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Abstract: The objectives of this study were to identify genetic loci in the bread wheat genome that
would influence yield stability and quality under water stress, and to identify accessions that can be
recommended for cultivation in dry and hot regions. We performed a genome-wide association study
(GWAS) using a panel of 232 wheat accessions spanning diverse ecogeographic regions. Plants were
evaluated in the Israeli Northern Negev, under two environments: water-limited (D; 250 mm) and
well-watered (W; 450 mm) conditions; they were genotyped with ~71,500 SNPs derived from exome
capture sequencing. Of the 14 phenotypic traits evaluated, 12 had significantly lower values under D
compared to W conditions, while the values for two traits were higher under D. High heritability
(H2 = 0.5–0.9) was observed for grain yield, spike weight, number of grains per spike, peduncle
length, and plant height. Days to heading and grain yield could be partitioned based on accession
origins. GWAS identified 154 marker-trait associations (MTAs) for yield and quality-related traits,
82 under D and 72 under W, and identified potential candidate genes. We identified 24 accessions
showing high and/or stable yields under D conditions that can be recommended for cultivation in
regions under the threat of global climate change.

Keywords: Triticum aestivum L.; water-limited; GWAS; grain protein content (GPC); grain yield;
marker trait association (MTA); quantitative trait loci (QTL)

1. Introduction

Wheat is a major source of starch and energy and essential compounds, such as
proteins, minerals, vitamins, and dietary fibers, which are beneficial for human health [1].
The demand for wheat, both for food and animal feed, is expected to increase due to world
population growth, estimated to be ~9.8 billion people by 2050 (World Population Prospects:
The 2017 Revision | UN DESA Publications (https://desapublications.un.org/publications)
(accessed on 1 June 2017). Hence, to meet the challenge of feeding the growing world
population, wheat production must grow by almost a billion tons by 2050 (from the current
production of 2.1 billion tons). Instead, the growth rate of wheat yields has stagnated since
the 1990s, mostly due to the severity of negative environmental factors such as drought or
high temperatures, which are expected to worsen with global climate change [2–5].
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Drought affects more than 42% of the worldwide wheat production area, and even
small deviations in water availability can significantly decrease grain yield [6–10]. Fur-
thermore, high temperatures combined with drought during grain formation and grain
filling periods can reduce productivity and grain quality [11–13]. For example, heat and
drought in Africa and the Mediterranean can cause a decrease in grain yields by 24% [14],
making it challenging to ensure food security in hot and arid regions such as parts of
sub-Saharan Africa and southeastern and western Asia (FAO, 2017; 2020). The occurrence
of spatial environmental heterogeneity requires a refined understanding of plant responses
to adverse variable conditions to enable the breeding of resilient wheat varieties that can
adapt to future climatic conditions [15–17]. High grain yield (GY) and grain protein content
(GPC) are key economic components that underlie successful wheat cultivars. GY and
GPC are complex quantitative traits, controlled by multiple gene loci that are influenced by
the environment. GY is determined by developmental processes including tillering, floral
development, plant architecture, phenology, plant height, and assimilate partitioning. Total
GY integrates several yield components, including the number of grains per spike, spikelet
per unit area, number of productive shoots, and thousand kernel weight [16,18–20]. GPC is
regulated by a complex genetic system and is affected by environmental factors such as
drought and heat, and by agricultural practices such as mineral fertilizer application since it
is highly dependent on nitrogen availability. GPC commonly shows a negative correlation
with GY [21]. High transpiration limits the rate of nitrogen mineralization and reduces its
uptake [22]. This in turn inhibits the deposition of starch, which leads to shriveled grain
and changes in the balance between glutenin and gliadin proteins, with repercussions for
quality [5].

Quantitative trait loci (QTL) mapping can be used to dissect the genetic loci under-
lying complex traits such as GY and GPC in wheat. For many years, QTL mapping was
applied to segregating populations derived from bi-parental crosses, and associations
between their loci and phenotypes of interest were investigated. The resulting QTL maps
provide the genetic locations of QTL regions, allelic effect, epistatic interactions, and infor-
mation on molecular markers flanking promising QTLs that can be used for breeding by
marker-assisted selection (MAS) [23,24]. QTL mapping based on bi-parental populations
may suffer from limited recombination events and/or low polymorphisms between the
parents. However, using a wild progenitor as a parent in a cross can increase the number
of polymorphic markers and improve QTL mapping [25,26]. During the last two decades,
genome-wide association studies (GWAS) have become a valuable tool for dissecting the
genetic architecture of complex traits in different crops [27–30]. Genomic technologies
and the availability of whole-genome sequencing of tetra- and hexaploid wheat provide
information on thousands of SNP markers that can be used for high throughput geno-
typing, identification of marker-trait associations (MTAs), and identification of putative
candidate genes that underlie the traits [27,31,32]. GWAS was used to dissect quality, biotic,
and abiotic stresses, and agronomic and yield-related traits in wheat, rice, barley, and
maize [33–37]. These studies demonstrated that GWAS performed with diverse germplasm
could improve QTL mapping resolution. GWAS was also used to identify 15 wheat rust
resistance QTLs, and 36 novel mineral concentrations QTLs for controlled introgression in
breeding programs [38]. Furthermore, advanced statistical-genetics models that consider
population structure and family relations are embedded in GWAS packages [39,40]. Using
various GWAS models, e.g., MLM [41–43], MLMM [44–46], and FarmCPU [47] enabled a
better understanding of the genetic determinants of cassava starch paste properties and
helped with clonal selection for starch quality. Candidate genes that underlie valuable traits
(i.e., either revealed by QTL mapping or by GWAS) can be identified and cloned based on
their physical location on available whole genome sequencing [23,31,48], or manipulated
by gene editing (CRISPR/Cas9 system) to enhance plant breeding efforts [49,50]. For
example, editing TaGASR7, TaGW2, and TaLOX2 in hexaploid wheat, and TdGASR7 in
tetraploid durum wheat, was used to detect relationships between these loci and grain
yield components [23].
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In this study, we used a wheat panel of 232 accessions from diverse ecogeographic re-
gions (Europe, Asia, Africa, the Mediterranean, Oceania, and America) [51]. The panel was
evaluated in the field under contrasting water availability and genotyped with 71,571 SNPs
derived from exome capture sequencing. The objectives of our study were to genetically
dissect the response to water stress in bread wheat by GWAS, and, to identify genetic loci
in the bread wheat genome that would influence yield stability and quality under water
stress. Based on the phenotypic response of the wheat panel to water stress, to identify
accessions can be recommended for cultivation in dry and hot regions which are under
threat of climate change.

2. Results
2.1. Descriptive Statistics of Phenotypic Traits

The data of 17 phenotypic traits were recorded in the 232 wheat accessions grown
under two water regimes, i.e., the D and W conditions (Table 1).

Table 1. Descriptive statistics of phenotypic traits measured under varying water supply in 232 ac-
cessions. Mean, minimum (Min), and maximum (Max) values, standard deviation (SD), coefficient
of variance (CV), and heritability estimates (H2) for grain yield (GY), grain protein content (GPC),
spike weight (SW), grain weight per spike (GWpS), grain number per spike (GNpS), number of
spikes per plot (NSpP), thousand-grain weight (TGW), the efficiency of grain filling (GFE), leaf area
(LA), specific leaf weight (SLW), plant height including spike (PH), peduncle length (PedL), spike
length (SL), days-to-heading (DH), Osmotic potential (OP), Flag leaf length (LL), Flag leaf width
(LW), (# = number).

