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Abstract

Background

Previously, using microarrays and mRNA-Sequencing (mRNA-Seq) we found that occupa-

tional exposure to a range of benzene levels perturbed gene expression in peripheral blood

mononuclear cells.

Objectives

In the current study, we sought to identify gene expression biomarkers predictive of benzene

exposure below 1 part per million (ppm), the occupational standard in the U.S.

Methods

First, we used the nCounter platform to validate altered expression of 30 genes in 33 unex-

posed controls and 57 subjects exposed to benzene (<1 to�5 ppm). Second, we used

SuperLearner (SL) to identify a minimal number of genes for which altered expression

could predict <1 ppm benzene exposure, in 44 subjects with a mean air benzene level of

0.55±0.248 ppm (minimum 0.203ppm).

Results

nCounter and microarray expression levels were highly correlated (coefficients >0.7,

p<0.05) for 26 microarray-selected genes. nCounter and mRNA-Seq levels were poorly cor-

related for 4 mRNA-Seq-selected genes. Using negative binomial regression with adjust-

ment for covariates and multiple testing, we confirmed differential expression of 23

microarray-selected genes in the entire benzene-exposed group, and 27 genes in the

<1 ppm-exposed subgroup, compared with the control group. Using SL, we identified 3

pairs of genes that could predict <1 ppm benzene exposure with cross-validated AUC esti-

mates >0.9 (p<0.0001) and were not predictive of other exposures (nickel, arsenic, smoking,
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stress). The predictive gene pairs are PRG2/CLEC5A, NFKBI/CLEC5A, and ACSL1/

CLEC5A. They play roles in innate immunity and inflammatory responses.

Conclusions

Using nCounter and SL, we validated the altered expression of multiple mRNAs by benzene

and identified gene pairs predictive of exposure to benzene at levels below the US occupa-

tional standard of 1ppm.

Introduction

Benzene is a major industrial chemical and an extensive environmental contaminant present

in traffic exhaust and cigarette smoke [1, 2]. It induces myelodysplastic syndrome and acute

myeloid leukemia [3] and probably causes non-Hodgkin lymphoma [4] and other hematopoi-

etic neoplasms [5–8]. In the U.S., occupational exposure levels are typically below 1 part per

million (ppm) [9], the current permissible occupational exposure limit [10]. Development of

biomarkers of exposure to benzene, particularly in people exposed below 1 ppm, would be a

useful step towards improving risk assessment and minimizing adverse health effects.

We previously conducted a cross-sectional molecular epidemiological study of benzene

exposure in factory workers in China, in which we found decreased white blood cell (WBC)

counts in workers occupationally exposed to< 1 ppm benzene compared with non-occupa-

tionally exposed controls, and a highly significant dose-response relationship [11] with no

apparent threshold within the occupational exposure range (0.2 to 75 ppm benzene) [12].

Other groups have reported effects at low levels of benzene, including increased blood mito-

chondrial DNA copy number and altered global and gene-specific DNA methylation [13],

increased micronuclei [14], reduced expression of CD80 and CD86 in monocytes, and

increased levels of IL-8, suggestive of compromised adaptive immunity and immunosurveil-

lance [15].

Previously, we sought to identify transcriptomic biomarkers of benzene exposure in periph-

eral blood mononuclear cells (PBMC) [16, 17], as these cells are accessible and altered gene

expression reflects effects throughout the body [18, 19]. Through microarray analysis of 125

subjects, we reported that occupational exposure to benzene at a range of levels from <1 ppm

to>10 ppm (n = 59), perturbed the expression of many genes and pathways compared to

non-occupationally exposed controls [16]. We identified a 16-gene expression signature asso-

ciated with all levels of benzene exposure [16] and later showed that differential expression of

the majority of genes was not associated with PBMC cell composition [20]. Our large study

incorporated precise, individual measurements of exposure, and accounted for multiple

sources of biological and experimental variability. More recently, in a subset of 10 highly-

exposed (>5 ppm) subjects and 10 control subjects matched by age, sex, and smoking status,

we applied mRNA sequencing (mRNA-Seq) and confirmed some microarray genes and path-

ways and identified additional genes [17].

The goal of the current study was to identify a minimal number of genes for which altered

expression could predict exposure to<1 ppm benzene. First, we used the nCounter platform

from NanoString Technologies, which has advantages over microarrays and real-time PCR

[21], to validate our previous transcriptomic findings. Being a digital count-based method, it is

linear over a greater dynamic range than microarrays and has sensitivity similar to that of Taq-

Man real-time PCR. It has reduced technical variability and bias compared with RNA-Seq due
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to fewer processing steps such as mRNA enrichment. Finally, it can measure the expression of

up to 800 transcripts simultaneously from 100 nanograms (ng) RNA. Second, we used Super-

Learner [22], an innovative ensemble machine learning methodology, to identify gene expres-

sion biomarkers predictive of<1 ppm benzene exposure.

Materials and methods

Study subjects

The subjects were from a molecular epidemiology study of occupational exposure to benzene

that comprised benzene-exposed shoe manufacturing workers and non-occupationally

exposed age- and sex-matched clothes-manufacturing workers from factories in the same

region near Tianjin, China [11, 23]. This study complied with all applicable requirements of

the U.S.A. and Chinese regulations, including IRB approval. Participation was voluntary and

written informed consent was obtained. Exposure assessment to benzene was performed as

described previously [23].

Biologic sample collection was described previously [23, 24]. Field-stabilized samples were

transported on dry ice and RNA was isolated by the mirVana™ miRNA isolation kit (Applied

Biosystems, Austin, TX). All RNA samples analyzed had A260:A280 and A260:A230 ratios

between 1.7 and 2.1, and had distinct 28S and 18S rRNA bands with approximately 2:1 ratios

following denaturing agarose gel electrophoresis.

