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ORIGINAL RESEARCH

Three-dimensional (3D), gadolinium-enhanced, T1-
weighted MRI is essential for evaluation of a variety 

of pathologic conditions that alter brain vascularity and 
vascular permeability, including inflammatory, infectious, 
and neoplastic processes. Unfortunately, gadolinium-based 
contrast agents have several potential drawbacks that limit 
their usability. First, there are costs associated with admin-
istering contrast agents, patient monitoring, and acquiring 
additional postcontrast images. Second, there is potential 
for a variety of adverse reactions, ranging from nausea or 
headache to anaphylaxis and nephrogenic systemic fibrosis 
(1). Third, gadolinium-based contrast agents are contra-
indicated in certain patient groups, including those with 
advanced renal disease and pregnant patients. Finally, there 
remains uncertainty surrounding the possible long-term 
effects of gadolinium deposition in the brain and bones 
(2,3). For these reasons, it would be particularly appealing 
to develop simulated images that would closely approxi-
mate pathologic changes depicted on real postcontrast 

images if they could be used without compromising diag-
nostic accuracy.

Modern brain MRI protocols comprise several differ-
ent sequences used to generate images encompassing the 
same anatomy with different contrast weightings. Most 
common brain MRI series are both physically and math-
ematically related to each other, which raises the possibility 
that a specific image series could be computationally simu-
lated from others. In this context, image simulation refers 
to computational synthesis of artificial (simulated) images 
by using different images of the same anatomy as that of 
the inputs. Several recent prior studies have demonstrated 
both intramodality (eg, MRI to MRI) and intermodality 
(eg, MRI to CT or PET) computational image simulation 
(4–7). Computational simulation of postcontrast images 
presents an additional challenge because it requires infer-
ence of the effect of an exogenous agent that is not pres-
ent in the input images. Despite these challenges, a small 
number of prior studies have demonstrated both the ability 
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Purpose: To evaluate the feasibility and accuracy of simulated postcontrast T1-weighted brain MR images generated by using precon-
trast MR images in patients with brain glioma.

Materials and Methods: In this retrospective study, a three-dimensional deep convolutional neural network was developed to simulate T1-
weighted postcontrast images from eight precontrast sequences in 400 patients (mean age, 57 years; 239 men; from 2015 to 2020), 
including 332 with glioblastoma and 68 with lower-grade gliomas. Performance was evaluated by using quantitative image similarity 
and error metrics and enhancing tumor overlap analysis. Performance was also assessed on a multicenter external dataset (n = 286 from 
the 2019 Multimodal Brain Tumor Segmentation Challenge; mean age, 60 years; ratio of men to women unknown) by using transfer 
learning. A subset of cases was reviewed by neuroradiologist readers to assess whether simulated images affected the ability to determine 
the tumor grade.

Results: Simulated whole-brain postcontrast images were both qualitatively and quantitatively similar to the real postcontrast images 
in terms of quantitative image similarity (structural similarity index of 0.84 6 0.05), pixelwise error (symmetric mean absolute percent 
error of 3.65%), and enhancing tumor compartment overlap (Dice coefficient, 0.65 6 0.25). Similar results were achieved with the 
external dataset (Dice coefficient, 0.62 6 0.27). There was no difference in the ability of the neuroradiologist readers to determine the 
tumor grade in real versus simulated images (accuracy, 87.7% vs 90.6%; P = .87).

Conclusion: The developed model was capable of producing simulated postcontrast T1-weighted MR images that were similar to real 
acquired images as determined by both quantitative analysis and radiologist assessment.

Supplemental material is available for this article.

© RSNA, 2021

Feasibility of Simulated Postcontrast MRI of Glioblastomas 
and Lower-Grade Gliomas by Using Three-dimensional 
Fully Convolutional Neural Networks
Evan Calabrese, MD, PhD • Jeffrey D. Rudie, MD, PhD • Andreas M. Rauschecker, MD, PhD •  
Javier E. Villanueva-Meyer, MD • Soonmee Cha, MD

From the Department of Radiology and Biomedical Imaging (E.C., J.D.R., A.M.R., J.E.V.M., S.C.) and Center for Intelligent Imaging (E.C.), University of California at San 
Francisco, 350 Parnassus Ave, Suite 307H, San Francisco, CA 94143-0628. Received November 15, 2020; revision requested January 20, 2021; revision received April 20; 
accepted April 29. Address correspondence to E.C. (e-mail: evan.calabrese@ucsf.edu).

