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Abstract

String Homology and Lie Algebra Structures

by

Felicia Y. Tabing

Chas and Sullivan introduced string homology in [CS], which is the

equivariant homology of the loop space with the S1 action on loops by rota-

tion. Craig Westerland computed the string homology for spheres with coef-

ficients in Z/2Z [We] and in Somnath Basu’s dissertation [Ba], he computes

the string homology and string bracket for spheres over rational coefficients,

and he finds that the bracket is trivial. In this paper, we compute string ho-

mology and the string bracket for spheres with integer coefficients, treating

the odd- and even-dimensional cases separately. We use the Gysin sequence

and Leray-Serre spectral sequence to aid in our computations. We find that

over the integers, the string Lie algebra bracket structure is more interesting,

and not always zero as in [Ba]. The string bracket turns out to be non-zero

on torsion coming from string homology.

We also make some computations of the Goldman Lie algebra structure,

and more generally, the string Lie algebra structure of closed, orientable

surfaces.
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Chapter 0

Introduction

The term String Topology came from the paper of the same name by

Moira Chas and Dennis Sullivan in 1999. This paper discussed the various

algebraic structures that arose from the homology of the free loop space.

This paper came out of trying to generalize the Lie algebra structure that

William M. Goldman described by the intersection and concatenation of

loops on surfaces [Go].

Chapter 1 is an introduction to the Goldman Lie algebra, and we explore

its structure. In particular we consider the structure of the Lie algebra for

the closed torus, including computations showing it is finitely generated.

Chapter 2 introduces string topology background needed for the rest of

this paper, and the various algebra structures of loop homology and string

homology.

Chapter 3 contains the computations of the integral string homology and

1



string bracket structure for spheres, where some torsion phenomena appear.

In our computations, we use the Leray-Serre spectral sequence, and the Gysin

exact sequence.

Chapter 4 explores the string homology and bracket structure of surfaces.
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Chapter 1

The Goldman Lie Algebra

The Goldman Lie algebra was introduced by William M. Goldman in

1986 [Go].

Throughout, let Σg,n denote an oriented, genus g surface with n ≥ 0

boundary components. Denote π̂(Σg,n) to be the set of free homotopy classes

of loops on Σg,n, where the surface is not mentioned in the notation of π̂ when

it is clear from the context that we are talking about some fixed surface.

Recall the following.

Lemma 1.0.1. The set of free homotopy classes of loops on a surface Σg,n

is in one-to-one correspondence with conjugacy classes of π1(Σg,n).

Remark 1.0.2. We can represent homotopy classes of loops by cyclically

reduced words with letters the generators of the fundamental group.

Definition 1.0.3. Fix a surface Σg,n and an orientation of Σg,n. Let α, β ∈ π̂.
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Figure 1.1: Loops aab and b on the torus with one boundary component.

The Goldman bracket of α and β is defined to be

[α, β] =
∑
p∈α∩β

ε(p)α ∗p β (1.1)

where α and β intersect in transverse double points p, and ε(p) is the sign

of the intersection, or ε(p) = 1 if the ordered vectors in the tangent space

to Σg,n tangent to loop α and β match the orientation of the surface, and

ε(p) = −1 otherwise.

Example 1.0.4. We compute [aab, b] on the surface Σ1,1. The loops repre-

sented by words aab and b are shown in Figure 1.1, with intersection points
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p1 and p2. At the intersection point p1, we smooth the intersection by cre-

ating a new loop, aabb, by following the red loop aab in the direction of its

orientation at p1, and when returning to p1, we now follow the blue loop

b in the direction of its orientation. When we return back to p1, we close

the loop. At the intersection p2, we do the same, and create the loop abab.

We get that [aab, b] = ±(aabb+ abab) where the sign depends on the chosen

orientation of Σ1,1.

Theorem 1.0.5. (Goldman) The Goldman bracket is well defined, skew-

symmetric, and satisfies the Jacobi identity

Proof. [Go]

We can extend the bracket linearly to Z[π̂] (or Q[π̂]), the free module over

Z (or Q) with basis π̂, to get a bilinear map

[−,−] : Zπ̂ × Zπ̂ → Zπ̂

. Thus, Zπ̂ is a Lie algebra with bracket [−,−], which we call the Goldman

Lie Algebra, denoted by G throughout the rest of this chapter. When it is

unclear what the surface we are referring to, we use GΣg,n

1.1 Goldman Lie Algebra Structure

What is the Lie Algebra structure of the Goldman Lie algebra? So far,

the center of the Goldman Lie algebra is known, but much of the structure

5



is still a mystery.

Theorem 1.1.1. (Etingof) The center of GΣg,0 is spanned by the contractible

loop [Et].

Theorem 1.1.2. (Kabiraj) The center of GΣg,n is generated by peripheral

loops [Ka]

A question posed by Chas [Ch] is whether or not G is finitely generated.

In Goldman’s paper [Go], he also introduces what is called the homological

Goldman Lie algebra. This Lie algebra is defined on intersection form on

the first homology group of a surface. It is known that this Lie algebra is

indeed finitely generated [KKT], but of course, the homological Goldman Lie

algebra is simpler.

The closed torus is a special case. GΣ1,0 is finitely generated. Recall that

we can represent free homotopy classes of loops on Σ1,0 by cyclically reduced

words in two letters, a and b, and we can represent all homotopy classes of

loops on the torus by the word albk for k, l ∈ Z.

Proposition 1.1.3. The Goldman bracket structure of GΣ0,1 is given by

[aibj, akbl] = (il − jk)ai+kbj+l

Theorem 1.1.4. GΣ1,0 is finitely generated when considered as a Lie algebra

over Q..

Proof. We denote a contractible loop by 1. We claim that GΣ1,0 is generated

6



by {a, b, a−1, b−1}. This will take many steps. We will first show that we can

generate certain homotopy classes of loops. Below, we assume n 6= 0.

1. anb1 = [a, an−1b], which we get inductively,

2. an = [b−1,− 1
n
anb]

3. abn = [b,−abn−1]

4. bn = [a−1,− 1
n
abn]

5. anbn = [an, 1
n2 b

n]

6. a−nb = [a−1,−a−n+1b]

7. a−n = [b−1, 1
n
a−nb]

8. a−1bn − [a−1,− 1
n
bn]

9. a−nbn = [a−n,− 1
n2 b

n]

10. ab−n = [b−1, abn+1] which we get inductively,

11. b−1 = [a−1, 1
n
ab−n]

12. a−nb−n = [a−n, 1
n2 b
−n]

13. anb−n = [an,− 1
n2 b
−n].

14. From 13. and 9. for n = 1, we get a0b0 = 1 = [ab−1, 1
2
a−1b].

7



We still have a few more cases to show, namely how to generate the homotopy

class of the loop aibj in the following cases.

Case 1: Suppose i, j > 0.

(a) Suppose i < j, then j = i+ r for some r ∈ Z− {0}.

Then 1
ar

[aibi, bj] = aibj.

(b) Suppose i > j, then i = j + r for r ∈ Z− {0}.

Then − 1
br

[ajbj, ar] = aibj.

Case 2: Suppose i < 0 < j.

(a) Suppose |i| < |j|, then j = −i+ r for r ∈ Z− {0}.

Then 1
ar

[aib−i, br] = aibj.

(b) Suppose |a| > |b|, then i = −j + r for r ∈ Z− {0}.

Then − 1
br

[a−jbj, ar] = aibj.

Case 3: The case i, j < 0, and i 6= j is similar to Case 1.

Case 4: The case b < 0 < a is similar to Case 2.

Thus, everything in GΣ1,0 can be generated as a Lie algebra over Q.

Corollary 1.1.5. We can refine the generators of GΣ0,1 to a smaller basis,

namely {a, a−1b−1 + b+ 1, b}

Proof. We show that we generate the basis elements mentioned in the proof
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of Theorem 1.1.4.

[a−1b−1 + b+ 1, b] = −a−1,

[a−1b−1 + b+ 1, a] = b−1 − ab,

[a, b] = ab.

Corollary 1.1.6. GΣ1,0 as a Lie algebra over Q is not nilpotent, nor solvable,

since [GΣ1,0 ,GΣ1,0 ] = GΣ1,0.

Remark 1.1.7. GΣ1,0 is not finitely generated as a Lie algebra over Z.

Proof. We will show that the set {(n − 1)an}n>2,n∈Z cannot be generated.

Suppose to the contrary that we can generate (n − 1)an, so there exists

(is, js), (ks, ls) ∈ Z2 such that

t∑
s=1

±[aisbjs , aks , bls ] = (n− 1)an.

Then, as in Proposition 1.1.3,

t∑
s=1

±[aisbjs , aks , bls ] =
t∑

s=1

±(isls − jsks)ais+ksbjs+ls .

We need that is + ks = n and js + ls = 0, so isls− jsks = −isjs− jsn+ jsis =

−jsn. So n | isls − jsks, and n |
∑t

s=1±(isls − jsks), so n | (n− 1), which is

a contradiction.

9



Conjecture 1.1.8. We conjecture that GΣg,n for g ≥ 1 and n > 1 is not

finitely generated. For the particular case for a punctured torus, the periph-

eral loop is given by a commutator word. We noticed in using Chas’ program

for computing the bracket seems to not generate a commutator word, nor

products of commutators. This needs more work, but this would mean we

have a set {(aba−1b−1)n}n∈Z of infinitely many homotopy classes of loops

that each cannot be generated by any other homotopy classes of loops.

