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ARTICLE OPEN

A predictive ensemble classifier for the gene expression
diagnosis of ASD at ages 1 to 4 years
Bokan Bao1,2,3,4,15, Javad Zahiri1,15, Vahid H. Gazestani1,2,15, Linda Lopez1, Yaqiong Xiao1,5, Raphael Kim6,7, Teresa H. Wen1,
Austin W. T. Chiang 1,2, Srinivasa Nalabolu1, Karen Pierce1, Kimberly Robasky7,8,9,10, Tianyun Wang 11,12, Kendra Hoekzema13,
Evan E. Eichler 13,14, Nathan E. Lewis2,3,4✉ and Eric Courchesne 1✉

© The Author(s) 2022

Autism Spectrum Disorder (ASD) diagnosis remains behavior-based and the median age of diagnosis is ~52 months, nearly 5 years
after its first-trimester origin. Accurate and clinically-translatable early-age diagnostics do not exist due to ASD genetic and clinical
heterogeneity. Here we collected clinical, diagnostic, and leukocyte RNA data from 240 ASD and typically developing (TD) toddlers
(175 toddlers for training and 65 for test). To identify gene expression ASD diagnostic classifiers, we developed 42,840 models
composed of 3570 gene expression feature selection sets and 12 classification methods. We found that 742 models had AUC-
ROC ≥ 0.8 on both Training and Test sets. Weighted Bayesian model averaging of these 742 models yielded an ensemble classifier
model with accurate performance in Training and Test gene expression datasets with ASD diagnostic classification AUC-ROC scores
of 85–89% and AUC-PR scores of 84–92%. ASD toddlers with ensemble scores above and below the overall ASD ensemble mean of
0.723 (on a scale of 0 to 1) had similar diagnostic and psychometric scores, but those below this ASD ensemble mean had more
prenatal risk events than TD toddlers. Ensemble model feature genes were involved in cell cycle, inflammation/immune response,
transcriptional gene regulation, cytokine response, and PI3K-AKT, RAS and Wnt signaling pathways. We additionally collected
targeted DNA sequencing smMIPs data on a subset of ASD risk genes from 217 of the 240 ASD and TD toddlers. This DNA
sequencing found about the same percentage of SFARI Level 1 and 2 ASD risk gene mutations in TD (12 of 105) as in ASD (13 of
112) toddlers, and classification based only on the presence of mutation in these risk genes performed at a chance level of 49%. By
contrast, the leukocyte ensemble gene expression classifier correctly diagnostically classified 88% of TD and ASD toddlers with ASD
risk gene mutations. Our ensemble ASD gene expression classifier is diagnostically predictive and replicable across different toddler
ages, races, and ethnicities; out-performs a risk gene mutation classifier; and has potential for clinical translation.

Molecular Psychiatry (2023) 28:822–833; https://doi.org/10.1038/s41380-022-01826-x

INTRODUCTION
ASD is a prenatal [1–16], highly heritable disorder [17] that
considerably impacts a child’s ability to perceive and react to
social information [18–20]. Despite this prenatal and strongly
genetic beginning, robust and replicable early-age biological ASD
diagnostic markers useful at the individual level have not been
found. Indeed, ASD diagnosis remains behavior-based and the
median age of the first diagnosis remains at ~52 months [21–24],
which is nearly 5 years after its first trimester origin. The long delay
between ASD’s prenatal onset and eventual diagnosis is a missed
opportunity for treatment. Moreover, the heterogeneity of ASD
genetics and clinical characteristics impose barriers to identifying

early-age molecular diagnostics that accurately diagnose the
majority of those with this heterogeneous disorder [25]. Thus,
there is a need for early-age molecular diagnostics of ASD that
robustly surmount this heterogeneity obstacle.
Since ASD’s heritability is 81% [17], initial attempts have focused

on genetics to develop clinically useful biomarkers for precision
medicine and causal explanations for ASD pathogenesis. While
syndromic risk mutations have been described for >200 genes in
ASD [16, 26, 27], each occurs only rarely in ASD. For 80–90% of
patients, such mutations are not found. Thus, an estimated 80% or
more of ASD individuals are considered ‘idiopathic’, wherein little
is known about the genes and/or environmental factors causing
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their disorder. In this idiopathic majority of ASD, the risk is likely
associated with many inherited common and rare risk variants in
each individual child. Studies of polygenic ASD risk found that the
combined effect of genetic risk variants in case-control studies
accounts for less than 7.5% of the risk variance [28]; ASD
polygenic risk scores substantially overlap with controls [29–32];
and, because of this substantial overlap, polygenic risk scores are
not clinically diagnostic or prognostic for individuals, nor are they
explanatory for the majority of ASD. Thus, DNA-based mutations
or polygenic risk scores may not yet be useful for the many
idiopathic ASD subjects at the clinical diagnostic level.
RNA biomarkers have been sought using blood gene expression

in >35 ASD studies since 2006 [33–43], but many studies have been
underpowered, older-aged, clinically heterogeneous, and/or lacking
validation test datasets. Some early genetics researchers rejected
blood-based biomarkers believing that ASD-relevant dysregulated
gene expression must be restricted to the brain. Recent ASD
genetics have reversed this view: The earliest prenatal drivers of
deviant ASD development are, in fact, broadly expressed regulatory
genes, a large percentage of which are active in non-brain organs
and tissues such as blood leukocytes as well as in the prenatal brain
[1–3, 33, 34, 37, 38, 43, 44]. Broadly expressed genes that constitute
most ASD risk genes are upregulated in early prenatal life and
impact multiple stages of prenatal brain development from 1st and
2nd trimester proliferation and neurogenesis to neurite outgrowth
and synaptogenesis in the 3rd trimester. These genes disrupt gene
expression in signaling pathways such as PI3K-AKT, RAS-ERK, Wnt
and insulin receptor pathways, which further disrupt prenatal
functions [1–3, 33, 34, 37, 38, 43, 44].
In ASD 1 to 4 year-olds, leukocyte gene expression in these

