UC Riverside

Journal of Citrus Pathology

Title

Advances in HLB Detection Using Agdia's Isothermal AmplifyRP™ Platform

Permalink

https://escholarship.org/uc/item/5k84d2z6

Journal

Journal of Citrus Pathology, 1(1)

Authors

McOwen, N. Russell, P. F. Bohannon, R.

Publication Date

2014

DOI

10.5070/C411024731

Copyright Information

Copyright 2014 by the author(s). This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

2.10 P

Advances in HLB Detection Using Agdia's Isothermal AmplifyRPTM Platform

McOwen, N., Russell, P.F., and Bohannon, R.

Agdia, Inc., Elkhart, IN, USA

Huanglongbing (HLB) disease is found throughout Asia, in Brazil, Mexico, the USA, and parts of Africa and has seriously affected citrus production in many regions. The three species of the Candidatus Liberibacter which have been identified are *Candidatus Liberibacter asiaticus*, *Candidatus L. americanus*, and *Candidatus L. africanus*.

We discuss here improvements in the AmplifyRPTM platform which allow for easy, accurate, and specific detection and identification of the three causative species of HLB. The single-component test systems allow for the use of either purified nucleic acid preps or crude extracts prepared from psyllids or plant tissue. Comparisons with other detections will be discussed.