Proposition 1.1.9. The derived Lie algebra for GΣ1,0 is given by

[GΣ1,0 ,GΣ1,0 ] = 〈d(aibj), nan, nbn〉

for d = gcd(i, j) and n ∈ Z− {0}.

Proof. We first show [GΣ1,0 ,GΣ1,0 ] ⊂ 〈d(aibj), nan, nbn〉

Case 1: Suppose d = gcd(i, j), i, j 6= 0 and maibj ∈ [GΣ1,0 ,GΣ1,0 ] for some

m ∈ Z. Write xi + yj = d for some x, y ∈ Z and maibj = [akbl, ap, bq]

for k, l, p, q ∈ Z. But

[akbl, ap, bq] = (kq − lp)ak+pbl+q (1.2)

so we have that k + p = i, l + q = j, and kq − lp = kj − li =

d(k( j
d
)− l( i

d
)) = m. Thus d | m.

Case 2: Suppose that n 6= 0 and that [aibj, akbl] = man for i, j, k, l,m ∈ Z.

10



Then i+ k = n, j + l = 0, so

[aibj, akbl] = −jnan (1.3)

so n | m.

Case 3: Showing that for n 6= 0 and n | m for mbn ∈ [GΣ1,0 ,GΣ1,0 ] is similar to

Case 2.

To show the other containment, we can consider the equality 1.2 with

k = y and l = −x for Case 1, we can consider the equality 1.3 with

j = −1, and we can do something similar for Case 3.

Proposition 1.1.10. The lower central series for GΣ1,0 stabilizes, i.e.

[GΣ1,0 , Gi] = 〈d(aibj), nan, nbn〉

where d = gcd(i, j), n ∈ Z−{0}, for all i ≥ 0, and Gi = [GΣ1,0 , Gi−1] defined

inductively, where G0 = GΣ1,0.

Proof. For i = 1, this is just Proposition 1.1.9. For i = 2, we need to show

that

[GΣ1,0 , [GΣ1,0 ,GΣ1,0 ]] = 〈d(aibj), nan, nbn〉.

The ”⊂” containment is clear. First, consider aib−1 ∈ GΣ1,0 and an−ib ∈

11



〈d(aibj), nan, nbn〉 (since gcd(n− i, 1) = 1). We have that

[aib−1, an−ib] = nan.

In a similar way, we can show that nbn ∈ [GΣ1,0 , [GΣ1,0 ,GΣ1,0 ]].

Now consider d = gcd(i.j), so we can write d = xi+ yj. Consider ai+ybj−x ∈

GΣ1,0 and a−ybx ∈ [GΣ1,0 ,GΣ1,0 ] (since 1 = i
d
x+ j

d
y implies gcd(x, y) = 1. We

have

[ai+ybj−x, a−ybx] = daibj.

Thus, it follows that the lower central series stabilizes.

Corollary 1.1.11. GΣ1,0 as a Lie algebra over Z is not nilpotent.

12



Chapter 2

String Topology Preliminaries

Here we describe the basic algebraic structures appearing in the homol-

ogy and equivariant homology of the free loop space, as described by Chas

and Sullivan in String Topology. Throughout this paper, let M be a manifold

of dimension d, ΩM the based loop space of M , and the space of all contin-

uous, piecewise smooth loops on M , LM = Map(S1,M), the free loop space

of M . Note that LM can be considered to be an infinite-dimensional mani-

fold, and it is topologised with the compact-open topology. We will consider

homology and cohomology with integer coefficients, unless otherwise stated.

We denote the usual homology of the free loop space of M as H∗(LM) and

equivariant homology will be denoted by HS1

∗ (LM).
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2.1 Loop Homology Algebra Preliminaries

We first describe the Chas-Sullivan loop product, which Chas and Sul-

livan defined on the chain level of LM , the space of all continuous, piecewise

smooth loops on M .

The loop product is a combination of the intersection product an the

product given by the concatenation of loops. It is defined transversally at

the chain level.

Consider an i-chain of loops in LM . We can think of a simplex in this

chain as a map σ : ∆i → LM or as a map σ : ∆i ⊗ S1 → M . So we can

think of an i chain of loops as a map from a simplex with loops above it

into M . Intuitively, if we have an i-chain and a j-chain of loops where the

marked points intersect transversally, then we get a new i + j − d-chain of

loops consisting of the intersecting marked points, and at each marked point,

the new loop is formed by going around the i-chain loops then around the

j-chain of loops. This description at the chain level can pass to homology to

form the Chas-Sullivan loop product.

Here we give a more precise description of the product given in String

Topology and Cyclic Homology [CHV]. Let Map(8,M) = Map(S1 ∨ S1) be

the space of continuous, piecewise smooth maps from the figure eight, or the

wedge sum of two circles to M . This is topologised with the compact-open

topology and can be considered as an infinite-dimensional manifold, but we

need piecewise smooth in order for it to be some sort of manifold. It can also

14



be viewed as a subspace of LM × LM where the loops agree at 0.

Consider the following diagram. The left square is a pullback diagram.:

LM × LM ρin←−−− Map(8,M)
ρout−−−→ LMyev×ev yev

M ×M ∆←−−− M

where ρin is the restriction of the figure eight to the two different loops, and

ρout is where the figure eight loop is considered as one loop. The maps ev are

the evaluation of the loops at 0, and ∆ is the diagonal map. ev is a locally

trivial fibration so if η∆ is a tubular neighborhood of the diagonal embedding,

then a tubular neighborhood of the ηρin = (ev × ev)−1(η∆) is homeomorphic

to ev∗(TM) = ev∗(∆(M)). We can have a tubular neighborhood since ρin

is a codimension d embedding. Since ev∗(η∆) is the pullback of η∆, which

has fiber dimension d since it is the normal bundle, the pullback ev∗(η∆) has

fibers isomorphic to fibers of η∆, so ev∗(η∆) also has fiber dimension d. This

means that the normal bundle of map(8,M) in LM × LM has codimension

d. Since in the above diagram, the left square is a pullback diagram of fiber

bundles, we have that ρin is a codimension d embedding.

The induced maps on homology go in the wrong direction, in order to

remedy this, we need to turn the map ρin around somehow. We do this by

using the Pontrjagin-Thom collapse map:

LM × LM → LM × LM/LM × LM − ev∗(TM) ∼= Thom(Map(8,M))

15



Define the umkehr map (ρin)! containing the induced map on homology above

as follows:

(ρin)! : H∗(LM)⊗H∗(LM) ∼= H∗(LM × LM)→H∗(Thom(Map(8,M)))

∼= H∗−d(Map(8,M))

The last isomorphism is given by the Thom Isomorphism by taking the

cap product with u ∈ Hd(Thom(Map(8,M))), the Thom class given by the

orientation.

Definition 2.1.1. The following composition gives the Chas-Sullivan loop

product (or just loop product):

− • − = (ρout)∗ ◦ (ρin)! : H∗(LM × LM)→ H∗−d(Map(8,M))→ H∗−d(LM)

(2.1)

This product can be extended to homology. It is convenient to regrade the

loop homology as follows:

H∗(LM) := H∗+d(LM)

16



we can rewrite the product:

− • − = H∗(LM)⊗H∗(LM)→ H∗(LM)

We may drop the LM from the notation and denote loop homology by H∗

when it is clear which manifold we are referring to.

Theorem 2.1.2. (Chas-Sullivan) (H∗(LM), •) is an associative, graded,

commutative algebra.

Definition 2.1.3. There is a Batalin-Vilkovisky operator denoted by ∆,

which comes from the natural action given by rotation of loops,

ρ : S1 × LM → LM

given by ρ(t, γ)(s) = γ(s + t). This action defines a degree one operator on

loop homology: ∆ : H∗(LM)→ H∗+1(LM) given by δ(α) = ρ∗([S
1]⊗ α) for

α ∈ Hk(LM).

Theorem 2.1.4. (Chas-Sullivan) (H∗(LM),∆) is a Batalin-Vilkovisky alge-

bra,

1. (H∗(LM), •) is a graded, commutative, associative algebra

2. ∆ ◦∆ = 0

3. (−1)|α|∆(α • β) − (−1)|α|∆(α) • β − α • ∆(β) is a derivation in each

variable.

17



We can also define a Lie bracket with • and ∆ as in part 3 of Theorem 2.1.4.

Definition 2.1.5. The loop bracket is defined as

{α, β} := (−1)|α|∆(α • β)− (−1)|α|∆(α) • β − α •∆(β)

which is the deviation of ∆ from being a derivation of •.

Theorem 2.1.6. (Chas-Sullivan) (H∗(LM), •, {−,−}) has the structure of

a Gerstenhaber algebra,

1. (H∗(LM), •) is a graded, commutative, associative algebra

2. {−,−} is a degree 1 Lie bracket,

(a) α, β = (−1)(|α|+1)(|β|+1)+1{β, α},

(b) {α, {β, γ}} = {{α, β}, γ}+ (−1)(|α|+1)(|β|+1){β, {α, γ}},

3. {α, β • γ} = {α, β} • γ + (−1)(|α|−1)|β|β • {α, γ}.

2.2 String Homology Algebra Preliminaries

Now we consider algebraic structures on the equivariant homology of

the free loop space with respect to the action of rotation of loops, HS1

∗ (LM).

Consider the fibration

S2 → LM × ES1 → LM ×S1 ES1.

18



This induces a long exact sequence on homology, the Gysin sequence from

which we will use to describe a Lie bracket on HS1

∗ (LM).