pathways is significantly dysregulated [45]. The degree of pathway
dysregulation was correlated with ASD social symptom severity and
were validated in ASD neural progenitors and neurons [45]. Broadly
expressed genes in leukocytes from ASD toddlers are also associated
with hypoactive brain responses to language and atypical cortical
patterning, dysregulation of ASD and language relevant genes, and
poor language outcomes [46, 47]. Thus, leukocyte gene expression
holds the potential for the objective identification of molecular
subtypes of ASD. In analyses of leukocyte gene co-expression, ASD-
associated module eigengene values were significantly correlated
with abnormal early brain growth and enriched in genes related to
cell cycle, translation, and immune networks and pathways. These
gene sets are very accurate classifiers of ASD vs. typically developing
toddlers (TD) [34]. Studies and reviews of the ASD blood gene
expression literature [33–43, 45] show dysregulated gene expression
in a number of pathways and processes, including PI3K-AKT-mTOR,
RAS signaling pathways, ribosomal translation signal, cell cycle,
neurogenesis, gastrointestinal disease, immune/inflammation, inter-
feron signaling, and the KEGG natural killer cytotoxicity pathway.
Leukocyte gene expression offers a non-invasive and clinically

practicable avenue for understanding aspects of ASD cell biology,
including those that could be ASD-relevant, ASD-specific, robust,
and ASD-diagnostic or -prognostic. However, for clinical transla-
tional potential of leukocyte transcriptomics to lead to robust and
rigorous classifiers, high standards for verifying such classifiers
should be implemented.
Thus, we developed, operationalized, and tested a rigorous

analytic pipeline to identify molecular diagnostic classifiers for ASD
using leukocyte gene expression. Using additional clinical data, we
verified that our composite gene expression classifier was unbiased
against common confounding factors (age, race and ethnicity).
Using this platform on leukocyte transcriptomics frommale ASD and
typically developing (TD) toddlers at ages 1–4 years old, we
systematically analyzed the classification performance of 42,840
different models composed of 3,570 different feature selection sets
and 12 commonly-used classification methods (Fig. 1 and Supple-
mentary Fig. 1). Through this, we developed a predictive ensemble
diagnostic classifier of male ASD toddlers.

Additionally, using targeted DNA sequencing of the coding
regions for sets of ASD and neurodevelopmental disorder risk
genes using single-molecule molecular inversion probes (smMIPs)
[48, 49], we examined the diagnostic classifier value of presence or
absence of a subset of ASD risk gene mutations in our ASD and TD
subjects and whether toddlers with ASD risk gene mutations differ
in classifier expression from those without such mutations.

METHODS
Participant recruitment and clinical evaluation
Participants in this study included 240 male toddlers ages 1–4 years
(Table 1, Supplementary Table 1). About 70% of toddlers were recruited
from the general population using an early screening, detection, and
diagnosis strategy called the Get SET Early procedure [50]. Using this
approach, toddlers who failed a broadband screen, i.e., the CSBS IT
Checklist [51], at 12, 18 or 24 month well-baby visits in the general
pediatric community settings, were referred to our center for a
comprehensive diagnostic and psychometric evaluation. The remaining
subjects were obtained by general community referrals and evaluated in
the identical way. Median ages were ASD 2.3 years and TD 1.4 years. All
toddlers received a battery of standardized psychometric tests by
experienced Ph.D.-level psychologists, including the Autism Diagnostic
Observation Schedule (ADOS; Module T, 1 or 2) [52], the Mullen Scales of
Early Learning [53], and the Vineland Adaptive Behavior Scales [54]. Testing
sessions routinely lasted 4 h in one day or occurred across 2 separate days.
Toddlers younger than 30 months upon initial clinical evaluation were
followed longitudinally approximately every 9–12 months until final
confirmation diagnosis at ages 2 to 4 years; Table 1 shows demographic
and subject characteristics at final confirmation ages. 127 toddlers were
diagnosed ASD, and 113 were TD. Research procedures were approved by
the Institutional Review Board of the University of California, San Diego.
Parents of subjects underwent Informed Consent Procedures with a
psychologist or study coordinator at the time of their child’s enrollment.

Targeted sequencing data from ASD and TD subjects
For 112 of the 127 ASD and 105 of the 113 TD study subjects, we also
had targeted sequencing data by smMIPs from prior studies aimed at
detecting rare severe mutations in autism and neurodevelopmental
disorder risk genes; that study was from our Center’s collaboration with
the Eichler Lab [48, 49]. Two sets of neurodevelopmental disorders and
ASD risk genes were used for targeted sequencing (See Supplementary
Table 2). The ASD significant variants in our ASD toddlers had been
previously reported, but here we additionally report ASD significant
variants in our TD toddlers. More than 87% of the ASD toddlers (83 out
of 93 and 29 out of 34 ASDs in the Training and Test datasets,
respectively), and 92% of the TD toddlers (74 out of 82 and all 31 TDs
in the Training and Test datasets, respectively) were tested for
mutations. Rare (MAF < 0.01%) severe missense mutation with a
combined annotation-dependent depletion (CADD) score ≥30 (MIS30)
and likely gene-disruptive (LGD, including splicing donor or acceptor,
frameshift, and stop-gained) mutations were considered for further
analysis. Among the 105 TD toddlers, 12 had SFARI Level 1 or 2 ASD risk
gene mutations and among the 112 ASD toddlers, 13 had such
mutations. One of these ASD had two ASD risk gene mutations. Thus,
among the 217 subjects, a total of 25 subjects carried ASD risk gene
mutations (26 genes). The two-sided independent T-test was performed
to test the ensemble score distribution difference between subjects with
or without mutations.

