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ABSTRACT OF THE DISSERTATION 

 
 
 
 

Hierarchical Models of Biological Systems 
 
 
 
 

by 
 
 
 

Michael Ku Yu 
 
 

Doctor of Philosophy in Bioinformatics and Systems Biology 
 
 

University of California, San Diego, 2017 
 
 

Professor Trey Ideker, Chair 
Professor Christopher Glass, Co-Chair 

 

For biological systems, structure and hence function are hierarchically organized 

at multiple scales. For example, genetic variation in nucleotides (1nm) gives rise to 

functional changes in proteins (1–10nm), which in turn affect protein complexes, cellular 

processes, organelles (10nm–1μm), and, ultimately, phenotypes observed in cells (1–
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10 μm), tissues (100μm–100mm), and individuals (>1m). Here, I exploit this principle for 

biological modeling. 

First, I develop a software library that facilitates the assembly, analysis, and 

visualization of biological hierarchies, represented by a data structure called an ontology. 

As demonstration, I assemble a compendium of hierarchies describing the molecular 

mechanisms of 649 diseases, by integrating a set of gene-disease associations with a 

gene similarity network derived from ‘omics data. For example, the hierarchy for Fanconi 

Anemia recaptures the disease’s known relation with DNA repair and proposes new 

relations with orthogonal pathways. 

Next, I introduce a strategy for genotype-to-phenotype translation by using existing 

knowledge of a hierarchy of cellular subsystems. Guided by this structure, I organize 

genotype data into an “ontotype,” that is, a hierarchy of perturbations representing the 

effects of genetic variation at multiple cellular scales. The ontotype is then interpreted 

using logical rules generated by machine learning to predict phenotype. This approach 

substantially outperforms previous, non-hierarchical methods for translating yeast 

genotype to cell growth phenotype. It also accurately predicts the growth outcomes of two 

new screens of 2,503 double gene knockouts impacting DNA repair or nuclear lumen and 

generalizes to larger knockout combinations. 

Finally, I present a more accurate and interpretable model for translation called 

DeepCell, a “visible” neural network that couples the model’s inner workings to those of 

the cell. Outperforming the ontotype approach, DeepCell simulates cellular growth nearly 

as accurately as laboratory observations. During simulation, genotypes induce patterns 

on the activities of cellular subsystems, enabling in-silico investigations of the molecular 
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mechanisms underlying each genotype-phenotype association. These mechanisms can 

be validated and many are unexpected; some are governed by Boolean logic. 

Cumulatively, 80% of the importance for growth prediction is captured by 484 subsystems 

(21%), reflecting the emergence of a complex phenotype.  
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INTRODUCTION 

Hierarchy as an organizing principle of complex systems. Understanding a 

complex system requires dissecting its structure – the set of parts and connections in the 

system, and its function – how parts interact to give rise to system behavior. For biological 

systems, structure and hence function are hierarchically organized at multiple scales. For 

example, genetic variation in nucleotides (1nm) gives rise to functional changes in 

proteins (1–10nm), which in turn affect protein complexes, cellular processes, organelles 

(10nm–1μm), and, ultimately, phenotypes observed in cells (1–10 μm), tissues (100μm–

100mm), and individuals (>1m). Although this principle has long existed as a guiding 

intuition to study biological systems, its full exploitation in modeling remains an open 

challenge. In this dissertation, I present a software library and new methods for modeling 

the hierarchical structure and function of biological systems.  

 

Ontologies as representations of hierarchical organization. In many fields, 

knowledge across multiple scales is modeled by ontologies— a factorization of the world 

into a hierarchy of increasingly specific concepts (Brachman and Levesque 2004). For 

instance, intelligent systems like Apple’s Siri and IBM’s Watson carry out logical 

reasoning using a large collection of world knowledge represented by ontologies 

(Carvunis and Ideker 2014). In molecular and cellular biology, extensive knowledge of the 

hierarchy of subsystems in a cell has been represented by the Gene Ontology (GO), a 

community standard reference database that documents interrelationships among 

thousands of intracellular components, processes and functions in a large hierarchy of 

terms of over a dozen layers (The Gene Ontology Consortium, 2014). Other types of 
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biomedical ontologies have been created to hierarchically organize phenotypes (Human 

Phenotype Ontology (Robinson et al. 2008)), diseases (Disease Ontology (Kibbe et al. 

2015)), chemical compounds (ChEBI Ontology (Degtyarenko et al. 2008)), and cell types 

(Cell Ontology (Bard, Rhee, and Ashburner 2005)). 

A major limitation of existing biomedical ontologies is that they are drawn by 

manual curation of literature. Given that the number of human curators stays relatively 

constant, the curation process does not easily scale with the exponential rise in published 

literature, and curators cannot be experts in every biological domain, introducing bias or 

incomplete interpretation of literature. Moreover, a complex biological pattern may not 

have been exposed in a study’s manuscript but is nonetheless discoverable in the raw 

data of that study or in an integration of data across multiple studies. Because of these 

challenges, it is difficult to scale existing ontologies and to create new ontologies for 

different biological contexts. For example, there is only one Gene Ontology even though 

cell structure depends on many factors, including cell and tissue type (Greene et al. 2015; 

Gosselin et al. 2014), growth condition (Ideker and Krogan 2012), disease (Creixell et al. 

2015), and species (Gerstein et al. 2014; Sharan and Ideker 2006; Carvunis et al. 2015). 

 

Data-driven ontologies. The proliferation of ‘omics datasets has begun to reveal 

the organizational complexity of a biological system in an unbiased manner, whether 

through generation of proteomic data (protein-protein interactions and co-localization) 

(Huttlin et al. 2017; Chong et al. 2015), transcriptomic data (RNA co-expression across 

conditions and time points) (Sefer, Kleyman, and Bar-Joseph 2016; Saha et al. 2017), or 

genetic data (epistasis and synthetic lethality) (Costanzo et al. 2016). Many tools are 
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available to group genes with similar ‘omics profiles into clusters (Mitra et al. 2013) and 

to analyze these gene clusters for functional enrichment (Huang, Sherman, and Lempicki 

2009). Although such techniques begin to capture the modular design of biological 

systems, they do not explicitly reveal the underlying physical and functional hierarchy 

giving rise to the data. 

In the interest of building models that are both hierarchical and data-driven, I have 

been involved in the development of methods to hierarchically organizing genes into 

cellular subsystems based on their similarities in ‘omics data (Dutkowski et al. 2014, 2013; 

Kramer et al. 2014). In particular, the CliXO algorithm (Kramer et al. 2014) searches for 

cliques (sets of genes in which all gene pairs have high similarity) or dense subnetworks 

(sets of genes in which many gene pairs do) above a specified similarity (scale) threshold. 

By progressively loosening this threshold, CLIXO identifies progressively larger cliques, 

which subsume the smaller cliques found at earlier thresholds. Each clique defines a 

cellular subsystem, and all cliques are arranged to form a “data-driven hierarchy” (or 

ontology) of subsystems. Unlike other hierarchical clustering algorithms, which produce 

binary trees (a.k.a. dendrograms), CLIXO produces a hierarchy with the flexibility to 

capture the true structure of a cell, recognizing, for instance, that a subsystem may factor 

into many subcomponents (not just two) and participate in several higher-order 

processes. A data-driven hierarchy can also be compared with literature-curated 

ontologies through a procedure known as ontology alignment. We have shown that these 

hierarchies not only recapitulate subsystems in the Gene Ontology (GO), including 60% 

of known cellular components in yeast, but also discover new subsystems. 
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A swiss army knife for hierarchical modeling. Bioinformatics research often 

involves a complex maneuvering between heterogeneous formats, model construction, 

and model interpretation. To facilitate hierarchical modeling of biological systems with 

data-driven ontologies, I report in Chapter 1 the development of a user-friendly and 

integrated software library, the Data-driven Ontology Toolkit (DDOT). DDOT consists of 

a Python package, which handles the assembly and analysis of ontologies, and a web 

application, which handles visualization. 

 

Exploiting biological structure to model biological function. A central problem in 

genetics is to understand how different variations in DNA sequence, dispersed across a 

multitude of genes, can nonetheless elicit similar phenotypes (Waddington, 1942). In 

Chapter 2, I report a general approach for using deep hierarchical knowledge of the cell, 

represented by an ontology, to translate genotype to phenotype. This approach 

recursively aggregates the effects of genetic variation upwards through the hierarchy: in 

this way, genetic variants comprising genotype are converted to effects on the cell 

subsystems impacted by those variants. I call the set of all such effects ‘ontotype,’ 

representing variation at intermediate scales between nanoscopic changes in genes and 

macroscopic changes in phenotype. 

 In Chapter 3, I will improve upon this modeling approach by developing an 

interpretable or ‘visible’ neural network (VNN). In this design, the functional state of each 

subsystem in a biological hierarchy is represented by a bank of neurons. Connectivity of 

these neurons is set to mirror the biological hierarchy, so that they take input only from 

neurons of child subsystems and send output only to neurons of parent (super)systems, 
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with weights determined during training. During simulation of the neural network, 

predictions of a biological system’s behavior are made with respect to the real parts and 

interactions that generated that behavior. In this way, the model is interpretable, a sought-

after but often missing property in machine learning.  
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CHAPTER 1: A SWISS-ARMY KNIFE FOR HIERARCHICAL MODELING OF 

BIOLOGICAL SYSTEMS 

 

1.1 Abstract 

Systems biology requires not only genome-scale data but also methods to 

integrate these data into interpretable models of biological systems. Previously, we 

developed approaches that organize ‘omics data into a structural hierarchy of cellular 

components and pathways, called a “data-driven ontology”. Such hierarchies recapitulate 

known cellular subsystems and discover new ones. They also enable more accurate and 

interpretable predictions of phenotype from genotype. To broadly facilitate this type of 

modeling, we report the development of a software library called the Data-driven Ontology 

Toolkit (DDOT). DDOT consists of a Python package for assembly and analysis of data-

driven hierarchies and a web application (http://hiview.ucsd.edu) for visualizing them. To 

demonstrate the toolkit, we invoke it programmatically to assemble a compendium of 

ontologies for 649 diseases, by integrating a set of gene-disease mappings from the 

Monarch database with a gene similarity network from ‘omics data. For example, the 

resulting ontology for the disease Fanconi Anemia consists of 194 genes arranged in a 

hierarchy of 74 subsystems and includes most known and many novel functions. To 

facilitate data sharing and reproducibility, DDOT provides an easy interface for online 

storage and retrieval of data-driven hierarchies at the Network Data Exchange (NDEx). 

Source code, documentation, and example Jupyter notebooks are open-source and 

available at https://github.com/michaelkyu/ontology.  

http://hiview.ucsd.edu/
https://github.com/michaelkyu/ontology
https://github.com/michaelkyu/ontology
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1.2 Background 

For biological systems, structure and function are organized hierarchically across 

multiple scales. For example, genetic variation in nucleotides (1nm) gives rise to 

functional changes in proteins (1–10nm), which in turn affect protein complexes, cellular 

processes, organelles (10nm–1μm), and, ultimately, phenotypes observed in cells (1–

10μm), tissues (100μm–100mm), individuals (>1m). The proliferation of ‘omics datasets 

creates the potential to reveal this organizational complexity in an unbiased manner, 

whether through generation of proteomic data (protein-protein interactions and co-

localization) (Chong et al. 2015; Huttlin et al. 2017), transcriptomic data (RNA co-

expression across conditions and time points) (Saha et al. 2017; Sefer, Kleyman, and 

Bar-Joseph 2016), or genetic data (epistasis and synthetic lethality) (Costanzo et al. 

2016). 

In the interest of building models that are both hierarchical and data-driven, we 

have previously developed methods for hierarchically organizing genes into cellular 

subsystems based on their gene-gene pairwise similarities in ‘omics data (Dutkowski et 

al. 2013; M. Kramer et al. 2014). In particular, the CliXO algorithm (M. Kramer et al. 2014) 

searches for cliques (sets of genes in which all gene pairs have high similarity) or dense 

subnetworks (sets of genes in which many gene pairs do) above a specified similarity 

(scale) threshold. By progressively loosening this threshold, CLIXO identifies 

progressively larger cliques, which subsume the smaller cliques found at earlier 

thresholds. Each clique defines a cellular subsystem, and all cliques are arranged to form 

a “data-driven hierarchy” (or ontology) of subsystems. Unlike other hierarchical clustering 

algorithms, which produce binary trees (a.k.a. dendrograms), CLIXO produces a 
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hierarchy with the flexibility to capture the true structure of a cell, recognizing, for instance, 

that a subsystem may factor into many subcomponents (not just two) and participate in 

several higher-order processes. A data-driven hierarchy can also be compared with 

literature-curated ontologies through a procedure known as ontology alignment. We have 

shown that these hierarchies not only recapitulate subsystems in the Gene Ontology 

(GO), including 60% of known cellular components in yeast, but also discover new 

subsystems (Dutkowski et al. 2013). 

The data-driven nature of these hierarchies also enables the de novo modeling of 

diseases and biological processes. For instance, previously we created a hierarchy of 

autophagy-related processes in S. cerevisiae (M. H. Kramer et al. 2017) by invoking a 

multi-step protocol. First, we compiled a set of genes known to have a core function in 

autophagy and calculated their similarities to other genes based on several types of 

‘omics data, including those generated in experimental models of autophagy. The most 

similar genes were recognized as additional candidates for being autophagy-related 

genes. Finally, we applied CliXO to hierarchically organize the total set of core and 

candidate genes based on their gene-gene similarities. The resulting model, an 

Autophagy Gene Ontology (AtGO), suggested many mechanistic hypotheses, many of 

which we experimentally confirmed, including a revised understanding of the substructure 

of known processes such as selective autophagy, the discovery of new subprocesses 

such as the transport of Atg19-receptor cargos, and the discovery of new functions of 

genes such as Gyp1 and Atg26. 

To broadly facilitate these approaches in the biomedical research community, we 

now report the development of a software framework, the Data-driven Ontology Toolkit 
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(DDOT), which enables the construction and analysis of hierarchical models in a Python 

package and their visualization in a web application. 
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1.3 Results 

Introduction to DDOT with application to Fanconi Anemia Gene Ontology. DDOT 

implements four major functions: 

● Build Data-Driven Ontology: Given a set of genes and a gene similarity network, 

hierarchically cluster the genes to infer cellular subsystems using the CLIXO algorithm 

(M. Kramer et al. 2014). The resulting hierarchy of subsystems defines a data-driven 

ontology. 

● Visualize Hierarchical Structure: Browse the full hierarchical structure of a data-driven 

ontology, including the network of gene similarities used to infer it, in a web application 

called the Hierarchical Viewer (HiView, http://hiview.ucsd.edu). 

● Align Ontologies: Annotate a data-driven ontology by aligning it to a curated ontology 

such as the Gene Ontology (GO). For instance, if a data-driven subsystem contains a 

similar set of genes as the GO term for DNA repair, then annotate this subsystem as 

being involved in DNA repair. Data-driven subsystems with no such matches 

represent new molecular mechanisms. 

● Expand Gene Set: Given a set of genes as a “seed set” and a gene similarity network, 

identify an expanded set of genes that are highly similar to the seed set. This function 

can broaden the scope of a data-driven ontology beyond genes that are already well 

known. 

 

We illustrate the above steps in an example study of Fanconi Anemia (FA), a rare 

genetic disorder that is associated with bone marrow failure, myeloid dysplasia, and 

increased cancer risk (Ceccaldi, Sarangi, and D’Andrea 2016). A total of 20 genes have 

http://hiview.ucsd.edu/
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been classified as FA genes because their germline mutations in patients have been 

associated with FA clinical phenotypes (“Fanconi Anemia Mutation Database,” n.d.). All 

of these genes have known functions in the repair of DNA damage due to interstrand 

cross-links. However, beyond these DNA repair functions, the full spectrum of genes and 

pathways underlying FA remains unclear. For example, recently Sumpter et al. linked 7 

of the 20 FA genes to new functional roles in autophagy pathways, separate from their 

classical roles in DNA repair (Sumpter et al. 2016). Moreover, 127 other genes have been 

co-cited with FA in at least one study (Methods). 

Following our previous procedure for constructing AtGO (M. H. Kramer et al. 2017), 

we applied DDOT in a five-step pipeline to construct a Fanconi Anemia gene ontology 

(FanGO) as follows (Figure 1.1). First, we gathered input data, consisting of the 20 known 

FA genes as a seed set of genes for modeling and a gene similarity network derived by 

integrating several types of molecular evidence including protein-protein interactions, co-

expression, co-localization, and epistasis (Methods). Second, we scored every gene for 

its involvement in FA by calculating its average functional similarity to the seed genes. 

The minimum score among the seed genes was used as a threshold to identify an 

additional set of 174 candidate genes (Figure 1.2A). Third, we organized all genes in a 

hierarchy of 74 cellular subsystems to construct FanGO. Fourth, we aligned it with GO. 

Finally, we uploaded FanGO to an online database, the Network Data Exchange (NDEx, 

http://ndexbio.org) (Pratt et al. 2015), and visualized the results in HiView (Figure 1.3). 

Since the time of constructing FanGO, one of the candidate genes, RFWD3 (a.k.a. 

FANCW), was independently confirmed as a FA gene (Knies et al. 2017). Among the 

other candidate genes, 54 have been co-cited with FA (Figure 1.2B). An ontology 

http://ndexbio.org/
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alignment between FanGO and GO revealed that 43 of FanGO subsystems (58%) had 

significant overlap with GO terms (Figure 1.2C). Consistent with prior knowledge that FA 

is marked by sensitivity to DNA damage, many overlapping GO terms are cellular 

complexes or pathways involved in the recognition of DNA lesions, including the GINS 

and MutSalpha complexes, or the repair of the DNA helix. Canonical FA subsystems, 

such as the “FA nuclear complex” and the “FANCM-MHF” complex, were also found 

(Figure 1.2D).  

The recovery of these known connections suggests that the other 120 genes and 

31 subsystems in FanGO are attractive hypotheses for further study in laboratory models 

or patients with FA phenotypes. In particular the genes RFC4 and RMI, although not 

currently known to be involved in FA, have higher average similarity scores to the seed 

set than observed among the seed genes. Several FanGO subsystems involve cellular 

functions that are not immediately recognizable as related to DNA damage repair, such 

as the spliceosome (Figure 1.5E), the condensin complex, and telomere maintenance. 