Water-Limited (D) Well-Watered (W)

Traits Mean Min Max SD CV H2 Mean Min Max SD CV H2

GY, g/m2 480.85 83.64 908.04 160.90 33.46 0.75 659.49 55.21 1107.81 206.14 31.26 0.71

GPC, % 12.95 10.00 17.80 1.26 9.73 0.20 15.61 11.90 18.30 1.39 8.95 0.10

SW, g 2.27 1.22 4.38 0.60 26.48 0.55 2.86 1.35 5.56 0.78 27.17 0.89

GWpS, g 1.56 0.63 3.04 0.44 28.31 0.55 2.02 1.03 3.86 0.58 28.54 0.76

GNpS, # 40.13 17.33 76.67 9.74 24.28 0.36 45.82 21.67 83.67 11.04 24.10 0.41

NSpP, # 314.19 55.00 586.33 77.02 24.51 0.56 334.99 50.33 678.33 76.93 22.96 0.45

TGW, g 39.03 20.33 57.87 6.46 16.54 0.12 44.50 25.27 71.13 7.96 17.88 0.34

GFE, # 0.69 0.37 0.80 0.06 8.12 0.37 0.71 0.43 0.85 0.05 7.73 0.39

LA, cm2 25.91 9.42 45.10 6.34 24.46 0.46 29.58 13.50 57.71 7.51 25.39 0.28

SLW,
mg/cm2 5.78 4.45 7.40 0.58 10.13 0.21 5.39 4.00 7.54 0.62 11.56 0.21

PH, cm 101.15 47.50 139.00 21.12 20.88 0.75 112.84 53.83 152.67 23.75 21.05 0.87

PedL, cm 32.84 15.33 54.33 7.75 23.61 0.67 38.96 18.17 56.83 8.91 22.87 0.70

SL, cm 10.88 4.33 16.75 1.75 16.09 0.25 9.86 5.17 15.17 1.61 16.31 0.35

DH, # 106.09 84.00 127.00 10.88 10.25 0.46 108.07 85.67 127.00 10.37 9.59 0.99

OP, MPa −2.12 −2.81 −1.55 0.23 11.11 0.16 −1.64 −2.15 −1.27 0.20 11.09 0.17

LL, cm 20.62 11.87 30.58 3.49 17.00 0.32 22.85 15.05 35.45 4.03 17.62 0.29

LW, cm 1.65 0.87 2.23 0.21 12.69 0.20 1.70 1.16 2.28 0.23 13.61 0.13

Comparative characteristics of the distributions of phenotypic traits and correlation
coefficients under the two contrasting water conditions are presented in Figure S2. Analysis
of variance (ANOVA) revealed significant (p < 0.05) differences between D and W for all
the analyzed traits (Table S2). Three of them (OP, LL, and LW) were excluded that were
not significantly different between D and W were excluded from further analysis. Of the
14 tested traits, the values of 12 were lower under D (p < 0.05) as compared with W. The
greatest reductions of trait values by D were found in GY (27%), GWpS (22%), GPC (17%),
PedL (15.8%), LA (13.8%), TGW (11.7%), and PH (10%). The values of two traits—SL and
SLW—were higher by 7% and 8% in D as compared with W, respectively (Figure 1).
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Figure 1. Comparison of averages of phenotypic traits in the wheat panel of 232 accessions, measured
under well-watered (W) and water-limited (D) conditions. Key of traits and scales measured units:
grain yield (GY, g/m2), grain protein content (GPC, %), spike weight (SW, g), grain weight per spike
(GWpS, g), grain number per spike (GNpS, #), number of spikes per plot (NSpP, #), thousand-grain
weight (TGW, g), the efficiency of grain filling (GFE, #), leaf area (LA, cm2), specific leaf weight (SLW,
mg/cm2), plant height including spike (PH, cm), peduncle length (PedL, cm), spike length (SL, cm),
days-to-heading (DH, #).

Significant positive correlations were found between values of GY and yield compo-
nents (i.e., SW, GWpS, GNpS, NSpP, TGW, GFE) under both D and W conditions (0.32 to
0.74, p = 0.001 in D; and 0.38 to 0.75, p = 0.001 in W). Furthermore, significant negative
correlations were found under both water regimes between GY and PH, DH, and GPC
(−0.32 to −0.57, p = 0.001 in D; and −0.43 to −0.60, p = 0.001 in W). A positive correlation
was found between GY and SLW under W, while a negative correlation was found with
PedL (Figure S2).

Estimates of heritability (H2) for the 14 traits measured in both conditions, ranged
from 0.10 to 0.99 under W and from 0.12 to 0.75 under D. Under the W conditions, high
H2 (>0.70) was found for six traits (GY; SW; GWpS; PH; PedL, and DH); moderate H2

(0.20–0.50) was observed for the following traits (GNpS; NSpP; TGW; GFE; LA; SLW, and
SL). Low H2 (<0.20) was found for GPC in both water regimes. Under the D condition, H2

of more than 0.50 was found for six traits (GY; SW; GWpS; NSpP; PH; and PedL). Moderate
levels of H2 (0.20–0.50) were observed for the traits (GPC; GNpS; GFE; LA; SLW; SL and
DH) and the lowest H2 (0.12) was obtained for TGW.

2.2. Canopy Temperature and Stress Index

A thermal image of wheat experimental plots was acquired at midday on April 20th,
2017. The temperature map (Figure 2a) demonstrated the temperature difference between
the W and D conditions, as well as the wide variation within each treatment that shows non-
stressed (with a surface temp scale of 23.5–31 ◦C) accessions also under D. In accordance
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with this, CWSI of the plots under the W treatment varied between 0.65–1.15 with an
average of 0.8. In comparison, CWSI of the plots under the D treatment varied between
0.85–1.2 with an average of 1. Thus, both canopy temperatures and CWSI confirm the
high level of water stress imposed on the D treatment, and the within-treatment diversity
enabled the identification of accessions that were less affected by the stress (Figure 2c).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 24 
 

 

average of 0.8. In comparison, CWSI of the plots under the D treatment varied between 

0.85–1.2 with an average of 1. Thus, both canopy temperatures and CWSI confirm the high 

level of water stress imposed on the D treatment, and the within-treatment diversity ena-

bled the identification of accessions that were less affected by the stress (Figure 2c). 

 

Figure 2. (a) Surface temperature map of the experimental field consisting of well–watered (W), and 

water-limited (D) treatments; (b) Experimental field, where the border between two water regimes 

is marked with red flag; (c) Distribution of crop water stress index (CWSI) within the two treatments. 

2.3. Association of Phenotypic Traits with Geographic Origins 

Our wheat panel includes spring-type landraces, and modern cultivars of bread 

wheat that were bred and adapted to specific ecogeographic regions. With the recent 

threat of climate change (e.g., low precipitation and/or high temperature), there is a need 

to identify new cultivars that show higher plasticity under these conditions. It is also im-

portant to identify the most promising ecogeographic origin for drought-tolerant wheat 

germplasm. Although there is a large variation in ecology between and within continents, 

we further tested if the abilities of accessions to cope with water stress are related to their 

origin by continent.  