· · · → H∗−d(LM)
e−→ HS1

∗ (LM)
∩−→ HS1

∗−2(LM)
M−→ H∗−d−1(LM)→ · · ·

where e and M are informally called the ”erasing map” and ”marking map,”

respectively. The map e forgets the marked points on the loops, and the

map M puts markings back on the loops in all possible places. We have

that M is a homomorphism of graded Lie algebras, it preserves the brackets,

going from the string bracket to the loop bracket. The map e is the induced

fibration map. For the rest of this paper, it will be clear from the context

which space we are referring to, so we often drop the LM from the homology

notation.

Remark 2.2.1. Note that e ◦M = 0 by exactness, and ∆ = M ◦ e.

Definition 2.2.2. For two classes α, β ∈ HS1

∗ (LM), we can define the string

bracket by

[α, β] = (−1)|α|−de(M(α) •M(β))

where • was the loop product mentioned in Definition 2.1.1.

Theorem 2.2.3. (Chas-Sullivan) (HS1

∗ (LM), [−,−]) is a graded Lie algebra,

with Lie bracket of degree 2− d.
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More precisely, our bracket is a map:

[−,−] : HS1

i (LM)×HS1

j (LM)→ HS1

i+j+2−d(LM).

In the following chapters, we compute the HS1

∗ (LSn) for all n ∈ N and

we compute the structure of the string bracket.
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Chapter 3

Computations of String

Homology and the String

Bracket

In this chapter, we compute explicitly the integral string homology and

the string bracket for spheres. Somnath Basu made some computations of

rational string homology for spheres in his Ph.D. thesis [Ba] using rational

homotopy theory and minimal models. Craig Westerland also made compu-

tations of string homology over Z2 for spheres in String Homology of Spheres

and Projective Spaces [We] using a spectral sequence. We separate the com-

putations for the even- and odd-dimensional spheres. First, we compute

particular examples, S1, S3, and S2, to get a better hold on the computa-

tion, then generalize to the higher-dimensional spheres. We use primarily
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the Gysin exact sequence, and the Leray-Serre spectral sequence to aid in

computations of string homology. We find that there is a lot of interesting

torsion in integral string homology, and the bracket structure is not always

zero.

3.1 String Homology and String Bracket of

S1

We compute the string homology of S1 using the Gysin sequence for the

circle bundle

S1 → LS1 × ES1 → LS1 ×S1 ES1

Basu computed this in his thesis, but here we use elementary techniques.

Recall that the non-equivariant homology of LS1 is given as follows [CJY],

[He],

H∗(LS1) = ΛZ[a]⊗ Z[x, x−1], |a| = −1, |x| = 0.

where H∗(LS1) = H∗+1(LS1) and a corresponds to the dual of [S1] under the

geometric grading [Se], [CJY].

The BV-operator (∆ = M ◦ e) acts on generators of H∗(LS1) as follows,
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[Me]:

∆(a⊗ xi) = i(1⊗ xi)

∆(1⊗ xi) = 0.

Consider the Gysin sequence for the above circle bundle:

0

HS1

2 (LS1) HS1

0 (LS1) H0(LS1) ∼=
⊕

n∈Z Z(1⊗ xn)

HS1

1 (LS1) HS1

−1(LS1) ∼= 0 H−1(LS1) ∼=
⊕

n∈Z Z(a⊗ xn)

HS1

0 (LS1) 0

e

c M

e

M

e

The end of the Gysin sequence gives us thatHS1

0 (LS1) ∼=
⊕
n∈Z

Z(e(a⊗ xn)).

Using the information from the BV-operator, M ◦ e(a⊗ xn) = ∆(a⊗ xn) =

n(1 ⊗ xn). Since e is surjective and ker(e) = im(M) =
⊕
n∈Z

nZ(1⊗ xn), we

have thatHS1

1 (LS1) ∼= H0(LS1)/ker(e) ∼=
⊕
n∈Z

Z/nZ(1⊗ xn)⊕ Z(1⊗ 1). From

the beginning of the Gysin sequence, we have im(c) = ker(M) = Z(a⊗ 1),

and since c is injective, HS1

2 (LS1) ∼= Z(a⊗ 1). Summarizing, we get the fol-

lowing remark.
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Remark 3.1.1.

HS1

0 (LS1) ∼=
⊕
n∈Z

Z(e(a⊗ xn))

HS1

1 (LS1) ∼= HS1

2i+1(LS1) ∼=
⊕

n∈Z−{0}

Z/nZ(1⊗ xn)⊕ Z(1⊗ 1), i ≥ 0

HS1

2 (LS1) ∼= HS1

2i (LS1) ∼= Z(a⊗ 1), i ≥ 1

The string bracket, [−,−] : HS1

i (LS1)⊗HS1

j (LS1)→ HS1

i+j+1(LS1) is a

degree +1 map, and it is only nontrivial on generators of degree zero since

the marking map is trivial for generators of degree greater than zero. For

a⊗ xn, a⊗ xm in HS1

0 (LS1),

[e(a⊗ xn), e(a⊗ xm)] = (−1)−1e(M(e(a⊗ xn)) •M(e(a⊗ xm)))

= −e(n(1⊗ xn) •m(1⊗ xm))

= −nm(e(1⊗ xn+m))

= −nm(1⊗ xn+m)

So [a⊗ xn, a⊗ xm] = 0 if n + m 6= 0 and n + m divides nm. If n + m = 0

then [a⊗ xn, a⊗ xm] = nm(1⊗ 1). We can conclude that the bracket is only

nontrivial for the torsion elements.
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3.2 String Homology and String Bracket of

S3

We compute the equivariant homology of S3 using the Gysin sequence

for the circle bundle

S1 → LS3 × ES1 → LS3 ×S1 ES1 (3.1)

and the Serre homology spectral sequence for

LS3 → LS3 ×S1 ES1 → CP∞

First we compute the equivariant cohomology of LS3 and then translate

it to equivariant homology. We also compute the erasing (e) and marking

(M) maps, as in Chas and Sullivan’s paper, to compute the String Bracket.

3.2.1 First Few Equivariant Homology Groups of LS3

By equivariant homology, we mean the homology of the Borel con-

struction from the natural action of S1 on LS3 by rotation, denoted by

HS1

∗ (LS3) = H∗(LS
3×S1ES1). We calculate the first few equivariant homol-

ogy groups of LS3 to aid in our computation of the equivariant cohomology

of LS3.
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Recall that the non-equivariant homology of LS3 is given as follows:

H∗(LS3) = ΛZ[α]⊗ Z[y], |α| = −3, |y| = 2

where H∗(LS3) = H∗+3(LS3) and α corresponds to the dual of [S3] under

the usual grading [Se], [CJY].

To compute the equivariant homology of LS3, we consider the Gysin

sequence for the following fibration:

S1 → LS3 × ES1 → LS3 ×S1 ES1.

and the BV-operator (∆ = M ◦ e), which acts on generators of H∗(LS3) as

follows [T], [Me]:

∆(α⊗ yi) = i(1⊗ yi−1)

∆(1⊗ yi) = 0.
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The Gysin exact sequence:

HS1

4 (LS3) HS1

2 (LS3) H0(LS3) ∼= Z(1⊗ 1)

HS1

3 (LS3) HS1

1 (LS3) H−1(LS3) ∼= Z(α⊗ y)

HS1

2 (LS3) HS1

0 (LS3) H−2(LS3) ∼= 0

HS1

1 (LS3) 0 H−3(LS3) ∼= Z(α⊗ 1)

HS1

0 (LS3) 0 0

M

e

M

e

M

e

M

e

M

The short exact sequence in the last two rows shows that HS1

0 (LS3) ∼=

Z(α⊗ 1). The short exact sequence in the third and fourth row,

0→ HS1

1 (LS3)→ 0

shows that HS1

1 (LS3) ∼= 0. Thus, we obtain a short exact sequence from the

second and third row,

0→ Z(α⊗ y)→ HS1

2 (LS3)→ Z(α⊗ 1)→ 0.

Since the last non-zero term in the sequence is free, the sequence splits,

giving HS1

2 (LS3) ∼= Z(α⊗ y)⊕Z(α⊗ 1). To calculate HS1

3 (LS3), we use the

BV operator. The injective map e in the exact sequence (1.2) means that

e(α⊗ y) = α⊗ y. Since ∆(α⊗ y) = M ◦ e(α⊗ y) = 1⊗ 1, the map M in the

first row of the Gysin sequence above is surjective, so the connecting map e
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from the first to the second row of the Gysin sequence has kernel Z(1 ⊗ 1).

Thus we have a short exact sequence,

0→ HS1

3 (LS3)→ 0

So HS1

3 (LS3) ∼= 0.

We may be able to continue computing the rest of the equivariant homol-

ogy groups of LS3 in this way, but we eventually reach extension issues. In

summary, we have the following remark:

Remark 3.2.1.

HS1

0 (LS3) = Z(α⊗ 1)

HS1

1 (LS3) = 0

HS1

2 (LS3) = Z(α⊗ y)⊕ Z(α⊗ 1)

HS1

3 (LS3) = 0.

3.2.2 Equivariant Cohomology of LS3

Consider the fibration

LS3 → LS3 ×S1 ES1 → CP∞

and the cohomology Leray-Serre spectral sequence associated with it.

We use the fact that we know the ordinary cohomology of LS3 and CP∞,
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since the E∞ page converges to H∗S1(LS3), the equivariant cohomology of S3.

Remark 3.2.2. [CJY]

H∗(LS3) ∼= H∗(ΩS3)⊗H∗(S3) ∼= Γ[y]⊗ Λ[a] |a| = 3, |y| = 2, yi =
yi

i!

Remark 3.2.3.