 

A suite of functions organized in a Python package. DDOT consists of a Python 

package, which handles the construction and analysis of ontologies, and the HiView web 

application, which handles visualization. Beyond these major functions, described above, 

the Python package provides many other utility functions to analyze an ontology: 

● Examine ontology structure. For each subsystem, retrieve its hierarchical connections 

(genes, child and descendant subsystems, parent and ancestral subsystems) and the 

subnetwork of gene similarities that supports the subsystem’s existence. For each 

gene, retrieve its set of subsystems. 
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● Modify ontology structure: Reduce the size of an ontology by removing a set of 

subsystems or genes. Randomize connections between genes and subsystems to 

create new ontologies representing a null model for statistical tests. 

● Flatten ontology structure. Instead of inferring an ontology from a gene similarity 

network, perform the reverse process of inferring a gene similarity network from an 

ontology. In particular, the similarity between two genes is calculated as the size of 

the smallest common subsystem, known as the Resnik score (Resnik 1999). 

● Map genotypes to the ontology. Given a set of mutations comprising a genotype, 

propagate the impact of these mutations to the subsystems containing these genes in 

the ontology. In particular, the impact on a subsystem is estimated by the number of 

its genes that have been mutated. These subsystem activities, which we have called 

an “ontotype”, enables more accurate and interpretable predictions of phenotype from 

genotype (Yu et al. 2016). 

● Load curated ontologies. Parse Open Biomedical Ontologies (OBO) and gene-

association file (GAF) formats that are typically used to describe curated ontologies 

like GO. 

 

At the core of the Python package is an “Ontology” class (Figure 1.1) through 

which most analysis can be executed. This object-oriented design enables more intuitive 

software development, as conceptual manipulations to an ontology’s structure can be 

reflected by programmatic changes to an Ontology object’s attributes. DDOT’s functions 

have all been design to work together in concise pipelines that involve minimal boilerplate 
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code. A tutorial and documentation of every function in the Python package is available 

at http://the-data-driven-ontology-toolkit-ddot.readthedocs.io. 

 

Ontology visualization with HiView. The HiView web application provides an 

interactive visualization of the two major features of a data-driven ontology: (1) the 

hierarchical structure relating genes and subsystems and (2) the data supporting the 

inference of each subsystem (Figure 1.3). Visualizing the hierarchical structure is 

challenging because it is a directed acyclic graph (DAG), in which each node may have 

multiple parents and multiple children. As drawing a DAG on a two-dimensional canvas 

often requires having many edges cross, which induce a “hairball” effect, current tools for 

visualizing hierarchies are typically limited to simplified planar structures, such as a tree, 

where each node has at most one parent, or a small subgraph of the DAG based on local 

context. For instance, the QuickGO browser (Binns et al. 2009) for the Gene Ontology 

shows the subgraph containing the ancestors of a selected term but excludes other close 

relations, such as sibling terms. In HiView, a user can choose among three visual 

transformations of a DAG into a tree (Figure 1.4). In one transformation, HiView shows 

only a subset of edges that form a spanning tree that keeps nodes connected; other edges 

are hidden, enabling the tree to be drawn more compactly while losing some information 

(Figure 1.4B). In the other two transformations, HiView duplicates nodes in a manner 

that preserve hierarchical relations but makes the visualization less compact. In particular, 

nodes are duplicated either to represent a top-down traversal of the DAG (Figure 1.4C) 

or to supplement the spanning tree (Figure 1.4D). In addition to these transformations, 

HiView allows the user to interactively zoom between more expansive views of the entire 

http://the-data-driven-ontology-toolkit-ddot.readthedocs.io/
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ontology and more focused views of particular subsystems. Finally, genes and 

subsystems can be searched based on their names and metadata. 

Whereas a subsystem in a curated ontology is explained by a table of citations and 

evidence codes, a subsystem in data-driven gene ontology is explained by several types 

of gene-gene interaction networks, which themselves require special graphical 

visualization. In HiView, these networks are displayed in a side panel when the user 

selects a subsystem (Figure 1.3). Distinct interaction types, such as protein-protein 

versus co-expression, are distinguished by edge color, and the interaction strength is 

represented by edge thickness. To filter the amount of data shown, a user can select 

edges by their interaction type and strength. A user can also visualize why a subsystem 

was factorized into children subsystems by highlighting the genes belonging to a 

particular child. In addition, HiView has been designed to be programmatic, visualizing 

any ontology that has been pre-formatted with the Python package and hosted online at 

NDEx. Additional metadata about genes or subsystems can be viewed as node attributes, 

such as color and size. 

 

Reproducible software pipelines and interfaces with other tools. To facilitate 

shareable and reproducible software pipelines, DDOT has been designed such that both 

the input data and output ontologies can be stored and retrieved online at NDEx (Figure 

1.1) (Pratt et al. 2015). This built-in connection with NDEx provides three advantages. 

First, it enables a standard data format: a user can execute the simpler task of getting 

data to and from NDEx. Second, data and results can be shared with the biomedical 

research community through NDEx-based URLs. Third, it inherits other NDEx features 
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and functionalities, including provenance tracking, access permissions, user profiles, and 

interfaces with other web tools. By supporting other data formats, DDOT can readily 

interface with other desktop applications, such as Cytoscape (Shannon et al. 2003), and 

other programming libraries in Python, such as the Pandas, NetworkX, igraph, and 

matplotlib. 

 

Programmatic assembly of data-driven gene ontologies for 649 diseases. To 

demonstrate the accessibility and ease of computational modeling enabled by DDOT, we 

repeated the modeling procedure used for FA (Figures 1,2) to programmatically construct 

data-driven ontologies for 649 other diseases. These ontologies were based on two types 

of input data: a set of known gene associations for each disease, curated in the Monarch 

Initiative database (Mungall et al. 2017), and the same gene similarity network used to 

construct FanGO (Figure 1.5A). By calling DDOT functions, the pipeline for constructing 

these 649 ontologies was very concise, consisting of 16 lines of code for loading input 

data and setting parameters and 8 lines for modeling in a single Python script. For each 

disease, its ontology suggests an association with new genes (Figure 1.5B) as well as 

cellular subsystems, many of which are not found in GO (Figure 1.5C-D). The ontologies 

are available on NDEx and can be visualized through HiView. 
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1.4 Discussion 

Bioinformatics analysis often involves complex maneuvering between 

heterogeneous formats, model construction and interpretation. To facilitate these steps 

in creating hierarchical models of biological systems, DDOT has been engineered with 

several key design choices worthy of mention. First, we have implemented an Ontology 

class as a central data structure through which major functions are executed. Both low-

level and high-level functions have been implemented to enable flexible and concise 

software pipelines. Second, we support several types of formats for importing and 

exporting Ontology objects, including text files (tabular, CX, and OBO formats), in-

memory Python objects (Pandas dataframes, iGraph objects, NetworkX objects), and 

online files stored on NDEx. Third, model construction by the Python package has been 

seamlessly tied to model interpretation by HiView, enabling faster prototyping and 

iteration of ideas. Finally, we have provided in-depth documentation of every function and 

a tutorial of the Python package to minimize the learning curve for using it and to 

encourage software extensions by others. 

This work enables the exploration of hierarchies of cellular subsystems for 

numerous diseases and biological contexts. We have taken a first step in this exploration 

by creating hierarchies for 649 diseases. To gain deeper biological insight, these 

hierarchies might be further expanded in several ways. First, all disease ontologies were 

created by using the same gene-gene similarity network; the only difference in input data 

was the seed set of known genes associated to each disease. However, in future studies 

this similarity network can incorporate data from experimental models or patients of the 

disease. This strategy greatly improved our previous hierarchy of autophagy-related 
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processes, by refining the hierarchical relations among genes and subsystems as well as 

revealing new cellular subsystems (M. H. Kramer et al. 2017). Second, other algorithms 

(Lee et al. 2011) for identifying candidate genes from a seed set based on a gene 

similarity network can be evaluated. 

While we have demonstrated DDOT’s ability to model gene ontologies, this form 

of modeling might also organize other biological concepts. For instance, with the 

appropriate input data, DDOT can be used to infer and study the hierarchical organization 

of symptoms and diseases within disease classes based on clinical co-occurrence or 

shared molecular mechanisms (Park, Hescott, and Slonim 2017), chemical compounds 

within classes based on mode of action, patients within patient subtypes based on 

molecular or phenotypic similarities, and cell types within cell-lineage pathways based on 

gene regulatory signatures. Literature-curated analogues already exist in the Human 

Phenotype Ontology (Robinson et al. 2008), Disease Ontology (Kibbe et al. 2015), ChEBI 

Ontology (Degtyarenko et al. 2008), and Cell Ontology (Bard, Rhee, and Ashburner 

2005). 
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1.5 Conclusions 

Hierarchical models of the cell and other biological systems have long been 

curated in the form of biomedical ontologies, but their construction and visualization in a 

data-driven manner is a more recent endeavor for which no unified software framework 

yet exists. DDOT aims to fill this software void by providing an implementation of the major 

required functions in a Python package alongside the HiView web application. 

 

1.6 Availability of data and materials 

Source code for the Python package and Jupyter notebooks for reconstructing 

FanGO and the 649 disease gene ontologies are available at 

https://github.com/michaelkyu/ontology under a MIT open source license. Documentation 

and a tutorial for the Python package are available at http://the-data-driven-ontology-

toolkit-ddot.readthedocs.io. Source code for HiView is available at 

https://github.com/idekerlab/hiview under a MIT open source license. 

 

 

 

  

https://github.com/michaelkyu/ontology
http://the-data-driven-ontology-toolkit-ddot.readthedocs.io/
http://the-data-driven-ontology-toolkit-ddot.readthedocs.io/
https://github.com/idekerlab/hiview
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1.7 Figures 

Figure 1.1. Software architecture of the Data-Driven Ontology Toolkit (DDOT). 
DDOT implements several functions that form a workflow to construct, analyze, and 
visualize data-driven gene ontologies. This workflow is executed in an integrated software 
framework, consisting of a Python package and a web application called the Hierarchical 
Viewer. Input and output data can be stored online at the Network Data Exchange (NDEx, 
http://ndexbio.org), facilitating sharing and reproducibility of results.  
  

http://ndexbio.org/
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Figure 1.2. Discovery of known and candidate genes and subsystems involved in 
Fanconi Anemia. A Fanconi Anemia Gene Ontology (FanGO) assembled by combining 
prior knowledge of a seed set of 20 known FA genes with large-scale ‘omics data. (A) 
Every gene was scored for its involvement in FA by calculating its average functional 
similarity to the seed set. A histogram of these scores is shown for genes in the seed set 
(blue) and other genes (green). The minimum score among genes in the seed set (0.88) 
was used as a threshold to identify a candidate set of 174 genes. (C) Decomposition of 
the combined set of 194 genes. (D) Decomposition of the 74 subsystems in FanGO. (D-
E) Focused view on FanGO subsystems related to the Fanconi anemia nuclear complex 
and FANCM-MHF complex (D) and mRNA splicing (E). 
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Figure 1.3. The Hierarchical Viewer (HiView) web application. An interactive 
visualization of a data-driven gene ontology of Fanconi Anemia. HiView visualizes both 
the hierarchical structure the ontology (left) as well as the ‘omics data (right), in the form 
of gene interaction networks, that were used to infer a subsystem and its hierarchical 
relations. Genes and subsystems can be searched by name or metadata (top-left). 
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Figure 1.4. Visual transformations of a DAG into a tree. DDOT implements three 
different transformations to display a directed acyclic graph (DAG) as a tree. (A) A toy 
example of a DAG that cannot be visualized in two dimensions without having edges 
cross. (B) Only edges in a spanning tree of the DAG are shown while other edges are 
hidden. (C) Nodes are duplicated as they are visited in a top-down traversal from the 
root(s) of the DAG to the leaves. Duplicates of the same node are shown by color. (D) 
Information that is lost by hiding edges from the spanning tree in (B) can be recovered by 
duplicating parents and children. A duplicate node can be selected to navigate to the 
location of other duplicates of the same node. 
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Figure 1.5. A compendium of gene ontologies for 649 diseases. (A) Data-driven gene 
ontologies were created to discover the genetic and pathway mechanisms of 649 
diseases. Each ontology was based on a “seed” set of genes with known associations to 
a disease (Monarch Initiative (Mungall et al. 2017)) and a network of functional similarities 
between genes. (B) The total number of genes modeled in an ontology as a function of 
the number of genes in the seed set. (C) The number of cellular subsystems inferred in 
the ontology as a function of the total genes modeled. (D) The proportion of cellular 
subsystems that are aligned to GO. 
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1.8 Methods 

Construction of data-driven gene ontologies. The 20 seed FA genes are FANCA, 

FANCB, FANCC, BRCA2, FANCD2, FANCE, FANCF, FANCG, FANCI, BRIP1, FANCL, 

FANCM, PALB2, RAD51C, SLX4, ERCC4, RAD51, BRCA1, UBE2T, and XRCC2. The 

set of genes that have been co-cited with Fanconi Anemia was gathered using a text 

mining procedure described in (Wang et al. 2017). Briefly, we gathered all Pubmed 

abstracts published up to date on April 30th, 2017 and identified all words that appear in 

an abstract with the phrase “Fanconi Anemia”. The words that are either an official or 

alias symbol of a human gene, according to the HGNC consortium, were counted 

(disregarding letter casing). 

Gene-disease associations for 8,590 diseases from the Monarch Database was 

downloaded on May 13, 2017 with the help of Kent Shefchek and Chris Mungall (personal 

communication). For most diseases, the known and candidate genes together totaled 

more than 500 genes, suggesting the lack of a coherent molecular signature. Ontologies 

were constructed and studied for the 649 diseases that had no more than 500 known and 

candidate genes. 

The gene similarity network was based on more than 1000 gene-gene interaction 

networks from publicly available sources (Zheng et. al., manuscript in preparation). 

Briefly, we compiled 16 tissue-specific coexpression networks from the GTEx project 

(GTEx Consortium 2013; Saha et al. 2017b), 10 PCA components of the 980 GEO co-

expression networks (Edgar, Domrachev, and Lash 2002) curated by the GIANT (Greene 

et al. 2015), 1 co-expression network from the Cancer Cell Line Encyclopedia (Barretina 

et al. 2012), 2 protein domain similarity networks (InterPro (Hunter et al. 2009), PFAM 
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(Bateman et al. 2004)), 1 genetic interaction network from (Lin et al. 2010), 2 curated 

protein-protein interaction networks from databases (BioGRID (Stark et al. 2006), 

InBioMap (Li et al. 2017)), and 4 high-throughput protein-protein interaction networks 

((Huttlin et al. 2017b), (Havugimana et al. 2012), (Rolland et al. 2014), (Hein et al. 2015)), 

and 1 computational predicted human interactome (Zhang et al. 2012). Following the 

procedure in (M. H. Kramer et al. 2017b), we integrated these networks by using features 

in a supervised learning (random forests) of the Resnik semantic similarity (Resnik 1999) 

between genes in the Gene Ontology. The similarity score of a gene pair was defined by 

5-fold cross-validation. 

The CliXO algorithm (M. Kramer et al. 2014) was ran with alpha=0.05 and 

beta=0.5. Each data-driven ontology was aligned to the Gene Ontology, downloaded on 

October 3, 2017, using a FDR cutoff of 0.05, calculated from 100 randomized iterations. 

For this alignment, we used a reduced version of GO in which terms that do not contain 

any human genes or contain the same genes as its parents terms were removed using 

the DDOT function Ontology.precollapse(). 

 

The Hierarchical Viewer. In designing HiView, the rendering library was chosen 

based on a tradeoff between the rendering speed and the visual styling capabilities. The 

main panel for viewing a hierarchy’s structure is rendered with sigma.js with WebGL 

enabled. The side panel for viewing the supporting interaction networks, on the other 

hand, was implemented using cytoscape.js (Franz et al. 2016), which renders more slowly 

than sigma.js but offers more styling capabilities out-of-the-box, such as node shapes 

and color gradients. The spanning tree used for the transformations in Figures 1.4B,D 
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was calculated by connecting each subsystem to its smallest parent subsystem; all other 

connections were hidden. All three transformations in Figure 1.4 are laid out using the 

Bubble Tree Layout algorithm (Grivet et al. 2006) by calling the Tulip Python library (Auber 

et al. 2016). 
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CHAPTER 2: TRANSLATION OF GENOTYPE TO PHENOTYPE BY A HIERARCHY 

OF CELL SUBSYSTEMS   

 

2.1 Summary 

Accurately translating genotype to phenotype requires accounting for the 

functional impact of genetic variation at many biological scales. Here we present a 

strategy for genotype-phenotype reasoning based on existing knowledge of cellular 

subsystems. These subsystems and their hierarchical organization are defined by the 

Gene Ontology or a complementary ontology inferred directly from previously published 

datasets. Guided by the ontology’s hierarchical structure, we organize genotype data into 

an “ontotype,” that is, a hierarchy of perturbations representing the effects of genetic 

variation at multiple cellular scales.  The ontotype is then interpreted using logical rules 

generated by machine learning to predict phenotype. This approach substantially 

outperforms previous, non-hierarchical methods for translating yeast genotype to cell 

growth phenotype, and it accurately predicts the growth outcomes of two new screens of 

2,503 double gene knockouts impacting DNA repair or nuclear lumen. Ontotypes also 

generalize to larger knockout combinations, setting the stage for interpreting the complex 

genetics of disease.  
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2.2 Introduction 

A central problem in genetics is to understand how different variations in DNA 

sequence, dispersed across a multitude of genes, can nonetheless elicit similar 

phenotypes (Waddington, 1942). In recent years, it has been repeatedly observed that 

different genetic drivers of a trait can be recognized by their aggregation in networks of 

pairwise protein or gene interactions (Califano et al., 2012; Greene et al., 2015; Hanahan 

and Weinberg, 2011; Kim and Przytycka, 2012; Ramanan et al., 2012; Wang et al., 2010). 