Supported by the National Institutes of Health Ruth L. Kirschstein Institutional National Research Service Award under award number T32EB001631. This project was also 
indirectly supported by the Radiological Society of North America (RSNA) Research and Education (R&E) Foundation, through grant number RR2011. The content is solely 
the responsibility of the authors and does not necessarily represent the official views of the RSNA R&E Foundation. The University of California San Francisco resident research 
fund provided financial support for some graphics processing hardware used in this study.

Conflicts of interest are listed at the end of this article.

Radiology: Artificial Intelligence 2021; 3(5):e200276 • https://doi.org/10.1148/ryai.2021200276 • Content codes:   

mailto:reprints%40rsna.org?subject=
mailto:evan.calabrese@ucsf.edu


2 radiology-ai.rsna.org n Radiology: Artificial Intelligence Volume 3: Number 5—2021

Simulated MRI of Glioblastomas and Lower-Grade Gliomas by Using 3D dCNNs

ics; Nuance Communications). All eligible cases from Janu-
ary 2015 onward (in sequential order) were included until 
400 cases were reached, which occurred in April of 2020. We 
analyzed preoperative MR images in a total of 400 adult pa-
tients with either glioblastoma (n = 332) or lower-grade dif-
fuse gliomas (n = 68), which were each confirmed by using 
histopathologic assessment. All patients were imaged prior 
to their first surgical resection. Although a history of prior 
chemotherapy or radiation was not systematically assessed, 
surgical resection is typically the first treatment modality for 
patients with diffuse glioma at the study institution. A total 
of 199 patients were also part of an unrelated prior study fo-
cused on the prediction of genetic alterations in glioblastoma 
(11). Table 1 provides details on patient characteristics.

MR Image Acquisition
All patients underwent a standardized clinical preoperative 
primary brain tumor MRI protocol that used a 3.0-T imager 
(Discovery 750; GE Healthcare) and a dedicated eight-channel 
head coil (Invivo). The imaging protocol included T2-weighted 
imaging; T2-weighted, fluid-attenuated inversion recovery 
(FLAIR) imaging; susceptibility-weighted imaging; diffusion-
weighted imaging; pre- and postcontrast T1-weighted imag-
ing; arterial spin labeling; and 55-direction, high angular reso-
lution diffusion imaging. Acquisition parameters are included 
in Appendix E1 (supplement).

Image Preprocessing
An automated image preprocessing pipeline was implemented 
in Python version 3.8 (Python Software Foundation) by us-
ing Nipype version 1.6.0 (https://nipype.readthedocs.io/en/latest/) 
(12). Diffusion data were processed by using the Functional 
Magnetic Resonance Imaging of the Brain Software Library 
(Oxford University), yielding standard derived images that 
included mean diffusivity and fractional anisotropy (13–15). 
Patient images were coregistered to the Montreal Neurological 
Institute Brain Atlas space by using Advanced Normalization 
Tools (University of Pennsylvania) (16,17). Additional steps 
included brain masking, coil-bias correction, and intensity 
normalization (18). Complete preprocessing details are in-
cluded in Appendix E1 (supplement).

Deep Convolutional Neural Network Architecture
A 3D, fully convolutional, deep convolutional neural net-
work (dCNN) model for simulating postcontrast images 
from precontrast series was implemented with Python version 
3.8 and TensorFlow version 2.3.0 (https://www.tensorflow.
org/). The model architecture was based on the U-Net archi-
tecture (University of Freiburg) (19) with 3D convolutions, 
convolutional up- and downsampling, long-range skip con-
nections, bottleneck residual blocks (20), per-layer batch nor-
malization, leaky rectified linear unit activation, and feature 
dropout. Additional model details are included in Appendix 
E1 (supplement), and code is provided at https://github.com/
ecalabr/gadnet/. A single example study from the internal da-
taset is included for testing purposes.

to infer contrast-enhancing lesions and to simulate postcontrast 
images from precontrast inputs (8–10).

