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Growing a Mind with 
Statistical Inference 
BY ANJULI NIYOGI

As we go about our daily lives, our minds 
are constantly building concepts and 

formulating theories about the world around 
us. These mental processes often rely on 
making inferences drawn from limited data. 
!e process of statistical inference, which 
involves drawing conclusions from data, 
provides a scienti"c basis for this cognitive 
process.

In the early 2000s, Joshua Tenenbaum, a 
professor at MIT, introduced a new approach 
to understanding this theory of learning. 
According to Tenenbaum, humans learn and 
reason using three components: statistical 
inference, abstraction (the ability to generalize 
with limited data based on commonalities), 
and structured representations (methods of 
mentally organizing information).1 These 
processes allow us to perform sophisticated 
tasks and make decisions every day. 

Statistical Inference 
!e heart of statistical inference relies on 

conditional probability, which is the likelihood 
of an event occurring given another event has 
already taken place. To illustrate this, suppose 
you roll two fair six-sided dice. What is the 
probability of the sum of the two dice totaling 
12? Conversely, what is the probability, given 
that the "rst roll was a six? As you can see, the 
probability changes signi"cantly from 1/36 
to 1/6 once you are given the condition of the 
"rst roll. 

!e probability of an event like this can 
be estimated using Bayes’ rule, a mathematical 
formula named after statistician and 
philosopher !omas Bayes. Bayes’ rule enables 
the estimation of the probability by taking into 
account prior knowledge about its likelihood. 
For instance, one could use Bayes’ rule to 
determine the probability of a dice roll, given 
the result of a previous roll. 

To illustrate this, consider the following 
example modeled a$er a thought experiment 
presented in the award-winning book 
!inking Fast and Slow by Daniel Kahneman. 
Imagine you meet someone who is very 
shy and withdrawn. Your natural initial 
impression might be that they are unfriendly 
or unapproachable. However, if you know 
from prior experience that shy people are 
o$en friendly once you get to know them, 
you can adjust your initial impression using 
Bayes’ rule. In this case, the formula is used to 
update your impression of the person based 
on your more generalized, abstract knowledge 
about the behavior of shy people, the limited 
amount of data you observed, and your prior 
beliefs (see Fig. 1).2 

Incorporating Abstract Knowledge
While statistical learning plays a crucial 

role in our creation of world models, we are 
also constantly taking in, updating, and using 
abstract knowledge in our everyday lives. 
Developing abstract knowledge is an iterative 
process that often involves incorporating 
new information and experiences to re"ne 
previously constructed models. !is process 
relies on both top-down and bottom-up 
processes, where top-down processes use 

previously acquired knowledge and structures 
to guide the learning of new information, and 
bottom-up processes involve constructing 
new structures and knowledge from sensory 
input and experiences.3

To demonstrate the use of both abstract 
knowledge and conditional probability (see 
Fig. 2), consider the following scenario: 
imagine you see an animal on the street 
with short legs, a lengthy body, and a droopy 
mouth, while on a leash. You know from 
general abstract principles that because 
it is on a leash and walking around your 
neighborhood street, it is highly likely to be 
a dog. Now let’s say you’re wondering what 
breed of dog it is. You have a structured 
probabilistic model about what breed this 
dog might be. It has short legs, so it’s likely a 
dachshund, a basset hound, or a corgi. You’ve 
now narrowed it down based on your model. 
Finally, you notice it has unusually long ears. 
Based on conditional probability, you can 
deduce that it must be a basset hound since 
you know that dachshunds and corgis have 
short ears. You’ve got it—this dog is a basset 
hound.

Knowledge Representations
The representations we form using 

Figure 1: Bayes Rule indicates the conditional probability that someone you may encounter is 
unfriendly, given that they were shy when you met them.
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abstraction and probability can be depicted 
with models commonly used in the field 
of computer science that incorporate our 
understanding of causal relationships. !ese 
models include graphs, which visualize 
relationships between data, and conditional 
inference trees, which show conditional 
relationships between variables. !e choice of 
representation is dependent on the knowledge 
being captured and other levels of abstraction.

One of the most common causal 
structures is a graph representation. A 
directed acyclic graph is a graphical model 
that incorporates events or states of the world 
(points on the graph) with directed edges, 
which represent the causal relationships 
between those variables. The individual 
building blocks of the structure are referred 
to as nodes, and the directed edges show the 
causal structure of an event. For example, 
consider event A; we know that A can cause 
either event B or C, but the relationship may 
not work in the other direction. Since only 
event A can cause B or C, but neither B nor 
C can cause A, this structure is directional by 
nature and lacks any cycles between nodes 
(see Fig. 3). !e exact structure of a causal 
graph depicts the probability of the variables 
in that graph, particularly the conditional 
dependencies of those variables.4

Trees are one of the most widely used 
graph structures and are built with a sequence 
of nodes; a root node on top is connected with 
as many layers of nodes as necessary to capture 
the information represented until the bottom 
layer is reached. !e simplest version of a tree 
may look like a singular root node with two 
nodes connecting it, similar to children in an 
ancestral family tree. 