Rather than associate genotype with phenotype directly, variations in genotype are first 

mapped onto knowledge of gene networks; affected subnetworks are then statistically 

associated with phenotype. This approach can greatly increase our power to identify 

relevant associations between genotype and phenotype. This principle of “network-

based” or “pathway-based” association (Califano et al., 2012) is now being applied to 

effectively map the genetics underlying complex phenotypes, including cancer and other 

common diseases (Hofree et al., 2013; Lee et al., 2011; Leiserson et al., 2014; Ng et al., 

2012; Pe’er and Hacohen, 2011; Skafidas et al., 2014; Sullivan, 2012; Willsey et al., 

2013). 

In these studies, network knowledge is represented as a set of genes and pairwise 

gene interactions. In reality, however, genotype is transmitted to phenotype not only 

through gene-gene interactions but through a rich hierarchy of biological subsystems at 

multiple scales: Genotypic variations in nucleotides (1nm scale) give rise to functional 

changes in proteins (1-10nm), which in turn affect protein complexes (10-100nm), cellular 

processes (100nm), organelles (1m) and, ultimately, phenotypic behaviors of cells (1-

10m), tissues (100m-100mm) and complex organisms (>1m). What has been less well-
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studied in genotype-phenotype association is how to leverage our extensive pre-existing 

knowledge across these scales, or how to identify the scales most relevant to a set of 

genetic variants (Deisboeck et al., 2011; Eissing et al., 2011; Walpole et al., 2013). 

In many fields, knowledge across scales is modeled by ontologies— a factorization 

of prior knowledge about the world into a hierarchy of increasingly specific concepts 

(Brachman and Levesque, 2004). For instance, intelligent systems like Apple’s Siri and 

IBM’s Watson carry out logical reasoning using a large collection of world knowledge 

represented by ontologies (Carvunis and Ideker, 2014). In molecular and cellular biology, 

extensive knowledge of the hierarchy of subsystems in a cell has been represented by 

the Gene Ontology (GO), a community standard reference database that documents 

interrelationships among thousands of intracellular components, processes and functions 

in a large hierarchy of terms (The Gene Ontology Consortium, 2014). Thus far, genotype-

phenotype association methods have sometimes used prior knowledge in GO by 

flattening the term hierarchy to a network, in which pairwise interactions connect genes 

annotated with the same GO term (Pesquita et al., 2009). This flattening, however, may 

discard important information about the rich hierarchy of biological systems connecting 

genotype to phenotype. Moreover, a hierarchical model is highly complementary, and in 

some ways orthogonal, to flat networks: GO is primarily concerned with “deep” 

connectivity up and down a hierarchy of cellular processes spanning dozens of scales, 

whereas network models typically focus on horizontal flow of signaling, transcriptional, or 

metabolic information among genes or reactions at the same scale (Lee et al., 2010, 

2011). Another advantage of GO is that it is continuously improved by a very large 

community of dozens of curators and editors, who update GO from new knowledge 
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published in thousands of peer-reviewed papers each year (Balakrishnan et al. 2013; 

Huntley et al. 2014). To complement this process of manual curation, recently we and 

others have shown that a large hierarchy of cellular systems can be systematically 

assembled directly from analysis of genome-wide data sets, including molecular 

interactions and gene expression profiles; we call this assembly NeXO (Dutkowski et al. 

2013; Kramer et al. 2014; Gligorijević, Janjić, and Pržulj 2014). This ‘data-driven’ ontology 

closely resembles, and in some cases greatly revises and expands, the literature-curated 

GO. 

Here we report a general approach for using deep hierarchical knowledge of the 

cell, represented by an ontology, to translate genotype to phenotype. This approach 

recursively aggregates the effects of genetic variation upwards through the hierarchy: in 

this way, genetic variants comprising genotype are converted to effects on the cell 

subsystems impacted by those variants. We call the set of all such effects ‘ontotype,’ 

representing variation at intermediate scales between nanoscopic changes in genes and 

macroscopic changes in phenotype.  

Here, we focus on yeast genetic interactions, in which the deletion of two or more 

genes results in an unexpectedly slow or fast cellular growth phenotype. Genetic 

interactions have previously been screened systematically using synthetic genetic arrays 

in yeast (Costanzo et al., 2010); these experiments comprise ~3 million different genetic 

backgrounds and are one of the largest genotype-phenotype compendia in existence. We 

integrate these data with GO to produce a multi-scale computational model, the 

functionalized ontology. The model accurately predicts growth phenotypes of 2,503 

previously untested double deletion genotypes, and it is also capable of predicting the 
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phenotypes that result from larger combinations of gene disruptions. Similar predictive 

power is achieved by substituting GO with NeXO, our data-driven ontology of cellular 

systems. In aggregate, this work suggests a strategy for building hierarchical models of 

the cell whose structure and function are learned completely from data. 
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2.3 Results 

Association between genetic interactions and hierarchical relations among cellular 

systems. As preparation for modeling, we identified patterns by which genetic interactions 

are associated with, and thus biologically explained by, the structure of gene ontologies. 

We observed that sets of genes assigned to the same GO term tended to be highly 

enriched for genetic interactions (p < 10-5), for both positive genetic interactions (double 

gene disruptions with better-than-expected growth, e.g. epistasis) and negative genetic 

interactions (double gene disruptions with worse-than-expected growth, e.g. synthetic 

lethality) (Figure 2.1A). Such interaction enrichment within GO terms occurred over a 

wide range of term sizes – the number of genes annotated to a term – suggesting that 

genetic interactions emerge from both broad and specific cellular mechanisms at multiple 

scales.  

Due to the hierarchical structure of the cell, genetic interactions among genes 

annotated to a term can potentially be re-interpreted as interactions between the genes 

of different terms at a lower scale in GO. For example, the ‘parent’ term ‘microtubule-

associated complex’ displays strong within-term interaction enrichment, which factors into 

strong between-term interaction enrichment across two of its ‘children’ terms, kinesin and 

dynactin (Figure 2.1B). We found that such hierarchical relationships were widespread 

in GO: approximately half of within-term enrichments could be factored into between-term 

enrichments among their descendants (Figure 2.1C). Occurrences of interactions within 

or between biological pathways have been previously investigated as separate biological 

interpretations (Bandyopadhyay et al., 2008; Bellay et al., 2011; Collins et al., 2010; 

Kelley and Ideker, 2005; Leiserson et al., 2011; Ma et al., 2008; Qi et al., 2008; Ulitsky et 
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al., 2008). Here, both types of explanations can be applied to the same interaction, as 

they are related hierarchically within the unified structure of the cell. Overall, 

approximately 40,000 interactions were involved in 1,661 within- or between-term 

enrichments, representing a 24:1 compression of information (Figure 2.1D). Thus, GO 

integrates genetic interactions in an overarching hierarchy capturing multiple scales of 

cell biology. As one moves upwards in this hierarchy, separate disruptions to multiple 

systems converge to multiple disruptions to a single system, with the scale of this 

transition indicated naturally by the hierarchical structure. 

 

The ontotype: an intermediate between genotype and phenotype. Guided by this 

concordance between the GO hierarchy and genetic interactions, we developed a general 

system for ontology-based translation of genotype to phenotype that involves three 

general steps. First, the genotype is described according to convention by the set of 

genes that have been disrupted relative to wild type (e.g. bd, Figure 2.2A). These 

disruptions are propagated recursively up the ontology, such that every term is assigned 

the disrupted genes annotated to that term plus all of those assigned to its children. For 

example, since the gene KIP1 encodes a subunit of the kinesin complex (Figure 2.1B), 

its deletion in a kip1Δ strain propagates upwards in the ontology to affect the parent term 

‘kinesin complex’ and continues to propagate upwards to affect ancestor terms at higher 

scales such as ‘microtubule associated complex’ and ‘cytoskeleton’. 

Second, every term is assigned a functional state, representing the aggregate 

impact of gene disruptions on the activity of the component or process that term 

represents. Although it is possible to envisage many ways one might compute this 
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functional impact, as proof-of-principle we explored a simple and parameter-free 

computation, the number of disrupted genes associated with the term. This general 

approach is iterated across all terms; we call the profile of states across all terms the 

‘ontotype.’ In this way, the ontotype provides a complete picture of cell function and spans 

scales between genotype and phenotype. Whereas genotype describes the states of 

genes, and phenotype describes the states of observable traits, ontotype describes the 

states of all known biological objects. Many of these objects exist at scales bigger than 

genes but too small to be classically ‘observable’ by eye, such as protein complexes and 

other subcellular structures, or too diffuse, such as signaling pathways (Figure 2.2A). In 

its most general definition, ontotype encompasses both genotype and phenotype, with 

genes and observable traits positioned at lower and higher levels of the hierarchy of 

objects encoding life.  

 

A functionalized gene ontology integrating cell structure and functional prediction. 

Third, once genotypes are transformed to ontotypes, a supervised learning approach 

based on the technique of random forests regression (Breiman, 2001) is used to learn 

rules by which term states predict phenotypes. Rules are organized as a collection, or 

‘forest’, of decision trees (Experimental Procedures), with a typical decision tree 

describing a series of logical true/false tests to evaluate the states of several terms (e.g., 

T4, T5, and T7 in Figure 2.2A). Making decisions on the states of terms rather than 

nucleotide variants or genes enables machine learning across a range of scales, so that 

different genotypes converging on similar ontotypes (e.g. aΔdΔ and bΔdΔ in Figure 2B) 

can yield the same phenotype. Decision tree logic was trained to predict quantitative 
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genetic interaction scores from ~3 million tests for pairwise genetic interactions (Costanzo 

et al., 2010) (Experimental Procedures). This hierarchical structure of the ontology, 

when coupled to the decision logic described above, forms a “functionalized” ontology, 

that is, a computational cell model that defines both the sub-structures of the cell and how 

these sub-structures hierarchically translate genotype to phenotype. 

Separate functionalized ontologies were trained using either the Gene Ontology 

curated from the Saccharomyces literature (Cherry et al. 2012) (FGO) or a data-driven 

ontology assembled from Saccharomyces datasets using the method of Network-

extracted Ontologies (Dutkowski et al. 2013; Kramer et al. 2014) (FNeXO). Whereas GO 

represents knowledge of published cell biology, application of NeXO yielded an ontology 

whose hierarchy of cell systems was learned directly from publicly available data, 

including protein-protein interactions, gene expression profiles, and protein sequence 

properties but excluding any prior information about genetic interactions (datasets taken 

from YeastNet v3 study, Kim et al., 2014). NeXO (4,805 terms) was tuned so that the 

resulting ontology was approximately similar in size to GO (5,125 terms). Alignment of 

these two ontologies revealed 1,614 significantly overlapping terms. Thus, NeXO 

represents a distinct hierarchy of cellular systems that provides an alternative to the 

hierarchy maintained by GO curators. 

 

Quantitative assessment of performance for genotype-phenotype translation. FGO 

accurately predicted growth phenotypes across a range of genetic interaction scores 

(Figure 2.3A,B). The correlation between predicted and measured scores was highly 

significant (Figure 2.3C, Pearson’s r = 0.35, p < 2.2x10-16) and reduced substantially 
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when a randomized version of the ontology was used (r = 0.04); the maximum achievable 

correlation, as previously determined by experimental genetic interaction replicates 

(Baryshnikova et al., 2010), was r = 0.67. Progressively removing either small or large 

terms from the model degraded the correlation (Figure 2.3D,E), indicating that all scales 

in the hierarchy aid in prediction. FNeXO achieved nearly the same correlation (Figure 

2.3C, r = 0.32) and was also sensitive to randomization (r = 0.03).  

 Both functionalized ontologies compared favorably to non-hierarchical approaches 

for predicting genetic interactions (Boucher and Jenna, 2013; Lehner, 2013). We 

evaluated three state-of-the-art methods: Flux Balance Analysis (FBA), which uses a 

mechanistic model of yeast metabolic pathways to simulate the impact of gene deletions 

on cell growth (Szappanos et al., 2011); Guilt-By-Association (GBA), which predicts the 

phenotype of pairwise gene deletions based on the phenotypes of their network neighbors 

(I. Lee et al. 2010); and the Multi-Network Multi-Classifier (MNMC), a ‘black box’ 

supervised learning system which uses many different lines of experimental evidence as 

features to predict genetic interactions (Pandey et al., 2010, Experimental Procedures). 

In comparison to all of these approaches, the functionalized ontologies achieved 

substantially greater correlation between predicted and measured interaction scores 

(Figure 2.3C) as well as better tradeoffs in precision versus recall (Figure 2.3F) in four-

fold cross-validation. We also assessed prediction performance in a challenging 

validation scenario in which the training set of genotypes does not disrupt any genes in 

the test set (Park and Marcotte, 2012, Supplemental Experimental Procedures). In this 

scenario, any genotype-phenotype logic that applies to individual genes is no longer 

generalizable; for example, promiscuous genes with a high degree of genetic interactions 
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(Mackay 2014; Gillis and Pavlidis 2012) could be used to explain training data but not test 

data. In spite of this challenge, FGO still outperformed predictions made with a randomized GO 

or with the non-hierarchical methods (Supplemental Figure S2.1). 

We found that the accuracy of growth phenotype prediction depends significantly 

on the degree to which cellular systems have been characterized in the gene ontology. 

FGO was especially accurate at modeling genotypes for which the disrupted genes are 

well-characterized by GO annotations; conversely, it was far less able to model genotypes 

for which the genes are poorly characterized (Supplemental Figure S2.2). Moreover, 

many genes that are poorly characterized in GO are better characterized in NeXO, such 

that genotypes involving these genes lead to better phenotypic predictions by FNeXO than 

by FGO (Supplemental Figure S2.2A-C). These differences demonstrate the utility of 

data-driven ontologies for translating genotype to phenotype, especially in species that 

are lacking in GO curation but have ‘omics datasets from which a gene ontology can 

nonetheless be built.  

Finally, we investigated whether hierarchical features (i.e. the ontotype) were 

essential, or equally good predictions could be made from ‘flat’ features derived from the 

same ontologies. GO was flattened by computing the semantic similarity (Resnik 1995), 

which scores every pair of genes by their functional relatedness in GO. As a non-

hierarchical representation of NeXO, we directly considered the data on which it had been 

based: pairwise gene-gene similarities derived from different types of experimental 

evidence in YeastNet. Use of these flat datasets derived from the two ontologies resulted 

in a substantial degradation in prediction performance (FLATGO and FLATNeXO, Figure 
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2.3C), even though the same random forests regression procedure was used as for the 

functionalized ontologies. 

Simulating growth phenotypes for ‘new’ genotypes not yet observed or examined. 

We next used FGO to simulate growth for all 12,512,503 pairwise deletions of non-

essential yeast genes, 73% of which had not yet been tested in the laboratory (Figure 

2.4A, Supplemental File S2.1). A total of 41,605 genetic interactions were predicted. 

These predictions were concentrated within and between particular terms and term pairs 

(Figures 2.4A,B), covering a total of 1,367 unique terms and indicating where in the 

ontology the logic of FGO takes place. For example, FGO predicted many genetic 

interactions within ‘oxidative phosphorylation’ (Figure 2.4C), with negative interactions 

linking the sub-systems of electron and proton transport and positive interactions 

segregating entirely within electron transport. These distinct patterns of positive/negative 

segregation were observed broadly across FGO (Supplemental Figure S2.3). Of 

particular interest were predicted interactions between 71 term pairs, as these terms were 

only distantly related in GO (Table 2.1, Supplemental Table S2.1, Supplemental 

Experimental Procedures). For example, all ten genes in ‘intron homing’ had negative 

interactions with all four genes in the ‘Phosphatidylinositol-3-kinase complex’, although 

neither these terms nor their parents shared any genes, and these terms were in entirely 

separate branches of GO (biological process versus cellular component). Thus, FGO 

makes predictions guided by, but not rigidly confined to, known hierarchical relations 

among cellular subsystems. The unexpected connections point to potential new cellular 

functions and functional relationships important for regulating cell growth. 
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Validation and expansion of the functionalized ontology of DNA repair and nuclear 

lumen. Key terms in FGO were ‘DNA repair’ and ‘nuclear lumen’, which featured 

prominently in the decision tree logic leading to a high concentration of predicted 

interactions (9.0 and 7.6 times the expected interaction density, respectively) according 

to particular patterns of disruption (Figure 2.5A, Supplemental Figure S2.4). Genetic 

perturbations within each term led to particularly accurate growth phenotypes in cross-

validation, as the correlation between predicted interactions and those measured by 

Costanzo et al.  was noticeably better for gene pairs in DNA repair or nuclear lumen (both 

r = 0.61) than for gene pairs in other terms (average r = 0.35, Supplemental Figure 

S2.2G, Supplemental Table S2.2). To test whether this performance generalized to new 

data, we experimentally measured growth phenotypes for 1,218 pairwise deletions of 

DNA repair genes and 1,600 pairwise deletions of nuclear lumen genes and scored these 

mutants for genetic interactions (Supplemental Table S2.3, Supplemental 

Experimental Procedures). Of these, 1,345 mutants had also been scored previously 

by Costanzo et al.  Surprisingly, we observed that the new measurements were better 

predicted by FGO than by the previous measurements of those same genotypes (i.e., 

experimental replicates, Figure 2.5B). Such improvement suggests that functionalized 

ontologies may be able to reduce experimental noise by learning the overarching patterns 

of cellular subsystems that translate genotype to phenotype. 

We next tested FGO’s ability to generalize to unseen mutant genotypes. For this 

purpose we constructed a “limited” FGO, trained only on those genotypes that had been 

tested earlier (Costanzo et al., 2010) but not by our new screens. This limited FGO 

achieved a high sensitivity versus specificity (Figure 2.5C) and precision versus recall 
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(Figure 2.5D) in predicting the new interactions measured for DNA repair and nuclear 

lumen genes. Given this validation, we combined the genetic interaction scores from both 

new screens with previous data (Costanzo et al., 2010) and re-trained the ontotype 

decision logic on this more complete dataset. The structure of this improved FGO, with the 

accompanying ontotype-phenotype logic, is available online on the Network Data 

Exchange (http://goo.gl/cYIXWJ, UUID: 01b46d52-c3a5-11e5-8fbc-06603eb7f303, Pratt 

et al., 2015) and as a Cytoscape file in Supplemental File S2.2. 

