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1 Overall Abstract 

Anadromous salmonids utilize a combination of physical, chemical, and biological cues when migrating 

from ocean foraging grounds as mature adults to freshwater spawning grounds to complete their lifecycle. 

The biological processes behind homing behavior (migrating to their stream of natal origin to spawn) and 

straying behavior (migrating to non-natal habitats) have been well studied since the 1950’s. However, the 

abiotic environmental factors that partially drive these behaviors have received comparatively less attention. 

One aspect that is particularly understudied is the influence of localized channel hydraulics on habitat 

selection in migrating adults. The first chapter of this dissertation includes an investigation into migratory 

microhabitat selection at a major river confluence by California Central Valley fall-run Chinook salmon in 

response to localized hydraulic conditions, as well as temperature and turbidity. Conveyance 

(depth*velocity magnitude) was found to be the strongest hydraulic predictor of micro-scale habitat 

selection, and acts in conjunction with temperature to facilitate rheotactic swimming behavior. Chapter 2 

includes modeled simulations of migratory movement under varying drought conditions, utilizing the same 

confluence used in Chapter 1 as a study system. These simulations indicate that both discharge magnitude 

in each river, as well as the ratio of discharge magnitudes between them, are significant drivers of the 

availability and distribution of preferred hydraulic microhabitats at the confluence, potentially influencing 

migratory routing. These findings support observed patterns in Chinook salmon escapement data in 

response to historical flows at this confluence. Chapter 3 includes a literature review and meta-analysis 

assessing the extent to which abiotic factors have been investigated in the existing literature on homing and 

straying behavior in anadromous salmonids. Only 70 out of 169 articles included at least one abiotic study 

component. This phenomenon was surprisingly consistent across study method types, study locations, and 

study species, with none of these attributes having statistically significant differences in frequency of abiotic 

components among attribute classes. The research presented in this dissertation provides valuable 

advancements in the field of fisheries ecology, particularly with respect to the topic of homing and straying 

in anadromous salmonids. Novel approaches to both field data collection and riverine habitat modeling 
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were developed, and key results link open channel hydraulic processes to adult migratory behavior, filling 

an existing knowledge gap in the basic life history of salmonids. 
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2 Chapter 1: Local hydraulics influence habitat selection and swimming behavior in adult California 

Central Valley fall-run Chinook salmon at a large river confluence 

2.1 Abstract 

Migratory habitat selection in adult anadromous salmonids occurs in response to a combination of physical, 

chemical, and biological cues. Migratory behavioral responses to localized hydraulics are not well 

understood and hydraulic flow features can be particularly complex at confluence junctions. In some cases, 

hydraulics may play a partial role in migratory routing, with implications for population structure where 

wild- and hatchery-origin fish hybridize. This study investigated two questions about such confluences: (1) 

Can patterns in migratory microhabitat selection or migratory swimming behavior in adult Chinook salmon 

be attributed to micro-scale hydraulic conditions driven by discharge magnitude and ratio at a confluence? 

(2) What is the relative influence of selectivity for hydraulic conditions compared to temperature and/or 

turbidity in micro-scale habitat selection or migratory swimming behavior at a confluence? The 2019 

migration of California Central Valley fall-run Chinook salmon (Oncorhynchus tshawytscha) at the 

confluence of the Feather and Yuba Rivers in northeastern California served as a study system. Using two 

dual-frequency identification sonars, 12 monitoring sites representing distinct physical microhabitats 

upstream of, within, and downstream of the confluence were repeatedly sampled during two four-day flow 

periods (mean flow ratios between the Feather and Yuba Rivers were 8.66 and 4.02, respectively). 

Temperature magnitudes and ratios flipped between sampling periods. We used a multiple regression 

analysis using the F test for significance and a corrected Akaike information criteria (AICc) analysis to 

identify predictors of both detection rate (# individuals/m3/min) and percent occurrence of directing, 

milling, and backtracking swimming behaviors. A combination of conveyance (depth*velocity magnitude), 

temperature, and turbidity was found to perform best in predicting detection rate (p < 0.001). No suitable 

model was found to predict directed behavior. Milling was best predicted by a combination of all hydraulic 

variables (p <0.001) and although temperature alone was found to best predict backtracking (p < 0.01), we 

identified a candidate model including conveyance and temperature as predictors (ΔAICc = 3.66, p = 0.02) 
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which aided in the interpretation of our results. This study provides evidence that channel hydraulics play 

an active role in the sum of navigation cues that are utilized by migrating adult salmon en route to spawning 

grounds and should be considered in future investigations of homing and straying patterns in anadromous 

salmonids. 

2.2 Introduction 

Salmon have long been a focal point in aquatic resource management at all scales where such anadromous 

fish occur. Conservation goals for maintaining healthy populations include sustainable harvest, ecosystem 

benefits, and cultural significance (Larkin, 1979; Bottom et al. 2009; Cote et al. 2021). The nature of salmon 

migrations has been studied extensively, as it is a critical facet of their life history strategy (Dittman and 

Quinn, 1996; Keefer and Caudill, 2014; Putman et al., 2013). In many cases, anadromous fish habitat in 

regulated rivers experiences altered flow regimes to accommodate agricultural, municipal, and industrial 

water use throughout the year (Brown and Ford, 2002; Buddendorf et al., 2017; Marchetti and Moyle, 2001; 

Tsuboi et al., 2010) as well as riverscape narrowing and simplification to accommodate adjacent land use 

(Jacobson and Galat, 2006). 

River confluences can be hydraulically and geomorphologically complex features of regulated fluvial 

channel networks and represent critical points for successful homing. Understanding of their dynamics 

(including hydraulic flow features, sediment flux, and channel geometries) has become increasingly more 

sophisticated since the mid-20th century (Best 1986, Gualtieri et al. 2017, Miller, 1958, Richards 1980). 

For salmon migrating upstream, each confluence that is encountered represents a critical navigational step 

in a sequence of decisions that must be made between entering the estuary and reaching spawning grounds. 

In many rivers, the physical, chemical, and biological attributes of migratory habitat at a confluence are 

dictated by environmental drivers that occur in a spatial hierarchy, from landscape-scale processes down to 

micro-scale processes. 
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2.2.1 Study purpose and scientific questions 

This study investigated microhabitat-scale drivers of migratory habitat selection at a regulated river 

confluence by addressing the following questions: (1) Can patterns in migratory microhabitat selection or 

migratory swimming behavior in adult Chinook salmon be attributed to micro-scale hydraulic conditions 

driven by discharge magnitude and ratio at a confluence? (2) What is the relative influence of selectivity 

for hydraulic conditions compared to temperature and/or turbidity in micro-scale habitat selection or 

migratory swimming behavior at a confluence? Our study design does not explicitly account for 

microhabitat selection based on homing fidelity to natal water. It is impossible to disentangle micro-scale 

preference for temperature and/or turbidity purely based on those physical characteristics from selectivity 

of natal source water having some thermal/optical characteristics at the time of our observation. In our 

study, we consider the degree to which temperature and turbidity play a role in micro-scale habitat 

preference as a potential sign of homing fidelity and our results are discussed in that context. The 

experimental design concept and tested hypotheses are included below in Section 2.2 and summarized in 

Table 1.1. 

 

 

 
 

 

 

 

 

 



  

 

 

4
 

Table 1.1. Hypotheses and test methods used in this study. Predictor variables a-g are each tested as a separate hypothesis in the analysis. Directed, 
milling, and backtracking behaviors are defined in section 2.3.3.   

Hypothesis 

H1: Detection rate* correlates with… 

  

a Velocity magnitude 

b Depth 

c Conveyance 

d Froude number 

e Temperature 

f Turbidity 

g Multiple Predictors 

Percent of _________ swimming behavior correlates with… 

 

H2: Directed** 
 

H3: Milling** 

 
H4: Backtracking** 

 

a Velocity magnitude 

b Depth 

c Conveyance 

d Froude number 

e Temperature 

f Turbidity 

g Multiple Predictors 

*Nonlinear (exponential) regression **Linear regression. Hypothesis testing utilizes the F test for multiple regression coefficients being non-zero (95% confidence). 
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2.2.2 Conceptual model background 

Figure 1.1 presents a conceptual model of migratory habitat attributes for adult Pacific salmon that occur 

within a spatial hierarchy of physical, chemical, and biological processes which directly or indirectly drive 

habitat selection at river confluences. An expanded literature review and synthesis supporting the 

conceptual model is included in Section 5.1 of Appendix A. It is important to consider the potential roles 

of landscape-, reach-, and micro-scale phenomena that affect fish migratory decision-making and/or 

behavior instincts when a fish arrives at a confluence.
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Figure 1.1. Conceptual model diagram summarizing physical and biological drivers involved in multi-scale habitat selection by anadromous migrating 
adult salmonids at river confluences. Black lines indicate indirect drivers of habitat selection. The area shaded in blue includes microhabitat attributes 
that are investigated in this study (with the exception of turbulence). Blue lines indicate direct drivers that are quantified and analyzed in this study, 
while red lines indicate direct drivers that are not measured. Items outlined in orange indicate physical and biological drivers that are actively 
managed, either partially or fully. Yellow diamonds describe the physiological and behavioral implications for a given movement by an individual. 
Dotted blue arrows are ecological implications that could be accounted for using the results of this study, and red dotted lines cannot.
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2.2.2.1 Landscape-scale habitat attributes 

Landscape-scale hydrologic and sediment supply regimes act as top-down controls on local flow 

magnitude, frequency, duration, timing, and rate of change, including interannual variation of these 

attributes (Edwards et al., 2015). River discharge at a catchment or reach scale has been used to partially 

explain the timing of population-level adult salmon migratory movements with implications for flow 

management in the context of accommodating or facilitating migration (Anderson and Beer, 2009; Dahl et 

al., 2004; Peterson et al., 2017). In catchments with regulated rivers, many dam operation schedules are 

partially planned to control downstream discharges (Acreman et al., 2009; Bradford et al., 2011; Gendaszek 

et al., 2018; Saltveit et al., 2019), as well as temperatures (Ahmad and Hossain, 2020; Nichols et al., 2014; 

Rheinheimer et al., 2015) to accommodate specific salmonid life-cycle stages and their habitat 

requirements. Along with climate and precipitation patterns, regional orogeny, epeirogeny, and lithology 

act as major drivers of sediment transport dynamics, drainage pattern, and spatial distribution of channel 

types (Dietrich et al., 2003; Howard et al., 1994; Massong and Montgomery, 2000; Sklar and Dietrich, 

2001). These landscape-scale processes ultimately determine amount and type of habitat available to a 

salmon population by dictating spatial extent and distribution of alluvial channel forms (Church, 2006). 

Hatchery production facilities can induce population-level effects when juveniles are reared to the 

parr/smolt stage and released off site to avoid mortality associated with downstream migration (Huber et 

al., 2015; Murdoch et al., 2009). This dynamic is thought to result in increased rates of straying in returning 

adults due to interruption of olfactory imprinting at early life stages (Jonsson et al., 2003; Keefer and 

Caudill, 2014; Sturrock et al., 2019). In addition to hatchery release practices, some pollutants are known 

to disrupt olfaction via toxicity to olfactory physiology by multiple biochemical pathways (Tierney et al., 

2010). Many salmon populations occur in regions that experience extensive agricultural land use and large-

scale application of pesticide compounds that enter waterways via agricultural runoff. 
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2.2.2.2 Reach-scale habitat attributes 

With the exception of some Alaskan chum salmon (O. keta) runs (known to occasionally spawn in intertidal 

areas of river mouths, see Johnson et al. 1997), most adult Pacific salmon undergo some degree of upstream 

migration into a catchment, encountering a sequence of tributary confluences. The distance travelled along 

a migration route can vary intra- and inter-specifically (Quinn, 2018). Thus, types of riverine habitats 

occupied by Pacific salmon species throughout their range are highly variable as well. As salmon progress 

through upstream migration, fish experience variations in channel discharge, geometry, and local features, 

such as deposited wood, boulders, bank outcrops, man-made structures, etc. This dynamic combination of 

flow and channel shape dictates the hydraulic conditions that each individual experiences. Hydraulic 

connectivity and passage capability at knickpoints are major factors that determine how far into a channel 

network an individual fish can swim. Confluences within a catchment can be important drivers of reach-

scale geomorphic features and resultant physical migratory habitat structure (Blettler et al., 2016; Penna et 

al., 2018). In a review of “confluence effects” (meaning the formation of fluvial landforms associated with 

confluences such as fans, bars, and terraces) in drainage networks, Benda et al. (2004) found a correlation 

between the ratio of tributary and mainstem drainage area and probability of confluence effects occurring. 

In certain cases, sediment aggradation at channel confluences may interrupt downstream sediment supply, 

disrupting alluvial processes that facilitate physical habitat heterogeneity downstream of the confluence. 

The extent to which this occurs within a basin is largely driven by drainage area and stream network length 

(Rice, 2017). 

Because acute injury to olfactory organs has been demonstrated in presence of certain pesticide compounds 

(Tierney et al., 2008), it is possible that non-point source contamination may have some influence in 

migratory routing at confluences above a concentration threshold for acute toxicity. Point source 

contamination may also have reach-scale impacts to adult salmon migratory habitat via contaminant spills, 

poor pesticide management practices, or concentrated discharge of agricultural runoff during dry periods 

(Holvoet et al., 2007; McKnight et al., 2015).  
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It is also important to note that some amount of straying occurs naturally across Pacific salmon species. 

Exploratory dispersal as an innate behavior appears to be an expression of the portfolio effect in their life 

history strategy and in some cases may be related to thermoregulation (Goniea et al. 2006, High et al. 2006, 

Peterson et al. 2016, Schindler et al. 2010, Keefer et al., 2018). Beyond biological cues at the individual 

level, recent evidence has demonstrated density-dependent movement of spawning cohorts (Berdahl et al., 

2017, 2016). Further investigation is needed before a density threshold for aggregated group movement can 

be identified across salmonid taxa. Finally, little is known about predator avoidance dynamics in migrating 

adult salmon, though it is thought to be most important on or near spawning grounds (Quinn, 2018; Quinn 

et al., 2001).  

2.2.2.3 Micro-scale habitat attributes 

Channel discharge, geometry, and sediment composition act together to produce micro-scale physical 

habitat conditions commonly referred to as “microhabitats”. The microhabitat spatial scale is defined by 

Baldes and Vincent (1969) as “the physical conditions immediately surrounding an animal at a given time 

and place”. This spatial scale has been utilized in investigations into life stage-specific habitat requirements 

(Carnie et al., 2016; Moir and Pasternack, 2010; Nielsen, 1992; Shirvell, 1994), restoration design and 

planning applications (Brown and Pasternack, 2009; Fangue et al., 2021; Favrot et al., 2018), and evaluation 

of passage infrastructure (Li et al., 2021; Nestler et al., 2008; Weber et al., 2006). To date, influence of 

confluence hydraulics on species-specific microhabitat distribution in space and time has not yet been 

studied.  

