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Abstract

The Ca2+-calmodulin dependent protein kinase II (CaMKII) is an established central mediator of 

electrophysiological and contractile responses to cardiac stress, and its hyper-activation in cardiac 

diseases has been linked to heart failure (HF) and atrial and ventricular arrhythmias. Here we 

summarize the evidence supporting the role of CaMKII as a critical nodal point for therapeutic 

intervention against HF and atrial and ventricular tachyarrhythmias. Targeting of CaMKII in heart 

with inhibitors possessing appropriate selectivity might represent a novel therapeutic approach for 

HF and arrhythmias.

Keywords

CaMKII; heart failure; atrial fibrillation; arrhythmia; small molecules

The multifunctional Ca2+-calmodulin dependent protein kinase II (CaMKII) is prominent for 

its central roles in the nervous system and heart [1], where it controls a diverse range of 

Ca2+-dependent processes, from learning and memory at the neuronal synapse to cellular 

growth and death in the myocardium. In cardiomyocytes, CaMKII directly regulates 

numerous ion channels and Ca2+-handling proteins [2], and controls the expression of an 

ever-increasing number of transcripts [3, 4] and their downstream products (Figure 1). 

Functionally, these actions are thought to orchestrate many of the electrophysiological and 

contractile adaptations to common cardiac stressors, such as fast atrial and ventricular 

activation rates, chronic adrenergic stimulation, and oxidative challenge [5], Indeed, besides 
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canonical activation via Ca2+/calmodulin binding [6], CaMKII activity is regulated by a 

number of post-translation modifications including oxidation [5], S-nitrosylation [7], O-

GlcNAcylation [8] and via a not fully resolved cAMP-Epac-NOS pathway [9].

CaMKII Role in Heart Failure and Atrial Fibrillation

In the context of disease, CaMKII has been shown to contribute to a remarkably wide variety 

of cardiac pathologies [10], of which heart failure (HF) is the most conspicuous. 

Hyperactivity and chronic activation of CaMKII is an established contributor to pathological 

cardiac remodeling, and is widely thought to directly promote arrhythmia and contractile 

dysfunction during HF [11, 12] (see also reviews: [10, 13]). CaMKII upregulation in HF 

directly promotes increases in late Na+ current (INaL) [14] and diastolic sarcoplasmic 

reticulum (SR) Ca2+ leak [12] via the ryanodine receptor (RyR), which are the primary 

molecular defects in two genetically-linked arrhythmogenic syndromes, long QT type-3 and 

catecholaminergic polymorphic ventricular tachycardia. Indeed, several non-failing 

arrhythmia-susceptible phenotypes, which result from specific genetic channelopathies, 

functionally mimic constitutive channel phosphorylation by CaMKII [14-16],

While CaMKII may play a lesser arrhythmogenic role in paroxysmal forms of atrial 

fibrillation (AF) [17], this kinase is overexpressed and hyperactive in patients with persistent 

(chronic) AF (cAF) [18, 19] and many experimental AF models [20-25]. CaMKII 

upregulation in AF paradigms and AF patients and in electrical storm [26] promotes cardiac 

arrhythmogenesis likely through phosphorylation of the same targets that are relevant for HF 

([17, 18, 27, 28]), although regulation of atrial-dominant ion channels and transport 

regulators has also been reported (e.g., IKur [29], IK,Ca [30] and sarcolipin [31]

Arrhythmogenic CaMKII-Na+-Ca2+ Positive Feedback

An arrhythmogenic synergistic interaction between upregulated CaMKII and perturbed Na+ 

and Ca2+ fluxes has been hypothesized in both failing ventricular and atrial cardiomyocytes, 

and computational models of cardiomyocyte electrophysiology, Ca2+- and Na+-handling, 

and signaling have begun to quantitatively confirm this notion [32, 33], Elevated INaL 

prolongs action potential duration (APD) and enhances the propensity for early 

afterdepolarizations, a well-known arrhythmia trigger. But longer APD and briefer diastole 

also cause Na+ and Ca2+ loading, which increases spontaneous SR Ca2+ releases and the 

likelihood of delayed afterdepolarizations. This Ca2+ loading also promotes CaMKII 

activation that reinforces INaL and RyR hyperactivation to further prolong APD, raise Na+ 

and SR Ca2+ load and leak. This generates a pathological positive feedback loop that 

promotes both mechanical cardiac dysfunction (systolic and diastolic) and 

arrhythmogenesis. High [Na+], also lowers mitochondrial [Ca2+] [34], thus limiting Ca2+-

dependent dehydrogenases that help match energy supply with demand (and can increase 

reactive oxygen species to further activate CaMKII, RyR sensitivity and INaL). Breaking the 

CaMKII-Na+-Ca2+ positive feedback loop is therefore an attractive mean to normalize Ca2+, 

Na+ and membrane potential dynamics in HF (and AF), but should not be achieved at the 

expense of systolic function. CaMKII inhibition may be well suited to facilitate this 

outcome.
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Need for Small Molecule Inhibitors Targeting Cardiac CaMKII

Because CaMKII contributes to both the acute and chronic manifestations of major cardiac 

diseases, but may be only minimally required for physiological homeostasis, it has come to 

be one of the most promising therapeutic drug targets in cardiac biology. However, currently 

available CaMKII inhibitors, including inhibitory peptides and the small molecule KN-93, 

have limited efficacy and imperfect selectivity and are not suitable for clinical use. 