 

Toward more complex genotypes. Although the ontotype had been trained using 

double deletion genotypes, we hypothesized that, once trained, it might be capable of 

predictions for genotypes involving mutations to larger numbers of genes. Although few 

studies have examined three-way or higher-order genetic interactions, a recent study 

(Haber et al., 2013) showed proof-of-principle for a three-way gene deletion methodology, 

representing one of the few systematic screens for triple mutants to-date. This work 

reported that deletion of CAC1 in combination with any gene in the HIR complex (HIR1, 

HIR2, HIR3, HPC2, RTT106), results in a synthetic growth defect (negative genetic 

interaction); however, the additional deletion of a third gene ASF1 suppresses this 

phenotype. Consistent with these findings, FGO predicted both the synthetic sickness of 

the double mutants and phenotypic suppression by the triple mutant (Figure 2.6A). Visual 

inspection of the model (Figure 2.6B) implicated decision logic based on the functional 

activities of two related processes, DNA replication-independent nucleosome assembly 

and nucleosome organization. Deleting a single gene in DNA replication-independent 

nucleosome assembly leads to a state in which the deletion of another gene functioning 

http://goo.gl/cYIXWJ
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elsewhere in nucleosome organization causes synthetic sickness. In contrast, the triple 

mutants include deletion of two genes in DNA replication-independent nucleosome 

assembly (asf1HIR), leading to a neutral phenotype. This effect probably occurs 

because the double mutant impairs growth to such an extent that additional perturbations 

have no detectable effect. Indeed, whereas CAC1 is primarily involved in regulating DNA 

replication, ASF1 and the HIR complex have been linked to other chromatin-related 

processes, including transcriptional elongation (Formosa et al., 2002; Schwabish and 

Struhl, 2006) and mRNA export (Pamblanco et al., 2014). This triple-mutant case study 

illustrates the complexity of logic in interpreting genetic interactions, underscoring the 

utility of a knowledge representation and reasoning system for unraveling such 

combinatorial genetic effects. 
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2.4 Discussion 

Many years of work by the Gene Ontology Consortium have established an 

extensive description of cell structure spanning a hierarchy of biological scales. Here, we 

have shown that the ontology structure can also be used functionally for interpretation of 

genetic variants to make phenotypic predictions. The ability to systematically map and 

then integrate these two aspects, structure and function, outlines a general strategy for 

development of computational cell models. First, a knowledge base of the cell’s 

hierarchical structure is acquired, either through literature curation (GO) or data-driven 

methods (NeXO). In a second step, mathematical relations are learned by algorithms that 

translate how the functional states of these subsystems— the ontotype— give rise to a 

phenotype of interest. Together, these two steps constitute a paradigm by which cell 

structure is determined from physical information derived from literature or systematic 

data, and cell function is learned from genetic data such as synthetic-lethal interactions 

and genome-wide association studies.  

Functionalized ontologies substantially outperformed previous phenotypic 

predictors (Figure 2.3C,F), a notable finding given the simplicity of the ontotype and its 

use as the sole feature set for learning. We believe this success follows from several key 

aspects of implementation. First and most important, the utility of hierarchical organization 

in genotype-phenotype translation cannot be overstated. Indeed, the functionalized 

ontologies also outperformed predictors based on non-hierarchical versions of the same 

information (Figure 2.3C) or truncated versions of the ontology (Figure 2.3D,E). From 

the perspective of the ontology, all mutations or variants in a genotype coalesce to the 

same cellular module, provided one looks at a high enough level (Figure 2.1B). A 
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genotype may include some mutations that map to the same gene, others to the same 

protein complex; still others to different complexes but to the same broad process or 

organelle, with all mutations falling within the highest scale represented by the cell itself. 

Propagating mutations upward through terms of increasing scale enables subsequent 

selection of the ‘right’ scale for accurate prediction. In this regard, FGO sheds light on 

previous, partially discrepant, studies of genetic interaction networks. Some analyses 

have found that negative genetic interactions tend to connect between complementary 

modules, whereas positive interactions tend to occur within a single module 

(Bandyopadhyay et al., 2008; Collins et al., 2010; Kelley and Ideker, 2005; Leiserson et 

al., 2011; Ma et al., 2008; Qi et al., 2008; Ulitsky et al., 2008); a more recent report 

identified dense patterns of both positive and negative interactions between modules 

(Bellay et al., 2011). Analysis of FGO suggests that both interpretations can be correct, 

depending on the scale of the module(s) within the cellular hierarchy. 

The second factor in the success of functionalized ontologies is the sustained 

efforts of biologists at large. GO is a rich resource of cellular knowledge that is both broad, 

in its extensive coverage of cell biology, and deep, in its resolution of cell subsystems 

across many different scales. Although not perfect, this knowledge is continuously 

refined, updated and expanded by the sustained efforts of a global community. Given the 

staggering complexity of the cell, such a collaborative approach incorporating diverse 

expertise and tools may be instrumental in establishing robust and complete prior 

knowledge for computational cell modeling. Previously, cellular modeling efforts have 

typically involved independent curation within a single laboratory or institute.  



 

52 
 

The last factor that worked in our favor is the fact that functionalized ontologies 

balance rigid modeling constraints imposed by prior knowledge with flexible statistical 

learning guided by experiments. Computing the ontotype requires no parameters and 

instead leverages the topology of the ontology. Logical rules for predicting phenotype are 

based on the ontotype, but their functional form, i.e. which terms are used and how their 

states are combined, is learned from data. In contrast, many previous efforts in 

mechanistic modeling, e.g., see (Cahan et al., 2014; Carrera et al., 2014; Deutscher et 

al., 2006; Karr et al., 2012; Lerman et al., 2012; Machado et al., 2011; O’Brien et al., 

2013; Orth et al., 2010; Segrè et al., 2005; Szappanos et al., 2011; Szczurek et al., 2009; 

Takahashi et al., 2003; Tomita et al., 1999) have been driven by low-level prior knowledge 

in the form of biophysical equations. While naturally conferring a mechanistic explanation 

when correct, these equations have a known challenge that they are often of preset form 

and have sensitive parameters (Apgar et al., 2010; Ashyraliyev et al., 2009; Gutenkunst 

et al., 2007), such that achieving accurate predictions within one dataset risks overfitting.  

 

Extending Functional Ontologies Beyond Current Limits. FGO based its predictions 

principally on 1,367 terms, spread across various biological processes, cellular 

components and molecular functions (Figure 2.4A). Although this coverage of cell biology 

is substantial (27% of the yeast GO), one might wonder whether it should be more 

complete. First, some term logic is likely missed because those terms are not frequently 

disrupted in the current set of genotypes. For example, genes annotated to 783 GO terms 

were never disrupted in any genotype tested (Costanzo et al., 2010). Second, some 

biological processes are likely not required for the phenotype tested – growth of cells in 
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rich media – but instead may drive a wide variety of other phenotypes (Dowell et al., 2010; 

Hillenmeyer et al., 2008; Ideker and Krogan, 2012; Lee et al., 2014). Third, important 

processes or components may not yet have been curated in GO, and some existing terms 

might have errors in gene annotations or relations to other terms. Such false-positive and 

false-negative information could obscure a term’s utility in prediction. We expect that 

testing additional genotypes, phenotypes, and environmental conditions will increase the 

functional coverage of terms and enhance FGO with new and more robust logic.  

Complex traits arise from a landscape of genetic variants and mutations, where it 

is often challenging to interpret the effects of individual genes due to many multi-gene 

interactions (Kim and Przytycka, 2012; Zuk et al., 2012). Towards this challenge, we have 

shown that gene ontologies can be transformed into multi-scale models capable of 

general genotype-phenotype reasoning. Although based on simple rules of propagation, 

the model substantially outperforms previous methods for predicting cellular growth 

phenotypes, whether based on mechanistic modeling of pathways or ‘black-box’ machine 

learning methods. It also generalizes in ways that previous predictors are incapable of 

doing, including the ability to analyze genotypes of arbitrary complexity. These advances 

are important steps towards building intelligent systems that can one day interpret the 

complex genetics underlying human health and disease. 

In moving forward, special consideration should be given to the mathematical 

functions that govern each term state. Here, we found success with a surprisingly 

straightforward and parameter-free function that counts the disrupted genes assigned to 

a term and its sub-terms. More generally, this function might be tailored to each term 

according to specific knowledge about the inner workings of that cellular component or 
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process. Defining the mathematical relationships between genes within a cellular process 

has been the focus of ‘bottom up’ systems biology (Bruggeman and Westerhoff, 2007; 

Chen et al., 2010). In contrast, defining the broad organization of genes into cellular 

processes has been the domain of ‘top down’ systems biology. With its hierarchy of terms 

and functions spanning many different biological scales, a functionalized ontology may 

offer a means to bridge this long-standing divide. 
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2.5 Experimental Procedures 

Genetic interaction data. Experimental genetic interaction scores for >6 million 

double mutants in yeast, measured using synthetic genetic arrays (Costanzo et al., 2010) 

(SGA, 1,711 queries × 3,885 arrays), were downloaded from 

http://drygin.ccbr.utoronto.ca/~costanzo2009/. Double gene deletion mutants impacting 

DNA repair and the nuclear lumen were generated on solid agar media using SGA 

technology as previously described (Collins et al., 2010; Tong and Boone, 2006). See 

also Supplemental Experimental Procedures. 

 

Preparation of ontologies. We used all three branches of the Gene Ontology 

(Biological Process, Cellular Component, and Molecular Function) by joining them under 

an artificial root. We removed annotations with the evidence code “inferred by genetic 

interaction” (IGI) to avoid potential circularity in predicting genetic interactions. We also 

removed terms that were not annotated with any yeast genes or were redundant with 

respect to their children terms to construct a GO relevant to yeast (Supplemental Table 

S2.4), following a previously described procedure (Dutkowski et al., 2013, 

http://mhk7.github.io/alignOntology/). 

 To construct NeXO (Supplemental Table S2.5), we integrated the YeastNet v3 

networks (Kim et al., 2014), spanning 68 experimental studies across 8 data types 

excluding genetic interactions, into a single network, and then applied the method of 

Clique Extracted Ontology (CliXO) (Kramer et al., 2014, http://mhk7.github.io/clixo_0.3/). 

See also Supplemental Experimental Procedures. 

 

http://drygin.ccbr.utoronto.ca/~costanzo2009/
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Random forests regression. Random forests (Breiman, 2001) were used to regress 

genetic interaction scores ϵab, as described in the Results. Due to the very large size of 

the ontotype feature matrix, we optimized the random forest library from the Python scikit-

learn package (Pedregosa et al., 2011); the modified code is available at 

https://github.com/michaelkyu/scikit-learn-fasterRF. While trees grown at approximately 

29% (GO) or 37% (NeXO) of the maximal depth did improve performance slightly (<0.02 

gain in correlation, Supplemental Figure S2.5), we chose to grow trees to maximal depth 

because it is unclear how significant this gain is and whether it would reproducible in 

different random partitions of the data for cross validation or in different genotype-

phenotype datasets. See also Supplemental Experimental Procedures. 

 

Comparison of methods for predicting genetic interactions. The MNMC method 

was updated from the original (Pandey et al., 2010), which was trained on a set of 

literature-curated synthetic lethal interactions that was much smaller in size than the set 

of genetic interactions considered in our study, and because the set of features used by 

the method to score each gene pair had been updated since the 2010 publication. To 

train MNMC, we calculated five basic features that were identified in the original MNMC 

as among the most informative for predicting synthetic lethality of a gene pair. This 

updated MNMC outperformed the original MNMC (Supplemental Figure S2.6); this 

performance difference may be due to the five basic features being collected more 

recently. See also Supplemental Experimental Procedures. 

 

  

https://github.com/michaelkyu/scikit-learn-fasterRF
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2.6 Figure and Tables 

Figure 2.1: Patterns of genetic interaction reflect the hierarchical structure of the 
Gene Ontology. (A) Enrichment for negative (circle) or positive (triangle) genetic 
interactions among genes annotated to the same GO term as a function of term size, 
measured by the number of genes annotated to that term or its descendants. Enrichment 
is normalized as the fold change over expected for randomized GO annotations. (B) 
Genetic interactions are propagated up the GO hierarchy to support ‘between-term 
enrichment’ between the dynactin and kinesin complexes and ‘within-term enrichment’ 
within the parent ‘microtubule associated complex’. (C) Number of within-term and 
between-term enrichments highlighted by current genetic interaction data. Approximately 
half of within-term enrichments can be factored into one or more between-term 
enrichments that occur lower in the GO hierarchy. Percentages are calculated with 
respect to the total possible tests for within-term (2,719) and between-term (36,210) 
enrichments. (D) Number of genetic interactions involved in a within-term, between-term, 
or either type of enrichment. Percentages are calculated with respect to the total number 
of genetic interactions (107,133). The expected numbers of enrichments (C) and 
supporting interactions (D) were also calculated over randomized GO annotations (dark 
gray bars). 
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Figure 2.2: The ontotype method of translating genotype to phenotype. (A) The 
relationship between genotypic and phenotypic variation is modeled through an 
intermediate ‘ontotype’, defined as the profile of states corresponding to the effect of 
genotype on each cellular component, biological process, and molecular function 
represented as a term in GO. To generate an ontotype, perturbations to genes are 
propagated hierarchically through the ontology, altering term states. A random forest 
regresses to predict a phenotype using the ontotype as features. An example decision 
tree from the forest is shown. (B) Example genotype / ontotype / phenotype associations 

from the ontology in (A). Different genotypes (e.g. bdand ad) give rise to similar or 
identical phenotypes by influencing similar or identical combinations of terms. 
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Figure 2.3: Genome-wide prediction of pairwise genetic interactions in yeast. (A) 
Measured genetic interaction scores versus those predicted from ontotypes constructed 
from GO using four-fold cross validation. For each bin of predicted scores, box plots 
summarize the distribution of measured scores by its median (central horizontal line), 

interquartile range (box), and an additional 1.5(whiskers). (B) Number of gene pairs in 
each bin of predicted scores. (C) Method performance, as represented by the correlation 
of measured versus predicted interaction scores across gene pairs that meet an 
interaction significance criterion of p < 0.05 in Costanzo et al. Comparison is made to 
ontotypes constructed from a randomized GO or NeXO and to previous non-hierarchical 
methods for predicting genetic interactions. FBA correlation is reported for the set of 
104,826 gene pairs considered by this model and for which gene annotations are 
available in GO. The ontotype correlations do not fluctuate greatly (<4%) whether 
computed over all gene pairs (shown) or the FBA gene pairs. See also Supplemental 
Figure S1-2. (D) Method performance when the ontotype is constructed from only GO 
terms that are no larger than (triangles) or no smaller than (circles) a size threshold. (E) 
The number of GO terms that meet each size threshold criteria. (F) Precision-recall curves 
for classification of negative genetic interactions. 
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Figure 2.4: The Functionalized Gene Ontology. (A) Visualization of FGO structure and 
function. Terms and hierarchical parent-child relations are represented by nodes and 
black edges. Colored nodes and edges denote within- and between-term interaction 
enrichments, illustrating how terms and term combinations are used for prediction. (B) 
Venn diagrams showing number of term enrichments identified for measured interactions, 
predicted interactions, or both. (C) Example term ‘oxidative phosphorylation’, which 
factors into the transport of electrons (left child) versus protons (right child). Although both 
positive and negative genetic interactions are predicted within the oxidative 
phosphorylation genes (represented by a pie with both blue and red slices), positive 
interactions segregate within electron transport (blue pie) while negative interactions 
segregate between electron and proton transport (dotted red edge). See also 
Supplemental Figure S2.3.  
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Figure 2.5: Elucidating the genetic logic of DNA repair and the nuclear lumen. (A) 
DNA repair has a rich structure of predicted genetic interactions among specific repair 
processes. Coloring and visual style of panels follow the convention of previous figures. 
See also Supplemental Figure S2.4. (B-D) Yeast growth was experimentally measured 
for double gene deletion strains in which both genes are involved in either DNA repair 
(green) or nuclear lumen (orange). See also Supplemental Table S2.2-2.3. (B) The new 
measurements are correlated with previous data by Costanzo et al., 2010 as well as 
predictions of a FGO trained with all previous data, or predictions of a “limited” FGO trained 
with all previous data excluding genotypes tested in the new screen. In all cases, 
correlation is computed among the genotypes tested by both the new screen and 
Costanzo et al. Among all genotypes in the new screen, we calculated receiver-operating 
(C) and precision-recall curves (D) for predicting negative genetic interactions in DNA 
repair and the nuclear lumen using the limited FGO. The corresponding curves across all 
gene pairs in the previous screen are reproduced for comparison (gray, see Figure 2.3F). 
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Figure 2.6: Prediction of triple mutants. (a) Measured versus predicted interaction 
scores for genotypes involving pairwise and three-way deletions involving ASF1, CAC1, 
and genes in the HIRA complex (HIR1, HIR2, HIR3, HPC2) (Haber et al., 2013). (B) 
Relevant GO structure (left) and corresponding functional decision tree (right) for 
predicting the two- and three-way interactions in (A). At left, arrows represent parent-child 
relations and gene annotations in GO. At right, arrows represent decisions based on 
ontotype: numbers on arrows are term states; arrows point to predicted interaction scores 

(). 
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Table 2.1: Top new functional relationships in FGO. See also Supplemental Table 
S2.1. 
 