Previously, we analyzed gene expression by microarray in 42 control subjects and 83 sub-

jects exposed to benzene exposure levels ranging from <1 ppm to> 10 ppm [16]. We had suf-

ficient RNA material left from 90 subjects for analysis by nCounter. The 90 subjects include 33

controls, 44 subjects exposed to<1 ppm benzene, 9 subjects exposed to 5–10 ppm, and 4 sub-

jects exposed to> 10 ppm. Twenty subjects, including 10 controls and 10 subjects exposed

to� 5 ppm, were also previously analyzed by mRNA-Seq [17]. Demographic and exposure

details are provided in Table 1. The mean air benzene level in the 44 <1ppm subjects was

0.55±0.248 ppm and the minimum level was 0.203 ppm.

Selection of genes

The nCounter probeset comprised genes previously detected as differentially expressed by

microarray (26 genes in 125 subjects) [16] and by mRNA-Seq (4 genes in 20 subjects) [17],

and 3 reference genes. Details including RefSeq IDs, FDR-adjusted p-values and benzene-

induced fold changes in expression are provided in S1 Table. Differential expression of the

microarray data was previously analyzed using linear mixed effects models to estimate the log

fold change in expression for each gene between control subjects and categories of benzene

Table 1. Characteristics of study subjects.

Exposure

Category

Subject

(n)

Benzene

(ppm)

WBC count

(per μl blood)

Age

(Years)

Gender Current Smoking

Male Female Yes No

Control 33 0.035 6261 (1642) 29 ± 8.6 14 (36.8)� 19 (36.5) 7 (41.2) 26 (35.6)

< 1 ppm�� 44 0.55 ± 0.248# 5466 (1271) 28.9 ± 8.8 22 (58) 22 (42.3) 8 (47.0) 6 (49.3)

5–10 ppm 9 6.98 ± 1.1 5344 (1518) 27.9 ± 8.5 1 (2.6) 8 (15.4) 1 (5.9) 8 (11.0)

� 10 ppm 4 30.69 ± 25.64 4700 (455) 29.3 ± 15.3 1 (2.6) 3 (5.8) 1 (5.9) 3 (4.10)

�Subject number (%),

��Average level of benzene<1 ppm (in the 3 months prior to phlebotomy),
# mean air benzene level ± SD values. WBC, white blood cells

https://doi.org/10.1371/journal.pone.0205427.t001
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exposure, including <1 ppm, 5–10 ppm, and >10 ppm [16], with adjustment for multiple test-

ing by Benjamini-Hochberg [25]. Expression of most of the 26 microarray-selected genes was

significantly increased across multiple exposure categories relative to the controls, with average

ratios>1.5. Significant decreases in CEBPA expression occurred in 3 exposure categories

(0.7-fold average ratio) and of MPL at>10 ppm only (0.45).

For the RNA-Seq data, negative binomial models were previously used to estimate fold

changes in gene expression between exposed (>5 ppm) and control subjects, with adjustment

for multiple testing by Benjamini-Hochberg (n = 184) and a chi-squared goodness of fit t-test

(n = 146) [17]. Of the 4 genes selected from the RNA-Seq study, 3 were significantly upregu-

lated (CMYA5, TTC9B,PLCL1) and 1 (ZNF703) was downregulated,�1.5-fold.

We selected 3 reference genes that were reported in the literature to be stably expressed in

PBMCs: the widely-used beta-2 microglobulin (B2M), as well as ribosomal protein large, P0
(RPLP0) and phosphoglycerate kinase 1 (PGK1) [26].

nCounter assay

We used the nCounter platform from NanoString Technologies to analyze the expression of

the 33 selected mRNAs in 100 ng RNA from the 90 study subjects. The automated platform

uses two 50 base pair probes per mRNA that hybridize in solution: a Reporter Probe that car-

ries a fluorescent molecule barcode and a Capture Probe that enables the complex to be immo-

bilized for data collection [21, 27].

The specific mRNA regions targeted, NanoString probe IDs, and melting temperatures of

the probe pairs are detailed in S2 Table. Six technical replicates were included to assess replica-

tion and account for batch effects. Six positive control probes (POS A-F) and their correspond-

ing RNA targets at various concentrations from 128 fM to 0.5 fM were included in the assay to

account for systematic variation introduced by pipetting, sample purification, and imaging.

Negative control probes (with no corresponding targets, NEG A-H) were included to control

for non-specific background noise, i.e. non-specific carryover of reporter probes. The 96 sam-

ples were distributed across 8 batches for processing (S3 Table). Raw target counts were col-

lected using the NanoString data collection software, nSolver. The raw target counts were

background corrected, normalized to the mean of the positive control probes for each assay,

and then normalized to the geometric mean of the reference genes (B2M, PGK1, and RPLP0).

Thus-normalized target gene counts were analyzed by unsupervised clustering in Multiple

Experiment Viewer software [28], using default settings, after being log2-transformed and

mean centered by gene (row).

Correlation of expression levels across platforms

For all 33 genes, we measured the strength of the association between the log2 transformed

microarray intensities and log2 transformed nCounter normalized counts in all 90 subjects,

and between the RNA-Seq and nCounter normalized counts for the 19 subjects in common

between the studies. Using the cor.test function in R and normalized data, we calculated Pear-

son and Spearman correlation coefficients and their corresponding p-values, the latter to test

whether the coefficients were significantly different from zero. A benefit of the less parametric

Spearman’s rank correlation coefficient is that it does not matter if the scales of the expression

measures of the two platforms are equivalent or if they are linearly related as one can simply

measure the monotonic association between them. However, both Pearson and Spearman

approaches to calculating p-values assume that gene expression across all subjects, as measured

on each platform, have independent, normal distributions.