Blood sample collection for gene expression analyses
Blood samples were collected from each subject during clinical evaluation
visits. To monitor health status, the temperature of each toddler was
taken using an ear digital thermometer immediately preceding the blood
draw. When the temperature was higher than 99 Fahrenheit, the blood
draw was re-scheduled for a later visit. Moreover, the blood draw was not
taken if a toddler had some illness (e.g., cold or flu), as observed by us or
stated by parents. We collected four to six milliliters of blood into
ethylenediaminetetraacetic-coated tubes from all toddlers. Leukocytes in
the blood samples were captured and stabilized by LeukoLOCK
filters (Ambion) and were immediately placed in a− 20 °C freezer. Total
RNA was extracted following standard procedures and manufacturer’s
instructions (Ambion).
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Fig. 1 Overview of the analysis platform. The total gene expression dataset was split into a Training set with 175 subjects and a Test set with
65 subjects. Our platform tested 42,840 different models, with each model a combination of 1 feature filtration method, 1 feature selection
method, 1 feature reduction method and 1 classification method (total different combinations = 5 × 102 × 7 × 12 = 42,840 models). Models
processed the input datasets and returned classification scores. In total, 742 models had classification scores ≥0.8 AUC-ROC in both Training
and Test sets were used to build the final ensemble classifier model.

Table 1. Subjects demographics.

Training set Test set

ASD TD ASD vs TD p value ASD TD ASD vs TD p value

Number of Subjects 93 82 0.406 34 31 0.71

Age of last Visit in 50.8 ± 28.8 34.5 ± 8.4 <0.001 47.4 ± 28.0 39.2 ± 15.3 0.144

months

Mullen Scales of Early Learning

Visual Reception 40.1 ± 13.3 60.3 ± 10.9 <0.001 38.8 ± 15.4 55.1 ± 9.2 <0.001

Fine Motor 34.8 ± 11.4 54.4 ± 9.5 <0.001 36.9 ± 13.9 52.8 ± 8.9 <0.001

Receptive Language 32.2 ± 13.1 53.3 ± 8.1 <0.001 29.0 ± 16.6 52.4 ± 7.6 <0.001

Expressive Language 30.7 ± 15.8 54.4 ± 9.6 <0.001 28.5 ± 16.8 49.8 ± 8.1 <0.001

Early Learning Composite 73.6 ± 18.5 111.1 ± 13.3 <0.001 71.9 ± 21.0 105.0 ± 11.1 <0.001

Vineland Adaptive Behavior Scales

Communication 82.0 ± 17.5 104.9 ± 10.5 <0.001 79.5 ± 17.8 100.4 ± 9.6 <0.001

Daily Living 83.7 ± 12.8 103.0 ± 10.2 <0.001 84.0 ± 13.0 99.9 ± 10.6 <0.001

Socialization 80.5 ± 13.0 106.3 ± 10.9 <0.001 79.1 ± 9.8 99.4 ± 11.0 <0.001

Motor Skills 87.8 ± 10.9 103.1 ± 10.4 <0.001 88.5 ± 10.5 98.8 ± 8.5 <0.001

Adaptive Behavior 80.8 ± 13.0 105.0 ± 9.7 <0.001 79.9 ± 11.6 99.2 ± 10.3 <0.001

Autism Diagnostic Observation Schedule

ADOS SA/CoSo Score 14.3 ± 3.4 2.2 ± 2.0 <0.001 13.3 ± 4.3 2.8 ± 1.9 <0.001

ADOS RRB Score 3.8 ± 1.5 0.3 ± 0.6 <0.001 3.1 ± 1.5 0.5 ± 0.6 <0.001

ADOS Total Score 18.1 ± 4.1 2.4 ± 2.1 <0.001 16.4 ± 4.7 3.3 ± 2.2 <0.001

ADOS autism diagnostic observation schedule, ASD autism spectrum disorder, CoSo communication social score, M/Fmale/female, RRB restricted and repetitive
behavior, SA social affect.
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Summary of main steps in design and analyses of the RNA
data from the 240 study subjects
Figure 1 outlines the main design and analysis steps, and Supplementary
Fig. 1 provided details of the feature engineering. The 240 subjects were
divided into a Training dataset of 175 subjects and a Test set of
65 subjects. The training dataset was used to build gene expression
classifiers and the Test set was held out and later used to test the
classifiers. High-performing classifiers evaluated by the Test set were used
to build a single, final ensemble classifier, which was a Bayesian averaging
model of all top-performing classifiers. The performance of this ensemble
classifier was then measured on Training and Test subjects; DE genes
underlying its accurate performance were identified and pathway and
process enrichment determined; and clinical characteristics across classifier
scores were examined. Lastly, post hoc exploratory analyses were
performed to test whether including specific social behavioral and
prenatal features might improve overall performance.

Microarray data processing
Gene expression of subject RNA samples was assayed using the Illumina
HT-12 platform. Arrays were scanned with the Illumina BeadArray Reader
and read into Illumina GenomeStudio software (version 1.1.1). Raw Illumina
probe intensities were converted to expression values using the lumi
package [55]. We employed a three-step procedure to filter for probes with
reliable expression levels. First, we only retained probes that met the
detection p < 0.05 cut-off threshold in at least 3 samples. Second, we
required probes to have expression levels above the 95th percentile of
negative probes in at least 50% of samples. The probes with detection
p > 0.1 across all samples were selected as negative probes and their
expression levels were pooled together to estimate the 95th percentile
expression level. Third, for genes represented by multiple probes, we
considered the probe with the highest mean expression level across our
dataset, after quantile normalization of the data. These criteria led to the
selection of 14,312 coding genes as expressed in our leukocyte
transcriptome data, which highly overlaps with the reported estimate of
14,555 protein-coding genes (chosen based on unique Entrez gene IDs) for
whole blood by the GTEx consortium [56].