 Term A (# of Genes) Term B (# of Genes) 
Interactions 

/ Total (%) 
p-valuea 

N
e

g
a

ti
v

e
 I
n

te
ra

c
ti

o
n

s
 

intron homing (10) 
phosphatidylinositol 3-kinase complex II 

(4) 
40/40 (100.0%) 6.74E-96 

negative regulation of chromatin silencing 

at silent mating-type cassette (8) 

protein import into mitochondrial inner 

membrane (3) 
24/24 (100.0%) 3.56E-55 

pre-mRNA binding (5) 

RNA pol II transcription coactivator 

activity in preinitiation complex assembly 

(3) 

15/15 (100.0%) 2.86E-32 

protein lipoylation (4) 
carbon-oxygen lyase activity, acting on 

phosphates (3) 
12/12 (100.0%) 1.23E-24 

Swr1 complex (8) U6 snRNP (3) 22/24 (91.7%) 1.20E-47 

alpha-1,6-mannosyltransferase complex (6) 
negative regulation of chromatin silencing 

involved in replicative cell aging (4) 
21/24 (87.5%) 3.08E-44 

tubulin complex assembly (5) 
maintenance of DNA trinucleotide repeats 

(3) 
13/15 (86.7%) 3.67E-25 

inositol phosphate biosynthetic process (5) 
minus-end-directed microtubule motor 

activity (3) 
12/15 (80.0%) 5.56E-22 

regulation of ARF GTPase activity (6) 
phosphatidylinositol-3,5-bisphosphate 5-

phosphatase activity (4) 
19/24 (79.2%) 7.92E-38 

regulation of histone H2B conserved C-

terminal lysine ubiquitination (5) 
HIR complex (4) 14/20 (70.0%) 3.82E-25 

negative regulation of chromatin silencing 

at silent mating-type cassette (8) 
U6 snRNP (3) 19/24 (79.2%) 7.92E-38 

P
o

s
it

iv
e
 I

n
te

ra
c
ti

o
n

s
 

tubulin complex assembly (5) 
DNA-directed RNA polymerase I complex 

(4) 
15/20 (75.0%) 4.37E-28 

RSC complex (8) inactivation of MAPK activity (4) 19/32 (59.4%) 6.33E-34 

vacuolar proton-transporting V-type 

ATPase, V1 domain (8) 
free ubiquitin chain polymerization (3) 14/24 (58.3%) 1.91E-23 

alpha-1,6-mannosyltransferase complex (6) dynactin complex (5) 16/30 (53.3%) 1.14E-26 

vacuolar proton-transporting V-type 

ATPase, V0 domain (7) 
AP-3 adaptor complex (4) 13/28 (46.4%) 1.26E-19 

SLIK (SAGA-like) complex (14) 
positive regulation of stress-activated 

MAPK cascade (3) 
14/42 (33.3%) 4.92E-19 

histone exchange (9) 
minus-end-directed microtubule motor 

activity (3) 
9/27 (33.3%) 2.38E-10 

histone methyltransferase activity (H3-K4 

specific) (7) 

snoRNA transcription from an RNA 

polymerase II promoter (3) 
7/21 (33.3%) 7.33E-07 

glycerol transport (4) 
transcription-coupled nucleotide-excision 

repair (4) 
5/16 (31.3%) 3.42E-03 

 

a Bonferroni corrected for family-wise error rate  
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2.7 Supplemental Experimental Procedures 

Previous genetic interaction data. Experimental genetic interaction scores for >6 

million double mutants in yeast, measured using synthetic genetic arrays (Costanzo et 

al., 2010) (SGA, 1,711 queries × 3,885 arrays), were downloaded from 

http://drygin.ccbr.utoronto.ca/~costanzo2009/. We used only measurements where each 

gene is nonessential (any gene not listed as essential in the Saccharomyces Genome 

Deletion Project, http://www-

sequence.stanford.edu/group/yeast_deletion_project/Essential_ORFs.txt) and is 

mutated as a deletion allele, excluding temperature-sensitive and DAmP alleles. 

Reciprocal tests for the same gene pair, i.e., query A × array B versus query B × array A 

for two different genes A and B, were merged as previously described (Costanzo et al., 

2010). Analysis of these data is based on the principle that the vast majority of strains 

follow a multiplicative null model in which fab=fafb, where fab is the measured growth of the 

double knockout and fa and fb are the corresponding single knockout measurements. The 

genetic interaction score is represented by the deviation ϵab=fab–fafb from the null model 

and assigned a p-value of significance pab using experimental replicates. Following the 

guidelines of the original data publication (Costanzo et al., 2010), we thresholded ϵab and 

pab to categorize gene pairs as “negative” or “synthetic sick” interactions (ϵab<-0.08 at 

pab<0.05), “positive” or “epistatic” interactions (ϵab>0.08 at pab<0.05), or no significant 

interaction. For further analysis, we selected measurements for 3,331,172 pairs (69,639 

negative and 37,494 positive across 3,686 unique genes) where both genes are 

annotated to a non-root term in GO, or 3,463,034 pairs (70,353 negative and 37,924 

positive across 3,586 unique genes) where both genes are annotated in NeXO. 

http://drygin.ccbr.utoronto.ca/~costanzo2009/
http://www-sequence.stanford.edu/group/yeast_deletion_project/Essential_ORFs.txt
http://www-sequence.stanford.edu/group/yeast_deletion_project/Essential_ORFs.txt


 

69 
 

New genetic interaction mapping of DNA repair and the nuclear lumen. Double 

gene deletion mutants were generated on solid agar media using SGA technology as 

previously described (Collins et al., 2010; Tong and Boone, 2006). Briefly, double mutants 

were allowed to grow for 48 hours at 30°C and imaged using a Canon CCD camera. 

Colony sizes were quantified using the HT Colony Grid Analyzer (v. 1.1.7), after which 

genetic interaction scores (S-scores, Supplemental Table S2.3) were computed using 

the E-MAP toolbox (v. 2.0) (Collins et al., 2006). 55 genes in DNA repair and 81 genes in 

the nuclear lumen, of which 29 genes are in both terms, were knocked out among the 

2,503 measured double mutants. For 315 double mutants, both genes were annotated to 

both terms. Negative interactions were called with an S-score threshold of –3.70 for gene 

pairs in DNA repair or –2.47 for gene pairs in the nuclear lumen.  These thresholds were 

determined such that, for gene pairs tested both by these new screens and previously by 

Costanzo et al., the fraction of negative interactions based on the S-scores was the same 

as the fraction based on previous measurements (9.0% for DNA repair and 7.5% for the 

nuclear lumen). Interactions were deposited in the BioGRID database (Stark et al., 2006) 

and can also be accessed on NDEx (http://goo.gl/1yyxJT, UUID: 1515bf44-c398-11e5-

8fbc-06603eb7f303, Pratt et al., 2015)  

We combined all S-scores with the previous ϵ-scores by Costanzo et al. and 

retrained FGO (Supplemental File S2.2). In this more complete dataset, we multiplied the 

S-scores that are <0 (or >0) by a factor of 0.02726 (or 0.04251) so that they would be on 

the same scale as the previous ϵ-scores. In particular, for the 1,345 gene pairs with both 

types of scores, the fraction of pairs with a rescaled S-score of <-0.08 (or >0.08) was the 

same as the fraction of negative (or positive) interactions based on the previous ϵ-scores. 
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For these gene pairs, each type of score was listed as a separate data point for training 

FGO. 

 

Preparation of the Gene Ontology. The GO structure (OBO) and gene-to-term 

annotation (GOA) files were downloaded on December 19, 2011 

(www.geneontology.org). Annotations with the evidence code “inferred by genetic 

interaction” (IGI) were removed to avoid potential circularity in predicting genetic 

interactions. The remaining annotations were propagated up the GO hierarchy in a 

transitive manner, i.e., if a gene is annotated to a term, then we also annotate the gene 

to all ancestral terms. We removed terms that were not annotated with any yeast genes 

or were redundant with respect to their children terms to construct a GO relevant to yeast, 

following a previously described procedure (Dutkowski et al., 2013, 

http://mhk7.github.io/alignOntology/). In total, 5,124 terms were drawn from all three 

branches of the Gene Ontology—Cellular Component (707), Biological Process (2,598), 

and Molecular Function (1,819). Of these, we retained 4,341 terms that were annotated 

to at least one gene in the genetic interaction data (Costanzo et al. 2010). The three 

branches were joined under an artificial root term to create a single unified ontology. 

It is possible that some annotations were derived from genetic interaction 

information but were not labeled with the IGI code. Such mislabeling is a curation 

oversight, and identifying the problematic annotations would likely require a large-scale 

curation effort similar to that invested into constructing GO. However, while such 

mislabeled annotations might enable FGO to make circular predictions, they would also 

enable circularity in FLATGO, in which the pairwise gene similarities would also reflect the 

file:///C:/Users/mikey/Dropbox/Ontotype/www.geneontology.org
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hidden genetic interaction information. The substantially worse performance of FLATGO 

versus FGO (Figure 2.3C,F) suggests that the degree of circularity is minimal. 

 

Construction of NeXO: a data-driven ontology assembled from flat gene networks. 

Our aim was to systematically assemble NeXO from many diverse genome-sized 

datasets while, at the same time, guiding this assembly based on prior knowledge of a 

hierarchy of cell systems defined in GO. As input datasets, we used the YeastNet v3 

networks (Kim et al., 2014), spanning 68 experimental studies across 8 data types 

excluding genetic interactions. We integrated these networks together by using them as 

features in a supervised learning of GO semantic similarity (Resnik 1995) (random forests 

regression). Predictions were made “out of bag”, i.e., the similarity of a gene pair was 

predicted based on information learned from other gene pairs. In effect, the random forest 

learns patterns in the networks which recapitulate information in GO. Hence, only 

relations in GO that can be systematically explained from data are included, any relations 

not justified by the data are excluded, and new relations not in GO are added when the 

network data support them. Next, we applied the method of Clique Extracted Ontology 

(CliXO) (Kramer et al., 2014, http://mhk7.github.io/clixo_0.3/), with parameters α=0.04 

and β=0.5, on this network. CliXO recursively identifies densely-related groups of genes 

and hierarchically nests them to form NeXO. We identified the significantly aligned terms 

between NeXO and GO using a previously described ontology alignment procedure 

(Dutkowski et al., 2013, http://mhk7.github.io/alignOntology/). 
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Randomization of ontologies. We constructed randomized ontologies by shuffling 

the names of genes, while preserving gene-to-term annotations and parent-child term 

relations. In particular, let {TG} refer to the set of terms annotated with gene G. If the 

names of genes A and B are swapped, then gene B becomes annotated to {TA} and gene 

A becomes annotated to {TB}. This randomization procedure preserves global degree 

properties of the ontology, i.e., the number of genes, gene pairs, or any k-tuple of genes 

that span a single term, a pair of terms, or any k-tuple of terms. A total of 105, 103, and 3 

randomized ontologies were used in Figure 2.1A, Figure 2.1C,D, and Figure 2.3C, 

respectively. For these figures, the original mapping of genotypes to phenotypes was 

used. 

 

Random forests regression. Random forests (Breiman, 2001) from the Python 

scikit-learn package (Pedregosa et al., 2011) (development version 0.15) were used to 

regress genetic interaction scores ϵab, as described in the Results. Due to the very large 

size of the ontotype feature matrix, e.g., 3,331,172 genotypes (rows) by 4,341 terms 

(columns) for GO, training a random forest on the ontotype required an immense amount 

of computation. To address this challenge, we optimized the scikit-learn source code for 

both memory consumption and runtime performance, as follows. First, the feature matrix 

was represented with 8-bit integers instead of the default, 32-bit floating points, such that 

it consumed ~14GB instead of 58GB of memory. Second, the matrix was stored in 

Fortran-style order, i.e., columns instead of rows were stored contiguously in memory. 

Since individual columns are accessed one at a time during training, this ordering 

improved memory cache hits and resulted in approximately a 1.5-fold decrease in 
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runtime. Third, redundant arithmetic that was being recomputed to find optimal decision 

splits was eliminated, resulting in a nearly 5-fold decrease in runtime. Together, these 

optimizations allowed a decision tree in the random forest to be trained in approximately 

2 instead of 12 CPU hours. The modified code is available on GitHub 

(https://github.com/michaelkyu/scikit-learn-fasterRF). Following similar thresholds for the 

measured interaction scores, we categorized gene pairs as being predicted to have a 

‘negative’ interaction (predicted ϵab< -0.08), a ‘positive’ interaction (predicted ϵab> 0.08), 

or no interaction. 

Each random forest consisted of 300 trees, where every tree was learned over a 

bootstrap sample of gene pairs. At every decision split in a tree, one-third of all unused 

features were considered for the optimal split, defined by the minimum squared error. 

Trees were grown to maximal depth, following the default behavior of popular random 

forests libraries (Liaw and Wiener 2002; Pedregosa et al. 2011) and the original random 

forests study (Breiman 2001). We tested whether pruning these trees to a shorter depth 

would improve performance. While trees at approximately 29% (GO) or 37% (NeXO) of 

the maximal depth did improve performance slightly (<0.02 gain in correlation, 

Supplemental Figure S2.5), we chose to keep the trees at maximal depth because it is 

unclear how significant this gain is and whether it would be reproducible in different 

random partitions of the data for cross validation or in different genotype-phenotype 

datasets.  

We used FGO to predict genetic interactions across all pairwise deletions of 5,003 

genes that are nonessential (Kelly, Lamb, and Kelly 2001) and annotated to at least one 

non-root term in any of the GO branches (Supplemental File S2.1). Performance of 

https://github.com/michaelkyu/scikit-learn-fasterRF
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these predictions was assessed against the measurements selected from Costanzo et al.  

using the technique of four-fold cross-validation, resulting in 17,807 negative and 3,246 

positive predicted interactions. For the remaining pairs, predictions from the four forests 

across the cross-validation folds were averaged, resulting in an additional 17,888 

negative and 2,666 positive predicted interactions. This averaging was also used to 

predict scores for the retested mutants using the FGO with complete training in Figure 

2.5B and for the triple knockouts involving genes in the HIRA complex. 

 

Comparison of methods for predicting genetic interactions. We updated the MNMC 

method because the original implementation (Pandey et al., 2010) was trained on a set 

of literature-curated synthetic lethal interactions that was much smaller in size than the 

set of genetic interactions considered in our study, and because the set of features used 

by the method to score each gene pair had been updated since the 2010 publication. To 

train MNMC, we calculated five base features that, according to the original study, are 

among the most informative for predicting synthetic lethality of a gene pair. Three of these 

features corresponded to the semantic similarities of the gene pair in each branch of GO. 

Following the procedure in the original study, Tao semantic similarities (Tao et al., 2007) 

were calculated using an unprocessed GO structure and annotations (downloaded on 

Aug 5, 2012) instead of the processed GO for constructing ontotypes. A fourth feature 

was the binary co-membership of a gene pair in a protein-protein interaction (PPI) 

community. Twenty-six communities were identified using the network of curated protein-

protein interactions in the BioGRID database (Stark et al., 2006) v3.1.91 and running the 

‘Graph.community_multilevel(return_levels=False)’ method from the Python igraph 
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library v0.6 (Nepusz, 2006). A fifth feature was the number of KEGG pathways (Kanehisa 

et al., 2014) shared by each gene pair. Annotations of genes to S. cerevisiae pathways 

in KEGG were retrieved on March 16, 2015 using the KEGG REST API 

(kegg.jp/kegg/rest). Lastly, these five base features were combined in pairs to create (5 

choose 2) = 10 additional ‘overlay’ features as previously described in the original MNMC 

method. We trained a random forest using all 15 base and overlay features to classify the 

synthetic lethals evaluated in the original MNMC study. This updated MNMC 

outperformed the original MNMC (Supplemental Figure S2.6); this performance 

difference may have been due to calculating more recent versions of the base features. 

For Figure 2.3C,F, we trained a separate MNMC on the genetic interactions 

measurements by Costanzo et al. 

 We adapted a previous GBA method for predicting genetic interactions (I. Lee et 

al. 2010) and applied it on the data similarity network used to construct NeXO. Whereas 

the original GBA method considered binary genetic interactions and the network 

neighbors of only one gene in a gene pair, we consider continuous-valued genetic 

interactions and the neighbors of both genes. Let S(a,b) be the edge weight between 

genes a and b in the data similarity network. The GBA score between a and b is defined 

as 

𝐺𝐵𝐴(𝑎, 𝑏) =  √𝐺𝐵𝐴(𝑎)𝐺𝐵𝐴(𝑏) 

𝐺𝐵𝐴(𝑥) = ∑ 𝑆(𝑥, 𝑦)

𝑦∈𝑁(𝑥)

∗∈𝑥𝑦 

where N(x) is the set of neighbors of gene x and ϵxy is the measured genetic interaction. 

Conceptually, GBA(x) is the contribution of x’s neighborhood, and GBA(a,b) is the 



 

76 
 

geometric mean of the contributions of both a’s and b’s neighborhoods. We found that 

taking the geometric mean more accurately predicts genetic interactions than the 

arithmetic mean does. Using the data similarity network (Pearson’s r = 0.13; Figure 2.3C) 

resulted in approximately similar performance as using the YeastNet v3 integrated 

network (r = 0.14). 

The same random forest framework as the functionalized ontologies and MNMC 

was applied to train FLATNeXO, using the 68 input networks to NeXO as features, and 

FLATGO, using the Resnik semantic similarity (Resnik 1995) between gene pairs in GO 

as the sole feature. In Figure 2.3C,E, FGO, FRandom GO, FLATGO, and MNMC were trained 

over the same cross-validation partitioning of 3,331,172 gene pairs. Similarly, FNeXO, 

FRandom NeXO, FLATNeXO, and GBA were trained over the same cross-validation of 

3,463,034 pairs.  

To generate the strict cross-validation setup in Supplemental Figure S2.1, the set 

of 3,686 genes in the processed GO were partitioned into 8 approximately equal-sized 

subsets G1,G2…,G8. For every pair of subsets Gi and Gj, the set of all gene pairs where 

neither gene is in Gi ∪ Gj forms a training set, and the set of all gene pairs where both 

genes are in Gi ∪ Gj forms the corresponding test set. This partitioning scheme lets every 

gene pair be predicted in at least one test set. Gene pairs where both genes are in the 

same subset Gi are represented in seven test sets, and we take the average prediction 

across these sets. 

FBA predictions were taken from Szappanos et al., 2011. Since the underlying 

metabolic model (Mo, Palsson, and Herrgård 2009) has been iteratively refined by manual 
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curation to be consistent with genetic and physical data, we were unable to evaluate these 

predictions in a cross-validation scenario. 