Gene expression biomarkers of benzene exposure
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Differential expression analysis of nCounter data and comparison with

microarray and RNA-Seq

Differential expression analysis of the nCounter data (after excluding a randomly selected repli-

cate from each replicate pair) was done by negative binomial regression and an empirical Bayes

method to moderate the gene-wise quasi-likelihood dispersions, using the glmQLFit function in

the edgeR package (https://bioconductor.org/packages/release/bioc/html/edgeR.html). The

estimated coefficients from the gene-wise models are used as estimates of log fold changes in

expression due to three levels of benzene exposure (<1 ppm, 5–10 ppm, and>10 ppm). The

glmQLFTest function uses the estimated dispersions to compute moderated F-statistics to test

whether all the exposure level coefficients are equal to zero, versus having at least one coefficient

different from zero. It is a moderated F-statistic because the glmQLFTest function shrinks the

dispersions and then uses these to compute a slight variation on the typical F-statistic. The neg-

ative binomial regression analyses were done in two ways: (1) without adjusting for any vari-

ables other than the three binary benzene exposure level variables (<1 ppm, 5–10 ppm,

>10 ppm), and (2) adjusting for benzene exposure, smoking status, age, batch, and gender.

SuperLearner approach to identify mRNAs predictive of benzene exposure

Going beyond the usual differential expression analysis, we sought to build predictors of ben-

zene exposure. Specifically, the goal was to build a function that could take as input the expres-

sion levels of the 30 non-reference genes (or a subset of them) for any given subject, and

generate as output the estimated probability that the subject has been exposed to benzene. In

mathematical notation, the goal is to build a predictor function E[Y|X] = P(Y = 1|X), where Y

is the binary indicator of benzene exposure at the <1 ppm level and X is a vector of 30 or fewer

gene expressions. We focused on< 1 ppm benzene because 1 ppm is the current U.S. occupa-

tional standard [10] and we had a sufficient sample size for this exposure level. Thus, 33 con-

trol subjects and 44 subjects exposed to< 1 ppm were included in the analysis. The mean air

benzene level in the <1ppm group was 0.55 ± 0.248 ppm, and the minimum exposure level

was 0.203 ppm. Before building the prediction functions, differential expression analysis of the

nCounter data from this subset of 77 subjects was performed as described above, both with

and without adjustment for smoking status, age, batch, and gender.

The SuperLearner (SL) algorithm [29] uses a cross-validation procedure to test a combina-

tion of a user-specified set of candidate prediction algorithms. It is available as a statistical

package CVSuperLearner [30] in the programming language, R [31]. SL is based on the statisti-

cal theory, Oracle Inequality [22, 32], which posits that, under certain assumptions, using

cross-validation to select the best performing algorithm is equivalent to the so-called Oracle

Selector (choosing the algorithm by knowing the true model), even if a very large number of

selectors are used. The ability to use a library of statistical modeling techniques from simple to

more complex, offers gains over any specific candidate algorithm in terms of flexibility to accu-

rately fit the data, and potentially more precise prediction.

We built an exposure prediction function using the CVSuperLearner package in R, specify-

ing 10 folds for cross-validation and a library of the following 6 learners: logistic regression

"SL.glm", stepwise regression with Aikake Information Criterion "SL.stepAIC", Bayesian gen-

eralized linear model [33] "SL.bayesglm", Random Forest [34] SL.randomForest", generalized

additive models (with different levels of smoothing) [35] "SL.gam", and "SL.mean". ‘SL.mean’

takes the sample average of the outcomes in the training set as the predicted value of the out-

comes in the left out fold, for each iteration of the internal cross-validation in SuperLearner.

We included a variety of algorithms that relied on different models and assumptions (e.g. tree-

based algorithms, linear algorithms, etc.), and that were appropriate for the binary nature of

Gene expression biomarkers of benzene exposure

PLOS ONE | https://doi.org/10.1371/journal.pone.0205427 October 9, 2018 5 / 21

https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://doi.org/10.1371/journal.pone.0205427


the outcome variable (benzene exposure). A library with six algorithms has the advantage of

being computationally efficient.

The CVSuperLearner function split the 77 by 30 expression matrix into 10 folds, and for each

fold, each of the 6 learners in the library was trained on all folds but that one fold, and tested on

the fold left out. Thus, as a result each learner has a vector of cross-validated predicted probabil-

ities of exposure, (Z1, . . .,Z6). CVSuperLearner then chooses the best convex combination of the

proposed learners by running a logisitic regression of the exposure outcomes on the predicted

probabilities from each learner, P(Y = 1|Z) = expit(β1Z1 + � � � +β6Z6), thereby earning its name

as an ensemble method. The best convex combination is defined as the combination that mini-

mizes the expected squared error loss function for this regression problem. The final prediction

function is therefore expit(β1Z1 + � � � + β6Z6). Finally, the resulting prediction function was

externally cross-validated to assess the performance of the final prediction function.

First, using all 30 non-reference genes and using the cvAUC package in R, we built a ben-

zene exposure prediction function. An area under the receiver operating characteristic curve

(AUC) estimate is equivalent to the Wilcoxon-Mann-Whitney statistic, and can be thought of

as the probability that the fitted classification model will rank a randomly chosen benzene-

exposed sample higher than a randomly chosen control sample [36]. Therefore, the higher the

AUC statistic, the better the classifier is. Confidence intervals and P-values for the cross-vali-

dated AUC estimates were computed with the ci.cvAUC function which uses influence curves

to estimate standard errors.

Next, we then sought to determine the least number of genes needed to build a predictor

whose performance was within 5% of this original cross-validated AUC estimate, i.e. to iden-

tify a smaller subset of genes that would build a prediction function that is virtually just as

accurate as if all 30 genes were used. A predictor with fewer genes would be more practical to

measure as a biomarker. To this end, genes were added in a forward stepwise fashion to the SL

function, one at a time, and each time the performance of the resulting prediction function

was assessed using the same cvAUC function [36]. Thus, all 30 genes were used to build a pre-

diction function one at a time, and the gene with the highest cross-validated AUC was kept.

Then, the 29 remaining genes were added to it and a prediction function was built out of the

29 pairs, keeping the pair with the highest cross-validated AUC. This process was continued

until enough genes were added to get within 5% of the original cross-validated AUC estimate

when all of the 30 genes were used.