Building the classifier platform on the training dataset
The pipeline ran five-fold cross-validations. At the beginning of each
iteration, the pipeline held out 20% of samples and used the remaining
80% of samples for hyper-parameter selection, feature selection, and
classifier training. In the first step (Supplementary Fig. 1), feature filtration,
five methods were used, including no (no action), cov (remove 50% of
features with the smaller coefficient of variation), var (remove 50% of
features with smaller variance), cov_var (remove 50% of features with the
smaller coefficient of variation and then remove 50% of features with
smaller variance in the rest), varImportance (keep only the 25% of features
with the highest variance).
The second step, feature selection, included 102 methods, which were

composed of seven groups; although conceptually similar, each using
different approaches. These seven groups are no (no action), grn [57]
(genetic regulatory network), z-score, select [58], svm [59], GSEA [60], DE-
analysis [61] (see Supplementary Method 1).
The third step was feature reduction. Seven methods were used: no (no

feature reduction), WGCNA [62], logisticFwd, SIS [63], principal component
regression (PCR) [64], partial least squares regression (PLSR) [65], canonical
powered partial least squares (CPPLS) [65] (see Supplementary Method 1).
After three steps, up to 1320 gene routes were created that can be used in
the classification step.
The classification step exploited 12 classifiers, including reg (linear

model), logReg [66] (logistic regression), lda [66] (Linear Discriminant
Analysis), qda [66] (Quadratic Discriminant Analysis), ridgeReg [67] (GLM
with ridge regularization), lassoReg [67] (GLM with lasso regularization),
ridgeLogReg [67] (logistic regression with ridge regularization), lassoLo-
gReg [67] (logistic regression with lasso regularization), elasticNetLogReg
[67] (logistic regression with elastic net regularization), boosting [68]
(Generalized Boosted Regression Modeling with Bernoulli distribution),
randomForest [69] (random forest) and bagging [69] (random forests with
bagging to reduce the complexity). After training a classifier, the diagnostic
ability was evaluated by AUC-PR (precision-recall) curve and AUC-ROC
(Receiver operating characteristic) curve [70, 71].
For every possible combination of the 5 feature filtration, 102 feature

selection, 7 feature reduction, and 12 classification routes, we made a total
of 42,840 different classifier models.

Label permutation data
To generate the randomized background, we shuffled the diagnostic label
of the Training dataset and randomly separated the data into training/
validation segments (85%/15%). Then we performed the fivefold cross-
validation on the permuted dataset.

Bayesian model averaging to create a single transcriptomic
ensemble classifier
The training models that had 0.80 or higher AUC-ROC scores were tested
on the Test dataset. Then, the models that had an AUC-ROC ≥ 0.80 were
used with Bayesian Model Averaging (BMA) to create a single ensemble
classifier. The ensemble score was the sum of weighted predictions of
selected models. The weight was the mathematical average of the square
of (AUC-ROC value minus 0.7). In a model selection, we used training data
D to select a good model M (according to a score) to predict a targeted
outcome T of interest based on patient features X, namely, P(T|X, M). BMA
was based on the notion of averaging over a set of possible models and
weighting the prediction of each model according to its probability given
training data D, as shown in equations.

p TjXð Þ ¼ P
mi
p MijXð Þp TjX;Mið Þ

M is the model, T is the prediction and X is the data.

● p MijXð Þ ¼ AUC ROCi�0:7P
j
AUC ROCi�0:7ð Þ

The ensemble scores of the independent dataset were calculated based
on the same model built. The scores are then rescaled to 0 and 1.

ensembleScorei ¼ ensembleScorei�min ensembleScoreð Þ
max ensembleScoreð Þ�min ensembleScoreð Þ

Biological processes enriched by differentially expressed
genes
We additionally conducted differential expression (DE) analysis on ASD
subjects with ensemble scores below-the-mean vs. all TD subjects. The
Limma package [61, 72] was then applied on quantile-normalized data for
differential expression analysis in which moderated t-statistics were
calculated by robust empirical Bayes methods. We used adjusted
p < 0.01 (Benjamin–Hochberg) and log Fold Change >0.1 to select genes
and generate the volcano plot. The Gene Ontology (GO) enrichment was
conducted using g:Profiler [73] (https://biit.cs.ut.ee/gprofiler/gost) with
12,695 protein-coding genes (12695/14132 gene features) as background
(g:Profiler, advanced option/statistical domain scope: Custom; custom over
annotated genes). We only checked the “GO biological process” and KEGG
terms of size 15–1500 in the biological process. The threshold was
“Significance threshold: B-H FDR < 0.1”. Then the terms were clustered with
REVIGO [74], ordered with p (http://revigo.irb.hr/). The connections across
terms were visualized by the Cytoscape 3.8.2 [75].

Post-hoc analysis on common confounding factors
The post-hoc analysis further verified that the classifier scores were stable
across different age groups. The optbin R package was used to determine
optimal age breakpoints for ASD and TD groups; age bins were 0 to 20, 20
to 31, and 31 to 49 months. Games-Howell test [76] was performed to
compare the classifier score between TD or ASD groups in each of the
three age bins (FDR adjusted p value < 0.05).
The one-way ANOVA test [77] was conducted to test if statistically

significant differences existed across three ethnicities and seven race groups
for ASD subjects. For ethnicity, toddlers from ASD and TD were labeled as
“Hispanic or Latino”, “Not Hispanic or Latino” and “Unknown”. For races,
toddlers from ASD and TD were labeled as “Caucasian”, “Caucasian/Asian”,
“African American”, “Asian”, “Pacific Islander”, “Other”, “Unknown”.

RESULTS
ASD risk gene mutation-based diagnostic classification of ASD
vs TD
Targeted sequencing by smMIPs was performed on 217 (112 ASD
and 105 TD) out of the 240 (127 ASD and 113 TD) toddlers in this
study (see “Methods” and Supplementary Table 3). Analyses
found 12 TD toddlers with missense or LGD mutations in SFARI
(https://gene.sfari.org/) Level 1 or 2 ASD risk genes including:
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ANK3, CACNA2D3, CLCN4, CTTNBP2, CUL7, DIP2A, DLG4, HECTD4,
LRP2, LZTR1, MYH9, and NAV2. Analyses found 13 ASD toddlers
with missense or LGD mutations in SFARI (https://gene.sfari.org/)
Level 1 or 2 ASD risk genes: CACNA2D3, CHD2, DIP2A, DSCAM,
KATNAL2, LRP2, MYH9, NCKAP1, NTNG1, PHF2, RELN, STXBP5, UNC80,
and ZC3H4 (one subject had two mutations). To assess the power
of using this mutation information alone in discriminating ASD
from TD, we did a classification according to the presence/
absence of the missense or LGD mutations in SFARI Level 1 or 2
ASD risk genes. More precisely, ASD toddlers with and without
mutations were considered as true positive and false negative,
respectively; and TD toddlers with and without mutations were
considered as false positive and true negative, respectively. This
mutation-based classification performed at a chance level, 49%
(50% being chance), with precision (positive predictive value) of
52%, and recall (sensitivity) of 10%. In this mutation-based
classification, a small number of TDs were falsely called ASD and
a large number of ASD toddlers were falsely called TD.