 

Characterization of genes in a gene ontology. To score how well a gene has been 

characterized in a gene ontology, we introduce the concept of a gene’s Annotation 

Information Content (AnnIC). Formally, the AnnIC of a gene g is defined as 

𝐴𝑛𝑛𝐼𝐶(𝑔) = ∑ −

𝑡∈𝑇𝑔

log2

|𝑡|

𝑁
 

where Tg is the set of terms that contain g but are not ancestors of any other term that 

also contains g, |t| is the size of term t, and N is the number of genes in the ontology. 

Conceptually, AnnIC(g) is high if g is well characterized by being annotated to many small 

terms, and it is low if g is poorly characterized by being annotated to only a few large 

terms. 

 

Term enrichments. A term is a least common ancestor (LCA) of a pair of genes if 

both genes are assigned to it, and if it is not the ancestor of any other term shared by 

those genes. Note that a pair of genes may have multiple LCAs, since terms may have 

multiple parents. Let G define a set of gene pairs beneath a term or term pair, as follows: 

𝐺(𝑇) = {{𝑔1, 𝑔2} | Term 𝑇 is an LCA of 𝑔1 and 𝑔2} 

𝐺(𝑇1, 𝑇2) = {{𝑔1, 𝑔2} | ∃ 𝑃, a common parent of 𝑇1 and 𝑇2  that is also an LCA of 𝑔1 and 𝑔2}. 

A term T was identified as a within-term enrichment if the fraction of gene pairs in 

G(T) that are interacting is at least twice the background rate of interactions, and the 

number of gene pairs in G(T) that are interacting passes a hypergeometric test with 
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p<0.05 using a Bonferroni correction for family-wise error rate. A pair of terms T1 and T2 

was identified as a between-term enrichment according to a similar test on G(T1,T2). We 

did not test for within-term enrichment when G(T)=Ø, or for between-term enrichment 

when G(T1,T2)=Ø, including the situation where T1 and T2 do not have a common parent. 

These situations were not counted in the total number of tests computed for Bonferroni 

correction. Note that it is possible for a parent term to have within-term enrichment even 

if none of its children have between-term enrichments, and vice versa. Enrichments were 

identified separately for negative and positive interactions. In Figure 2.1C, we counted 

the number of unique terms and unique term pairs that formed within-term and between-

term enrichments for both types of interactions. Together, these enrichments involved 

1,050 unique terms (~24% of the 4,341 GO terms that contained at least one gene among 

the measured genetic interactions). 

In addition to between-term enrichments that share a common parent, we also 

tested enrichment among pairs of terms that were distantly related in GO, i.e., the genes 

contained by one of the term’s parents did not overlap with those of the other term. We 

only considered pairs of terms that contained at least 12 gene pairs and for which each 

term contained at least 3 genes. Enrichment was based on the number and ratio of 

interactions according to a similar criteria for G(T) and G(T1,T2). Most of the resulting 

enrichments were partially redundant such that terms in different enrichments shared 

some genes. To remove this redundancy, we first sorted the enrichments in descending 

order according to the fraction of gene pairs that had an interaction, breaking ties by 

sorting according to the number of gene pairs. Using this sorted ordering, we greedily 

selected enrichments so that the genes contained by the terms in an enrichment were not 
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already covered by a previously selected enrichment.  This selection procedure resulted 

in a total of 71 enrichments (53 negative and 18 positive) (Table 2.1, Supplemental 

Table S2.1). 

 

Visualization of the functionalized ontology. FGO was visualized using Cytoscape 

version 3.2 (Saito et al., 2012). Only a spanning tree of the GO structure is shown in order 

to remove multi-parent relationships that complicate visualization. To form the spanning 

tree, the edges from each term to all but one of its parents were removed. The tree was 

laid out using the yFiles Circular layout tool, and edges representing between-term 

enrichments with a common parent were bundled together using the automatic edge 

bundling tool. The visualizations of the structure and logic of FGO shown in Figure 2.4A 

(http://goo.gl/ViTztH, UUID: 2f0cd18a-c3a4-11e5-8fbc-06603eb7f303), Figure 2.4C 

(http://goo.gl/iWmvNk, UUID: 420e4e54-c3a2-11e5-8fbc-06603eb7f303), Figure 2.5A 

(http://goo.gl/mPkMVs, UUID: 555cd256-c3a3-11e5-8fbc-06603eb7f303), and 

Supplemental Figure S2.4 (http://goo.gl/oQWh0A, UUID: 575ee3e8-c3a3-11e5-8fbc-

06603eb7f303) can be accessed online on the Network Data Exchange (NDEx, Pratt et 

al., 2015) and as a Cytoscape file in Supplemental File S2.2.  

  

http://goo.gl/ViTztH
http://goo.gl/iWmvNk
http://goo.gl/mPkMVs
http://goo.gl/oQWh0A
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2.8 Supplemental Figures 

 
 
Figure S2.1. Prediction of pairwise genetic interactions under a stringent cross-
validation setup, related to Figure 2.3. Gene pairs were partitioned such that genes 
represented in the training set are absent in the corresponding test set (Supplemental 
Experimental Procedures). Correlation was calculated across gene pairs that meet an 
interaction significance criterion of p<0.05 in Costanzo et al.  
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Figure S2.2. Fuller characterization of genes in an ontology increases prediction 

accuracy, related to Figure 2.3. The extent of characterization of a gene in a gene 

ontology was measured by its Annotation Information Content (AnnIC, Supplemental 

Experimental Procedures). (A) Distribution of AnnIC in GO and NeXO across the set of 

genes annotated to both. (B) Distribution of differences between AnnICs computed in 

NeXO versus GO. (C,E) Prediction performance across gene pairs where the GO AnnIC 

of at least one of the genes is at most a maximum level (C) or where the GO AnnICs of 

both genes are at least a minimum level (E). (D,F) The number of gene pairs evaluated 

in (C) and (E). (G) Scatterplot of GO terms, comparing the mean AnnIC of genes within 

the term (x-axis) to the ability to predict within-term genetic interactions (y-axis). 

Prediction performance is assessed by the correlation between measured and predicted 

genetic interaction scores across gene pairs that met the interaction significance criterion 

of p<0.05 in Costanzo et al. Black line indicates the relationship y=0.0086x+0.000091, fit 

by a linear regression (r=0.39) where each term is weighted by the number of evaluated 

gene pairs in the term (area of circles in scatterplot). Only terms with at least 25 and at 

most 105 evaluated gene pairs are shown. The terms “DNA repair” and “nuclear lumen”, 

explored further in the paper, are indicated. 



 

82 
 

 



 

83 
 

 

Figure S2.3: Segregation of positive and negative interactions across FGO, related 
to Figure 2.4.   For every term enriched for within-term genetic interactions, we calculate 
the fraction of positive versus negative interactions that continue to fall within one of its 
children. The distribution of this fraction is shown for all such terms, separately for positive 
(blue) and negative (red) interactions. Positive interactions falling within a term tend to 
remain within-term at lower hierarchical levels, whereas negative interactions are more 
likely to split their genes between two children. 
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Figure S2.4: Genetic logic of the nuclear lumen, related to Figure 2.5. The nuclear 
lumen contains a rich hierarchy of cellular spaces, sub-components, and protein 
complexes interwoven by genetic interactions. Coloring and visual style of panels follow 
the convention of previous figures. 
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Figure S2.5: Prediction performance versus the depth of decision trees, related to 
Experimental Procedures. Decision trees in FGO and FNeXO were pruned to progressively 
shorter depths and evaluated across one of the cross-validation folds used in Figure 
2.3C. 
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Figure S2.6: Prediction of synthetic lethal interactions curated in the 
Saccharomyces Genome Database, related to Experimental Procedures. 9,963 
synthetic lethal and 124,312 non-synthetic lethal relations, as used in the original MNMC 
study (Pandey et al., 2010), were taken from the May 2008 version of the Saccharomyces 
Genome Database (SGD). Predictions were made in 10-fold cross validation using FGO, 
the original MNMC, and a MNMC-like method we constructed based on updates to the 
original features with alternative classification techniques. (A) Receiver-operating and (B) 
Precision-recall curves. Performance of all approaches was far better on this 2008 SGD 
dataset than on the 2010 Costanzo et al. dataset explored in our main study (Figure 
2.3C,F). 
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Chapter 3: USING DEEP LEARNING TO MODEL THE HIERARCHICAL 

STRUCTURE AND FUNCTION OF A CELL 

 

3.1 Abstract 

Although artificial neural networks capture a variety of human functions, their 

internal structures are hard to interpret. In the life sciences, extensive knowledge of cell 

biology provides an opportunity to design ‘visible’ neural networks (VNNs) which couple 

the model’s inner workings to those of real systems. Here we develop DeepCell, a VNN 

embedded in the hierarchical structure of 2526 subsystems comprising a eukaryotic cell 

(http://deep-cell.ucsd.edu/). Trained on 12 million genotypes, DeepCell simulates cellular 

growth nearly as accurately as laboratory observations. During simulation, genotypes 

induce patterns of subsystem activities, enabling in-silico investigations of the molecular 

mechanisms underlying each genotype-phenotype association. These mechanisms can 

be validated and many are unexpected; some are governed by Boolean logic. 

Cumulatively, 80% of the importance for growth prediction is captured by 484 subsystems 

(21%), reflecting the emergence of a complex phenotype. DeepCell provides a foundation 

for decoding the genetics of disease, drug resistance, and synthetic life. 

 

 

 

 

  

http://deep-cell.ucsd.edu/
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3.2 Introduction 

Deep learning techniques have revolutionized the field of artificial intelligence by 

enabling machines to perform human activities like seeing, listening and speaking 

(Farabet et al. 2013; Mikolov et al. 2011; Hinton et al. 2012; Sainath et al. 2013; Collobert 

et al. 2011; LeCun, Bengio, and Hinton 2015). Such systems are constructed from many-

layered, ‘deep’, artificial neural networks (ANNs), inspired by actual neural networks in 

the brain and how they process patterns. The function of the ANN is created during a 

training phase, in which the model learns to capture as accurately as possible the correct 

answer, or output, that should be returned for each example input pattern. In this way, 

machine vision learns to recognize objects like dogs, people, and faces, and machine 

players learn to distinguish good from bad moves in games like chess and Go (Silver et 

al. 2016). 

In modern ANN architectures, the connections between neurons as well as their 

strengths are subject to extensive mathematical optimization, leading to densely 

entangled network structures that are neither tied to an actual physical system nor based 

on human reasoning. Consequently, it is typically difficult to grasp how any particular set 

of neurons relates to system function. For instance, AlphaGo beats top human players 

(Silver et al. 2016), but examination of its underlying network yields little insight into the 

rules behind its moves or how these are encoded by neurons. These are so-called ‘black 

boxes’ (Brosin 1958), in which the input/output function accurately models an actual 

system but the internal structure does not (Figure 3.1a). Such models, while often useful, 

are insufficient in cases where simulation is needed not only of system function but also 

of system structure. In particular, many applications in biology and medicine seek to 
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model both functional outcome (e.g., cellular phenotypes or states of patient health and 

disease) and the mechanisms leading to that outcome so that these can be understood 

and manipulated through drugs, genes or environment. 

Here we report DeepCell, an interpretable or ‘visible’ neural network (VNN) 

simulating a basic eukaryotic cell. The structure of this model is formulated from extensive 

prior knowledge of the cell’s hierarchy of subsystems documented for the budding yeast 

Saccharomyces cerevisiae, drawn from either of two sources: the Gene Ontology (GO), 

a literature-curated reference database from which we extracted 2526 intracellular 

components, processes, and functions (The Gene Ontology Consortium 2016); or CliXO, 

an alternative ontology of similar size inferred from large-scale molecular datasets rather 

than literature curation (Dutkowski et al. 2013; Kramer et al. 2014). While CliXO and GO 

overlap in approximately 37% of subsystems, some in CliXO are apparent in large-scale 

datasets but not yet characterized in literature, whereas some in GO are documented in 

the literature but difficult to identify in big data. Subsystems in these ontologies are 

interrelated through hierarchical parent-child relationships of membership or containment. 

Such hierarchies form a natural bridge from variations in genotype, at the scale of 

nucleotides and genes, to variations in phenotype, at the scale of cells and organisms 

(Carvunis and Ideker 2014; Yu et al. 2016). 

The function of DeepCell is learned during a training phase, in which perturbations 

to genes propagate through the hierarchy to impact parent subsystems that contain them, 

giving rise to functional changes in protein complexes, biological processes, organelles 

and, ultimately, a predicted response at the level of cell growth phenotype (Figure 3.1b). 

Previously, we saw that hierarchical groups of genes in an ontology could be used to 
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formulate very effective input features for such phenotypic predictions (Carvunis and 

Ideker 2014; Yu et al. 2016). However, the features were provided to standard black-box 

machine learning models for prediction which, while accurate, could not be interpreted 

biologically. Here, we use the biological hierarchy to directly embed the structure of a 

deep neural network, enabling more accurate prediction and transparent biological 

interpretation. 
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3.3 Results 

DeepCell Design. In DeepCell, the functional state of each subsystem is 

represented by a bank of neurons (Figure 3.1c). Connectivity of these neurons is set to 

mirror the biological hierarchy, so that they take input only from neurons of child 

subsystems and send output only to neurons of parent (super)systems, with weights 

determined during training. The use of multiple neurons (ranging from 20 to 1,075 per 

system, see Methods) acknowledges that cellular components can be multifunctional, 

with distinct states able to adopt a range of values along multiple dimensions (Copley 

2012). For example, interactions between subcomponents of the proteasome are thought 

to give rise to many pseudo-independent functional states (Hochstrasser 2016), while the 

mediator complex plays distinct functional roles related to transcriptional initiation, 

pausing, and elongation (Allen and Taatjes 2015). The input layer of the hierarchy 

comprises nodes representing genes, the most atomic subsystems in the model. The 

output layer, or root, is occupied by a single neuron representing the phenotype of the 

whole cell. By this design, the neural network model embedded in GO includes 43,721 

neurons while the corresponding network for CliXO includes 22,167 neurons. The depth 

of both networks is 12 layers, on par with deep neural networks in other fields (Silver et 

al. 2016). 

 

Training and Performance in Genotype-Phenotype Translation. Given this 

architecture, we next taught DeepCell to predict phenotypes related to cellular fitness, a 

model genotype-to-phenotype translation task. Extensive training was made possible by 

a recently published compendium of yeast growth phenotypes measured for nearly every 



 

103 
 

single and double gene deletion genotype, comprising over 12 million genotype-

phenotype training examples (Costanzo et al. 2016). Each genotype was used to set the 

state of gene inputs to the model, indicating which had been genetically disrupted; each 

phenotype was encoded as the state of the root node. Two related phenotypes were 

considered: (i) capacity for growth measured by yeast colony size relative to wild-type 

cells for gene deletions; (ii) For double gene deletions, genetic interaction score 

measured as the difference in growth from that expected from independent 

measurements of the single gene deletions. Predicting genetic interaction represents a 

harder task than predicting absolute growth, as it requires that the model learn non-linear 

effects beyond the superposition of more elemental genotypes. Based on the training 

examples, the weights of input connections to each neuron were optimized by stochastic 

gradient descent computed by backpropagation (Methods). The DeepCell VNN can be 

executed and inspected through an interactive website we have created at http://deep-

cell.ucsd.edu/ (Figure 3.1d, Methods). 

We found that DeepCell was able to make accurate phenotypic predictions across 

the entire observed range (Figures 3.2a,b). The correlation between predicted and 

measured growth scores was very high for both structural hierarchies (Pearson’s r = 0.94 

by either GO or CliXO in four-fold cross validation; Figure 3.2a). The correlation between 

predicted and measured genetic interactions was also favorable (r = 0.51) given the 

greater experimental variability associated with this data type (r = 0.67 for replicate 

genetic interaction scores, versus r = 0.89 for replicate growth scores (Baryshnikova et 

al. 2010)). DeepCell outperformed previous predictors of genetic interactions, including 

those based on metabolic models (Szappanos et al. 2011) and protein-protein interaction 

http://deep-cell.ucsd.edu/
http://deep-cell.ucsd.edu/


 

104 
 

networks (I. Lee et al. 2010; Pandey et al. 2010) (average r = 0.15), as well as a previous 

hierarchical method not related to deep learning (Figure 3.2c, Supplemental Figure 

S3.1; r = 0.35) (Yu et al. 2016). 

We also compared performance to ‘black box’ neural network configurations, to 

isolate the improved performance of deep learning methodology from contributions due 

to prior knowledge of biological structure. First, we constructed a series of ANNs with 

matching structure to DeepCell but permuting the assignment of genes to subsystems. 

The predictive performance of these matched structures decreased substantially (Figure 

3.2c), becoming similar to the original only after the number of neurons was increased by 

an order of magnitude (Figure 3.2d). Thus, the biological hierarchy provides significant 

information not found in randomized versions. Next, we constructed a fully connected 

artificial neural network with the same number of layers and neurons as DeepCell but 

unlimited connectivity of neurons between adjacent layers. Despite these extra 

parameters, the performance of this fully connected model was not significantly better 

(Figure 3.2c).  

Unlike standard ANNs, however, DeepCell’s simulations were tied to an extensive 

hierarchy of internal biological subsystems with states that could be queried. This ‘visible’ 

aspect raised the possibility that these simulations might be useful for in-silico studies of 

biological mechanism. Thus, we next turned to DeepCell’s ability to enable or accelerate 

four types of studies of central importance in the biological sciences: 

1) Explaining a genotype-phenotype relationship 

2) Prioritizing all important mechanisms in determination of phenotype overall 

3) Study and classification of the genetic logic implemented by a process  
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4) Discovery of previously unknown biological processes and states 

In the remainder of this work, we explore applications of DeepCell in each of these areas.  

 

Explaining a Genotype-Phenotype Relationship. A fundamental challenge in 

genetics is to understand the molecular mechanisms underlying an observed relationship 

between genotype and phenotype. We reasoned that DeepCell should be able to 

generate such mechanistic explanations automatically, by attributing each genotype-

phenotype relationship to a corresponding set of changes in cellular subsystems. For this 

purpose, a ‘genotype-phenotype association’ was defined as a specific change in 

genotype, relative to wild type, that leads to a significant alteration in growth phenotype. 