The purpose of our study was to evaluate the feasibility and 
accuracy of a deep learning method for simulating postcontrast 
T1-weighted brain images by using precontrast MR images of 
patients with glioblastoma and lower-grade gliomas. Compared 
with prior work focused on postcontrast image simulation, this 
study uses a larger patient sample (n = 400) and includes valida-
tion on an external dataset (n = 286). We further build on prior 
work by using the following: incorporation of advanced precon-
trast image series, including arterial spin labeling perfusion im-
ages and 55-direction diffusion images; 3D, fully convolutional 
deep neural networks; and examination of results for both glio-
blastomas and lower-grade gliomas.

Materials and Methods

Study Group
In this retrospective study, all study protocols were Health 
Insurance Portability and Accountability Act compliant and 
were approved by the institutional review board, which pro-
vided a waiver for consent. Inclusion criteria were patients 18 
years of age or older who underwent a complete preoperative 
brain MRI and subsequent brain tumor resection at the Uni-
versity of California San Francisco and who had subsequent 
pathologic results revealing grade II–IV diffuse glioma. Exclu-
sion criteria were any prior history of brain tumor resection 
or severe MRI artifacts that obscured the tumor region. Eli-
gible patients were identified by using a combined radiologic 
and pathologic report search tool (mPower Clinical Analyt-

Abbreviations
dCNN = deep convolutional neural network, FLAIR = fluid-
attenuated inversion recovery, GPU = graphics processing unit, 3D 
= three-dimensional

Summary
Simulated postcontrast T1-weighted brain MR images derived from 
precontrast images by using a three-dimensional deep convolutional 
neural network closely resembled real postcontrast images of patients 
with glioblastoma and lower-grade gliomas.

Key Points
 n Simulated postcontrast images were quantitatively similar to real 

postcontrast images across the whole brain and, to a lesser but still 
significant degree, within the tumor region.

 n Automated enhancing tumor segmentations from simulated post-
contrast images showed moderate overlap with enhancing tumor 
segmentations from real postcontrast images (mean Dice coef-
ficient, 0.65 6 0.25).

 n There was no difference in the ability of neuroradiologist readers 
to determine the tumor grade in real versus simulated images (ac-
curacy, 87.7% vs 90.6%; P = .87).

Keywords
MR-Contrast Agent, MR-Imaging, CNS, Brain/Brain Stem, 
Contrast Agents-Intravenous, Neoplasms-Primary, Experimen-
tal Investigations, Technology Assessment, Supervised Learning, 
Transfer Learning, Convolutional Neural Network, Deep Learning 
Algorithms, Machine Learning Algorithms
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metric mean absolute percent error, log accuracy ratio, and 
median symmetric accuracy) (16,22,23). Metrics were com-
puted across the whole brain, as well as within the whole tu-
mor and tumor core. The metric choice was based on prior 
theoretical and applied studies (8,23). Details of metric 
implementation are included in Appendix E1 (supplement), 
and a visual reference for interpreting metric values is pre-
sented as Figure E1 (supplement).

Enhancing Tumor Overlap Analysis
Volumetric overlap between the simulated and real enhancing 
tumor components was assessed by first performing automated 
deep learning–based tumor subcompartment segmentation 
of both real and simulated images by using a previously pub-
lished method (11,24). The resulting real and simulated en-
hancing tumor compartment automated segmentations were 
compared by using the Dice overlap. Nonenhancing tumors 
were included in the analysis to capture potential false-positive 
results. Of note, the automated tumor segmentation algorithm 
was applied to the whole brain but does not segment normal 
intracranial enhancement, such as arteries and veins.

Relative Contribution of Input Series
To determine the relative contribution of each of the precon-
trast input series to the final simulated result, the dCNN model 
was trained on a single cross-validation fold with each combi-
nation of a T1-weighted series plus one other series. Model 
performance was assessed by using previously described image 
similarity and error metrics.

