the MDP agent learns to

maximize the chance of finding a viable rewritten query for a given visualization request.

The agent takes a sequence of actions, and each action chooses an RQ to explore. That

is, it asks the query time estimator (QTE) to estimate the execution time of the RQ. The

agent chooses an RQ based on the current state, and considers the future cost it needs to

pay and the execution time of RQs already explored. The agent gets a bonus if it finds a

viable RQ, or a penalty if it runs out of time. In the offline phase, by analyzing queries in

the training workload, the agent learns to maximize the chance to receive a bonus. In the

online processing phase, given a new query, the agent decides which RQ to explore in each

step to receive a bonus in the end. Now we present the details of how to use MDP to model

the process of choosing RQs.

States. A state represents the past decisions, based on which the agent decides an RQ to

consider next. Suppose we are given a predefined set of n ROs, i.e., Ω = {RO1, . . . , ROn}.

Correspondingly, we have n candidate RQs, denoted as Φ = {RQ1, . . . , RQn}. A state is a

vector

s = (E,C1, C2, . . . , Cn, T1, T2, . . . , Tn),

which includes three pieces of information, as shown in Figure 2.6. (1) The elapsed time

(E) captures how much time we have spent. (2) The estimation cost (Ci) for each possible

17

rewritten query RQi captures how much time is needed for the agent to estimate its running

time. Each Ci is initialized with a rough estimation collected offline and updated during the

online planning phase. Note that the MDP state does not require the initial Ci values to be

accurate, and a rough estimation from history statistics suffices. The actual estimation costs

will be collected while the MDP agent processes a query, as will be described soon in the

definition of Transitions. (3) Ti is the estimated time for each already explored RQi. Each

Ti is initialized with a 0 value until it is filled with an estimated execution time.

Estimation cost
…

…

Elapsed
time

Estimated time
…

…State

Figure 2.6: An MDP state in Maliva.

We assume for each rewritten query RQi, collecting the physical plan and its statistics

(e.g., cardinality and cost estimations of each operator) is done by the QTE, and its time

is captured by the MDP model’s estimation cost (Ci). We assume the rewritten queries’

physical plans and statistics are not available to the MDP model. Thus, the proposed MDP

model is general, and can be applied to any query template (a query template has a fixed

set of join tables, a fixed set of filtering attributes, and a fixed set of projection attributes)

with any predefined query-hint set. A natural question is that without the statistics of the

explored RQs stored in the state, how can the MDP model make a good decision on which

RQ to choose next? Our answer is that the execution time of a rewritten query implicitly

captures the statistics of the physical operators (e.g., the cost of doing an R-Tree index

scan on the Location attribute). By keeping the estimated execution time of each explored

RQ in its state, the MDP model can learn the correlations of the execution times between

different rewritten queries and make good decisions. Note these correlations are dependent

on the dataset (e.g., data distribution, available indexes, etc.) and the database configuration

(e.g., RAM budget). Thus the model needs to be re-trained if the dataset or the database

configuration changes.

18

Actions. An action, denoted as a, is to explore an RQ next. For each RQ, the agent asks

the QTE to estimate its execution time. Meanwhile, the agent needs to pay a cost as it takes

time for the QTE to extract query features, possibly by collecting online statistics from the

database, and running the estimation model to do the estimation. In the running example,

at time 0, the agent decides to explore RQ1. It asks the QTE to estimate RQ1’s execution

time.

Transitions. A transition function defines how the environment computes the next state,

given the agent’s action in the current state. Let the RQ considered by action a in state

s be RQi. We define the transition function T as follows. First, the QTE (a black-box to

the MDP agent) estimates the time of RQi, and we add the estimated time Ti to the state.

Second, the estimation costs for other RQs could change. In the running example, to estimate

RQ1 that uses the R-Tree index on the Location attribute, we need to collect the spatial

filtering condition’s selectivity on the Location attribute. To estimate RQ5 that uses both

the inverted index on the Content attribute and the R-Tree index on the Location attribute,

we need to collect the selectivity values of the filtering conditions on both attributes. After

the agent takes the RQ1 action, we update the estimation cost of RQ1 to be the actual

time it costs and update the approximated estimation cost of RQ5 by excluding the cost to

collect the selectivity value of the spatial filtering condition. Figure 2.7 shows an example

of state transition. After estimating the time of RQ1, we add the estimated time 1, 300ms

of RQ1 to the state, update the estimation cost for RQ1 from the estimated 25ms to the

actual 30ms, and update the estimation cost for RQ5 from the previous estimated 90ms to

the new estimated 60ms. Lastly, the estimation takes time Ĉi, and we add it to the elapsed

time so far to indicate how much time the agent has spent exploring different RQs. Note

that the Ĉi is the actual cost of estimating RQi, which could be different from Ci because Ci

is an approximated cost for estimating RQi. For example, if the QTE estimates the cost of

RQ1 by running a query on a sample table, the actual cost of QTE estimating RQ1 is only

obtained after we pay the cost.

19

 Query Time Estimator

Database

Selectivity on
Content

Selectivity on
CreateAt

Selectivity on
Location

N/A N/A 0.0083

cost=30mscost=60ms

=1300ms

Estim
ate

0

Estimation cost

25 …

Elapsed
time

Estimated time

0 0

…

…

… …

90 …

…

…

30 30 … 1300 0…

State

60 … …

Tr
an

si
t t

o

Figure 2.7: Transition after estimating execution time of RQ1.

20

Rewards. A reward function defines the agent’s immediate gain when it takes a particular

action a in a given state s. In our setting, consider two cases to compute the reward function.

(1) The first case is when the agent is at an intermediate state where it still has time for

planning but has not yet found a viable rewritten query. In this case, the agent should not

be awarded or punished since it has not made a decision yet. Thus the reward value is 0. (2)

The second case is when the agent is at a termination state where it decides the rewritten

query R̂Q, runs it against the database, and collects the execution time T̂ of R̂Q. In this

case, the agent should be awarded if the total time (including both the planning time and

rewritten query execution time) is less than the time budget, or punished if the total time

is more than the budget.

The agent decides on a rewritten query by considering three situations. The first one is that

the agent finds an RQ to be viable based on the estimation of the QTE before running out

of time. For example, in Figure 2.4, after spending 150ms for planning, the agent decides

RQ7 as the chosen rewritten query, since the predicted total time of RQ7 is 450ms, which is

within the 500ms budget. The second situation is when the agent uses up the time budget

and has to stop planning. The third situation is when the agent has exhausted all candidate

rewritten queries and has to decide which RQ to choose. In the latter two situations, the

agent chooses the fastest RQ known so far as the final decision.

Formally, suppose the generated rewritten query by the agent is R̂Q and the actual running

time of query R̂Q is T̂ . Then the reward function R(s, a) is defined as follows,

R(s, a) = (τ − s.E − T̂)

τ
, (2.1)

where s.E denotes the elapsed time so far in state s. If the total time s.E+ T̂ is less than the

time budget τ , which makes R(s, a) positive, then the agent receives a reward. The faster

21

the rewritten query is, the larger the reward will be. On the other hand, if the total time

exceeds the time budget, which makes R(s, a) negative, then the agent receives a penalty.

The slower the rewritten query is, the larger the penalty will be. Thus, guided by the reward

function, the MDP model will learn to find an efficient rewritten query as soon as possible.

2.4.2 Query Time Estimator (QTE)

Take the sampling-based QTE described in [124] as an example. It first builds an analytical

cost model (e.g., linear regression model), and uses it to estimate the execution time of

a rewritten query by collecting its statistics online. Specifically, it estimates the selectivity

values of the query conditions by running count(*) queries on a small sample table, provides

the values as input features to the cost model, and uses the model’s prediction as the query’s

execution-time estimation. There are also other possible solutions in the literature [125, 107,

64] that can be used by Maliva. Note that QTEs are the focus of this chapter, and Maliva

leverages a given QTE intelligently to balance the planning time and the query execution

time.

2.5 Training and Using the MDP Agent

In this section, we discuss how to train the MDP agent offline in Maliva on a workload of

visualization requests and use it to generate a viable rewritten query online.

2.5.1 Training the MDP Agent

Suppose we have a workload of queries W = [q1, q2, . . . , qm]. Our goal is to find an optimal

policy π∗ such that for any query qi ∈ W , the agent following policy π∗ maximizes the

22

chance to generate a viable rewritten query. We adopt the deep Q-learning algorithm [65]

for finding an optimal policy for the MDP agent. Its main idea is to use a neural network

(called Q-network) to represent a policy π. Given an input of a state vector, the q-network

outputs a Q-value [122] for each possible RQ in the state. A higher q-value means that

the rewritten query is more likely to be viable given the current information. Its training

process includes two main steps. The first step is to generate a set of experiences by exploring

different planning sequences for queries in the workload repeatedly. The second is to replay

those experiences to update the q-network’s weights gradually such that the q-network can

approximate the q-values of the optimal policy for each state-action pair.

Training an MDP agent for query rewriting. Algorithm 1 details how we train the

MDP agent. To apply deep q-learning, we generate the replay memoryM of experiences. For

a given visualization query workload W = [q1, q2, . . . , qm], we generate a set of experiences.

Each experience is a 4-tuple

(s, a, s′, r′),

where the agent in a state s estimates the time of the hinted query represented by an action

a and observes the next state s′ with a reward r′. Note that different queries can have

different optimal policies. Our goal is to learn an optimal policy for the whole workload. We

let the agent explore all the queries in the workload W in multiple iterations until the policy

converges or the number of runs exceeds a maximum threshold. In each iteration, we shuffle

the order of queries to reduce the bias caused by earlier queries on the exploration direction

of later queries. For each query q in W , we let the agent complete a sequence of decisions.

At each step, it selects an RQ to estimate. It pays the cost to estimate the rewritten query’s

execution time, transits to the next state, and receives an immediate reward. The agent

repeats the process until it reaches a termination state (line 9) in one of the three cases. The

first case is when the estimated time T (a) of the rewritten query in action a suggests it is

potentially viable, i.e., s.E + T (a) ≤ τ . The second case is when the agent runs out of time,

23

Algorithm 1: Training an MDP agent

Input: A query workload W = [q1, q2, . . . , qm]
A transition function T
A reward function R
A time budget τ

Output: An agent’s policy π
1 Replay memory M ← {} with capacity C;
2 Initialize policy π with random weights;
3 while π does not converge do
4 W ← shuffle the queries in W ;
5 for each query q in W do
6 State s ← (0, C1, C2, . . . , Cn, 0, 0, . . . , 0);
7 Remaining set ρ ← query q’s all possible RQs {RQ1, RQ2, . . . , RQn};
8 Reward r ← 0;
9 while (s, τ , ρ) is not at a termination state do

10 f ← generate a random number from [0,1];
11 if f < ϵ then
12 a ← a random RQ from ρ;
13 else
14 a ← argmaxRQi∈ρQ

π(s, RQi);

15 end
// Estimate query a and transit to state s′

16 s′ ← T (s, a);
// Compute the immediate reward

17 r′ ← R(s, a);
18 Store experience tuple (s, a, s′, r′) in M ;

// Remove query a from the remaining set ρ
19 ρ ← ρ− {a}; s ← s′; r ← r′;

20 end
21 Update π using a random sample from M ;

22 end

23 end

24

i.e, s.E ≥ τ . The third case is when the agent has exhausted all possible RQs, i.e., ρ = ∅.

When the agent decides which RQ to explore at each step (lines 12 to 14), we adopt an

ϵ-greedy strategy [65, 112] to balance between the exploration of RQs with uncertain values

and the exploitation of RQs known with high values. With an ϵ probability, the agent chooses

a random RQ that has not been considered before (line 12). Otherwise, it selects an RQ

that has not been explored with the highest q-value based on the current policy weights

(line 14). We start with a high probability (ϵ) of exploration and gradually decrease it to

favor exploitation with the training progress.

Once an RQ is decided by the agent as an action a, we call the transition function T

(Section 2.4.1) to transit the agent to the next state s′ (line 16). We estimate the query

a’s running time and update the new state s′ by adding the estimated time for a, adding

the cost to the elapsed time, and modifying the costs of affected RQs. We then call the

reward function R (Section 2.4.1) to compute an immediate reward r′ for estimating the RQ

in a (line 17). To this end, we have generated a new experience tuple (s, a, s′, r′), and store

it in the replay memory M (line 18). When M reaches its capacity C, we replace existing

experiences in a FIFO manner.

After processing a query, we update the policy π following the original deep q-learning

algorithm [65] (line 21). We sample a random subset M ′ of experiences from M . For each

experience tuple (s, a, s′, r′) in M ′, we first compute the target q-value y of the state-action

pair (s, a) using the Bellman equation [122]. We then update the weights in policy π by

minimizing the loss value L between the target q-value y and the current q-value, where L

is defined as:

L = (Qπ(s, a)− y)2.

We keep updating the policy π until it converges, i.e., the total accumulated reward of the

training workload w does not improve much in new iterations (e.g., less than 1%).

25

Accommodating estimation inaccuracy using MDP. One advantage of using the MDP

framework where an approximate QTE may give inaccurate estimations is its tolerance of the

inaccuracy. The MDP model captures the uncertainty in two places. One is the transitions

between states that store the estimated times of explored RQs. Although estimated times

can have errors, statistically, after learning from the historical queries, the agent understands

which action has the highest expected total reward. Another place is the reward definition,

where the penalty for making a wrong decision will lead the agent to understand the QTE’s

mistakes and avoid them in the future.

2.5.2 Using MDP to Rewrite Queries Online

After we train an MDP agent, the query rewriter utilizes the agent to generate a rewritten

query for a new visualization query q online. Algorithm 2 shows the pseudo-code. Starting

from an initial state s, we use the trained policy π to compute the q-values for all the RQs

and select the one with the highest q-value as the action a (line 5). We then estimate the

running time of query a and transit to state s′ (line 6). We compute the immediate reward

r′ for estimating RQ in a (line 7). If the action a is a potentially-viable RQ (line 9), we

output the query ˆRQi in a as the generated rewritten query. Otherwise, we run out of time

for the remaining RQs (line 11). Then we select the rewritten query RQj with the minimum

execution time estimated so far and output it. If neither cases happen, we repeat the above

process.

2.6 Approximation Rewriting Options

In this section, we generalize Maliva by considering rewriting options with approximation

rules. Recall that using a query-hint set to rewrite an original query Q into an RQ can help

26

Algorithm 2: Generating an RQ online

Input: A new query q
A trained policy π
A transition function T
A reward function R
A time budget τ

Output: An RQ
1 State s ← (0, C1, C2, . . . , Cn, 0, 0, . . . , 0);
2 Remaining set ρ ← query q’s all possible RQs {RQ1, RQ2, . . . , RQn} ;
3 Reward r ← 0;
4 while True do

// Select a query with the highest q-value predicted by π
5 a ← argmaxRQi∈ρQ

π(s, RQi);

// Estimate query a and transit to state s′

6 s′ ← T (s, a);
// Compute the immediate reward

7 r′ ← R(s, a);
// Remove query a from the remaining set ρ

8 ρ ← ρ− {a}; ← s′; r ← r′;
9 if s.E + T (a) ≤ τ then

10 return ˆRQi represented by a;
11 if s.E ≥ τ or ρ = ∅ then
12 return RQj with the minimum execution time estimated in s;

13 end

27

the database generate an efficient physical plan that computes the actual result without

any approximation. However, for expensive queries where no physical plan can meet the

time constraint, by applying an approximation-rule set to Q, Maliva can generate an RQ

that efficiently computes an approximate result within the time budget. We first extend the

MDP model in Section 2.4 to consider approximation rules. We then discuss two approaches

to applying the MDP model to implement a quality-aware query rewriter. The quality-aware

query rewriter makes the best effort to generate a viable rewritten query and maximize the

result’s quality. In the end, we discuss the trade-offs between the two approaches.

2.6.1 Quality-Aware MDP Model

Consider the case where the rewriting options contain both query hints and approximation

rules. A rewritten query can return an approximate result with quality loss. We need

to let the MDP agent learn to maximize the chance to generate a viable rewritten query

and maximize the quality of the query result simultaneously. To quantify the quality of

a rewritten query, we assume a given visualization quality function F . Let r(Q) be the

result of the original query Q, and r(RQ) be the result of the rewritten query RQ. Then

F (r(Q), r(RQ)) computes the quality of r(RQ). For example, suppose we use the Jaccard

similarity function to measure the quality of an approximate result. Figure 2.8 shows that

the quality of the scatterplot visualization result of an approximate rewritten query RQ

compared to the original query Q is 0.76. Note that Maliva does not have restrictions on

quality functions, and many functions can be used, such as VAS in [76] for scatterplots and

the function of distribution precision in [25] for pie charts.

Reward function for a quality-aware MDP model. To achieve the goal of guiding the

MDP agent to learn to maximize the chance to generate a viable rewritten query and max-

imize the quality of the query result simultaneously, we extend the definition of the reward

28

/*+ Index-scan(t CreateAt) */
SELECT Id, Location
 FROM tweetsSample60 t
WHERE Content contains "covid"
 AND Location in ((-132.6, 27.7),
 (-103.5, 40.0))
 AND CreateAt in Nov-2020;

SELECT Id, Location
 FROM tweets t
WHERE Content contains "covid"
 AND Location in ((-132.6, 27.7),
 (-103.5, 40.0))
 AND CreateAt in Nov-2020;

Figure 2.8: The quality of RQ compared to Q using a Jaccard-based quality function as an
example.

function in Section 2.4. Recall that the learning goal of an MDP agent is to maximize the

accumulative reward. In Section 2.4, once the agent decides on a rewritten query, it receives

a reward that reflects the query performance in terms of the total running time. Guided

by the reward, the agent learns to generate a viable rewritten query quickly. Similarly, the

MDP agent can also learn to quickly generate a viable rewritten query with a high result

quality if the final reward reflects both the decided rewritten query’s efficiency and quality.

The main idea is to combine the efficiency defined in Section 2.4 and the quality. The new

reward function is a weighted summation of both. Formally, suppose the generated rewritten

query by the agent is R̂Q and the actual running time of query R̂Q is T̂ . Then the new

reward function R(s, a) is defined as follows:

R(s, a) = β
(τ − s.E − T̂)

τ
+ (1− β)F

(
r(Q), r(R̂Q)

)
. (2.2)

The term (τ−s.E−T̂)
τ

represents the efficiency of the rewritten query in terms of running time

compared to the time budget. The function F (r(Q), r(R̂Q)) represents the quality of the

29

RQ’s result. Note that computing F could be expensive since the actual result r(Q) of the

original query is required. However, we only need to pay the cost in the offline training

phase once. In the online phase, we don’t need to compute the F value for a new query

when we use the MDP model to explore different RQs. Since the MDP model learns from the

final reward values only, we do not require every query to use the same quality function. In

particular, different quality functions can be applied for different training queries to evaluate

their visualization qualities, e.g., some queries are visualized as scatterplots and others as

heat-maps. β ∈ [0, 1] is a parameter that indicates how important the running time is

compared to the result quality.

2.6.2 Quality-Aware Query Rewriter

Now we discuss how to apply the extended MDP model to implement a quality-aware query

rewriter. We present the technical details of two approaches and discuss their pros and cons.

We will show the evaluation results in Section 3.7.

Time (ms)

Agent (Quality-Aware MDP Model)

500
…

Original
Query

Hint
Set

…

Original
Query

Hint
Set

Approx.
Rule Set

…

Figure 2.9: One-stage MDP approach.

One-stage approach. A natural idea is to replace the MDP model in Section 2.4 with the

quality-aware MDP model. We let the MDP agent simultaneously consider query hints and

approximation rules as rewriting options. By applying the new reward function combining

30

both the efficiency of the rewritten query and the result’s quality, the MDP agent learns to

maximize the chance of generating viable rewritten queries and maximize the quality.

Time (ms)

Agent (MDP Model)

…

500

Original
Query

Hint
Set

Approx.
Rule Set

…

Original
Query

Hint
Set

Agent (Quality-Aware MDP Model)

… …

Figure 2.10: Two-stage MDP approach. After running the original agent that considers
the 8 query-hint sets defined in Figure 2.4 without approximation rules, we cannot find a
viable RQ. We then run the new agent with the quality-aware MDP model that considers
all 8 query-hint sets combined with 3 approximation-rule sets (e.g., substituting the tweets
table with 20%, 40%, or 80% sample tables), resulting in 24 rewritten queries in total. After
spending extra time exploring a few RQs, the quality-aware agent chooses RQ21 as the final
decision.

Two-stage approach. A drawback of the previous approach is that the agent might miss

a non-approximate viable rewritten query. To solve this problem, we consider a two-stage

approach, with a main idea to let the MDP agent exhaust all candidate query hints first

and then explore those approximation rules. In the two-stage approach, Maliva first runs the

original MDP model, excluding the approximation rules. If the agent finds a viable rewritten

query, it outputs the RQ as before. If the agent exhausts all candidate RQs without finding

a viable one, and the elapsed time has not exceeded the time budget τ , then we run the new

quality-aware MDP model that considers the approximation rules to find a viable RQ.

When the planning time for the original agent is longer than the time budget, the two-

stage approach reduces to the case described in Section 2.4. In this case, the one-stage

approach is preferred since it can increase the chance of generating a viable rewritten query

considering approximation rules. When the planning time for the original agent is relatively

31

small compared to the time budget, the two-stage approach has the advantage of not missing

any non-approximate viable rewritten queries.

2.6.3 Differences between Maliva and Bao

The recent Bao technique [62] also uses hints to rewrite queries. Maliva is closely related

to Bao but different at multiple levels. First, to select a potentially viable query plan

from all the candidate query-hint sets, Bao takes a brute-force approach by enumerating all

options (using QTE). Maliva, in contrast, trains an MDP agent that explores the options

by carefully balancing the planning time and query execution time. This difference makes

Bao’s method inapplicable in many visualization problems in the main application domain

of Maliva. Secondly, as we will demonstrate in Section 2.7.6, when the number of candidate

rewriting options is large (e.g., > 16), the planning time of Bao can exceed the time budget.

Maliva, on the other hand, has a significantly shorter planning time and thus is capable of

generating much more viable rewritten queries. Lastly, Bao does not consider approximate

rewrites. Maliva, in contrast, offers flexibility by allowing approximate rewriting queries with

minimal quality loss.

2.7 Experiments

We conducted experiments to evaluateMaliva1. In particular, we want to answer the following

questions: (1) How well does it rewrite queries to support visualization requests? (2) How

well does it generalize to different numbers of rewriting options? (3) How well does it perform

for different types of queries (e.g. single-table selection queries and multiple-table joining

queries)? (4) How well does it generalize to different time budgets, unseen queries and other

1Maliva is open-sourced on Github (https://github.com/baiqiushi/maliva)

32

https://github.com/baiqiushi/maliva

databases? (5) How does it compare with related solutions? and (6) How much is its training

overhead?

2.7.1 Setup

Datasets. We used two real datasets and a synthetic one as shown in Table 2.1. The Twitter

dataset included 100 million geo-located tweets in the US from November 2015 to January

2017. We kept the timestamp, geo-coordinate, text message, and several user attributes

for each tweet in a tweets table. For the experiment on join queries, we used the tweets

table and a users table. The former had a foreign key of “user id” referencing the “id”

in the latter. We used the geo-coordinate attribute as the output for visualization (e.g.,

choropleth map, heatmap, or scatterplot). The NYC Taxi dataset [72] included taxi trip

records within three years from 2010 to 2012. The third dataset was generated from the

TPC-H benchmark [113]. We used the line-item table as the fact table. The attributes we

used for query selection conditions are shown in Table 2.1.

Table 2.1: Datasets.

Dataset Record # Size Filtering Attributes

Twitter 100,000,000 57GB
text, created at, coordinates,
users statues count, users followers count

NYC Taxi 500,412,914 146GB
pickup datetime, trip distance,
pickup coordinates

TPC-H 300,005,811 65GB extended price, ship date, receipt date

Query workloads. We generated random queries on each dataset for training and eval-

uation. Take Twitter dataset as an example. We first randomly sampled a set of tweets

from the base table. For each tweet, we generated a query as follows. We chose the text,

created at, and coordinates attributes for the selection conditions in the query. We gen-

erated three conditions based on the values in the sampled tweet. For text, we randomly

selected a non-stop word in the original tweet’s text message as the keyword condition. For

created at, we generated a temporal range condition with the value in the original tweet

33

as the left boundary. We divided the maximum range on the created at attribute in the

base table into multiple zoom levels, and randomly selected a level to generate the length

of the range condition. Suppose the maximum range on created at had L days. We com-

puted the maximum zoom level on created at as Z = ⌈log2(L)⌉. If we randomly chose a

zoom level from range [0, Z] as z, we computed the length of the query condition range as

l = max(L/2z, 1). Similarly, for the coordinates attribute, we used the exact coordinates

in the sampled tweet as the center. We randomly chose a zoom level and generated a spatial

bounding box as the spatial range condition for the query.

In the experiments, we divided the queries into three disjoint sets: a training set, a valida-

tion set and an evaluation set. We used a hold-out validation strategy to choose the best

agent. When evaluating different approaches, the “difficulty” of the queries in the evalua-

tion workload played an important role. That is, if none of the physical plans of a query

were viable, then no approach can generate a viable plan without approximation. On the

contrary, if a high percentage (e.g., over 50%) of the physical plans are viable, it would be

easy for any method — even a trivial one that picks plans at random — to find a viable

plan. In this regard, we further divided the evaluation workload into subsets of queries based

on their difficulty measured by the number of viable plans. In our evaluation, we focus on

“difficult” queries where less than 50% plans are viable since they can better distinguish the

performance of different methods.