Reducing the state of each subsystem (complete set of neuron outputs) to the top two 

principal components, we then identified subsystems for which this reduced state was 

significantly altered during DeepCell simulation. Such subsystems were proposed as 

candidate explanations in translation of genotype to phenotype, whereas those without 

state changes – typically the vast majority – were excluded from further consideration. In 

this way, DeepCell could be used to test alternative hypotheses for the subsystems 

driving a genotype-phenotype relationship, out of potentially many that might be proposed 

based on current knowledge. 

As a case study of this capability, we examined the severe growth defect caused 

by genotype pmt1∆ire1∆, disrupting the genes PMT1 and IRE1. We observed a total of 

243 subsystems positioned “above” PMT1 or IRE1 in the DeepCell hierarchy (ancestors 

of one or both genes), providing candidate explanations for the genotype-phenotype 

relationship. For instance, PMT1 is an enzyme that facilitates O-mannosylation, a reaction 
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that terminates aberrantly folded proteins in the Endoplasmic Reticulum Unfolded Protein 

Response (ER-UPR) (Xu et al. 2013) and, separately, promotes the creation of mature 

glycoproteins in the cell wall (Free 2013). IRE1 is an ER transmembrane sensor that 

detects ER accumulation of unfolded proteins (Walter and Ron 2011) and is also required 

for cell wall organization by maintaining cell wall integrity (Scrimale et al. 2009). 

Therefore, we sought to use the DeepCell simulation to determine which of the candidate 

subsystems were most responsible for the observed growth defect. 

Examining the states of the 243 candidate subsystems in DeepCell, we found that 

the state of ER-UPR was substantially decreased in the pmt1∆ire1∆ genotype compared 

to wild type, whereas the states of cell wall organization and other subsystems were less 

affected (Figure 3.3a). To validate this predicted decrease in ER-UPR activity, we 

examined a dataset monitoring this process by Green Fluorescent Protein (GFP) driven 

by a promoter responsive to Hac1, a key transcriptional activator of ER-UPR, over 

numerous pairwise gene disruptions (Jonikas et al. 2009). Hac1 activity was significantly 

lowered in the pmt1∆ire1∆ genotype compared to wild type, consistent with model 

simulations (Figure 3.3b). Model inspection suggested that the difference between ER-

UPR and other subsystems had been learned by DeepCell during training, in which 

genotypes disrupting ER-UPR had more than twice the genetic interaction score on 

average (−0.34) than genotypes disrupting, e.g., cell wall organization (−0.16). Beyond 

this single genotype, we noted that Hac1 activity had also been measured for 16 other 

genotypes disrupting genes in ER-UPR. Over all of these, we found that the simulated 

state of the subsystem was well correlated with the experimental Hac1 activity (Figure 

3.3b). To address the concern that Hac1 activity might associate non-specifically with 
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state changes in many diverse subsystems, not just those related to ER, we examined 

the correlation between Hac1 activity and the simulated states of every subsystem in 

DeepCell addressed by this dataset (subsystems containing genes disrupted in at least 

ten genotypes with Hac1-GFP measurements). High correlation was observed only for 

ER-UPR and its super-systems (Figure 3.3c) demonstrating specific validation. These 

results show how DeepCell can be used to generate and test specific hypotheses about 

the cellular mechanisms leading from genotype to phenotype. 

In explaining the above genotype-phenotype relationship, a key requirement was 

that the state of a subsystem simulated in silico recapitulate its true biological state 

observed in vivo. To explore this capability further, we also examined the subsystem of 

DNA repair (Figure 3.3d) which, like ER-UPR, had been previously interrogated over 

many double gene deletion genotypes (Srivas et al. 2013). In particular, DNA repair status 

had been characterized by cellular resistance to ultraviolet radiation (UV), which causes 

DNA damage by pyrimidine dimers and double stranded breaks (Cadet, Sage, and Douki 

2005). Once again we saw good agreement between experiments and simulations: the 

overall pattern of UV resistance among genotypes impacting DNA repair genes 

significantly tracked model predictions (Figure 3.3e), in a manner that was highly specific 

to DNA repair and its supersystems (Figure 3.3f). These results provided a second 

demonstration that the simulated states of a subsystem can reflect true biological states 

in a manner that can be used to generate mechanistic hypotheses.  

 

Prioritizing all important systems in determination of phenotype overall. Beyond 

individual explanations, a critical question was whether a complex phenotype such as 
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growth depends on equal contributions from many subsystems or is dominated by a few. 

To address this question, we set out to systematically characterize the importance of 

every subsystem in determining growth phenotype. We reasoned that the overall 

importance of a biological system in genotype-phenotype translation is related to the 

degree to which its state is more predictive of growth phenotype than the states of its 

children. Based on this reasoning, we developed a score called Relative Local 

Improvement in Predictive Power (RLIPP score, Methods) which we calculated for each 

subsystem over all genotypes that disrupt it. Positive RLIPP scores correspond to an 

increase in predictive power for that subsystem relative to its children, while negative 

scores correspond to a decrease in power (e.g. RLIPP = 1 corresponds to a 100% 

increase).  

We observed that RLIPP approximately followed a Pareto (power-law) distribution, 

in which a few subsystems were highly important for the predictive power of the model, 

with a long tail of weakly important systems (Figure 3.4a). In particular, 80% of the 

cumulative importance was captured by 21% of subsystems (the Pareto 80/20 rule 

(Pareto and Page 1971)), while >88% of subsystems retained at least some improvement 

in phenotypic prediction over their children (RLIPP > 0). The subsystem of greatest 

individual importance was ‘Negative regulation of cellular macromolecule biosynthesis’, 

which organizes cellular circuits that inhibit biosynthesis and, as evidenced by DeepCell 

simulations, can lead to strong increases in growth when disrupted. Other subsystems 

important for growth related to the proper function of organelles, biomolecular transport, 

stress response, and protein modification and assembly of complexes, all of which are 

consistent with a general understanding of cell biology (Figure 3.4b-j). We also examined 
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the importance of subsystems in the DeepCell model trained on the alternative hierarchy 

inferred directly from data (CliXO). While several important subsystems were the same 

as GO’s (e.g., transport, stress response, Supplemental Figure S3.2c-j), others were 

newly discovered subsystems worthy of future examination (see Supplemental Figure 

S3.2b and below). 

 

Study and classification of the functional genetic logic implemented by a process. 

Another type of model interpretation is to study the mathematical functions by which 

subsystems functionally integrate information from their inputs. We investigated whether 

these functions can be reduced to simple forms, such as Boolean logic gates, which are 

easily interpreted (Methods). Indeed, this analysis found 1119 subsystems were at least 

partly governed by Boolean logic (44% of GO, Supplemental Table S3.2). For instance, 

the principal activity of Mitochondrial Respiratory Chain (Figure 3.5a), while relatively 

high in wild-type cells, was driven low by disruptions in any of its several enzymatic 

complexes involved in electron transport, such as complexes III or IV (Figure 3.5b). With 

regard to these components, the state of Mitochondrial Respiratory Chain resembles a 

logical AND gate (Figure 3.5c). We also observed many cases of OR, XOR, and (A not 

B), although the AND configuration arose most frequently (Supplemental Table S3.2). 

Logical AND gates capture epistasis between components, in which both are necessary 

for function, for example two subunits of a protein complex or sequential steps of a 

signaling cascade. OR gates capture functional complementarity or redundancy, in which 

one component sufficient for function can be buffered or substituted by another. The 
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remaining 66% of GO subsystems did not map clearly to Boolean logic functions, 

suggesting molecular machinery that is more complex than a simple on/off switch.  

Discovery of previously unknown biological processes and states. Finally, since 

DeepCell’s hierarchy could be structured from systematic datasets as an alternative to 

literature (CliXO versus GO), we investigated the extent to which model simulations relied 

on entirely new cellular subsystems not previously appreciated in biology. As one such 

example we focused on CliXO:10651, a previously undocumented process which ranked 

among the top ten systems important for growth prediction according to RLIPP score 

(Supplemental Table S3.1). We found that CliXO had inferred this system based on the 

elevated density of protein-protein interactions observed among its 154 genes (Figure 

3.5d, 9-fold enrichment, p<10−200). Many of these interactions were found to interconnect 

two subsystems which were much better understood: Actin filament-based process 

(GO:0030029) and Cellular monovalent inorganic cation homeostasis (GO:0030004) (5-

fold enrichment between subsystems, p=0.00029). Further functional analysis indicated 

that the state of CliXO:10651 is governed approximately by a Boolean AND of the states 

of its two subsystems (Figure 3.5d), i.e. both are required to maintain a wild-type status. 

These findings were supported by previous reports that the homeostasis of ions, such as 

iron, regulates the level of oxidative stress, which in turn disrupts actin cytoskeletal 

organization (Farrugia and Balzan 2012; Pujol-Carrion and de la Torre-Ruiz 2010). 

Hence, we assigned the provisional name “Maintenance of actin cytoskeletal organization 

by ion homeostasis”. 

A second undocumented system we considered was CliXO:10582, consisting of 

71 genes (Figure 3.6a). Although the majority of these genes had known functional roles 
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in DNA repair, nothing like this distinct grouping had been previously recognized. 

Examination of the surrounding model structure revealed that CliXO:10582 integrates 

components of three known DNA repair subsystems -- postreplication repair, mismatch 

repair, and non-recombinational repair -- along with a collection of previously unrelated 

genes. Such organization was inferred by CliXO based on the extreme density of protein-

protein interactions falling within each of the three subsystems (Figure 3.6a, 41 to 90-fold 

enrichment, p<10−200) and, unexpectedly, lower but still very significant densities of 

protein-protein interactions spanning each pair of subsystems (average 15-fold 

enrichment, p<10−200). Revisiting the experimental data on resistance to UV-induced DNA 

damage (Srivas et al. 2013) (Figures 3.3e,f), we saw that the simulated state of 

CliXO:10582 was strongly correlated with UV resistance over a large number of 

genotypes (Figure 3.6b). This association was stronger than for the state of any single 

child and, in fact, for any other CliXO or GO subsystem interrogated by the experimental 

data (Figure 3.6c). Mathematically, the state of CLiXO:10582 (along with the UV 

resistance phenotype) was well-approximated by a weighted linear summation of the 

activities of the three child processes, with postreplication repair having the greatest 

single contribution (Figure 3.6d). CliXO:10582 thus presents as a physically interacting 

collection of subcomponents which specifically coordinate the response to UV damage, 

leading us to assign the provisional name “UV damage coordination supercomplex 

(UVCS)”. For the eight genes in this subsystem newly assigned roles in specific DNA 

repair pathways (e.g. LGE1, BRE1, and TEL2, green nodes in Figure 3.6a), the evidence 

summarized by the model -- that these gene products physically interact in a cluster of 

known DNA repair factors, and that they also functionally manifest with the same UV 
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sensitivity phenotype when disrupted -- creates a compelling case for further biological 

studies. 

Beyond these vignettes, we found that a total of 236 subsystems in the CliXO 

hierarchy, previously undocumented in GO, were assigned high importance scores for 

genotype-phenotype translation (RLIPP scores, Supplemental Table S3.1). Of these, 

we noted 28 subsystems with states governed by Boolean logic (see above analysis), 

which may facilitate their further study. All of these systems correspond to potentially new 

cellular components or processes with a definitive role in determination of growth.  
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3.4 Discussion 

A direct route to interpretable neural networks is to encode not only function but 

form. Here, we have explored such visible learning in the context of cell biology, by 

incorporating an unprecedented collection of knowledge (Dutkowski et al. 2013; Kramer 

et al. 2014; Gene Ontology Consortium 2015) and data (Kim et al. 2014; Costanzo et al. 

2016, 2010) to simultaneously simulate the hierarchical structure and function of cells. 

DeepCell captured nearly all of the phenotypic variation observed in cellular growth, a 

classic complex phenotype, including much of the less-understood non-additive portion 

due to genetic interactions (Figures 3.2a-c). Armed with this explanatory power, the 

model was able to simulate the intermediate functional states of thousands of cellular 

subsystems. Knowledge of these states enabled a wide variety of in-silico studies of 

biological mechanism, including the dissection of cellular subsystems important in 

determining the growth phenotype, the identification of new subsystems, and the 

reduction of subsystem functions, where possible, to simple mathematical relations such 

as Boolean logic (Figures 3.3-3.5).  

Conceptually, the approach is to work towards a synthesis of statistical genetics 

and systems biology. State-of-the-art methods in statistical genetics (Yang et al. 2015, 

2014) are based on linear regression of phenotype against the independent effects of 

genetic polymorphisms, without modeling the underlying biological mechanisms that give 

rise to nonlinearity and genetic interaction. Separately, studies in systems biology capture 

biological mechanisms using a spectrum of mathematical models (e.g. differential 

equations (Chen, Niepel, and Sorger 2010), flux-balance analysis (Szappanos et al. 

2011), guilt-by-association (I. Lee et al. 2010)), but such models typically do not have the 
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breadth for large-scale genetic dissection of phenotype. DeepCell bridges these two 

avenues. Its neural network encodes a complex nonlinear regression, an extension of 

statistical genetics in which the additional complexity is supported and made feasible by 

a hierarchical model of biological mechanism, an extension of systems biology.  

In comparison to some other mechanistic models that have attempted large-scale 

genotype-phenotype prediction (Yu et al. 2016; Karr et al. 2012), the framework of 

hierarchical neural networks is very general and expressive, such that a very large class 

of biological structures and functions can be learned and represented. For example, our 

earlier approach (Yu et al. 2016) used hierarchical knowledge of subsystems to create 

new features based on the number of gene perturbations in each subsystem. These 

subsystem-level features were then used as input to a black-box machine learning model 

for prediction of phenotype. This approach, however, had limited expressivity for two 

reasons. First, these features are predetermined before modeling and thus cannot learn 

the true state of each subsystem. Second, as with other black boxes, it is challenging to 

interpret the internal logic combining these features to predict phenotype. We found that 

the high expressivity of DeepCell improves phenotype prediction (Figure 3.2) while 

revealing biological functions and states (Figures 3.3-3.5) whose breadth falls outside 

the realm of previous models. 

It is also instructive to view DeepCell in context of previous research in 

interpretable machine learning, in which the notion of interpretability has been defined in 

different ways (Lipton 2016). One direction has been to perform a post-hoc examination 

of a machine learning model that has already been trained, typically involving visualization 

of internal (hidden) neurons and creation of plausible explanations for their decisions. For 
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example, a neural network trained to identify images of dogs might, upon visualization of 

the internal wiring, be seen to have neurons that capture general properties of dogs, like 

“tail” or “furry” (Mahendran and Vedaldi 2015; Vondrick et al. 2013; Weinzaepfel, Jégou, 

and Pérez 2011).  

A fundamental limitation of post-hoc interpretation is that the training process is 

independent of the interpretation process, leaving no guarantees as to what level of 

human-understandable explanation can be achieved (Chakraborty et al. 2017). For this 

reason, a second direction has been to construct the machine learning model in a manner 

that enables direct human interpretation. In attention-based neural networks (Bahdanau, 

Cho, and Bengio 2014; Lei, Barzilay, and Jaakkola 2016), a separate module is designed 

to select key input features important for prediction, prior to the main black-box learning 

machinery. This prior feature selection step can provide a type of interpretation: For 

example, in building a model to predict the emotional attitude of a blog author (positive or 

negative, angry or calm, and so on), the “interpretation” might be a key feature within a 

page of text (LOL, I’m so upset) that justifies the reason for the prediction. 

DeepCell extends this direct approach. To enable human interpretation, the 

structure of the network model is designed to reflect the inner structure of the prediction 

task. In contrast to the previous attention-based approaches, however, the hierarchical 

structure allows us to identify feature clusters at multiple scales, pushing the interpretation 

from the input feature level to internal features representing biological subsystems.  

In two case studies, involving genotypes impacting ER-UPR and DNA repair 

subsystems, the subsystem states learned by DeepCell could be directly confirmed by 

molecular measurements. Notably, such learning took place without exposure to any 
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information about subsystem states during training. Rather, these states emerged while 

learning to translate genotypes (model inputs) to growth phenotypes (model outputs) 

under the structural constraints of the subsystem hierarchy; together, the input/output 

data and hierarchical structure were sufficient to guide the neurons of each subsystem to 

learn a biologically correct function. In future, one might supervise a VNN to learn 

(potentially multiple) subsystem states and/or complex phenotypes directly, in which case 

training data could be provided at any level: genotype, phenotype, or points in between. 

In supervised machine learning, it is often possible to identify many alternative 

model structures, all of which have very good predictive performance. In biology, 

however, a key question is which of the many predictive structures is the one actually 

used by the biological system, optimized by evolution and natural selection. With these 

principles in mind, the explorations here provide proof-of-concept for potential extensions 

to many disciplines as enough relevant structural and functional measurements become 

available. Such models are of immediate interest in genome-wide association studies of 

human disease (Visscher et al. 2012), in which different patient genotypes can influence 

disease outcomes by diverse and complex mechanisms currently hidden from black-box 

statistical approaches. Once trained on sufficient patient data, these models might have 

application in personalized therapy by analyzing a patient’s genotype in combination with 

potential points of intervention targeted by drugs. We also see compelling uses in design 

of synthetic organisms, in which candidate genotypes can be efficiently evaluated in silico 

prior to validation of these designs in vivo. Finally, beyond the structure/function 

architecture of the cell, biological systems at other scales may benefit from this type of 

constrained learning, including modeling of neural connections in the brain.  
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3.5 Methods 

Preparation of Ontologies. We guided the deep neural network structure using a 

biological ontology, consisting of terms representing cellular subsystems, child-parent 

relations representing containment of one term by another, and gene-to-term annotations. 

The first ontology considered was the Gene Ontology (GO), in which all three branches 

of GO (biological process, cellular component, and molecular function) were joined under 

a single root. We used the following criteria to filter (remove) terms from GO: 

1. Terms with the evidence code ‘‘inferred by genetic interaction’’ (IGI), to avoid 

potential circularity in predicting genetic interactions in the genotype-phenotype 

samples. 

2. Terms containing fewer than six yeast genes disrupted in the available genotypes 

(with “containment” defined as all genes annotated to that term or its descendants). 