Development of a robust transcriptomic classifier platform
with diverse feature engineering and classification methods
Next, we used blood transcriptomic data from the 240 ASD and TD
study toddlers to develop a diagnostic classifier. To identify
potential transcriptome biomarkers in a Training sample of 175 of
the 240 ASD and TD toddlers (Table 1), we developed a platform
that examined the classification power of the blood transcriptomic
data by systematically exploring the performance of 42,840
possible models composed of 3570 different feature selection
routes, followed by 12 classification methods (see “Methods”). The
platform started with removing genes with low variation across
samples. Next, features that differentiate between ASD and TD
subjects at expression or co-expression levels were selected using
a suite of 102 feature selection methods. Third, to avoid
overfitting, we reduced the number of features by collapsing
expression data from the correlating genes. Finally, we trained 12
different classifiers for each selected feature set. To evaluate the
performance of each of the 3570 feature selection routes and the
12 classification methods, we iterated the process 5 times while
holding out 20% of samples and using the remaining 80% of
samples for hyper-parameter selection, feature selection, and
classifier training. Thus, each of the 42,840 models started with a

“route” that consisted of 1 filtration method, 1 selection method, 1
reduction method, and ended with 1 classification method, and all
possible combinations of the 5 filtration, 102 selection, 7 reduction
and 12 classification methods were used. The platform reports the
average performance of each of the 42,840 models across the 5
held-out folds as measured by area under the receiver operating
characteristic curve (AUC-ROC) and area under the precision-recall
curve (AUC-PR).

Diverse pipelines successfully classify ASD vs TD
Since the feature selection methods depended on the character-
istics of training transcriptome datasets, some routes were not
able to find qualified features in all five iterations of the validation.
Therefore, the platform successfully classified the data in 15,840
out of 42,840 different ways, including 1320 different routes out of
3570 for feature selection and 12 different classification methods
(Supplementary Table 4 and Supplementary Fig. 2). From 15,840
trained models, 1822 (11.5%) models showed classification AUC-
ROC > 0.8 with the max AUC-ROC of 0.856. Moreover, 1508 of the
1822 models also exhibited an AUC-PR > 0.8.
These 1822 models performed well due to their feature

routes and were robust to variations in the data or the model.
For example, we observed a subset of 175 feature routes (colored
with a brown band in Fig. 2a) that performed consistently
well across different classifiers with a mean AUC-ROC of 0.81.
Additionally, these 1822 high-performing models worked simi-
larly well across all five held-out datasets with a mean range of
0.13 and variance of 0.02 (Supplementary Fig. 3). Furthermore,
different models that largely overlapped in their feature selection
routes also worked well across different classifier methods
(Supplementary Fig. 5).
To further verify that the performance of these 1822 models was

not due to chance alone, we generated five separate randomized
datasets by shuffling the sample labels (i.e., ASD or TD) from the
Training dataset. We next ran the platform on each of the five
datasets independently (see “Methods”). Importantly, the platform
identified zero models out of 1822 with AUC-ROC and AUC-PR > 0.8
across the five datasets, respectively, suggesting that the accurate
performance of the 1822 models was not due to chance.
We evaluated the performance of the 1822 high-performing

models on the Test dataset of N= 65 ASD and TD toddlers. Of the
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scores were computed for each of the 42,840 model results from the Training dataset. The AUC-ROC values were based on the average
performance of each model across 5 iterations, with 20% of samples being held out each time. b In total, 1822 models with AUC-ROC
scores ≥0.80 were then tested on the held out Test dataset. Permuting the sample labels (i.e., ASD and TD) further supported the validity
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1822 models with AUC-ROC > 0.8 in the Training dataset, 742
models (40%; Fisher’s Exact Test p < 2.2 × 10−16) also had an AUC-
ROC > 0.8 for the Test dataset. These 742 heterogeneous predictive
models involved 125 different feature routes and 2721 gene
features (Fig. 3a, see Supplementary Result 1, 2).

Randomized data can be erroneously “classified” at
reasonable AUC-ROC levels
There were 1822 models that reached a high AUC-ROC value in
the Training dataset. However, the question remained whether
this range was significantly different from the AUC-ROC values
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that one could obtain from trying to classify subjects after
randomizing their final diagnosis. To test this, we permuted the
sample labels (i.e., ASD and TD) for all subjects in our Training
set and ran the pipeline to test all feature engineering and
classification methods. Importantly, we tested all 42,840 candidate
models and found the median AUC-ROC score was 0.5101 with
the 95th CI (0.42–0.65) on the randomized samples. As expected,
only rare chance instances of good “classification” occurred. The
fact that chance alone could lead to a rare “good classification”
score for a single model, was a cautionary signal that literature
reports of unvalidated and unreplicable single high-performance
classifiers could be due to chance (see “Methods”, Fig. 2b).