2.3 Materials and Methods 

2.3.1 Study area and management context 

The Feather and Yuba River catchments lie adjacent in the northeastern area of the California Central Valley 

(Figure 1.2). Both experienced intensive hydraulic gold mining activity during the 19th century. Differences 

in early river engineering approaches resulted in contrasting channel evolution processes, particularly with 
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regard to levee width (James et al., 2009). The Yuba drainage area is 3480 km2 and the lower Yuba River 

(LYR) is a 37.1 km segment between Englebright Dam to the confluence with the lower Feather River 

(LFR). It is dominated by gravel/cobble substrate, transitioning to a sand-dominant channel at the 

confluence. The Feather drainage area is 16,050 km2 and the LFR extends 117 km from Oroville Dam to 

its confluence with the Sacramento River. The LFR is dominated by finer sediment and has experienced 

significant channel avulsion. The Oroville spillway collapse in 2017 resulted in the rapid mobilization of 

approximately 1 million metric tons of debris that was deposited in adjacent floodplain areas (Nalin and 

Kotulla, 2018). The LFR is also heavily influenced by Thermalito Afterbay, a series of hydraulically 

connected shallow reservoirs adjacent to the main channel that result in increased water temperatures. Both 

rivers are regulated and experience annual flow regimes that are altered from historical conditions, though 

the LYR has a relatively natural flood regime (Gervasi et al., 2021). 

 
Figure 1.2. Location of the study area. The state of California is shaded in blue in the main panel. The inset 
identifies the lower Feather River, lower Yuba River, and the dams that create total fish passage barriers 
upstream of the study area. Blue arrows indicate flow direction. Base map image sources: ESRI, HERE, 
Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS user community.   
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The location of the study area is the immediate confluence of the LFR and LYR. Specifically, it includes 

approximately 1.42 km of the LFR and 0.85 km of the LYR upstream of the confluence and 1.13 km of the 

LFR downstream of the confluence (Figure 1.3). The study area is dominated by sand-sized substrate with 

small patches of coarser material in fast-moving riffles (see Table A.A.1 in Appendix A for grain size 

distribution by sample site). Topographic surveys and aerial imagery indicate that the study area is subject 

to significant interannual changes in channel geometry due to mobilization of fine sediment during winter 

high flow periods. In-stream wood is present along the banks and can be submerged. More wood occurs in 

the LYR, because the west bank of the LFR has a sandy levee and that bank is subject to maintenance and 

clearance. 

The Feather River Fish Hatchery is located at the base of Oroville Dam and is one of the largest production 

facilities for fall-run Chinook in the Central Valley. In 2019, spring- and fall-run Chinook produced by 

Feather River Fish Hatchery accounted for 43.6% of adult hatchery-origin Chinook collected in the 

Sacramento and San Joaquin basins during the fall-run escapement period (CDFW, 2021). The hatchery is 

located ~ 61.9 RKM upstream of the study site. In 2019 (the year that our field surveys took place), 27,103 

Chinook salmon returned to the hatchery with 51,967 in-river returns, totaling 79,070 fish (CDFW 2022). 

The LYR has no hatchery production facility and extant naturally spawning populations of spring- and fall-

run Chinook persist. In 2019, the LYR experienced 3,446 in-river returns (CDFW 2022).  

The Yuba Accord River Management Team (YARMT) found that discharge magnitudes differing between 

the two rivers appear to influence navigational choice at the LFR-LYR confluence (YARMT 2013). 

Correlative patterns have emerged in the two rivers between escapement rates for spring- and fall-run 

Chinook and discrepancies in the magnitude of flow and temperature between the rivers in certain years. 

Monitoring data show that in years with higher discharge and lower temperature in the LYR relative to the 

LFR, high rates of straying of Feather-origin fish can be seen in the LYR.  

In surveys conducted from 2004–2011, YARMT counted the number of Feather-hatchery origin fish 

passing a low-head dam on the LYR and, using a fitted logistic model, found 72% of the variation in the 



  

12 

 

proportion of hatchery- and wild-origin adults entering the LYR could be attributed to the ratio of discharge 

magnitude between the two rivers and the ratio of water temperature between the two rivers. As a result, 

the National Marine Fisheries Service’s California Central Valley Salmonid Recovery Plan includes a 

recovery action to “evaluate whether salmonid straying between the Feather and Yuba rivers can be 

minimized through flow management” (NMFS 2014). It may be necessary to co-manage the LFR and LYR 

to a degree to address this. 

Based on the results of YARMT’s monitoring efforts and the extent to which migratory behavioral cues in 

adult salmon are characterized in the literature, there is a clear need to go beyond simple empirical 

correlations to investigate potential mechanisms of straying behavior at the LFR/LYR confluence driven 

by local physical processes that convert general drivers like discharge and temperature into sensory 

experiences fish use to make decisions or respond to instinctually. Beyond the direct management 

implications for hatchery-origin fish occupying these watersheds, such an investigation would aid in filling 

a critical knowledge gap in the migratory physiology and behavior of anadromous salmonids. 

It may be that the cue is simply magnitude of discharge, but how can that be possible mechanistically? 

Specifically, how can a fish experience an instantaneous total volume of water passing a cross-section that 

is ~ 300 times wider than their body length? That is unlikely. Instead, it is most likely that discharge is a 

distal “black box” governing variable inducing the ecohydraulic mechanism by which a proximal physical 

template is presented to fish for their behavioral response. The risk of relying on empirical analysis of only 

one governing variable without investigating underlying mechanisms is that important, yet unaccounted for 

other governing variables (e.g. topography, substrate, vegetation, stream wood, etc.) could change 

independently of managers tuning flow releases, resulting in a poor or ambiguous outcome from controlled 

actions. Further, there remains ~ 30% of the behavioral decisions that are not explained by YARMT’s 

empirical analysis, and that constitutes a sizable population-level effect that needs to be understood 

(YARMT 2013).  
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2.3.2 Experimental design concept 

As shown conceptually in Figure 1.1, this study investigated drivers of migratory microhabitat selection at 

a regulated river confluence. Depths and velocities throughout the study site experienced top-down control 

by discharge magnitude and ratio (referred to as “discharge condition”) between the LFR and LYR. 

Discharge condition changed significantly between September and October sampling periods in 2019. 

Fixed DIDSON sampling sites were selected to capture the broadest possible range of depth and velocity 

magnitude values to identify one or both of those attributes as drivers of selection (“deep” and “shallow” 

site type designations, see Figure 1.3 Figure 1.4). The study area was divided into three zones that 

experienced different overall velocity conditions depending on their orientation to the confluence. The three 

zones include the LYR portion upstream of the confluence, referred to as the “Yuba” zone; the LFR portion 

upstream of the confluence, referred to as the “Feather” zone; and the LFR portion downstream of the 

confluence, referred to as the “downstream” zone.  
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Figure 1.3. DIDSON deployment sites with centerlines indicating orientation (colors indicate sampling 
period). Sites are classified as being in the Feather, Yuba, or downstream zones (F, Y, and D), and whether 
it was a deep or shallow site (D or S, two in each zone). Base map image sources: ESRI, Maxar, Earthstar 
Graphics, and the GIS user community. 
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Figure 1.4. Mean depths are plotted against mean velocity magnitude for each DIDSON deployment site in 
both sampling periods. Some overlap occurs between “deep” and “shallow” sites as they were selected 
based on relative depths within each zone of the sampling scheme. 

Detection rate data from our DIDSON surveys were fit to a set of multiple non-linear regression models to 

investigate the strength of four hydraulic variables (velocity magnitude; depth; Froude number, a 

dimensionless quantity that represents the ratio of inertial forces to gravitational forces; and conveyance, a 

representation of the flow per unit-width that an individual fish experiences at a given point along their 

migratory pathway) as well as temperature and turbidity, as predictors of micro-scale habitat selection. The 

sediment grain size distribution within the study area is dominated by sand and therefore would not serve 

as a useful predictor of habitat selection (see Table A.A.1 in Appendix A). Candidate models as well as the 

regression function (exponential) were selected based on preliminary exploration of the detection rate data. 

Additionally, we analyzed migratory swimming behavior type by measuring a combination of rheotactic 

orientation and progress over ground. This yielded a Eularian-based indicator of upstream migration, and 

it cannot be used to truly characterize Lagrangian-based movement (Doyle and Ensign 2009; Willis 2011). 
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Swimming behavior types were designated as “directed”, “milling”, and “backtracking” as detailed below 

and depicted in Figure 1.5. The same set of multiple regression models was used to predict percent 

occurrence of each of these swimming behaviors, but these models were instead fit using a linear regression 

type. An Akaike information criteria analysis corrected for small sample sizes (AICc) was used to score 

and rank the suitability of the models for predicting each response variable. F tests for statistical significance 

in each regression fit served as a test metric for our stated hypotheses in Table 1.1. 

 
Figure 1.5. Description of swimming behaviors analyzed in this study. Behaviors are defined by rheotaxis 
and movement over ground relative to the flow direction. Chinook salmon image credit: Emily Nastase, 
Integration and Application Network (ian.umces.edu/media-library). 
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2.3.3 DIDSON surveys 

2.3.3.1 DIDSON sonar 

The potential utility of dual-frequency identification sonars (DIDSON) technology for biological research 

applications has been noted for settings in which optical underwater imaging equipment may be limited by 

light, turbidity, or suspended particulate matter (Belcher et al., 2002, 2001). Moursund et al. (2003) first 

assessed feasibility of DIDSON technology in fisheries research applications. Since then, it has been used 

to monitor salmon passage rates in Alaska (Faulkner and Maxwell, 2009; Maxwell and Gove, 2004, 2007) 

and fish behavioral responses to passage infrastructure in Australia (Baumgartner et al., 2006). It has also 

been used for steelhead (Oncorhynchus mykiss) population assessments in coastal California watersheds 

(Pipal et al., 2012) and green sturgeon (Acipenser medirostris) abundance estimates in the Sacramento 

River (Mora et al., 2015). 

To assess fine-scale hydraulic habitat selection at the LFR/LYR confluence, two DIDSON systems were 

deployed to observe migratory behavior and quantify rates of habitat selection within the immediate area 

of the confluence. A DIDSON system (Sound Metrics Corp.) features a multibeam transducer that emits 48 

beams spaced 0.4° apart when operated at the 1.0 MHz frequency and 96 beams spaced 0.3° apart with two 

operating at the 1.8 MHz frequency. The beams are emitted through an “acoustic lens” that can shape the 

resultant sonar images to focus on a particular field of view. 

2.3.3.2 DIDSON sampling scheme 

Migratory behavioral observations via DIDSON occurred over the course of two 4-day sampling periods 

in 2019, representing markedly different discharge conditions at the confluence due to the scheduled 

decrease in Feather River flows for salmon spawning in mid-October (CDWR and CDFG 1983, NMFS 

2016). The first period occurred from September 23-26 and the second from October 22-25. During the 

first sampling period, mean discharges on the LFR and LYR were ~ 213 and 24 m3/s, respectively. During 

the second period, discharges on the LFR and LYR were ~ 68 and 17 m3/s, respectively (CDWR 2021). 

Discharge decreased because of a scheduled annual flow decrease in the LFR to prevent anadromous fish 
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from spawning in overbank areas that may be dewatered (CDWR and CDFG 1986, NMFS 2016). LYR 

discharge also decreased, but not by as much, yielding a lower flow ratio. Scheduled facility maintenance 

typically yields the lowest discharge out of Englebright Dam in September. However, actual released 

discharge may be higher than scheduled depending on carryover storage, natural autumn runoff, and water 

demand by Yuba County farmers. Further, the timing of LYR flow reduction is earlier than it is for the 

LFR, so the main effect on the flow ratio in late September is driven by the LFR. Independently of releases, 

minimum flow requirements on the LYR close to the confluence with the LFR are identical for September 

and October regardless of water year type used to define the operational schedule in the Yuba Accord. 

Therefore, the primary control on discharge ratios at the confluence is LFR flow operations. 

We established four DIDSON deployment sites in three zones, in both the LFR (“Feather” sites) and LYR 

(“Yuba” sites) upstream of the confluence and an additional four in the LFR downstream of the confluence 

(“Downstream” sites). Each of these three zones included two “deep” and two “shallow” sites, relative to 

surrounding channel topography. Site selection was somewhat limited by availability of shoreside area for 

equipment set up and deployments were limited to normal daylight working hours due to logistical 

constraints and safety concerns. The goal of the sampling scheme was to capture a range of depths and 

velocities that were representative of the study area. These sites and their physical attributes are shown in 

Figure 1.4 and summarized in detail in Table A.A.2 in Appendix A.  

All 12 DIDSON deployment sites were sampled twice for a duration between 30-60 min within each 4 d 

period at a fixed range of 10 m. Deployment locations during the second sampling period were moved 

laterally into the wetted channel to accommodate the stage drop. DIDSON transducers were suspended in 

stationary PVC cages and both sonar and laptop equipment were powered by 12v deep cycle marine 

batteries. For all deployments, a handheld Trimble GeoHX GeoExplorer 2008 Series GPS was used to 

obtain a position fix for the transducer. A handheld compass and angle measuring device were used to 

obtain the compass heading and downward (pitch) angle orientation of the transducer. Roll angle was 

minimized to the maximum extent possible. From the digital elevation model (DEM, described below) and 
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the transducer position information for each deployment, volumes sampled were estimated using a 

geometric solution scheme (details included in Figure A.A.1 in Appendix A). Sampling bias was not found 

to influence detection rates with regards to volume sampled, deployment time, deployment duration, or 

mean body length estimate. This is discussed further in Section 5.2.5 of Appendix A. A thorough discussion 

of the species identification criteria used in this study is included in Section 5.2.6 of Appendix A with body 

length estimates being the primary metric used to identify adult Chinook salmon in the DIDSON footage. 

2.3.3.3 Detection rates and swimming behavior 

Individual DIDSON files (recorded at 8 frames per second) were reviewed manually at 30 frames per 

second and processed to obtain migratory behavioral data for adult Chinook salmon. Footage at the 

beginning and end of each file that contained camera movement was discarded. Each time a fish entered 

the field of view that fit the species identification criteria, it was measured three times using the DIDSON 

software’s measuring tool to obtain a mean body length. The time of entry and exit was recorded as well as 

its rheotactic orientation to the flow. Detection rates for each deployment were calculated by summing the 

number of individual detections and dividing those by the minutes of footage analyzed multiplied by the 

volume of water sampled by the DIDSON: 

 𝐷 =  
∑(𝐼 )

𝑡𝐴𝑉
 (1) 

where D is the detection rate, I is the number of individual detections per site, tA is the time of footage 

analyzed in minutes, and V is the total volume of water sampled by the DIDSON in m3. 