Expression of the benzene-predictive mRNAs at low-level benzene

exposure

We plotted the expression of the benzene-predictive mRNAs with continuous benzene expo-

sure in the 33 control and 44 subjects exposed to<1 ppm benzene. As air benzene levels are

below the level of detection in the control subjects, we estimated benzene exposure using

unmetabolized urinary benzene levels as described previously [37]. We previously reported

that urinary benzene and mean individual air levels of benzene were strongly correlated

(Spearman r = 0.88, P< 0.0001) in the epidemiologic study population [11] and in the sub-

group of subjects analyzed in our previous microarray gene expression study (Spearman

r = 0.76, P< 0.0001)[16]. We fitted a generalized additive model (gam) smoothing curve to

each plot, to show the general trend in gene expression with urinary benzene.

Assessment of predictive biomarker exclusivity

We assessed the exclusivity of our identified gene predictors in predicting benzene exposure as

opposed to other factors. First, we identified 6 human PBMC transcriptome studies with data

Gene expression biomarkers of benzene exposure
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available in the Gene Expression Omnibus (GEO) database [38] in which subjects were

exposed to various chemicals/lifestyles: nickel exposure (GSE40392)[39], arsenic exposure

(GSE57711)[40], smoking status (GSE12587)[41], psychosocial stress (GSE25837)[42]; or had

an immune or inflammatory-related disease: rheumatoid arthritis (RA, GSE15573)[43],

peripheral arterial disease (PAD, GSE27034)[44]. In each data set, the status of the factor of

interest was binary (i.e. smoker vs. non-smoker, diagnosed with PAD vs. healthy, exposed to

nickel occupationally vs. exposed to nickel environmentally, etc.). Second, for each data set,

the limma [45] package in R was used to fit unadjusted linear models, using all of the genes in

the study. No covariates were added to the regressions except for the binary exposure status.

As before, the eBayes function in R was used to create moderated t-statistics to test whether the

exposure coefficients were significantly different from zero, and p-values were adjusted for

multiple testing using the Benjamini-Hochberg method. Third, the gene predictors of benzene

exposure were tested on data from the six PBMC studies. Specifically, the CVSuperLearner

function was used to build exposure prediction functions for each of the 6 studies, training the

six prediction functions on the gene expression data from each of the six studies. The cvAUC

function was used to assess the performance of each of these prediction functions, i.e. their

ability to accurately predict their associated exposure/condition. Furthermore, as an alternative

or additional measure of biomarker exclusivity, we used the prediction function which was

trained on the benzene exposure data using CVSuperLearner to predict the six different expo-

sures/conditions from the PBMC studies, and assessed prediction performance using esti-

mated AUC values.

Results

Performance of nCounter data

Raw and normalized nCounter data for all control probes and genes are presented in S4 and

S5 Tables. These data are also available in the Gene Expression Omnibus database [38], acces-

sion number GSE119533. Hybridization performance for the 96 samples is illustrated in S1

Fig, in which the squares of the Pearson Correlations (R2) of positive control RNA target con-

centration vs. counts are plotted. Expected correlation is R2>0.95 and the observed correla-

tions are 0.98–1.0. In the inset, the 6 positive control probes (POS A-E) counts are plotted vs.

RNA target concentration for one representative assay. POS_E detects a target RNA at 0.5 fM,

equivalent to approximately 1 RNA copy per mammalian cell, when 100 ng RNA (10,000 cells)

is hybridized in the assay. POS_E count is greater than the average negative control counts

(background) in all assays.

nSolver computes a normalization factor based on the average of positive control counts for

the whole dataset. POS control normalization factors in our data were close to 1 (recom-

mended range 0.3–3.0), suggesting minimal variation in mRNA content between samples (S2

Fig). In the unsupervised clustering analysis, technical replicates clustered together regardless

of cartridge position and there was a broad separation of controls and exposed subjects based

on expression profile, rather than batch (S3 Fig). The 6 pairs of technical replicates each had a

Pearson correlation coefficient >0.999.

Correlation of expression levels between nCounter and microarray and

RNA-Seq platforms

In the 90 subjects analyzed by both nCounter and microarray, there was a good correlation in

expression levels for most genes (Table 2). Among the 26 microarray-selected genes, 24 genes

had Pearson and Spearman Rank correlation coefficients > 0.7 and associated p values< 0.05,
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and 20 and 19 genes had Pearson and Spearman Rank correlation coefficients greater than

0.85, respectively. Of the 4 RNA-Seq-selected genes, microarray expression levels of 3 genes

(CMYA5, ZNF703, TTC9B) were poorly correlated with the nCounter data, with coefficients

below 0.5, while PLCL1 was better correlated (Pearson, 0.547; Spearman, 0.634).

In the 19 subjects analyzed by both RNA-Seq and nCounter, there was a poor correlation in

expression levels for most genes (Table 3). Only 7 genes, all microarray-selected genes, had

correlation coefficients greater than 0.7, by Pearson’s (CEBPA), Spearman’s (TNFAIP6,

CLEC5A, SERPINB2) or both methods (IL1A, CCL20, AQP9).

Table 2. Correlation of expression levels between microarray and nCounter in all 90 subjects.