Bayesian model averaging of the 742 predictive models to
create a single transcriptomic ensemble classifier
To build a composite ensemble model that combined the 742
models that had AUC-ROC values of 0.80 on both Training and
held-out Test sets, we used Bayesian model averaging (BMA). The
ensemble model produced a single composite classification score
by calculating weighted predictions from 742 models (see
“Methods”). Scores ranged from 0 to 1 with 0 being the highest
certainty in TD status and 1 being the highest certainty in ASD
status. With this ensemble model, the AUC-ROC score was 84.67%
and 89.18% for Training and Test datasets, respectively (Fig. 3b)
and AUC-PR was 84.33% and 92.11% for the Training and Test
datasets, respectively. These values were significantly higher than
the naive Random Forest baseline model (see Supplementary
Result 3) with 72.32% AUC-ROC (ROC.test p < 10−44).
We calculated the median of ensemble classification scores for all

ASD toddlers in the Training and Test datasets. The overall ASD
group median classifier score was 0.781 and the overall TD group
median score was 0.303 (Fig. 3c). To test for group differences in
scores and possible age effects, we used multiple linear regression.
The independent variables were diagnosed group, age and their
interaction. The dependent variable was the ensemble classification
score. Based on the coefficients in the model, we found a significant
effect of group (coefficient, p= 0.0011) but non-significant effects
of age (coefficient, p= 0.056) and group by age interaction
(coefficient, group:age, p= 0.76).

Classifier scores not significantly affected by age, ethnicity,
race differences
To further examine possible bias toward the age effects on group
classification, we stratified subjects into three age bins of 0 to 20,
20 to 31, and 31 to 49 months and compared the classifier
prediction performance on different bins (see “Method”, Fig. 4).
Game-Howell test [76] showed there was no significant difference
between classification scores for TD or ASD groups in each of the
three age bins, and classification scores were significantly different
only in the ASD vs. TD diagnostic group comparisons (FDR
adjusted p value < 0.05) (Fig. 4). This further verified that potential
confounding effects of age were excluded in the analysis.
Post-hoc examination of classifier scores in ASD groups showed

there was no significant difference across three ethnicity groups
(“Hispanic or Latino”, “not Hispanic or Latino”, “unknown”; one-way
ANOVA, F = 0.899, p = 0.409) (Table 2). However, the differences
appeared in TD groups (F = 3.7, p = 0.021). The same analysis was

also conducted on races. Toddlers were labeled as “Caucasian”,
“Caucasian/Asian”, “African American”, “Asian”, “Pacific Islander”,
“Other”, “Unknown”. No significant difference of means in ASD was
found across all race groups (One-way ANOVA test, F = 1.151, p =
0.337) (Table 3). The differences appeared in the TD group (F= 5.25,
p = 9.03e–05) and seemed likely due to the small number of
individuals in different race categories (Table 3). Both ethnicity and
race analysis indicated that ASD molecular pathology is being
consistently detected by our classifier.

Classifier scores not significantly affected by the presence or
absence of ASD risk gene mutations
There was no significant difference in the ensemble classifier scores
between ASD toddlers with and without mutations (median= 0.738

Fig. 3 Blood transcriptome ASD subtypes were identified by our classification platform. a The clustering table of subjects in Training and
Test dataset based on the 742 models classification score similarity (distance= “Euclidean” and method= “ward.2d”). ASD and TD subjects
showed distinct classification patterns. The red, orange and black bars on the sides represented above-the-mean ASD, below-the-mean ASD
and TD subjects, respectively (the mean is the dashed line in Fig. 3c). The orange and purple colors represented the gradient of dissimilarity
between subjects based on their classification scores. (b) The AUC-ROC results on the ensemble classification model generated by the
Bayesian model averaging approach. c Ensemble classifier model scores for ASD and TD individuals in Training and Test datasets. The ASD
group mean was 0.723 and the TD group mean was 0.359. d, e The differential expression analysis of 2721 protein-coding feature genes. The
volcano plots showed the adjusted p value (cutoff= 0.01) vs. log fold changes (cutoff= 0.1) of genes in the above-the-mean to TD subjects
and below-the-mean subjects to TD subjects in the Training dataset and Test dataset.

Fig. 4 The distribution of classification scores. 240 subjects were
partitioned into 6 groups. Games-Howell tests were performed to
compare the group difference and only significant comparisons
were shown. The classification scores were significantly different
only in the ASD vs TD diagnostic group comparison.

Table 2. Statistics of ASD and TD’s classifier score for Hispanic/non-
Hispanics.

Ethnicity ASD TD

Size Mean (Std) Size Mean (Std)

Not
Hispanic Latino

64 0.700 (0.253) 82 0.396 (0.248)

Hispanic
and Latino

29 0.723 (0.197) 18 0.273 (0.220)

Unknown 34 0.765 (0.187) 13 0.245 (0.138)
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vs 0.784, mean = 0.715 vs. 0.724, Welch t test p= 0.875) (Fig. 5;
Supplementary Table 3); 11 of the 13 ASD toddlers with risk
mutations were correctly classified by the ensemble model.
However, there was a difference in the ensemble classifier scores
between TD toddlers with and without ASD risk gene mutations; in
fact, TDs with mutations had lower composite scores than the other
TDs (median = 0.229 vs 0.340, mean = 0.223 vs. 0.375, Welch t test
p= 0.007) and robustly differed from the ASD composite score,
median = 0.303 vs 0.781 (Fig. 5). Thus, the presence of ASD risk
gene mutations conferred no liability on the composite score of TD
toddlers, and 11 out of 12 TDs with mutations in risk genes were
correctly classified as typical by our gene expression classifier. The
ensemble classifier correctly differentially diagnosed 88% of the
ASD and TD toddlers with ASD risk gene mutations.
In addition, TD subjects with and without SFARI Level 1 or 2

gene mutations did not differ significantly on any clinical test
(ADOS, Vineland, Mullen), and, similarly, ASD subjects with and
without gene mutations did not differ significantly on any clinical
test (Fig. 5; Supplementary Fig. 7).