Radiologists’ Assessment of Simulated Images
Four neuroradiologist readers (authors J.D.R., A.M.R., 
J.E.V.M., and S.C. with 1, 1, 5, and 23 years of experience, 
respectively, as an attending radiologist) were shown a random, 

Model Hyperparameters and Hyperparameter Optimization
Several model hyperparameters were optimized by using a 
16-iteration random search of the following parameter space: 
8, 16, 32, and 64 base filters; batch sizes of 4, 8, 16, and 32; 
and dropout rates of 0.2, 0.3, 0.4, and 0.5. Final hyperpa-
rameters used for training included 32 base filters per layer, a 
batch size of 16, and a dropout rate of 0.4. The loss function 
for model training and hyperparameter optimization was the 
mean squared error between the intensity-normalized real and 
simulated images. The loss optimizer was Adam (OpenAI and 
University of Toronto), which had an initial learning rate of 
0.001 (21).

Model Inputs and Training
The model was trained by using images from eight precontrast 
imaging sequences: T1-weighted, T2-weighted, T2-weighted 
FLAIR, susceptibility-weighted, diffusion-weighted, arterial 
spin labeling, mean diffusivity, and fractional anisotropy. A 
10-fold cross-validation approach was employed, with a split 
of 90% training and 10% testing, ensuring independent 
training and testing sets. Training inputs consisted of 80 3 80 
3 80–voxel patches from each of the eight precontrast image 
series. Data augmentation included random three-axis rota-
tions and dimension swaps. Each training session comprised 
25 epochs with four Tesla V100, 32-GB graphics processing 
units (GPUs) (NVIDIA). Additional details are included in 
Appendix E1 (supplement).

Image Simulation and Quantitative Similarity Comparison
Simulated postcontrast images were compared with real post-
contrast T1-weighted images by using three image similarity 
metrics (neighborhood cross-correlation, histogram mutual 
information, and the structural similarity index), as well as 
four error metrics (normalized root mean square error, sym-

Table 1: Patient Characteristics

Parameter Internal Training and Testing BraTS External Test

No. of patients 400 286
Mean age (y) 57 60
Sex 239 men, 161 women Unknown
Glioma type
 Glioblastoma 332 286
 Lower-grade glioma 68 0
Glioma grade
 1 0 0
 2 27 0
 3 41 0
 4 332 286
 4* 23 Unknown

Note.—Except where otherwise noted, data are numbers. BraTS = Multimodal Brain Tumor 
Segmentation.
* Indicates a grade 4 glioma with the R132H gain-of-function mutation of isocitrate dehydrogenase 
1.

http://radiology-ai.rsna.org
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significance. For comparing proportion data such as accuracy, a 
two-tailed z test was used, with a P value less than .05 considered 
as indicating statistical significance. When applicable, Bonfer-
roni correction was used to control for multiple comparisons.

Results

dCNN Performance
A graphic schematic of the dCNN architecture used for this 
study is presented as Figure 1. Each 25-epoch training session 
lasted approximately 14 hours, distributed across four GPUs 
with up to four concurrent training folds running at the same 
time (total of 16 GPUs). The mean squared error loss between 
real and simulated images decreased throughout training and 
converged to oscillation in each case.

Quantitative Analysis of Simulated Postcontrast Images
The proposed fully convolutional dCNN network yielded simu-
lated postcontrast T1-weighted images that were qualitatively 
similar to real postcontrast images, regardless of the tumor grade 
or image plane (Fig 2). Quantitative analysis showed strong 
similarity (and low voxelwise error) between real and simulated 
postcontrast images both across the whole brain and within the 
tumor (Fig 3). All quantitative metrics were slightly higher across 
the whole brain than within the tumor. Results were similar for 
the full model and the reduced model (trained using only inter-
nal T1, T2, and FLAIR images). Importantly, real postcontrast 
images were more closely related to simulated images than to real 
precontrast T1-weighted images by all metrics and in all evalu-
ated regions, which indicated that the simulated images were 

blinded set of either 80 real or 80 simulated, 3D, T1-weighted 
postcontrast image volumes of either high-grade (grade IV) or 
lower-grade (grade II–III) diffuse gliomas. Readers were asked 
to assess whether or not they believed the images were real or 
simulated, whether or not abnormal enhancement was present 
within the tumor region, and what histologic tumor grade was 
most likely given the image appearance. Additional details are 
provided in Appendix E1 (supplement).