H∗(CP∞) ∼= Z[x], |x| = 2

Below is the E2 page of the spectral sequence. All of the nonzero entries are

Z generated by the entry. The arrows are the d2 maps.

We can figure out the first few equivariant cohomology groups easily. It

can immediately be seen that H0
S1(LS3) ∼= Z(1⊗ 1) and H1

S1(LS3) ∼= 0. For

H2
S1(LS3), the differential maps d2 going to and from the generators along

the diagonal, y1 and x, are zero, so these generators survive to the E∞ page.

In the filtration of H2
S1(LS3) corresponding to this spectral sequence, we

obtain 0 ⊂ Zy1 ⊂ H2
S1(LS3) where H2

S1(LS3)/Zx ∼= Zy1. Thus H2
S1(LS3) ∼=

Zy1 ⊕ Zx.

The derivation property of the differentials in the Serre spectral sequence

makes the computation of the d2 differentials easier. We only need to know

the image of x, y1, and a through d2 to know the image of the other generators

in the E2 grid. We see immediately that d2(x) = 0 and d2(y1) = 0. From

the multiplicative property of the sequence, we can conclude that d2(xi) = 0

and d2(yi) = 0 for all i ≥ 1. We computed HS1

3 (LS3) ∼= 0 above, and using

the Universal Coefficient Theorem, we find that H3
S1(LS3) ∼= 0 also. This
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10 y5 0 . . .

9 ay3 0
...

...
...

...
...

...
...

...
...
...

8 y4 0 y4x 0 y4x
2 0 y4x

3 0 y4x
4 0 y4x

5

7 ay2 0 ay2x 0 ay2x
2 0 ay2x

3 0 ay2x
4 0 ay2x

5

6 y3 0 y3x 0 y3x
2 0 y3x

3 0 y3x
4 0 y3x

5

5 ay1 0 ay1x 0 ay1x
2 0 ay1x

3 0 ay1x
4 0 ay1x

5

4 y2 0 y2x 0 y2x
2 0 y2x

3 0 y2x
4 0 y2x

5

3 a 0 ax 0 ax2 0 ax3 0 ax4 0 ax5

2 y1 0 y1x 0 y1x
2 0 y1x

3 0 y1x
4 0 y1x

5

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 x 0 x2 0 x3 0 x4 0 x5

E2 0 1 2 3 4 5 6 7 8 9 10

0

∼=

0

×2

0

×3

0

×4

0

0

×2

0

×2

00

∼=∼=

Figure 3.1: The E2 page of the spectral sequence.
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means that on the E∞ page of the spectral sequence, there should only be

zeros along the third diagonal. This gives that d2 : Za→ Zy1x should be an

isomorphism. Since a and y1x are the generators of these isomorphic groups

d2(a) = ±y1x. Let us assume d2(a) = y1x. Also,

d2(ayi) = d(a)yi = y1xyi = y1x
yi1
i!

= (i+ 1)yi+1x

To summarize:

d2(xi) = 0

d(yi) = 0

d2(a) = y1x

d2(ayi) = (i+ 1)yi+1x.

These calculations correspond to the red arrows on the E2 page above. The

spectral sequence collapses at the E3 page since there can never be nonzero

differentials after the E2 page because there is nothing for these differentials

to hit, so E3 = E∞.

Let’s take a look at the E∞ page:
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9
...

...
...

...
...

...
...

...
...

...

8 y4 0 Zy4x/4Z 0 Zy4x2/4Z 0 Zy4x3/4Z 0 Zy4x4/4Z . . .

7 0 0 0 0 0 0 0 0 0 . . .

6 y3 0 Zy3x/3Z 0 Zy3x2/3Z 0 Zy3x3 3Z 0 Zy3x4/3Z . . .

5 0 0 0 0 0 0 0 0 0 . . .

4 y2 0 Zy2x/2Z 0 Zy2x2/2Z 0 Zy2x3/2Z 0 Zy2x4/2Z . . .

3 0 0 0 0 0 0 0 0 0 . . .

2 y1 0 0 0 0 0 0 0 0 . . .

1 0 0 0 0 0 0 0 0 0 . . .

0 1 0 x 0 x2 0 x3 0 x4 . . .

E∞ 0 1 2 3 4 5 6 7 8

Figure 3.2: The E∞ page of the spectral sequence.
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After some work, and with the assumption that H i
S1(LS3) is just the

direct sum of the diagonal on the E∞ page shown above, we can make the

following remark.

Remark 3.2.4.

H2i+1
S1 (LS3) = 0

H2i
S1(LS3) = Zyi ⊕ Zxi ⊕

i−1∑
j=2

Zyjxi−j/jZ, i > 0

H0
S1(LS3) = Z1.

3.2.3 Equivariant Homology of LS3

Using the results above and the Universal Coefficient Theorem, we get

the following:

Theorem 3.2.5.

HS1

2i (LS3) = Z(α⊗ yi)⊕ Zxi, i ≥ 0

HS1

2i+1(LS3) =
i∑

j=2

Z(α⊗ yi)x/jZ, i ≥ 2

HS1

1 (LS3) = HS1

3 (LS3) = 0.

Note that α ⊗ yi is dual to yi and 1 ⊗ yi is dual to ayi. This matches the

findings of Basu [Ba] and Westerland [We] using the Universal Coefficient

Theorem.
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1 Zω 0 Zωy1 ⊕ Zωx 0 Zωy2 ⊕ Zωx2 0 Zωy3 ⊕ Zωx3 ⊕ Zωy2x/2Z

0 Z1 0 Zy1 ⊕ Zx 0 Zy2 ⊕ Zx2 0 Zy3 ⊕ Zx3 ⊕ Zy2x/2Z

E2 0 1 2 3 4 5 6

d2 d2 d2

Figure 3.3: The E2 page.

1 0 0 Za 0 Zay1 0 Zay2 0 Zay3

0 Z1 0 Zy1 0 Zy2 0 Zy3 0 Zy4

E∞ 0 1 2 3 4 5 6 7 8 9

Figure 3.4: The E∞ page.

3.2.4 The Spectral Sequence Associated with the Gysin

Sequence

To determine the erasing and marking maps, we will translate the Gysin

sequence into a spectral sequence and see how they arise in the computation

of the spectral sequence. We are using the fact that H∗(S1) = Λω where

|ω| = 1. Note that on the E∞ page, a = ωy1.
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First, we will compute the differential maps for the fibration (1.1) in the

spectral sequence. Note that the E∞ = · · · = E4 = E3 because all of the

differential maps di for i ≥ 3 are 0.

Since H1(LS3) = 0, the E∞ page has zeros along the 1 diagonal. This

means for the map d2 : Zω → Zy1 ⊕Zx, ker(d2) = 0 so the map is injective.

Since the entry E2,0
∞ = Zy1, the image of d2 must be Zx, so we can say that

d2(ω) = x (up to a sign). We have that d2(y1) = 0 and d2(x) = 0 also. Using

the multiplicative structure of the spectral sequence, we obtain the following

remark.

Remark 3.2.6.

d2(ωyi) = xyi

d2(ωxi) = xi+1

d2(ωyix
j) = yix

j+1

3.2.5 The Erasing Map e

In the Gysin sequence above for the circle fibration 3.1, the erasing

map e : can be viewed as the map induced by ε, the projection map in the

fibration 3.1, so e = ε∗. Since we are interested in seeing how the erasing

map acts on specific generators, we will instead look at the dual map ε∗.

The map ε∗ : H i
S1(LS3) → H i(LS3) can be derived from the spectral
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sequence of the above fibration 3.1. The map ε∗ is the composition of the

surjection map Ei,0
2 = H i

S1(LS3) → Ei,0
∞ = Ei,0

2 /im(d2) and the inclusion

map Ei,0
∞ → H i(LS3) [Mc]. This means that an image of a generator in

the bottom row of the E2 page of the spectral sequence by ε∗ is nonzero if

it survives to the E∞ page, and a generator’s image is zero if it does not

survive. The following remark is immediate.

Remark 3.2.7.

ε∗(xi) = 0

ε∗(yi) = yi

ε∗(yjx
i) = 0

(3.2)

To dualize ε∗ to obtain e, we need the Kronecker pairing as in the computation

of M .

Lemma 3.2.8.

e = ε∗ : H∗(LS
3)→ HS1

∗ (LS3)

α⊗ yi 7→ α⊗ yi

1⊗ yi 7→ (α⊗ yi+1)x

1⊗ 1 7→ 0.
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Proof. Since |α⊗ yi| = 2i, e(α⊗ yi) = kxi + l(α⊗ yi) for k, l ∈ Z. We have,

< ε∗(yi), α⊗ yi > =< yi, α⊗ yi >= 1

=< yi, ε∗(α⊗ yi) >

=< yi, kxi + l(α⊗ yi) >

= k < yi, xi > +l < yi, α⊗ yi >= l

and

< ε∗(xi), α⊗ yi > =< 0, α⊗ yi >= 0

=< xi, ε∗(α⊗ yi) >

=< yi, kxi + α⊗ yi >

= k < xi, xi > +l < xi, α⊗ yi >= k.

Therefore e(α⊗ yi) = ε∗(α⊗ yi) = α⊗ yi.

Since HS1

3 (LS3) = 0 and |1 ⊗ 1| = 3, we must have e(1 ⊗ 1) = 0. Since

|1⊗ yi| = 3 + 2i, these generators are of odd degree so they cannot be paired

with generators in cohomology since H2i+1
S1 (LS3) = 0 for i ≥ 0, so we need

to use another technique to find the image of 1⊗ yi. For this we will go back

to the Gysin sequence for the fibration (1.1).