Migratory swimming behavior was identified for each detection based on both rheotactic orientation to the 

flow and movement over ground at each DIDSON site (Figure 1.5). Fish that showed positive rheotaxis 

(body oriented against the flow direction) are said to exhibit either “directed” movement if their path of 

travel over ground was only upstream, or “milling” if their path over ground included both upstream and 

downstream movement. Fish were said to be “backtracking” if they exhibited negative rheotaxis (body 

oriented with the flow direction).  



  

20 

 

2.3.3.4 Bathymetric mapping 

A DEM was constructed using topo-bathymetric point data from GPS and echosounding. Bathymetric 

mapping of the wetted channel occurred several weeks prior to the behavioral surveys in August 2019 using 

a Hydrolite single beam echosounder (minimum depth of 0.3 m; depth accuracy of 1 cm; sampling 

frequency of 200 Hz; Seafloor Systems, Inc.) in sync with a Trimble R8 real-time kinematic GPS 

(horizontal and vertical accuracies of ~ 1 and 2 cm, respectively) receiving corrections over the internet 

from a regional base station network on the fly at 1 Hz. Several cross-sectional transects were mapped at 

each DIDSON deployment site. Additional cross-sectional transects were mapped approximately one 

channel width apart as well as 8-12 longitudinal transects that spanned the length of each zone in the study 

area. Bare-Earth topography was collected in January 2020 on an island at the confluence junction using 

the Trimble R8. 

ESRI ArcGIS software was used to process survey data and produce a DEM. Erroneous survey data points 

were manually identified and removed. Additional augmented points were added along known contours 

from the field work to smooth any artifacts in the digital terrain that resulted from topographic data gaps. 

A triangulated irregular network was produced from the point data and then this was converted into a 0.3-

m resolution raster. Raster resolution was selected based on the overall density of topographic data points 

and especially considering point density in the vicinity of DIDSON deployments. 

2.3.4 Hydraulic data 

On September 19th and 20th, one week prior to the first behavioral observation period, and again on October 

30th, one week following the second behavioral observation period, velocity measurements were taken at 

each of the DIDSON deployment sites using a boat-mounted Sontek M9 acoustic doppler current profiler. 

At each DIDSON cross section, six lateral velocity transects were performed, capturing column-wise 

velocity measurements in succession across the channel. Transects extended the full width of the wetted 

channel for each sampling period. Mean velocity magnitude values were computed for each column over a 
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1-second time step and positions were recorded using a Sontek DGPS antenna. The points that were taken 

from these data in GIS to represent each DIDSON site occurred adjacent to the centerline of the DIDSON 

beams, within the lateral length of the DIDSON beams in the up or downstream direction. Points included 

in this search area were then averaged to generate one mean velocity magnitude value for each DIDSON 

site. During the October sampling period, two of the DIDSON sites were not accessible by boat (DS1 and 

DD2) and no ADCP data was collected. As a result, those DIDSON deployments were discarded and 

excluded from our analysis.  Mean depth estimates for each DIDSON site were estimated based on the 10-

m-long centerline of the DIDSON field of view, using bed elevation measurements from the DEM raster 

along the centerline at 0.3 m intervals and assuming a uniform transducer submergence depth of 0.9 m at 

all sites. 

Froude number is a dimensionless quantity that represents the ratio of inertial forces to gravitational forces 

and has been used by others to assess habitat suitability for salmonids (Ayllón et al., 2009; Lamouroux and 

Souchon, 2002; Persinger et al., 2011): 

 𝐹𝑟 =  
𝑢

√𝑔∗𝑑
 (2) 

where u is the mean velocity magnitude at each site in m/s, g is the gravitational acceleration constant in 

m/s2, and d is the mean depth at each site in m. Conveyance is defined as follows: 

 𝐶 =  𝑢 ∗ 𝑑 (3) 

where u is mean velocity magnitude in m/s and d is mean depth in m. C results in units of m2/s and is 

conceptually the discharge per unit width of the wetted channel. It is a representation of the flow that an 

individual fish experiences at a given point along their migratory pathway. This metric has been used in 

similar applications for assessing salmonid habitat suitability (Kammel et al., 2016; Moniz et al., 2019). 
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2.3.5 Hydraulic model 

The overall hydraulic conditions that were available to fish at the study site could not be directly measured 

for a comparison against those conditions where fish were located, so they were estimated using the two-

dimensional (2D) hydrodynamic model TUFLOW HPC (Build 2018-03-AE; BMT Commercial Australia 

Pty Ltd). The model simulated steady state hydraulics throughout the study area for the regulated, steady 

mean daily discharges that occurred during each sampling period. Gridded model solutions for depth and 

velocity magnitude were generated with a computational square cell size of 3 m x 3 m. Velocity magnitude 

validation found model predictions to be a good fit to the data on the basis of an r2 value of 0.76, which is 

quite high compared to the literature using 2D hydrodynamic models. Details on the hydrodynamic models 

including inputs, topographic data, parameters, and validation can be found in Table A.A.3 in Appendix A. 

2.3.6 Temperature and turbidity monitoring 

Temperature and turbidity were monitored at fixed sampling locations throughout the 2019 field campaign 

to represent both discharge conditions (Figure 1.6). All but two DIDSON sites had a corresponding 

temperature/turbidity site, the remaining two were assigned averaged temperature/turbidity values from 

sites directly up- and down-stream. Three HOBO Water Temperature Pro V2 data loggers (Onset Computer 

Corp.) were permanently installed at depths of ~ 1 m at each boundary of the project area (Figure 1.6) to 

generate a continuous temperature time series during the two sampling periods (Figure 1.7). The purpose 

of the fixed loggers was to account for any changes in temperature within each 4-day DIDSON sampling 

period. Fixed HOBO loggers recorded water temperatures (± 0.2°C) at 30-minute intervals. To avoid 

dewatering during the Feather discharge decrease and stage drop between DIDSON sampling periods, the 

fixed loggers were vertically repositioned to achieve > 0.5 m depth submersion for the October period. 
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Figure 1.6. Locations and results of hand-held surface temperature and turbidity measurements for 
September (a,c) and October (b,d) sampling periods. The yellow stars indicate the locations of the fixed 
temperature loggers. Base map image is from Google Earth. 

 

 



  

24 

 

 
Figure 1.7. Temperature time series from each of the three fixed HOBO data loggers during both the 
September (panel a) and October (panel b) DIDSON sampling periods in 2019. In the September plot, 
slopes and intercepts for the Feather, Yuba, and downstream temperature time series trendlines are 
0.0016, 0.0124, 0.0088, and 15.32, 16.65, 16.30, respectively. In the October plot, slopes and intercepts 
for the Feather, Yuba, and downstream temperature time series trendlines are -0.0001, -0.0014, -0.0021 
and 15.01, 14.68, 14.87, respectively.   

Temperature data from the loggers were supplemented with hand-held measurements taken at fixed 

sampling locations (Figure 1.6) before and after each DIDSON sampling period (samples taken September 

20th and 27th and October 18th and 26th). A resistance temperature detector thermometer (± 0.3°C) with a 

general immersion probe (Tegam Inc.) was used to take surface measurements at each station. A third 

HOBO logger attached to a pole was used to take temperature measurements at 1 m depth or at the bottom 
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(if shallower than 1 m) at each station. Surface and submerged temperatures were compared to determine 

if vertical temperature stratification occurred at any point in the site. 

A 2100Q Portable Turbidimeter (accurate to ± 2 % of reading; HACH Company) was used to measure 

turbidity in nephelometric turbidity units (NTUs) at each of the handheld temperature monitoring stations. 

Three measurements were taken at each station and averaged. Sampling vials were rinsed with distilled 

water between each measurement and the instrument was calibrated at the start of each sampling day in 

accordance with manufacturer guidance. 

2.3.7 Data analysis 

A key question to address is whether the locations where fish were present are distinguishable from the 

overall river confluence conditions. Mann-Whitney U tests are a typical approach to answering this 

question, so they were performed using the base R package stats (McFarland and Yates 2016, R Core Team 

2022b) to test (at 95% confidence) for differences in means between both velocity magnitude and depth 

values associated with each DIDSON detection, and randomly sampled modeled values from outside of the 

DIDSON sample sites, representing conditions present within the study area at the time of observation. This 

was performed across all detections, as well as individually for the September and October sampling 

periods, which is two variables times three time intervals yielding six total tests. The number of randomly 

sampled modeled values for velocity magnitude and depth used in each comparison was equal to the number 

of detections associated with that comparison (228 for all detections, 188 for the September comparison, 

and 40 for the October comparison). 

Nonlinear regression was used to test for correlation between detection rate and four micro-scale hydraulic 

variables (H1a-d), temperature (H1e), turbidity (H1f), and several combinations of these predictors that were 

assembled based on preliminary exploration of our data (H1g). Data were fit to exponential functions using 

a nonlinear ordinary least squares approach (Motulsky and Ransnas, 1987; Ritz and Streibig, 2008) via the 

base R function ‘lm’ and using the F statistic at 95% confidence to test whether at least one regression 
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coefficient was non-zero (Olive, 2017; R Core Team, 2022a). The same R function was used to test the 

same predictor variables and candidate models on our swimming behavior data using linear regressions. 

Percent occurrence of each behavior type was the response variable in these models (testing H2: % directed, 

H3: % milling, and H4: % backtracking). In addition to the F test for significance, the coefficient of 

determination (r2) indicated amount of variance explained by each model. The list of candidate models that 

was generated to test our stated hypotheses and our rationale for each are included in Table A.A.4 in 

Appendix A in accordance with best practices for information-theoretic data analysis described by 

Anderson and Burnham (2002). A preliminary examination of our DIDSON detection data helped inform 

this list by eliminating model candidates that would likely have poor explanatory power.  

Akaike information criteria corrected for small sample sizes (AICc) was utilized to identify the most 

appropriate model for predicting each response variable; the R package AICcmodavg was used (Cavanaugh 

and Neath, 2019; Mazerolle, 2020). AICc produces a ranked list of candidate models with the most 

appropriate (lowest AICc score) striking a balance between having the best fit to the data while also having 

the fewest predictive parameters used to achieve that fit. A ΔAICc for a given model that is <2 indicates 

substantial empirical support for that model whereas values >10 offer essentially none (Cavanaugh and 

Neath, 2019). Finally, the AICc weight of support (w) can be interpreted as the probability that a given 

model is the most appropriate of the list under the AICc. It is computed by normalizing the likelihoods of 

candidate models in a list so that w values sum to 1. The value of w for model i is expressed as:  

    𝑤𝑖 =  
𝑒−0.5ΔAICc𝑖

∑ 𝑒−0.5ΔAICc𝑖𝑀
𝑖=1

 (4) 

where M is the number of candidate models in the list (Portet, 2020). Finally, the R package car (Fox et al., 

2022) was used to generate added variable plots (AVP) for the top AICc-ranked model for each response 

variable (or other model of interest as in the case for backtracking behavior). Each panel in an AVP includes 

a single parameter from the model plotted against the response variable while holding all other parameters 

constant and a line is fit to the data (Johnson and McCulloch 1987). The AVP is a useful diagnostic tool in 
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regression applications as the degree of departure of the line from horizontal indicates the relative strength 

of its predictive influence in the model. 

2.4 Results 

Overall, DIDSON surveys yielded a total of 228 adult fall-run Chinook salmon detections (Table 1.2). 

Considerably more occurred during the September sampling period (188) than the October period (40). 

Feather sites upstream of the confluence had the most detections across both sampling periods (163), while 

the Yuba sites had the least (18); Downstream sites were in between (47). Finally, deep sites showed more 

detections across both periods (170) than shallow sites (58). Swimming behaviors among all detections 

occurred as follows: directed (135), milling (39), and backtracking (54). Details on detections per 

swimming behavior as a function of sampling period, zone, and deployment site type (deep vs. shallow) 

are included in Table 1.2. It is important to note that one deployment (FD2 in September) had an 

exceptionally high detection rate compared to all other deployments and accounted for 48% of all fish 

detections. We chose not to exclude this deployment as an outlier because it shared similar site attributes 

(i.e., mean depth and mean velocity) as other deployment sites with high detection rates.
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Table 1.2. Total number of detections by sampling period, study area zone, and site type. Also included are total detections by swimming behavior 
type as a function of sampling period, study area zone, and site type. This information also serves as the contingency tables for the Chi-squared 
analysis performed in this study. 

 
Detection Summary 

Swimming Behavior Summary 

Total 
Sampling Period Sampling Zone 

September October Feather Yuba Downstream Directed Milling Backtracking 

Overall 228      135 39 54 

September Period 188      120 25 43 

October Period 40      15 14 11 

Feather Zone 163 147 16    105 16 42 

Yuba Zone 18 6 12    10 1 7 

Downstream Zone 47 35 12    20 22 5 

Deep Sites 170 151 19 134 5 31 107 16 47 

Shallow Sites 58 37 21 29 13 16 28 23 7 
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Mean surface temperature and turbidity values for the hand-held surveys showed the LFR to be more turbid 

in both sampling periods with a notable shift in cooler temperatures between periods from the LFR to the 

LYR (Figure 1.6). Vertical temperature differences were measured to demonstrate that they were negligible 

and did not introduce potential bias based on vertical swimming positions of fish. In September, vertical 

temperature differences ranged from -0.54-0.77°C with a mean difference of 0.069°C and median 

difference of 0.065°C. In October, vertical temperature differences ranged from -0.18-1.30°C with a mean 

difference of 0.42°C and median difference of 0.39°C. Figure 1.7 shows 30-min temperature measurements 

taken by the fixed HOBO data loggers. Linear curves fit to the temperature time series indicate slight 

increases throughout the DIDSON sampling period in September for the Feather, Yuba, and Downstream 

loggers. In October, the time series show slight decreases in temperature throughout the DIDSON sampling 

period. 

Modeled velocity magnitude values throughout the study area ranged from 0 - 1.22 m/s in September and 

0 – 1.75 m/s in October. Modeled depth values throughout the study area ranged from <0.01 – 5.66 m in 

September and <0.01 – 4.90 m in October. Percent occurrences of binned, modeled depth and velocity 

magnitude values throughout the study area are summarized in Table 1.3, allowing for comparison of the 

range of observed mean depth and velocity magnitude values that were attributed to the DIDSON 

deployments (Figure 1.4) to the overall hydraulic conditions that were available to the fish. 

Comparisons of means and standard deviations between observed and modeled available hydraulics 

revealed that differences in depths were greater than differences in velocity magnitude across both sampling 

periods and in September, but not October (Table 1.4). The Mann-Whitney U test resulted in statistically 

significant differences in fish-selected versus available hydraulic conditions (depth and velocity values) for 

five of six tests (Table 1.5 and Figure 1.8). Fish preferred deeper sites with slower flow. The October 

analysis with only 40 observations could not distinguish between the two, indicating a sample size problem. 