QTE implementations. We implemented two QTEs to evaluate the Maliva’s performance.

1) Accurate-QTE. To isolate the effect of estimation errors on the Maliva’ performance, we

used the actual execution time of the hinted queries as the estimation, and set up a unit cost

parameter to represent the time of collecting the selectivity value of one filtering condition

in a given rewritten query. Unless otherwise stated, we used 40ms as the unit cost of

collecting one selectivity value for the Accurate-QTE. 2) We also implemented the ML-based

approximate-QTE as presented in Section 2.4.2. We used a random sample table [124] to

34

estimate the selectivity values of query conditions. The selectivity values were used by the

approximate-QTE’s ML model to estimate the execution time of queries.

Performance metrics. We used two metrics to evaluate the performance of different

approaches. Recall that a generated rewritten query is “viable” if its total response time

(including both the planning time and the querying time) is within a given time budget.

The “viable query percentage” (VQP) of a solution was the ratio of viable queries over all

the queries in the workload. The other metric was called “Average Query Response Time”

(AQRT), which was the average total response time of all the queries in the workload.

Query-rewriting Approaches. We compared the proposed MDP-based approaches with

three related methods, i.e., baseline, naive, and Bao [61]. MDP-based approaches included

an MDP agent using an approximate-QTE, i.e., MDP (Approximate-QTE), and an MDP

agent using an accurate QTE, i.e., MDP (Accurate-QTE). In the baseline approach, the

middleware relies on the database optimizer to generate a physical plan for the original

query. In the naive approach, we used the same approximate QTE as the MDP-based

approach, but enumerated all possible RQs in a brute-force way, then chose the best RQ

as the output. The third approach was Bao [61]. We used its open-source release [11] as

the server, which provided interfaces for training the model and using the model to choose

the best plan for a given set of query plans. Its original client, which was a PostgreSQL

plug-in, did not support query hints for using a specific index, which were required by our

visualization queries. To solve this problem, we implemented a new client in Python to

support such query hints while keeping their server implementation.

In the experiments, we ran both the database and the middleware on the same AWS t2.xlarge

instance with four vCPUs, 16GB RAM, and a 500GB SSD drive. We implemented the

middleware in Python 3.6 and the neural network using Pytorch 1.7. We evaluated Maliva

on both PostgreSQL and a commercial database. All figures were results on PostgreSQL if

not stated otherwise.

35

2.7.2 Performance on Using Query Hints

We evaluated the performance of Maliva for only considering query hints in rewriting op-

tions (i.e., no approximations). For each dataset, we generated queries with three filtering

conditions and set up the rewrite-option set with 8 query-hint sets, i.e., using or not using

the index on each attribute. Since one of the 8 hint sets was “no hint at all”, which was the

original query, the total number of candidate physical plans was 7, i.e., the original query’s

physical plan was one of the 7 hinted queries. We varied the evaluation workloads with dif-

ferent numbers of viable plans (i.e., 1−4 out of 7), and collected the VQP and AQRT metrics

for each approach. Table 2.2 shows the number of queries in the evaluation workloads.

Table 2.2: Number of queries in evaluation workloads.

of viable plans 0 1 2 3 4 ≥ 5
Twitter 518 97 234 118 153 69
NYC Taxi 408 91 146 13 181 3
TPC-H 381 107 310 66 47 0

Figures 2.11(a), 2.12(a), and 2.13(a) show viable-query percentages (VQP) on the three

datasets. The MDP-based approaches and Bao outperformed the baseline approach signif-

icantly, with MDP (Accurate-QTE) as the best. For example, on the Twitter dataset, for

the queries with a single viable plan, both MDP-based approaches increased the VQP from

the baseline’s 1% and Bao’s 20% to more than 70%. In most cases, MDP (Approximate-

QTE) performed better than or comparable to Bao. In one case of the TPC-H dataset, Bao

performed better than MDP (Approximate-QTE) mainly because Bao’s QTE had a much

higher accuracy than the approximate QTE for TPC-H. When the number of viable plans

increased from 1 to 4, the VQP of all approaches increased because the more viable plans

existed for a query, the easier it was for each approach to find a viable plan in a short amount

of time.

Figures 2.11(b), 2.12(b), and 2.12(b) show the results of the average query-response time

36

 0
 20
 40
 60
 80

 100

1 2 3 4

Vi
ab

le
 q

ue
ry

 (%
)

Number of viable plans
 (out of 7 candidates)

MDP (Accurate-QTE)
MDP (Approximate-QTE)

Bao
Baseline

(a) Viable query percentage.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 1 2 3 4

Av
g.

 q
ue

ry
 ti

m
e

(s
)

Number of viable plans
 (out of 7 candidates)

Baseline Query
MDP/Bao Plan

Bao Query
MDP (Appr.-QTE) Query
MDP (Accu.-QTE) Query

(b) Avg. query response time.

Figure 2.11: Performance on the Twitter dataset (τ = 500ms).

 0
 20
 40
 60
 80

 100

1 2 3 4

Vi
ab

le
 q

ue
ry

 (%
)

Number of viable plans
 (out of 7 candidates)

MDP (Accurate-QTE)
MDP (Approximate-QTE)

Bao
Baseline

(a) Viable query percentage.

 0

 0.5

 1

 1.5

 2

 1 2 3 4

Av
g.

 q
ue

ry
 ti

m
e

(s
)

Number of viable plans
 (out of 7 candidates)

Baseline Query
MDP/Bao Plan

Bao Query
MDP (Appr.-QTE) Query
MDP (Accu.-QTE) Query

(b) Avg. query response time.

Figure 2.12: Performance on the NYC Taxi dataset (τ = 1s).

 0
 20
 40
 60
 80

 100

1 2 3 4

Vi
ab

le
 q

ue
ry

 (%
)

Number of viable plans
 (out of 7 candidates)

MDP (Accurate-QTE)
MDP (Approximate-QTE)

Bao
Baseline

(a) Viable query percentage.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 1 2 3 4

Av
g.

 q
ue

ry
 ti

m
e

(s
)

Number of viable plans
 (out of 7 candidates)

Baseline Query
MDP/Bao Plan

Bao Query
MDP (Appr.-QTE) Query
MDP (Accu.-QTE) Query

(b) Avg. query response time.

Figure 2.13: Performance on the TPC-H dataset (τ = 500ms).

37

(AQRT) of different approaches. On the Twitter dataset, Bao had a comparable AQRT

to the baseline, while MDP (Approximate-QTE) had much lower time than the baseline

and Bao for queries with one or two viable plans. For example, MDP (Approximate-QTE)

reduced the average response time from the baseline’s 1.11 seconds and Bao’s 1.01 seconds

to 0.4 seconds. On the NYC Taxi dataset, Bao and MDP-based approaches had comparable

performance and were slightly better than the baseline. On the TPC-H dataset, Bao was

better than or comparable to the baseline. In two cases, Bao performed better than MDP

(Approximate-QTE) because Bao’s QTE had a much higher accuracy than the approximate

QTE on TPC-H. However, in all cases, MDP (Accurate-QTE) always had a lower query time

than Bao and the baseline, which means it generated a more efficient plan. In cases where

MDP (Accurate-QTE) had a longer response time, the extra planning time was the main

reason. At the same time, the high VQP of MDP (Accurate-QTE) proved the ability of

the MDP model balancing the planning time and the query-execution time to maximize the

chance of generating a viable rewritten query.

2.7.3 Effect of Rewrite-Option Number

We evaluated the effect of the number of rewriting options on the Twitter dataset. We set

up workloads of queries with different numbers of filtering conditions, resulting in different

numbers of rewriting options. To illustrate the planning efficiency of MDP-based approaches,

we also evaluated a naive approach, i.e., Naive (Approximate-QTE), which enumerated all

possible RQs, estimated their time using the approximate QTE, and chose the best RQ as

output. Table 2.3 shows the number of queries for the workloads.

Table 2.3: Workloads with 16 rewriting options.

of viable plans 0 1-2 3-4 5-6 7-8 ≥ 9
of queries 485 150 241 90 132 93

As shown in Figure 2.14(a), the two MDP approaches performed the best, generating up to

38

40× more viable queries than both Bao and the baseline approach on queries with one or

two viable plans.

 0
 20
 40
 60
 80

 100

1-2 3-4 5-6 7-8

Vi
ab

le
 q

ue
ry

 (%
)

Number of viable plans
 (out of 15 candidates)

MDP (Accu.-QTE)
MDP (Appr.-QTE)

Naive (Appr.-QTE)
Bao

Baseline

(a) Viable query percentage.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

1-2 3-4 5-6 7-8

Av
g.

 q
ue

ry
 ti

m
e

(s
)

Number of viable plans
 (out of 15 candidates)

Baseline Query
MDP/Bao Plan

Bao Query
Naive (Appr.-QTE) Query
MDP (Appr.-QTE) Query
MDP (Accu.-QTE) Query

(b) Avg. query response time.

Figure 2.14: Performance for 16 ROs on the Twitter dataset (τ = 500ms).

Figure 2.14(b) shows the AQRT results. Consistent with the VQP results, MDP-based ap-

proaches outperformed both Bao and the baseline approach. For example, MDP (Approximate-

QTE) reduced the average response time from the baseline’s 1.13 seconds and Bao’s 1.05

seconds to 0.66 seconds for queries with one or two viable plans. Note that in both VQP

and AQRT results, the MDP-based approach performed significantly better than the naive

approach using the same approximate QTE. These results show the benefit of MDP-based

careful planning strategy over a brute-force enumeration approach.

2.7.4 Effect of Time Budget

We evaluated the effect of time budget on the performance of different approaches. We

varied the time budget on the Twitter dataset. We show results for 1-second time budget.

As shown in Figure 2.15(a) and (b), the MDP-based approaches outperformed both Bao and

the baseline approach significantly. MDP (Accurate-QTE) outperformed MDP (Approximate-

QTE) since the agent could afford the expensive estimation cost for more accurate estima-

tions to find better-rewritten queries. These results show that the MDP model is adaptive

39

 0
 20
 40
 60
 80

 100

1 2 3 4

Vi
ab

le
 q

ue
ry

 (%
)

Number of viable plans
 (out of 7 candidates)

MDP (Accu.-QTE)
MDP (Appr.-QTE)

Bao
Baseline

(a) Viable query percentage.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 1 2 3 4

Av
g.

 q
ue

ry
 ti

m
e

(s
)

Number of viable plans
 (out of 7 candidates)

Baseline Query
MDP/Bao Plan

Bao Query
MDP (Appr.-QTE) Query
MDP (Accu.-QTE) Query

(b) Avg. query response time.

Figure 2.15: Performance for 1-second time budget on the Twitter dataset.

to QTEs with different costs and accuracies for different time budgets. Compared with the

results in Figure 2.11 where the time budget was 500ms, MDP (Accurate-QTE) performed

better when the budget was higher, and MDP (Approximate-QTE) performed better when

the budget was lower.

2.7.5 Performance on Join Queries

To evaluate the performance of Maliva on queries with joins, we set up a workload of queries

joining the tweets and users tables with filtering conditions on three attributes. For the

MDP-based approaches and Bao, we considered 7 different ways of using or not using indexes

on the three attributes and 3 different join methods (i.e., nest-loop-join, hash-join, and merge-

join) between the two tables. Thus we had 21 query-hint sets in total as the rewriting options.

Figure 2.16(a) shows that for all workloads, the MDP-based approaches outperformed Bao.

For the queries with only one or two viable plans, MDP (Approximate-QTE) generated more

than twice as many viable plans as Bao. Figure 2.16(b) shows that MDP (Approximate-

QTE) outperformed Bao in all cases. For queries with one or two viable plans, the MDP-

based approach reduced the average query response time from Bao’s 0.87 second to 0.34

second.

40

 0
 20
 40
 60
 80

 100

1-2 3-4 5-6 7-8 9-10

Vi
ab

le
 q

ue
ry

 (%
)

Number of viable plans
 (out of 21 candidates)

MDP (Acc.-QTE)
MDP (Appr.-QTE)

Bao
Baseline

(a) Viable query percentage.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1-2 3-4 5-6 7-8 9-10

Av
g.

 q
ue

ry
 ti

m
e

(s
)

Number of viable plans
 (out of 21 candidates)

Baseline Query
MDP/Bao Plan

Bao Query
MDP (Appr.-QTE) Query
MDP (Accu.-QTE) Query

(b) Avg. query response time.

Figure 2.16: Performance for join queries (Twitter dataset, τ = 500ms).

2.7.6 Additional Comparison with Bao

We further compared the performance of Maliva with Bao to demonstrate the advantage

of our approach (see Figure 2.17). Besides the original Bao approach, we included two

additional variants — Bao (Approximate-QTE) and Bao (Accurate-QTE) — that integrated

Bao’s enumeration strategy on top of our QTEs. We focused on “difficult” queries where less

than 50% physical plans were viable. We used the Twitter dataset and varied the number of

rewrite options from 8 to 32 (as described in Section 2.7.3).

Table 2.4: Workloads of queries where less than 50% plans were viable.

of rewrite options 8 16 32
of queries 449 481 497

As shown in Figure 2.17, our MDP-based approaches outperformed both the baseline ap-

proach and Bao-based approaches significantly in all the cases. For the 8 rewrite-option

workload, both Bao-based approaches using the approximate-QTE and the accurate-QTE

outperformed the original Bao. The reason was that Bao’s own QTE relied on the plan

tree and operators’ cost estimations from the physical plan generated by PostgreSQL. As

a result, it suffered from the significant estimation errors by PostgreSQL for textual and

spatial filtering conditions. With the help of the approximate and accurate QTEs’ more

accurate estimations, the performance of Bao was improved. However, when the number

41

 0
 20
 40
 60
 80

 100
 120
 140

8 16 32

Vi
ab

le
 q

ue
ry

 (%
)

Number of rewrite options

Baseline
Bao

Bao (Approximate-QTE)
Bao (Accurate-QTE)

MDP (Approximate-QTE)
MDP (Accurate-QTE)

(a) Viable query percentage.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

8 16 32

Av
er

ag
e

qu
er

y
tim

e
(s

)

Number of rewrite options

Baseline Query
MDP/Bao Plan

Bao Query
Bao (Appr.-QTE) Query
Bao (Accu.-QTE) Query

MDP (Appr.-QTE) Query
MDP (Accu.-QTE) Query

(b) Avg. query response time.

Figure 2.17: Comparison with Bao on the Twitter dataset (τ = 500ms).

of rewrite options was 32, both Bao (Approximate-QTE) and Bao (Accurate-QTE) per-

formed even worse than the baseline due to the high cost of estimating all the candidate

plans in the brute-force query-planning phase. The VQP of Bao (Accurate-QTE) dropped

to 0% because the planning time exceeded the 500ms time budget. As shown in the 32

rewrite-option column of Figure 2.17(b), by judiciously choosing which rewritten queries to

run the expensive accurate-QTE, the MDP (Accurate-QTE) reduced the average planning

time from Bao (Accurate-QTE)’s 1.24 seconds to 0.37 seconds, with a reduction of more

than 70%. This result showed the superiority of using the MDP-based approach for query

planning over Bao’s brute-force approach.

2.7.7 Unseen Queries and Other Databases

To evaluate how well Maliva can be generalized to handle unseen queries, we did experiments

on the Twitter dataset to train and test the MDP model using two workloads with differ-

ent query shapes. The training queries were on a single tweets table with three filtering

conditions (textual, temporal, and geospatial). In comparison, the testing queries joined

the tweets table and the users table on user id with three filtering conditions (textual,

temporal, and geospatial) on the former table. As shown in Figure 2.18(a), the MDP-based

42

approaches outperformed the baseline significantly on the workload with unseen queries.

For example, for queries with a single viable plan, the MDP (Approximate-QTE) approach

increased the VQP from the baseline’s 2% to 55%, and the MDP (Accurate-QTE) approach

further increased it to 74%.

 0
 20
 40
 60
 80

 100

1 2 3 4

Vi
ab

le
 q

ue
ry

 (%
)

Number of viable plans
 (out of 7 candidates)

MDP (Accurate-QTE)
MDP (Approximate-QTE)

Baseline

(a) Unseen queries (τ = 500ms).

 0
 20
 40
 60
 80

 100

1-2 3-4 5-6 7

Vi
ab

le
 q

ue
ry

 (%
)

Number of viable plans
 (out of 7 candidates)

MDP (Accurate-QTE)
MDP (Approximate-QTE)

Baseline

(b) Commercial DB (τ = 250ms).

Figure 2.18: Generalization to (a) handle unseen queries and (b) use a commercial database.

We also did experiments on the Twitter dataset using a commercial database. We used a

smaller table with 10 million records and thus a smaller time budget (250ms). The result is

shown in Figure2.18(b). Due to the commercial database’s complex behaviors, the approxi-

mate QTE had a much lower accuracy (two orders of magnitude) than it had on PostgreSQL.

The reason was the approximate QTE only considered predicates’ selectivities for estimation,

but more factors in the commercial database affected the query time, such as buffering and

dynamic execution plan change. However, MDP (Approximate QTE) still had comparable

performance (VQP) to the baseline. With a more accurate yet more expensive QTE, MDP

(Accurate-QTE) outperformed the baseline for all the queries. For example, for queries with

one or two viable plans, the baseline had a VQP of 23%, MDP (approximate-QTE) had a

VQP of 36%, and MDP (Accurate-QTE) increased the VQP to 50%.

43

2.7.8 Performance of Quality-Aware Rewriting

We evaluated the performance of the two quality-aware query rewriting approaches (i.e.,

one-stage and two-stage) described in Section 2.6. We used the same Twitter dataset and

workload as in Section 2.7.2. We compared them with the baseline approach and the MDP

approach without considering approximation rules. For the quality-aware rewriting ap-

proaches, we considered five approximation rules (i.e., adding a LIMIT clause with 0.032%,

0.16%, 0.8%, 4%, and 20% of the estimated cardinality of the query) in addition to the eight

query-hint sets considered in Section 2.7.2. All MDP approaches used an accurate-QTE. Be-

sides the AQP and AQRT metrics, we collected a new metric called Jaccard-based Quality,

which computed the Jaccard similarity between the visualization result of a rewritten query

and that of the original query.

 0
 20
 40
 60
 80

 100

0 1 2 3 4

Vi
ab

le
 q

ue
ry

 (%
)

Number of viable plans
 (out of 7 candidates)

1-stage MDP (Accu.-QTE)
2-stage MDP (Accu.-QTE)

MDP (Accu.-QTE)
Baseline

(a) Viable query percentage.

 0
 0.2
 0.4
 0.6
 0.8

 1

0 1 2 3 4

Av
g.

 J
ac

ca
rd

 q
ua

lit
y

Number of viable plans
 (out of 7 candidates)

1-stage MDP (Accu.-QTE)
2-stage MDP (Accu.-QTE)

MDP (Accu.-QTE)
Baseline

(b) Avg. Jaccard-based quality.

Figure 2.19: Performance of quality-aware rewriting (Twitter, τ = 500ms).

Figure 2.19(a) shows the VQP of these approaches. For the group of queries without any

viable plan, the MDP approach without considering approximation rules and the baseline

approach had a zero VQP. By generating approximate rewritten queries, the two-stage MDP

approach increased the VQP to 24%, and the one-stage MDP approach further increased

the VQP to 31%. There were 518 queries in the 0-viable-plan workload (Table 2.2), and

the one-stage MDP approach generated more than 35 viable queries than the two-stage

approach. In terms of efficiency, the one-stage MDP approach outperformed the two-stage

44

approach in all cases. Figure 2.19(b) shows the average Jaccard-based quality of the rewritten

queries generated by different approaches. Both the baseline and the MDP approach without

considering approximation rules had no quality loss. The two-stage MDP approach had a

significant advantage over the one-stage approach in terms of quality. For example, The

former increased the quality of the 0-viable-plan queries from the one-stage approach’s 0.43

to 0.79.

2.7.9 Training Performance

We evaluated the training performance for workloads with different numbers of rewriting

options on the Twitter dataset. For each workload, we divided a set of about 1, 400 queries

into a training set and a validation set. Then we varied the number of training queries

and randomly sampled those from the training set without replacement. We then used the

sampled queries to train an MDP agent and tested its performance on both the training

queries and the validation queries. We repeated the step ten times for each number of

training queries and collected the mean and standard deviation of the VQPs. We conducted

the experiments on the MDP approach using the Accurate-QTE. We show results for 8

rewriting options.

Figure 2.20(a) shows the trend when we varied the number of training queries. The VQP

on the validation set was close to the VQP on the training set for about 50 training queries.

Figure 2.20(b) shows the training time of different numbers of rewrite options on the training

sizes. For the same number of training queries, more rewrite options resulted in a larger q-

network, which took more time to update the weights. For the workload with thirty-two

rewrite options, it took about 150 seconds to train an MDP agent on 150 training queries.

Remarks: The experiments show that Maliva outperformed the baseline in terms of both

the number of viable queries and average query response time. Maliva generated up to

45

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Vi
ab

le
 q

ue
ry

 (%
)

Number of training queries

Training VQP mean
Validation VQP mean

(a) Learning curve for 8 ROs.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 50 100 150 200 250 300

Tr
ai

ni
ng

 ti
m

e
(s

)

Number of training queries

32 rewrite options
16 rewrite options

8 rewrite options

(b) Training time for different # of ROs.

Figure 2.20: Learning curve and training time on the Twitter dataset. The shaded area
is plotted with “mean + standard deviation” as the upper bound and “mean − standard
deviation” as the lower bound.

70× more viable queries than the baseline. The advantages of Maliva were shown in both

the real and synthetic datasets, for different numbers of rewriting options, time budgets

and query workloads. Its offline training overhead was relatively small. By considering

approximation rules, Maliva generated even more viable queries. The comparison with Bao

shows the advantage of Maliva due to the fact these two techniques were designed with

different settings and optimization goals.

Limitations: One limitation of Maliva is that when the number of rewriting options was

significant (e.g., ≥ 32), both the training and the online planning overhead of the MDP mod-

els became expensive. Also, for different sets of rewriting options, Maliva requires training

different models.

2.8 Conclusions

In this chapter, we studied how to rewrite database queries to improve execution performance

in middleware-based visualization systems. We explored two optimization options of adding

hints and doing approximation. We developed a novel solution called Maliva, which adopts

a Markov Decision Process (MDP) model to rewrite a visualization request under a tight

46

time constraint. We gave a full specification of the solution, including how to construct an

MDP model, how to train an agent, and how to use approximating rewriting options. Our

experiments on both real and synthetic datasets showed that Maliva performed significantly

better than the baseline without no-rewriting options in terms of both the probability of

serving a visualization request within a time budget and query execution time.

47

Chapter 3

Supporting Human-Centered Query

Rewriting in Middleware

3.1 Introduction

System performance is critical in many database applications where users need answers

quickly to gain timely insights and make mission-critical decisions. In the large body of op-

timization literature [28, 49, 81], one family of technique is query rewriting, which transforms

a query to a new query that computes the same answers with a higher performance.

Application

(4) Result

JDBC Driver

Database (Postgres)

(2) Query Q(3) Result

(1) Query Q

Tableau

Figure 3.1: Query lifecycle between Tableau and Postgres.

48

Motivating example. Figure 3.1 shows a case where a user runs Tableau on top of a Post-

gres database to analyze and visualize the underlying data of social media tweets. Tableau

formulates and sends a SQL query to the database for each frontend request through a con-

nector such as a JDBC driver. The database returns the result to Tableau to render in the

frontend.

Figure 3.2a shows an example SQL query Q formulated by Tableau to compute a choro-

pleth map of tweets containing a substring, e.g., covid, which matches covid-19, covid19,

postcovid, covidvaccine, etc. Without any index available on the table, the database en-

gine uses a scan-based physical plan, which takes 34 seconds in our evaluation. To improve

the performance, the developer is tempted to create an index on the content attribute of

the table.

SELECT SUM(1) AS ”cnt:tweets”,

”state_name” AS ”state_name”

FROM ”tweets”

WHERE STRPOS(LOWER(”content”),

’covid’) > 0

GROUP BY 2;

(a) An original query Q formulated by Tableau
to compute a choropleth map of tweets contain-
ing covid as a substring.

SELECT SUM(1) AS ”cnt:tweets”,

”state_name” AS ”state_name”

FROM ”tweets”

WHERE ”content” ILIKE

’%covid%’

GROUP BY 2;

(b) A rewritten query Q′ equivalent to Q but
runs 100 times faster by using a trigram index
on the content attribute.

Figure 3.2: An example query pair (differences shown in blue).

Unfortunately, Postgres does not support an index-based physical plan for the STRPOS(

LOWER("content"), s) expression inQ, where s is an arbitrary string. Interestingly, another

query Q′, shown in Figure 3.2b, is equivalent to Q, and uses an ILIKE predicate. This

expression can be answered using a trigram index on the content attribute [85], and the

corresponding physical plan takes 0.32 seconds only. Notice that the optimizer does not

produce an index-based plan for the original STRPOS predicate using this trigram index [94].

A natural question is whether we can let Tableau generate Q′ instead of Q for the database.