We found large variation in all phenotypic traits among accessions of the same eco-

geographic origins (Europe, Asia, Mediterranean, Africa, America, and Oceania). How-

ever, we also found large differences between continents. Due to the large variation within 

each continent, not all differences between continents were statistically significant (Table 

S3; Figure S3). Traits that were significantly different (p < 0.05) between origins under W 

and/or D, including (a) DH—were different between ecogeographic origins under both 

water regimes. African accessions showed the minimum DH under W and D. The average 

DH of the African and Mediterranean accessions under D was 16–19 days shorter than 

those from Europe and Asia. The longest DH of 115 days was found in the European ac-

cessions under W, and 113 days under D; (b) GY—the distribution of GY under both water 

regimes was different between African and European accessions and between Asian and 

the Mediterranean and with African accession. The highest average GY was obtained by 

the Mediterranean accessions. A minimal difference in GY between the two water re-

gimes, showing high yield stability between environments, was found in the African ac-

cessions (599.18 g/m−2. vs. 681.17 g/m−2), while maximal reduction of GY between D and 

Figure 2. (a) Surface temperature map of the experimental field consisting of well–watered (W), and
water-limited (D) treatments; (b) Experimental field, where the border between two water regimes is
marked with red flag; (c) Distribution of crop water stress index (CWSI) within the two treatments.

2.3. Association of Phenotypic Traits with Geographic Origins

Our wheat panel includes spring-type landraces, and modern cultivars of bread wheat
that were bred and adapted to specific ecogeographic regions. With the recent threat of
climate change (e.g., low precipitation and/or high temperature), there is a need to identify
new cultivars that show higher plasticity under these conditions. It is also important to
identify the most promising ecogeographic origin for drought-tolerant wheat germplasm.
Although there is a large variation in ecology between and within continents, we further
tested if the abilities of accessions to cope with water stress are related to their origin
by continent.

We found large variation in all phenotypic traits among accessions of the same ecogeo-
graphic origins (Europe, Asia, Mediterranean, Africa, America, and Oceania). However,
we also found large differences between continents. Due to the large variation within each
continent, not all differences between continents were statistically significant (Table S3;
Figure S3). Traits that were significantly different (p < 0.05) between origins under W
and/or D, including (a) DH—were different between ecogeographic origins under both
water regimes. African accessions showed the minimum DH under W and D. The average
DH of the African and Mediterranean accessions under D was 16–19 days shorter than
those from Europe and Asia. The longest DH of 115 days was found in the European
accessions under W, and 113 days under D; (b) GY—the distribution of GY under both
water regimes was different between African and European accessions and between Asian
and the Mediterranean and with African accession. The highest average GY was obtained
by the Mediterranean accessions. A minimal difference in GY between the two water
regimes, showing high yield stability between environments, was found in the African
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accessions (599.18 g/m−2. vs. 681.17 g/m−2), while maximal reduction of GY between
D and W was found in the American accessions (532.6 g/m−2 vs. 745.6 g/m−2). GY
in African accessions was on average, 31% (p < 0.001) higher than Asian accessions in
D; (c) PH- significant differences were found in PH measured at the two water regimes
in the European accessions (96.62 vs. 109.63) and Asian accessions (109.38 vs. 122.17).
PH of European accessions under D was lower by 12% (p < 0.05) than Asian accessions.
(d) SW of the Mediterranean accessions in D was 24% higher (p < 0.05) than that of the
Asian accessions. Under the W condition, the maximum value of SW was found in the
Mediterranean, and the minimum in the Asian accessions (3.22 vs. 2.55, p < 0.05); The small
group of eight American accessions did not differ significantly in SW between conditions;
(e) TGW of the Mediterranean accessions under W was 12% higher (p < 0.05) than that of
the European accessions; (f) GPC—the maximum discrepancy between treatments in GPC
was observed in the American accessions (12.46 vs. 15.15, p < 0.001) while it was minimal
for the Asian accessions (10.92 vs. 13.06, p < 0.05). Significant changes between the two
water regimes were found also in European accessions (11.28 vs. 13.72, p < 0.001). The GPC
of the Mediterranean accessions was reduced under D by about 16% (12.6 vs. 15.0, p < 0.05).

2.4. Identification of Drought-Tolerant and Stable Accessions

We used PCA analysis to select accessions that have high GY under each water regime
and accessions that show high yield stability across environments. The first two principal
components together accounted for 49.08% and 47.52% of the variance under W and D
conditions, respectively (Figure 3).
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Figure 3. Principal component analysis (PCA), and biplot vectors of 14 traits measured in the
232 wheat accessions in two water regimes: (a) well-watered (W) and (b) water-limited (D). Key:
grain yield (GY), grain protein content (GPC), spike weight (SW), grain weight per spike (GWpS),
grain number per spike (GNpS), number of spikes per plot (NSpP), thousand-grain weight (TGW),
the efficiency of grain filling (GFE), leaf area (LA), specific leaf weight (SLW), plant height including
spike (PH), peduncle length (PedL), spike length (SL), days to heading (DH).

Under W conditions, PC1 explained 31.89% of the variation in positive (GY, SW, GWpS,
GNpS) and negative (PH, PedL, and DH) traits, respectively. PC2 explained 17.19% of
the variation and was positively loaded by DH and NSpP, and negatively loaded by (PH,
PedL, and TGW). Under the D conditions, PC1 explained 29.58% of the variation in the
positively and negatively correlated traits. PC2 explained 17.94% of the variation and
was positive for (PH and PedL) and negative for (DH and GNpS). The relationship in the
form of interactions between traits was confirmed by the results of the correlation network
(Figure S4), which show for example that under D, a long period of DH will negatively
affect GY, SW, and GNpS.
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By calculating the cosine squared for GY (FC > 0.70) correlations, we identified 15 acces-
sions that performed the best under D and can be regarded as drought tolerant. In addition,
nine accessions showed excellent high and stable yields in both water regimes, five of
them were from Israel. Altogether, these 24 drought-tolerant and stable accessions mostly
originated from relative narrow latitudes ranging from 28◦ to 38◦, 20 of them being from
dry environments, in the Mediterranean, Africa, and Asia, and one accession originating
from Mexico (latitudes ranging from 30◦ to 16◦) present at (Table S4 and Figure 4).
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Under D, the maximum average of GY of (771.49 g/m2 ± 59.88 g/m2) was found
among 12 accessions from the Mediterranean, six from Israel, three from Turkey, and two
from Syria, with an average PH of (88 ± 8.56 cm) and DH (94 ± 3.52). The average GY of
the African and Asian drought-resistant accession ranged from 599.18 g/m2 to 765.35 g/m2.
We found additional 16 accessions that had high yield under W, six of them originated from
the Mediterranean while the rest, were from diverse ecogeographic regions from wider
latitude distributions, including Switzerland, Germany, and Bulgaria. In total, we identified
40 accessions that were grown in the hot and dry environment at the Israel Northern Negev
which can be recommended for cultivation in regions under threat of adverse climatic
conditions including high temperatures and low precipitation.

2.5. Description of GWAS. Genotyping and Genetic Structure of the Wheat Panel

We used a total of 71,571 SNPs for genotyping and further GWAS analysis, 42.2% of
the SNPs were mapped to the A genome, 49.8% to the B genome, and only 7.9% were
mapped to the D genome (Figure 5a).