Biological processes enriched by differentially expressed (DE)
genes in ASD with higher vs. lower ASD ensemble classifier
scores
DE gene analyses (see “Methods”) found 1186 DE genes for ASD
toddlers with ensemble scores at or above the ASD group mean
of 0.723, but no DE genes for those below the group mean
(Fig. 3d, e). Of the 1,186 DE genes, 394 were in the top 500 feature
genes selected by the 125 feature routes, and 700 of the 1,186 DE
genes were in the first 1000 feature genes. This indicated that DE
genes were strong drivers of successful ASD classification
(Supplementary Table 5). Enrichment analyses of GO biological
processes (see “Methods”) of these 1186 DE genes found
Gene Ontology terms associated with mitotic cell cycle, inflamma-
tion/immune response, transcriptional gene regulation, and
response to cytokine. Analyses of KEGG pathways using g:Profiler
[73, 78] of these 1,186 DE genes found significant pathways
included cell cycle (KEGG:hsa04110), PI3K-AKT (KEGG:hsa04151),
RAS signaling pathways (KEGG:hsa04014), and Wnt signaling
pathways (KEGG:hsa04310), which was consistent with our
previous finding [45].

Clinical characteristics associated with higher vs. lower ASD
ensemble classifier scores
We compared clinical scores on the ADOS, Mullen, and Vineland
for ASD toddlers with ensemble classifier scores at or above the
ASD mean of 0.723 to the ASD toddlers with classifier scores
below that mean. Diagnostic and psychometric scores were not
significantly different between ASD subjects above and below this
mean (Supplementary Fig. 8, Supplementary Table 6).
Next, we stratified ASD toddlers based on ADOS CoSo Total

symptom severity and Mullen scores. Ensemble scores for ASD
subjects above vs. below the group average ADOS severity and

the group average Mullen means were not practically different
(p = 0.59).
We also performed analogous stratifications within the TD

Training group and found no ADOS or Mullen differences between
higher or lower than the TD mean ensemble classifier score, nor
differences in the ensemble scores of TD toddlers with high vs.
lower diagnostic and psychometric scores (Supplementary Table 6).

Prenatal characteristics associated with higher vs. lower ASD
ensemble classifier scores
Among 127 ASD subjects, 124 had complete prenatal records. We
selected the “hospitalization during trimester”, “surgery during
trimester” and “confined to bed during trimester” as the risk factors;
“nausea during trimester”, “morning sickness during trimester” and
“swelling during trimester” as the control prenatal events. Fisher’s t
tests were used to compare the prenatal risk factors across ASD
toddlers with ensemble scores at or above the ASD group mean,
below that mean, and TD toddlers. ASD toddlers with classifier
scores at or above the ASD group mean of 0.723 had significantly
fewer prenatal neurodevelopmental risk events, while ASD toddlers
below the mean had disproportionately more prenatal risk scores
than TD toddlers (Tables 4, 5). We tested if there was a different ratio
of severe prenatal events that could potentially impact ASD
development between these two ASD subgroups [79–81]. We
found a similar rate of prenatal events between TD subjects and
above-the-mean ASD subjects (Odds Ratio: 0.88, Fisher’s Exact Test
p = 0.84). However, there was a significant enrichment of prenatal
events among the below-the-mean ASD subjects compared to TD
subjects (Odds Ratio: 2.78; Fisher’s Exact Test p = 0.013). As a
negative control, prenatal events that are unlikely to affect ASD
development were not enriched among ASD subjects with below
the ASD mean ensemble score [81]. These results suggest the
possible existence of different underlying etiological factors
between ASD subjects with above vs. below the mean ASD
ensemble classifier scores. (Tables 4, 5)
In the post hoc exploratory analysis, we tested whether adding

prenatal features and social behavior scores into models increases
model performance. The Bayesian model AUC-ROC increased from
84.67 to 88.20% for the Training dataset, and increased from 89.18
to 91.48% for the Test dataset. (Supplementary Result 4).

DISCUSSION
Despite its high heritability and prenatal beginnings [1–16], ASD
diagnosis remains behavior-based and the median age of the first
diagnosis is about 52 months. Partially due to its genetic and
clinical heterogeneity, no single genetic, behavioral or imaging
diagnostic marker has been found that can accurately and
reproducibly diagnose more than a small subset of affected
children. Even among those capable of highly accurately
diagnosing subsets of ASD infants and toddlers [82], few have
proven clinically useful, cost-effect, and/or practical at the ages
when early detection and diagnosis are most needed and could
be most important for the child and family.
To approach this dilemma, we addressed ASD genetic and

clinical heterogeneity with classifier heterogeneity. That is, since
we expected heterogeneity in classifier gene expression features,
we designed a classifier pipeline using 42,840 models generated
from 3,570 gene expression feature routes and 12 classification
methods to classify ASD at ages 1 to 4 years, and applied it to both
a Training sample and a held-out Test sample. Then, rather than
selecting and reporting a single “best” performing model, we
report there are hundreds of good to excellent models and that
they can be combined using Bayesian model averaging to bring
together 742 “heterogeneous” predictive models involving 125
different feature routes and 2,721 gene expression features. The
smMIPs analyses detected 25 TD and ASD subjects with severe
mutations in SFARI Level 1 or 2 ASD risk genes: mutation-based

Table 3. Statistics of ASD and TD’s classifier score for races.

Race ASD TD

Size Mean (Std) Size Mean (Std)

Caucasian 65 0.675 (0.253) 73 0.364 (0.240)

Unknown 40 0.755 (0.180) 19 0.284 (0.175)

Caucasian/Asian 4 0.861 (0.150) 5 0.358 (0.212)

African
American

5 0.799 (0.221) 4 0.508 (0.288)

Asian 8 0.789 (0.212) 9 0.421 (0.314)

Pacific Islander 3 0.795 (0.090) 2 0.185 (0.088)

Other 2 0.797 (0.005) 1 0.592 (null)
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Fig. 5 Comparison of ASD with and without ASD risk gene mutations and TD with and without ASD risk gene mutations. Shows
(a) ensemble classifier gene expression scores, (b) ADOS scores (higher scores are more severe ASD symptoms), (c) Vineland adaptive
behavior scores (average is 100 ± 15), and (d) the Mullen T-scores for Expressive and (e) Receptive language (average is 50 ± 10) as well as
(f) the Mullen overall Developmental Quotient scores (average is 100 ± 15). There were no significant differences in any scores between
toddlers with and without SFARI Level 1 or 2 ASD risk gene mutations for ASD toddlers and for TD toddlers. Thus, the presence of an ASD
risk gene mutation conferred no clinical liability or difference in gene expression diagnostic score for ASD toddlers. TD toddlers with ASD
gene mutations had slightly better cognitive scores than other typically developing toddlers without mutations, but differences were not
significant. Red dots are the means and dark lines medians.