49

Tableau is a proprietary application layer, and has its own internal logic to generate queries,

which the developer, in this example, cannot change. We may also consider using the CREATE

RULE interface provided by Postgres [83] to introduce a rewriting rule inside the database, but

as we will show in Section 3.2, this language has limited expressive power and does not allow

us to rewrite Q to Q′. As a consequence, we miss the rewriting opportunity to significantly

improve the query performance. Note that as shown in Section 3.7.5, the rewriting need is

not limited to simple predicate levels but also includes complex statement levels.

Problem Formulation. Besides the above example, as more cases in Section 3.2 and

our experiments using different applications and databases on both synthetic and real-world

datasets in Section 3.7.5 show, there is a unique problem in a wide range of database-

supported systems with the following setting. (1) The developers need to treat the application

layer as a black box and cannot modify its logic of generating SQL queries. Reasons include i)

the application is proprietary software (e.g., Tableau) and its source code is not available; and

ii) the source code of the application is too complicated or old to modify, especially for legacy

systems [48]. For example, reports [103] show that there are many applications where parties

have even lost their original source code. (2) The developers need to treat the database as a

black box. Reasons include i) the developers do not have the privileges to modify the database;

and ii) the database is used by many clients, and the developers want to avoid side effects of

database changes to these clients. (3) The developers want to use their knowledge about the

data and domain to rewrite queries sent from the application to the database to significantly

improve their performance. For example, they may introduce rewriting rules that are valid

for their particular database with certain properties (e.g., specific attribute types, certain

cardinality constraints, known content properties, or primary keys and foreign keys), even

though these rules may not be valid for all databases. Specifically, the experimental results

in Section 3.7.5 illustrate cases where a rewriting is valid only for a particular dataset, and

may not be correct in general, thus it cannot be adopted by a database query optimizer.

50

Thus we want to allow developers to be “in the driver’s seat” during the lifecycle of a query

to generate an equivalent and more efficient query as “human-centered query rewriting”.

Note that we do not seek to replace query optimizers inside databases but only provide a

chance for users to inject their knowledge to optimize queries before they are sent to the

database. Hence, the problem is stated as:

Problem Statement: Given an application and a database as black boxes, develop a

middleware solution for users to easily express their rules to rewrite application queries

for a better performance.

Solution overview. In this chapter and the following chapter, we propose QueryBooster, a

novel middleware-based service for human-centered query rewriting. It is between an appli-

cation and a database, intercepts SQL queries sent from the application, and rewrites them

using human-crafted rewriting rules to improve their performance. By providing a slightly-

modified JDBC/ODBC driver or a RESTful proxy for the query interception, QueryBooster

requires no code changes to either the application or the database. In this chapter, we focus

on the core technical aspects of the QueryBooster system. QueryBooster provides an expres-

sive and easy-to-use rule language (called VarSQL) for users (SQL developers or DBAs) to

define rewriting rules. Users can easily express their rewriting needs by providing the query

pattern and its replacement. They can also specify additional constraints and actions for

complex rewriting details. In addition, QueryBooster allows users to express their rewriting

intentions by providing examples. That is, users can input original queries and the desired

rewritten queries. Then QueryBooster automatically generalizes the examples into rewriting

rules and suggests high-quality rules. The users can confirm the rules to be saved in the

system or further modify the rules as they want.

Challenges and contributions. To develop the QueryBooster solution, we face several

challenges. (C1) How to develop an expressive and easy-to-use rule language for users to

formulate rules? (C2) How to generalize pairs of original and rewritten queries to rewriting

51

rules and measure their quality? (C3) How to search the candidate rewriting rules to sug-

gest high-quality ones based on the user-given examples? In this chapter, we study these

challenges and make the following contributions.

• We propose a novel middleware-based query rewriting solution to fulfill the need of

human-centered query rewriting (Section 3.3).

• We study the suitability of existing rule languages in the literature and show their

limitations. We then develop a novel rule language (VarSQL) that is expressive and

easy to use (Section 3.4).

• We develop transformations to generalize pairs of rewriting queries to rules and propose

using the metric of minimum description length to measure rule quality (Section 3.5).

• We present a framework to search the candidate rewriting rules efficiently and suggest

high-quality rules based on user-given examples (Section 3.6).

• We conduct a thorough experimental evaluation, including a user study, to show the

benefits of the VarSQL rule language, the effectiveness of the rule-suggesting framework,

and the advantages of human-centered query rewriting (Section 3.7).

3.2 Limitations of Existing Solutions

In this section, we show why existing solutions cannot solve the formulated problem. Fig-

ure 3.3 gives an overview of various solutions for query rewriting in the lifecycle of a query

in a database system [5, 22, 62, 121, 131] and the position of the proposed QueryBooster

solution. At a high level, these solutions can be classified into two categories: native writing

plugins and third-party solutions.

52

App SQL Parser Optimizer Engine

Learned
Rewrite

New rules WeTune

Performance
metrics

Bao/Galo Performance
metrics

QueryBooster
Built-in rulesUser rules

User

Logical
Plan

Physical
Plan

Hints

Rewriting plugin
(MySQL and

Postgres only)
Limited user rules

Database

Figure 3.3: Query-rewriting solutions for databases (native solutions in brown and third-
party solutions in blue).

Native rewriting plugins. Most databases such as AsterixDB [4], IBM DB2 [41], Mon-

goDB [66], MS SQL Server [104], MySQL [70], Oracle [74], Postgres [83], SAP HANA [99],

Snowflake [102], and Teradata [91], do not have capabilities for users to rewrite queries sent

to the database. Notice that even though “hints” can be included in a query to make sug-

gestions to the database optimizer, they are technically not used to change the query (i.e.,

the SQL code), thus, are not a query-rewriting solution. To our best knowledge, only two

database systems, Postgres and MySQL, provide a plugin for users to define new rules to

rewrite queries before sending them to the database. However, their rule-definition languages

have limited expressive power, as discussed below.

Postgres. A rewriting rule in the Postgres plugin can only define a pattern matching a table

name in a SELECT clause of a SQL query and replace the table with another table or a

subquery [83]. Its rule language cannot express the rewriting in the running example in

Figure 3.2. In particular, it does not support a pattern that matches a component in a

SQL statement at the predicate level, e.g., the STRPOS(LOWER("content"),) > 0 portion

in the WHERE clause in the original query. Safety could be a major consideration behind

this rule language. For instance, the Postgres 14 documentation [84] explained that “this

restriction was required to make rules safe enough to open them for ordinary users, and it

53

restricts ON SELECT rules to act like views.”

MySQL. The MySQL plugin uses the syntax of prepared statements to define query-rewriting

rules, and a rule replaces a SQL query matching the rule’s pattern with a new statement [70].

A rule includes placeholders that can only match literal values in a SQL query, such as a

constant in a predicate in the WHERE clause. A main limitation of this language is that a

placeholder cannot match many components in a query, such as table names and attribute

names. For instance, the following is a predicate from a query formulated by Tableau to

MySQL:

adddate(date format(‘created_at‘, ’%Y-%m-01 00:00:00’), interval 0 second)

= TIMESTAMP(’2018-04-01 00:00:00’)

And if we rewrite the predicate by removing the type-casting on the right-hand constant, as

shown below:

adddate(date format(’created_at’, ’%Y-%m-01 00:00:00’), interval 0 second)

= ’2018-04-01 00:00:00’

The corresponding rewritten query is significantly faster (2.68s) than the original query (87s).

Unfortunately, the MySQL plugin does not support this rewriting because a pattern in the

MySQL plugin has to be an entire statement instead of a single predicate. In other words,

using the MySQL plugin for this rewriting requires the enumeration of all other parts of the

target SQL query.

Third-party solutions. Bao [62] and Galo [22] rewrite queries by adding hints to help the

database optimizer generate more efficient physical plans based on their cost estimations and

searching methods. They take a physical plan and query performance as the input and pro-

duce hints to the original query. WeTune [121] generates new rewriting rules automatically

by searching the logical-plan space and considering the performance of rewritten queries.

LearnedRewrite [131] utilizes built-in rewriting rules inside the database to optimize queries,

and the users have no control over when and which rules are applied. None of these solu-

54

tions allow users to formulate their own rewriting rules to fulfill the human-centered query

rewriting need. PgCuckoo [39] opens an opportunity for users to inject intelligent logic to

manipulate query plans in Postgres. It only works for Postgres and the proposed middleware

solution works for any databases.

Commercial systems. There are also commercial systems that do query rewriting for

applications on top of databases. For example, Keebo [47] uses data learning and approx-

imate query processing (AQP) techniques to accelerate analytical queries. It runs queries

on summarized tables instead of the raw data as much as possible to reduce query time.

EverSQL [27] uses AI/ML techniques to recommend rewriting ideas for queries on MySQL

and Postgres. Other systems such as ApexSQL [8], Query Performance Insights for Azure

SQL [90], and Toad [111] help database developers analyze query performance bottlenecks

and tune database knobs. None of these systems allow users to formulate their own rewriting

rules to fulfill the human-centered query rewriting need.

General pattern-matching tools. These tools can be used to rewrite any program and

are not limited to SQL code. For instance, Quasiquotation [79, 1] is a general technique

to rewrite programs using meta-programs. A main issue of the tools is that they are not

designed for SQL queries, and they do not consider the unique semantics (tables, columns,

etc.) of SQL, which is considered by the proposed QueryBooster.

3.3 QueryBooster: A Human-Centered Query Rewriting

Solution

In this section, we present a novel middleware solution called QueryBooster, to fulfill the

need for human-centered query rewriting.

55

Figure 4.2 shows the query lifecycle using QueryBooster to rewrite application queries. It

includes two phases, an offline rule formulation phase and an online query rewriting phase.

(6) Result

Connector

Database

(4) Query Q'(5) Result

(1) Query Q

Appplication Layer

 Query
Rewriter

Rule
Base

(2) Q

(3) Q'
User

Rule
Specification

Rewriting
Examples

Rule
Suggestor

Rule
Language

Online Query Rewriting Phase Offline Rule Formulation Phase

Figure 3.4: Query lifecycle of using QueryBooster to rewrite application queries.

For the offline rule formulation phase, QueryBooster provides a powerful interface for users

to formulate rewriting rules. It allows users to formulate rules in the following two ways.

First, it provides an expressive and easy-to-use rule language for users to define rewriting

rules. Users can easily express their rewriting needs by writing down the query pattern

and its replacement. They can also specify additional constraints and actions to express

complex rewriting details. Second, it allows users to express their rewriting intentions by

providing examples. A rewriting example is a pair of SQL queries with the original query

and the desired rewritten query. The “Rule Suggestor” automatically suggests high-quality

rewriting rules based on the examples. The users can choose their desired rewriting rules

and further modify suggested rules as they want. All user-confirmed rules are stored in the

“Rule Base,” and the “Query Rewriter” will rewrite online queries based on the rules.

For the online query rewriting phase, QueryBooster provides a customized connector that

communicates with its service to rewrite application queries. In particular, the connec-

tor accepts an original query Q formulated by the application and sends Q to the “Query

Rewriter” service, which applies rewriting rules stored in the “Rule Base” to rewrite Q to

a new query Q′. The new query is sent back to the connector, which forwards Q′ to the

56

backend database to boost the application’s performance. Note that QueryBooster focuses

on rewriting queries based on user-specified rules and assumes no access to the backend

database to create indexes.

To use the QueryBooster rewriting solution, users do not need to modify any code of the

applications or databases or install any plugins. They only need to replace the existing DB

connector with a QueryBooster-customized one. In this Chapter, we focus on the technical

aspects of the solution. We will discuss more how the connector is implemented and the

license considerations in Chapter 4, where we focus on the system aspects of the proposed

solution. To implement such a powerful solution, we have the following two tasks.

(Task 1) Developing an expressive and easy-to-use rule language. The first task of

QueryBooster is to provide an expressive and easy-to-use rule language for users to formulate

rules. It should meet the following three requirements. (R1) Powerful expressiveness in

SQL semantics. It needs to understand SQL-specific semantics where users can specify

pattern-matching conditions on the elements of a SQL query, e.g., two tables have the same

name, or a column is unique in the table schema. (R2) Easy to use by SQL users. Users

of QueryBooster are application developers who are familiar with SQL. QueryBooster should

require users to have little prior knowledge other than SQL to define their rewriting rules.

(R3) Independent of databases or SQL dialects. As a general query-rewriting service, the rule

language should be independent of any specific database or SQL dialect. Providing a rule

language that meets the aforementioned three requirements is challenging. In Section 3.4

we first study the suitability of existing rule languages in the literature and then develop

a novel rule language that combines advantages from existing languages to meet all the

requirements.

(Task 2) Suggesting rules from examples. The second task of QueryBooster is to provide

a rule-suggestion framework that automatically generalizes user-given rewriting examples

into rewriting rules and suggests high-quality ones. Manually formulating a rewriting rule

57

that covers many queries is tedious. We want a better experience in which a user expresses the

rewriting intention by providing query rewriting pairs. Then, the system can automatically

suggest rewriting rules to achieve the rewritings of the given examples. For instance, if a

user inputs the rewriting pair in Figure 3.2 as one of the examples, the rule suggestor can

automatically generalize it and recommend the following rule to the user.

STRPOS(LOWER(<x>), ’<y>’) --> <x> ILIKE ’%<y>%’

Developing such a rule suggestor is also challenging since we need to answer a few questions,

such as how to measure the quality of rewriting rules, how to generalize query rewriting pairs

into rewriting rules, and how to search the candidate rewriting rules to suggest high-quality

ones. We answer them in Sections 3.5 and 3.6.

Correctness of rewriting rules. In the case where users make mistakes when formulating

rewriting rules, we can leverage existing query equivalence verifiers (e.g., [18, 121]) to validate

the rules and guarantee their correctness.

3.4 VarSQL: A Rewriting-Rule Language

In this section, we focus on providing an expressive and easy-to-use rule language for Query-

Booster’s users to formulate rewriting rules that work for different applications and databases.

We first study the suitability of existing rule languages in the literature and then develop a

novel rule language that meets all the requirements desired by QueryBooster.

3.4.1 Suitability of Existing Rule Languages

We study existing rule languages and their suitability for QueryBooster. These languages [33,

100, 28, 81, 23, 17, 82, 123, 19, 5] are summarized in Figure 3.5. We categorize the languages

58

in two aspects: general versus SQL-specific and declarative versus imperative, and then sum-

marize how the languages in different categories meet the requirements of the rule language

of QueryBooster.

Imperative Languages

SQL String

Parser

Optimizer

Exodus, Starburst,
Prairie, Calcite

Logical
Plan

Physical
Plan

Parsed
Tree

CombyRegex KOLA, EDS

Declarative Languages

General (Non-SQL-specific) SQL-specific

Figure 3.5: Existing rule languages (shown in brown) in the lifecycle of a SQL query.

General versus SQL-specific. The languages on the left are more general (i.e., non-

SQL-specific) since they have fewer SQL-specific restrictions. For example, regular expres-

sions [123] (shown as “Regex”) do not require the input string to be a SQL query. On the

contrary, rule languages on the right such as EDS [28] only accept valid SQL query plans as

the input.

The main advantage of SQL-specific languages is that they are very powerful for users to

express rewriting rules in SQL-specific semantics. For instance, to achieve the rewriting

of replacing “STRPOS” functions with “ILIKE” predicates, we can write a rule using either

regex as shown in Figure 3.6a, or EDS as shown in Figure 3.6b. Compared to regex, the

EDS language has two advantages. First, we do not need to specify SQL-specific syntax

requirements such as white spaces and arguments in functions. Second, we can specify SQL-

specific constraints for variables that are not supported by regex, such as “x is a column and

y is a String literal.”

There are also disadvantages of the more specific languages. First, they can be limited to a

particular SQL dialect or database. For instance, EDS is designed for a particular extensible

59

STRPOS\(
 LOWER\(
 (?<col>\w+)
 \)\,\s+
 \'(?<val>\w+)\'
\)\s+\>\s+0

${col} ILIKE
'%${val}%'

Pattern Replacement

matching parentheses
matching whitespaces

(a) A rule written in regex.

>(STRPOS(LOWER(x),y),0)
/ ISA(x, Column) &
 ISA(y, String)

ILIKE(x,'%y%')

Pattern Replacement

matching argument variables
specifying constraints on variable types

(b) A rule written in the EDS language [28].

Figure 3.6: Rewriting rules to replace STRPOS functions with ILIKE predicates in two different
languages.

system (called “EDBMS”) and its SQL dialect [28]. Second, they require the users to deeply

understand how a SQL query is translated into a plan and how the database optimizer works.

For example, to formulate the rule in the EDS language shown in Figure 3.6b, a user has to

translate the original SQL predicate of “STRPOS(· · ·) > 0” into a logical plan tree format

with “>” as the parent node, which can be counter-intuitive for end users who are familiar

with the SQL syntax but not a database engine.

Declarative versus Imperative. The existing rule languages are either declarative or

imperative. In a declarative rule language, users describe how a rule (e.g., pattern and

replacement) looks, but not how a rule should be implemented. On the contrary, in an

imperative rule language, users specify a sequence of steps that should be taken to do the

rewriting. For example, regex is declarative. Calcite [5] is imperative, and it uses Java to

formulate a rule. The primary disadvantage of using an imperative language to define rules

is that it requires users to have prior knowledge about the internal structures of the rule

engine and define rules by writing code. For example, in Calcite, a user has to write a Java

class that implements an interface to define a new rule.

The main advantage of imperative languages is the expressive power offered by the program-

ming language (e.g., C++), such as defining schema-dependent pattern-matching conditions.

For example, a rewriting rule that removes unnecessary self-joins may need to verify the join-

60

ing attribute is unique, which cannot be inferred just from the SQL query itself. Thus, we

need schema information from the database to implement this rule. Using an imperative rule

engine, we can easily write a rule with a few lines of C code [82] that accesses the schema

data and checks the matching condition.

To this end, we summarize how existing languages meet QueryBooster’s requirements on its

rule language in Table 3.1. An observation is that no existing rule language satisfies all the

requirements. Next, we develop a novel rewriting-rule language called VarSQL.

Table 3.1: Suitability of existing languages for QueryBooster.

Rule
Language

Expressive Power Independent
of DB

Additional
Knowledge NeededSQL Semantics SQL Schema

Regex No No Yes
Comby No No Yes

KOLA Yes No Yes 1 2 3

EDS Yes Yes No 1 2

Exodus Yes Yes No 1 2

Starburst Yes Yes No 1 2 4 5

Prairie Yes Yes No 1 2 5

Calcite Yes Yes Yes 1 2 4 6
VarSQL Yes Yes Yes

1 Query Optimization; 2 Relational Algebra; 3 Combinator-based Algebra;
4 Internal Data Structure; 5 C++ Programming; 6 Java Programming;

3.4.2 VarSQL: A Novel Rule Language

We develop a novel rewriting-rule language (called VarSQL1) for QueryBooster that meets all

the requirements. In particular, VarSQL understands SQL-specific semantics and supports

schema-dependent pattern-matching conditions (R1). It is easy to use, requiring no prior

knowledge other than SQL (R2). Also, it is independent of any specific database or SQL

dialect (R3). Next, we present the technical details of VarSQL.

The syntax of VarSQL to define a rewriting rule is as follows:

[Rule] ::= [Pattern] / [Constraints] --> [Replacement] / [Actions].

1VarSQL stands for “Variablized SQL”.

61

VarSQL uses a four-component structure adopted by most rule languages (e.g., EDS [28] and

Comby [19]). The “Pattern” and “Replacement” components define how a query is matched

and rewritten into a new query. The “Constraints” component defines additional conditions

that cannot be specified by a pattern such as schema-dependent conditions. The “Actions”

component defines extra operations that the replacement cannot express, such as replacing

a table’s references with another table’s. We first discuss how a pattern and a replacement

are formulated using VarSQL.

Extending SQL with variables. The main idea of using VarSQL to define a rule’s pattern

is to extend the SQL language with variables. A variable in a SQL query pattern can

represent an existing SQL element such as a table, a column, a value, an expression, a

predicate, a sub-query, etc. In this way, a user can formulate a query pattern as easily

as writing a normal SQL query. The only difference is that, using VarSQL, one can use a

variable to represent a specific SQL element so that the pattern can match a broad set of

SQL queries. We call this pattern-formulating process “variablizing” a SQL query, and we

call the formulated pattern query a “variablized” SQL query. Similarly, a rule’s replacement

is formulated by writing the rewritten SQL query using variables introduced in the rule’s

pattern. Particularly, both the pattern and replacement in a VarSQL rule have to be a full

or partial SQL query optionally variablized. The variables and their matching conditions

are defined in Table 3.2.

To minimize the learning cost for end-users to define rules in VarSQL, we introduce only two

variables, namely “element-variable” and “set-variable.” An element-variable can match any

individual element in a SQL query, such as a table, a column, etc. A set-variable can match

any collection of elements in a SQL query, such as the column list in the SELECT clause. Note

that keywords and delimiters cannot be represented as variables. An entire clause cannot

be represented as any type of variable either. For example, a set-variable can match all the

columns in the SELECT clause, but no type of variable can match the entire SELECT clause.

62

SELECT e1.name, e1.age, e2.salary
 FROM employee e1,
 employee e2
 WHERE e1.age > 17
 AND e1.id = e2.id
 AND e2.salary > 35000;

SELECT e1.name, e1.age, e1.salary
 FROM employee e1
 WHERE e1.age > 17
 AND e1.salary > 35000;

Q

select from where

and

>

17

= >

35000

R

select from where

and

=

s t1

t2
p

t1 a1 t2 a2

e1 id e2 id

employee e1

employee e2

namee1

agee1

salarye2

agee1

salarye2

R

from where

andt1

Q

select from where

and

>

17

>

35000

employee e1namee1

agee1

salarye1

agee1

salarye1

Original Query Rewritten Query

Syntax Tree of Syntax Tree of

Syntax Tree of Pattern Syntax Tree of Replacement

(2) Match (3) Replace

(1) Parse (4) Assemble

t1=t2
AND
a1=a2
AND
UNIQUE
(t1,a1)
AND
a1 NOT
NULL

Constraints

select

s

p

Substitute
(s, t2, t1)
AND
Substitute
(p, t2, t1)

Actions

Rewriting Rule – Removing an Unnecesary Self-Join

Figure 3.7: The process of pattern matching and replacing of a VarSQL rule R on an example
queryQ. The gray nodes in both syntax trees ofQ and theR’s pattern are matched keywords.
The colored dashed boxes show the variables in R’s pattern and their matched Q’s elements.

63

Table 3.2: Variable definitions in VarSQL.

Name Syntax (regex) Description Example

Element-Variable <[a-zA-Z0-9]*>

An element-variable
matches
a table,
a column,
a value,
an expression,
a predicate,
or a sub-query.

STRPOS(LOWER(<x>), ’iphone’) > 0

<x> matches any
value,
column,
expression,
or sub-query.

Set-Variable <<[a-zA-Z0-9]*>>

A set-variable
matches
a set of
tables,
columns,
values,
expressions,
predicates,
or sub-queries.

SELECT <<x>>

FROM <t>

WHERE <<p>>

<<x>> matches any
set of values,
columns,
expressions,
or sub-queries.

SQL syntax tree-based pattern matching and replacement. VarSQL does the pattern

matching and replacement at the SQL syntax tree level. Consider the rule R shown at the

bottom of Figure 3.7, where the pattern and replacement are shown in their syntax tree

formats. This rule specifies that when two tables with the same name join on the same

unique column, we can safely remove the join and keep only one copy of the table. The

remaining of Figure 3.7 shows the process of pattern matching and replacement of this rule

on an example query Q. We first obtain the syntax tree of the query, and compare it node by

node against the syntax tree of the rule’s pattern. The keyword nodes match each other, and

the variables in the pattern match those elements in the query. Under the node “and”, the

subtree “<t1>.<a1>=<t2>.<a2>” in the pattern matches the predicate “e1.id=e2.id” in

the query, and the set-variable “<<p>>” matches the two remaining predicates in the query.

Next, we use the rule’s replacement syntax tree as a template to generate the rewritten

query’s syntax tree by replacing the variables with their matched elements in the pattern.

Finally, we assemble the rewritten query from the syntax tree. For completeness, we also

show the string representation of the rule R in Figure 3.8.

Providing pre-implemented imperative procedures. Based on SQL, VarSQL is a

64

SELECT <<s>>
 FROM <t1>, <t2>
 WHERE <t1>.<a1>=<t2>.<a2>
 AND <<p>>

t1=t2
AND
a1=a2
AND
UNIQUE(t1,a1)
a1 NOT NULL

Pattern Constraints

SELECT <<s>>
 FROM <t1>
 WHERE <<p>>

Replacement

Substitute
(s, t2, t1)
AND
Substitute
(p, t2, t1)

Actions

-->

Figure 3.8: An example rule in VarSQL that removes an unnecessary self-join.

declarative language. One problem with declarative languages is that they lack the ex-

pressive power to define complex logic in the replacement of a rule and schema-dependent

pattern-matching conditions where imperative programs are needed to access the database

schema. To solve this issue, VarSQL adopts the idea used in declarative languages such as

EDS and Comby that it provides pre-implemented imperative procedures for users to de-

fine complex logic in the constraint and action components of rules. For example, the last

constraint “UNIQUE(t1, a1)” defined in the “Constraints” component in the rule shown in

Figure 3.8 calls the pre-implemented imperative procedure “UNIQUE” supported by VarSQL,

which verifies if “a1” in table “t1” is a unique column by referring to the database schema.