SNP markers were not uniformly distributed among wheat chromosomes. As a result,
wheat chromosomes differ in length and the number of mapped SNPs. The lowest coverage
was found on all chromosomes of the D genome, of which Chr. 6D had the lowest length
size (486.2 Mb) and the greatest on Chr. 3B (828 Mb) (Figure 5b); the minimum number
of SNPs (5338) were mapped to chromosomes of group 4, of which Chr. 4B had the
lowest number, i.e., 1943, while the maximum number of SNPs were mapped to the Chr.
2 group (13,248).
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Figure 5. Distribution and density of SNPs mapped to the wheat genome: (a) Distribution of SNPs
on 7 chromosomal groups, and the number of mapped SNPs on each wheat genome A, B, and D;
(b) Density plot of SNPs mapped to the different wheat chromosomes.

2.6. Population Structure and Kinship Analysis

The results of STRUCTURE analysis based on markers with minor allelic frequency
(MAF) > 0.05 for the wheat accessions showed that ∆K was highest at K = 4, indicating the
presence of four main clusters in the population (Figure 6a).
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Figure 6. Population structure and kinship matrix of the wheat diversity panel based on 71,571 SNP
markers: (a) STRUCTURE analysis and plot of delta K (1 to 10), and the presence of a peak at K = 4 hint
at four subgroups. The 1st cluster (red), 2nd cluster (green), 3rd cluster (blue), and 4th cluster (yellow);
(b) Heat map of the identity-by-descent based on genomic relationship matrices (GRM).

Although some impurities were present within clusters, a very clear separation was
obtained. Thus, the red area in Figure 6a included 51 accessions consisting of 90.2% Asian,
with the remaining 5 accessions unevenly distributed over clusters two, three, and four. The
green area of 37 accessions was composed of 35% African, 54.5% Asian, and 32% European
accessions, respectively. The blue area of 116 accessions was composed of 6% African,
14.6% American, 23.27% Asian, 49.13 European, and 5.17% Oceanic accessions. The yellow
area consisted of 28 accessions, almost all (96.4%) were European accessions, with one
Asian accession. The kinship matrix used in GWAS gave similar results to the STRUCTURE
analysis (Figure 6b). For GWAS analysis, we used three PCs from the PCA as a fixed effect
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covariate in GAPIT to adjust for population structure. The first three PCs of marker data,
which explained 66.71% of the total variance, were used to draw a 3D plot of the population
structure (Figure S5).

2.7. Identification of Marker-Trait Associations (MTAs)

To identify the genetic loci associated with the agronomic traits under the D and W
conditions, we performed GWAS for all phenotypic traits with 71,571 SNPs. Five models in
GAPIT (GLM, MLM, MLMM, FarmCPU, and BLINK) were tested to determine the optimal
model for each trait [23]. The quantile-quantile (QQ) plots were used to determine false
associations. In the example presented in Figure 7a we show the five tested models for GY,
of them we selected FarmCPU in which its p-values were closest to the diagonal line of
expected p-values.
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Figure 7. Multilocus model for comparing GY in the wheat panel: (a) Quantile-quantile (QQ)
plot of five GWAS models (GLM, MLM, MLMM, BLINK, and FarmCPU) showing the expected
versus observed -log10 (p-value) of each SNP marker (shown as dots). The red line is the expected
distribution under the null hypothesis; (b) Minor allele frequency (MAF) plot –log10(p). The p-values
for each SNP marker were plotted against their MAF for the FarmCPU model.

The best model was selected based on no inflation of most of the p values in the QQ
plot, and only a few points deviating upwards [23]. After analyzing all traits using the five
models, FarmCPU was selected for most traits (i.e., GY, SW, GNpS, GWpS, NSpP, PH, PedL,
DH), while the GLM model was used for GPC. The significant MTAs were selected based
on FDR corrected p-values with a threshold of 0.05. A total of 154 highly significant MTAs
dispersed on all chromosomes were found for nine traits. Of them, 82 MTAs were found
under D, and 72 MTA were found under W conditions (Figure 8a). The complete list of
MTAs identified for all traits under the two water regimes is presented in Table S5.

Manhattan Plots were created for all measurements of traits and SNPs in the 232 ac-
cessions tested under the two water regimes (Figure 9).

Statistically significant MTAs are marked on the plots with red and green dots. Red
dots describe MTAs identified at (FDR < 0.01), the green dots (FDR < 0.05). For five traits,
(TGW, GFE, LA, SLW, and SL), we did not find significant MTAs at the FDR < 0.1 thresholds,
and a less decrease of FDR did not affect the detection of MTAs. Under W conditions,
no significant MTAs were found for GPC at the detection threshold of (FDR > 0.1), while
13 MTAs were found under D with an FDR of (0.08–0.1).
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Figure 8. The distribution of MTAs for the different traits were revealed under water-limited (D)
and well-watered (W) conditions: (a) MTAs in 21 wheat chromosomes; the colors represent an
increasing number of MTAs for each trait (e.g., 1 MTA (red), 2 MTAs (green); 3 MTAs (dark green));
(b) distribution of MTA distribution under D and W conditions, in A, B, and D genomes of wheat.
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Figure 9. Manhattan Plots across all 21 wheat chromosomes, for nine traits: GY—Grain yield; SW—
spike weight; GWpS—grain weight per spike; NSpP—number of spikes per plot; PH—plant height;
PedL—peduncle length; GNpS—grain number per spike; DH—days to heading; GPC—grain protein
content. SW, GNpS, GWpS, NSpP, PH, PedL, DH (FDR < 0.05), and GPC (FDR < 0.1). The (a) well-
watered (W), and (b) water-limited (D) conditions. The FarmCPU model was used for GY, SW, GNpS,
GWpS, NSpP, PH, PedL, DH, and the GLM model for GPC. The two horizontal lines indicate 10−4

and 10−6 thresholds of significance. The x-axis located 21 chromosomes in wheat. The y-axis located
p-values (−log transformed).
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2.8. Identification of MTAs Clusters in QTL Regions

We identified regions that included clusters of adjacent MTAs for a few traits. These
were regarded as QTL regions which may include genes with epistatic interactions (Table S5).
For example, Chr. 1A included 17 MTAs for GY, PedL, SW, NSpP, PH, DH, GNpS, and
GPC, clustered in 11 QTL regions. QTL 1A.10 included MTAs for PH and GPC under D,
and QTL 1A.11 included an MTA for GY under W conditions together with MTA for GPC
under D. The 23 MTAs for GY (13 found under W and 10 under D) were located almost
on all chromosomes except for 3A and 4A. Only one MTA on Chr. 5A (QTL cluster 5.11)
is found near MTA for DH under W. On the contrary, of the 20 MTAs found for DH, nine
were included in QTL regions or adjacent regions with MTA for one of yield components.
For example, QTL 1A.6 includes MTAs for GNpS in the two water regimes, together with
MTA for DH in W conditions; QTL 1A.8 included an MTA for DH, and in the adjacent QTL
1A.9, an MTA for SW, both QTLs were detected in the two water regimes. QTL region 5B.7
included an MTA for DH, the adjacent QTL 5B.8 included MTA for GNpP (under D).