Table 4. Distribution of prenatal events among the three groups.

Severe prenatal events ASD Above-the-mean ASD Below-the-mean TD

Total subjects (n) 79 45 107

Hospitalizations during pregnancy 5 5 6

Surgery during pregnancy 1 3 4

Confinement to bed during pregnancy 8 8 9

General Anesthesia during delivery 10 11 10

Total (%) 19 (24.1) 20 (44.4) 24 (22.4)

Negative control events

Nausea 4 2 12

Morning sickness 42 18 64

Swelling 23 10 26

Total (%) 52 (65.8) 24 (53.3) 70 (65.4)

ASD at or above-the-mean ensemble score of 0.723, ASD below-the-mean ensemble score of 0.723, TD typical development.
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classification resulted in chance ASD detection performance,
whereas the Bayesian gene expression model correctly classified
22 (88%) of those 25 subjects. The presence of ASD risk gene
mutations in typically developing toddlers suggests that the
mutations detected here in these specific SFARI genes are neither
necessary nor sufficient to cause ASD, are not alone explanatory of
autism, and apparently are not clinically diagnostically useful.
Post-hoc Game-Howell tests demonstrated the ensemble gene

expression classifier is unbiased towards age differences. The one-
way ANOVA test indicated the classifier scores for the ASD group
were similar across Hispanic and non-Hispanic subjects and
different races. This suggests the classifier is accurately detecting
a gene expression pathology common across toddler ages, races
and ethnicities in ASD, subjects with and without risk gene
mutations, and thus points to common core molecular pathobiol-
ogy in ASD.
This approach enabled the generation of a composite Bayesian

“ensemble” model that is diagnostically predictive and replicable
across different toddler ages, races, and ethnicities; performs
accurately across the ASD spectrum from more affected to less
affected; and has potential for clinical translation. Moreover, this
composite ensemble model incorporates both differentially
expressed (DE) genes and non-DE genes. This may be relevant to
the known complexity of ASD genetics, whichmay involve common
and rare variants and any one or more of >200 different ASD risk
gene mutations in different individuals. Non-genetic heterogeneity
was also detected here insofar as those with ASD classifier scores
below the overall ASD mean tended to have more prenatal risk
events in their history than those ASD toddlers with above themean
scores. This opens the important potential to utilize these ASD
ensemble classifier scores in future research to identify ASD
subtypes that are more driven by genetic versus subtypes more
driven by a combination of non-genetic and genetic factors.
Our ensemble features include genes involved in PI3K-AKT,

RAS-ERK, and Wnt signaling pathways, immune/inflammation,
response to cytokines, transcriptional regulation, and mitotic cell
cycle, which are among the pathways and processes found across
diverse studies on ASD blood gene expression [33–43, 45]. This
overlap is notable despite the fact that (1) some previous studies
did not actively account for race- and ethnicity-related, age-
related or clinical-symptom heterogeneity as moderating factors;
(2) 84% of 35 previous ASD blood gene expression studies had
fewer than 100 ASD subjects and averaged only 28 ASD subjects/
study; and (3) many studies focused on older ASD children and
adults and only few on ASD toddlers [33–43].
PI3K-AKT, RAS-ERK and Wnt signaling pathways may be pivotal to

ASD prenatal neural maldevelopment. Recently, in a large sample
study, we discovered that ASD toddlers had significant upregulation
of PI3K-AKT, RAS-ERK and Wnt signaling pathways in both
leukocytes and iPSC-derived prenatal neural progenitors and
neurons [45]. This leukocyte dysregulation in 1–4 year old ASD
toddlers correlated with ASD social symptom severity [45]. More-
over, these pathways in leukocytes are downstream targets of
regulatory risk ASD genes [3, 45]. Leukocyte gene expression also
has an potential for understandingmolecular correlates of brain size
in ASD [33] and of atypical cortical patterning subtypes in ASD
toddlers with poor language outcome outcomes [47]. Leukocyte
expression also relates to hypoactivation response to affective

speech in ASD toddlers with poor language outcome [46]. Finally,
multivariate leukocyte expression signatures can predict trajectories
of response to early intervention treatment [83], which underscores
the relevance of leukocytes to ASD and clinically important
phenomena that can be individualized to specific patients. Thus,
extensive literature, meta-analyses, and the predictive diagnostic
discoveries in the present study, all point to the importance of
leukocyte cell biology as clinically informative in ASD and show that
ASD-relevant dysregulated gene expression is not restricted to the
brain but is also present in other tissues and organs.
Here we developed an innovative and accurate ASD gene

expression classifier in ASD toddlers with heterogeneous gene
features designed to address early-age ASD genetic and clinical
heterogeneity. This predictive classifier in ASDmale toddlers aged 1
to 4-year-olds opens the possibility of further refining ASD
molecular classifiers optimized for race, ethnicity, and age and with
potential for clinical utility. It far outperformed a risk gene-mutation
classifier tested in the same toddlers primarily because a significant
proportion of TD toddlers have ASD risk genemutations as well. The
ensemble gene expression ASD classifier reported here is enriched
in gene expression features involved in ASD prenatal and postnatal
pathobiology, and as such, it appears to succeed because of this.
Thus, it is more than a signature capable of ASD diagnostic
prediction; it is additionally a marker of the underlying pathobio-
logical bases of the disorder in a majority of affected toddlers. It has
implications for future research targeting early-age ASD detection
and treatment-relevant mechanisms.

CODE AVAILABILITY
We provide the code library in R and Python described in this work through Github:
https://github.com/LewisLabUCSD/autism_classifier. We provide Jupyter notebooks
in Python and R to generate our figures and analysis.
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