External Validation
Model performance was further evaluated by using the 2019 
Multimodal Brain Tumor Segmentation Challenge training 
dataset (25–27) consisting of 286 patients with glioblastoma 
and lower-grade gliomas with T1 pre- and postcontrast, T2, 
and FLAIR images. Only the training portion of the dataset 
was used because it included tumor segmentations, which 
were required for quantitative analysis. A “reduced model” 
was trained on internal study data by using only the corre-
sponding three precontrast series (T1, T2, and FLAIR) and 
was evaluated by using the entire external dataset. The re-
duced model was then refined by training for five additional 
epochs by using 50% of the external data and was evaluated 
by using the remaining 50% of the external dataset (“refined 
reduced model”). Table 1 provides characteristics from the 
patients within the external dataset.

Statistical Analysis
Statistical significance was determined by using a two-tailed t 
test implemented in SciPy version 1.5.3 (https://www.scipy.org/), 
with a P value less than .05 considered as indicating statistical 

Figure 1: Schematic of the deep convolutional neural network architecture. Preprocessed precontrast images (left) of a 200 × 240 × 200–voxel size acquired by us-
ing eight MRI series are used as network inputs. Input images are divided into 80 × 80 × 80–voxel training patches and then fed into a fully convolutional deep neural net-
work with three-dimensional convolution bottleneck residual blocks (blue squares), strided convolution downsampling (red trapezoids), transpose convolution upsampling 
(green trapezoids), and long-range skip connections with feature concatenation (dashed lines). A 1 × 1 × 1 convolutional layer (orange square) is used to map features to 
the final output image patches (right). An inset schematic of the residual block architecture is included (upper right). Conv = convolution, ReLU = rectified linear unit.

http://radiology-ai.rsna.org
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for lower-grade gliomas. False-positive enhancement (ie, in 
simulated images but not in real images) greater than 0.1 mL 
in total volume was identified in 7.35% (five of 68) of lower-
grade gliomas evaluated in this study. All five cases of false-
positive enhancement are shown in Figure 5. False-negative 
enhancement greater than 0.1 mL was not identified.

Relative Contribution of Input Series
We also assessed the relative contribution of different image 
types in the training process. In general, models trained with 
all combinations of T1-weighted series plus one other input se-
ries showed lower performance by all metrics compared with the 
full model (Fig 6); however, not all of these differences reached 
statistical significance. Along with T1-weighted images, the 
most important input series (ie, smallest increase in error and 
smallest decrease in similarity) across the whole brain was the 

closer to the truth than the precontrast inputs. All metrics were 
lower within the tumor core than across the whole brain after 
Bonferroni correction. Subgroup analysis based on the tumor 
grade showed lower performance in the tumor region of lower-
grade gliomas than in glioblastomas (Fig E2 [supplement]).

Enhancing Tumor Component Overlap
Average overlap between the simulated and real contrast-en-
hancing tumor component as measured by the Dice coefficient 
was 0.65 6 0.25 (95% CI: 0.63, 0.67) across the study group 
(Fig 4). Stratified by tumor grade, the average Dice coefficients 
were 0.65 6 0.20 (95% CI: 0.63, 0.67) for glioblastomas and 
0.58 6 0.4 (95% CI: 0.49, 0.68) for lower-grade gliomas. Af-
ter eliminating very small regions of enhancement (, 0.1 mL), 
the average Dice coefficients were 0.64 6 0.20 (95% CI: 0.62, 
0.66) for glioblastomas and 0.73 6 0.37 (95% CI: 0.64, 0.82) 

Figure 2: Simulated versus real axial and coronal postcontrast T1-weighted brain images of patients with glioblastoma and lower-grade gliomas. Each panel repre-
sents a separate patient, with real axial and coronal images shown on the left side of the panel and corresponding simulated images shown on the right side of the panel. 
The glioma grade (2–4) is indicated at the bottom right of each panel. The use of “4*” denotes a grade 4 glioma with the R132H gain-of-function mutation in isocitrate 
dehydrogenase 1. Of note, none of the patients presented in this figure had any history of prior treatment or biopsy. 

http://radiology-ai.rsna.org
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T2-weighted series, followed by 
the FLAIR- and susceptibility-
weighted series. The T2-weighted 
series was also the most impor-
tant additional series within the 
tumor core, followed by the sus-
ceptibility- and FLAIR-weighted 
series. Models trained on all other 
combinations of the T1-weighted 
series plus one other series had 
lower performance than the full 
model by all metrics.