We found an asymmetric distribution of MTAs between the A- and B-genomes under
D, with a much higher number of MTAs, found in the B genome under D (27 A vs. 48 B),
respectively, as compared with those found under W conditions (35 A vs. 27 B) (Figure 8b).
Furthermore, MTAs were not evenly distributed among the wheat chromosomes, five
chromosomes carried more than 10 MTAs (1A had 17; 2B-11; 5B-16; 6B-20, and 7A-12) while
three chromosomes carried only 5 MTAs. On Chr. 1B, 3A, 7B, and on Chr. 4A we found
two MTAs. Chr. 6B was found as an important source of MTAs, containing 20 in total, 13 of
which were detected under D. Furthermore, four adjacent QTLs in 6B (6B.10–6B.13) were
enriched in MTAs for yield (GY and SW) under both conditions, and for NSpP and DH
only under D. We did not find a correlation between the number of SNPs and MTAs found
on each chromosome. Nevertheless, since genome D carried both the lowest number of
SNPs—probably due to the low diversity of genome D and low number of MTAs—we
believe that the number of MTAs found on genome D is underestimated (only seven under
the two conditions) (Figure 8b).

2.9. Candidate Genes Identified in QTL Regions

We found 513 and 604 high confidence genes around the 154 MTAs associated with
the traits (in a frame of ±250 Kb from the MTA), using their physical location on Triticum
aestivum cv. Chinese Spring genome as a reference (Table S7). Based on gene annotation
(GO) and a literature search, we assembled a shorter list of 41 candidate genes potentially
associated with abiotic stresses i.e., drought, dehydration, cold, or heat (Table S6). Below are
examples of candidate genes deduced from MTAs for GY and GPC. A total of 23 significant
MTAs were found for GY on almost all chromosomes; nine were identified under D and
14 under W conditions, while 5 significant MTAs were found for GPC only under the
D conditions.

2.9.1. MTAs for GY under D

The most significant MTAs for GY were found in QTL regions 1A.11, 2A.2, 2D.1, 3B.3,
4B.5, 5A.5, 5B.11, 6B.4, 6B.11, and 7D.5 (Table S5, Figure 9). SNP WTa_076e74 found on
Chr. 6B.4 resides in a gene encoding a plant-type leucine-rich repeat-containing N-terminal
protein. Leucine-rich repeat (LRrR) receptor-like kinase (RLK) proteins play key roles in
various biological pathways. Hypersensitivity response was observed in the rice LRR-RLK1
(OsGIRL1) Oryza sativa gene, in response to salt and heat stress, while a hyposensitivity
response was observed to osmotic stress [52,53]. A second SNP, WTa_07bcda on Chr. 6B.11
resides in a gene encoding a transcription factor—Zinc finger NHR/GATA-type. Zinc finger
transcription factors negatively regulate stomatal closure by directly modulating genes
associated with H2O2 homeostasis and define a novel DownSTream (DST)-mediated H2O2
signaling pathway. Loss of DST function increases stomatal closure and reduces stomatal
density, resulting in increased drought and salt tolerance in rice [26]. SNP WTa_030a25
on Chr. 2D.1 resides in a gene encoding protein with the CRAL-TRIO lipid-binding
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domain. This domain is found in proteins containing a SEC14 domain which was found
to be associated with drought in wild barley [27], and a target of miR1436 under heat
stress in rice [28], and in a ZmSEC14p from maize (Zea maize L.) that was upregulated in
response to cold, salt, and Abscisic acid (ABA) [29]. The deduced protein of the candidate
gene for drought tolerance found in wild barley (Hsdr4) shows similarity to the rice Rho-
GTPase-activating protein-like with a Sec14 p-like lipid-binding domain [27]. Downstream
of WTa_030a25 we found a gene (TraesCS2D02G506500) encoding transcription factor,
with the AP2/ERF domain. The AP2/ERF genes constitute a large multigene family,
involved in increased tolerance to salt, drought, and diseases [31]. SNP WTa_03c4ed in
3B.3 was close to the gene (TraesCS3B02G040700), encoding a cation efflux protein. Cation
efflux protein genes play a critical role in many aspects of plant growth, development,
signaling, and stress response and are responsible for maintaining PH homeostasis and
ion concentration in all living organisms [25,33]. The SNP WTa_0525cf in 4B.5 resides
in a gene annotated as Alpha-L-arabinofuranosidase, known to be involved in cell-type-
specific cell wall structure [32]. Close to this SNP we found the gene (TraesCS4B02G132500)
annotated as an NAC domain transcription factor, that is involved in response to water
stress and senescing leaves (https://github.com/Borrill-Lab/WheatFlagLeafSenescence/
blob/master/data/TFs_v1.1.csv (accessed on 29 October 2018).

2.9.2. MTAs for GY under W

SNP WTa_008782 found on Chr. 1A.7 resides in a gene encoding a protein from a
superfamily with RmlC-like cupin domains which are important storage proteins associ-
ated with plant development [48]. RmlC-like cupin superfamily proteins and the cupin
family were increased under flood stress [33]. Cupin proteins are widely associated with
roles in extracellular matrix modification and interactions with plant pathogens and with
salt stress [34,35]. SNP WTa_01a98f on Chr. 2A.1 resides in a gene (TraesCS2A02G299400),
encoding protein kinase domain wheat participates in the regulatory networks governing
stress processes including cytoplasmic calcium oscillation for drought. They are important
components of MAPK cascades that play a critical role in plant growth and develop-
ment [29]. SNP WTa_067bd2 on Chr. 5B.11 resides in (TraesCS5B02G521100), encoding
a protein with IQ- motif, EF-hand binding site known to have a key role in plant growth
and development, as well as in stress signaling as an important second messenger calcium
Ca2+ [36]. Stimuli such as plant hormones, gravity, light, cold, heat, drought, anoxia, salt,
touch, injury, and attack by pathogens can quickly cause an increase in cytosol-free Ca2+

([Ca2+]cyt) [37]. The 89 DEGs were found that are potential N-sensitive candidates and indi-
cate broader associations between nitrate and calcium signaling [38]. SNPs WTa_0bda7d
in 7D.5 resides in (TraesCS7D02G402600), annotated as cyclophilin-type peptidyl-prolyl
cis-trans isomerase domain. Transcriptional changes in the gene encoding proteins in the
cyclophilin-type peptidyl-prolyl cis-trans isomerase/CLD were an effective foundation for
enhancing photosynthesis and CO2 tolerance in algae [54].