For i = 1 we look at the following piece of the Gysin sequence.
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HS1

4 (LS3)) ∼= Z(α⊗ y2)⊕ Zx2 H2(LS3) ∼= Z(1⊗ y)

HS1

5 (LS3) ∼= Z/2Z((α⊗ y2)x) 0

M

e

Since e is surjective and ker(e) = im(M) ∼= 2Z(1 ⊗ y) by Lemma 6.2, we

have that im(e) ∼= Z/2Z(1⊗ y). Thus e(1⊗ y) = ±(α⊗ y2)x.

In general, we have the following.

HS1

2i+2(LS3) ∼= Z(α⊗ yi+1)⊕ Zxi+1 H2i(LS
3) ∼= Z(1⊗ yi)

HS1

2i+3(LS3) ∼=
∑i+1

j=2 Zj(α⊗ yj)xi−j+2

HS1

2i+1(LS3) ∼=
∑i

j=2 Zj(α⊗ yj)xi−j+1 0

M

e

c

M

We have that ker(e) = im(M) = (i+1)Z(1⊗yi), so im(e) ∼= (Zi+1Z)(1⊗yi).

Since the map c is given by the cap product with x ∈ H2
S1(LS3), c((α ⊗

yj)xi−j+2) = (α ⊗ yj)xi−j+1. So ker(c) = im(e) ∼= Zj(α ⊗ yi+1)x. We can

conclude that e(1⊗ yi) = (α⊗ yi+1)x.

3.2.6 The Marking Map M

We consider the dual of the marking map, M∗ : H i(LS3)→ H i−1
S1 (LS3).

This can be derived from the spectral sequence of the circle fibration 3.1. M∗

is the composition of the surjective map H i(LS3) −→ Ei−1,1
∞

∼= H i(LS3)/Ei,0
∞

and the injective map Ei−1,1
∞

∼= ker(d2) −→ Ei−1,1
2 [Mc].
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Remark 3.2.9.

M∗(yi) = 0

M∗(ayi) = (i+ 1)yi+1

Proof. Since the kernel of the differential d2 : (E−1,1
2
∼= 0) −→ (E1,0

2
∼= 0)

is 0, for 1 ∈ H0(LS3), M∗(1) = 0. To find the image of yi, we consider

the composition M∗ : (H2i(LS3) ∼= Zyi) −→ (E2i−1,1
∞

∼= H2i(LS3)/E2i,0
∞
∼=

Zyi/Zyi ∼= 0), so M∗(yi) = 0. The image of ayi can be determined by

identifying ayi with (i+ 1)ωyi+1. Then,

M∗ : H2i+1 → E2i+2,1
∞

∼= ker(d2) −→ E2i+2,1
2

ayi 7→ (i+ 1)ωyi+1 7−−−−→ (i+ 1)ωyi+1 = (i+ 1)yi+1

so M∗(ayi) = (i+ 1)yi+1.

To dualize M∗ to obtain M , we need the Kronecker pairing [Br].

Definition 3.2.10. The Kronecker pairing is a map

< −,− >: H i(X)⊗Hi(X)→ Z

such that for α = [f ] ∈ H i(X) and γ = [c] ∈ Hi(X) then

< α, γ >= f(c).
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Alternatively, for β : H i(X) → Hom(Hi(X)), the map from the universal

coefficient theorem,

< α, γ >= f(c) ∈ Z.

The Kronecker pairing satisfies the following property, which will be used to

dualize the map M∗:

< f ∗(α), γ >=< α, f∗(γ) >

Lemma 3.2.11.

M = M∗ : HS1

∗ (LS3) −→ H∗+1(LS3)

α⊗ 1 7−−−−−−→ 0

α⊗ yi 7−−−−−−→ i(1⊗ yi−1)

xi 7−−−−−−→ 0

(α⊗ yj)xi 7−−−−−−→ 0

Proof. Since H1(LS3) = 0, it is immediate that M(α ⊗ 1) = 0. To find the

image of α⊗yi ∈ HS1

2i (LS3), since M is a map of degree +1, the only possible

generator of H∗(LS
3) of degree 2i+1 is 1⊗yi−1. Let M∗(α⊗yi) = k(1⊗yi−1)
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for k ∈ Z. Then

< M∗(ayi−1), yi > =< ayi−1,M∗(α⊗ yi) >

=< ayi−1, k(1⊗ yi−1) >= k

=< iyi, α⊗ yi >= i.

This implies k = i, so M(α⊗ yi) = i(1⊗ yi−1).

We must have M(xi) = 0 since |xi| = 2i and the only generator on

cohomology that it can be paired with is ayi−1, which is not dual to xi.

Similarly, (α⊗ yj)xi gets sent to zero by M since it is torsion, mapping into

a free group.

3.2.7 The String Bracket [−,−]

Recall the string bracket from Definition 2.2.2

[a, b] = (−1)(|a|−3)e(M(a) •M(b))

of degree −1 for LS3.

The only possible non-zero bracket is from the pair α ⊗ yi, α ⊗ yj, as M

maps all other generators of HS1

∗ (LS3) to 0, thus the string bracket of these
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generators are also 0. We see that when i ≥ 1 and j ≥ 1,

[α⊗ yi, α⊗ yj] = (−1)2i−3e(M(α⊗ yi) •M(α⊗ yj))

= −e(i(1⊗ yi−1) · j(1⊗ yj−1))

= −e((ij)(1⊗ yi+j−2))

= −ij(α⊗ yi+j−1)x.

So the bracket is equal to zero if both i = 1 and j = 1 or if (i + j − 1) | ij

and non-zero in all other cases.

As it turns out, the only non-zero brackets are torsion elements, which

corresponds to the findings of [Ba], which are that the brackets are all trivial

when considering rational string homology of S3.

3.3 String Homology and the String Bracket

of Odd Spheres

3.3.1 String Homology for Odd Spheres

We try to compute the string homology for odd spheres using only the

Gysin sequence for the following fibration:

S1 → LSn × ES1 → LSn ×S1 ES1 (3.3)
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for n odd.

Recall that the loop homology is given as follows by [CJY]:

H∗(LSn) = Λ[a]⊗ Z[u]

where a corresponds to the dual of [Sn], so |a| = −n and |u| = n − 1 after

re-grading.

The BV-operator acts on the generators as follows, [Me]:

∆(a⊗ ui) =i(1⊗ ui−1)

∆(1⊗ ui) =0.

Throughout this section, we consider n to be odd. Consider the bottom of

the Gysin sequence. Let HS1

i denote HS1

i (LSn) and Hi denote Hi(LS
n)
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HS1

n+3 HS1

n+1 H2
∼= 0

HS1

n+2 HS1

n
∼= 0 H1

∼= 0

HS1

n+1 HS1

n−1
∼= Z⊕ Z H0

∼= Z(1⊗ 1)

HS1

n
∼= 0 HS1

n−2
∼= 0 H−1

∼= Z(a⊗ u)

HS1

n−1 HS1

n−3
∼= Z(γn−3

2
) H−2

∼= 0

HS1

n−2
∼= 0 HS1

n−4 0

...
...

...

HS1

4
∼= Z(γ2) HS1

2
∼= Z(γ) H−n+3

∼= 0

HS1

3 HS1

1 H−n+2
∼= 0

HS1

2
∼= Z(γ) HS1

0
∼= Z H−n+1

∼= 0

HS1

1
∼= 0 0 H−n ∼= Z(a⊗ 1)

HS1

0
∼= Z 0

∼= M

e

∼= M

e

M

e

M

e

M

e

∼= M

∼= M

e

∼= M

e

∼= M

e

∼= M

e,∼=

The mapsHS1

i −→ HS1

i−2 are given by the cap product with the class generator

x ∈ H2(CP∞). Since HS1

2 (LSn) ∼= Z, we denote the generator by γ, which is

dual to x. We use the notation γi = γi

i!
, dual to xi. Since the maps given by
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the cap product are isomorphisms between where the loop homology is zero,

we have that

HS1

2i+1(LSn) =0, 0 ≤ i ≤ n− 3

2

HS1

2i (LSn) =Z(γi), 1 ≤ i ≤ n− 3

2
.

Note that for even degrees, the generator γi increases subscript as isomor-

phisms in the sequence are given by cap product with x, dual to the cup

product with x.

To determine HS1

n−1(LSn), note that we have a short exact sequence,

0 −→ Z(a⊗ u) −→ HS1

n−1 −→ Z(γn−3
2

) −→ 0

that splits since the last term is free. Thus HS1

n−1(LSn) ∼= Ze(a⊗u)⊕ (γn−1
2

).

We use the notation of e(−) to denote that the generator comes from the

erasing map. Using the BV-operator to determing the marking map M :

HS1

n−1 → H0, we have that M(a⊗u) = 1⊗1, so the erasing map e : H0 → HS1

n

is zero, thus HS1

n (LSn) ∼= 0.

Lemma 3.3.1. M(γn−1
2

) = 0, or more generally, the marking map sends

generators coming from H∗(CP∞) to zero.

Proof. In the circle bundle (3.3) the marking map is an umkehr map coming

from the projection map. Notice that CP∞ = BS1 = {pt}×ES1 ⊂ LSn×S1

ES1. Since π−1({pt} ×S1 ES1) = {pt} × ES1, which is contractible, then
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M maps generators from CP∞ into a contractible space, thus M(γi) = 0 for

any i, where γi denotes a generator coming from the homology of CP∞.