VarSQL also provides imperative procedures for users to define complex actions in a rule. For

example, the rule in Figure 3.8 does two actions on the replacement SQL query. The first

action “Substitute(s, t2, t1)” is to replace the table “t2” with table “t1” in the scope

represented by the set-variable “<<s>>”. Consider the query Q in Figure 3.7 that matches

the rule. The set-variable “<<s>>” matches the entire selection list “e1.name, e1.age,

e2.salary”. Since the replacement of the rule removes table “t2” from the query, the column

“e2.salary” needs to be substituted by “e1.salary”. And, the action “Substitute(s,

t2, t1)” achieves this purpose.

To make sure the pattern-matching and replacement at the syntax tree level can handle SQL

semantics, VarSQL understands important SQL concepts, e.g., an element-variable “<x>” in

the FROM clause can match either a table name or a table name with an alias.

65

3.4.3 VarSQL-Based Rewriting Engine

In this section, we discuss how to design an extensible rewriting engine to support the

VarSQL rule language. First, rewriting SQL queries using VarSQL-based rules can happen

at the string level, abstract syntax tree (AST) level, or the logical plan tree level. We will

discuss the pros and cons of implementing the engine at different levels and why we choose

the AST level. Second, we discuss a few problems in implementing the engine, such as the

termination of the rewriting process and the uniqueness of the rewriting results. Finally, we

briefly discuss how the rewriting engine can support different databases and SQL dialects.

Order-insensitive rewriting at the abstract syntax tree (AST) level. VarSQL oper-

ates the pattern matching and replacing at the abstract syntax tree level, other than general

languages such as Regex and Comby that operate at the string level or SQL-specific lan-

guages such as EDS and KOLA that operate at the query logical plan level. A major problem

of operating at the string level is that the order of elements in the pattern is important. For

example, in Comby, if the pattern is defined as

SELECT orders.*, customers.* FROM orders, customers,

it does not match a query with a different order of joining the same two tables, such as

SELECT orders.*, customers.* FROM customers, orders.

This is counter-intuitive for SQL users because, in SQL semantics, the above two queries

share the same pattern.

Operating at the logical plan level can solve the problem. However, we know that one SQL

query can have many equivalent logical plan trees with different orders of joins and different

positions of filtering predicates. Thus, it requires the rewriting engine to enumerate all

66

possible logical plans for a specific query to do pattern-matching, which can be expensive.

For instance, in Figure 3.9, all the three logical plans are possible output for a particular

input query. In this case, checking a pattern matching against all possible logical plans of

the query requires varying not only different join orders but also the positions of filtering

predicates, which can make the implementation of the rewriting engine complex.

Figure 3.9: An example of three possible logical plans for a single SQL query which joins
tables A, B, and C with a filtering predicate on the z column of C.

Thus, VarSQL operates at the AST level and does order-insensitive pattern-matching inside

a clause to solve the problem. We have explained the pattern-matching process of a VarSQL-

based rule on an example query in Section 3.4.2. We now focus on the order-insensitivity of

the process. When a pattern matches a SQL query, VarSQL does not enforce the ordering of

elements under a specific clause. Figure 3.8 shows a rule that specifies when two tables with

the same name join on the same unique column, we can safely remove the join and keep only

one copy of the table. This rule’s pattern can match both queries shown in Figure 3.10, in

which the join predicate (i.e., “<t1>.<a1>=<t2>.<a2>”) and the predicate set-variable (i.e.,

“<<p>>”) have different orders. This behavior is also consistent with the order-insensitive

nature of SQL queries, where different orders of the same set of predicates under a WHERE

clause should yield the same result.

Termination of the rewriting process and the uniqueness of the result. We have

talked about how the rewriting engine does the pattern matching and replacing for given

a SQL query and a rewriting rule. We now briefly discuss the entire rewriting process for

67

SELECT e1.name, e1.age, e2.salary

FROM employee e1,

employee e2

WHERE e1.id = e2.id

AND e1.age > 17

AND e2.salary > 35000;

(a) An original query (Q1).

SELECT sum(o1.total_price)

FROM orders o1,

orders o2

WHERE o1.os in (’ios’, ’macos’)

AND o1.oid = o2.oid

AND o2.state_code = ’CA’;

(b) An original query (Q2).

Figure 3.10: Two original queries that both match the pattern of the rule in Figure 3.8.

an arbitrary online query. All user-formulated rules are stored in the rule base as shown in

Figure 4.2. When an original query Q comes, the query rewriter accesses each rule r in the

rule base and checks its pattern and constraints against query Q. If the rule r matches Q,

the query rewriter rewrites Q to Q′ according to the rule’s replacement and actions. It then

treats Q′ as Q and repeats the rule matching and rewriting process until the query cannot

match any rule in the rule base. Note that the same rule can be matched and used multiple

times.

To ensure the process always terminates, the query rewriter tracks the rewriting path and

discovers cycles by checking if the same rewritten query appears more than once on the path.

It breaks a cycle by returning the repeated rewritten query as the result. One concern is

that different orders of applying rules on a query may result in different rewritten queries.

To address this concern, QueryBooster allows users to specify a priority for each rule so that

high-priority rules can be applied first. For example, a user may ask the system to apply

general optimization rules (e.g., removing unnecessary type-castings) before applying specific

optimization rules (e.g., replacing substring functions).

Supporting different databases and SQL dialects. QueryBooster can support different

databases and SQL dialects for two reasons. One is its simple design of extending SQL with

variables. The other is that the query rewriter operates at the Abstract Syntax Tree (AST)

level and adopts existing SQL parsers to parse the queries and rules. Existing rules are

68

parsed into ASTs and then stored in the rule base. For an input query, the query rewriter

first parses the query into an AST. It then does the pattern matching by comparing each

rule’s AST with the query’s AST. Once a rule pattern matches the query, the query rewriter

assembles the rewritten query’s AST based on the replacement AST of the rule. Finally, it

uses the same SQL parser to assemble the rewritten query’s AST back to a SQL query.

Thus, QueryBooster can be easily extended to support different databases with different SQL

dialects. To support a new database and its SQL dialect, we replace the SQL parser inside

the query rewriter with the corresponding SQL parser for the new database, and both the

rule language and the query rewriting process can be adapted automatically.

3.5 Rule Quality and Transformations

In this section, we focus on providing a powerful interface for QueryBooster that suggests

high-quality rules for user-given rewriting examples. We first discuss how to measure the

quality of rules and formally define the rewriting-rule suggestion problem. We then propose

a framework to solve the problem, which comprises two major steps: transforming rules into

more general forms and searching for high-quality rules greedily. We discuss the first step in

this section and the second step in the next section.

3.5.1 Quality of Rewriting Rules

Adopting MDL principle to measure the quality of rules. When the rule suggestor

generates rules from the user-given examples, there can be many different sets of rules that

can achieve the example rewritings. For instance, consider the five input examples in Fig-

ure 3.11. The rule suggestor can output the original five rewriting pairs as five rules to the

user. Apparently, this suggestion is an overfit to the given examples since the suggested rules

69

Rule Suggestor
User

STRPOS(LOWER(text),'iphone')>0 text ILIKE '%iphone%'

STRPOS(LOWER(msg),'iphone')>0 msg ILIKE '%iphone%'

SELECT COUNT(*) FROM
 (SELECT 1 AS one
 FROM log
 WHERE group = 'admin'
 ORDER BY created_at DESC)

SELECT COUNT(*) FROM
 (SELECT 1 AS one
 FROM log
 WHERE group = 'admin')

SELECT COUNT(id) FROM
 (SELECT id
 FROM orders
 WHERE price >= 2000
 ORDER BY price DESC)

SELECT COUNT(id) FROM
 (SELECT id
 FROM orders
 WHERE price >= 2000)

Example query rewriting pairs

STRPOS(LOWER(<x>),'<y>')>0 <x> ILIKE '%<y>%'

SELECT COUNT(<x>) FROM
 (SELECT <y>
 FROM <t>
 WHERE <p>
 ORDER BY <a> DESC)

SELECT COUNT(<x>) FROM
 (SELECT <y>
 FROM <t>
 WHERE <p>)

Considered rules
. . .

STRPOS(LOWER(msg),'mac')>0 msg ILIKE '%mac%' . . .

. . .

. . .

. . .
SELECT <y>
 FROM <t>
 WHERE <p>
 ORDER BY <a> DESC

SELECT <y>
 FROM <t>
 WHERE <p>

Figure 3.11: Suggesting rewriting rules from user-given examples. The rule suggestor sug-
gests two rewriting rules (r1 and r2) that cover all five query rewriting pairs provided by the
user, and the total description length of r1 and r2 is minimized compared to other sugges-
tions.

cannot rewrite queries slightly different from the examples. Intuitively, we want to suggest

more general rules that capture the pattern of the given examples. At the same time, we

do not want to over-generalize the rules, which may underfit the examples. For instance, in

Figure 3.11, both rules r2 and r3 can achieve the rewritings for the example pairs (Q4, Q
′
4)

and (Q5, Q
′
5), which removes the ORDER BY clause from the subquery. In this case, r2 is less

general than r3 but is a better suggestion, because lacking the context of a COUNT aggregation

in the outer query, r3 can be erroneous in many cases.

To this end, we want to avoid underfitting or overfitting the given examples when measuring

the quality of rewriting rules. An effective way is through the Minimum Description Length

(MDL) principle [96], which minimizes the total length required to describe the underlying

patterns in the data. There are MDL-based metrics for pattern extractions in domains such

as data mining[30], data cleaning [93, 37], and regex learning [14]. We can adapt these

existing metrics to measure our rewriting rules’ quality or derive our own description length

functions as needed. From the rule-suggestor’s perspective, we assume a rule-quality metric

70

is given.

For the MDL metric, we assume no access to the target database. If we are granted access,

we can also consider the rewriting rules’ effectiveness in improving the performance of the

historical workload as the rules’ quality. For simplicity, we first use MDL as the quality

function and then discuss how to extend the framework to include query performance to

measure the rules’ quality in Section 3.6.3.

Rewriting-rule suggestion problem. Next, we formally define the problem of suggesting

high-quality rules from given examples.

Definition 3.1. (Covering) Let Q be a set of query rewriting pairs {(Q1, Q
′
1) , (Q2, Q

′
2) , . . .

, (Qn, Q
′
n)}, and R be a set of rewriting rules {r1 , r2 , . . . , rk}. We say R covers Q if for

each pair (Qi, Q
′
i) in Q, there is at least one rule rj in R such that rj can rewrite Qi into

Q′
i, and there is no rule rk in R such that rk can rewrite Qi into a query different than Q′

i.

Definition 3.2. (Rewriting-rule suggestion problem) Let Q be a given set of query rewriting

pairs {(Q1, Q
′
1) , (Q2, Q

′
2) , . . . , (Qn, Q

′
n)}, G be a given rule language, and L be a given

description length function. The rewriting-rule suggestion problem is to compute a set R of

rewriting rules {r1 , r2 , . . . , rk} such that R covers Q and the total length of rules Σi=1...kL(ri)

is minimal.

We propose a two-step solution. First, we define a set of transformations that can generalize

a rewriting rule into a more general form such that the transformed rule can cover more

rewriting pairs than the original rule. By applying the transformations on the given rewriting

pairs iteratively, we identify a set of candidate rules to consider for the final suggestion.

Second, we adopt a greedy-search strategy to efficiently explore different subsets of rules as

candidates and minimize the total description length. Next, we present the technical details

of both steps.

71

3.5.2 Transforming Rules to More General Forms

Transformations on rules. A transformation on a rewriting rule can generalize the rule

into a more general rule such that the new rule covers more rewriting pairs than the orig-

inal one. The instantiation of transformations is dependent on the given rule language.

We now define transformations (shown in Figure 3.12) on rewriting rules formulated in

the VarSQL language, namely Variablize-a-Leaf, Variablize-a-Subtree, Merge-Variables, and

Drop-a-Branch. The last three transformations only happen if the replaced variables are not

referred to in other places in the rule’s pattern or replacement.

Variablize-a-Leaf. This transformation replaces an instantiated element (table, column,

or value) in a rule with a variable. In this way, the transformed rule can match more queries

than the original one. As shown in the first example in Figure 3.12, the transformed rule

can match a query with any column name in the first argument of the STRPOS function. In

contrast, the original rule can only match a query with the specific “msg” column.

Variablize-a-Subtree. This transformation replaces a complex element (expression, pred-

icate, or subquery) in a rule with a variable. In this way, we can generalize the pattern

of a rule by hiding the details within an expression, predicate, or subquery. In the second

example in Figure 3.12, the common expression “CAST(<x> AS DATE)” appears without any

modifications in both the rule’s pattern and replacement, which means that it might be

an irrelevant pattern in the original rule. Summarizing the common expression with a new

variable makes the rule more general.

Merge-Variables. Notice that in the VarSQL language, an element-variable can only match

a single element in queries. We introduce this transformation to generalize a set of variables

to a set-variable to suppress the quantity restriction when matching queries. As shown in the

third example in Figure 3.12, the original rule only matches queries with the two columns in

the SELECT clause, and the transformed rule can match queries with any number of columns

72

Transformation Description Example

Variablize-a-
Leaf

Notate a leaf in a rule's
pattern AST as a variable.

A leaf has to be a table,
column or value.

STRPOS(msg,'mac')>0 msg LIKE '%mac%'

STRPOS(<x>),'mac')>0 <x> ILIK '%mac%'

Variablize-a-
Subtree

Notate a common subtree
in both a rule's pattern and
replacement ASTs as a
variable.
A subtree has to satisfy:
 (1) its height is one;
 (2) none of children are a
table, column or value;
 (3) the root is not a clause-
leading keyword such as
select, from, where, etc.

CAST(
 DATE_TRUNC(
 'day',
 CAST(<x> AS DATE))
AS DATE)

DATE_TRUNC(
'day',
CAST(<x> AS DATE)
)

CAST(
 DATE_TRUNC(
 'day',
 <y>)
AS DATE)

DATE_TRUNC(
 'day',
 <y>)

Merge-
Variables

Merge a common set of
sibling variables in both a
rule's pattern
and replacement ASTs into
one variable.

SELECT <a>,
 FROM <t1>, <t2>
 WHERE <t1>.<c> =
 <t2>.<c>

SELECT <a>,
 FROM <t1>

SELECT <<s>>
 FROM <t1>, <t2>
 WHERE <t1>.<c> =
 <t2>.<c>

SELECT <<s>>
 FROM <t1>

Drop-a-Branch

Remove a common
branch (starting from the
root) in both a rule's pattern
and replacement ASTs.

SELECT <a>
FROM <t>
WHERE
STRPOS(<x>),'<y>')>0

SELECT <a>
FROM <t>
WHERE
<x> LIKE '%<y>%'

FROM <t>
WHERE
STRPOS(<x>),'<y>')>0

FROM <t>
WHERE
<x> LIKE '%<y>%'

Figure 3.12: Transformations on rewriting rules formulated in VarSQL. A transformation is
applied to the pattern and replacement ASTs of a rewriting rule to generalize it into a more
general rule.

73

SELECT id, msg
 FROM tweets
 WHERE STRPOS(
 CAST(msg AS TEXT),
 'mac') > 0

SELECT id, msg
 FROM tweets
 WHERE CAST(msg AS TEXT)
 LIKE '%mac%'

SELECT id, msg
 FROM tweets
 WHERE STRPOS(
 CAST(<x> AS TEXT),
 'mac') > 0

SELECT id, msg
 FROM <t>
 WHERE STRPOS(
 CAST(msg AS TEXT),
 'mac') > 0

SELECT <a>,
 FROM <t>
 WHERE STRPOS(
 CAST(<x> AS TEXT),
 '<y>') > 0

SELECT <<s>>
 FROM <t>
 WHERE STRPOS(
 CAST(<x> AS TEXT),
 '<y>') > 0

SELECT <a>,
 FROM <t>
 WHERE STRPOS(
 <z>,
 '<y>') > 0

. . .

.

STRPOS(<z>, '<y>') > 0 <z> LIKE '%<y>%'

. . .

. . .

Variablize-a-Leaf

Merge-Variables Variablize-a-Subtree

Drop-a-Branch

Figure 3.13: A rule graph generated from a given rewriting pair (Q, Q′). The vertices are
generalized rules (only showing patterns due to the space limit). The solid edges show one
path of generalizing the pair into a general rule. The green tags on the edges illustrate which
transformations are applied.

74

in the selection list. This transformation is useful when we want a more general rule where

the quantity of elements does not matter for the pattern.

Drop-a-Branch. This transformation is a complement of the Variablize-a-Subtree transfor-

mation. Since VarSQL requires the pattern of a rule to be a valid full or partial SQL query,

we cannot variablize an entire clause. For example, in the fourth example in Figure 3.12, if

we variablize the SELECT <a> subtree as a new variable <y>, the transformed pattern “<y>

FROM <t> WHERE ...” is not valid SQL syntax. Thus, we introduce the Drop-a-Branch

transformation, which removes a common branch in a rule’s pattern and replacement. In

this way, we can gradually remove the irrelevant context of a rule’s pattern from the top to

the bottom of the pattern’s AST.

Rule Graph. Until now, starting from an initial rewriting pair, by applying the transforma-

tions iteratively, we can generalize it into more and more general rewriting rules gradually.

If we treat each newly-generated rewriting rule as a vertex and a transformation as an edge,

we can obtain a graph of rewriting rules. We call it a rule graph. Figure 3.13 shows an

example rule graph. As we can see, a rule graph for a single rewriting pair can be big, and

the union of all rule graphs for a set of rewriting pairs can be even bigger, so searching for a

set of high-quality rules is difficult. In the next section, we discuss how to navigate through

the search space and make final suggestions to the users.

3.6 Searching For High-Quality Rules

To solve the rewriting-rule suggestion problem defined in Definition 3.2, we defined a set

of transformations in Section 3.5.2 to generalize the initial rewriting pairs to more general

rewriting rules. However, the candidate sets of generalized rules that can cover the initial

rewriting examples may be large. It can be computationally expensive to search all possible

75

sets to compute an optimal solution with the minimum description length. To solve the

problem, we adopt a heuristic-based strategy to expand the candidate-rule set greedily and

rely on a local set of rules to make final suggestions. In this section, we first present the

greedy searching framework, then propose several heuristics to further reduce the search

overhead.

3.6.1 A Greedy Searching Framework

We develop a method to search for rules, as shown in Algorithm 3. Its main idea is the

following. We start with the original rewriting pairs as a basic solution, and treat each

query pair as a rewriting rule (line 1). We iteratively replace rules in the solution with a

more general rule that reduces the total description length the most. In each iteration, we

first explore a set of candidate rules by applying transformations to the rules in the current

solution (line 3). We say a rule x covers another rule y if x’s pattern matches y’s pattern

and x can rewrite y’s pattern to y’s replacement. For each candidate rule, we compute the

reduction of the total description length if we use it to replace its covered rules in the solution

(lines 4-7). We then choose the rule that has the maximum reduction (line 8) and replace its

covered rules with the new rule (line 12). We stop the iteration if there is no more reduction

(line 9). In this case, we return the current solution (line 10).

The algorithm follows the hill-climbing paradigm [98], where in each iteration, it explores

a set of candidate rules to consider as the possible next directions. The exploration of

candidates is implemented in the Explore Candidates(R,T) procedure, and the decision of

which set of candidates to explore can affect how easily the algorithm is stuck at a local

optimum. Ideally, the explored candidates should include all possible rules transformed

from the current rule set. However, the size of the transformed rules can be large. Thus, we

need to consider the trade-off between the exploration size and the probability of trapping

76

Algorithm 3: A greedy algorithm for suggesting rules

Input: A set of rewriting pairs Q = {(Q1, Q
′
1), . . . , (Qn, Q

′
n)}

A set of transformations T = {T1, T2, . . . , Tm}
A description length function L on a rule

Output: A set of rewriting rules R
1 R ← Q
2 while True do
3 C ← Explore Candidates(R, T)
4 for c ∈ C do

// find rules that can be replaced by c
5 Rc ← {Ri ∈ R | Ri is covered by c}

// compute the length reduction if c replaces Rc

6 ∆Lc ←
∑

Ri∈Rc
L(Ri) − L(c)

7 end
// choose a candidate rule with the largest length reduction

8 ĉ ← argmaxc∈C ∆Lc

// stop when there is no more reduction
9 if ∆Lĉ ≤ 0 then

10 return R
11 end

// update the result set
12 R ← R − Rĉ + ĉ

13 end

in a local optimum. We discuss different methods in the following.

A naive candidate-exploration method. A naive method is to parameterize the number

of hops when we transform the rules in the given rule set. As shown in the rule graph in

Figure 3.13, starting from a base rule, we can transform it into different child rules by

applying different transformations. We call a child rule a “1-hop rule” if it is obtained from

the base rule by applying one transformation. Similarly, a rule is a “k-hop rule” if it is

obtained after applying k transformations on the base rule one by one. The parameter k

decides the exploration overhead of the searching framework. We can increase k to allow the

algorithm to look ahead before settling down at a local optimum at a higher computational

cost. We call this method “k-hop-neighbor exploration” (KHN for short).

This method has two problems. One is that it is hard to decide the k value. A k value may

77

be good for some input examples but can be bad for others. The second problem is that

a fixed k value for all base rules ignores their different amounts of potential to discover a

high-quality rule. To solve these two problems, we propose an adaptive exploration method

next.

3.6.2 Exploring Candidate Rules Adaptively

In this subsection, we discuss how to explore candidates in an adaptive way by considering

the different amounts of potential of transforming different base rules to discover a high-

quality general rule. The goal is to explore more promising candidate rules first to fill a fixed

size of the candidate set.

m-promising neighbors. Its main idea is that instead of exploring neighbors a fixed

number of hops away from the current rule set, we explore a fixed number (denoted as

m) of neighbors that can reduce the total length of the rule set the most. The value m

directly decides the computation overhead of the rule-suggestion algorithm. We can decide

its value by considering the running time (e.g., 2 seconds) allowed to run the algorithm and

the hardware resources we have. To find the m neighbors, we explore the given base rule set

iteratively. In each iteration, we choose a rule that is most promising to be transformed into

a more general rule that reduces the total length the most. In this way, we can generate a

set of candidate rules with different numbers of hops transformed from different base rules

in the given rule set.

Algorithm 4 shows the pseudo-code of the method of m-promising-neighbor exploration

(MPN for short). For a given function P that measures a rule’s promisingness score, the

algorithm starts from the initial rule set, chooses one rule with the highest score, replaces

it with all its 1-hop transformed rules in the candidate rule set, and stops until the rule set

reaches the given size m.

78

Algorithm 4: m-promising-neighbor exploration

Input: A set of rewriting rules R = {R1, R2, . . . , Rn}
A set of transformations T = {T1, T2, . . . , Tm}
A function P that measures a rule’s promisingness score
A parameter m that limits the output size

Output: A set of candidate rewriting rules C
1 C ← R
2 while |C|<m do

// choose the most promising candidate rule
3 ĉ ← argmaxc∈C P(c)

// replace it with its 1-hop transformed child rules
4 for Ti ∈ T do
5 Ti(ĉ) ← {all possible child rules by applying Ti to ĉ}
6 C ← C ∪ Ti(ĉ)

7 end
8 C ← C − ĉ

9 end
10 return C

Measuring the promisingness score of a rule. We consider three signals to measure

a rule’s promisingness score. First, one signal is the total length of those base rules that

can be covered if we transform a candidate rule into a more general form. Second, another

signal is the number of transformations needed to apply to a candidate rule if we want it

to cover more base rules in the rule set. This signal measures how far we can reach a more

general rule starting from a particular candidate rule. Third, the last signal is the length of

a candidate rule.

Formally, suppose we are given a set of base rewriting rules R = {R1, R2, . . . , Rn} and a

candidate rule c. We compute rule c’s promisingness score P(c) as follows. For each base

rule Ri ∈ R, we compute a distance D(c, Ri), which is the number of transformations on

rule c to cover rule Ri. We will discuss how to compute this value shortly. Let L be the

given description length function. The promisingness score of rule c is:

P(c) =
n∑

i=1

L(Ri)

D(c, Ri)
+

1

L(c)
.

79

If a rule can be generalized with fewer transformations to cover longer base rules and its

own length is shorter, it should have a higher promisingness score. We now describe how to

compute the distance D(c, Ri) of transforming rule c to cover the base rule Ri. We count

the number of transformations on c to produce a more general form c′ to cover rule Ri. A

rule c′ covers rule Ri if the pattern of c′ matches Ri’s pattern, and we can rewrite it to Ri’s

replacement. Therefore, we can run the pattern-matching process of c on Ri similar to that

of a rule on a query. The only difference is that when we find any mismatching part, instead

of immediately returning false, we compute the number of transformations needed for the

mismatching part in c to match that in Ri.