2.9.3. MTAs for GPC under D

MTAs were located on Chr. 1B, and 2A, two on Chr. 2B, and two on Chr. 6B.
The QTL 6B.7 resides at the same location as the high grain protein gene Gpc-B1 that
was previously cloned [55,56]. SNP WTa_078f94 resides at locus TraesCS6B02G262000,
encoding a protein with ATP-dependent peptidase activity. ATP-dependent peptidase
activity increases the synthesis and accumulation of water-soluble carbohydrates (sucrose)
through glycolysis, providing an important mechanism for water conservation in plants
during drought stress [52]. The SNP WTa_02013f on Chr. 2B resides in a gene encoding
a zinc ion binding protein. Zinc finger ion binding proteins play a key role in resistance
to abiotic stress; the ZAT18 gene positively regulated drought tolerance in transgenic
Arabidopsis lines varying in ZAT18 expression [53].

https://github.com/Borrill-Lab/WheatFlagLeafSenescence/blob/master/data/TFs_v1.1.csv
https://github.com/Borrill-Lab/WheatFlagLeafSenescence/blob/master/data/TFs_v1.1.csv
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3. Discussion

In this study, we used GWAS to dissect the genetic basis of GY, yield components, and
GPC, under two water regimes in field conditions. The phenotypic results identified high
variability among accessions for all traits, and statistical analyses indicated that 14 traits
were significantly affected by water deficit. The thermal imaging of the field and the
calculated stress index confirmed that plants in the D treatment were more stressed than in
W. Most importantly, the variability between plots indicated that the collection included
accessions with a variety of responses to drought. It is known that there are a general
decrease under water stress conditions in GY and most yield components [57–59]. We found
a reduction of GY and most yield components (SW, GWpS, GNpS, NSpP, TGW, GFE) which
mostly exhibited high positive correlation among them, and negative correlations between
GY and PH, DH, and GPC. A negative correlation between PH and GY could be attributed
to fewer grains/ears in the tallest plants [60,61]. The different ratios of yield components to
GY can be explained by the influence of the environment on plant growth [14]. This study
shows that early maturation, small plant size, and reduced leaf area, are all expected to
decrease plant photosynthetic activity, and were associated with drought tolerance. We
found a reduction of GPC under D, a decrease in the quality and quantity of grains under
water stress is associated with the impaired development of the reproductive organ [62,63].
Increasing the number of grains contributes to wheat yield potential under a limited water
supply [64] and [14]. Moisture deficiency during flowering and at the time of ripening leads
to impaired translocation of photosynthates to the grain and poor assimilation, forming
respiratory losses [65].

The wheat panel comprised of landrace and modern cultivars of hexaploid wheat ac-
cessions from Europe, Asia, the Mediterranean, Africa, America, and Oceania, representing
the worldwide eco-geographical range of grown cereals. The accessions were selected to
identify trends in the frequency and location of sequence-predicted functional variants over
geographical and environmental space [66]. Most of the accessions are cultivars that were
bred for specific environments. We found that DH and GY were the main traits that could
differentiate accessions based on their origin. GWAS analysis identified that 9 of 20 MTAs
for DH reside in QTL clusters, or in relative proximity to MTA for a GY-component, and
one QTL that included MTAs for GY and DH. Accessions from arid and Mediterranean
climates, regions characterized by low precipitation and hot temperatures at grain filling,
exhibited earlier DH and higher GY. Early reproduction (terminal drought escape) has
been a successful breeding strategy for Mediterranean environments, which is possibly
the reason for the association between early flowering and high GY in our experiment [67].
No less important are the 11 of 20 MTAs for DH that are not associated with GY or yield
components, which are possibly associated with a drought resistance mechanism other
than earliness. Combining earliness with additional drought resistance mechanisms may
lead to greater drought resilience as compared to a single resistance mechanism. In contrast,
accessions from temperate regions which are characterized by lower temperatures and
high-water availability showed lower GY under both conditions. For example, the African
accessions which had the shortest DH were the most stable between the two contrasting
environments in terms of GY, while the European accessions required more DH and showed
the greatest reduction of GY by 35%. Global climate change requires understanding the
genetic basis of crop adaptability in response to drought [68]. Plant plasticity in response
to drought is linked to changes in flowering phenology which impact GY [69–71]. The
genomic architecture of the plasticity of wheat agronomic and physiological traits in re-
sponse to drought demonstrated the effect of heading time on adaptation to varying water
conditions [71]. The late flowering and different combinations of photoperiod sensitivity
alleles in Ppd-A1 and Ppd-B resulted in reduced grain weight and GY [72]. PCA analysis of
yield-related traits measured in the wheat panel enabled to identify of drought-adapted
wheat accessions that outperformed under D or W conditions or in the two water regimes:
(a) 15 accessions performed best under D conditions can be regarded as drought-resistant;
(b) 9 accessions performed well under both drought and W conditions and can be regarded
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as drought resistant and stable between environments. Many of these 24 accessions origi-
nated from the Mediterranean (12) and Africa (5), but some high-yielding accessions under
drought were from Asia (Japan, China, and India) and two from America (Mexico and
Argentina). (c) the third group of sixteen accessions showed high GY under W can also
be regarded as resilient accessions since they performed well in conditions of 450 mm.
Annual precipitation of 450 mm is not regarded as high rainfall at their origin in Europe or
America (e.g., Germany average of 780 mm; Bulgaria has an average of 670 mm annual
rainfall; Switzerland has annual rainfall from 800 mm to 2400 mm). It was shown that in
Portugal, such conditions at the most susceptible growth stage of post-anthesis and grain
filling period can negatively affect GY [73]. The location of our experiment in the Israeli
Northern Negev is warmer and drier than the typical Mediterranean climate and causes
high evaporative demand in the late spring (ca. April-May) when precipitation is low.
Thus, our analysis demonstrates the importance of evaluating the wheat panel in the hot
and dry Israeli Northern Negev. The identified 40 accessions can be excellent candidates
for cultivation in regions undergoing desertification.

GWAS identified 154 highly significant MTAs for nine of 14 traits (GY, DH, GWpS,
GNpS, PedL, NSpP, PH, SW, and GPC). MTAs were found on most of the wheat chro-
mosomes, but they were not equally distributed among the A-, B-, and D-genomes or
within the chromosomes in each genome. The low number of SNPs mapped on genome
D probably led to the identification of a very low number of MTAs on this genome. The
low nucleotide diversity within the D-genome was described earlier [66,74,75]. We found
that under D conditions, the distribution of MTAs between the A- and B-genomes was
asymmetric—there were more MTAs on the B-genome compared to the A-genome (48 un-
der D vs. 27 under W, p < 0.05). In allotetraploid plants such as wheat, genome asymmetry
implies that the homoeologous genes on the A-, B-, and D-genomes each make differential
contributions to various traits. Genome asymmetry was previously found in the propor-
tion of domestication-related QTLs in the B- and A-genomes [76,77]. For example, the
B-genome included many genes regulating ecological adaptation and tolerance to abiotic
stress, e.g., genes involved in wax production that would affect drought tolerance, boron
tolerance, tolerance to iron deficiency, low cadmium uptake, and resistance to herbicides.
Genes associated with plant and spike morphology and other traits of the ‘domestication
syndrome’ are more abundant in the A-genome [74]. The number of “domestication QTLs”
mapped to the A-genome was twice the number on the B-genome, supporting the concept
of “genome asymmetry” in the domestication of wheat [78].