Overall, the tests with the full dataset found that physical microhabitat conditions selected by fish were 
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different from the overall available conditions at the river confluence, indicating a scientifically meaningful 

preference which is of interest to the topic of migration in river corridors. 

Table 1.3. Total areas and percent occurrence for binned values of modeled depth and velocity magnitude 
occurring throughout the study area during September and October DIDSON sampling periods. 

 Sept Oct 

Depth Bin Area (km2) % Area (km2) % 

0 - 1m 0.08 12.86 0.27 46.05 

1 - 2m 0.30 45.67 0.25 42.73 

2 - 3m 0.22 33.38 0.06 9.64 

3 - 4m 0.04 6.83 0.01 1.01 

4 - 5m 0.01 0.83 <0.01 0.57 

>5m <0.01 0.43 0.00 0.00 

 
Velocity magnitude bin Area (km2) % Area (km2) % 

0 - 0.2 m/s 0.12 19.19 0.15 25.73 

0.2 - 0.4 m/s 0.04 6.33 0.14 23.69 

0.4 - 0.6 m/s 0.08 13.03 0.20 35.37 

0.6 - 0.8 m/s 0.22 33.95 0.05 9.25 

0.8 - 1.0 m/s 0.16 24.66 0.02 4.08 

1.0 - 1.2 m/s 0.02 2.75 0.01 1.49 

>1.2 m/s <0.01 0.08 <0.01 0.38 
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Table 1.4. A comparison of means and standard deviations for mean depth and velocity magnitude values associated with each DIDSON detection 
as well as sampled values from 2D hydrodynamic model outputs. Unsigned % differences between means and standard deviations of observed and 
modeled values are also included.   

 

DIDSON 
sampling period 

Summary 
statistic 

Mean Vmag (m/s) Vmag sample |% Vmag diff.| Mean d (m) d sample (m) |% d diff.| 

All (N = 228) Mean 0.48 0.50 3.26 2.25 1.57 30.26 
 

SD 0.26 0.28 9.29 0.50 0.84 65.97 

Sept (N = 188) Mean 0.52 0.57 8.85 2.35 1.83 22.05 
 

SD 0.25 0.30 18.40 0.44 0.89 104.06 

Oct (N = 40) Mean 0.29 0.43 48.99 1.80 1.11 38.44 
 

SD 0.16 0.23 43.76 0.56 0.53 5.65 

 
 

 
Table 1.5. Results from Mann-Whitney U tests comparing mean depth and velocity magnitudes associated with each DIDSON detection with values 
randomly sampled from 2D hydrodynamic model outputs representing conditions in the study area outside of the DIDSON sample areas. The number 
of observed and modeled values were equal (Comparison N), and the comparison was performed for both September and October sampling periods 
combined as well as each period individually. Model cell N is the number of available depth or velocity values from which random samples were 
taken. 

 Comparison N Model cell N Variable U p value 

All 228 407979 Vmag 23,022 0.03 

   depth 41,731 <0.01 

Sept 188 215515 Vmag 12,801 <0.01 

   depth 25,542 <0.01 

Oct 40 192463 Vmag 686 0.46 

   depth 1151 <0.01 
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Figure 1.8. Box and whisker plot showing a comparison of velocity magnitude (panel a) and depth (panel 
b) values utilized in DIDSON detections and randomly sampled modeled values from 2D hydrodynamic 
outputs representing available conditions outside of DIDSON sample sites. The gray box indicates the 
Mann-Whitney U test comparison that was not statistically significant at 95% confidence. 

2.4.1 Drivers of microhabitat selection 

We reject H1b as depth was not a statistically significant predictor of detection rate. We fail to reject any 

other hypothesis, as the F tests for each predictor variable and the multiple combinations yielded p values 

<0.05 at 95% confidence (Table 1.6). Table 1.7 includes parameter estimates for these models. The best 

performing model for predicting detection rate included a combination of conveyance, temperature, and 

turbidity, having a p value < 0.001, an adjusted r2 value of 0.42, and a w value of 0.53; an AVP for this 
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model is shown in Figure 1.9. Figure 1.10 includes graphical simulations of how this model behaves in 

predicting detection rate as a function of conveyance under three different temperature values while holding 

turbidity constant (steeper increases in D with increasing temperature, see panel a) and under three turbidity 

values while holding temperature constant (steeper increases in D with increasing turbidity, see panel b). 
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Table 1.6. Model performance summary and AICc ranking for nonlinear regression models predicting detection rate. 

Rank Model K d.f. F stat p value AICc ΔAICc Adjusted r2 w 

1 D ~ C + T +TU 5 25 7.90 < 0.001 104.58 0.00 0.42 0.53 

2 D ~ C 3 27 13.24 < 0.01 106.68 2.11 0.30 0.19 

3 D ~ T + TU 4 26 7.54 < 0.01 107.70 3.12 0.32 0.11 

4 D ~ C + T 4 26 7.14 < 0.01 108.28 3.70 0.30 0.08 

5 D ~ Vmag 3 27 9.24 < 0.01 109.72 5.14 0.23 0.04 

6 D ~ Fr 3 27 7.00 0.01 111.57 7.00 0.18 0.02 

7 D ~ T 3 27 6.42 0.02 112.07 7.50 0.16 0.01 

8 D ~ TU 3 27 4.62 0.04 113.68 9.11 0.11 0.01 

9 D ~ Vmag + d + C + Fr + T + TU 8 22 3.74 0.01 114.09 9.51 0.37 < 0.01 

10 D ~ Vmag + d + C + Fr 6 24 3.34 0.02 114.14 9.56 0.25 < 0.01 

11 D ~ d 3 27 0.25 0.62 117.99 13.41 < 0.00 < 0.01 
K = number of parameters, d.f. = degrees of freedom, AICc = Akaike information criterion corrected for small sample sizes, ΔAICc = increase in AICc 

score from the top-ranked model, Adjusted r2 is the coefficient of determination adjusted for all predictors, w is the relative weight of support for each 

model among the candidate set. D = detection rate, Vmag = velocity magnitude, d = depth, C = conveyance, Fr = Froude number, T = temperature, TU = 

turbidity. P values in bold indicate statistical significance at 95% confidence.  
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Table 1.7. Model parameter estimates for statistically significant candidate models predicting detection rate. 

AICc 

Rank Model Intercept (α) βVmag βd βC βFR βT βTU 

1/11 𝐷 =  𝑒(𝛽𝐶𝐶+𝛽𝑇𝑇+𝛽𝑇𝑈𝑇𝑈+𝛼)  -12.87   1.27  0.41 0.51 

2/11 𝐷 =  𝑒(𝛽𝐶𝐶+𝛼) -5.41   1.77    
3/11 𝐷 =  𝑒(𝛽𝑇𝑇+𝛽𝑇𝑈𝑇𝑈+𝛼) -17.55     0.78 0.58 

4/11 𝐷 =  𝑒(𝛽𝐶𝐶+𝛽𝑇𝑇+𝛼) -9.75   1.46  0.31  
5/11 𝐷 =  𝑒(𝛽𝑉𝑚𝑎𝑔𝑉𝑚𝑎𝑔+𝛼) -5.14 2.57      
6/11 𝐷 =  𝑒(𝛽𝐹𝑟𝐹𝑟+𝛼) -4.96    8.85   
7/11 𝐷 =  𝑒(𝛽𝑇𝑇+𝛼) -14.75     0.73  
8/11 𝐷 =  𝑒(𝛽𝑇𝑈𝑇𝑈+𝛼) -5.85      0.53 

9/11 𝐷 =  𝑒(𝛽𝑉𝑚𝑎𝑔𝑉𝑚𝑎𝑔+𝛽𝑑𝑑+𝛽𝐶𝐶+𝛽𝐹𝑟𝐹𝑟+𝛽𝑇𝑇+𝛽𝑇𝑈𝑇𝑈+𝛼)  -13.27 26.76 0.00081 -3.55 -75.67 0.44 0.56 

10/11 𝐷 =  𝑒(𝛽𝑉𝑚𝑎𝑔𝑉𝑚𝑎𝑔+𝛽𝑑𝑑+𝛽𝐶𝐶+𝛽𝐹𝑟𝐹𝑟+𝛼) -3.59 -4.35 -0.89 4.13 -0.13   
AICc Rank = #/Total, D = detection rate, Vmag = velocity magnitude, d = depth, C = conveyance, Fr = Froude number, T = temperature, TU = turbidity. 
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Figure 1.9. Added variable plots describing the relationship between each indicated predictive model 
parameter (given the magnitude of all others) with detection rate as the response variable. Panels a through 
c are regression coefficients for conveyance, temperature, and turbidity, respectively. Parameters belong 
to the highest AICc-ranked regression model for predicting detection rate. Trendlines are fit to the points in 
each plot. The degree to which each trendline departs from horizontal (which would mean the parameter 
was equal to zero) indicates its relative predictive strength in the model.   
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Figure 1.10. Detection rate is predicted using the highest AICc-ranked model which is fit using a nonlinear 
(exponential) regression and includes conveyance, temperature, and turbidity as predictors. Each panel 
includes continuous predictions of detection rate as a function of conveyance. Panel a includes three 
different temperature values that correspond to the maximum, minimum, and mean values in our observed 
data. Turbidity is held constant at the mean observed value in our data. Panel b uses this same scheme 
but with three turbidity values used and temperature held at the observed mean. 

2.4.2 Drivers of migratory swimming behavior 

We reject hypotheses H2a-g. None of the candidate models yielded one or more statistically significant 

predictors of percent directed swimming behavior under the F test. We fail to reject H3f and H3g as turbidity 

as well as four combinations of predictors yielded statistically significant models for predicting percent 

milling behavior (see Table 1.8 for model performance metrics and Table 1.9 for parameter estimates). The 

best performing model for predicting percent milling behavior included all four hydraulic variables and had 

a p value < 0.001, an adjusted r2 value of 0.82, and a w value of 0.83. An AVP for this model is shown in 

Figure 1.11. 
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Table 1.8. Model performance summary and AICc ranking for regression models predicting frequency of milling and backtracking swimming 
behaviors. 

Milling 

Rank Model K d.f. F stat p value AICc ΔAICc Adjusted r2 w 

1 Pm ~ Vmag + d + C + Fr 6 9 15.47 < 0.001 135.79 0.00 0.82 0.83 

2 Pm ~ TU 3 12 11.9 < 0.01 139.44 3.64 0.46 0.13 

3 Pm ~ T + TU 4 11 5.86 0.02 142.98 7.18 0.43 0.02 

4 Pm ~ d 3 12 3.35 0.09 145.64 9.84 0.15 0.01 

5 Pm ~ Fr 3 12 2.85 0.12 146.10 10.31 0.12 < 0.01 

6 Pm ~ Vmag 3 12 1.65 0.22 147.28 11.49 0.05 < 0.01 

7 Pm ~ C + T + TU 5 10 3.68 0.05 147.76 11.97 0.38 < 0.01 

8 Pm ~ C 3 12 0.10 0.76 148.97 13.18 < 0.00 < 0.01 

9 Pm ~ T 3 12 0.01 0.91 149.07 13.27 < 0.00 < 0.01 

10 Pm ~ Vmag + d + C + Fr + T + TU 8 7 12.61 < 0.01 150.92 15.13 0.84 < 0.01 

11 Pm ~ C + T 4 11 0.31 0.74 152.36 16.57 -0.12 < 0.01 

Backtracking 

Rank Model K d.f. F stat p value AICc ΔAICc Adjusted r2 w 

1 Pb ~ T 3 10 11.64 < 0.01 112.12 0.00 0.49 0.38 

2 Pb ~ T + TU 4 9 9.78 < 0.01 112.23 0.12 0.62 0.36 

3 Pb ~ C + T 4 9 6.13 0.02 115.78 3.66 0.48 0.06 

4 Pb ~ Fr 3 10 5.82 0.04 115.87 3.76 0.30 0.06 

5 Pb ~ Vmag 3 10 5.52 0.04 116.10 3.99 0.29 0.05 

6 Pb ~ Con 3 10 4.50 0.06 116.92 4.81 0.24 0.03 

7 Pb ~ TU 3 10 4.10 0.07 117.26 5.14 0.22 0.03 

8 Pb ~ C + T + TU 5 8 6.00 0.02 118.23 6.12 0.58 0.02 

9 Pb ~ d 3 10 1.40 0.27 119.81 7.70 0.03 0.01 

10 Pb ~ Vmag + d + C + Fr 6 7 4.78 0.04 125.37 13.25 0.58 < 0.01 

11 Pb ~ Vmag + d + C + Fr + T + TU 8 5 3.98 0.08 155.32 43.21 0.62 < 0.01 

K = number of parameters, d.f. = degrees of freedom, AICc = Akaike information criterion corrected for small sample sizes, ΔAICc = increase in AICc 

score from the top-ranked model, Adjusted r2 is the coefficient of determination adjusted for all predictors, w is the relative weight of support for each 

model among the candidate set. Px = percent of behavior among detections (m = milling, b = backtracking), Vmag = velocity magnitude, d = depth, C = 

conveyance, Fr = Froude number, T = temperature, TU = turbidity. P values in bold indicate statistical significance at 95% confidence. 
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Table 1.9. Model parameter estimates for statistically significant candidate models predicting percent milling and backtracking behaviors. 