Radiologist Assessment of 
Simulated Images
Results of the neuroradiologist 
reader study are presented in 
Table 2. Neuroradiologist read-
ers performed similarly when 
assessing simulated and real im-
ages for both assessing the tu-
mor grade (accuracy, 90.6% vs 
87.7%; P = .87) and detecting 
the presence of abnormal tumor 
enhancement (accuracy, 86.9% 
vs 74.2%; P = .36). Interrater 
agreement for the tumor grade 
was substantial (k, 0.70) and 
was almost perfect for tumor enhancement (k, 0.90). How-
ever, it should be noted that the “truth” for the presence of 
abnormal tumor enhancement was based on an automated 

tumor segmentation algorithm and might have therefore pro-
duced results that were slightly different from those of the 
human readers. In contrast, reader performance for detect-

Figure 3: Quantitative comparisons between real and simulated postcontrast images using both image similarity (left) and error (right) metrics. Real T1-weighted 
postcontrast images were compared with simulated images from the full model (Simulated Full), simulated images from the reduced input model (Simulated Red.), and real 
T1-weighted precontrast (Real T1-Pre) images. Comparisons between real precontrast and real postcontrast images are provided for context. Results are shown across the 
whole brain, within the tumor region, and within the tumor core. * denotes a statistically significant difference compared with Real T1-Pre images. CC = cross-correlation, 
LOGAC = log accuracy ratio, MEDSYMAC = median symmetric accuracy, MI = histogram mutual information, NRMSE = normalized root mean square error, SMAPE = 
symmetric mean absolute percent error, SSIM = structural similarity index.

Figure 4: Illustration of Dice overlap analysis. The enhancing tumor component is segmented from real and simulated 
postcontrast images by using a previously published automated method. Dice overlap of the enhancing component is then 
calculated for each case. The real image segmentation is shown in yellow, the simulated image segmentation is shown in 
blue, and their intersection is shown in green. In this example, the Dice coefficient is 0.67.

http://radiology-ai.rsna.org
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ing real versus simulated images was poor (accuracy, 59.1%), 
with poor interrater agreement (k, −0.23) being shown. Al-
though it was not the purpose of this study to assess non–gli-
oma-related abnormal enhancement, radiologists’ review of 
images demonstrated several incidental examples of this type 
of abnormal enhancement, such as meningiomas or develop-
mental venous anomalies. Representative examples showing 
both real and simulated images of these incidental findings 
are included as Figure E4 (supplement).

External Dataset Validation
The reduced model had lower performance on the external vali-
dation data; however, performance was nearly completely re-
covered after refining the model by training for an additional 
five epochs with 50% of the external data (the refined reduced 
model), with some evaluation metrics showing no statistical dif-
ference across the whole brain or within the tumor core (Fig 7). 
Enhancing tumor segmentation overlap analysis on the external 
dataset yielded an average Dice coefficient of 0.62 6 0.27 (95% 
CI: 0.59, 0.65), which was not significantly different from inter-
nal dataset results. Example simulated images from the external 
dataset generated by using the refined reduced model are shown 
in Figure E3 (supplement).

Discussion
This study presents a deep learning method for generating simu-
lated postcontrast brain MR images from precontrast images in 
patients with glioma. The fundamental assumption of our model 
was that the underlying factors contributing to glioma enhance-
ment, such as perfusion, vascularity, and permeability, had some 
effect on the signal of precontrast imaging (28). Postcontrast 
image simulation can therefore be understood as a multiple re-
gression of precontrast input signals to predict areas of enhance-
ment. For this study, the “regression model” was a dCNN; how-
ever, this choice simply reflects the current state of the art rather 
than the theoretical optimal model for this task. In this context, 
simulated images can be interpreted as a probabilistic representa-
tion of real postcontrast images. However, regardless of context, 
simulated images must closely recapitulate real images on both a 
voxelwise and structural level to be diagnostically viable.