In the current study, we identified that Chr. 6B is an important source for 20 MTAs, of
which 13 MTAs clustered into nine QTLs were found under D. These 13 MTAs contributed
27% of all 48 MTAs found on the B-genome under D. Seven MTAs for yield were found
in four adjacent QTLs (6B.10–6B.13) under D and/or W conditions. Under D, we found
QTLs for GY at 6B.10 and SW at 6B.12. Under D, we also found QTLs for SW and the NSpP
at 6B.12; QTLs for GY and DH at 6B.11; and DH at 6B.13. We suggest that this region can
be regarded as a hotspot of genes influencing yield in response to low water availability.
On Chr. 6B, we also found two MTAs for GPC, the first (6B.1) is novel, while the second
MTA found at 6B.7 mapped to the same location as the previously cloned Gpc-B1, which
is derived from wild emmer wheat [51]. This QTL was also found in two other mapping
populations derived from wild emmer wheat [79]. The importance of Chr. 6B as a source
of alleles for breeding was demonstrated by the locations of yield QTLs [80–83]. The
29 QTLs were identified in 179 recombinant inbred lines population tested in saline fields
and determined that more than half of the loci were on chromosomes 2B and 6B, which are
aligned with QTLs controlling the number of grains per ear and grain weight per ear [84].
The effect of heat stress on winter soft wheat, at flowering and grain filling, activated
genes in the QTLs on Chr. 6B, which were associated with a response to post-anthesis heat
stress and with the maintenance of thousand-grain weight under heat [85]. Interestingly,
a meta-QTL analysis performed on 230 published reports from 1999–2020 for tetraploid
wheat showed that the Chr. 6B accumulates QTL effects/genes for the main features that
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underscore GY [86]. In addition, the high-temperature yellow rust resistance gene Yr36
was also cloned from Chr. 6B [87,88]. Sequencing of Chr. 6B revealed the location of
the Nor-B2 and Gli-B2 genes that are important for homologous recombination and GPC,
respectively [89]. Rice OsGW2 is associated with grain width [90], and its orthologue in
wheat, TaGW2 cloned from Chr. 6A had SNPs in its promoter region associated with seed
width and TKW [91]. Further haplotype association analysis in wheat showed that heading
time and maturity date varied among modern cultivars between Hap-6B-1 and Hap-6B-4.
TaGW2 on Chr. 6B has a stronger effect on TKW than TaGW2 on Chr. 6A, and Hap-6B-1
was the preferred grain width and weight-increasing haplotype that had undergone strong
positive selection [82]. The strongest genetic diversity selection on TaGW2-6B occurred at
the tetraploid level and was found in the promoter regions [92]. Several studies in wheat
were conducted to confirm the association of TaGW2 homologous in wheat and to confirm
its function as it was known in rice as a negative regulator for grain width [93,94]. Overall,
the down-regulation of TaGW2 copies resulted in smaller wheat kernels, thus suggesting
that TaGW2 is a positive regulator of grain size-related traits [90]. Generated mutations
in the homoeologous copies of the TaGW2 by gene editing and TILLING, confirmed its
negative regulation mechanism and showed that in TaGW2-6B mutant caused the highest
single-genome increases in grain size in the cultivar [95]. Searching the physical location
of TaGW2-6B in our GWAS study shows that it is found downstream of QTL 6B.6 MTA
for SW under W (physical location 252094108) as compared with its location in the Norin
cultivar. Many candidate genes were found for MTAs on Chr. 6B were associated with
stress response are described in Table S6, the above information supports our GWAS results
suggesting that Chr. 6B is an important source for yield-related genes underlines important
QTL for breeding.

4. Materials and Methods
4.1. Plant Materials

The current study consisted of 232 bread wheat (Triticum aestivum) accessions selected
from a larger global wheat diversity panel comprising 487 accessions of hexaploid and
tetraploid wheat, that was assembled by the European consortium (Whealbi) and described
previously by [66]. The passport data of the full wheat panel can be retrieved through
the URGI portal (https://wheat-urgi.versailles.inra.fr/Projects/Whealbi (accessed on 1
January 2019)). We first confirmed that plants have spring-type phenology under the Israeli
winter conditions by growing them in 2015–2016. For the current 2016–2017 experiment we
used spring-type bread wheat accessions, including landraces, and modern cultivars from
54 countries of the five continents: Europe (10), Asia (93) (37 from the Mediterranean and
56 from East Asia countries), America (18), Africa (12) and Oceania (6). The passport data
of 232 accessions and varieties used in the current study are presented in Table S1.

4.2. Field Experiment

Plants were grown in winter 2017 (December 2016 to May 2017) in Israel. The experi-
ment was conducted in a homogenous field, at Urim farm at the Northern Negev region
(31.324257; 34.532265), under two treatments: water-limited (D) and well-watered (W). The
set up included two main plots, one per treatment, each consisting of three replicates in
a randomized block design. Each experimental plot (1.2 m × 2 m) consisted of six 2 m
long and 0.2 m spaced rows, sown at a rate of 170 seeds per m2. Precipitation during the
growing season was 140 mm, which was supplemented for both treatments by sprinkles up
to 250 mm, the amount designated for the D treatment. To avoid a spill of water from the W
to the D treatment, drip irrigation was used to supplement the W treatment with additional
water up to its designated amount, 450 mm (Figure S1a). A 2 m wide border was sown
between the main plots of the two treatments, thus avoiding penetration of groundwater or
plant roots between plots. The average maximum temperature during grain filling varied
from 23 ◦C (on 15th April to 15th May) and 30 ◦C (on 16th May to 15th June) (Figure S1b).
Weed, diseases, and insects were treated as needed, according to the recommendation for

https://wheat-urgi.versailles.inra.fr/Projects/Whealbi
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commercial wheat cultivation in that region. Additional biotic or abiotic stress which could
affect the results cannot be controlled in such a large field experiment, however, if it occurs
influences all accessions tested in the field.

4.3. Phenotyping

The field plots were inspected twice weekly to determine days-to-heading (DH). A
plot was determined as heading when the spike emerged for 1

4 of its length in 50% of the
plants (Zadoks DGS 53). Flag leaf length (LL, cm), Flag leaf width (LW, cm), and Flag leaf
area of two plants/plot (LA = length × width × 0.75, were 0.75 is an empirical coefficient)
and specific leaf weight (SLW = weight/LA) were assessed. Upon maturity, two plants
of each plot were measured in the field for (a) plant height (PH, from the soil surface to
spike top), (b) peduncle (upper internode) length (PedL; cm), and (c) spike length (SL; cm).
Subsequently, 15 spikes were manually harvested from each plot and used to determine
the average spike weight (SW; g). Spikes were threshed and grain weight per spike was
calculated (GWpS; g), grains were counted to determine grain number per spike (GNpS)
and thousand-grain weight (TGW; g), grain filling efficiency (GFE = GWpS/SW), and the
number of spikes per plot (NSpP = grain yield/GWpS) were calculated. Osmotic potential
(OP, MPa) was determined to sample leaves for 1–2 weeks after heading. Finally, the
entire plot was harvested mechanically (Wintersteiger, Delta Plot combine) and grain was
weighed to determine total grain yield (GY; g/m2). Grains extracted from the 15 spikes
were also used to determine grain protein content (GPC, %).

For analysis GPC, 1.5 gr. of seeds were ground using a Laboratory Mill 3310 (Perten a
PerkinElmer company, Waltham, MA, USA). Then, the flour was tested for GPC by Perten
Inframatic 9520 NIR Flour Analyzer (Perten a PerkinElmer company, Waltham, MA, USA).