3.6.3 Including Query Cost in Rule Quality

To this end, we use MDL as a metric for rewriting rules’ quality. We now show how to include

the effectiveness in improving the performance of a historical workload W to measure the

rules’ quality. For a given candidate rewriting rule set R (in Algorithm 3), we can obtain a

set WR of rewritten queries by rewriting W using the rules in R. Suppose we know the cost

of queries to the target database. We can obtain the total cost of all rewritten queries in

WR, denoted as C(WR). When we evaluate the benefit of replacing a few rules in Rc with

a candidate rule c (line 6), we compute the reduction of query cost when using the new rule

set to rewrite W , denoted as ∆Cc. Then, we compute a weighted sum of both the reduction

of description length and the reduction of query cost as the total benefit for the candidate

rule c as

Benefitc ← β × ∆Lc

LR
+ (1− β)× ∆Cc

C(WR)
,

where β is a parameter to tune the balance between the importance of the description length

and performance improvement of the rewriting rules. We replace the original ∆Lc with the

new Benefitc at lines 6, 8, and 9, and extend Algorithm 3 to include the effectiveness in

80

improving workload performance to measure the quality of rewriting rules. Similarly, we

also include the new benefit value when computing the promisingness score of a rule in

Algorithm 4.

3.7 Experiments

We conducted experiments to evaluate QueryBooster regarding three aspects: formulating

rules using the VarSQL rule language, suggesting rules from user-given examples, and the

end-to-end performance using QueryBooster to rewrite queries. In particular, we want to

answer the following questions: (1) How easy is it for SQL developers to use the VarSQL

language to formulate query rewriting rules? (2) What is the expressive power of VarSQL?

(3) Are the transformations defined in QueryBooster enough to generate general rules from

example pairs? (4) How do different search strategies perform in terms of running time and

rule qualities? (5) How much benefit can QueryBooster provide on the end-to-end query

performance with the human-centered query rewritings?

3.7.1 Setup

Workloads. We used four workloads as shown in Table 3.3. Each workload had a set of

SQL rewriting pairs, and each pair consisted of an original query and a rewritten query.

Each rewritten query was equivalent to and usually outperformed its original query. The

WeTune workload included 245 pairs of SQL queries published in the appendix table in the

paper [121]. WeTune [121] is a technique that generates new rewriting rules automatically by

searching the logical-plan space and considering the performance of rewritten queries. They

collected those original queries from 20 open source applications on GitHub and generated

the rewritten queries by applying their machine-discovered rewriting rules. The Calcite

81

workload comprised 232 rewriting pairs of SQL queries designed for the Apache Calcite test

suite [6].

To consider the real-world use cases where business intelligence (BI) users do interactive anal-

ysis on their data residing in a database, we created three more workloads using Tableau [109]

and Apache Superset [7] on top of both PostgreSQL and MySQL. The “Tableau + TPC-

H” workload included 20 rewriting pairs of SQL queries, which corresponded to the top

20 queries in the TPC-H benchmark [114]. We first inserted a 10GB TPC-H synthesized

dataset into a PostgreSQL database (indexes were created using Dexter [2], which automat-

ically creates indexes based on the database and workloads), then used Tableau Desktop

software to connect to the PostgreSQL database in its live mode. For each query in the

TPC-H benchmark, we manually built a Tableau visualization workbook that could answer

the corresponding business question, then collected the backend SQL query generated from

Tableau for the workbook. We then analyzed the Tableau-formulated SQL query and came

up with a rewritten query with a better performance. Similarly, we generated the “Tableau

+ Twitter” and “Superset + Twitter” workloads by building visualization dashboards using

Tableau and Apache Superset to analyze 30 million tweets on their textual, temporal, and

geo-spatial dimensions on top of both Postgres and MySQL databases. In the workloads, 14

pairs of queries were generated on top of PostgreSQL, and 11 pairs were generated on top

of MySQL.

Table 3.3: Workloads used in the experiments.

Id Workload # of query pairs
1 Calcite 232
2 WeTune 245
3 Tableau+TPC-H 20
4 Tableau+Twitter 14 (Postgres) + 6 (MySQL)
5 Superset+Twitter 5 (MySQL)

Testbed. We implemented the QueryBooster solution using Python 3.9 and used the “mo-

sql-parsing” package [52] as the SQL parser. All experiments were run on a MacBook Pro

82

2017 model with a 2.3GHz Intel Core i5 CPU, 8GB DDR3 RAM, and 256GB SSD. The

Tableau Desktop software version was 2021.4, and the Apache Superset version was May

2023. The PostgreSQL software version was 14, and the MySQL software version was 8.0.

Description length function. To evaluate the performance of the rule-suggestion algo-

rithms, we implemented a description length function designed for rules rewritten in VarSQL.

We followed the design principles proposed in [93]. The main idea was that each rule had a

constant basic length, and the more variables it had, the larger its description length should

be. In this case, the description length metric made sure that high-quality rules could match

as many given examples as possible, but they were not over-generalized to match unseen

queries. We computed the description length L of a particular rule r as the following. Let

W be the constant basic length of any rule, WE be the weight of an element-variable, and

WS be the weight of a set-variable. We used three counters in the given rule. We counted

the number of element-variables in the rule as CE and the number of set-variables as CS.

In addition, we counted the number of non-variable elements in the rule as CO, where non-

variable elements included keywords, values, table names, column names, etc. In the end,

we computed the length L of rule r as

L(r) = W + (WE × CE +WS × CS)/CO.

3.7.2 A User Study to Evaluate Rule Languages

Table 3.4: User profiles in the user study.

Background Faculty Staff Software Engineers Ph.D. students M.S. students
% of users 4.5% 4.5% 4.5% 72.7% 13.6%

We conducted a user study to evaluate how easy it was for SQL users to use VarSQL to

formulate rewriting rules. Besides VarSQL, we considered two other languages for compari-

son. One was regular expression [123], and we used its C Sharp implementation provided by

83

regex101 [95]. The other was the internal rule language used by WeTune [121], and we used

its own implementation provided by its demo website WeRewriter [45]. We selected three

rewriting pairs of SQL queries from two workloads on two databases. One pair was from the

WeTune workload, and the other two pairs were from the “Tableau + Twitter” workload on

both PostgreSQL and MySQL. For each rewriting pair, we showed the original and rewrit-

ten queries to the user, along with three rewriting rules defined in the three languages that

could achieve the same rewriting. We asked the user to “select one of the three rules that

you think is the easiest to understand.” In the questions, we randomized the orders of the

rule languages and hid their names to make the comparison fair.

Table 3.5: Results in the user study (% of users selected the rule language as the easiest to
understand).

Pair Id 1 2 3
Workload Twitter(Postgres) Twitter(MySQL) WeTune(Q91)
% of Regex 13.6% 4.5% 0%
% of WeTune 0% 13.6% 13.6%
% of VarSQL 86.4% 81.8% 86.4%

We invited 22 users who were familiar with SQL and with different backgrounds. The profiles

of users are shown in Table 3.4, and the results are summarized in Table 3.5. Among all

the rewriting pairs, more than 80% of users selected the rule formulated in VarSQL as the

easiest to understand, and it outperformed the other two languages significantly. The user

study results show that VarSQL is an easy-to-use language and was preferred by SQL users.

3.7.3 Comparison of Rule-Searching Strategies

We evaluated the performance of different searching strategies in the rule-suggestion search-

ing framework. We compared the three strategies discussed in Section 3.6. The first was

“Brute-Force” (“BF” for short), which explored all possible rules that were transformed

from the current rule set in the Explore Candidates procedure. The second was the “k-

84

hop-neighbor exploration” (“KHN” for short), where we explored the neighbors of a fixed

number (k) of hops away from the base rules for each iteration’s consideration. The last was

the adaptive exploration method, “m-promising-neighbor exploration” (“MPN” for short),

where we explored a fixed number (m) of neighbors that were the most promising to finally

reduce the total description length of the resulting rule set. We used the “Tableau + Twit-

ter” workload and varied the number of rewriting examples as the input to the searching

algorithms. For each input set of examples, we first ran the BF method to get a high-quality

set of suggested rules as the benchmark. We then ran the KHN and MPN methods and

made sure they both output the same set of suggested rules as the BF method by gradually

increasing the k and m parameters. In this way, we ensured the fairness of the comparison

between different methods.

 0.2
 1
 5

 25
 125
 625

 2 3 4 5

R
un

ni
ng

 T
im

e(
s)

 (L
og

)

Number of Rewriting Examples

Brute-Force

27.83 36.57 58.97
136.56

K-Hop Neighbors

0.79
1.76

6.52

49.32
M-Promising Neighbors

0.26
0.53

0.92

1.39

(a) Running time (Log-scale).

 1

 32

 1024

 32768

 2 3 4 5

C

an
di

da
te

s
Ex

pl
or

ed
 (L

og
)

Number of Rewriting Examples

Brute-Force

1167 1154 1222
2587

K-Hop Neighbors

43 54
155

1018
M-Promising Neighbors

12 22 30 33

(b) Total # of candidates explored (Log-scale).

Figure 3.14: Comparison of different candidate exploration methods to suggest the same set
of rules on the “Tableau + Twitter” workload.

The results are shown in Figure 3.14. As shown in Figure 3.14a, as the number of input

examples increased, the running time of the brute-force method increased sub-exponentially.

The reason was for each example added to the input set, the number of candidate rules

generated from the new example was exponential to its number of elements in the original

query. Compared to the brute-force method, the KHN method had significantly less running

time since it only explored a small set of candidate rules during the exploration phase.

However, its running time still went up to 50 seconds for 5 input examples. The reason

85

was that to reach the high-quality rules, the KHN method had to tune its k value to 4,

and the number of explored rules increased exponentially with the increase of the k value.

In comparison, the MPN method outperformed both other methods significantly, and the

running time increased linearly as the input set size increased. These results are consistent

with those shown in Figure 3.14b, and both figures illustrate the correlation between the

running time and the number of candidates explored in the searching framework.

3.7.4 Effect of m in m-promising Neighbors

We evaluated the effect of the m value in the m-promising-neighbor searching strategy on the

WeTune workload. We randomly chose 30 rewriting pairs within the first three applications

in the workload as the testing set. We then chose the top two frequent rewriting patterns

and named them as “Rule1” and “Rule2”. Among the 30 pairs, there were 5 pairs matching

Rule1 and 4 pairs matching Rule2. For each rule, we used one matching pair as the seed

and manually generated 4 rewriting examples as the input examples for the rule-suggestion

algorithm. We ran the algorithm using the m-promising-neighbor strategy with different m

values. We measured the total description length of the output rule set and the result is

shown in Figure 3.15a. It shows that for both rules’ input example sets when the m value

increased, the output of the rule-suggestion algorithm converged to the optimal rule set with

the minimum description length. Referring to the corresponding running time shown in

Figure 3.15c, it only took about 5 to 6 seconds for the algorithm to output the optimal rule

set. Figure 3.15d also shows the numbers of candidates explored for different m values.

We evaluated the output rule set from the rule-suggestion algorithm on the unseen 30 testing

rewriting pairs in the workload. We measured both the precision and recall computed as

follows. Suppose the rule set rewrote x unseen pairs of queries, among which x1 pairs satisfied

the intent of the user. Then the precision is x1
x
. Suppose the user wanted y pairs of queries

86

 0
 20
 40
 60
 80

 100
 120

 10 20 30 40 50 60

D
es

cr
ip

tio
n

Le
ng

th
 (%

)

M value in M-Promising Neighbors

Rule1
Rule2

(a) Description Length (% of the raw examples).

 0
 20
 40
 60
 80

 100
 120

 10 20 30 40 50 60

Pr
ec

is
io

n
an

d
R

ec
al

l (
%

)

M value in M-Promising Neighbors

Rule1-Recall
Rule2-Recall

(b) Precision and Recall on unseen pairs.

 0
 1
 2
 3
 4
 5
 6
 7

 10 20 30 40 50 60

R
un

ni
ng

 T
im

e
(s

)

M value in M-Promising Neighbors

Rule1
Rule2

(c) Running Time (s).

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60

of

 C
an

di
da

te
s

Ex
pl

or
ed

M value in M-Promising Neighbors

Rule1
Rule2

(d) Total # of candidates explored.

Figure 3.15: Effect of the m value in the m-promising-neighbor searching strategy on the
WeTune workload.

in the testing set to be successfully rewritten, and the rule set only rewrote y1 out of y.

Then the recall is y1
y
. The result is shown in Figure 3.15b. The precision was always 100%

(omitted in the figure) because the design of the description length function enforced that

the rules were never over-generalized. And the recall was initially low for a small m value

because the output rules were very specific to the input examples, and the output rules were

not optimal yet. As the m value increased to 50 or more, the algorithm started to output

the optimal suggested rules that could cover unseen query pairs with similar patterns, which

led to a 100% recall in the end. Thus, for this dataset, we recommend 50 for the m value.

87

3.7.5 End-to-End Query Time Using QueryBooster

We evaluated the end-to-end query time (the time between the frontend sending the SQL

query to and receiving the result from the database) using QueryBooster to rewrite queries

in the “Tableau + TPC-H” and “Tableau + Twitter” workloads on PostgreSQL and the

“Superset + Twitter” workload on MySQL. For each query in the workload, besides the

running time of the original query formulated by Tableau or Superset on PostgreSQL or

MySQL, we also collected the running time of two rewritten queries using different rewriting

rules. One rewritten query (noted as “Rewritten Query (WeTune Rules)”) was obtained from

the WeRewriter [45] system, which used rewriting rules automatically discovered by WeTune.

The other rewritten query (noted as “Rewritten Query (Human Rules)”) was obtained from

QueryBooster using human-crafted rewriting rules based on manual analysis of the original

query and its physical plan.

 0.04

 0.2

 1

 5

 25

 125

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

Q
ue

ry
 T

im
e

(s
) L

og
sc

al
e

TPC-H Queries Formulated Using Tableau

Original Query
Rewritten Query (WeTune Rules)
Rewritten Query (Human Rules)

Figure 3.16: End-to-end query time (Log-scale) using QueryBooster to rewrite queries with
WeTune-generated rules and human-crafted rules on “Tableau + TPC-H” workload com-
pared to original query time in PostgreSQL.

Figure 3.16 shows the result for the workload of “Tableau + TPC-H” on Postgres. Among the

20 queries, only two rewritten queries (Q2 and Q18) using the WeTune-generated rules could

reduce the query time. At the same time, using human-crafted rewriting rules, QueryBooster

88

reduced 10 queries’ running time, which comprised 50% of all the queries. Within the

10 rewritten queries using human-crafted rules, 70% of them reduced the original queries’

running time significantly (by more than 25%). For example, Q2 was reduced by 86% (1.555s

to 0.207s) and Q17 was reduced by 61% (47.046s to 17.802s). Note that in the 10 queries

optimized using human-crafted rules, 7 of them used statement-level reshaping rules such

as “join-to-exists”, “remove-subquery”, etc., and 3 of them used hints such as “force-join-

order”.

Figure 3.17a and 3.17b show the results for the workloads of “Tableau + Twitter” and “Su-

perset + Twitter” on MySQL. The result of “Tableau + Twitter” on PostgreSQL was similar

to MySQL, thus not shown. For the 5 Tableau queries on MySQL, the human-crafted rewrit-

ing rules were mainly predicate-level removing unnecessary ADDDATE calculation, as discussed

in Section 3.2. For the 5 Superset queries on MySQL, the human-crafted rewriting rules were

mainly translating the textual filtering condition from a LIKE predicate to a full-text search

predicate since MySQL does not support any index-scan for LIKE predicate but does for

full-text search. For example, in one query, the human-crafted rule rewrote the predicate

“text LIKE ’%stopasian hate%’” to “MATCH(text) AGAINST (’stopasianhate stopasian

hatecrime stopasianhatecrimes’), which was equivalent only for this particular dataset

because all substring “stopasianhate” matched records could be matched using the three

full-text keywords: “stopasianhate”, “stopasianhatecrime”, and “stopasianhatecrimes”. As

shown in Figure 3.17b, all 5 queries were accelerated by 100+ times (e.g., 83s to 0.8s) due

to this human-crafted rewriting rule, which shows the importance of the proposed human-

centered query rewriting approach.

89

 0.2

 1

 5

 25

 125

 625

Q1 Q2 Q3 Q4 Q5

Q
ue

ry
 T

im
e

(s
) L

og
sc

al
e

Twitter Queries Formulated Using Tableau

Original Query
Rewritten Query (WeTune Rules)
Rewritten Query (Human Rules)

(a) “Tableau + Twitter”.

 0.2
 1
 5

 25
 125
 625

 3125

Q1 Q2 Q3 Q4 Q5

Q
ue

ry
 T

im
e

(s
) L

og
sc

al
e

Twitter Queries Formulated Using Superset

Original Query
Rewritten Query (WeTune Rules)
Rewritten Query (Human Rules)

(b) “Superset + Twitter”.

Figure 3.17: End-to-end query time using QueryBooster to rewrite queries with WeTune-
generated rules and human-crafted rules compared to original query time in MySQL.

3.7.6 Generality of Rule Transformations

To evaluate the generality (covering more rewriting examples) of rule transformations, we

used 178 rewriting pairs in the Calcite workload after removing some examples that the

third-party SQL parser failed to parse. We applied the transformations defined in Sec-

tion 3.5.2 to each rewriting example iteratively as long as they are applicable to generate

more general rules. If multiple examples were generalized to the same rule, we only kept

one copy of the rule. We divided the transformations into 5 categories: “variablize-a-table”,

“variablize-a-column”, “variablize-a-value”, “variablize-a-subtree”, and “merge-variables”,

and we gradually increased the number of categories applied in the rule generalization pro-

cess. We compared the rewriting result of the generated rules on the 178 examples. Since

most rewriting pairs in the Calcite workload were designed for a unique rule, most of the ex-

amples were rewritten by the rules generated from themselves. We collected the percentage

of examples that were rewritten by rules generated by other examples and named it “sharing-

rule examples (%)”. We also collected the precision and recall of using the generalized rules

to rewrite the original queries of the input examples.

Figure 3.18a shows that with more transformation categories used in generating rules, there

were more examples rewritten by rules generated from other examples, which means the

90

 0
 1
 2
 3
 4
 5
 6

 1 2 3 4 5R
ul

e-
sh

ar
in

g
Ex

am
pl

es
(%

)

Number of Transformation Categories

(a) Rule sharing percentage.

 20
 40
 60
 80

 100

 1 2 3 4 5

Pr
ec

is
io

n
an

d
R

ec
al

l (
%

)

Number of Transformation Categories

Recall
Precision

(b) Precision and Recall.

Figure 3.18: The generality of rules generalized from the Calcite examples using different
sets of transformations.

generated rules were more general. Figure 3.18b shows that with more transformations used

to generalize rules, the recall remained 100% because more general rules could always match

the seed examples. However, the rewriting precision went down. The reason was that the

more transformations resulted in over-generalized rules that matched examples they should

not match and rewrote the original queries to unintentional forms. This result also motivated

our consideration of using MDL as an objective function to suggest rules, which prevented

over-generalization for given examples.

3.7.7 Effect of Different Rule Quality Metrics

We also evaluated the effect of using different importance weights β in the benefit value

(defined in Section 3.6.3) using the “Tableau + Twitter” workload. We used four query

pairs as input examples for the rule-suggesting framework and another five queries as a

historical workload to compute the benefit value in Algorithm 3. We varied β from 1.0 (i.e.,

only considering the MDL as rule quality) to 0.0 (i.e., only considering query cost as rule

quality). For each β value, we first ran the rule-suggesting framework with the “MPN”

strategy to obtain the suggested rules. We then evaluated the suggested rules based on three

metrics. We used the rules to rewrite the five queries in the workload and collected the

91

query “cost reduction” by comparing the rewritten queries’ cost and the original queries’

cost. We treated the suggested rules with β = 1.0 as the baseline and then computed the

“description length increase” and rule-suggesting algorithm “running time increase“ for the

rules suggested by other β values.

 0
 50

 100
 150
 200
 250
 300
 350

1.0 0.75 0.5 0.25 0.0

R
ed

uc
tio

n/
In

cr
ea

se
(%

)

Beta

Time Increase

0
38

76 78 88

Description Length Increase

0
39

218 218

283Cost Reduction

18

90 90 90 90

Figure 3.19: Effect of different β values.

The results are shown in Figure 3.19. When β was 1.0, the suggested rules only reduced the

query cost by 18%. When β decreased to 0.75, the suggested rules reduced the query cost by

90%. However, the cost was both the description length of rules and the running time of the

rule-suggesting algorithm increased by 40%. The cost increased when β further decreased.

When β was 0.0, which means the algorithm did not consider the description length at all,

the total description length of suggested rules increased by 280%. Therefore, we recommend

0.75 as the β value for this dataset.

Remarks: The user study shows that more than 80% SQL users preferred using the VarSQL

rule language to formulate rewriting rules. QueryBooster suggested high-quality (high preci-

sion and recall and low description length) rules from user-given examples quickly (≤ 5s) on

different workloads. Compared to existing query rewriting solutions with machine-discovered

rewriting rules, using QueryBooster with human-crafted rewriting rules improved the perfor-

mance of 50% TPC-H queries by up to 86%.

92

3.8 Conclusions

In this chapter, we proposed QueryBooster, a middleware solution for human-centered query

rewriting. We developed a novel expressive rule language (VarSQL) for users to formulate

rewriting rules easily. We designed a rule-suggestion framework that automatically suggests

high-quality rewriting rules from user-given examples. A user study and experiments on vari-

ous workloads show the benefit of using VarSQL to formulate rewriting rules, the effectiveness

of the rule-suggestion framework, and the significant advantages of using QueryBooster to

improve the end-to-end query performance.

93

Chapter 4

Supporting Middleware-Based SQL

Query Rewriting as a Service

4.1 Introduction

System performance is critical in database applications where users need answers quickly

to make timely decisions. SQL query rewriting [28, 81] is an optimization technique that

transforms an original query to a rewritten one that computes the same answers with higher

performance. Although query rewriting has been studied extensively as part of the query

optimizer inside a database [28, 32], recent works [121, 10] have shown that purely rely-

ing on the rewritings inside traditional databases is insufficient to optimize modern query

workloads. For instance, as previously discussed, with the prevalent use of business intelli-

gence systems (e.g., Tableau and PowerBI), these machine-generated queries can be difficult

for databases to optimize [121] and domain-specific knowledge and human-crafted rewriting

rules are necessary to optimize workloads from different applications [88]. We can miss query

rewriting opportunities (e.g., rewritings shown in Figure 4.7) due to various reasons. For

94

instance, both the application and the database layers are black boxes and cannot be modi-

fied. Another reason is that existing rewriting plugins of databases have limited expressive

power for users to express their rewriting needs.

Data

Query

New Query SQL Query Rewriting
Service

Rewrite
Data

Query

New Query

Rewrite

Ap
pl

ic
at

io
ns

D
at

ab
as

es

Figure 4.1: QueryBooster overview.

In this chapter, we detailed the design and architecture of QueryBooster, a middleware-based

multi-user system to provide query rewriting between applications and databases as a service.

The service intercepts and rewrites an original query from an application before it is sent to

a backend database. It provides a web-based interface, using which customers manage their

rewritings for different applications and databases. Users formulate rewriting rules using a

language or by providing examples. They can see the statistics of different rewritings, such

as the number of queries rewritten using a rewriting and the query’s performance before

and after the rewriting. Since rewriting SQL queries can be hard and time-consuming [131],

instead of seeking advice from online forums (e.g., StackOverflow), users can also share and

access rewriting rules using QueryBooster. The service requires no plugin installations to the

user applications or databases. It also ensures high security as no user data goes through

a third-party server. To summarize, QueryBooster has the following benefits. (1) It is easy

95

to use, as users can use the interface to formulate, control, and monitor rewriting rules.

(2) It enables users to share their rewriting knowledge and benefit from the wisdom of the

crowd. (3) It is non-intrusive, as it requires no plugin installations to the user applications

or databases.

Related Work: Most databases such as AsterixDB, IBM DB2, MS SQL Server, MySQL,

Oracle, Postgres, Snowflake, and Teradata do not allow users to customize the rewritings

of queries sent to the database. To our best knowledge, only Postgres and MySQL provide

a plugin for users to define rules to rewrite queries before sending them to the database.

However, their rule-definition languages have too limited expressive power, as shown in [88].

Commercial systems also do query rewriting for applications on top of databases. Keebo [47]

uses machine learning and approximate query processing (AQP) techniques to accelerate

analytical queries. It requires data to go through its server, which may introduce overhead

and cause security concerns. EverSQL [27] uses AI techniques to recommend rewriting ideas

for queries on MySQL and Postgres. Other systems such as ApexSQL [8] and Toad [111]

help database developers analyze query performance bottlenecks. However, none of these

solutions allow users to formulate their own rewriting rules to fulfill their rewriting needs.

There are also service models such as database-as-a-service [35], function-as-a-service [106],

etc. Compared to these systems, QueryBooster is the first system that supports SQL query

rewriting as a service.

In the process of developing the QueryBooster system, we encountered many technical chal-

lenges and made a few decisions among different design choices. Next, we discuss those

challenges and how we weigh the pros and cons of different approaches in designing each

component. The remaining sections are organized as follows. We first introduce the system

architecture of QueryBooster in Section 4.2. We use real-world applications and datasets

to demonstrate the user experience of using QueryBooster to analyze application workloads,

and introduce new rewriting rules to improve the queries performance and share rewriting

96

knowledge among different users in Section 4.3. In Section 4.4, we discuss how to provide a

user experience of managing and sharing rewritings intuitively and interactively. We discuss

those design choices to minimize the intrusiveness of the QueryBooster system as a SQL

query rewriting service in Section 4.5.