3. Terms that are redundant with respect to their children terms in the ontology. 

When a term was removed, all children were connected directly to all parent terms to 

maintain the hierarchical structure. The remaining 2526 terms were used to define the 

hierarchy of DeepCell subsystems. 

To complement the GO structure, we also constructed a data-driven gene ontology 

using the method of Clique Extracted Ontologies (CliXO) as previously described (Kramer 

et al. 2014). Briefly, data on gene pairs were sourced from YeastNet v3 (Kim et al. 2014), 

which lists 68 experimental studies of 8 data types, excluding genetic interactions to avoid 

circularity similar to criterion 1 above. All features were integrated to create a single gene-

gene similarity network following a previously described procedure (Dutkowski et al. 

2013), in which each gene-gene pair is assigned a weighted similarity based on a 
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combination of the YeastNet data. This network was subsequently analyzed with the 

CliXO algorithm, which identifies nested cliques as the threshold gene-gene similarity 

becomes progressively less stringent. This process yields a hierarchy (directed acyclic 

graph) of parent-child relations among cliques at different similarity thresholds.   

 

DeepCell Architecture and Training Algorithm. DeepCell trains a deep neural 

network to predict phenotype from genotype, with architecture that exactly mirrors the 

hierarchical structure of an ontology of cellular subsystems. Each cellular subsystem is 

represented by a group of hidden variables (neurons) in the neural network, and each 

parent-child relation is represented by a set of edges that fully connect these groups of 

hidden variables. The depth of this architecture (12 layers) presents two challenges for 

training: 1) There is no guarantee that each subsystem will learn new patterns instead of 

copying those of its child subsystems; 2) Gradients tend to vanish lower in the hierarchy. 

To tackle these challenges, we borrow ideas from two previous systems, GoogLeNet 

(Szegedy et al., n.d.) and Deeply-Supervised Net (C.-Y. Lee et al. 2015), which improve 

the transparency and discriminative power of hidden variables and reduce the effect of 

vanishing gradients. 

We denote our input training dataset as 𝐷 = {(𝑋1, 𝑦1), (𝑋2, 𝑦2), … , (𝑋𝑁, 𝑦𝑁)}, where 

𝑁 is the number of samples. For each sample 𝑖, 𝑋𝑖 ∈ 𝑅𝑀 denotes the genotype, 

represented as a binary vector of states on 𝑀 genes (1 = disrupted; 0 = wild type), and 

𝑦𝑖 ∈ 𝑅 denotes the observed phenotype, which can be either relative growth rate or 

genetic interaction value. The multi-dimensional state of each subsystem 𝑡, denoted by 
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the output vector 𝑂𝑖
(𝑡)

, is defined by a nonlinear function of the states of all of its child 

subsystems and annotated genes, concatenated in the input vector 𝐼𝑖
(𝑡)

: 

 𝑂 𝑖
(𝑡)

= 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 ( 𝑇𝑎𝑛ℎ ( 𝐿𝑖𝑛𝑒𝑎𝑟 ( 𝐼𝑖
 (𝑡)

 ) ) ) (1) 

𝐿𝑖𝑛𝑒𝑎𝑟( 𝐼 𝑖
(𝑡)

 ) is a linear transformation of 𝐼𝑖
(𝑡)

 defined as 𝑊(𝑡)𝐼 𝑖
(𝑡)

+ 𝑏 (𝑡). Let 𝐿𝑂
 (𝑡)

 denote 

the length of 𝑂𝑖
(𝑡)

, representing the number of values in the state of 𝑡 and determined by: 

 𝐿𝑂
 (𝑡)

=  𝑚𝑎𝑥  ( 20, ⌈0.3 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑡⌉ )  (2) 

Intuitively, larger subsystems have larger state vectors to capture potentially more 

complex biological responses. Similarly, let 𝐿𝐼
 (𝑡)

denote the length of 𝐼𝑖
(𝑡)

. In Eqn. (1), 𝑊(𝑡) 

is a weight matrix with dimensions 𝐿𝑂
 (𝑡)

× 𝐿𝐼
 (𝑡)

 and 𝑏(𝑡) is a column vector with size 𝐿𝑂
 (𝑡)

. 

𝑊(𝑡)and 𝑏(𝑡) provide the parameters to be learned for subsystem 𝑡. 𝑇𝑎𝑛ℎ is the nonlinear 

transforming hyperbolic tangent function. 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 (Ioffe and Szegedy 2015) is a 

normalizing function that reduces the impact of internal covariate shift caused by different 

scales of weights in 𝑊(𝑡). Batch normalization can be viewed as a type of regularization 

of model weights and reduces the need for the traditional dropout step in deep learning. 

We perform the training process by minimizing the objective function: 

 
1

𝑁
∑ (𝐿𝑜𝑠𝑠(𝐿𝑖𝑛𝑒𝑎𝑟(𝑂𝑖

(𝑟)
), 𝑦𝑖) + 𝛼 ∑ 𝐿𝑜𝑠𝑠(𝐿𝑖𝑛𝑒𝑎𝑟(𝑂𝑖

(𝑡)
), 𝑦𝑖)𝑡≠𝑟 )𝑁

𝑖=1 + 𝜆||𝑊||2 (3) 

Here, 𝐿𝑜𝑠𝑠 is the squared error loss function, and 𝑟 is the root of the hierarchy. Note that 

we compare 𝑦𝑖 with not only the root’s output, 𝑂𝑖
(𝑟)

, but also the outputs of all other 

subsystems, 𝑂𝑖
(𝑡)

. 𝐿𝑖𝑛𝑒𝑎𝑟 in (3) denotes linear functions transforming multi-dimensional 

vector 𝑂𝑖
(𝑡)

 into a scalar. In this way, every subsystem is optimized to serve its parents as 

features and to predict the phenotype itself, as used previously by GoogLeNet (Szegedy 
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et al., n.d.); the parameter 𝛼 (=0.3) balances these two contributions. 𝜆 is a L2-norm 

regularization factor determined by four-fold cross validation. To train the DeepCell 

model, we initialize all weights uniformly at random between −0.001 and 0.001. We 

optimize the objective function using ADAM (Kingma and Ba 2014), a popular stochastic 

gradient descent algorithm, with mini-batch size of 15,000. Gradients with respect to 

model parameters are computed by standard back-propagation (Rumelhart, Hinton, and 

Williams 1988). Note that while other hyperparameters might influence the overall 

predictive performance, they are unrelated to our focus on biological interpretation as long 

as the same settings are applied to both DeepCell and the black-box models we use as 

controls (Figure 3.2d). We implemented DeepCell using the Torch7 library 

(https://github.com/torch/torch7) on Tesla K20 GPUs.  

 

Alternative Genotype-Phenotype Translation Methods. We compared DeepCell to 

three state-of-the-art non-hierarchical approaches for predicting genetic interactions: flux 

balance analysis (FBA) (Szappanos et al. 2011), multi-network multi-classifier (MNMC) 

(Pandey et al. 2010),  and guilt-by-association (GBA) (I. Lee et al. 2010). FBA uses a 

model of metabolism to assess the impact on cell growth of gene deletions in metabolic 

pathways. MNMC is an ensemble supervised learning system that uses many different 

datasets as features to predict genetic interactions. GBA predicts the genetic interaction 

score of pairwise gene deletions based on the phenotypes of their network neighbors. 

We also compared against our previous prediction method (Ontotype) (Yu et al. 2016) 

which applies prior knowledge from a hierarchy like GO or CLiXO but does not use deep 

learning nor simulate the internal states of subsystems. Ontotype counts the number of 

https://github.com/torch/torch7
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genes knocked in every GO term and uses these counts as features in a random forest 

regression. To compare against these alternative models, we trained on a common set 

of ~3 million genetic interactions (Costanzo et al. 2010), as evaluated in the Ontotype 

study (Yu et al. 2016), and determined the neural network hyper-parameters by 4-fold 

cross validation. 

 

Relative Local Improvement in Predictive Power (RLIPP). The RLIPP score was 

used to quantify and compare the importance of DeepCell’s internal subsystems in 

prediction of phenotype. To calculate the RLIPP score of a subsystem, we compared two 

different linear models for phenotypic prediction. In the first model, the subsystem’s 

neurons were used as features in a L2-norm penalized linear regression (Supplemental 

Figure S3.3a). In the second model, the neurons of the subsystem's children were used 

as the features instead. Each model was trained separately, with the optimal hyper-

parameter associated with the L2-norm penalty determined in five-fold cross validation. 

The performance of each of these two models was calculated as the Spearman 

correlation between the predicted and measured phenotype, here taken as genetic 

interaction scores (Supplemental Figure S3.3b,c). The RLIPP score was defined as the 

performance of the parent model relative to that of the children (Supplemental Figure 

S3.3d). A positive RLIPP score indicates that the state of the parent subsystem is more 

predictive of phenotype than the states of its children. This situation can occur when the 

parent learns complex (nonlinear) patterns from the children, as opposed to merely 

copying or adding their values. The intuition behind the RLIPP score is similar to a related 
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‘linear probe’ technique developed in a previous study to characterize the utility of each 

layer of a deep neural network (Alain and Bengio 2016). 

 

Identification of subsystems that mimic Boolean logic gates. As one means to 

interpret the mechanisms by which DeepCell translates genotype to phenotype, we 

evaluated each subsystem for the extent to which it approximates Boolean logic. In 

particular, we considered all trios of subsystems, each consisting of a parent subsystem 

and two of its children, and tested whether their binary states (𝑆, 𝐶1, 𝐶2) were well-

approximated by non-trivial Boolean logic (Supplemental Table S3.2). For each 

genotype, the binary state of each child subsystem was defined as either ‘Wild Type’ 

(True) or ‘Disrupted’ (False), by comparing PC1 to the wild-type state. The binary state of 

each parent subsystem was defined as either ‘≤Wild Type’ (True) or ‘>Wild Type’ (False), 

by comparing PC1 to the wild-type state. For each combinatorial state (𝐶1, 𝐶2) of two child 

subsystems, the parent state 𝑆 implied by DeepCell was determined based on the 

majority parent states of genotypes annotated to (𝐶1, 𝐶2). For instance, suppose that for 

all the genotypes that induce (𝐶1=True, 𝐶2=False) in the two children, DeepCell 

transforms 80% to parent state 𝑆=True and 20% to state 𝑆=False. We conclude the 

underlying logic for the parent subsystem to translate the signal from children subsystems 

is (True, False)→True. By checking the parent states for all four possible (𝐶1, 𝐶2) 

combinations, we can decide whether this trio of subsystems exhibits Boolean logic 

(Supplemental Table S3.2). A trio belongs to none of the logic functions if > 50% of all 

the genotypes or <4 genotypes are annotated to any (𝐶1, 𝐶2) combinatorial state; or none 

of the annotated genotypes yield significant genetic interactions (|𝜀|≤0.08). For those 
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subsystems exhibiting Boolean logic, we excluded ‘trivial’ functions in which the parent is 

always True, always False, or follows one of the children without dependence on the 

other. 

 

DeepCell server construction. The DeepCell server (http://www.deep-

cell.ucsd.edu/) comprises several interconnected components working in unison to collect 

user input, run simulations, and transcode results to the web interface. On the backend, 

the DeepCell neural network model runs on the Torch library (Collobert, Kavukcuoglu, 

and Farabet 2011) on a dedicated multi-GPU machine. On the front end, the web interface 

is built on cytoscape.js (Franz et al. 2016) to display the full biological hierarchy, an in-

house D3 (Bostock, Ogievetsky, and Heer 2011) graph visualizer to display a subgraph 

of the hierarchy, and React (Stefanov 2016) for agile DOM (Document Object Model) 

editing (Marini 2002). To respond to user input, including searching and viewing details 

of model subsystems, a low-latency proxy service translates between plain text fetched 

from the front end and binary data used by the backend. An Elasticsearch cluster 

(Gormley and Tong 2015) caches and indexes data for fast lookup and predictions. All 

web services run on a Kubernetes-based cloud infrastructure (“Kubernetes” 2017) that 

auto-scales to heavy workloads. The result of these efforts allows easy visualization and 

interactivity of the model. 

  

http://www.deep-cell.ucsd.edu/
http://www.deep-cell.ucsd.edu/
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3.6 Figures 

 

 
Figure 3.1. Modeling system structure and function with visible learning. a, A 
conventional neural network translates input to output as a black box without knowledge 
of system structure. b, In a visible neural network, input/output translation is based on 
prior structural knowledge. In DeepCell, gene disruption genotypes (top) are translated to 
cell growth predictions (bottom) through a hierarchy of cell subsystems (middle). c, A 
neural network is embedded in the prior structure using multiple neurons per subsystem. 
d, Screen capture of DeepCell online service, microtubule subsystems. 
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Figure 3.2. Prediction of cell viability and genetic interaction phenotypes. a, 
Measured versus predicted cell viability relative to wild type (WT = 1) on the Costanzo et 
al (Costanzo et al. 2010) dataset. b, Measured versus predicted genetic interaction 
scores for each double gene disruption genotype; genetic interactions between the 
disrupted genes can be positive (epistasis), zero (non-interaction), or negative (synthetic 
sickness or lethality). c, Model performance expressed as the correlation between 
measured and predicted genetic interaction scores. Performance of DeepCell (first bar, 
blue) is compared to previous methods for predicting genetic interactions (second four 
bars, green): FBA, Flux Balance Analysis (Szappanos et al. 2011); GBA, Guilt By 
Association (I. Lee et al. 2010); MNMC, Multi-Network Multi-Classifier (Pandey et al. 
2010); Ontotype refers to our previous hierarchical approach not based on deep learning 
(Yu et al. 2016). Performance is also shown for matched structures in which gene-to-
subsystem mappings are randomly permuted (orange bar, average of 10 randomizations) 
or for fully-connected neural networks with the same number of layers as DeepCell (final 
bar, yellow). Correlations were calculated across gene pairs that meet at an interaction 
significance criterion of p<0.05 in the dataset (Costanzo et al. 2010). d, Predictive 
performance as the number of neurons per subsystem increases from 1 to 300. The 
performance measure and the two structural hierarchies (DeepCell, blue; Matched Black 
Box, orange) are as in (c).  
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Figure 3.3. Interpretation of genotype-phenotype associations. a, Hierarchy of 
candidate subsystems that can explain the association of the pmt1Δire1Δ genotype with 
a negative genetic interaction phenotype (synthetic lethality). b, Correspondence 
between Hac1 GFP activity and the functional states of ER-UPR (blue) or its parent 
subsystem, Response to ER stress (red). Points represent genotypes, with the 
pmt1Δire1Δ genotype indicated. c, Distribution of correlations between Hac1 GFP activity 
and the states of every other subsystem containing at least 10 genotypes with measured 
GFP activity. d, DNA repair appears as a highly altered subsystem that explains the slow 
growth phenotype of rev7Δrad57Δ. e, Experimental resistance to UV damage plotted 
against the state of the DNA repair subsystem in DeepCell, separated into two classes: 
above or below the wild-type value. Significance measured by Mann–Whitney U test. f, 
Distribution of the associations between UV damage resistance and the states of other 
subsystems containing at least 10 genotypes with measured UV damage resistance 
value. Note panels a-c use genetic interaction prediction as the phenotypic readout; 
panels d-f use growth. All panels implement GO as the structural hierarchy for the 
DeepCell model. 
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Figure 3.4. Top subsystem states for translation of genotype to growth. a, Ranking 
of all cellular subsystems in GO by their importance in determining genetic interactions 
(RLIPP score, Methods). Inset: ten highest-scoring subsystems. b-j, Two-dimensional 
state maps of informative subsystems (PC2 versus PC1). Supplemental Figure S3.2 
provides equivalent information for the CliXO hierarchy.  
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Figure 3.5. Analysis of subsystem functional logic. a, Causal hierarchy of important 
subsystems involving changes to Mitochondrial Respiratory Chain (MRC), displayed as 
in Figure 3.3a. b, 2D state map of MRC plotted as in Figure 3.3b. Genotypes disrupting 
MRC complex III only, MRC complex IV only, or both complexes are demarcated by 
colors. c, Truth table relating the state of MRC to the states of its children. The logic 
resembles an AND gate, pictured. d, A cellular subsystem newly identified by the CliXO 
hierarchical clustering algorithm (see text), which implements an AND function integrating 
the states of two known children: Actin filament-based process and Monovalent inorganic 
ion homeostasis. Identification of this novel subsystem was based on strong enrichments 
for protein-protein interactions between the two child subsystems and within its entire set 
of proteins as a whole. 
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Figure 3.6. Analysis of a new DNA repair subsystem. a, Hierarchical organization of 
DNA repair including subsystems newly identified by CliXO. b, Experimental resistance 
to UV damage plotted against the state of CliXO:10582, separated into two classes: 
above or below its wild-type value. Significance measured by Mann–Whitney U test. c, 
Distribution of the associations between UV damage resistance and the states of all the 
subsystems identified by CliXO with at least 10 genotypes with measured UV damage 
resistance value. d, Approximate mathematical function implemented by CliXO:10582 
neurons. 
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3.7 Supplemental Figures 

 
 

Figure S3.1. Precision-recall curves for classification of negative genetic 
interactions. Performance of DeepCell is compared to the same methods as in Figure 
3.2c. Genetic interactions with scores ≤ -0.08 are labeled as negative. 
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Figure S3.2. CliXO top subsystem states for translation of genotype to growth. a, 
Ranking of all CliXO subsystems by their importance in determining genetic interactions 
(RLIPP score, see Methods). Inset: ten highest-scoring subsystems. b-j, Two-
dimensional state maps of informative subsystems from (a), in which each subsystem’s 
set of neuron states is reduced to the first two Principal Components (PCs). Each point 
represents the subsystem state induced by a genotype, with point color indicating the 
corresponding growth phenotype (genetic interaction score).  
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Figure S3.3. Calculating Relative Local Improvement in Predictive Power (RLIPP). 
a, Two L2-regularized linear regression models are fit to predict phenotype using either 
the neurons of a parent subsystem (bottom) or the neurons of that subsystem’s children 
(top). b-c, Predicted versus measured phenotype (genetic interactions) for the children-
based model (b) or the parent-based model (c). The example values are for the “DNA 
repair” subsystem. d, The RLIPP score is calculated from the Spearman correlation of 
both models.  
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