AICc 

Rank Model Intercept (α) βVmag βd βC βFR βT βTU 

1/11 𝑃𝑚 =  𝛽𝑉𝑚𝑎𝑔𝑉𝑚𝑎𝑔 + 𝛽𝑑𝑑 + 𝛽𝐶𝐶 + 𝛽𝐹𝑟𝐹𝑟 + 𝛼  -234.44 1732.46 180.20 -693.47 -2467.93   
2/11 𝑃𝑚 =  𝛽𝑇𝑈𝑇𝑈 + 𝛼  140.62      -23.23 

3/11 𝑃𝑚 = 𝛽𝑇𝑇 + 𝛽𝑇𝑈𝑇𝑈 + 𝛼 243.26     -6.76 -23.84 

7/11 𝑃𝑚 = 𝛽𝐶𝐶 + 𝛽𝑇𝑇 + 𝛽𝑇𝑈𝑇𝑈 + 𝛼 137.67   -14.19  1.60 -25.40 

10/11 𝑃𝑚 =  𝛽𝑉𝑚𝑎𝑔𝑉𝑚𝑎𝑔 + 𝛽𝑑𝑑 + 𝛽𝐶𝐶 + 𝛽𝐹𝑟𝐹𝑟 + 𝛽𝑇𝑇

+ 𝛽𝑇𝑈𝑇𝑈 + 𝛼 80.58 630.14 129.76 -389.16 -44.56 -2.55 -11.90 

1/11 𝑃𝑏 = 𝛽𝑇𝑇 + 𝛼 346.60     -20.87  
2/11 𝑃𝑏 = 𝛽𝑇𝑇 + 𝛽𝑇𝑈𝑇𝑈 + 𝛼 345.21     -18.35 -9.68 

3/11 𝑃𝑏 = 𝛽𝐶𝐶 + 𝛽𝑇𝑇 + 𝛼 305.03   -12.43  -17.35  
4/11 𝑃𝑏 = 𝛽𝐹𝑟𝐹𝑟 + 𝛼 64.46    -233.58   
5/11 𝑃𝑏 =  𝛽𝑉𝑚𝑎𝑔𝑉𝑚𝑎𝑔 + 𝛼 65.62 -56.42      
8/11 𝑃𝑏 = 𝛽𝐶𝐶 + 𝛽𝑇𝑇 + 𝛽𝑇𝑈𝑇𝑈 + 𝛼 369.77   7.43  -19.92 -11.70 

10/11 𝑃𝑏 =  𝛽𝑉𝑚𝑎𝑔𝑉𝑚𝑎𝑔 + 𝛽𝑑𝑑 + 𝛽𝐶𝐶 + 𝛽𝐹𝑟𝐹𝑟 + 𝛼 16.07 4322.14 28.83 -744.25 -12729.9   
AICc Rank = #/Total, Px = percent of behavior among detections (m = milling, b = backtracking), Vmag = velocity magnitude, d = depth, C = conveyance, Fr 
= Froude number, T = temperature, TU = turbidity. 
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Figure 1.11. Added variable plots describing the relationship between each indicated predictive model 
parameter (given the magnitude of all others) with percent milling behavior as the response variable. Panels 
a through d are regression coefficients for depth, velocity magnitude, conveyance, and Froude number, 
respectively.  Parameters belong to the highest AICc-ranked regression model for predicting percent milling 
behavior. Trendlines are fit to the points in each plot. The degree to which each trendline departs from 
horizontal (which would mean the parameter was equal to zero) indicates its relative predictive strength in 
the model.   

Finally, we fail to reject hypotheses H4a, H4d, H4e, and H4g as velocity magnitude, Froude number, 

temperature, and four combinations of predictors yielded statistically significant models for predicting 

percent backtracking behavior (Table 1.8 Table 1.9). Temperature as a single predictor was found to be the 

best performing model and had a p value < 0.01, adjusted r2 of 0.49, and w of 0.38. However, the 

combination of conveyance and temperature had a relatively low ΔAICc of 3.66, a p value of 0.02, and an 

r2  value = 0.48. The two highest ranked models in this list (temperature and temperature/turbidity) 

dominated the weight of evidence, so the model with conveyance and temperature only received a w value 

of 0.06. We are highlighting this model because of our interest in hydraulic variables as drivers of migratory 
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habitat selection and behavior. An AVP for the conveyance/temperature model is shown in Figure 1.12. 

Figure 1. 13 includes a graphical simulation of how percent backtracking behavior decreases with 

increasing conveyance, with significant differences in value ranges as a function of temperature.  

 

Figure 1.12. Added variable plots describing the relationship between each indicated predictive model 
parameter (given the magnitude of all others) with percent backtracking behavior as the response variable. 
Panels a and b are regression coefficients for conveyance and temperature, respectively. Parameters 
belong to the third highest AICc-ranked regression model for predicting percent backtracking behavior. 
Trendlines are fit to the points in each plot. The degree to which each trendline departs from horizontal 
(which would mean the parameter was equal to zero) indicates its relative predictive strength in the model. 
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Figure 1. 13. Percent backtracking behavior is predicted using the third highest AICc-ranked model which 
is fit using a linear regression and includes conveyance and temperature as predictors. The plot includes 
continuous predictions of percent backtracking as a function of conveyance using the maximum, minimum, 
and mean values for temperature from our observed data. 

2.5 Discussion 

2.5.1 Habitat selection 

The large difference in adult Chinook salmon detections between September and October sampling periods 

corresponds with the considerable difference in combined discharge and associated hydraulic changes at 

the confluence between September and October (237 m3/s and 85 m3/s, respectively). This result is 

consistent with the general understanding of the important role that mainstem river discharge magnitude 

and timing play in upstream migration of Chinook salmon, particularly in the California Central Valley 

(Hasler et al., 2014). However, this study investigated the role of microhabitat variables driven by discharge 

and acting as migratory navigation cues. Simply pointing to discharge magnitude as a navigation cue does 

not mechanistically link migratory behavioral responses. The comparison of depth and velocity magnitude 

conditions selected vs. those available throughout the study area at the time of observation showed 
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statistically significant differences in mean values, indicating that non-random microhabitat selection did 

occur. 

It is particularly interesting that even though fish were attracted to higher discharge, they were attracted to 

lower velocity. One interpretation is that the fish may have been observed in holding locations, essentially 

pausing on their journey for any one of several reasons, including some awareness of the confluence itself. 

Another interpretation is that the direct hydraulic variable driving migratory behavior is conveyance, as our 

regression analysis suggests. This variable includes both depth and velocity components, meaning that 

neither can be analyzed independently of the other in this context. For example, our results suggest that 

greater swim depths are preferred, as long as there is adequate velocity present as well for rheotactic 

orientation.  

Results indicate that localized conveyance is likely the missing intermediate variable translating channel-

wide discharge into local hydraulics that fish experience and thus is an important driver of habitat selection, 

which can help explain some of the patterns of detection seen in Table 1.2. Overall, the Feather zone 

experienced the most detections. From a hydraulics perspective, this can be attributed to the greatest 

combined values of depth and velocity to yield high conveyance throughout that zone. Furthermore, the 

deep sites experienced the most overall detections and even though they did not all experience high 

velocities (Figure 1.4), localized cross-sectional area resulted in higher conveyance values. Conveyance 

was included in our best performing regression model for predicting detection rate and was ranked second-

best as a singular predictive variable. This finding provides compelling evidence that conveyance plays a 

critical role in instantaneous micro-scale habitat selection during adult upstream migration in Chinook 

salmon. However, it does not completely dictate microhabitat selection among individuals. 

Temperature and turbidity were also included as predictors and as mentioned in our study design, these 

micro-scale attributes cannot be disentangled from acting as indicators of natal source water and homing 

fidelity in our observations. Therefore, it is likely that homing occurs in conjunction with responses to 
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hydraulic flow features. In some cases, hydraulics may significantly influence navigational cues in 

migration as previously observed in this particular system (YARMT 2013). 

Upstream migration by adult salmon involves constant compromise between bioenergetic cost of movement 

and fidelity to navigational cues, one of which is rheotaxis. Olfactory cues aside, an individual may choose 

the least energetically costly path through a channel network (deep, slow-moving areas), but they may lack 

a velocity field with sufficient magnitude and direction necessary to facilitate sufficient rheotactic 

orientation (Coombs et al., 2020). Likewise, choosing to occupy shallow, fast-moving areas is energetically 

costly and may result in exposure to turbulent flow structures of the same size as an individual fish shed by 

flow interacting with local features, such as large substrate particles, deposited wood, bedforms, and man-

made structures (Harvey and Clifford, 2009). The avoidance of turbulent eddies of the same size as an 

individual fish has been documented in fishway studies (Silva et al., 2012) and such eddies may be more 

common in fast, shallow areas. Avoidance of turbulence may be due to energetic constraint rather than 

interference with rheotaxis, as turbulence has been shown to negatively affect fish swim speed and increase 

energetic cost (Enders et al., 2003; Lupandin, 2005). 

The results of hand-held temperature and turbidity surveys (Figure 1.6) illustrate overall thermal and optical 

conditions of the two rivers during each DIDSON deployment period. In both periods, the LYR tended to 

be clearer than the LFR and the difference persisted throughout the study area with minimal mixing 

occurring before the downstream boundary (lateral differences at the downstream-most sampling stations 

in September and October of approximately 1.5 NTU and 1 NTU, respectively). It is unlikely that the range 

of turbidity values observed throughout this study were great enough to affect migratory behavior alone 

(Bjornn and Reiser, 1991). Although we found turbidity to be a significant predictor of habitat selection, 

there are likely other covariates at play that act as more important micro-scale navigational cues. Surface 

temperature differences between the two rivers changed dramatically between sampling periods. In 

September, the LFR was cooler and a dramatic lateral difference in temperature at the confluence junction 

can be seen before the LFR begins to thermally influence the east side of the channel toward the downstream 
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boundary. This differential in temperature may have played a role in the differences in reach-scale habitat 

selection during this period (Table 1.2), deterring Feather-origin fish from entering the LYR (consistent 

with the findings of thermal influence on migratory routing in this system by the YARMT). In the October 

period, the thermal condition switched; the LYR was cooler than the LFR and minimal mixing appeared to 

occur within the study area. The increase of temperature in the LFR is likely a result of the decrease in 

discharge combined with warm water input upstream of the study area at the Thermalito Afterbay outlet. 

Rates of detection changed very little among the three zones in the October period (Table 1.2), indicating 

that a thermal barrier at the confluence may potentially deter Feather-origin fish from entering the LYR. 

2.5.2 Swimming behavior 

Comparisons of swimming behavior type by sampling period, zone, and site type all show most detections 

to be exhibiting directed movement with 135 detections overall (Table 1.2). Milling and backtracking 

behavior occurred to a much lesser extent with 39 and 54 detections, respectively. It should be noted that 

these behaviors were not tracked through space beyond the DIDSON’s field of view, so they cannot be used 

to characterize longitudinal movements within the study area. However, they do provide some indication 

of relative movement among detections. Because most individuals selected the LFR, we expected the 

majority of directed movement to occur in that zone. Our regression analysis did not provide an adequate 

model for predicting directed movement, suggesting that although salmon appear to have preferences for 

migratory microhabitats, upstream movement may occur in a wide variety of hydraulic, thermal, and optical 

conditions. 

However, we did identify predictors for milling and backtracking behavior. This is more useful from a 

management perspective because it can be assumed that the majority of fish will be progressing upstream, 

but it may be possible to strategically minimize conditions that deter upstream movement via top-down 

controls on localized hydraulics such as discharge magnitude and ratio at a confluence. Our analysis 

suggests that milling occurs in response to localized hydraulics whereas backtracking may occur partially 
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in response to hydraulics but is also influenced by temperature and turbidity where the presence or absence 

of olfactory homing cues may be at play. Although both our microhabitat selection and behavioral results 

show conveyance as the best hydraulic predictor variable for migratory habitat selection and movement, 

Moir et al. (2002) suggests that Froude number may be a better indicator for assessing salmonid habitat 

suitability for multiple body lengths due to its flexibility and scale-independent nature as a dimensionless 

value. In the absence of a clear biological mechanism for behavioral response to either cue, it may be useful 

to analyze both variables, depending on the applied research or management context. 

2.5.3 Scientific and management implications 

We see patterns in preference for specific fine-scale hydraulic conditions along the migratory pathway and 

indications that hydraulics are a partial driver of migratory swimming behavior. Discharge magnitude has 

traditionally been used as a proxy for the timing of migration initiation and upstream movement (Hasler et 

al., 2014; Quinn, 2018; Rand et al., 2006) and recent work shows that there may also be complex social 

interactions that drive upstream movement as well (Berdahl et al., 2017, 2016). However, fine details of 

upstream movement cannot be inferred from these large-scale phenomena. In many regions, flows are 

regulated, and flow schedules are carefully crafted annually to accommodate competing social, economic, 

and environmental demands. How flows translate into local hydraulics cannot be inferred but necessitates 

an assessment of the sub-reach-scale topographic regime, especially at the complex, vital locations that 

river confluences present to migratory fish. Understanding fine-scale patterns of migratory movement of 

adult salmon at confluences may be essential to their long-term conservation and survival by providing 

tools to minimize high rates of straying in imperiled populations occurring in managed river networks. 

One reason to be optimistic about the future of river management for salmon is that we have witnessed 

major technological advancements in recent decades that allow for wholesale characterization and 

assessment of riverine habitats. LiDAR and multibeam sonar are examples of survey technology that allow 

for gathering highly detailed topographies as well as information on sediment composition and vegetation 
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cover. Computational fluid dynamics modeling has advanced significantly with access to ever-growing 

computing power, allowing for detailed and accurate simulations of open-channel hydraulics in a variety 

of aquatic settings. The field of ecohydraulics has already adopted these technologies to assess habitat 

availability and function for specific life-cycle stages of anadromous salmonids (Kammel et al., 2016; 

Moniz et al., 2019; Wheaton et al., 2018). There is little existing literature on coupling hydraulic and thermal 

attributes at a microhabitat scale and more work is needed before these mechanisms can be modeled 

concurrently (Ouellet et al., 2020). 
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3 Chapter 2: Hydraulic microhabitats at a regulated river confluence influence Chinook salmon 

migratory routing during drought 

3.1 Abstract 

Upstream adult migration of Pacific salmon (Oncorhynchus spp.) from estuary to spawning grounds is 

understudied but is critical to population sustainability, especially during increasingly extreme droughts 

which may degrade habitat elements essential for migratory cuing. In regulated systems, river network 

confluences pose significant navigational challenges due to complex operational flow release criteria. 

Differing discharge magnitudes and ratios between tributaries may cause divergent confluence hydraulics 

and hydraulic microhabitat selectivity, influencing migratory routing. This study asks: (1) Do magnitudes 

of discharge in each confluence tributary (and resulting combined discharge) influence availability of 

preferred hydraulic microhabitats in one river versus the other? (2) Does the ratio of discharge magnitude 

influence availability of preferred hydraulic microhabitats in one river versus the other? We used data 

collected from California Central Valley fall-run Chinook salmon (O. tshawytscha) at the confluence of the 

Feather and Yuba Rivers as a model system for answering these questions. We combined observations of 

migratory behavior from dual-frequency identification sonars; observed microscale hydraulics 

corresponding to behaviors; spatially explicit, meter-resolution hydrodynamic modeling; and machine 

learning to generate a hydraulic microhabitat selectivity index and to simulate upstream migratory pathways 

for nine pertinent discharge scenarios and four discharge ratios among those. Statistically significant (p 

<0.01) differences in preferred hydraulic habitat encountered at the confluence were found among both 

discharge scenarios and ratios. Discharge magnitude and ratio act as controls on distribution of preferred 

hydraulic microhabitats, and under certain conditions relevant to drought operations in this system, they 

could potentially impact migratory routing and propensity of straying. 