With the knowledge that M(γn−1
2

) = 0, the cap product map HS1

n+1 →

HS1

n−1 is injective with image isomorphic to Z(γn−1
2

) so HS1

n+1
∼= Z(γn+1

2
).

Now consider the next piece of the Gysin sequence where loop homology

is non-zero.

HS1

2n+1 HS1

2n−1 Hn
∼= 0

HS1

2n HS1

2n−2
∼= Z⊕ Z Hn−1

∼= Z(1⊗ u)

HS1

2n−1 HS1

2n−3
∼= 0 Hn−2

∼= Z(a⊗ u2)

HS1

2n−2 HS1

2n−4
∼= Z(γn−2) Hn−3

∼= 0

HS1

2n−3
∼= 0 HS1

2n−5
∼= 0 0

...
...

...

HS1

n+3
∼= Z(γn−2) HS1

n+1
∼= Z(γn+1

2
) H2

∼= 0

HS1

n+2 HS1

n H1
∼= 0

∼= M

e

M

e

M

e

M

e

M

∼= M

e

∼= M

In the third and fourth row above, we have a short exact sequence with HS1

2n−2

in the center, which splits, so HS1

2n−2
∼= Z(e(a⊗u2))⊕Z(γn−1). Mapping HS1

2n−2

through M , we have M(e(a ⊗ u2)) = 2(1 ⊗ u) given by the BV-operator.
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Thus HS1

2n−1
∼= Z/2Z(e(1⊗u)). Since the cap product map HS1

2n → HS1

2n−2

is injective with image Z(γn−1), HS1

2n
∼= Z(γn). Summarizing, we have

HS1

2i+1(LSn) ∼=0,
n− 1

2
≤ i ≤ n− 2

HS1

2i (LSn) ∼=Z(γi),
n+ 1

2
≤ i ≤ n− 2

HS1

n−2(LSn) ∼=Ze(a⊗ u2)⊕ Z(γn−1)

HS1

n−1(LSn) ∼=Z/2Z(e(1⊗ u))

HS1

2n (LSn) ∼=Z(γn)

HS1

2i+1
∼=Z2(1⊗ u)γi−n−1 n− 1 ≤ i ≤ 3n− 5

2

HS1

2i
∼=Zγi

n

2
≤ i ≤ 3n− 5

2

Now assume the following holds for all k ∈ N:

HS1

2i
∼=

 Zγi if (n− 1) - 2i,

Zγi ⊕ Z(e(a⊗ ui)) if (n− 1)|2i.
(3.4)

for 1 ≤ i ≤ (k+1)(n−1)−2
2

and

HS1

2i+1
∼= tk

for k(n−1)
2
≤ i ≤ (k+1)(n−1)−2

2
, where tk is a torsion group of order k!. (We

would like to be able to say that HS1

2i+1
∼= Zk(e(1 ⊗ uk−1))γi− k

2
(n−1) ⊕ · · · ⊕

Z3e(1⊗ u2)γi− 3
2

(n−1) ⊕ Z2e(1⊗ u)γi−n+1, but there are extension issues that

are difficult to resolve, so we cannot say which torsion group HS1

2i+1 should

be.)
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Consider the k + 1-th non-zero piece of the Gysin sequence:

HS1

(k+1)(n−1)+4 HS1

(k+1)(n−1)+2 0

HS1

(k+1)(n−1)+3 HS1

(k+1)(n−1)+1 0

HS1

(k+1)(n−1)+2 HS1

(k+1)(n−1) Z(1⊗ uk)

HS1

(k+1)(n−1)+1 HS1

(k+1)(n−1)−1
∼=
⊕k

j=2 Zj Z(a⊗ uk+1)

HS1

(k+1)(n−1) HS1

(k+1)(n−1)−2
∼= Z(γ (k+1)(n−1)−2

2

) 0

∼= M

e

M

e

M

e

M

e

M

Thus, we can extract a short exact sequence from the last two lines of the

Gysin sequence above, giving us HS1

(k+1)(n−1)
∼= Z(e(a⊗uk+1))⊕Z(γ (k+1)(n−1)

2

).

It can be seen that HS1

(k+1)(n−1)+2
∼= Z(γ (k+1)(n−1)+2

2

) and that

torsion(HS1

(k+1)(n−1)+1) ∼= tk+1. Since HS1

(k+1)(n−1)+1 is all torsion since it

is sandwiched between a short exact sequence of torsion groups, we have

HS1

(k+1)(n−1)+1
∼= tk+1. Since loop homology Hi(LS

n) is zero for (k + 1)(n −

1) + 2−n ≤ i ≤ (k+ 2)(n− 1)− 1−n), we obtain the analogous statements

of (3.4) for k + 1. In summary, we get the following theorem.

Theorem 3.3.2. For n odd,

HS1

2i (LSn) ∼=

 Zγi if (n− 1) - 2i,

Zγi ⊕ Z(e(a⊗ ui)) if (n− 1)|2i.
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for 1 ≤ i ≤ (k+1)(n−1)−2
2

and

HS1

2i+1(LSn) ∼= tk

for k(n−1)
2
≤ i ≤ (k+1)(n−1)−2

2
, where tk is a torsion group of order k!. All

other j that does not fall into the above categories, we have that HS1

i (LSn) ∼=

HS1

i−2(LSn)

3.3.2 The String Bracket for Odd Spheres

The string bracket is a degree 2 − n map. The only possible non-zero

bracket is of the generators e(a ⊗ ui), since the marking map M sends all

other generators to zero.

Theorem 3.3.3.

[e(a⊗ ui), e(a⊗ uj)] = ije(1⊗ ui+j−2)

where e(1⊗ui+j−2) is a generator of Zi+j−1, so the bracket is only zero when

i+ j − 1 divides ij
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Proof.

[e(a⊗ ui), e(a⊗ uj)] =e(M(e(a⊗ ui)) •M(e(a⊗ uj))

=e(i(1⊗ ui−1) • j(1⊗ uj−1))

=e(ij(1⊗ ui+j−2)) = .

3.4 String Homology and the String Bracket

of Even Spheres

3.4.1 Computations for S4

Here we only use information from the Gysin sequence. As before, we

know that

H∗(LS4,Z) =
Λ(b)⊗ Z[a, v]

(a2, ab, 2av)

where |a| = −4,|b| = −1, and |v| = 6, so all of the generators look like avk,

bvk, vk, where |avk| = −4 + 6k, |bvk| = −1 + 6k, |vk| = 6k [CJY].
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We also know how the BV-operator acts,

∆(vk) = 0

∆(avk) = 0

∆(bvk) = (2k + 1)vk

from [Me]. Let’s consider the bottom of the Gysin sequence:

HS1

7 (LS4) HS1

5 (LS4) H2(LS4) ∼= Z2(av)

HS1

6 (LS4) HS1

4 (LS4) H1(LS4) ∼= 0

HS1

5 (LS4) HS1

3 (LS4) H0(LS4) ∼= Z(1)

HS1

4 (LS4) HS1

2 (LS4) H−1(LS4) ∼= Z(b)

HS1

3 (LS4) HS1

1 (LS4) H−2(LS4) ∼= 0

HS1

2 (LS4) HS1

0 (LS4) H−3(LS4) ∼= 0

HS1

1 (LS4) 0 H−4(LS4) ∼= Z(a)

HS1

0 (LS4) 0 0.

M

e

M

e

M

e

M

e

M

e

M

e

M

e

M
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The Gysin sequence, along with the BV-operator, allow us to determine that

HS1

0 (LS4) ∼= Z(e(a))

HS1

1 (LS4) ∼= 0

HS1

2 (LS4) ∼= Z(γ)

HS1

3 (LS4) ∼= Z(e(b))

HS1

4 (LS4) ∼= Z(γ2)

HS1

5 (LS4) ∼= 0

HS1

6 (LS4) ∼= Z(γ3)⊕ Z2(e(av))

HS1

7 (LS4) ∼= 0.

Here, γ is the generator from H2(CP∞). Continuing up the Gysin sequence

inductively, the kth piece of the sequence is as follows.
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HS1

6k+7(LS4) HS1

6k+5(LS4) H6k+2(LS4) ∼= Z2(avk+1)

HS1

6k+6(LS4) HS1

6k+4(LS4) H6k+1(LS4) ∼= 0

HS1

6k+5(LS4) HS1

6k+3(LS4) H6k(LS
4) ∼= Z(vk)

HS1

6k+4(LS4) HS1

6k+2(LS4) H6k−1(LS4) ∼= Z(bvk)

HS1

6k+3(LS4) HS1

6k+1(LS4) H6k−2(LS4) ∼= 0

HS1

6k+2(LS4) HS1

6k (LS4) H6k−3(LS4) ∼= 0

M

e

M

e

M

e

M

e

M

e

∼= M

Using the Poincaré polynomial for HS1

∗ (LS4,Z2) from [We],

(
1

1− t6

)(
t3 +

1 + t7

1− t2

)

which we can rewrite in a more useful way as follows

∞∑
k=0

(k + 1)(t6k + t6k+2 + t6k+3 + t6k+4) +
∞∑
k=1

k(t6k+1 + t6k+5).

From this, we see that HS1

6k+2(LS4,Z2) ∼=
k⊕
i=1

Z2 Using the Universal Coeffi-

cient Theorem,

0→ HS1

6k+2(LS4,Z)⊗ Z2 →
k⊕
i=1

Z2 → Tor(HS1

6k+1(LS4,Z),Z2)→ 0
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Since HS1

6k+1(LS4),Z) = 0, We have that HS1

6k+2(LS4,Z) ⊗ Z2
∼=

k⊕
i=1

Z2. We

knot that HS1

6k+2(LS4,Z) has a summand
⊕

i Z2l where
∑
l = k, then we

have

HS1

6k+2(LS4,Z)⊗ Z2
∼=
⊕
i

Z2l
∼=

k⊕
i=1

Z2.