4.2 QueryBooster System Overview

Figure 4.2 shows the architecture of QueryBooster. Using the Web UI, users can log in to

the system through the User Manager and manage applications through the Application

Manager. They can have different sets of rewriting rules for different applications. Through

the Rule Manager that integrates the technique proposed in Chapter 3, QueryBooster provides

a powerful interface for users to formulate rewriting rules. It provides an expressive rule

language (called VarSQL) for users to define rules. Users can easily express their rewriting

needs by specifying the query pattern and its replacement. They can specify additional

constraints and actions to express complex rewriting details. In addition, the service allows

users to express their rewriting intentions by providing examples, each of which includes

an original query and a rewritten one. QueryBooster automatically suggests high-quality

rewriting rules based on the examples. The users can choose their desired rules and further

modify suggested rules as they want. Rewriting rules are stored in the Rule Base.

QueryBooster provides database Connectors for users to download. Without any applica-

tion or database modifications, a user replaces the original connector with a QueryBooster-

provided connector. The connector forwards an original query from the application to the

Query Rewriter, and sends the rewritten query to the database. When the database returns

the result of the new query, the connector sends the query performance information back

to the Query Manager. Note that the connector does not send the query result to Query-

Booster. Thus it ensures high security as no user data goes through a third-party server.

97

 Query
Rewriter

Rule Base

Rewriting
&

Profiling

QueryBooster

Rule
Manager

Query Log

User
Manager

Query
Manager

Web UI

Result

Connector 2

Database 2

Rewritten Query

Query

Appplication 2

User 1

…

…

User 2 User M

App
Manager

…

Result

Connector 1

Database 1

Rewritten Query

Query

Appplication 1

Figure 4.2: QueryBooster system architecture.

98

All the query rewriting path and corresponding performance information are stored in the

Query Log. As a background process, the Query Manager periodically runs rewriting rules

shared by different users against the workloads in the query log and marks those queries

with suggested rules useful to the queries.

4.3 Demonstration of the User Experience

In this section, we use real-world applications and Twitter datasets to demonstrate the ex-

perience of the QueryBooster service for two users to rewrite their application queries and

share rewriting knowledge.

Suppose Alice is a database administrator who manages a PostgreSQL database that stores

tweet data to support a data analysis team. The team uses Tableau to study the spatial

and temporal distributions of keyword-related tweets. After creating a Tableau dashboard

on top of PostgreSQL, Alice tries a few visualization queries, and the performance is not

satisfying. Therefore, she uses QueryBooster to rewrite the queries for better performance.

Through QueryBooster’s Web UI, she creates an application and receives an application GUID

(Global Unique Identifier) generated from the system. Then, she downloads the provided

JDBC driver and places it in the folder of Tableau connectors. Finally, she configures the

JDBC driver with the provided application GUID. Alice has now completed setting up

QueryBooster.

4.3.1 Formulating Rules through a Rule Language

To identify the queries with performance bottlenecks, Alice utilizes QueryBooster’s query

logging feature. She first tries the slow analytics operations on Tableau, and goes to the

Query Logs page to check the SQL queries sent from Tableau to PostgreSQL. Figure 4.3

99

shows the Web UI illustrating the information of one query formulated by Tableau. It shows

the query, its timestamp, latency, and whether it has been rewritten or not.

Figure 4.3: The “Query Logs” page of QueryBooster shows information about queries from
the application.

After investigating those queries, Alice identifies a lot of type-casting expressions (i.e.,

CAST(· · · AS TEXT)), as shown in the query in Figure 4.3. Tableau adds those type-casting

expressions to prevent computational overflow or datatype mismatching errors [116]. Based

on her knowledge of the tweet data and its schema, Alice knows that the type-casting ex-

pressions are not necessary for the queries. Thus, Alice wants to input a rewriting rule to

remove those type-castings from the queries. The VarSQL rule language is easy-to-use, and

Alice manually formulates the rule (called “Remove Cast Text”) as shown in Figure 4.4.

CAST (<x> AS TEXT)

Pattern

<x>

Replacement

-->

Figure 4.4: Alice formulates a rule to remove CAST(· · · AS TEXT) expressions using the
VarSQL language [88]. In VarSQL’s syntax, <x> is an element-variable that represents a
table, column, value, expression, predicate, or sub-query.

With the “Remove Cast Text” rewriting rule enabled, Alice tries the slow operations on

Tableau again, but the performance is not improved. However, the query’s rewriting path

page (Figure 4.5) shows that the rule is correctly triggered, and the rewritten query is as

expected. Therefore, Alice continues to optimize this query.

100

Query Rewriting Path

SELECT Sum(1) AS "cnt:tweets",
 tweets.state_name AS state_name
 FROM public.tweets AS tweets
 WHERE STRPOS(CAST(Lower(
 CAST(CAST(tweets.text AS TEXT) AS TEXT)
) AS TEXT),
 CAST('iphone' AS TEXT)) > 0
 GROUP BY 2

CAST (<x> AS TEXT) <x>Remove Cast Text:

SELECT Sum(1) AS "cnt:tweets",
 tweets.state_name AS state_name
 FROM public.tweets AS tweets
 WHERE STRPOS(Lower(CAST(CAST(tweets.text AS TEXT) AS TEXT)),
 CAST('iphone' AS TEXT)) > 0
 GROUP BY 2

CAST (<x> AS TEXT) <x>Remove Cast Text:
…

SELECT Sum(1) AS "cnt:tweets",
 tweets.state_name AS state_name
 FROM public.tweets AS tweets
 WHERE STRPOS(Lower(tweets.text), 'iphone') > 0
 GROUP BY 2

Figure 4.5: QueryBooster shows the rewriting path of a query.

101

4.3.2 Formulating Rules by Providing Examples

After a deeper investigation into the query and some online search, Alice finds that a trigram

index on the ‘‘tweets’’.‘‘text’’ attribute in PostgreSQL supports wildcard filtering

predicates such as LIKE and ILIKE. However, PostgreSQL fails to use this index because

the wildcard predicate formulated by Tableau is STRPOS(LOWER(‘‘tweets’’.‘‘text’’),

’iphone’) > 0, which is equivalent to ‘‘tweets’’.‘‘text’’ ILIKE ’%iphone%’. Alice

identifies that replacing the STRPOS()>0 predicate with the ILIKE predicate in the query

can produce a much more efficient plan in PostgreSQL (as shown in Figure 4.6). Thus, Alice

wants to introduce another rewriting rule that achieves this replacing logic. However, for

this rewriting, Alice is not sure how to manually input the rewriting rule, so she uses the

QueryBooster’s rule-suggestion feature by providing a rewriting example.

HashAggregate
by state_name

Bitmap Heap Scan
on tweets
duration: 7s 604ms

Bitmap Index Scan
using index on text

SELECT Sum(1),
 state_name
 FROM tweets
 WHERE text ilike '%iphone%'
 GROUP BY 2

Gather Merge

Finalize GroupAggregate
by state_name

Partial HashAggregate
by state_name

Parellel Seq Scan
on tweets
duration: 37s 531ms

SELECT Sum(1),
 state_name
 FROM tweets
 WHERE STRPOS(Lower(text),'iphone')>0
 GROUP BY 2

Sort by state_name

Before Rewriting After Rewriting

Figure 4.6: Queries and plans before and after the rewriting of replacing the STRPOS()>0

predicate with the ILIKE predicate.

After copying and pasting the original query to both the original query and rewritten query

text boxes on the Rule Formulator page, Alice modifies the rewritten query to her desired

format and clicks the “Formulate” button. Next, QueryBooster automatically generalizes the

102

example pair of queries into a rewriting rule that achieves the rewriting intention of Alice

(as shown in Figure 4.7). Finally, Alice saves the new rewriting rule to the system with the

name “STRPOS To ILIKE.”

Alice input

System auto-generate

Figure 4.7: QueryBooster suggests a rule given a rewriting example.

With the two rewriting rules enabled, the query performance is significantly improved. For

example, the original query takes 37.5 seconds, and the rewritten query only takes 7.6 sec-

onds.

4.3.3 Suggesting Useful Rules from Other Users

Suppose Bob is a database administrator (DBA) and supports a business team who wants

to analyze the TPC-H [114] dataset using Tableau on top of PostgreSQL. For one of the

analytical queries in Bob’s workload, QueryBooster identifies the potential of boosting the

query performance by applying the two rewriting rules provided by Alice. QueryBooster

automatically suggests the potential rewriting of the query to Bob, as shown in Figure 4.8.

Bob inspects the rewritten query through the “Rewriting Suggestion” page of QueryBooster

103

0.62

Figure 4.8: QueryBooster suggests Bob a rewriting for a query.

(Figure 4.9) and decides to enable these two rules for his application. Note that Bob may

modify the rules slightly to fit his dataset, e.g., adding a “LOWER” function on top of the

keyword constant to make sure the keyword constant is always lowercase. Bob then returns

to Tableau and observes a significant query performance improvement.

To this end, we demonstrate the powerful experience of using the QueryBooster service to

rewrite application queries and share knowledge.

4.4 Supporting Management and Sharing Rewritings

In this section, we demonstrate the experience of using QueryBooster to manage rewriting

rules and discuss its ability to give users full control over the rewritings on their workloads.

We then show how users share rewriting knowledge intuitively and interactively through

the QueryBooster service and discuss the trade-off between privacy and accuracy of using

different approaches to suggesting rewritings.

104

Rewriting Suggestion

SELECT lineitem.l_shipmode AS l_shipmode,
 SUM(lineitem.l_quantity) AS "sum:l_quantity:ok:1"
 FROM public.lineitem AS lineitem
 WHERE STRPOS(CAST(Lower(CAST(lineitem.l_comment AS TEXT))
 AS TEXT), CAST('late' AS TEXT)) > 0
 GROUP BY 1

CAST (<x> AS TEXT) <x>Remove Cast Text:

SELECT lineitem.l_shipmode AS l_shipmode,
 SUM(lineitem.l_quantity) AS "sum:l_quantity:ok:1"
 FROM public.lineitem AS lineitem
 WHERE STRPOS(Lower(lineitem.l_comment), 'late') > 0
 GROUP BY 1

SELECT lineitem.l_shipmode AS l_shipmode,
 SUM(lineitem.l_quantity) AS "sum:l_quantity:ok:1"
 FROM public.lineitem AS lineitem
 WHERE lineitem.l_comment ILIKE '%late%'
 GROUP BY 1

STRPOS(Lower(
<x1>.<x2>),'<x5>')>0

<x1>.<x2> ILIKE '%<x5>%'STRPOS To ILIKE:

Alice (alice@company.com)

Alice (alice@company.com)

…

Figure 4.9: QueryBooster suggests a rewriting for Bob’s query by applying Alice’s two rules.

105

4.4.1 Informative and Fully-Controllable Rewriting Management

In this section, we show that QueryBooster provides a user experience to manage rewriting

rules and gives the users full control over the rewritings on their query workloads.

Queries (rewritten)

1 2 3 4 5 6 7 8 9 10 Next >>

Original Query Rewritten Query Before
Latency (s)

After
Latency (s)

SELECT lineitem.l_shipmode AS l_shipmode,
 SUM(lineitem.l_quantity) AS "sum:l_quantity:ok:1"

FROM public.lineitem AS lineitem
 WHERE STRPOS(Lower(lineitem.l_comment), 'late') > 0

 GROUP BY 1

SELECT lineitem.l_shipmode AS l_shipmode,
 SUM(lineitem.l_quantity) AS "sum:l_quantity:ok:

 FROM public.lineitem AS lineitem
 WHERE lineitem.l_comment ILIKE '%late%'
 GROUP BY 1

206 57

SELECT Sum(1) AS "cnt:tweets",
 tweets.state_name AS state_name

 FROM public.tweets AS tweets

 WHERE STRPOS(Lower(tweets.text), 'iphone') > 0

 GROUP BY 2

SELECT Sum(1) AS "cnt:tweets",
 tweets.state_name AS state_name

 FROM public.tweets AS tweets

 WHERE tweets.text ILIKE '%iphone%'

 GROUP BY 2

35 8

Rewriting Rules

1 2 3 …

ID Name Pattern Rewrite

10 Remove Cast Date CAST(<x> AS DATE) <x>

11 Remove Cast Text CAST(<x> AS TEXT) <x>

21 Replace Strpos
Lower

STRPOS(LOWER(<x>),
'<y>')>0

<x> ILIKE '%<y>%'

Statistics

4/18 4/20

of queries
rewritten

50K

25K

4/18 4/20

Total latency (h)
1K

500

Est. latency
(h) w/o rule

Real latency
(h) w/ rule

Figure 4.10: The dashboard of rewriting-rule analysis in QueryBooster.

Showing rewriting effect and performance statistics of rewriting rules. In the early

discussions, we presented a user experience of using QueryBooster to analyze queries and the

rewriting effects on them. Now we show a user experience of using QueryBooster to analyze

rewriting rules and their effects on query workloads. Figure 4.10 shows the dashboard of a

rewriting rule chosen by a user. The dashboard shows the statistics of how the rewriting

rule affects the query workloads, such as how many queries have been rewritten using this

rule, how much query execution time has been saved by using this rule to rewrite queries,

etc. In addition, the dashboard includes the rewriting history of using the specific rule to

rewrite queries, such as its original and rewritten queries. Using this informative dashboard,

users can gain better insights into the effectiveness of their rewriting rules and make wise

106

decisions about whether to apply the same set of rules on broader applications or refine some

rewriting rules to avoid performance regression of the workloads.

To support such a dashboard, we design an ER diagram for the database of QueryBooster,

as shown in Figure 4.11.

1

n

n

rule

idkey
name

pattern

constraints

rewrite actions

rule_id

pattern_jsonconstraints_json

rewrite_json

actions_json

its

internal_rule

1user
email

id
1

creates

1

1

application

guid

nameowns

m

enabled

query

id guid

from

timestamp query_time_ms

original_sql

sql
mn rewriting_sequence

rewritten_sql seq

1

suggestion

query_id query_time_ms

rewritten_sql

m

suggestion_rewriting
_sequence

seqrewritten_sql

1

has

tablecolumn

id

name

id

1inname

id
type

nin

n

n

1

n n

Figure 4.11: The ER diagram of the database of QueryBooster.

We keep track of a sequence of rewriting an original query using different rewriting rules

in the rewriting sequence relation. Each tuple in rewriting sequence is one rewriting

step. The sequence numbers indicate the order of the steps. Each step includes the rule id

of the rewriting rule applied and the rewritten sql after applying the rule. The rewrit-

ing sequences of each original query can be obtained internally when the rewriting engine

rewrites a query. The query latency is stored in the query relation. If the QueryBooster

service cannot have access to the users’ databases, we track the query latency through the

107

database connector (e.g., JDBC/ODBC drivers) customized by QueryBooster. This approach

is non-intrusive compared to other approaches and provides high security and privacy for

the QueryBooster service. We will further discuss the details in Section 4.5.

SELECT Sum(1),
 t.state_name
 FROM tweets AS t
 WHERE STRPOS(Lower(CAST(t.text AS TEXT)), 'covid') > 0
 AND CAST(t.created_at AS DATE) = '2022-12-25'
 GROUP BY 2

STRPOS(Lower(
<x1>),'<x2>')>0

<x1> ILIKE
'%<x2>%' CAST(<x> AS TEXT) <x>

STRPOS to ILIKE

SELECT Sum(1),
 t.state_name
 FROM tweets AS t
 WHERE CAST(t.text AS TEXT) ILIKE '%covid%'
 AND CAST(t.created_at AS DATE) = '2022-12-25'
 GROUP BY 2

Remove Cast Text

SELECT Sum(1),
 t.state_name
 FROM tweets AS t
 WHERE STRPOS(Lower(t.text), 'covid') > 0
 AND CAST(t.created_at AS DATE) = '2022-12-25'
 GROUP BY 2

Use Materialized View tweets_covid
SELECT <<x1>>
 FROM tweets
 WHERE CAST(text AS
TEXT) ILIKE '%covid%'
 AND <<x2>>

SELECT <<x1>>
 FROM tweets_covid
 WHERE <<x2>>

SELECT Sum(1),
 t.state_name
 FROM tweets_covid AS t
 WHERE CAST(t.created_at AS DATE) = '2022-12-25'
 GROUP BY 2

STRPOS(Lower(
<x1>),'<x2>')>0

<x1> ILIKE
'%<x2>%'

STRPOS to ILIKE

SELECT Sum(1),
 t.state_name
 FROM tweets AS t
 WHERE t.text ILIKE '%covid%'
 AND CAST(t.created_at AS DATE) = '2022-12-25'
 GROUP BY 2

Use Materialized View tweets_covid
SELECT <<x1>>
 FROM tweets
 WHERE CAST(text AS
TEXT) ILIKE '%covid%'
 AND <<x2>>

SELECT <<x1>>
 FROM tweets_covid
 WHERE <<x2>>

Desired rewriting sequence Normal rewriting sequence

Macro Rule

Figure 4.12: An example of using macro rules to enforce a user-desired rewriting sequence
for a query.

Using macro rules to allow users to control the rewriting sequences. As mentioned

earlier, different orders to apply the same set of rules on a query may result in different

rewritten queries. QueryBooster provides a mechanism for users to specify the priority of

each rule, such that the users can enforce a partial order of applying the same set of rules for

108

a query. However, there are cases where for different queries, the users may want different

orders of applying the rules for particular rewriting sequences that can improve their query

performance. Figure 4.12 shows an example query with two different rewriting sequences if

applying the same set of rules in two different orders. The typical rewriting sequence shown

on the right-hand side fails to apply rule R3 to utilize the materialized view tweets covid

to accelerate the query. The user prefers the rewriting sequence on the left-hand side, which

applies rule R2 before rule R1 (assuming the priority of R1 is higher than R2) and produces

query Q1 that can match the pattern of R3, which can further rewrite the query to a more

efficient form.

To solve this problem and give the users full control over the rewritings of their query

workloads, QueryBooster provides a rewriting-rule management framework where users can

bundle a sequence of rules as a “macro-rule”. A macro-rule has the highest priority and will

be checked against a given query before applying any basic rules. QueryBooster also checks

the pattern of a new input macro-rule against existing macro-rules to enforce that no two

macro-rules can match the same query. Then, any query that can match the sequence of rules

in a macro-rule will be enforced into the rewriting sequence desired by the user specified in

the macro-rule. Note that using a macro-rule to rewrite a query is an atomic process, which

means that each intermediate rewritten query inside a macro-rule has to match the pattern

of the following rule in the sequence. If any intermediate step fails in the pattern-matching,

the entire macro-rule is treated as not matching the original query’s pattern.

4.4.2 Intuitive and Interactive Sharing of Rewriting Knowledge

In this section, we first discuss a policy of sharing rewriting rules among users. Then, we

show the user experience that QueryBooster can suggest different rewriting sequences to

users interactively. Finally, we discuss the trade-off between privacy and accuracy of using

109

different methods to estimate the benefits of different rewriting sequences.

A policy of sharing rewriting rules. One major advantage of using a centralized ser-

vice of QueryBooster to rewrite queries is allowing users to share their rewriting knowledge.

Rewriting rules accumulated from different users and applications can be an invaluable asset

to the entire user community. However, a major concern is maintaining the privacy and

security of users’ data. In QueryBooster, we propose the following policy to keep a high

privacy and security level for users’ data. First, the queries should always be protected and

not revealed to third parties. The user account used to download the database connector

and collect those queries is the owner of the collected queries. Second, we only allow sharing

of rewriting rules. We also do not allow sharing of rewriting rules with sensitive information.

For example, if the pattern of a rewriting rule is a SQL query containing specific table or

column names, we can disallow the rewriting rule to be shared. In this case, both the user

queries and database schema are protected. Third, we adopt a common sharing model as the

policy of sharing rewriting rules among different users. A user can only retrieve rewriting

suggestions using other users’ rewriting rules if the user agrees to share their own rewriting

rule base. In this sharing model, everyone contributes and benefits.

Suggesting different rewriting sequences interactively. Users can analyze their query

performance through QueryBooster, which also suggests rewriting rules shared by other users

for their slow queries. As shown in Figure 4.13, when a user selects a slow query in her

application workload, a rewriting-suggestion dashboard will show potential rewriting rules

applicable to the query. As discussed earlier, for a particular query and a set of applicable

rewriting rules, there can be different orders to rewrite the query, which may result in different

final forms of the rewritten query. To allow users to control their rewriting sequences,

QueryBooster also shows different rewriting rules to the user interactively, where the user

can select which rule to apply first. For example, in Figure 4.13, for the slow query Q, the

user first clicks the rule R2 (i.e., “Create Temp Table for Subquery”) to rewrite it and sees

110

the rewritten query Q2. For the new rewritten query Q2, QueryBooster shows a new set of

applicable rules for the user to choose and repeats this process. Another important piece of

information for users to decide whether to adopt the suggested rules is the query performance

improvement of different rules or rewriting sequences. QueryBooster provides this information

to the users in the process of suggesting rewriting rules. For example, QueryBooster shows

the real query time of running the original query Q in the user’s database, as shown in the red

box. For the new rewritten query Q2, it also shows the estimated query time or real query

time obtained from different sources based on user selection or the system configuration.

For example, based on the information that the rewriting rule R2 accelerates queries in

other users’ workloads, QueryBooster can show a rough estimation of how much time can

be saved if the rule is applied to the query Q in this workload, as shown in the grey box.

Similarly, if given access to the target database of the query Q, QueryBooster can use the

target database’s optimizer to better estimate the query time of the rewritten query Q2, as

shown in the blue box. However, different estimations may require different security levels

and also use different system resources. Thus, we let the users choose whether to conduct

the estimation or even run the query for the benefit of rewriting the query. In this way,

QueryBooster enables the users to manage their rewritings intuitively and interactively.

Different methods to estimate the benefits of rewriting sequences. When suggesting

rules for users’ queries, an intuitive metric for users to understand the benefit of rewriting

a query using a particular rule is the query time acceleration, i.e., how much running time

can be saved if we rewrite the original query. In practice, it is not straightforward to obtain

this information, given the restrictions of access level security and the amount of resources

needed. In QueryBooster, we consider three different methods to estimate the benefit of

improving the running time of queries for a rule suggestion.

The first method is to estimate the query performance improvement based on the reduction

ratio of the running time of queries in other users’ workloads. For example, suppose the rule

111

 Rewriting Suggestion
SELECT MAX(DISTINCT L1.col1)
 FROM lineitem L1
 WHERE L1.col1 = ANY (
 SELECT MAX (C.col1) m_key
 FROM customer C,
 lineitem L2
 WHERE C.col1 = L2.col1
 AND ((C.col2 < 2 AND C.col3 < 2)
 OR (C.col2 < 2 AND L2.col2 > 5)
)
 GROUP BY C.col1
);

Remove Disctinct

MAX(DISTINCT <x>) MAX(<x>)

Create Temp Table for Subquery
SELECT <<x1>>
 FROM <y1>
 WHERE <y1>.<x2> = ANY(
 SELECT <x2> AS <a2>
 FROM <y2>
 WHERE <p2>
)

WITH t AS (
 SELECT <x2> AS <a2>
 FROM <y2>
 WHERE <p2>)
SELECT <<x1>>
 FROM <y1>
 WHERE <y1>.<x2> IN t.<a2>

Normalize Predicate
(<x1> AND <x2>)
OR
(<x1> AND <x3>)

<x1> AND
(<x2> OR <x3>)

WITH t AS (
 SELECT MAX (C.col1) m_key
 FROM customer C,
 lineitem L2
 WHERE C.col1 = L2.col1
 AND ((C.col2 < 2 AND C.col3 < 2)
 OR (C.col2 < 2 AND L2.col2 > 5))
 GROUP BY C.col1)
SELECT MAX(DISTINCT L1.col1)
 FROM lineitem L1
 WHERE L1.col1 IN (SELECT t.m_key FROM t);

> 20 mins

~ 10 mins

~ 12 mins

15 mins

Real Query Time in Your DB

Est. Query Time in Other Users DB

Est. Query Time in Your DB

Real Query Time in Your DB

… … … … …

Figure 4.13: QueryBooster suggests rewriting rules interactively. The user can select interest-
ing rules and see the corresponding rewritten query by applying the rule and the estimated
or real query time of both the original and rewritten queries. Users can explore different
rewriting rules and sequences based on their database and rewriting needs.

112

R2 in Figure 4.13 was formulated by a user (Alice) and has been used on her workload for a

while. QueryBooster accumulates the query running time of both the original and rewritten

queries of rule R2 in Alice’s workload. Therefore, QueryBooster can compute an aggregated

ratio of how much the query time is reduced by utilizing the R2 to rewrite queries in Alice’s

workload. Then for a new query Q analyzed by a different user (called Bob), we can compute

the estimated query time of the rewritten query Q2 after applying R2 on Q based on the

ratio and the original query Q’s query time. The main advantage of this method is that it

does not require any additional access to Bob’s database, and the computation is fast due to

its low cost. However, the disadvantage of this method is its low accuracy. In most cases, a

query’s running time depends on the database software and the dataset’s properties, such as

its distribution, volume, and available indexes. The accuracy of the estimation can be low

since it is based on other users’ datasets.