 

 



   

55 

 

3.2 Introduction 

3.2.1 Background 

3.2.1.1 Climate change and drought 

Climate change poses significant threats to aquatic ecosystems due to extensively modified natural flow 

and thermal regimes to which organisms have adapted in recent millennia. In particular, increased duration 

and magnitude of drought conditions has changed the ecology of many landscapes across the world 

(Trenberth, 2011). As noted by Cook et al. (2018), drought signals manifest as a complex, interconnected 

web of environmental variation and linking climatic forcing to droughts can be a complicated task where 

landscape attributes of specific geographic regions must be accounted for (e.g., topography, snowpack, 

groundwater residence time and aquifer capacity, vegetation, biological communities, human land uses, 

and human demands on surface and subsurface water resources). Pacific salmon species occupy latitudes 

ranging from Central California (37°N) to coastal streams in northern Alaska, and Russia (70°N), all of 

which are subject to some degree of drought-related impacts in the 21st century according to widely-

accepted statistical projections (Caretta et al., 2022; Dai et al., 2018; Xu et al., 2019). 

Today, many Pacific salmon populations also inhabit catchments that have experienced varying degrees of 

fragmentation and hydrologic alteration due to water storage and conveyance infrastructure with the added 

complication that water resources are managed for a variety of human uses (Acreman et al., 2009; 

Magilligan and Nislow, 2005). Management criteria for reservoir operations typically include provisions 

for drought events that attempt to sustain systems and processes that depend on certain minimum flows, 

including fish species which may also receive additional regulatory protection under the U.S. federal 

Endangered Species Act, Canadian Species At Risk Act, the Japanese River Act of 1964, or other state or 

local conservation laws (Di Baldassarre et al., 2017; Good et al., 2007; Irvine et al., 2005; Suzuki, 2006). 

Minimum baseflows and drought operation criteria are often established for a regulated river on an 

individual river basis based on its historical hydrograph and anticipated seasonal needs for water diversion. 
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In cases where a drought-prone system must be managed for multiple species and populations with 

individual legal protections, a regulatory action may be taken by government officials to establish highly 

specific flow criteria that attempts to balance multi-species needs within a single catchment such as the 

Operational Criteria and Planning (OCAP) Biological Opinion for the California Central Valley produced 

by the National Marine Fisheries Service under Section 7 of the federal Endangered Species Act (NMFS 

2009). 

3.2.1.2 Emergence of eflows and ecohydraulic methods 

Development of species- and even life stage-specific environmental flow (i.e., eflow) criteria can be highly 

contentious, and many regulatory actions to secure allocations of stored water for such prescribed flows 

have been met with stakeholder resistance and legal action (Fisher et al., 1991; Horne et al., 2017; Lackey, 

2017; Tharme, 2003). Despite such external pressures in a growing number of countries, fishery managers 

must generate environmental flow schedules using the best available science to achieve habitat conditions 

most beneficial for the target species or life stage in question. Targets for habitat quality and function must 

then fit into a broader constellation of conservation goals such as enhancing population productivity or 

abundance metrics, conserving population structure, or addressing bottlenecks for mortality at vulnerable 

lifecycle stages. 

In the case of prescribed flows for salmon habitat, weighted usable area (the output of the instream flow 

model PHABSIM) is a metric that has been commonly used in recent decades as a key objective input to 

generate flow schedules and instream flow criteria to achieve goals for habitat functionality based on 

channel hydraulics (Holm et al., 2001; Shirvell, 1989). Soon after its inception (Bovee, 1982, 1978), it was 

criticized by Mathur et al. (1985) as having built-in assumptions about specific physical habitat parameters 

being valid predictors of either fish habitat preference or optimal habitat value related to management goals. 

As discussed by Railsback (2016), PHABSIM in its original form is becoming obsolete in lieu of more 

sophisticated spatially explicit habitat modelling techniques. However, Stalnaker et al. (2017) contend that 
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it can still be an informative tool as part of a broader eflow assessment approach (as it has been in the 

instream flow incremental methodology framework). The debate continues. 

Accessibility to two-dimensional (2D) hydrodynamic modeling software and recent advancements in the 

field of ecohydraulics have enhanced the potential for developing salmon habitat models that aid in drought 

planning and development of environmental flow criteria by making predictions about a variety of 

important individual ecological functions. Nahorniak et al. (2018) presented an automated approach for 

running large batches of 2D hydrodynamic models using modern computing techniques (including cloud 

computing resources) to efficiently generate precise and accurate 2D models to support salmon habitat 

restoration via channel modification and newly scalable restoration programs. Several ecohydraulic tools 

and frameworks then build on top of 2D modeling. For example, Benjankar et al. (2018) developed an 

integrated ecohydraulic modeling framework combining models of catchment hydrology, existing salmonid 

habitat models, and an analysis of channel hydraulics to assess whether strategic dam operations might be 

able to mitigate climate change impacts to riverine fishes in the South Fork Boise River (Idaho, USA). 

Schwindt et al. (2019) developed River Architect, an ecohydraulics-based modeling framework that 

includes fish stranding risk analysis, cottonwood seedling recruitment potential prediction, microhabitat 

mapping and seasonal abundance quantification, lifespan prediction for several river restoration techniques, 

and river project financial cost estimation. 

3.2.1.3 Importance of confluences 

Confluences (where a tributary channel meets a mainstem channel, forming a junction) represent complex 

hydraulic and geomorphic features within fluvial channel networks. Significant improvements have been 

made in understanding the physical and biological implications of these features since the mid-20th century 

(Gualtieri et al., 2017; Miller, 1958; Richards, 1980). As key features of migratory habitat for riverine 

fishes, the physical processes at play ultimately drive habitat functionality in space and time. For example, 

discharge ratio, upstream bed slopes, and channel junction angle are important drivers of bed morphology 

in the immediate up and downstream areas of confluences (Best, 1988, 1986; Boyer et al., 2006; Penna et 



   

58 

 

al., 2018). Bed morphology at confluences then directly affects mixing processes with implications for fish 

migration cuing (Constantinescu et al., 2016; Gaudet and Roy, 1995). A recent review by Yuan et al. (2022) 

highlights that confluences also represent longitudinal hotspots for ecological change in a river network 

with adjoining rivers potentially diverging in thermal regime, suspended sediment load, bed load, nutrient 

concentrations, water chemistry, and organic matter content. 

Major rivers are managed for competing interests under complex legal statutes that often have layered local, 

state, and federal regulatory oversight (Bernazzani et al., 2012; Hillman, 2009; Lorenz et al., 2001; Moore 

et al., 2001; Zhang et al., 2018). As a result, a confluence of two major rivers may experience very different 

discharges from each river during low flow periods. A Chinook salmon (Oncorhynchus tshawytscha) 

escapement study indicated that discharge magnitude and ratio between two major rivers can have a strong 

influence on migratory routing and can lead to instances of high straying rates (YARMT 2013). In such 

cases, it is important to recognize that while discharge magnitude has been used to analyze reach- and 

catchment-scale patterns of adult salmon migration (Dahl et al., 2004; Hasler et al., 2014; Jager and Rose, 

2003), it cannot be used on its own to explain the abiotic-biotic mechanism linking complex migratory 

responses to confluence physico-chemical conditions. 

3.2.1.4 Prediction of upstream migration 

Compared to other salmon lifecycle stages, little information exists on hydraulic habitat preference for 

migrating adults, though it is likely an important factor in regions where olfactory imprinting is interrupted 

or incomplete. Several habitat suitability curves (HSCs) for migrating adult salmon have been generated 

over the years with varying survey methods and inconsistent results. Radio telemetry surveys were done on 

the Kenai River in Alaska for late summer-run Chinook salmon (Burger et al. 1983). Snorkel surveys for 

spring-run Chinook salmon were used in the Wind River, a tributary to the Columbia River in Washington 

State (Wampler 1986) and for fall-run Chinook salmon in the Stanislaus River, California (Aceituno 1990). 

The properties of these HSCs are detailed in Table 2.1. These studies indicate that non-random hydraulic 

microhabitat selection does occur in migrating adult salmon, and it stands to reason that micro-scale 



   

59 

 

hydraulic conditions at a confluence may partially influence migratory navigational choices. However, the 

added habitat complexity at a confluence along with differences in peak velocity and depth among existing 

HSCs for migrating adult Chinook salmon preclude their use in our study. 

Table 2.1. Summary of habitat suitability criteria found in previous assessments for migrating adult Chinook 
salmon. Curve type refers to the method of reporting habitat suitability. “% utilization” refers to numbers of 
fish detections corresponding to binned microhabitat conditions for depth or velocity. “Preference” is 
computed using % utilization and corrects for the amount of each habitat bin class available in the survey 
area. 

HSC Source Burger et al. (1982) Wampler (1986) Aceituno (1990) 

Location Kenai River, AK Wind River, WA Stanislaus River, CA 

Chinook Salmon Phenotype Summer-run Spring-run Fall-run 

Water Temperature Range During 

Sampling (°C) 

4.4 - 13.9 10.0 - 17.8 not reported 

Survey Method Radio Telemetry Snorkel Snorkel 

Peak Velocity (m/s) 0.8 1.1 0.4 

Velocity Range Sampled (m/s) 0 - 1.7 0 - 1.7 0 - 1.5 

Peak Depth (m) 2.3 4.5 0.6 - 1.1 

Depth Range Sampled (m) 0 - 3.9 0.3 - 4.6 0 - 1.5 

Curve type (% Utilization vs. 

Preference) 

% Utilization Preference Preference 

 

3.2.1.5 Study System 

Migratory habitat for Chinook salmon in the California Central Valley is now largely confined to low-lying 

rivers, most of which experience regulated flow regimes to accommodate agricultural, municipal, and 

industrial water use throughout the year (Brown and Ford, 2002; Marchetti and Moyle, 2001). The upstream 

migratory corridor for spawning adult Chinook salmon typically includes the San Francisco Bay-Delta 

estuary, mainstem Sacramento or San Joaquin River, and one large tributary (Santos et al., 2014). Excessive 

channelization has occurred in many areas within the migratory corridor, as flood control infrastructure has 

been constructed and prevailing land use practices have inhibited natural flood regimes in larger Central 

Valley rivers (Mount, 1995). This has led to simplification of migratory habitat and losses of riparian 

canopy cover and instream wood (Gorman and Karr, 1978; Simon and Rinaldi, 2006). Additional stresses 

imposed on adult salmon migrating upstream in this region include recreational fishing, poaching, 
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hydroacoustic impacts from in-water construction, and elevated water temperatures (Campbell and Moyle, 

1992; Stadler and Woodbury, 2009; Strange, 2010). 

Central Valley rivers are highly managed through controlled releases of water from reservoirs on most 

major tributaries in the Sacramento and San Joaquin basins. Rivers typically experience steady and 

consistent hydrologic regimes that are highly altered relative to more episodic historical conditions (Brown 

and Bauer, 2009). Although the system functions in an altered state compared to historical conditions, 

efforts have been underway in recent decades to integrate environmental flow management into release 

schedules (Jager and Rose, 2003; Moyle et al., 1998). 

In 2009, the National Marine Fisheries Service released its “Jeopardy” Biological Opinion under the federal 

Endangered Species Act on the “Operations, Criteria, and Plan” for the federal Central Valley Project and 

State Water Project (composing the majority of Central Valley surface water management and supply 

infrastructure, see NMFS 2009). The analysis found that a business-as-usual approach to managing surface 

water would lead to the extirpation of federally listed Sacramento River winter-run Chinook and the Central 

Valley spring-run Chinook salmon. As a result, state and federal water operators are now required to include 

“pulse attraction flows” in their operating schedules (i.e., elevated flows from spawning locations or 

hatchery facilities timed to deliver source water to initiate spawning migration in ocean-going adults). 

Historically, rain and snowmelt-driven flow pulses triggered spawning events naturally during the annual 

hydrologic cycle. It is uncertain what quantitative aspects of flow, considering magnitude, duration, timing, 

frequency, and rate of change, are required to constitute an ecologically effective “pulse” for adult salmon 

migration, especially in light of the multiple other factors impacting salmon behavior today compared to 

pre-European colonization and subsequent industrialization (Hasler et al., 2014). Despite efforts to manage 

the system to accommodate the salmonid lifecycle, enhanced regional drought caused by climatic change 

is now further complicating river management in California (He et al., 2021). 
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3.2.2 Study purpose and scientific questions 

This study investigated the influence of micro-scale hydraulic conditions at a regulated river confluence on 

routing pathways of Chinook salmon migrating to spawning grounds or a natal hatchery facility. Baldes 

and Vincent (1969) define microhabitat scale as “the physical conditions immediately surrounding an 

animal at a given time and place”. Herein, we focus on the effects of hydrologic conditions that may be 

encountered by California Central Valley fall-run Chinook salmon during a drought year where minimum 

base flows are maintained in large, regulated rivers that provide water for a variety of agricultural, 

municipal, and industrial stakeholders (Herbold et al., 2018). This study addressed two questions: (1) Do 

magnitudes of discharge in each river at a confluence (and resulting combined discharge) influence 

availability of preferred hydraulic microhabitats in one river versus the other? (2) Does the ratio of discharge 

magnitudes influence availability of preferred hydraulic microhabitats in one river versus the other? The 

experimental design concept is discussed further in section 2.2 and graphically depicted in Figure 2.1. 
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Figure 2.1. Conceptual flow chart describing our study design and methods. 

3.2.3 Study area 

This study occurs at the immediate confluence of the lower Feather River (LFR) and lower Yuba River 

(LYR), located in northeastern California in the northeastern portion of the California Central Valley 

(Figure 2.2). Specifically, the study area as well as the modeling domain includes approximately 1.42 km 

of the LFR and 0.85 km of the LYR upstream of the confluence and 1.13 km of the LFR downstream of 

the confluence (Figure 2.3). Environmental flows in these rivers are managed under different regulatory 

frameworks and operated somewhat independently of each other (though CA Central Valley water 

operations are coordinated by multiple interagency technical groups under the State Water Project and 

federal Central Valley Project, overseen by the U.S. Bureau of Reclamation and the CA Department of 

Water Resources, see Luis and Pasternack 2022). 
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Figure 2.2. Location of the study area. The state of California is shaded in blue in the main panel. The inset 
identifies the lower Feather River, lower Yuba River, and the dams that create total fish passage barriers 
upstream of the study area. Blue arrows indicate flow direction. Base map image sources: ESRI, HERE, 
Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS user community.   
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Figure 2.3. Map of the study area including the extent of the model domain, start and end points for the cost 
path analysis, kayak validation survey transects, and water surface elevation survey locations. 

At the confluence of the LFR and LYR, the Feather River drainage area is 10,885 km2. The LFR begins at 

the base of Oroville Dam, extending 117 km to its confluence with the Sacramento River. The CA 

Department of Water Resources filed a request with the Federal Energy Regulatory Commission to renew 
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the dam’s operational license in 2005. This resulted in a request for a biological consultation under the 

federal Endangered Species Act with the National Marine Fisheries Service, which issued a Biological 

Opinion for the dam relicensing in 2016 (NMFS 2016). Following a spillway collapse in 2017 that resulted 

in mobilization and downstream aggradation of approximately 1 million tons of debris from Lake Oroville, 

license renewal is still pending (Nalin and Kotulla 2018, FERC 2022). The 2016 Biological Opinion set 

forth operational criteria that would minimize take of Endangered Species Act-listed species, including 

minimum baseflow criteria. Because this study focuses on the Central Valley fall-run Chinook phenotype, 

we selected LFR baseflow criteria for October through February where the bulk of migratory activity for 

this population occurs. During this period, in years where the LFR receives >55% of unimpaired runoff 

from the Feather catchment, the minimum baseflow for the river is 48.13m3/s. In years where the LFR 

receives <55% of unimpaired runoff, the minimum baseflow is 33.97m3/s. 