4.4. Thermal Imaging of Plant Canopy

An aerial thermal imaging campaign was conducted at midday on April 20th, 2017. A
FLIR SC655 camera (FLIR® Systems, Inc., Bilerica, MA, USA) was mounted on a 6-engine
drone (Datamap Group, Bnei Brak, Israel). More details on the thermal camera, flight height
and pre-processing can be found in [96]. During the imaging, a meteorological station
was mounted in the field to measure the meteorological conditions. Image analysis and
mapping were conducted using ArcGIS (ESRI, Ltd., Tokyo, Japan). Following the separation
of canopy pixels from soil pixels [97] crop water stress index (CWSI) was calculated [96–98]
as follows: CWSI = (Tcanopy − Twet)/(Tdry − Twet). Where Tcanopy is the temperature of the
canopy in the thermal image, and Tdry and Twet are two reference temperatures. Tdry was
set as air temperature + 50 ◦C [99,100] and Twet was calculated using the energy balance
equation [101]. More details on the approach for calculating CWSI can be found in [97].

4.5. Statistical Analysis of Phenotype Data

All phenotypic data were normalized using the Shapiro–Wilk test before analysis. The
problem of asymmetric distributions was addressed using the Box–Cox transformation
in the R package (https://cran.r-project.org/web/packages/caret (accessed on 9 August
2022)). The statistical package (STATISTICA.V10, StatSoft. Inc. 2011, Tulsa, OK, USA) was
used for descriptive statistics, and correlation for all statistical analyses unless specified
otherwise. Sample homogeneity was determined by the deviation of the coefficient of
variation (CV). Variables with a scatter threshold CV greater than 35% were excluded
from the analysis. Analysis of variance (ANOVA) was used to assess the possible effects
of accessions and environmental conditions. The results were considered significant at
p < 0.05 or p < 0.01 and the mean comparisons were performed using Tukey’s honest
significant difference (HSD) test. The variation of each trait under the two watering regimes
was presented by employing the “ggplot2” package in R (https://cran.r-project.org/web/
packages/ggplot2/index.html (accessed on 3 May 2022)). The squared cosine values were
calculated from principal component analysis (PCA). Squared cosine values of traits and
genotypes provide obvious estimates about them. If genotypes or traits having higher

https://cran.r-project.org/web/packages/caret
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values (factor scores >70) in 1PC and lower values in 2PC are regarded as promising
genotypes or traits irrespective of conditions. If a genotype has, a lower square cosine
value in the 1PC and has a higher squared cosine value in 2PC regarded as a notorious
genotype [62,102,103]. Correlation coefficients were calculated by Pearson’s method at a
significance level of p < 0.05 using the “Corrplot” package (https://github.com/kwstat/
corrgram (accessed on 29 April 2021)). BLUP values were calculated using Henderson’s
matrix notation as follows: Y = Xβ + Zu + e. Where Y is the vector of observed phenotypes;
β is an unknown vector containing fixed effects, including the genetic marker, population
structure (Q), and the intercept; u is an unknown vector of random additive genetic effects
from multiple background QTL for individuals/lines; X and Z are the known design
matrices, and e is the unobserved vector of residuals. The u and e vectors are assumed to
be normally distributed with a null mean and variances. Broad sense heritability (H2) in
the individual environment was estimated by H2 = σ2

a/σ
2

a + σ2
e. Where: H2—heritability;

σ2
a as the additive genetic variance, and σ2

e is the residual variance in the “Heritability”
package (https://cran.r-project.org/web/packages/heritability (accessed on 13 December
2019)) in R language package (www.r-project.org, (accessed on 10 March 2022)).

4.6. Genotyping

As described above, the global hexaploid and tetraploid wheat panel was assembled
by the European consortium (Whealbi). The genotyping of this collection was conducted
within the framework of the consortium. All the information on DNA extraction, exome
design, exome sequencing, and variant calling are available in [66]. As members of Whealbi
consortium we used genotyping of 232 accessions for GWAS. Briefly, SNPs were generated
by Exome capture (NimbleGen SeqCap EZ Exome kit), and sequencing was performed
using the Illumina HiSeq2500 high throughput model, providing an average of 34 million
read pairs per genotype. The genotyping data obtained for the full Whealbi exome capture
sequencing result included ~390,000 SNPs. SNP data that were excluded from GWAS
analysis included: minor allele frequency (MAF) of less than 5%, and SNPs that had more
than 25% missing calls.

4.7. Population Structure and Kinship Matrix

The population structure of the wheat panel was assessed using the Bayesian clus-
tering method in STRUCTURE version 2.3.4 [104]. Population structure was determined
by inferring K from two to ten using 5000 burn-in iterations followed by 10, 000 MCMC
(Markov-Chain Monte Carlo) iterations and five replications for each K. For analysis,
clusters Evanno’s correction method was applied [105]. The obtained results were ana-
lyzed using STRUCTURE harvester (http://taylor0.biology.ucla.edu/structureHarvester
(accessed on 1 July 2014)) to get the appropriate K value. Information about relation-
ships is conveyed through the kinship (K) matrix, which is used in a mixed linear model
(MLM) as the variance-covariance matrix between the individuals. To improve the statistics
and power of the analysis, a kinship matrix (K) based on genetic markers was used in
conjunction with the population structure (Q+K).

4.8. Genome-Wide Association (GWAS) and Identification of Marker-Trait Associations (MTAs)

For GWAS we used the R package Genome Association and Prediction Integrated
Tool (GAPIT) (http://www.maizegenetics.net/GAPIT (accessed on 4 May 2022)) [23]. Five
GWAS models were used: General Linear Model (GLM), MLM, Mixed Linear Multiple Loci
Model (MLMM), Fixed and Random Circulating Probability Unification Model (FarmCPU),
and Bayesian information and Linkage disequilibrium Iteratively Nested Keyway (BLINK).
The population structure analysis included a PCA matrix (P), and a kinship matrix (K)
were tested in GAPIT. The significance of associations between markers and phenotypes
(MTA) was assessed using the false discovery rate (FDR) [106]. The best model for each
trait was chosen based on the distribution of the p-values using QQ plots [107]. The chosen
best model was through the maximum of the observed p-values with the expected ones
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with a minimum deviation from the trend made it possible to choose models that more
fully describe the MTA [107]. MTAs were identified at an FDR-adjusted p-value of 0.05,
except for MTAs where the threshold was set to 0.1 due to low and moderate H2. A region
of ~1 Mbp that contains a few adjacent MTAs (clusters of MTAs) was regarded as a QTL
region. Manhattan plots and SNP-density plots were generated by rMVP package [108].
Gene annotation of T. aestivum cv. Chinese Spring (IWGSC RefSeq annotation v2.1) was
used to retrieve high-confidence genes surrounding each MTA, in a window of ±250 Kb.

5. Conclusions

The present GWAS identified significant genetic polymorphism and high phenotypic
diversity in the response to water stress. Most of the measured phenotypic traits were
negatively affected by water stress. Our analysis identified accessions, which mainly
originate from the Mediterranean and Africa, that show high GY under water-limited
conditions or with stable yield in W and D conditions. These excellent wheat accessions can
be recommended for cultivation in regions experiencing low precipitation and increased
temperatures. GWAS identified 154 MTAs, partly residing in clusters in QTL regions, that
have a significant effect on GY, or yield components, and GPC under water-limited and/or
well-watered conditions; some of them can be used for breeding. A higher number of
MTAs identified under D were found in genome B than in A or D genomes, with Chr. 6B as
the main contributor. Based on the physical location of the MTAs, we identified promising
candidate genes underlying yield-related traits.
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