The second method is to use the target database’s query optimizer to estimate the running

time of rewritten queries. For example, suppose the user Bob configures QueryBooster with

the username and password of his target database and gives QueryBooster access to use

the “EXPLAIN” command against its query optimizer. QueryBooster can send an EXPLAIN

statement for each of the rewritten queries generated by applying the suggested rewriting

rules. Usually, the EXPLAIN command only shows an estimated cost of a query instead of

its running time. In this case, we can EXPLAIN the original query to get its estimated query

cost and compare the costs of the original query and the rewritten query as the benefit of

the rewriting rule. Compared to the first method, this method gives a much more accurate

estimation since it uses the target database’s optimizer, which depends on the target dataset.

However, the disadvantage is that it requires access to the target database and a high cost

of explaining the query plan for each rewritten query.

The third method is to directly run the rewritten query against the target database to

obtain its real running time. Apparently, this method requires Bob to give QueryBooster full

113

access to the target database to run queries against his business dataset. The advantage

is we can obtain the accurate benefit of applying a suggested rewriting rule on an original

query since the running time of both the original and the rewritten queries are accurate.

The disadvantages include the highest level of access to the user’s database and running the

rewritten queries, which introduces a high cost of using resources of the user’s database (e.g.,

computation, memory, etc.).

In summary, different methods require different levels of security access and different re-

sources to compute. In return, they offer different levels of accuracy. We can provide all of

them and allow users to choose appropriate methods based on their needs.

4.5 Minimizing Database Intrusiveness

In this section, we first study the intrusiveness levels of different design choices to develop

a SQL query rewriting system and their trade-offs. We then discuss the unique problems

encountered in developing our proposed SQL query rewriting service and solutions. Par-

ticularly, we first survey the connector licenses of common database vendors to show the

applicability of our proposed QueryBooster service. We then discuss how to customize the

database connectors to profile application queries’ performance.

4.5.1 Intrusiveness of SQL Query Rewriting Systems

In this section, we study the architectures of three typical SQL query rewriting systems on

the market (including the proposed QueryBooster system) and discuss the intrusiveness of

their different design choices. Table 4.1 summarizes the three systems.

EverSQL [27] is a cloud-based software tool designed to help developers and database

114

administrators (DBAs) optimize the performance of their SQL queries. Users copy their

application SQL queries and paste them to the Web-based input box provided by Ever-

SQL. EverSQL then analyzes the queries and provides optimization suggestions based on

known database performance patterns and AI techniques. By highlighting problematic SQL

snippets and pointing out missing indexes, EverSQL aims to assist developers and DBAs

in optimizing their queries to achieve better performance. Without any integration into

the users’ application and database layer, EverSQL is non-intrusive, for which we name the

intrusiveness level L0. The advantage of this L0 intrusiveness is that EverSQL has good

security and privacy, as no user queries or data go through a third-party server. (Although

EverSQL still sees the query string copied by the user, the user can easily “sanitize” the query

string by removing sensitive information before pasting it to the EverSQL.) However, the

disadvantage is that it cannot rewrite online queries automatically and requires developers

to modify the application code to apply the optimized rewriting.

Table 4.1: Intrusiveness levels of systems.

System EverSQL Squidster Keebo

Intrusiveness
Level

L0 L1 L2

Approach
copy & paste
query strings

customize DB connectors
to rewrite SQL strings

manipulate SQL strings
and data through
a middleware server

Automatic Rewrite
Online Queries

No Yes Yes

Query through a
Third-Party Server

No Yes Yes

Data through a
Third-Party Server

No No Yes

QueryBooster provides a powerful and easy-to-use rule language (VarSQL) for users to define

rewriting rules and also suggests rewriting rules to users. The QueryBooster service also pro-

vides features that allow users to profile their application workloads, manage their rewriting

rules, and share rewriting knowledge with the community. QueryBooster minimizes its intru-

siveness into the SQL query lifecycle of user applications and databases. Users do not need

115

to modify any code of the application or database. The only change on the user side is to

replace the original DB connector (e.g., a JDBC/ODBC driver) with a slightly customized

version provided by QueryBooster. In this architecture, no data goes through a third-party

server. We name the intrusiveness level L1. The advantages of this level are that Query-

Booster does not introduce much overhead of transferring data between the application and

the database, and QueryBooster provides a high privacy and security level without seeing

any user data. In addition, QueryBooster does not require users to grant access to the target

database.

Keebo [47] is a middleware system sitting between the application and the database layers.

It uses machine learning and approximate query processing (AQP) techniques to accelerate

analytical queries by rewriting online queries automatically to use offline-built data models

or materialized views. Keebo sits on top of existing databases and provides native interfaces

of them to applications. To use Keebo, users need to modify the entry point configuration

of applications to point it to the Keebo server instead of the original database server. Once

Keebo is installed, in its offline analysis phase, it will run a series of analytical queries and

data manipulation commands to the user database to learn models and create materialized

views. Then, for online application queries, Keebo will rewrite the queries to use those

learned data models and materialized views to improve the query performance and assemble

the result dataset. In this architecture, both the SQL queries and database are exposed to the

Keebo’s server. We name the intrusiveness level L2. The advantage of the L2 intrusiveness

is that the Keebo service has full control of how to rewrite queries and assemble the result.

The disadvantages are two folds. The first is the overhead of occupying the target database

resources to build data models and create materialized views and online query result data

going through a third-party server. The second is the low privacy and security level in which

a third-party server sees all user data and query results.

In summary, the proposed QueryBooster service benefits from automatically rewriting online

116

application queries to improve performance by sacrificing a minimum level of intrusiveness

in the users’ application and database stack. Providing a customized database connector,

QueryBooster requires no code change to the application or database. It provides high privacy

and security without user data going through a third-party server. Providing a powerful

and easy-to-use interface for users to manage their rewritings on their application queries,

QueryBooster helps developers and DBAs improve their application performance efficiently.

4.5.2 A Survey of Database Connector Licences

QueryBooster provides customized database Connectors for users to download. A user re-

places the original connector without application or database modifications with a QueryBooster-

provided connector. The connector forwards an original query from the application to Query-

Booster’s server and sends the rewritten query to the database. When the database returns

the query result, the connector sends the query performance information back to Query-

Booster. Note that the connector does not send query results to QueryBooster.

In QueryBooster’s architecture, the customized database connector is a critical module.

Therefore, we surveyed popular database vendors for the licenses of their JDBC/ODBC

connectors to validate the applicability of QueryBooster to these databases. The result is

shown in Table 4.2.

Table 4.2: JDBC driver licenses for database vendors.

Database License Open source? Redistribution?
MS SQL Server MIT Yes Yes
MySQL GNU GPL V2 Yes Yes
Oracle Oracle Free Yes No
PostgreSQL BSD-2-Clause Yes Yes
Snowflake Apache-2.0 Yes Yes

Most database vendors provide JDBC/ODBC drivers with an open-source license. For such

drivers, QueryBooster provides a slightly modified version of the driver that communicates

117

with the proposed QueryBooster service to rewrite queries for these databases. For instance,

we added only 112 lines of code to the PostgreSQL JDBC driver to develop the customized

version. For databases with redistribution restrictions on their drivers (e.g., Oracle JDBC

driver [73]), QueryBooster provides a software patch for users to compile the customized

driver themselves. For applications and databases that communicate through a RESTful

interface, QueryBooster provides a proxy web server that intercepts requests between them

transparently. We assume the RESTful API endpoint in the application is configurable, i.e.,

we can switch the target database endpoint to our service.

4.5.3 Profiling Application Queries through Database Connectors

In earlier discussions, we show that through QueryBooster, users can analyze the perfor-

mance of historical queries and the effects of rewriting rules on improving them. In addition,

QueryBooster also supports showing aggregated performance of rewriting rules on applica-

tion workloads. To support these features, QueryBooster needs to profile both the original

application queries and their rewritten queries about their running time against the backend

database.

There are multiple ways to fulfill this need. Many database performance monitoring sys-

tems [8, 111] profile workloads by looking at the native logs of the databases. This approach’s

main advantage is its non-intrusiveness; it does not run any third-party code on top of the

target databases. However, to use this approach, database administrators must reconfigure

the database to enable more informative logging modes to expose performance information

and historical query statements in database logs. This reconfiguration usually requires a high

level of privilege and may significantly increase the volume of logs. Another disadvantage of

this approach is that the logging information might be obsolete as the dataset evolves, the

software updates, and the configurations change. Another approach is running the queries

118

PostgreSQLJDBC Driver SquidsterApplication

Generate

SQL Query

Rewrite

Store
Rewritten Query

Store

Run Query

Result of

Start Timer

End TimerQuery Result

Lookup

Lookup

Store

Figure 4.14: The workflow of profiling the database running time of a rewritten query gen-
erated by the QueryBooster rewriting service through a PostgreSQL JDBC driver.

119

against the target databases when we need the queries’ performance profiles. The main ad-

vantage of this approach is that it has the most recent information. However, this approach

is very intrusive to the target databases. It requires users to grant the system full access to

run queries against the target databases and can occupy a significant amount of resources of

the target database.

In QueryBooster, we propose a new approach that combines the advantages of both ap-

proaches mentioned above to minimize intrusiveness and maintain the freshness of the pro-

filing result. Since we already provide a customized database connector to replace the original

database connectors between the applications and the databases, we utilize the opportunity

of opening the logic of the connectors to add query performance profiling logic into it. The

main idea is to profile the original and rewritten queries’ performance during the online

query rewriting phase and store the profiling result back to the QueryBooster server.

Consider the JDBC driver of PostgreSQL as an example. Figure 4.14 shows the workflow

to profile the database running time of a rewritten query generated by QueryBooster. When

the application sends a SQL query Q to the JDBC driver, the driver first generates a GUID

(globally unique identifier) for Q. Next, the driver sends the original query Q along with

its GUID to the QueryBooster’s online rewriting service to rewrite the query into Q′. Query-

Booster stores the mapping between the GUID and the rewritten query Q′ in its internal

storage and then sends the rewritten query Q′ back to the JDBC driver. The driver also

stores the mapping between the query Q′ and its GUID into an in-memory hash table,

and then executes the query Q′ against the PostgreSQL database. This execution is a syn-

chronous function call; thus, the driver can profile Q′’s running time by starting a timer

before calling the function and ending the timer after the function returns. Once the query

result is returned from the database to the driver, the driver first forwards the result back to

the application without any delay, then looks up the query Q′’s corresponding GUID from

the in-memory hash table, and finally sends the profiling result along with the GUID back

120

to QueryBooster. QueryBooster uses the GUID to look up its corresponding query string Q′,

and then stores the running time of Q′ as the profiling result in its internal store. In this

way, all queries going through the JDBC driver will be profiled and stored in QueryBooster’s

internal store to support its query analysis and rewriting management services.

4.6 Conclusions

In this chapter, we detailed the design and architecture of QueryBooster, a middleware-based

multi-user system to provide query rewriting between applications and databases as a ser-

vice. First, we used real-world applications and datasets to demonstrate the user experience

of using QueryBooster to analyze application workloads and introduce new rewriting rules to

improve the query performance. We also demonstrated the experience of using QueryBooster

to manage rewriting rules and showed its ability to allow users to control the rewriting se-

quences of applying different rules on their queries. Second, we showed how users share

rewriting knowledge through the QueryBooster service and discussed the trade-off between

privacy and accuracy of using different approaches to suggest rewritings. Finally, we studied

the intrusiveness levels of different design choices to develop a SQL query rewriting sys-

tem and their trade-offs. We discussed the unique problems encountered in developing our

proposed SQL query rewriting service and their solutions. Particularly, we surveyed the

connector licenses of common database vendors to show the applicability of our proposed

QueryBooster service. We also presented how to customize the database connectors to profile

application queries’ performance in QueryBooster.

121

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we presented middleware-based solutions to help databases optimize SQL

queries through rewriting.

In Chapter 2, we studied how to rewrite database queries to improve execution performance

in middleware-based visualization systems. We explored two optimization options, namely

adding hints and making approximations. We developed a novel solution called Maliva,

which adopts a Markov Decision Process (MDP) model to rewrite a visualization request

under a tight time constraint. We gave a full specification of the solution, including how

to construct an MDP model, train an agent, and use approximating rewriting options. Our

experiments on both real and synthetic datasets showed that Maliva performed significantly

better than the baseline without no-rewriting options in terms of both the probability of

serving a visualization request within a time budget and query execution time.

In Chapter 3 and Chapter 4, we proposed QueryBooster, a middleware-based service for

122

human-centered query rewriting.

In Chapter 3, we presented the core techniques of QueryBooster. We developed a novel

expressive rule language (VarSQL) for users to formulate rewriting rules easily. Furthermore,

we designed a rule-suggestion framework that automatically suggests high-quality rewriting

rules from user-given examples. A user study and experiments on various workloads show the

benefit of using VarSQL to formulate rewriting rules, the effectiveness of the rule-suggestion

framework, and the significant advantages of using QueryBooster to improve the end-to-end

query performance.

In Chapter 4, we presented the system design of QueryBooster. We used real-world ap-

plications and datasets to demonstrate the user experience of analyzing application work-

loads, introducing new rewriting rules to improve query performance, and sharing rewriting

knowledge among users. We discussed the technical challenges and our design decisions in

developing QueryBooster and showed its advantages.

5.2 Future Work

Our work has focused on middleware-based solutions to help databases to optimize SQL

queries through rewriting. To decide how to rewrite an online query into a more efficient

format, we have explored two directions: one is based on machine-learning models, and

the other is based on human-crafted rewriting rules. We have identified several interesting

research opportunities in both directions as future work.

Identifying Query Templates and Managing MDP Models Dynamically. In Chap-

ter 2, we presented how to train an MDP model to optimize queries following a given query

template. The Maliva framework assumes the developers can specify the query template for

their applications. It can be even more powerful if the framework automatically identifies

123

query templates from application workloads and starts training a new MDP model once it

discovers a new query template. One approach is to adopt query clustering techniques to dy-

namically discover query templates by analyzing their filtering attributes and query shapes.

We can maintain a set of query clusters and treat each as a query template. We can maintain

an MDP model as its associated query rewriting agent for each discovered template. We can

also keep the freshness of the models by adaptively adding more queries into the training

set as we discover more queries clustered into the query template. In this way, the proposed

Maliva framework can be more useful to practitioners.

Discovering a Rewriting Sequence from User-Given Rewriting Examples. We

proposed a novel technique in Chapter 3 that can generalize a user-given rewriting pair of

queries into a rewriting rule. In some cases, to achieve the user-given rewriting example,

a more general solution is to apply multiple general rewriting rules sequentially instead of

applying only one specific rule. In our proposed rule-suggestion framework, we assume the

examples provided by the users require only one-step rewriting (i.e., only one rule is applied).

If we relax this assumption, it can lower the bar for users to formulate rewriting rules

through the proposed QueryBooster system. Assuming the rewriting sequence has two steps,

one approach is identifying the intermediate rewritten query between the original and final

rewritten queries and then generalizing two rules, respectively. One is between the original

query and the intermediate rewritten query, and the other is between the intermediate and

final rewritten queries. We can enumerate the number of intermediate rewritten queries for

rewriting sequences with more than two steps. To identify the intermediate rewritten queries,

we can expand the graph of editing the original query into the final rewritten query, where

each editing operation is similar to the operations in computing the edit distance between

two SQL strings. If the computational cost is high, we can explore different heuristic-based

searching strategies or adopt machine-learning techniques to reduce the search space.

Using ChatGPT and Large Language Models to Improve the User Experience.

124

In Chapter 4, we demonstrated the user experiences that the VarSQL language and the rule-

suggestion framework make the QueryBooster system very easy to use to formulate rewriting

rules. As the ChatGPT service and large language models (LLM) attract significant atten-

tion from research communities, we can also consider how ChatGPT and LLMs can help

improve our proposed QueryBooster system. On the one hand, ChatGPT cannot replace

the online query rewriting feature of QueryBooster due to its inaccuracy in reasoning about

the correctness of rewritings. Therefore, human-crafted rewriting rules are still necessary to

optimize application queries. On the other hand, LLMs are proven to be good at under-

standing human intentions through a natural language interface. Thus, one idea is to adopt

LLMs to help users formulate rewriting rules by providing rewriting examples. We can train

an LLM model on data labeled by generalizing rewriting pairs of queries into rewriting rules

and suggest the rewriting rules generalized by the LLM model to users.

125

Bibliography

[1] Scala: Quasiquotes introduction, 2023. https://docs.scala-lang.org/overviews/
quasiquotes/intro.html.

[2] Andrew Kane. Dexter: The automatic indexer for postgres, 2017. https://github.

com/ankane/dexter.

[3] S. C. ands Ling Xiao, J. Gerth, and P. Hanrahan. Maintaining interactivity while ex-
ploring massive time series. In Proceedings of the IEEE Symposium on Visual Analyt-
ics Science and Technology, IEEE VAST 2008, Columbus, Ohio, USA, 19-24 October
2008, pages 59–66. IEEE Computer Society, 2008.

[4] Apache AsterixDB, http://asterixdb.apache.org.

[5] Apache Calcite, https://calcite.apache.org/.

[6] Apache Calcite. Calcite test suite, 2021. https://github.com/georgia-tech-db/

spes/blob/main/testData/calcite_tests.json.

[7] 2018. Apache Superset(incubating) - Apache Superset documentation., https://

superset.incubator.apache.org/.

[8] https://www.apexsql.com/sql-tools-plan.aspx.

[9] http://asterixdb.apache.org/docs/0.9.6/sqlpp/manual.html#Query_hints.

[10] Q. Bai, S. Alsudais, C. Li, and S. Zhao. Maliva: Using machine learning to rewrite
visualization queries under time constraints. In EDBT 2023, Ioannina, Greece, March
28-31, 2023, pages 157–170. OpenProceedings.org, 2023.

[11] https://github.com/learnedsystems/baoforpostgresql.

[12] L. Battle, R. Chang, and M. Stonebraker. Dynamic prefetching of data tiles for inter-
active visualization. In F. Özcan, G. Koutrika, and S. Madden, editors, Proceedings
of the 2016 International Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 1363–1375. ACM, 2016.

[13] L. Battle, R. J. Crouser, A. Nakeshimana, A. Montoly, R. Chang, and M. Stonebraker.
The role of latency and task complexity in predicting visual search behavior. IEEE
Trans. Vis. Comput. Graph., 26(1):1246–1255, 2020.

126

https://docs.scala-lang.org/overviews/quasiquotes/intro.html
https://docs.scala-lang.org/overviews/quasiquotes/intro.html
https://github.com/ankane/dexter
https://github.com/ankane/dexter
https://calcite.apache.org/
https://github.com/georgia-tech-db/spes/blob/main/testData/calcite_tests.json
https://github.com/georgia-tech-db/spes/blob/main/testData/calcite_tests.json
https://superset.incubator.apache.org/
https://superset.incubator.apache.org/
https://www.apexsql.com/sql-tools-plan.aspx
http://asterixdb.apache.org/docs/0.9.6/sqlpp/manual.html##Query_hints
https://github.com/learnedsystems/baoforpostgresql

[14] F. Brauer, R. Rieger, A. Mocan, and W. M. Barczynski. Enabling information ex-
traction by inference of regular expressions from sample entities. In C. Macdonald,
I. Ounis, and I. Ruthven, editors, Proceedings of the 20th ACM Conference on Infor-
mation and Knowledge Management, CIKM 2011, Glasgow, United Kingdom, October
24-28, 2011, pages 1285–1294. ACM, 2011.

[15] M. Budiu, P. Gopalan, L. Suresh, U. Wieder, H. Kruiger, and M. K. Aguilera. Hillview:
A trillion-cell spreadsheet for big data. PVLDB, 12(11):1442–1457, 2019.

[16] D. Cheng, P. Schretlen, N. Kronenfeld, N. Bozowsky, and W. Wright. Tile based visual
analytics for twitter big data exploratory analysis. In Proceedings of the 2013 IEEE
International Conference on Big Data, 6-9 October 2013, Santa Clara, CA, USA, pages
2–4, 2013.

[17] M. Cherniack and S. B. Zdonik. Rule languages and internal algebras for rule-based
optimizers. In H. V. Jagadish and I. S. Mumick, editors, Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data, Montreal, Quebec,
Canada, June 4-6, 1996, pages 401–412. ACM Press, 1996.

[18] S. Chu, B. Murphy, J. Roesch, A. Cheung, and D. Suciu. Axiomatic foundations and
algorithms for deciding semantic equivalences of SQL queries. VLDB’18, 2018.

[19] Comby is a tool for searching and changing code structure, https://comby.dev/.

[20] A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and T. Kraska. Vizdom: Interactive
analytics through pen and touch. PVLDB, 8(12):2024–2027, 2015.

[21] A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and T. Kraska. The case for
interactive data exploration accelerators (ideas). In C. Binnig, A. Fekete, and
A. Nandi, editors, Proceedings of the Workshop on Human-In-the-Loop Data Ana-
lytics, HILDA@SIGMOD 2016, San Francisco, CA, USA, June 26 - July 01, 2016,
page 11. ACM, 2016.

[22] G. Damasio, V. Corvinelli, P. Godfrey, P. Mierzejewski, A. Mihaylov, J. Szlichta, and
C. Zuzarte. Guided automated learning for query workload re-optimization. Proc.
VLDB Endow., 12(12):2010–2021, 2019.

[23] D. Das and D. S. Batory. Praire: A rule specification framework for query optimizers.
In P. S. Yu and A. L. P. Chen, editors, Proceedings of the Eleventh International
Conference on Data Engineering, March 6-10, 1995, Taipei, Taiwan, pages 201–210.
IEEE Computer Society, 1995.

[24] C. A. de Lara Pahins, S. A. Stephens, C. Scheidegger, and J. L. D. Comba. Hashed-
cubes: Simple, low memory, real-time visual exploration of big data. IEEE Trans. Vis.
Comput. Graph., 23(1):671–680, 2017.

[25] B. Ding, S. Huang, S. Chaudhuri, K. Chakrabarti, and C. Wang. Sample + seek:
Approximating aggregates with distribution precision guarantee. In Proceedings of the

127

https://comby.dev/

2016 International Conference on Management of Data, SIGMOD Conference 2016,
San Francisco, CA, USA, June 26 - July 01, 2016, pages 679–694, 2016.

[26] A. Eldawy, M. F. Mokbel, and C. Jonathan. Hadoopviz: A mapreduce framework for
extensible visualization of big spatial data. In 32nd IEEE International Conference on
Data Engineering, ICDE 2016, Helsinki, Finland, May 16-20, 2016, pages 601–612.
IEEE Computer Society, 2016.

[27] https://www.eversql.com/.

[28] B. Finance and G. Gardarin. A rule-based query rewriter in an extensible DBMS.
In Proceedings of ICDE, 1991, Kobe, Japan, pages 248–256. IEEE Computer Society,
1991.

[29] D. Fisher, I. O. Popov, S. M. Drucker, and m. c. schraefel. Trust me, i’m partially
right: incremental visualization lets analysts explore large datasets faster. In CHI
Conference on Human Factors in Computing Systems, CHI ’12, Austin, TX, USA -
May 05 - 10, 2012, pages 1673–1682. ACM, 2012.

[30] M. N. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. XTRACT: learning
document type descriptors from XML document collections. Data Min. Knowl. Discov.,
7(1):23–56, 2003.

[31] P. Godfrey, J. Gryz, and P. Lasek. Interactive visualization of large data sets. IEEE
Trans. Knowl. Data Eng., 28(8):2142–2157, 2016.

[32] G. Graefe. Volcano - an extensible and parallel query evaluation system. IEEE Trans.
Knowl. Data Eng., 6(1):120–135, 1994.

[33] G. Graefe and D. J. DeWitt. The EXODUS optimizer generator. In U. Dayal and
I. L. Traiger, editors, Proceedings of the Association for Computing Machinery Special
Interest Group on Management of Data 1987 Annual Conference, San Francisco, CA,
USA, May 27-29, 1987, pages 160–172. ACM Press, 1987.

[34] T. Guo, K. Feng, G. Cong, and Z. Bao. Efficient selection of geospatial data on maps
for interactive and visualized exploration. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA,
June 10-15, 2018, pages 567–582. ACM, 2018.

[35] H. Hacigümüs, B. R. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data
in the database-service-provider model. In Proceedings of the 2002 ACM SIGMOD,
Madison, Wisconsin, USA, June 3-6, 2002, pages 216–227. ACM, 2002.

[36] S. Hasan, S. Thirumuruganathan, J. Augustine, N. Koudas, and G. Das. Deep learning
models for selectivity estimation of multi-attribute queries. In D. Maier, R. Pottinger,
A. Doan, W. Tan, A. Alawini, and H. Q. Ngo, editors, Proceedings of the 2020 In-
ternational Conference on Management of Data, SIGMOD Conference 2020, online
conference [Portland, OR, USA], June 14-19, 2020, pages 1035–1050. ACM, 2020.

128

https://www.eversql.com/

[37] Y. He, X. Chu, K. Ganjam, Y. Zheng, V. R. Narasayya, and S. Chaudhuri. Transform-
data-by-example (TDE): an extensible search engine for data transformations. Proc.
VLDB Endow., 11(10):1165–1177, 2018.

[38] https://en.wikipedia.org/wiki/Hint_(SQL).