The primary method for evaluating simulated postcontrast 
images in this study was with quantitative image similarity 
and error metrics. We found that real postcontrast images 
were more closely related to simulated postcontrast images 
than to precontrast images, both across the whole brain 
and within the tumor, regardless of the tumor grade. Model 
performance was slightly lower in the lower-grade glioma 

Figure 5: All five cases of false-positive enhance-
ment of more than 0.1 mL on simulated postcontrast 
images identified in the study dataset. Each panel 
represents a separate case, with real axial and coro-
nal images shown on the left side of the panel and 
corresponding simulated images shown on the right 
side of the panel. The glioma grade (“L” for lower-
grade glioma in all cases) is indicated in the bottom 
right of each panel. Yellow arrows indicate areas of 
false-positive enhancement on simulated postcontrast 
images. Of note, the patient in the top right panel 
had undergone biopsy prior to acquisition of these 
images, although not near the region of false-positive 
enhancement.

http://radiology-ai.rsna.org
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group, likely because of their 
relative underrepresentation in 
the study dataset. These results 
show strong numerical cor-
respondence between real and 
simulated postcontrast images 
but provide relatively little un-
derstanding of practical similar-
ity for diagnostic tasks.

Enhancing tumor Dice over-
lap analysis can be interpreted as 
a more practically relevant metric 
for assessing the presence and/
or extent of abnormal enhance-
ment. Our model achieved an 
enhancing tumor Dice overlap 
of 0.65 6 0.25 (95% CI: 0.63, 
0.67), which we considered 
moderate performance, given the irregular enhancement often 
seen in gliomas and the high interrater variability of enhancing 
tumor segmentations reported in prior studies (29). However, 

our analysis did identify false-positive enhancement within a 
subset of lower-grade gliomas, which could be problematic for 
future clinical deployment of this method if not addressed. For 

Figure 6: Quantitative image similarity and error analysis of real versus simulated postcontrast images derived from the models trained on the full set of inputs (Full 
Model) and each combination of a T1-weighted series plus one other series. Error metrics (top) and similarity metrics (bottom) are calculated across the whole brain (left) 
and within the tumor core (right). * denotes a statistically significant difference compared with the Full Model. ASL = arterial spin labeling, CC = cross-correlation, DWI = 
diffusion-weighted imaging, FA = fractional anisotropy, FLAIR = fluid-attenuated inversion recovery, LOGAC = log accuracy ratio, MD = mean diffusivity, MEDSYMAC = 
median symmetric accuracy, MI = histogram mutual information, NRMSE = normalized root mean square error, SMAPE = symmetric mean absolute percent error, SSIM = 
structural similarity index, SWI = susceptibility-weighted imaging.

Table 2: Results of the Neuroradiologist Reader Study

Metric Tumor Grade Tumor Enhancement Simulated vs Real

Accuracy 90.6% 83.4% 59.1%
Precision 88.2% 93.3% 60.4%
Recall 93.8% 83.3% 52.5%
F1 0.90 0.88 0.56
MCC 0.81 0.63 0.18
k 0.70 0.90 −0.23

Note.—Each column represents a task that readers were asked to assess for each case: “Tumor 
Grade” represents whether the tumor was most likely to be high-grade (WHO grade IV) or lower-
grade (WHO grade II–III); “Tumor Enhancement” represents whether abnormal contrast enhance-
ment was present in the tumor; and “Simulated vs Real” represents whether the images were felt 
to be simulated or real. F1 = F1 score, k = Cohen k for interrater agreement, MCC = Matthews 
correlation coefficient, WHO = World Health Organization.

http://radiology-ai.rsna.org
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example, this limitation could be addressed by including more 
lower-grade glioma cases or by oversampling nonenhancing tu-
mors. In addition, prior nonsurgical treatment such as chemo-
therapy or radiation could affect the algorithm output and could 
contribute to false-positive enhancement; however, none of the 
false-positive enhancements identified in this study had received 
prior treatment.