Gene Symbol Pearson Spearman

Coefficient p-value Coefficient p-value

Microarray-selected
SERPINB2 0.994 0 0.994 3.94E-93

IL6 0.993 0 0.990 3.04E-81

IL1A 0.982 0 0.979 1.13E-66

AQP9 0.981 0 0.985 3.78E-73

CCL20 0.975 0 0.972 7.59E-61

TNFAIP6 0.968 0 0.959 4.76E-53

CLEC5A 0.964 0 0.962 1.04E-54

PTX3 0.956 0 0.947 3.17E-48

DRAM1 0.954 0 0.951 1.02E-49

IFNB1 0.951 0 0.946 8.07E-48

NFKB1 0.947 0 0.947 2.70E-48

F3 0.927 0 0.948 1.07E-48

KCNJ2 0.925 0 0.922 2.12E-40

PTGS2 0.921 0 0.903 2.88E-36

IL1RN 0.921 0 0.891 5.16E-34

GPR132 0.901 0 0.899 1.59E-35

CEBPA 0.889 0 0.903 3.02E-36

MPL 0.883 0 0.908 2.30E-37

CD44 0.873 0 0.842 5.58E-27

PRG2 0.850 0 0.899 1.70E-35

PLAUR 0.818 0 0.830 1.27E-25

UPB1 0.804 0 0.821 1.31E-24

ACSL1 0.788 0 0.808 2.72E-23

SOD2 0.757 0 0.749 1.66E-18

SLC2A6 0.551 6.00E-09 0.576 7.92E-10

DNAAF1 -0.112 2.77E-01 -0.077 4.58E-01

RNA-Seq-selected
PLCL1 0.547 8.11E-09 0.634 3.93E-12

TTC9B 0.125 2.26E-01 0.089 3.88E-01

ZNF703 0.084 4.15E-01 0.036 7.25E-01

CMYA5 0.031 7.64E-01 0.140 1.74E-01

Reference
RPLP0 0.557 3.76E-09 0.518 6.38E-08

B2M 0.434 9.89E-06 0.475 1.01E-06

PGK1 -0.110 0.28557324 -0.117 2.56E-01

https://doi.org/10.1371/journal.pone.0205427.t002
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Comparison of nCounter and microarray differential expression in all 90

subjects

nCounter data in all 90 subjects was analyzed by negative binomial regression in control and

benzene-exposed (<1 ppm, 5–10 ppm and>10 ppm) subjects, with adjustment for covariates.

Among the 26 microarray-selected genes, 23 were confirmed as differentially expressed (FDR

p-value<0.05) by nCounter, with 22 up-regulated and 1 (CEBPA) down-regulated (Table 4).

Among the 3 non-validated genes, DNAAF1 and SLC2A6 expression level were poorly corre-

lated between the two platforms (Table 2). Though MPL was highly correlated (Table 2),

Table 3. Correlation of expression levels between mRNA-Seq and nCounter in 19 subjects.

Gene Symbol Pearson Spearman

Coefficient p-value Coefficient p-value

Microarray-selected
IL1A 0.898 4.13E-07 0.869 2.80E-06

CCL20 0.893 6.33E-07 0.763 3.56E-04

AQP9 0.736 4.93E-04 0.746 5.66E-04

CEBPA 0.731 5.73E-04 0.647 4.61E-03

KCNJ2 0.683 1.77E-03 0.574 1.27E-02

DRAM1 0.659 2.96E-03 0.556 1.82E-02

PTX3 0.652 3.39E-03 0.653 4.13E-03

TNFAIP6 0.645 3.83E-03 0.713 8.85E-04

NFKB1 0.641 4.15E-03 0.467 5.22E-02

GPR132 0.621 5.96E-03 0.591 1.12E-02

CLEC5A 0.579 1.19E-02 0.933 1.58E-08

IFNB1 0.522 2.64E-02 0.503 3.54E-02

MPL 0.506 3.21E-02 0.642 4.07E-03

ACSL1 0.473 4.75E-02 0.587 1.19E-02

PRG2 0.461 5.41E-02 0.463 5.45E-02

IL6 0.407 9.38E-02 0.472 5.00E-02

PTGS2 0.363 1.39E-01 0.408 9.43E-02

UPB1 0.333 1.77E-01 0.389 1.11E-01

SERPINB2 0.325 1.89E-01 0.717 1.15E-03

SOD2 0.310 2.10E-01 0.393 1.07E-01

IL1RN 0.290 2.43E-01 0.329 1.82E-01

SLC2A6 0.158 5.31E-01 0.216 3.88E-01

PLAUR 0.096 7.04E-01 0.251 3.14E-01

F3 -0.007 9.77E-01 0.366 1.36E-01

CD44 -0.051 8.42E-01 -0.005 9.87E-01

DNAAF1 -0.073 7.74E-01 0.124 6.24E-01

RNA-Seq-selected
ZNF703 -0.002 9.92E-01 0.019 9.41E-01

PLCL1 0.322 1.92E-01 0.267 2.82E-01

TTC9B 0.100 6.93E-01 0.209 4.03E-01

CMYA5 -0.267 2.83E-01 -0.278 2.64E-01

Reference
RPLP0 0.544 1.95E-02 0.529 2.57E-02

PGK1 0.001 9.98E-01 -0.009 9.74E-01

B2M 0.160 5.27E-01 0.110 6.62E-01

https://doi.org/10.1371/journal.pone.0205427.t003
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differential expression was not significant by nCounter. This is probably because differential

expression in the microarray study was driven by the 13 subjects exposed to>10 ppm benzene,

whereas only 4 of those subjects were analyzed by nCounter.

Among the 4 RNA-Seq-selected genes, ZNF703, which was significantly down-regulated

by> 5 ppm benzene in the RNA-Seq data in 19 subjects (but not in the microarray data in 125

subjects), was significantly down-regulated in the nCounter data in 90 subjects. The remaining

3 RNA-Seq-selected genes were not differentially expressed in the 90 subjects by nCounter.

We did not do any analysis with the negative binomial model treating benzene exposure as

an ordinal variable in the nCounter data given the small sample sizes for the 5–10 ppm and

>10 ppm groups (9 and 4 respectively). For the same reasons, we feel we cannot draw any con-

clusions from Table 4 in terms of dose response. While the response seems to be consistently

Table 4. Differential expression analysis of nCounter mRNAs in all 90 subjects.