[39] D. Hirn and T. Grust. Pgcuckoo: Laying plan eggs in postgresql’s nest. In P. A. Boncz,
S. Manegold, A. Ailamaki, A. Deshpande, and T. Kraska, editors, Proceedings of the
2019 International Conference on Management of Data, SIGMOD Conference 2019,
Amsterdam, The Netherlands, June 30 - July 5, 2019, pages 1929–1932. ACM, 2019.

[40] K. Z. Hu, M. A. Bakker, S. Li, T. Kraska, and C. A. Hidalgo. Vizml: A machine
learning approach to visualization recommendation. In S. A. Brewster, G. Fitzpatrick,
A. L. Cox, and V. Kostakos, editors, Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, CHI 2019, Glasgow, Scotland, UK, May 04-
09, 2019, page 128. ACM, 2019.

[41] IBM DB2 11.5: Query rewriting methods and examples, https://www.ibm.com/docs/
en/db2/11.5?topic=process-query-rewriting-methods-examples.

[42] J. Im, F. G. Villegas, and M. J. McGuffin. Visreduce: Fast and responsive incremental
information visualization of large datasets. In X. Hu, T. Y. Lin, V. V. Raghavan,
B. W. Wah, R. A. Baeza-Yates, G. C. Fox, C. Shahabi, M. Smith, Q. Yang, R. Ghani,
W. Fan, R. Lempel, and R. Nambiar, editors, Proceedings of the 2013 IEEE Inter-
national Conference on Big Data, 6-9 October 2013, Santa Clara, CA, USA, pages
25–32. IEEE, 2013.

[43] Jia Yu and M. Sarwat. Accelerating spatial data visualization dashboards via a ma-
terialized sampling approach. In Proceedings of the International Conference on Data
Engineering, ICDE, 2020.

[44] L. Jiang, P. Rahman, and A. Nandi. Evaluating interactive data systems: Workloads,
metrics, and guidelines. In Proceedings of the 2018 International Conference on Man-
agement of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018,
pages 1637–1644, 2018.

[45] Jinyuan Zhang and Yicun Yang. Werewriter, 2023. https://ipads.se.sjtu.edu.

cn/werewriter-demo/home.

[46] N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi. Distributed and interactive cube
exploration. In I. F. Cruz, E. Ferrari, Y. Tao, E. Bertino, and G. Trajcevski, editors,
IEEE 30th International Conference on Data Engineering, Chicago, ICDE 2014, IL,
USA, March 31 - April 4, 2014, pages 472–483. IEEE Computer Society, 2014.

[47] Keebo: Data learning and warehouse optimization. https://keebo.ai/.

[48] K. Khurana and J. R. Haritsa. Shedding light on opaque application queries. In G. Li,
Z. Li, S. Idreos, and D. Srivastava, editors, SIGMOD ’21: International Conference on

129

https://en.wikipedia.org/wiki/Hint_(SQL)
https://www.ibm.com/docs/en/db2/11.5?topic=process-query-rewriting-methods-examples
https://www.ibm.com/docs/en/db2/11.5?topic=process-query-rewriting-methods-examples
https://ipads.se.sjtu.edu.cn/werewriter-demo/home
https://ipads.se.sjtu.edu.cn/werewriter-demo/home
https://keebo.ai/

Management of Data, Virtual Event, China, June 20-25, 2021, pages 912–924. ACM,
2021.

[49] J. Kossmann, T. Papenbrock, and F. Naumann. Data dependencies for query opti-
mization: a survey. VLDB J., 31(1):1–22, 2022.

[50] T. Kraska. Northstar: An interactive data science system. PVLDB, 11(12):2150–2164,
2018.

[51] S. Krishnan, Z. Yang, K. Goldberg, J. M. Hellerstein, and I. Stoica. Learning to
optimize join queries with deep reinforcement learning. CoRR, abs/1808.03196, 2018.

[52] Kyle Lahnakoski. More sql parsing, 2023. https://github.com/klahnakoski/

mo-sql-parsing.

[53] D. J. L. Lee and A. G. Parameswaran. The case for a visual discovery assistant:
A holistic solution for accelerating visual data exploration. IEEE Data Eng. Bull.,
41(3):3–14, 2018.

[54] K. Li and G. Li. Approximate query processing: What is new and where to go? - A
survey on approximate query processing. Data Science and Engineering, 3(4):379–397,
2018.

[55] L. D. Lins, J. T. Klosowski, and C. E. Scheidegger. Nanocubes for real-time exploration
of spatiotemporal datasets. IEEE Trans. Vis. Comput. Graph., 19(12):2456–2465,
2013.

[56] Z. Liu and J. Heer. The effects of interactive latency on exploratory visual analysis.
IEEE Trans. Vis. Comput. Graph., 20(12):2122–2131, 2014.

[57] Z. Liu, B. Jiang, and J. Heer. imMens : Real-time visual querying of big data. Comput.
Graph. Forum, 32(3):421–430, 2013.

[58] G. Lohman. Is query optimization a “solved” problem? ACM SIGMOD Blog., ACM
Blog(14’), 2014.

[59] Y. Luo, C. Chai, X. Qin, N. Tang, and G. Li. Interactive cleaning for progressive
visualization through composite questions. In 36th IEEE International Conference on
Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020, pages 733–744.
IEEE, 2020.

[60] Y. Luo, X. Qin, N. Tang, G. Li, and X. Wang. Deepeye: Creating good data visual-
izations by keyword search. In G. Das, C. M. Jermaine, and P. A. Bernstein, editors,
Proceedings of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 1733–1736. ACM, 2018.

[61] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Learning
to steer query optimizers. CoRR, abs/2004.03814, 2020.

130

https://github.com/klahnakoski/mo-sql-parsing
https://github.com/klahnakoski/mo-sql-parsing

[62] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making
learned query optimization practical. In G. Li, Z. Li, S. Idreos, and D. Srivastava, edi-
tors, SIGMOD ’21: International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021, pages 1275–1288. ACM, 2021.

[63] R. Marcus and O. Papaemmanouil. Deep reinforcement learning for join order enu-
meration. In R. Bordawekar and O. Shmueli, editors, Proceedings of the First Interna-
tional Workshop on Exploiting Artificial Intelligence Techniques for Data Management,
aiDM@SIGMOD 2018, Houston, TX, USA, June 10, 2018, pages 3:1–3:4. ACM, 2018.

[64] R. C. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska, O. Papaemmanouil,
and N. Tatbul. Neo: A learned query optimizer. Proc. VLDB Endow., 12(11):1705–
1718, 2019.

[65] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A.
Riedmiller. Playing atari with deep reinforcement learning. CoRR, abs/1312.5602,
2013.

[66] MongoDB 5.0: Query documents, https://www.mongodb.com/docs/manual/

tutorial/query-documents/.

[67] D. Moritz, D. Fisher, B. Ding, and C. Wang. Trust, but verify: Optimistic visualiza-
tions of approximate queries for exploring big data. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, Denver, CO, USA, May 06-11,
2017, pages 2904–2915. ACM, 2017.

[68] D. Moritz, B. Howe, and J. Heer. Falcon: Balancing interactive latency and resolution
sensitivity for scalable linked visualizations. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems, CHI 2019, Glasgow, Scotland, UK, May
04-09, 2019, page 694, 2019.

[69] B. Mozafari, J. Ramnarayan, S. Menon, Y. Mahajan, S. Chakraborty, H. Bhanawat,
and K. Bachhav. Snappydata: A unified cluster for streaming, transactions and inter-
actice analytics. In CIDR 2017, 8th Biennial Conference on Innovative Data Systems
Research, Chaminade, CA, USA, January 8-11, 2017, Online Proceedings, 2017.

[70] MySQL 8.0: 5.6.4.2 Using the Rewriter Query Rewrite Plugin, https://dev.mysql.
com/doc/refman/8.0/en/rewriter-query-rewrite-plugin-usage.html.

[71] https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html.

[72] NYC Taxi Data, https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.
page.

[73] Oracle Free Use Terms and Conditions, https://www.oracle.com/downloads/

licenses/oracle-free-license.html.

131

https://www.mongodb.com/docs/manual/tutorial/query-documents/
https://www.mongodb.com/docs/manual/tutorial/query-documents/
https://dev.mysql.com/doc/refman/8.0/en/rewriter-query-rewrite-plugin-usage.html
https://dev.mysql.com/doc/refman/8.0/en/rewriter-query-rewrite-plugin-usage.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.oracle.com/downloads/licenses/oracle-free-license.html
https://www.oracle.com/downloads/licenses/oracle-free-license.html

[74] Oracle R19: 11 Basic Query Rewrite for Materialized Views, https:

//docs.oracle.com/en/database/oracle/oracle-database/19/dwhsg/

basic-query-rewrite-materialized-views.html.

[75] https://docs.oracle.com/cd/B19306_01/server.102/b14211/hintsref.htm#
i8327.

[76] Y. Park, M. J. Cafarella, and B. Mozafari. Visualization-aware sampling for very large
databases. In 32nd IEEE International Conference on Data Engineering, ICDE 2016,
Helsinki, Finland, May 16-20, 2016, pages 755–766. IEEE Computer Society, 2016.

[77] Y. Park, B. Mozafari, J. Sorenson, and J. Wang. Verdictdb: Universalizing approxi-
mate query processing. In Proceedings of the 2018 International Conference on Man-
agement of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018,
pages 1461–1476, 2018.

[78] Y. Park, S. Zhong, and B. Mozafari. Quicksel: Quick selectivity learning with mixture
models. In D. Maier, R. Pottinger, A. Doan, W. Tan, A. Alawini, and H. Q. Ngo,
editors, Proceedings of the 2020 International Conference on Management of Data,
SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020,
pages 1017–1033. ACM, 2020.

[79] L. Parreaux, A. Voizard, A. Shaikhha, and C. E. Koch. Unifying analytic and statically-
typed quasiquotes. Proc. ACM Program. Lang., 2(POPL):13:1–13:33, 2018.

[80] J. Peng, D. Zhang, J. Wang, and J. Pei. AQP++: connecting approximate query
processing with aggregate precomputation for interactive analytics. In Proceedings
of the 2018 International Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018, pages 1477–1492, 2018.

[81] H. Pirahesh, J. M. Hellerstein, and W. Hasan. Extensible/rule based query rewrite
optimization in starburst. In Proceedings of the 1992 ACM SIGMOD, San Diego,
California, USA, June 2-5, 1992, pages 39–48. ACM Press, 1992.

[82] H. Pirahesh, T. Y. C. Leung, and W. Hasan. A rule engine for query transformation in
starburst and IBM DB2 C/S DBMS. In W. A. Gray and P. Larson, editors, Proceedings
of the Thirteenth International Conference on Data Engineering, April 7-11, 1997,
Birmingham, UK, pages 391–400. IEEE Computer Society, 1997.

[83] PostgreSQL 14: CREATE RULE — define a new rewrite rule, https://www.

postgresql.org/docs/14/sql-createrule.html.

[84] PostgreSQL 14 Documentation: 41.2. Views and the Rule System, https://www.

postgresql.org/docs/current/rules-views.html.

[85] PostgreSQL 14: Trigram index, https://www.postgresql.org/docs/current/

pgtrgm.html.

[86] https://pghintplan.osdn.jp/pg_hint_plan.html.

132

https://docs.oracle.com/en/database/oracle/oracle-database/19/dwhsg/basic-query-rewrite-materialized-views.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/dwhsg/basic-query-rewrite-materialized-views.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/dwhsg/basic-query-rewrite-materialized-views.html
https://docs.oracle.com/cd/B19306_01/server.102/b14211/hintsref.htm##i8327
https://docs.oracle.com/cd/B19306_01/server.102/b14211/hintsref.htm##i8327
https://www.postgresql.org/docs/14/sql-createrule.html
https://www.postgresql.org/docs/14/sql-createrule.html
https://www.postgresql.org/docs/current/rules-views.html
https://www.postgresql.org/docs/current/rules-views.html
https://www.postgresql.org/docs/current/pgtrgm.html
https://www.postgresql.org/docs/current/pgtrgm.html
https://pghintplan.osdn.jp/pg_hint_plan.html

[87] F. Psallidas and E. Wu. Provenance for interactive visualizations. In Proceedings of the
Workshop on Human-In-the-Loop Data Analytics, HILDA@SIGMOD 2018, Houston,
TX, USA, June 10, 2018, pages 9:1–9:8, 2018.

[88] QueryBooster: Improving SQL Performance Using Middleware Services for Human-
Centered Query Rewriting (under review), March 2023. submitted to VLDB 2023.

[89] X. Qian, R. A. Rossi, F. Du, S. Kim, E. Koh, S. Malik, T. Y. Lee, and J. Chan.
Ml-based visualization recommendation: Learning to recommend visualizations from
data. CoRR, abs/2009.12316, 2020.

[90] Query performance insight for azure sql database. https://docs.microsoft.

com/en-us/azure/azure-sql/database/query-performance-insight-use?view=

azuresql.

[91] Query Rewrite and Optimization, https://docs.teradata.com/r/

8mHBBLGP88~HK9Auie2QvQ/4PC2qalhztpNrpq9R~zpDw.

[92] S. Rahman, M. Aliakbarpour, H. Kong, E. Blais, K. Karahalios, A. G. Parameswaran,
and R. Rubinfeld. I’ve seen ”enough”: Incrementally improving visualizations to sup-
port rapid decision making. Proc. VLDB Endow., 10(11):1262–1273, 2017.

[93] V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive data cleaning sys-
tem. In P. M. G. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and
R. T. Snodgrass, editors, VLDB 2001, Proceedings of 27th International Conference on
Very Large Data Bases, September 11-14, 2001, Roma, Italy, pages 381–390. Morgan
Kaufmann, 2001.

[94] Re: How to use index in strpos function, https://www.postgresql.org/message-id/
046801c96b06%242cb14280%248613c780%24%40r%40sbcglobal.net.

[95] regex101. regular expressions 101, 2023. https://regex101.com/.

[96] J. Rissanen. Modeling by shortest data description. Autom., 14(5):465–471, 1978.

[97] E. A. Rundensteiner, M. O. Ward, Z. Xie, Q. Cui, C. V. Wad, D. Yang, and S. Huang.
Xmdvtoolq : : quality-aware interactive data exploration. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, Beijing, China, June
12-14, 2007, pages 1109–1112, 2007.

[98] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach (4th Edition).
Pearson, 2020.

[99] SAP HANA Performance Guide for Developers, https://help.sap.com/doc/

05b8cb60dfd94c82b86828ee77f7e0d9/2.0.04/en-US/SAP_HANA_Performance_

Developer_Guide_en.pdf.

[100] E. Sciore and J. S. Jr. A modular query optimizer generator. In Proceedings of the
Sixth International Conference on Data Engineering, February 5-9, 1990, Los Angeles,
California, USA, pages 146–153. IEEE Computer Society, 1990.

133

https://docs.microsoft.com/en-us/azure/azure-sql/database/query-performance-insight-use?view=azuresql
https://docs.microsoft.com/en-us/azure/azure-sql/database/query-performance-insight-use?view=azuresql
https://docs.microsoft.com/en-us/azure/azure-sql/database/query-performance-insight-use?view=azuresql
https://docs.teradata.com/r/8mHBBLGP88~HK9Auie2QvQ/4PC2qalhztpNrpq9R~zpDw
https://docs.teradata.com/r/8mHBBLGP88~HK9Auie2QvQ/4PC2qalhztpNrpq9R~zpDw
https://www.postgresql.org/message-id/046801c96b06%242cb14280%248613c780%24%40r%40sbcglobal.net
https://www.postgresql.org/message-id/046801c96b06%242cb14280%248613c780%24%40r%40sbcglobal.net
https://regex101.com/
https://help.sap.com/doc/05b8cb60dfd94c82b86828ee77f7e0d9/2.0.04/en-US/SAP_HANA_Performance_Developer_Guide_en.pdf
https://help.sap.com/doc/05b8cb60dfd94c82b86828ee77f7e0d9/2.0.04/en-US/SAP_HANA_Performance_Developer_Guide_en.pdf
https://help.sap.com/doc/05b8cb60dfd94c82b86828ee77f7e0d9/2.0.04/en-US/SAP_HANA_Performance_Developer_Guide_en.pdf

[101] S. Sikdar and C. Jermaine. MONSOON: multi-step optimization and execution of
queries with partially obscured predicates. In D. Maier, R. Pottinger, A. Doan, W. Tan,
A. Alawini, and H. Q. Ngo, editors, Proceedings of the 2020 International Conference
on Management of Data, SIGMOD Conference 2020, online conference [Portland, OR,
USA], June 14-19, 2020, pages 225–240. ACM, 2020.

[102] Snowflake documentation, https://docs.snowflake.com/en/index.html.

[103] Software is fragile - Missing source code, on a massive scale, https://www.

softwareheritage.org/mission/software-is-fragile/.

[104] SQL Server 2019: SQL Server technical documentation, https://docs.microsoft.
com/en-us/sql/sql-server/?view=sql-server-ver15.

[105] https://docs.microsoft.com/en-us/sql/t-sql/queries/
hints-transact-sql-query?view=sql-server-ver15.

[106] V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. Gonzalez, J. M. Hellerstein,
and A. Tumanov. Cloudburst: Stateful functions-as-a-service. Proc. VLDB Endow.,
13(11):2438–2452, 2020.

[107] J. Sun and G. Li. An end-to-end learning-based cost estimator. Proc. VLDB Endow.,
13(3):307–319, 2019.

[108] R. S. Sutton and A. G. Barto. Reinforcement learning - an introduction. Adaptive
computation and machine learning. MIT Press, 1998.

[109] Tableau, https://www.tableau.com/.

[110] W. Tao, X. Liu, Y. Wang, L. Battle, Ç. Demiralp, R. Chang, and M. Stone-
braker. Kyrix: Interactive pan/zoom visualizations at scale. Comput. Graph. Forum,
38(3):529–540, 2019.

[111] Toad: Develop, analyze, and administer databases with toad. https://www.

toadworld.com/products.

[112] M. Tokic. Adaptive epsilon-greedy exploration in reinforcement learning based on
value difference. In R. Dillmann, J. Beyerer, U. D. Hanebeck, and T. Schultz, editors,
KI 2010: Advances in Artificial Intelligence, 33rd Annual German Conference on AI,
Karlsruhe, Germany, September 21-24, 2010. Proceedings, volume 6359 of Lecture
Notes in Computer Science, pages 203–210. Springer, 2010.

[113] TPC-H Website, http://www.tpc.org/tpch/.

[114] TPC-H Website, http://www.tpc.org/tpch/.

[115] I. Trummer, J. Wang, D. Maram, S. Moseley, S. Jo, and J. Antonakakis. Skinnerdb:
Regret-bounded query evaluation via reinforcement learning. In P. A. Boncz, S. Mane-
gold, A. Ailamaki, A. Deshpande, and T. Kraska, editors, Proceedings of the 2019

134

https://docs.snowflake.com/en/index.html
https://www.softwareheritage.org/mission/software-is-fragile/
https://www.softwareheritage.org/mission/software-is-fragile/
https://docs.microsoft.com/en-us/sql/sql-server/?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/sql-server/?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query?view=sql-server-ver15
https://www.toadworld.com/products
https://www.toadworld.com/products
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/

International Conference on Management of Data, SIGMOD Conference 2019, Ams-
terdam, The Netherlands, June 30 - July 5, 2019, pages 1153–1170. ACM, 2019.

[116] A. Vogelsgesang, M. Haubenschild, and et al. Get real: How benchmarks fail to
represent the real world. In Proceedings of DBTest@SIGMOD 2018, Houston, TX,
USA, June 15, 2018, pages 1:1–1:6. ACM, 2018.

[117] L. Wang, R. Christensen, F. Li, and K. Yi. Spatial online sampling and aggregation.
PVLDB, 9(3):84–95, 2015.

[118] Q. Wang, Z. Chen, Y. Wang, and H. Qu. Applying machine learning advances to data
visualization: A survey on ML4VIS. CoRR, abs/2012.00467, 2020.

[119] Y. Wang, K. Feng, X. Chu, J. Zhang, C. Fu, M. Sedlmair, X. Yu, and B. Chen. A
perception-driven approach to supervised dimensionality reduction for visualization.
IEEE Trans. Vis. Comput. Graph., 24(5):1828–1840, 2018.

[120] Z. Wang, N. Ferreira, Y. Wei, A. S. Bhaskar, and C. Scheidegger. Gaussian cubes:
Real-time modeling for visual exploration of large multidimensional datasets. IEEE
Trans. Vis. Comput. Graph., 23(1):681–690, 2017.

[121] Z. Wang, Z. Zhou, and et al. Wetune: Automatic discovery and verification of query
rewrite rules. In SIGMOD ’22, Philadelphia, PA, USA, June 12 - 17, 2022, pages
94–107. ACM, 2022.

[122] C. J. C. H. Watkins and P. Dayan. Technical note q-learning. Mach. Learn., 8:279–292,
1992.

[123] Wikipedia contributors. Regular expression, 2022. https://en.wikipedia.org/

wiki/Regular_expression.

[124] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigümüs, and J. F. Naughton. Predicting
query execution time: Are optimizer cost models really unusable? In C. S. Jensen,
C. M. Jermaine, and X. Zhou, editors, 29th IEEE International Conference on Data
Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages 1081–1092.
IEEE Computer Society, 2013.

[125] W. Wu, X. Wu, H. Hacigümüs, and J. F. Naughton. Uncertainty Aware Query Exe-
cution Time Prediction. PVLDB, 7(14):1857–1868, 2014.

[126] J. Yu, R. Moraffah, and M. Sarwat. Hippo in action: Scalable indexing of a billion
new york city taxi trips and beyond. In 33rd IEEE International Conference on Data
Engineering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017, pages 1413–1414.
IEEE Computer Society, 2017.

[127] J. Yu, Z. Zhang, and M. Sarwat. Geosparkviz: a scalable geospatial data visualization
framework in the apache spark ecosystem. In D. Sacharidis, J. Gamper, and M. H.
Böhlen, editors, Proceedings of the 30th International Conference on Scientific and
Statistical Database Management, SSDBM 2018, Bozen-Bolzano, Italy, July 09-11,
2018, pages 15:1–15:12. ACM, 2018.

135

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression

[128] X. Yu, G. Li, C. Chai, and N. Tang. Reinforcement learning with tree-lstm for join
order selection. In 36th IEEE International Conference on Data Engineering, ICDE
2020, Dallas, TX, USA, April 20-24, 2020, pages 1297–1308. IEEE, 2020.

[129] K. Zeng, S. Agarwal, A. Dave, M. Armbrust, and I. Stoica. G-OLA: generalized
on-line aggregation for interactive analysis on big data. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, Melbourne, Victo-
ria, Australia, May 31 - June 4, 2015, pages 913–918, 2015.

[130] X. Zhang, J. Wang, J. Yin, and S. Ji. Sapprox: Enabling efficient and accurate
approximations on sub-datasets with distribution-aware online sampling. PVLDB,
10(3):109–120, 2016.

[131] X. Zhou, G. Li, C. Chai, and J. Feng. A learned query rewrite system using monte
carlo tree search. Proc. VLDB Endow., 15(1):46–58, 2021.

136

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Using Machine Learning to Rewrite Visualization Queries Under Time Constraints
	Introduction
	Related Work

	Problem Formulation
	Maliva: ML-based Query Rewriting
	MDP Model for Adding Query Hints
	MDP Model for Query Rewriting
	Query Time Estimator (QTE)

	Training and Using the MDP Agent
	Training the MDP Agent
	Using MDP to Rewrite Queries Online

	Approximation Rewriting Options
	Quality-Aware MDP Model
	Quality-Aware Query Rewriter
	Differences between Maliva and Bao

	Experiments
	Setup
	Performance on Using Query Hints
	Effect of Rewrite-Option Number
	Effect of Time Budget
	Performance on Join Queries
	Additional Comparison with Bao
	Unseen Queries and Other Databases
	Performance of Quality-Aware Rewriting
	Training Performance

	Conclusions

	Supporting Human-Centered Query Rewriting in Middleware
	Introduction
	Limitations of Existing Solutions
	QueryBooster: A Human-Centered Query Rewriting Solution
	VarSQL: A Rewriting-Rule Language
	Suitability of Existing Rule Languages
	VarSQL: A Novel Rule Language
	VarSQL-Based Rewriting Engine

	Rule Quality and Transformations
	Quality of Rewriting Rules
	Transforming Rules to More General Forms

	Searching For High-Quality Rules
	A Greedy Searching Framework
	Exploring Candidate Rules Adaptively
	Including Query Cost in Rule Quality

	Experiments
	Setup
	A User Study to Evaluate Rule Languages
	Comparison of Rule-Searching Strategies
	Effect of m in m-promising Neighbors
	End-to-End Query Time Using QueryBooster
	Generality of Rule Transformations
	Effect of Different Rule Quality Metrics

	Conclusions

	Supporting Middleware-Based SQL Query Rewriting as a Service
	Introduction
	QueryBooster System Overview
	Demonstration of the User Experience
	Formulating Rules through a Rule Language
	Formulating Rules by Providing Examples
	Suggesting Useful Rules from Other Users

	Supporting Management and Sharing Rewritings
	Informative and Fully-Controllable Rewriting Management
	Intuitive and Interactive Sharing of Rewriting Knowledge

	Minimizing Database Intrusiveness
	Intrusiveness of SQL Query Rewriting Systems
	A Survey of Database Connector Licences
	Profiling Application Queries through Database Connectors

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