The Yuba drainage area is 3480 km2. The LYR begins at the base of Englebright Dam, extending 37.1 km 

to its confluence with the LFR. In 2008, the California State Water Resources Control Board approved a 

comprehensive interagency program that would protect and enhance approximately 39 km of aquatic and 

riparian habitat along the LYR. The program is called the Lower Yuba River Accord and is managed by 

the Yuba Accord River Management Team (YARMT 2013). Minimum baseflow criteria set forth for Yuba 

Water Agency operations to support native fish habitat is based on upstream reservoir storage volume in 

Englebright Lake. For the purposes of our study, we focus on criteria during October where minimum 

baseflows range from 14.16m3/s in a very wet “schedule 1” year (annual reservoir storage of 7.08 x 108 m3) 

to 9.91m3/s in a critically dry “schedule 6” year (annual reservoir storage of 2.86 x 108 m3). After findings 

by YARMT indicated rates of non-natal adult Chinook salmon straying into the LYR were likely influenced 

by flow conditions (72% of population escapement variation in the LYR were attributed to discharge 

magnitude and temperature), the National Marine Fisheries Service’s California Central Valley salmonid 

recovery plan included a recovery action to “evaluate whether salmonid straying between the Feather and 

Yuba rivers can be minimized through flow management” (YARMT 2013, NMFS 2014). 
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3.2.4 Experimental design 

Chapter 1 characterized microhabitat preference and micro-scale migratory swimming behavior responses 

to the following hydraulic variables: depth, velocity, conveyance, and Froude number. Chapter 2 utilizes a 

combination of 2D hydrodynamic models, a random forest machine learning algorithm, and a nearest 

neighbor cost path movement algorithm to simulate migratory movements past a confluence in response to 

these four hydraulic variables under a suite of drought-focused discharge scenarios (Figure 2.1). The nine 

discharge scenarios are shown in Table 2.2, including individual discharge magnitudes and citing the 

regulatory context from which they are derived. Scenarios 1-4 explore minimum baseflow conditions in the 

LFR and LYR under both wet and dry water year types. These first four scenarios result in three different 

ratios of discharge magnitude, shown in Table 2.2. Scenarios five and six use a 1:1 discharge ratio, using 

both wet and dry minimum baseflow criteria for the LFR (minimum LYR baseflows cannot legally occur 

in the LFR). Scenarios 7-9 use the same three discharge ratios found in scenarios 1-4, but instead use the 

dry-type LFR baseflow as the lower value (33.97 m3/s).
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Table 2.2. Discharge magnitudes and ratios for the nine modeled discharge scenarios used in this study. Regulatory context is cited for LFR and 
LYR baseflow criteria. 

  

LFR 

<55% unimpaired runoff 

(NMFS 2016) 

>55% unimpaired runoff (NMFS 

2016) 

33.98 m3/s 48.14 m3/s 

LYR 

Schedule 6 (YARMT 2013) 9.91 m3/s Scenario 1 (3.4 : 1) Scenario 2 (4.9 : 1) 

Schedule 1 (YARMT 2013) 14.16 m3/s Scenario 3 (2.4 : 1) Scenario 4 (3.4 : 1) 

1:1 Ratio 
33.98 m3/s Scenario 5 (1 : 1)   

48.14 m3/s   Scenario 6 (1 : 1) 

Inverse Ratios 

81.55 m3/s Scenario 7 (1 : 2.4)   

 115.53 m3/s Scenario 8 (1 : 3.4)   

166.50 m3/s Scenario 9 (1 : 4.9)   
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2D hydrodynamic models were run for these nine scenarios and output raster maps for depth and velocity 

magnitude were produced; raster maps for conveyance and Froude number were subsequently derived from 

these. Using cell values in the four hydraulic raster maps for each scenario, a random forest model was used 

to generate spatially explicit predictions of detection rate; trained using the detection data from our previous 

study. We then scaled range of all detection rate values predicted among modeled scenarios to create a 

hydraulic microhabitat selectivity index (HMSI), scaled from zero to one. A cost path analysis was then 

performed to generate optimal upstream paths (seeking out the highest HMSI values along each path) from 

10 laterally distributed starting positions across the downstream flow boundary, proceeding through the 

study area. This resulted in 10 cost paths for each of the nine scenarios. 

Our study was designed to test two hypotheses. H1: the magnitudes of discharge in each river at the 

confluence (and resulting combined discharge) influence median HMSI values encountered among the ten 

optimal migratory pathways per discharge scenario. H2: the ratio of discharge magnitudes influences 

median HMSI values encountered among the ten optimal migratory pathways per discharge scenario. Null 

hypotheses state that there is no difference in median HMSI values encountered in cost paths among 

discharge scenarios or discharge ratios, respectively. The term “optimal” refers to the pathway derived by 

the cost path algorithm, seeking out the highest HMSI value in a nearest neighbor cell search. A Kruskal-

Wallis test by ranks was used to test for statistically significant differences in median HMSI values among 

(1) nine discharge scenarios, and (2) ratios of discharge magnitude. Dunn’s test for multiple comparisons 

was used to test for significant pairwise differences among the nine discharge scenarios and ratios of 

discharge magnitude to determine which scenario and ratio had the greatest effect among all examined. Not 

only were we interested in migratory routing at the confluence but also the relative strength of influence of 

hydraulic microhabitats, indicated by the HMSI variable. 
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3.2.5 Habitat selection data 

In 2019, surveys of migratory habitat selection for adult fall-run Chinook salmon were conducted in the 

study area using dual-frequency identification sonars (DIDSON, see Chapter 1). The DIDSON is a 

multibeam imaging sonar that can be used to render acoustic returns in a video format, allowing for 

underwater observation of fish behavior (Belcher et al., 2002, 2001; Moursund et al., 2003). The 2019 

surveys occurred during two, 4-day periods in September and October, capturing two different discharge 

ratios between the LFR and LYR (8.66 and 4.02, respectively), resulting in different spatial distributions of 

depths and velocities throughout the study area. These sampling periods were selected based on their 

correspondence with the California Central Valley fall-run Chinook salmon spawning migration as well as 

known operational criteria at upstream dams. In 2019, the Feather River Hatchery accounted for 43.6% of 

hatchery-origin Chinook collected in the Sacramento and San Joaquin basins during the fall-run migration 

window. The hatchery is located ~ 61.9 RKM upstream of the LFR-LYR confluence. That year, 27,103 

Chinook salmon returned to the hatchery with 51,967 in-river returns, totaling 79,070 fish (CDFW 2022). 

Naturally spawning populations of spring- and fall-run Chinook persist in the LYR with no hatchery 

production in that river. In 2019, the LYR experienced 3,446 in-river returns (CDFW 2022). 

Sampling occurred among 12 DIDSON deployment sites, capturing a representative range of depth and 

velocity conditions occurring throughout the site, both above and below the confluence. A multiple 

regression analysis investigated potential predictive variables with detection rate (# individuals/m3/s) as a 

response variable. Four hydraulic variables are included as attributes of detection rate (depth, velocity 

magnitude, conveyance, and Froude number). Depths for each DIDSON deployment were derived from the 

2019 bathy-topographic surveys described below. Velocity magnitudes were computed from acoustic 

doppler current profiler surveys conducted in conjunction with the DIDSON surveys. Conveyance is 

defined as follows: 

 𝐶 =  𝑢 ∗ 𝑑 (1) 
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where u is mean velocity magnitude in m/s and d is mean depth in m. C results in units of m2/s and can be 

interpreted as the discharge per unit width of the wetted channel. It represents the flow that an individual 

fish experiences at a given point in the wetted channel and has been used in similar applications for 

assessing habitat suitability (Kammel et al., 2016; Moniz et al., 2019). Froude number is dimensionless and 

describes the ratio of inertial forces to gravitational forces in flow. It has also been used in other 

investigations into salmonid habitat suitability (Ayllón et al., 2009; Lamouroux and Souchon, 2002; 

Persinger et al., 2011): 

 𝐹𝑟 =  
𝑢

√𝑔∗𝑑
 (2) 

where u is the mean velocity magnitude at each site in m/s, g is the gravitational acceleration constant in 

m/s2, and d is the mean depth at each site in m. 

In an Akaike information criteria analysis corrected for small sample sizes (AICc), conveyance (m2/s) was 

found to be the most important predictor among hydraulic variables tested (Cavanaugh and Neath, 2019; 

Portet, 2020). The best scoring model under AICc was a combination of conveyance, temperature, and 

turbidity as predictors with p < 0.001 (F test for significance) and a combined r2 of 0.42. This study utilizes 

detection rate data and corresponding hydraulic predictors found in Chapter 1 to address the new scientific 

questions posed here. 

3.2.6 Topo-bathymetric surveying and DEM construction 

A digital elevation model (DEM) was created for the study area using several sources of topo-bathymetric 

point data (Figure A.A.7. Sources of elevation point data used to construct the final digital elevation model 

used in this study.). In 2019, bathymetric surveys were conducted using a boat mounted Hydrolite single 

beam echosounder (minimum depth of 0.3 m; depth accuracy of 1 cm; sampling frequency of 200 Hz; 

Seafloor Systems, Inc.) in sync with a Trimble R8 real-time kinematic GPS (horizontal and vertical 

accuracies of ~ 1 and 2 cm, respectively) receiving ground-based corrections on the fly at 1 Hz. Cross-
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sectional transects were mapped approximately one channel width apart. At the locations of DIDSON data 

collection, multiple cross-sections were performed with very close longitudinal spacing to ensure the most 

detail where there was the most data. In addition, 8-12 longitudinal transects were surveyed down the length 

of the study area, because the primary topographic variability on the riverbed was longitudinal, not cross-

sectional. Taken together, longitudinal and lateral surveys produced good coverage relative to the 

morphological structure present (see Figure A.A.7 in Appendix A). The large island at the center of the 

confluence contained some complex topography, and in January 2020, bare-earth topography was collected 

there using a Trimble R8 RTK GPS. To map riverbanks and islands just beyond the wetted area and water 

surface elevations needed in this study, a very small clip of pre-existing near-infrared and green LiDAR 

data was used, accounting for 8.7% of largest wetted area among hydraulic model outputs. It had been 

collected in 2017 by Yuba Water Agency and processed by our group to obtain a 0.9144 m (i.e., 3-ft) raster 

(Silva and Pasternack, 2018). Processed LiDAR points within the clip were incorporated into the DEM. 

Counting all points in the largest wetted area domain, the overall DEM point density was 4.55/3 m2.  

All topo-bathymetric point data were processed to generate a DEM using ESRI ArcGIS software and the 

four iterative stages described by French and Clifford (2000): interpolation, visualization, editing, and 

augmentation. Erroneous bathy-topographic data points were identified and manually removed. Augmented 

points were also added manually to conserve known contours in the DEM and avoid any artifacts in the 

DEM that might occur from surface interpolation. A triangulated irregular network was generated from the 

final set of bed elevation points, and this was converted to a 3-m resolution raster based on overall point 

density and computational efficiency in the subsequent hydrodynamic modeling step. A smoothing 

algorithm using nearest neighbor cell averaging was applied to areas in the final DEM expected to be wetted 

in our discharge scenarios (bed elevations < 13.4 m) to further minimize surface interpolation artifacts. 
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3.2.7 2D hydrodynamic models and model validation 

The 2D hydrodynamic model TUFLOW HPC© (Build 2018-03-AE; BMT Commercial Australia Pty Ltd) 

was used to simulate flow through the study area under the nine discharge scenarios shown in Table 2.2. 

TUFLOW HPC generates time- and depth-averaged gridded solutions of open channel hydraulics by 

solving the 2D shallow water fluid dynamics equations (mass and momentum consideration) that include 

fixed initial conditions such as discharge and water surface elevation, as well as fixed parameters of the 

model domain such as eddy viscosity coefficients and roughness coefficients (n). A gridded Cartesian 

computational mesh also provides better computational efficiency compared to an unstructured mesh, and 

is well-suited for this application due to the relatively simple channel geometry in our study area (Kim et 

al., 2014; Liu, 2014). Data outputs of the model include raster maps of depth, water surface elevation 

(WSE), velocity magnitude, and bed sheer stress. All output rasters were created at a 3-m2 cell resolution. 

The Smagorinsky formulation for eddy viscosity was used to account for momentum diffusion via 

turbulence in the model’s momentum equations (BMT Commercial Australia Pty Ltd, 2018). This equation 

requires parameters for both a constant coefficient and an initial Smagorinsky coefficient that is then 

updated on a cell-by-cell basis; we used 0.4 and 0.5, respectively. TUFLOW HPC also requires several 

geospatial data layers as inputs to define boundary conditions for the model. The first is a topographic layer 

in which we used the final DEM raster described above. The second is a polygon shapefile that defines the 

Manning’s n coefficient(s) being used for roughness. Because our study area is dominated by sand-sized 

substrate with gentle bedforms and intermittent bank vegetation, we used a uniform Manning’s n value of 

0.03 in all model runs in this study (Arcement and Schneider, 1989; Limerinos, 1970). Finally, cross-

sectional polygons defining the upstream flow boundary (or boundaries in our case) were included with a 

corresponding discharge magnitude, as well as the downstream boundary with corresponding cross-

sectional WSE. Figure A.A.8 in Appendix A shows the second order polynomial stage-discharge rating 

curve that was generated for our study area. WSEs were measured using a Trimble R8 RTK GPS near the 

downstream boundary of the study area under various discharge conditions from 2017 to 2019 to develop 
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this curve. The curve was then used to interpolate WSEs that correspond to our modeled discharge 

scenarios. These WSE survey locations are shown in Figure 2.3. Discharge data was collected from the 

California Department of Water Resources’ Data Exchange Center (CDWR 2022). 

This study used the 2D model water velocity validation method of Barker et al. (2018). This approach is a 

variation of large-scale particle image velocimetry (e.g., Dramais et al. 2011). While this approach yields 

less accurate individual point velocity values than point-scale velocity instruments (e.g., acoustic doppler, 

electromagnetic, and propellor velocimeters), Barker et al. (2018) found it significantly outperformed 

model validation with those traditional tools for four reasons: (i) ability to observe velocity in locations that 

cannot be waded (i.e., too fast and/or too deep) and locations where a boat cannot hold position; (ii) better 

representation of the full range of velocities present, (iii) ability to collect velocity direction data, and (iv) 

collection of so much more data that model performance metrics have far higher accuracy and statistical 

significance. 