Interestingly, the contribution of the various precontrast im-
age series was not the same in normal brain tissue and within 
the tumor. T2-weighted and FLAIR images were the most sig-
nificant contributors (other than T1-weighted images) across the 
whole brain, whereas susceptibility-weighted images were also a 
significant contributor within the tumor. The contribution of T2-
weighted and FLAIR images likely relates to their thin sections 
and parenchymal contrast; however, the contribution of suscep-
tibility-weighted images is less apparent. One possibility is that 
increased perfusion and/or neovascularization alter the magnetic 
susceptibility of enhancing tissue (30). Surprisingly, arterial spin 
labeling perfusion images were not a major contributor despite 
the close relationship between perfusion and glioma enhancement 
(31), possibly owing to the high physiologic and technical vari-
ability of arterial spin labeling imaging (32).

Compared with prior similar work, this study used a larger 
patient sample and included validation with an external dataset 
(8). External validation results were somewhat limited by differ-
ences in underlying data. Most notably, a substantial portion of 
Multimodal Brain Tumor Segmentation Challenge precontrast 
data is two-dimensional, whereas the majority of the internal da-
taset was 3D. Despite these differences, model performance on 
the external dataset was nearly completely recovered by training 
the model for five additional epochs with half of the external data, 

and enhancing tumor overlap results were not significantly differ-
ent. These results suggest that the proposed model is readily appli-
cable to other datasets through a relatively rapid transfer learning 
approach. Applicability to other types of enhancing intracranial 
pathologic conditions was not directly assessed; however, we ob-
served some incidental enhancing lesions in our sample that were 
represented in simulated images with varying accuracy.

One limitation of our results is the apparent blurring of simu-
lated postcontrast images compared with real images. This effect, 
which is likely related to minor misregistration of precontrast 
inputs and/or feature resampling in the dCNN, could obscure 
subtle areas of enhancement. Such contrast blurring in simulated 
images could be particularly problematic for determining whether 
abnormal enhancement represents true progression or pseudopro-
gression in treated tumors. Although this blurring is likely overall 
detrimental to image quality and interpretability, it was also ob-
served that simulated images are less affected by patient motion ar-
tifacts (Fig E3 [supplement], bottom right panel). In addition, our 
neuroradiologist reader study results suggest that simulated images 
were not easily distinguishable from real images when presented 
individually and did not significantly affect the ability to detect 
tumor enhancement or determine the tumor grade.

There are several possible approaches to building on this 
work. For example, including a larger number of cases, increas-
ing the quality and quantity of precontrast images, and training 
on larger patches or whole-brain images could improve results. 
The use of image discriminators to guide training, as is done in 
generative adversarial networks, may also yield improvements. 
In addition, the methods presented here could be adapted to 
other similar tasks, including simulation of other MRI series (eg, 
simulated perfusion imaging), simulation of postcontrast images 

Figure 7: Quantitative analysis of model performance on external validation data. Quantitative comparisons between real and simulated postcontrast images using 
both image similarity (left) and error (right) metrics are shown. Real T1-weighted postcontrast images are compared with simulated images derived from the reduced input 
model using internal data (Internal), external Multimodal Brain Tumor Segmentation Challenge data using the reduced model (External), and external data using the refined 
reduced model (Refined Ext.). Results are shown across the whole brain, within the tumor region, and within the tumor core. * denotes a statistically significant difference 
compared with the internal dataset results. † denotes a statistically significant difference between external and refined external results. CC = cross-correlation, LOGAC = log 
accuracy ratio, MEDSYMAC = median symmetric accuracy, MI = histogram mutual information, NRMSE = normalized root mean square error, SMAPE = symmetric mean 
absolute percent error, SSIM = structural similarity index.
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in other modalities (eg, simulated postcontrast CT), or intermo-
dality simulation (eg, simulated MRI from CT).

The results from this study suggest that there may be a role for 
deep learning–based simulated postcontrast MR images to help 
reduce the need for gadolinium-based contrast agents in some 
cases. Although we focused on preoperative gliomas, it would be 
straightforward to apply this method to postoperative gliomas, 
other tumor types, or other enhancing brain diseases. Future 
analysis of model performance in multiple disease states will be 
important, particularly because a specific diagnosis is not always 
known a priori. In addition, future work is necessary to assess the 
diagnostic accuracy of simulated postcontrast images, which was 
not addressed in this study.
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