Gene Symbol Fold-change Exposed vs Controls p-value FDR

<1 ppm 5–10 ppm >10 ppm

Microarray-selected
AQP9 2.50 1.76 1.16 8.33E-13 2.75E-11

DRAM1 2.35 1.77 1.63 2.16E-11 3.56E-10

IL1A 2.79 2.41 2.13 6.40E-11 6.74E-10

PTX3 2.32 1.61 1.57 8.18E-11 6.74E-10

KCNJ2 2.30 1.84 1.61 5.77E-10 3.81E-09

PTGS2 1.91 1.63 1.11 1.32E-09 7.24E-09

TNFAIP6 2.69 1.71 1.56 2.79E-09 1.31E-08

ACSL1 1.91 1.50 1.10 3.40E-09 1.40E-08

SERPINB2 5.12 3.26 1.39 2.16E-08 7.90E-08

F3 3.58 2.41 1.12 3.87E-08 1.28E-07

CD44 1.85 1.62 1.33 5.09E-08 1.53E-07

IFNB1 3.41 2.37 1.38 2.65E-07 7.14E-07

CCL20 2.01 1.51 1.49 2.81E-07 7.14E-07

CLEC5A 2.48 1.88 1.14 7.89E-07 1.86E-06

IL1RN 1.72 1.56 1.07 5.42E-06 1.19E-05

CEBPA 0.55 0.63 0.67 7.79E-06 1.61E-05

IL6 3.21 2.73 1.49 9.61E-06 1.87E-05

SOD2 1.73 1.47 1.16 1.46E-05 2.67E-05

NFKB1 1.69 1.49 1.29 3.72E-05 6.13E-05

PRG2 1.90 1.50 1.35 1.06E-04 1.66E-04

UPB1 1.65 1.51 1.07 1.58E-04 2.36E-04

GPR132 1.59 1.41 1.43 3.95E-04 5.67E-04

PLAUR 1.40 1.39 0.82 5.55E-03 7.63E-03

MPL 0.77 0.65 0.72 6.81E-02 8.99E-02

DNAAF1 0.63 0.84 0.75 8.06E-02 1.02E-01

SLC2A6 1.20 1.03 1.04 4.60E-01 4.90E-01

RNA-Seq-selected
ZNF703 0.55 0.61 0.57 1.88E-05 3.26E-05

CMYA5 0.80 0.84 0.90 3.83E-01 4.36E-01

PLCL1 0.86 0.88 1.18 4.36E-01 4.80E-01

TTC9B 0.90 0.90 1.02 8.68E-01 8.95E-01

FDR, false discovery rate

https://doi.org/10.1371/journal.pone.0205427.t004
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in the same direction for all levels of benzene exposure, it is hard to say more given the sample

size.

Comparison of nCounter and RNA-Seq differential expression in 19

subjects

nCounter data in 19 of the 20 subjects previously analyzed by RNA-Seq, was analyzed by nega-

tive binomial regression in control and benzene-exposed (5–10 ppm and>10 ppm) subjects,

with and without adjustment for covariates. Differential expression of the 4 RNA-Seq-selected

genes was not confirmed by nCounter in either the unadjusted (S6 Table) or adjusted (data

not shown) models. Expression levels of these 4 genes were poorly correlated between the

RNA-Seq and nCounter data (Table 3). In the unadjusted but not the adjusted model, several

of the microarray-selected genes with good expression level correlation (Spearman coefficient

>0.7) between RNA-Seq and nCounter, were found to be differentially expressed in the 19

subjects in the nCounter study.

Identification of genes predictive of benzene exposure by SuperLearner

As most of our exposed subjects were exposed to<1 ppm benzene, we sought to identify gene

subsets predictive of benzene exposure in these subjects. Analysis of the nCounter data for the

33 controls and 44 subjects exposed to<1 ppm, using the adjusted negative binomial model

and controlling for multiple testing, revealed most genes as significantly differentially

expressed (S7 Table). Using all 30 non-reference genes, CVSuperLearner built a benzene expo-

sure (1 ppm) prediction function with a cross-validated AUC estimate of 0.96 (CI 0.89 − 1).

Using an iterative SL approach to determine the least number of genes that could predict ben-

zene exposure—run many times due to the randomness involved in choosing the folds for

cross-validation—we found that each time only two genes were required to get a cross-vali-

dated AUC estimate >0.9 whereas a single gene alone could never build a prediction function

with a cross-validated AUC estimate >0.9. Therefore, we determined that two genes were suf-

ficient for building an accurate exposure predictor. All 6 Superlearner algorithms contributed

to the prediction of benzene exposure across the gene pairs and no algorithms consistently

contributed more than others.

Details of the 6 pairs of genes that were most frequently identified as accurate predictors of

benzene exposure are listed in Table 5. All 6 genes in the biomarker pairs were significantly

differentially expressed at the<1 ppm exposure level. The 2 pairs with the highest AUCs

(0.94) were IFNB1/NFKB1 and PGR2/CLEC5A.ACSL1 and CLEC5A each featured in 3 pairs,

Table 5. Top 6 biomarker pairs predictive of benzene exposure identified by SuperLearner.

Biomarker Pair AUC CI P-Value�

AQP9, ACSL1 0.91 0.82, 1 0

NFKB1, IFNB1 0.94 0.87, 1 0

PRG2, ACSL1 0.91 0.84, 0.99 0

PRG2, CLEC5A 0.94 0.86, 1 0

NFKB1, CLEC5A 0.92 0.84, 1 0

ACSL1, CLEC5A 0.91 0.83, 0.99 0

AUC, area under the curve; CI, confidence interval.

�P-values estimated to ten decimal points (one-sided test with null hypothesis of AUC = 0.5).

https://doi.org/10.1371/journal.pone.0205427.t005
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NFKB1 and PRG2 in 2 pairs, and IFNB1 and AQP9 in 1 pair. The genes play roles in innate

immunity response and energy homeostasis.

Expression of the predictive mRNAs with continuous low-level benzene

exposure

As shown in S4 Fig, for each benzene-predictive mRNA, expression of the controls (red dots)

is distinct from that of the exposed group (blue dots) and the gam curves show an increase in

expression from control to exposed status, with little dose-response apparent across urinary

benzene levels in the< 1 ppm exposed subjects. We did not examine the expression of the pre-

dictor mRNAs at higher levels as they were selected based on data in the <1 ppm vs control

group analysis. However, as shown in Table 4, the direction of the change in expression was

the same for the benzene signature genes in the higher exposure groups as in the<1ppm

group though the magnitude of the change in expression was more marked in the<1ppm

group. Further, gene expression did not significantly differ between the 44 subjects exposed to

<1 ppm and the 13 subjects exposed to>5 ppm subjects for any of the 30 genes analyzed (S8

Table). This suggests that the gene expression biomarkers identified may be predictive at any

level of benzene exposure including < 1ppm but requires validation.