So we must have that each l = 1. Therefore, we have the following proposi-

tion.

Proposition 3.4.1.

HS1

6k+7
∼= 0

HS1

6k+6
∼= Z(γ3k+3)⊕ Z2(e(avk+1))

k+1⊕
i=1

[Z2(e(avi)γ)]⊕ Ck

HS1

6k+5
∼= 0

HS1

6k+4
∼= Z(γ3k+2)

k+1⊕
i=1

[Z2(e(avi)γ)]⊕ Ck

HS1

6k+3
∼= Ze(bvk)

HS1

6k+2
∼= HS1

6k
∼= Z(γ3k)⊕ Ck−1.

Ck is some torsion group of order
∏k

i=1(2i+ 1). The torsion comes from the

fact that M(e(bvk)) = ∆(bvk) = (2k + 1)vk, which is where all of the odd

torsion groups come from.
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3.4.2 The String Bracket for S4

The string bracket for S4 is of degree −2. We know that the marking map

M maps generators from H∗(CP∞) to zero (Lemma 3.3.1), and it takes all

the torsion to zero since for those cases, M maps into zero or into a free

group. Thus, the only possible case for the bracket to be nonzero is for the

generators e(bvk). We have that

[e(bvk), e(bvl)] = (−1)e(∆(bvk) •∆(bvl))

= −e((2k + 1)vk • (2l + 1)vl)

= −(2k + 1)(2l + 1)e(vk+l)

= −4kle(vk+l).

We know that e(vk+l) has order 2(k + l) + 1,so the bracket is zero when

k 6= 0, l 6= 0, and (2k+ 2l+ 1)|(4kl+ 2k+ 2l+ 1), or when 4kl|(2k+ 2l+ 1),

but the latter number is odd, so this can never happen. Thus, the bracket is

always nontrivial in this case.

When k = 0 or l = 0, the bracket is zero.
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3.4.3 Computations for S2

We just state results for the string homology computations for S2, as the

computations for S4 are more illustrative. From [CJY] , we have

H∗(LS2) =
Λ(b)⊗ Z[a, v]

a2, ab, 2av

where |a| = −2, |b| = −1, and |v| = 2. The BV-operator acts as follows,

∆(vk) = 0

∆(avk) = 0

∆(bvk) = (2k + 1)vk + avk+1.

Proposition 3.4.2.

HS1

0 (LS2) ∼= Ze(a)

HS1

2 (LS2) ∼= Ze(a)γ ⊕ Z2e(av)

HS1

4 (LS2) ∼= Z⊕ Z2 ⊕ Z6

HS1

2i+1(LS2) ∼= Ze(bvi)

HS1

2j (LS2) ∼= Z⊕ Ck

where i ≥ 0, j ≥ 3, and Ck is a torsion group of order
∏j−1

k=1(4j − 2 − 4k).

The string bracket is only non-zero in odd degrees.
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Proposition 3.4.3.

[e(bvi), e(bvj)] = −4ije(vi+j)

which is not always zero since e(vi+j) is torsion, and all other brackets are

zero.

Proof.

[e(bvi), e(bvj)] = (−1)2i+1−2e(∆(bvi) •∆(bvj))

= −e(((2i+ 1)vi + avi+1) • ((2j + 1)vj + avj+1))

= −e((2i+ 1)(2j + 1)vi+j + (2i+ 2j + 2)avi+j+1)

= −(2i+ 1)(2j + 1)e(vi+j)

= −4ije(vi+j).

3.4.4 String Homology for Even Spheres

(CLEAN UP THIS SECTION) We have from [CJY] that, for n even.

H∗(LSn,Z) ∼=
Λ(b)⊗ Z[a, v]

(a2, ab, 2av)
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where |a| = −n, |b| = −1 and |v| = 2n− 2. By [Me] we have

∆(vk) = 0

∆(avk) = 0

∆(bvk) = (2k + 1)vk.

To keep track of things, |avk| = k(2n − 2) − n, |bvk| = k(2n − 2) − 1,

|vk| = k(2n− 2). Let us consider the bottom of the Gysin sequence:
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HS1

3n−1 HS1

3n−2 H2n−2
∼= Z(v2)

HS1

3n−2 HS1

3n−4 H2n−3
∼= Z(bv)

...
...

...

HS1

2n−1 HS1

2n−3
∼= 0 Hn−2

∼= Z2(av)

...
...

...

HS1

n+1 HS1

n−1
∼= Z H0

∼= Z(v)

HS1

n HS1

n−2 H−1
∼= Z(b)

...
...

...

HS1

2 HS1

0 H−n+1
∼= 0

HS1

1 0 H−n ∼= Z(a)

HS1

0 0

∼= M

e

∼= M

M

M

e

∼= M

∼= M

e

∼= M

e,∼=

from this sequence and knowledge of the BV-operator, we get
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HS1

0 (LSn) ∼= Za

HS1

1 (LSn) ∼= 0

HS1

2 (LSn) ∼= Zγ

HS1

3 (LSn) ∼= 0

HS1

4 (LSn) ∼= Zγ2

...

HS1

n−1(LSn) ∼= Ze(b)

HS1

n (LSn) ∼= Ze(v)⊕ Zγn
2

...

HS1

2n−2(LSn) ∼= Z2e(av)⊕ Z⊕ Zγ 2n−2
2

HS1

2n−1(LSn) ∼= 0

HS1

2n (LSn) ∼= Z2 ⊕ Z⊕ Z
...

HS1

3n−3(LSn) ∼= Ze(bv)

HS1

3n−2(LSn) ∼= Z2 ⊕ Z3e(v
3)⊕ Z⊕ Z

...
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HS1

4n−4(LSn) ∼= Z2 ⊕ Z2 ⊕ Z3 ⊕ Z⊕ Z

HS1

4n−3(LSn) ∼= 0

...

HS1

5n−5(LSn) ∼= Ze(bv2)

HS1

5n−4(LSn) ∼= Z2 ⊕ Z2 ⊕ Z2 ⊕ Z3 ⊕ Z⊕ Z
...

where all of the odd degree homology are isomorphic, and all even degree

homology are isomorphic, orHS1

i
∼= HS1

i−2m in the gaps denoted by the vertical

dots. The k-th piece of the sequence is as follows:

HS1

k(2n−2)+n+1 HS1

k(2n−2)+n−1 Hk(2n−2)
∼= Z(vk)

HS1

k(2n−2)+n HS1

k(2n−2)−2+n Hk(2n−2)−1
∼= Z(bvk)

...
...

...

HS1

k(2n−2)+1 HS1

k(2n−2)−1
∼= 0 Hk(2n−2)−n ∼= Z2(avk)

∼= M

e

∼= M

M

inductively, we have that

HS1

k(2n−2)−2
∼= Zk−1

2 ⊕ Ck ⊕ Z⊕ Z
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where Ck is a torsion group of order
∏k−1

i=1 (2i+ 1). The bottom of the above

Gysin sequence gives the short exact sequence

0→ Z2av
k → HS1

k(2n−2) → HS1

k(2n−2)−2 → 0

which gives

HS1

k(2n−2)
∼= Z2e(av

k)⊕ Zk−1
2 ⊕

(
torsion group of order

k−1∑
i=1

(2i+ 1)

)
⊕ Z⊕ Z.

Note that the even torsion can be resolved using the results by Westerland

in [We] (as in the above example for S4). From the top of the above Gysin

sequence, we get the following.

HS1

k(2n−2)+1(LSn) ∼= 0

...

HS1

k(2n−2)+n−1(LSn) ∼= Ze(bvk)

HS1

k(2n−2)+n(LSn) ∼= Zk2 ⊕ Ck ⊕ Z⊕ Z.

Summarizing, we get the following theorem.
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Theorem 3.4.4. Suppose n is even.

HS1

k(2n−2)−2(LSn) ∼= Zk−1
2 ⊕ Ck ⊕ Z⊕ Z

HS1

k(2n−2)+1(LSn) ∼= 0

...

HS1

k(2n−2)+n−1(LSn) ∼= Ze(bvk)

HS1

k(2n−2)+n(LSn) ∼= Zk2 ⊕ Ck ⊕ Z⊕ Z.

where all other unstated homology, we have HS1

i (LSn) ∼= HS1

i−1(LSn). .

3.4.5 The String Bracket for Even Spheres

Theorem 3.4.5. The string bracket is always zero except on the generators

e(bvj),

[e(bvk), e(bvl)] = −(4kl + 2k + 2l + 1)e(vk+l)

but e(vk+l) has order 2(k + l) + 1 so it is not always zero.

Proof.

[e(bvk), e(bvl)] = (−1)k(2n−2)−1−ne(M(e(bvk)) •M(e(bvl))

= −(4kl + 2k + 2l + 1)e(vk+l)
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Chapter 4

String Homology and String

Bracket Computations for

Surfaces

In this chapter we compute the string homology and string bracket for

surfaces.

4.1 The Torus

We can compute the loop homology of the torus T quite easily since we

already know the loop homology of S1. We compute the loop homology and

BV-operator using the following,
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H∗(LT ) ∼= H∗(LS1)⊗H∗(LS1)

and that we can compute the BV-operator as follows:

∆T (a⊗ b) = ∆(a)⊗ b+ (−1)|a|+1a⊗∆(b).