Furthermore, while abundant in vitro data is available linking CaMKII to arrhythmias in 

hypertrophic or failing hearts, only a few studies have directly tested the antiarrhythmic 

effect of CaMKII inhibition in HF in vivo [35]. Thus, development of more specific and 

deliverable small molecule CaMKII antagonists remains a key priority for the field [36].

In the paper by Neef et al. [37] in this issue of the Journal of Molecular and Cellular 
Cardiology, a novel ATP-competitive CaMKII inhibitor AS105 was characterized and shown 

to potently (in vitro IC50 in the nanomolar range) inhibit both nonphosphorylated and 

phosphorylated CaMKII, despite competing with millimolar [ATP] in cardiomyocytes. 

When tested for its functional effects, AS105 reduced SR Ca2+ leak in atrial cardiomyocytes 

from human donors and ventricular cardiomyocytes from healthy and CaMKIIδc 

overexpressing mice with HF. In human atrial cells, AS105 significantly reduced the 

likelihood of arrhythmogenic spontaneous SR Ca2+-release events. In failing mouse 

ventricular cardiomyocytes, AS105 improved SR Ca2+ loading and release, and overall 

contractility.

While AS105 seems to provide a valuable tool for advancing CaMKII research, by 

overcoming many of the limitations inherent to the use of KN-93, including off-target 

effects, low potency (μM) and block of nonphosphorylated CaMKII only [36], this and other 

ATP-competitive or allosteric CaMKII inhibitors might not yet be ready for clinical 

application. Besides issues with cell penetration, particularly of substrate competitors with 

peptide structure like AIP and AC3-I, it is of critical importance for utilization in the clinic 

(and especially for chronic use) that CaMKII inhibitors exert no clinically relevant actions 

on α- and β-isoforms of CaMKII in brain, thereby preventing detrimental effects on memory 

and neuronal plasticity. Optimization of pharmacokinetic properties of small molecule 

CaMKII inhibitors will be required to minimize central nervous system penetration via the 

blood-brain barrier. Also, systemic CaMKII inhibition may have negative effects on fertility 

[38]. Therefore, the success of CaMKII-dependent therapeutic strategies will require the 

development of cardiac-specific CaMKII inhibitors. Of note, CaMKIIγ can substitute for 

CaMKIIδ in heart [39], rendering it likely that successful CaMKII inhibition in heart will 

require the inhibition of both CaMKIIδ and CaMKIIγ. Also, the existence of multiple 

CaMKII isoforms, each with various splice-variants, may provide opportunities to 

selectively target cardiac-specific pathological processes. Finally, a future approach to 

minimize CaMKII inhibition outside the heart might be gene therapy with viral vectors for 

localized expression of peptides or proteins to the heart. Advances in vector technology and 

delivery techniques now allow for efficient, safe and long-term gene transfer to the heart, 

although recent results from large clinical trials have provided mixed results [40]. Gene 

transfer of the SERCA2a cDNA by delivering a recombinant AAV1 (AAV1.SERCA2a) in 

patients with advanced HF pioneered the cardiac field. However, after the initial promise of 
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the Calcium Up-regulation by Percutaneous Administration of Gene Therapy in Cardiac 

Disease (CUPID) clinical trial [41], CUPID2 study was neutral and failed to demonstrate the 

efficacy of AAV1.SERCA2a gene transfer in improving clinical outcomes of patients [42]. 

Suboptimal dosage might partially explain the neutral results, and thus future studies 

employing AAV1.SERCA2a gene transfer at appropriate dosages are needed to definitely 

disprove the viability of SERCA2a gene transfer for HF treatment.

Conclusions

After decades invested in the development of ion-channel blockers, CaMKII inhibition has 

emerged as a promising treatment strategy for control of HF and susceptibility to atrial and 

ventricular arrhythmias. Further refinement and development of small molecule ATP-

competitive CaMKII inhibitors can pave the way to utilization of these drugs in the clinic. 

Although specificity is a major concern when using ATP-competitive CaMKII inhibitors, 

which might exert potential off-target effects on over 500 other kinases, successful 

employment of ATP-competitive inhibitors in oncology clearly demonstrates that 

appropriate selectivity is achievable. Local delivery of ATP-competitive CaMKII inhibitors 

with appropriate selectivity might represent a novel therapeutic approach against HF and 

arrhythmias.
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Figure 1: 
Mechanisms by which CaMKII regulates cardiomyocyte electrophysiology, Ca2+ handling, 

transcription and mitochondrial function. CaMKII is activated by Ca2/calmodulin binding, 

β-adrenergic activation (via Epac/NOS1), ROS, and GlcNAc. Epac: exchange protein 

activated by cAMP; NOS1: nitric oxide synthase 1; ROS: reactive oxygen species; GlcNAc: 

O-Linked β-N-Acetylglucosamine.
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