Exclusivity of the biomarker pairs in predicting benzene exposure

We examined the ability of the 6 prominent gene pair predictors to predict other factors,

including exposure/lifestyle (arsenic, smoking, nickel, psychosocial stress) and inflammatory

disease (PAD, RA) in studies with available PBMC transcriptome data. Differential expression

analysis of the respective datasets revealed that none of the 6 benzene predictor genes was

altered by arsenic, PAD, RA, smoking and stress, compared with their respective controls,

after adjusting for multiple testing. In the nickel study, only NFKB1 was differentially

expressed.

We assessed how well the benzene predictors could predict the selected non-benzene fac-

tors in two ways. First, we used the 6 gene pairs from our study to build new SL predictors for

each outcome individually. As shown in S9 Table none of the 6 benzene predictor pairs were

able to predict arsenic exposure or stress, based on low cvAUC estimates. The highest cross-

validated AUC estimates for predicting smoking, RA and PAD were 0.69, 0.71 and 0.73,

respectively. However, for nickel exposure, two biomarker pairs which include NFKB1
(NFKB1, IFNB1) and (NFKB1, CLEC5A) had AUCs of 0.88. Second, we took the AUC values

for each SL predictor pair fit onto the benzene data, i.e. the “benzene fit”, and used these to

predict the other outcomes. As shown in S9 Table, most gene pairs were poor predictors. How-

ever, two pairs (AQP9, ACSL1) and (NFKB1, IFNB1) were predictive of nickel exposure, with

AUCs >0.8 and p-values <0.05. Thus, considering the results of both methods of assessing

predictivity, three benzene biomarker pairs are largely exclusive to benzene, particularly

(PRG2, CLEC5A), and two biomarker pairs are also good biomarkers of nickel exposure.

Discussion

In the current study, we validated our previous microarray findings in occupationally exposed

subjects using the nCounter platform and used SuperLearner to refine pairs of genes whose

expression could predict benzene exposure at low occupational levels (<1 ppm). Finding a

small number of highly predictive genes could enable the development of sensitive gene

expression assays, e.g. droplet digital PCR, that could be deployed inexpensively in large popu-

lation studies in small quantities of blood.
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nCounter Validation was performed on genes selected based on differential expression in

our previous microarray and mRNA-Seq studies. The high correlation of nCounter and

microarray data is in agreement with previously published studies [21, 46–48]. It is unclear

why the nCounter data correlates poorly with the mRNA-Seq data in our study. Concordance

in between RNA-Seq and nCounter data was reported in previous studies [49, 50].

As we sought to identify genes predictive of low-level benzene exposure, we first validated

differential expression in the 44 subjects exposed to<1 ppm benzene in comparison with the

33 controls, using nCounter. We then used SL to find genes predictive of benzene exposure in

this dataset. We chose SL as we did not want to rely on an incorrectly specified parametric

model to build a predictor, as the resulting predictor would be biased, or to choose an arbitrary

parametric model based on what gave the best prediction results. The SL algorithm allows the

user to provide a variety of learners on a spectrum of data-adaptiveness or smoothness, and

results in a less biased predictor with better inference [32]. Further, SL performs at least as well

as the best single learner provided by the user, since cross validation is used to find the best

weighted combination of the learners to build the final predictor. We selected the learners to

avoid overfitting, especially given the small sample size, by including learners with different

levels of data adaptiveness and smoothness that could be used with the binary exposure

variable.

Previously, we used SL to estimate dose-related changes in the expression of pathway genes

in response to benzene [20]. It is relatively novel to use SL to identify gene expression-based

predictive biomarkers. SL was applied to identify gene expression predictors of metastasis in

breast cancer and predictors of the presence of a cancerous tumor in prostate cancer [30]

using publicly available microarray data sets [51, 52]. For breast cancer, SL attained a risk com-

parable to the best algorithm with a mean squared error of 0.194, and for prostate cancer, it

outperformed even the best algorithm in the library with a mean squared error of 0.067.

In the current study, we found 6 pairs of genes (with overlapping members) that could dis-

criminate the<1 ppm exposed and control groups. As differential expression analysis revealed

no difference in expression between the low-level and high-level (>5 ppm) exposure groups,

the gene pairs may be able to predict benzene exposure in levels ranging from <1 ppm

to> 5 ppm but may not be able discriminate between low and high exposure levels.

We found that 3 gene pairs were highly predictive of low-level benzene exposure and were

not strong predictors of smoking, RA, PAD, stress, arsenic, or nickel exposure. An additional

3 pairs were good predictors of both benzene and nickel exposure. A caveat to our approach is

that we were only able to determine exclusivity by analyzing performance of our biomarker

pairs in a limited number of available datasets with information on gene expression and

exposure to a factor or disease of interest in human PBMC in GEO. Thus, we cannot exclude

association of these biomarker pairs with other exposures. Based on currently available data,

therefore, we have identified 3 pairs of gene expression biomarkers that are exclusively predic-

tive of low-level occupational benzene exposure.

Strengths of our study are our cross-sectional study of occupational benzene exposure with

well-characterized exposures, use of a cutting-edge digital counting method nCounter to vali-

date benzene-induced differential gene expression, and the use of SL, an innovative data-adap-

tive approach to identify predictive biomarkers. Limitations of our study include the use of

relatively few studies to determine exclusivity of biomarker prediction—due to a limited num-

ber of comparable publicly available studies—and a lack of validation of our identified bio-

markers in an independent study population, something we hope to address in the future

when we identify and gain access to a suitable, similarly well-characterized study population.