In this context, the nodes of the tree 
can represent events or decisions, while the 
edges lead to possible outcomes. For example, 
suppose you notice a person nearby smoking 
a cigarette. We can build a tree representation 
that models the probability of this person 
being diagnosed with lung cancer based on 
this observation (see Fig. 3). !e observation 
of them smoking can be represented by the 
root node, and the numerical probabilities 
of them getting lung cancer in the future or 
not can be represented by the le$ and right 
branches connected to the two child nodes, 
respectively.

Incorporating wide amounts of abstract 

Figure 2: !eory-based induction can be used to explain observed data; a learner may generate 
their hypotheses given abstract principles and structured probabilistic models. 

Figure 3: Tree representations can be used to describe the causal relationships between events, 
with varying probabilities between nodes A to B and A to C.
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knowledge with more than just one type of 
condition can lead to a much more complex 
tree representation. !is complexity arises 
when we need to consider multiple factors 
that in(uence the probability of an event or 
decision. In a medical diagnosis, for instance, 
we may need to consider not only the presence 
of a symptom but also the patient’s medical 
history, lifestyle, and genetics. Such complex 
decision trees can be built using Bayesian 
networks, which allow for the representation 
of multiple dependencies and conditional 
probabilities.5  !ese networks have been used 
in various applications, such as predicting 
the risk of heart disease and analyzing the 
e*ectiveness of di*erent marketing strategies.6, 

7 

Using other kinds of representations, 
such as two-dimensional chains, may be 
better for capturing information with di*erent 
properties. A single chain may represent a 
linear relationship of a certain characteristic 
changing across different variables. 
Combining this with another chain may add 
to the level of detail you have. For instance, 
suppose you are at a restaurant and want to 
imagine what something will taste like. !ere 
are two dimensions you can model this–how 
savory or sweet something is, as well as its 
spice level. In this case, two linearly sequenced 
chains create a clearer understanding of what 
each menu item will taste like. !e mango 
salsa may be a sweet and spicy combo, whereas 
the carne asada may be a rather savory, but 
mild choice. !is learning may result from 
observations of previous foods you’ve eaten 
and your prediction of an item’s taste qualities 
may result from the model that has been 
created.  

Bayesian models allow us to represent 
more complex probabilistic models that 
re(ect our beliefs over all possible outcomes, 
events, and properties.8 These models 
usually use some form of a graph structure, 
with numerical parameters to capture the 
quantitative details of the information. !e 
numerical parameters are based on our 
previous knowledge and observations, as 
well as upcoming data through Bayesian 
updating. Above this level of probabilistic 
models are more abstract principles based on 
our previous knowledge and observations. 
Inferences involve using pre-existing models 
to infer unobserved aspects of the data. !is 

process can work both ways: developing 
models with abstract principles and theories, 
or learning abstract principles given data and 
theories.  

Applications in Developmental Psychology & 
Beyond

UC Berkeley Professor of Psychology 
Alison Gopnik* has researched extensively 
on the ties between adolescent learning 
and building causal structures. Children 
essentially infer causal structures from 
statistical information through their 
interactions with the environment and 
observations of others.9 In an experiment 
with young children, two-and-a-half-year-
olds could discriminate between conditional 
independence and dependence. !at is, a$er 
viewing various combinations of objects that 
either did or did not light up when placed on 
a machine, they could use that information to 
make judgments about which objects caused 
the machine to light up.10 By the age of 18 
months, children can also infer the likelihood 
of linguistic syllables in an arti"cial language 
and even do the same with visual stimuli.11 

While children learn how to do this from an 
early age, adults continue to build, challenge, 
and update these structures to guide decision-
making processes. 

In the early 2010s, Bayesian inference 
provided a novel perspective on human 
cognition. Applications have been developed 
across many different fields in cognitive 
science, including linguistics, developmental 
psychology, and even medicine.12 A better 
understanding of how humans learn and 
reason has also led to signi"cant advancements 
in arti"cial intelligence, as seen in more recent 
models like chat GPT, which rely on a similar 
framework of statistical inference.13 While the 
potential of Bayesian inference has already 
been proven, it is only the beginning of what 
is to come.
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