We obtain the following:

H−2(LT ) ∼=
⊕

(n,m)∈Z2

Z(1nm)

H−1(LT ) ∼=
⊕

(n,m)∈Z2

Zxnm
⊕

(n,m)∈Z2

Zynm

H0(LT ) ∼=
⊕

(n,m)∈Z2

Zznm

the loop product:

xnm • ykl = 1n+k,m+l

xnm • zkl = xn+k,m+l

ynm • xkl = yn+k,m+l

znm • zkl = zn+k,m+l

and the BV-operator:
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∆(1nm) = nxnm +mynm

∆(xnm) = nznm

∆(ynm) = −mznm

∆(znm) = 0.

To calculate string homology of the torus, we use the Gysin sequence:

0

HS1

3 (LT ) HS1

1 (LT ) H0(LT ) ∼=
⊕

(n,m)∈Z2 Zznm

HS1

2 (LT ) HS1

0 (LT ) H−1(LT ) ∼=
⊕

(n,m)∈Z2 Zxnm
⊕

(n,m)∈Z2 Zynm

HS1

1 (LT ) 0 H−2(LT ) ∼=
⊕

(n,m)∈Z1 Z(1nm

HS1

0 (LT ) 0

e

c M

e

M

e

M

e

we get the following:
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HS1

0 (LT ) ∼=
⊕

(n,m)∈Z2

Ze(1nm)

HS1

1 (LT ) ∼=
⊕

(n,m)∈Z2

gcd(n,m)=d
d 6=n,m

Zd(qn1e(xnm) + qm1e(ynm))
⊕
n|m
nd=m

Zn(e(xnm) + de(ynm)

⊕
m|n
md=n

Zm(de(xnm) + e(ynm))
⊕

(n,m)∈∆

Zn(e(xnn) + e(ynn))

⊕
gcd(n,m)=1

Z(qne(xnm) + qme(ynm))
⊕

gcd(n,m)=d

Z(qne(xnm) + qme(ynm))

⊕
n|m

Ze(ynm)
⊕
m|n

e(xnm)
⊕

(n,n)∈∆

Ze(ynn)⊕ Ze(x00)⊕ e(y00)

where for HS1

1 (LT ), (n,m) ∈ Z − (0, 0) for all n,m, and ∆ is the diagonal

in Z × Z, and each qi are polynomials in the quotients that show up in the

division algorithm for n,m. Note that the generator in the third to the last

summand could also have been chosen to be Ze(xnn). To calculate HS1

2 (LT ),

we look at the second and third line in the Gysin sequence above. Using that

H0(LT ) is free, and ∆ maps torsion to zero, the marking map is nonzero only

on the free elements of HS1

1 (LT ), we can extract the following short exact

sequence:

0→ H0(LT )

im(M) = im(∆)
→ HS1

2 (LT )→ Z100 → 0
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where the last part of the sequence comes from the kernel of M being gener-

ated by 100. We get that

H0(LT )

im(M)
=

⊕
(n,n)∈∆−(0,0)

Znznn
⊕
m|n

Znznm
⊕
n|m

Zmznm
⊕

gcd(m,n)=d
d6=n,m

Zqnn−mqmznm.

Thus, we have

HS1

2 (LT ) ∼=
H0(LT )

im(M)
⊕ Z100γ

From the very top of the Gysin sequence pictured above, we get thatHS1

3 (LT ) ∼=

ker(M), thus we have

HS1

3 (LT ) ∼= tor(HS1

1 (LT ))⊕ Zx00γ ⊕ Zy00γ.

Since loop homology higher than two is zero, we obtain the following isomor-

phisms:

HS1

2k (LT ) ∼= HS1

2 (LT )

HS1

2k+1(LT ) ∼= HS1

3 (LT )

for all k ≥ 2.
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Torus Bracket Computations

For [−,−] : HS1

0 (LT )⊗HS1

0 (LT )→ HS1

0 (LT ),

[e(1nm), e(1kl)] = (nl −mk)e(1(n+k),(m+l)).

which corresponds to the Goldman bracket for the torus in Proposition 1.1.3.

For [−,−] : HS1

0 (LT )⊗HS1

1 (LT )→ HS1

1 (LT ),

[e(1nm), e(q1xnm + q2ykl)] = (q1k − q2l)e(nxn+k,m+l +myn+k,m+l).

For [−,−] : HS1

1 (LT )⊗HS1

1 (LT )→ HS1

2 (LT ),

[e(q1xnm + q2ynm), e(q3xkl + q4ykl)] = (q1n− q2m)(q3k − q4l)e(zn+k,m+l)

which is torsion, and not always zero. All other brackets are zero.

String Lie Algebra Structure on the Torus

The center of the String Lie algebra can be directly computed from the

above bracket results. Let g(T ) denote the String Lie algebra for the closed
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torus, the center of the Lie algebra is as follows:

Z(g(T )) ∼= H(
∗S

1)(L0(T )
⊕

k∈Z−{0}

Ze(yk0)
⊕

l∈Z−{0}

Ze(x0l)

⊕
(m,n)∈Z2−{(0,0)}

Ze(zmn)⊕ tor(HS1

1 (LT ))⊕HS1

2 (LT )

where L0(T ) denotes the connected component of the loop space LT con-

taining the contractible loops.

4.2 Genus g > 1

Using that L(BG) = q[γ]BC(γ), for a closed, orientable surface Σg of

genus g > 1, we have

LΣg = LB(π1(Σg, ∗)) =
∐

[γ]∈π̂

BC(γ)

where [γ] is a conjugacy class in π1(Σg), or an element of π̂. By Kupers

[Ku], C(γ) ∼= Z for γ 6= e, where e is the identity in π1(Σg). This gives us

that BC(γ) = S1. For the centralizer of e, C(e) = π1(Σg) since everything

commutes with e, so BC(e) = Σg. Therefore, we have

LΣg =
∐

[γ]6=e∈π̂

S1 ∪ Σg.
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We can follow [Ku], and also knowing the loop homology of S1 and Σg, we

get the following

Theorem 4.2.1. (Kupers, [Ku], Theorem 2.2)

H−2(LΣg) =
⊕
γ∈π̂

Z[γ]

H−1(LΣg) = H1(Σg)
⊕

γ∈π̂−{e}

Zβγ

H0(LΣg) = Z1

Hi(LΣg) = 0 for i > 0.

Let H1(Σg) =
g⊕
i=1

Zai
g⊕
j=1

Zbi. Let κγ be the generator of C[γ], then γ = κ
lγ
γ ,
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where lγ ∈ Z. The loop product can be computed as follows [Ku],

1 • 1 = 1 (4.1)

βγ • 1 = βγ (4.2)

ai • 1 = ai (4.3)

bj • 1 = bi (4.4)

ai • aj = 0 (4.5)

bi • bj = 0 (4.6)

ai • bj = δij (4.7)

[γ] • 1 = [γ] (4.8)

β[γ1] • β[γ2] =
[β[γ1], β[γ2]]

lγ1 · lγ2
(4.9)

where (4.3)-(4.6) are just the homology intersection product on H1(Σg) and

the bracket in (4.9) is the Goldman bracket. We also can compute the BV-

operator as in [Ku], where the only non-trivial result is ∆([γ]) = lγβγ.

As before, we can use the Gysin sequence to compute string homology.

Consider the bottom of the Gysin sequence,
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0

HS1

3 (LΣg) HS1

1 (LΣg) H0(LΣg) ∼= Z1

HS1

2 (LΣg) HS1

0 (LΣg) H−1(LΣg) ∼=
⊕

γ∈π̂−{e}
Zβγ ⊕H1(LΣg)

HS1

1 (LΣg) 0 H−2(LΣg) ∼=
⊕
γ∈π̂

Z[γ]

HS1

0 (LΣg) 0

e

c M

e

c M

e

M

e

we get that HS1

0 (LΣg) ∼=
⊕
γ∈π̂

Ze([γ]). Since M ◦ e([γ]) = ∆([γ]) = lγβ[γ]

for [γ] 6= e, ∆([e]) = 0 and ∆(ai) = ∆(bj) = 0, we get that HS1

1 (LΣg) ∼=

H−1(LΣg)/
⊕

γ∈π̂−{e}
(Zlγβγ). Since M : HS1

1 (LΣg) → Z1 is the zero map,

HS1

2 (LΣg) sits in the following short exact sequence

0→ Z1 → HS1

2 (LΣg)→ im(c)→ 0.

Since im(c) = ker(M) = Ze([e]), then the above exact sequence splits and

HS1

2 (LΣg) ∼= Ze(1)⊕ Zs (EXPLAIN s). Therefore, we have the following:
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Proposition 4.2.2.

HS1

0 (LΣg) ∼=
⊕
γ∈π̂

Ze([γ])

HS1

1 (LΣg) ∼=
g⊕
i=1

Ze(ai)
g⊕
j=1

Ze(bi)
⊕

γ∈π̂−{e}

Zlγe(βγ)

HS1

2 (LΣg) ∼= Ze(1)⊕ Zs

HS1

2i+1(LΣg) ∼= HS1

1 (LΣg), i ≥ 1

HS1

2i (LΣg) ∼= HS1

2 (LΣg), i ≥ 1.

From this, we can compute the string bracket for Σg. The only non-trivial

bracket is the Goldman bracket.

Proposition 4.2.3.

[e([γ1]), e([γ2])] = [γ1, γ2] (4.10)

The second bracket in 4.10 is the Goldman bracket. So the only non-trivial

string bracket of string homology of Σg is the Goldman bracket as in Chapter

1.
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