As mentioned in the introduction, several cellular and molecular markers of low-dose ben-

zene exposure were identified previously [11–15]. Urinary benzene is a good biomarker for
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exposure to low levels of benzene [37, 53]. An advantage of gene expression markers is that

they may inform biology and risk assessment. The genes in the pairs predictive of benzene

exposure (ACSL1, CLEC5A, NFKB1, PRG2) play roles in innate immunity and inflammatory

responses. ACSL1 is induced in classically activated inflammatory macrophages and is causal

to the enhanced inflammation and atherosclerosis associated with diabetes in mouse models

[54, 55]. CLEC5A regulates inflammatory responses and activation of myeloid cells [56, 57].

It is expressed on human inflammatory macrophages in vivo [58] and is a critical receptor

for some viruses [59–62], and bacteria [63] and mediates innate immunity inflammatory

response. CLEC5A is also expressed on alveolar macrophages in mice exposed long-term to

cigarette smoke (CS), as well as in human smokers, and it mediates macrophage function and

chronic obstructive pulmonary disease pathology in mice [64]. NF-kappa-B is a pleiotropic

transcription factor present in most cell types and is activated by various stimuli such as cyto-

kines, oxidant-free radicals, ultraviolet irradiation, and bacterial or viral products. Activated

NFKB stimulates the expression of genes involved in a wide variety of biological functions.

Inappropriate activation of NFKB has been associated with a number of inflammatory diseases

[65–67]. Polymorphisms in the NFKB gene may play a role in chronic lymphocytic leukemia

development [68]. PRG2 encodes an eosinphil cytotoxic secretory granule protein involved in

innate immunity and immunopathology [69, 70].

It is not known why certain pairs of innate immunity / inflammatory response genes are

predictive of benzene exposure over other pairs. Benzene metabolites have been shown to

impact aspects of innate immunity [71–74]. Further, genetic polymorphisms in innate immu-

nity genes may modify the risk of hematotoxicity in benzene-exposed workers [75]. However,

future studies are needed to fully understand the effects of benzene exposure on innate immu-

nity and the role of the gene pairs identified in the current study.

Nickel exposure is associated with nasal and lung cancer in nickel refinery workers [28, 76–

78] and with contact hypersensitivity and dermatitis [79]. Alterations in innate and acquired

immunity have been observed in animals [80]. The gene pairs predictive of both benzene and

nickel exposure are AQP9 / ACSL1 and NFKB1 / IFNB1. Nickel was previously known to acti-

vate NFKB signaling [81, 82]. AQP9 is an aquaglyceroporin channel transporter. It transports

arsenic and mediates the cellular response to arsenic exposure [83–86]. AQP9 expression in

neutrophils may play a role in establishing contact hypersitivity [87] and is enhanced in sys-

temic inflammatory response syndrome [88]. It was reported to be one of a panel of five genes

whose expression in PBMC could discriminate between patients with chronic inflammation

and healthy controls [89]. IFNB1 is a cytokine member of the interferon family of signaling

proteins. It is important for defense against viral infections and is involved in cell differentia-

tion and anti-tumor defenses.

A limitation of PBMC gene expression markers is that they may reflect a short-term effect

in currently-exposed individuals due to the short-lived nature of lymphocytes. However,

changes in gene expression persisted in whole blood samples from former cigarette smokers

up to 30 years after cessation compared with non-smokers, as reported in a recent meta-analy-

sis [90], possibly through hypomethylation in the gene promoter regions [91]. Persistent

effects on DNA methylation of multiple additional genes in former smokers has been reported

[92–95], suggesting that it may be a more stable marker. We are exploring this cross-section-

ally as we have blood samples from people currently and previously exposed to benzene

enabling us to explore biomarkers of cumulative or persistent or long-term exposure cross-sec-

tionally without the need for a prospective cohort study. Ultimately, a comprehensive exposure

signature highly specific to benzene incorporating gene expression, DNA methylation, as well

as other types of markers may be useful tool for risk assessment in the future.
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Conclusion

Using the nCounter platform, we validated the altered expression of 27 mRNAs in individu-

als occupationally exposed to <1 ppm benzene and identified 3 gene pairs that exclusively

predict current benzene exposure. Our approach of using the cutting-edge digital counting

method, nCounter, to validate differential gene expression, and of SL to identify predictive

genes, has broad applicability in the field of environmental health. Future studies could

explore whether the biomarkers are predictive of past benzene exposure, what roles (if any)

they play in the toxicity and disease, and whether they can be modulated by factors such as

diet to minimize risk.

Supporting information

S1 Fig. Linearity of the nCounter platform vs. RNA concentration. This graph demonstrates

the linearity of the nCounter platform. The square of the Pearson Correlations (R2) of Positive

control RNA target concentration vs. counts is plotted for all 96 samples. Inset: 6 POS control

probes counts (y-axis) are plotted vs. RNA target concentration (x-axis) for one representative

assay.

(PDF)

S2 Fig. Positive control normalization factors. nSolver computes a normalization factor for

each assay based on the average of positive control counts for the whole data set. NanoString

recommends that for optimal results positive control normalization factors range between 0.3

and 3.0 for all assays. POS control normalization factors indicate minimal inter-assay technical

variation.

(PDF)

S3 Fig. Hierarchical clustering of nCounter gene expression. Normalized counts were ana-

lyzed by unsupervised clustering in MeV (Multiple Experiment Viewer) software, using default

settings. Data were log2-transformed and mean centered by gene (row) prior to clustering.

Replicates cluster together and there is a broad separation of control and exposed samples.

(JPG)

S4 Fig. Expression of benzene predictor genes vs. continuous benzene exposure. For the

control and <1ppm subjects and for each of the 6 genes, each subject’s urinary benzene level

is plotted against their gene expression level. A GAM smoothing curve is fit using all sub-

jects.

(JPG)

S1 Table. Genes selected for inclusion in nCounter ProbeSet.

(XLSX)

S2 Table. Details of the nCounter ProbeSet.

(XLSX)

S3 Table. Randomization of samples across study variables.

(XLSX)

S4 Table. Raw nCounter data.

(XLSX)

S5 Table. Normalized nCounter data.

(XLSX)
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S6 Table. Differential expression analysis of nCounter mRNAs for 30 genes in subjects pre-

viously analyzed by mRNA-Seq.

(XLSX)
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