On a windless day, a kayaker kept their boat moving exactly at the speed and direction of the water around 

it using floating debris as a visual aid. A Trimble R8 RTK GPS tracked kayak position at 1 Hz. Distance 

travelled per second was computed as a surface velocity and this value was assigned to the midpoint position 

of each measurement. Based on visual site reconnaissance, it was possible to map what appeared to be the 

full range of velocity for enough area to test model performance thoroughly (Figure 2.3). In addition to 

obtaining observed surface velocities, the method of Barker et al. (2018) was used to find a depth-average 

velocity constant of 0.63 and apply this to the observed data to obtain field-estimated depth-average 

velocities. Both the observed surface values and the estimated depth-averaged values were compared to 

depth-average model velocities at the same coordinates for the same steady flow regime that occurred 

during the day of the kayak survey (Figure 2.4). 

Model performance test metrics included coefficient of determination, bias (i.e., y-intercept distance from 

the origin), and mean signed and unsigned percent error (-4.11% and 28.27%, respectively; see Table A.B.1 

in Appendix B for additional performance metrics). The coefficient of determination between observed 
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surface and modeled depth-averaged velocities was 0.76, which is above the typical level of model 

performance in the published literature. Further analysis required finding and applying depth averaging 

correction factor of 0.63 to surface velocities observed by kayak to compare to depth-averaged velocities 

predicted by the model.  

 

Figure 2.4. Results of the kayak velocity validation survey. This plot compares the observed surface 
velocities multiplied by the depth-averaged velocity constant (DAVC) to the modeled depth-averaged 
velocity magnitude values from the TUFLOW model outputs to assess model accuracy and performance. 

3.2.8 Random forest model 

We utilized a random forest model to produce spatially explicitly estimates of detection rate throughout the 

wetted portion of the study area. A random forest model is a commonly used non-parametric machine 
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learning algorithm that uses a classification and regression tree technique combined with a bootstrapping 

component to make robust predictions on a test data set using a training data set. Randomly selected values 

for a predictor variable (a fixed value for continuous data or a single class for categorical data) form nodes 

along a decision tree to make a prediction of a response variable value. Homogeneity is maximized within 

nodes and heterogeneity is maximized between nodes (Breiman, 2001; Cutler et al., 2007). 

In a random forest process, a user defined number of trees are grown using random samples of the training 

data, with predictor values forming nodes along each tree. These trees are used to make predictions for out-

of-bag (OOB) data (not included in the bootstrapped data set in each iteration). This feature of the random 

forest process eliminates the need for an additional cross-validation step to evaluate model performance 

(Cutler et al., 2007; Segal, 2004). Errors and accuracies of modeled predictions are averaged across the 

forest using these repeated OOB predictions. As a result, additional cross-validation to evaluate model 

performance is not necessary as this is a built-in feature of the random forest process (Cutler et al., 2007; 

Segal, 2004). The bootstrapping component is also useful in that it avoids issues of model overfitting, which 

can be a concern in other statistical modeling approaches (Williams, 2011).  

The R package randomForest (Breiman, 2001; Liaw and Wiener, 2002; R Core Team, 2022) was used to 

produce spatially-explicit predictions of detection rate. Modeling was performed with this package for each 

of the nine discharge scenarios using the four hydraulic variables from the 2019 DIDSON sampling 

campaign (depth, velocity magnitude, conveyance, and Froude number) to train the model. We utilized an 

approach for model calibration similar to van Poorten et al. (2013). Parameters for node size (nodesize) and 

number of variables tested per node (mtry) were systematically tuned in preliminary trials to achieve the 

lowest value for residual mean squared error and holding the number of trees (ntree) at 250. To ensure 

stable predictions and stability of mean error values across the forest, the final model was run with 1000 

trees. Final model parameters were: nodesize = 4, mtry = 1, ntree = 1000. Spatially explicit predictions of 

detection rate within the model domain were made using spatially explicit values for the four hydraulic 
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variables, derived from the 2D hydraulic model outputs for depth and velocity magnitude for each of the 

nine discharge scenarios. 

3.2.9 Cost path analysis 

The cost path algorithm in ESRI’s ArcGIS Pro was used to simulate upstream migratory movement of adult 

Chinook salmon through the model domain. We created a hydraulic microhabitat selectivity index (HMSI) 

to describe degree of preference for a given cell in the domain. The HMSI is scaled from zero to one, using 

the highest (equal to 1) and lowest (equal to 0) predicted values of detection rate among the nine discharge 

scenarios via the random forest’s predictive output maps. Spatially explicit detection rates were converted 

to HMSI values and HMSI maps were generated by creating triangulated irregular networks from 

TUFLOW grid points and converting those to 3m2 rasters. Because HMSI maps are derived from TUFLOW 

outputs, HMSI maps span the wetted area for each discharge scenario. 

The cost path algorithm uses an iterative nearest neighbor search process given a user-specified starting 

location to progress through a raster by identifying the “lowest cost” adjacent cell repeatedly until the path 

reaches a user-defined end point. In this study, the expected path is defined as following the maximum 

HMSI value available. Because the ArcGIS tool seeks minimum values, we created a “lowest cost” variable 

by simply computing 1-HMSI. 

In this study of upstream migration, the starting point is at the downstream end of the confluence domain. 

To avoid bias resulting from specifying a single starting point, we generated 10 starting positions spaced 

evenly, extending laterally across the downstream boundary of the model domain (Figure 2.3). Meanwhile, 

at the upstream end of the study area, a fair cost basis was needed to compare the two rivers even though 

they were mapped to different upstream limits. A fair cost basis requires having equivalent channel lengths 

in each river upstream of the confluence. To obtain equal upstream channel lengths, a center point at the 

confluence was approximated and used to generate equidistant upstream endpoints in LFR and LYR. Final 

distances for upstream and downstream of the confluence were 1080.2 and 1005.7 m, respectively. 
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Cost path parameters were set to produce single paths. Each of the nine discharge scenarios resulted in 10 

paths, starting from each of the ten starting points (which all converged to one path after varying distances 

from their starting positions). The 30 final cost paths were each stationed in 10-m intervals and the HMSI 

values at each point was added to the attribute table of the station point file for analysis. Given that paths 

had different lengths, number of points per path among all paths varied between 698 and 742 points. 

3.2.10 Data analysis 

HMSI values along the 10 cost paths in each discharge scenario were analyzed to answer the two scientific 

questions (section 3.2.2) and stated hypotheses (section 3.2.4). To investigate whether discharge magnitude 

in each river is driving the availability of high value hydraulic microhabitats in one river versus the other, 

Kruskal-Wallis (KW) rank sum tests were used to test for differences in median HMSI values encountered 

in the 10 cost paths in each discharge scenario at 95% confidence (Kruskal and Wallis, 1952; Ostertagová 

et al., 2014). KW tests were also used to test median differences in HMSI values encountered in all cost 

paths associated with the four discharge ratios examined in this study (each of which included cost paths 

from two different discharge scenarios, or three different scenarios in the case of the 3.4:1 ratio, see Table 

2.2). A Kolmogerov-Smirnov (KS) test for goodness of fit revealed that our data do not meet normality 

requirements for ANOVA, so the non-parametric KW test was used (Massey, 1951). KW and KS tests were 

performed in R using the base library (R Core Team, 2022). 

A statistically significant KW test only indicates that one median value among samples is different from 

the others. In order to identify which discharge scenario and discharge magnitude ratio resulted in the 

greatest difference in median HMSI value from one or more of the others, Dunn’s test for multiple 

comparisons using ranked sums was used to compute pairwise comparisons among all possible paired 

combinations of discharge scenarios and ratios of discharge magnitude (Dunn, 1964). Dunn’s test allows 

for examination of differenced in ranked median HMSI values among discharge scenarios and ratios to 

determine which is most different (i.e., results in the highest value habitat along simulated migratory 
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pathways. Because the Dunn’s test includes all possible pairwise comparisons among the nine discharge 

scenarios, there were 36 comparisons in all. The R package rstatix was used to perform the Dunn’s tests 

and because the test involves multiple pairwise comparisons, adjusted p values were computed using the 

Bonferroni method (Dunn, 1961; Kassambara, 2022). 

3.3 Results 

3.3.1 Random forest model performance 

With 17.43% variance explained (and mean sum of squared residuals equal to 0.0024), our random forest 

model contains some significant uncertainty arising from the ecological function under investigation and 

the focus on a small subset of contributing factors. Specifically, most habitat studies seek to predict usage 

of stationary ecological functions, such as holding, hiding from predators, and spawning. This study is 

characterizing fish migration, which is not only influenced by hydraulics around the fish, but also by other 

physico-chemical cues biological behaviors, such as predator-prey interactions. Further, among physical 

cues, this study only addressed hydraulic cues. The variable importance plot in Figure 2.5 shows that 

conveyance was the most important variable in the random forest process while depth was the least 

important. These results are still meaningful and indicate predictive capability of the model because 

conveyance, velocity magnitude, and Froude number all have a velocity component, and ranked higher than 

depth in predictive power. For any given habitat cell in the model domain, the velocity magnitude value 

relative to the depth value provides key information for predicting HMSI. 
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Figure 2.5. Variable importance plot produced by the random forest model ranking the relative strength of 
each hydraulic predictor in predicting Chinook salmon detection rate. 

3.3.2 Cost path results 

Migratory routing at the LFR/LYR confluence, driven by hydraulic selectivity, resulted in different rivers 

being chosen upstream of the confluence among the nine discharge scenarios (Figure 2.6). Remarkably, 

river selection was completely independent of where across the river a fish starts the journey through the 

study area. In scenarios 1-6, all migratory paths quickly converge. In scenarios 7-9, path convergence still 

occurs well before the confluence, but after a longer travel distance. This is due to the greater availability 

of high value habitat distributed laterally, downstream of the confluence near the starting positions. The 

LFR is chosen in scenarios 1-5 and the LYR is chosen in scenarios 6-9. The plot of HMSI values 

encountered along each cost path in Figure 2.7 shows that HMSI values upstream of the confluence tend to 

be higher in scenarios 6-9 than in scenarios 1-5. This is a direct result of the spatial distribution of HMSI 

values throughout the model domain under each condition, but further testing was needed to determine the 

relative effects of discharge versus discharge ratio. 
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Figure 2.6. HMSI raster maps and cost paths simulated for each of the 9 discharge scenarios. Raster layers 
have a 3m cell resolution. Scenarios are numbered in the upper right corner of each panel. 
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Figure 2.7. HMSI values encountered along each cost path in each scenario. Scenarios are numbered in 
the upper right corner of each panel. 
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3.3.3 Question 1: discharge effect 

The KW test for differences in median HMSI values encountered in cost paths per discharge scenario was 

statistically significant at 95% confidence (p <0.01), indicating at least one of the nine discharge scenarios 

resulted in greater value habitat overall compared to the others (Table 2.3 and Figure 2.8). Of the 36 

pairwise tests, 31 (86%) had differences in ranked sums that were statistically significant. Table 2.4 includes 

paired differences in order of the sizes of difference between ranked sums. The greatest difference in median 

HMSI values was between scenario 1 and scenario 9. Following this first pair of discharge scenarios are 

comparisons between scenario 1 and Scenarios 7 and 8; the second and third highest combined discharges 

that we examined. 

Table 2.3. Results of Kruskal-Wallis rank sum tests for differences in median HMSI values encountered 
among the nine discharge scenarios and four discharge ratios that occurred among the nine scenarios. 

 DF X2
KW p value 

Scenarios 8 15834.0 < 0.001 

Ratios 3 1648.7 < 0.001 
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Table 2.4. Results of Dunn’s test for multiple comparisons. The pairwise comparisons of discharge 
scenarios are ordered by the absolute value of the difference in ranked sums between HMSI values along 
all cost paths per scenario, in each of the two scenarios analyzed. Adjusted p values are shown using the 
Bonferroni method. 

Scenario 

a 

Scenario 

b Na Nb rank a rank b |diff| z p padj 

1 9 7017 7216 19161.38 44164.65 25003.27 79.72 < 0.01 < 0.01 

1 8 7017 7244 19161.38 43803.82 24642.44 78.64 < 0.01 < 0.01 

1 7 7017 7320 19161.38 43694.13 24532.75 78.49 < 0.01 < 0.01 

3 9 7027 7216 22516.59 44164.65 21648.06 69.04 < 0.01 < 0.01 

3 8 7027 7244 22516.59 43803.82 21287.23 67.96 < 0.01 < 0.01 

5 9 7084 7216 22916.16 44164.65 21248.49 67.91 < 0.01 < 0.01 

3 7 7027 7320 22516.59 43694.13 21177.54 67.78 < 0.01 < 0.01 

5 8 7084 7244 22916.16 43803.82 20887.66 66.82 < 0.01 < 0.01 

5 7 7084 7320 22916.16 43694.13 20777.97 66.64 < 0.01 < 0.01 

1 6 7017 7339 19161.38 34378.43 15217.06 48.72 < 0.01 < 0.01 

4 9 7275 7216 29735.39 44164.65 14429.26 46.42 < 0.01 < 0.01 

4 8 7275 7244 29735.39 43803.82 14068.43 45.31 < 0.01 < 0.01 

4 7 7275 7320 29735.39 43694.13 13958.74 45.07 < 0.01 < 0.01 

2 9 7283 7216 30259.86 44164.65 13904.79 44.75 < 0.01 < 0.01 

2 8 7283 7244 30259.86 43803.82 13543.95 43.63 < 0.01 < 0.01 

2 7 7283 7320 30259.86 43694.13 13434.27 43.39 < 0.01 < 0.01 

3 6 7027 7339 22516.59 34378.43 11861.85 37.99 < 0.01 < 0.01 

5 6 7084 7339 22916.16 34378.43 11462.27 36.79 < 0.01 < 0.01 

1 2 7017 7283 19161.38 30259.86 11098.48 35.47 < 0.01 < 0.01 

1 4 7017 7275 19161.38 29735.39 10574.01 33.78 < 0.01 < 0.01 

6 9 7339 7216 34378.43 44164.65 9786.22 31.55 < 0.01 < 0.01 

6 8 7339 7244 34378.43 43803.82 9425.38 30.42 < 0.01 < 0.01 

6 7 7339 7320 34378.43 43694.13 9315.70 30.15 < 0.01 < 0.01 

2 3 7283 7027 30259.86 22516.59 7743.28 -24.75 < 0.01 < 0.01 

2 5 7283 7084 30259.86 22916.16 7343.70 -23.52 < 0.01 < 0.01 

3 4 7027 7275 22516.59 29735.39 7218.80 23.07 < 0.01 < 0.01 

4 5 7275 7084 29735.39 22916.16 6819.23 -21.84 < 0.01 < 0.01 

4 6 7275 7339 29735.39 34378.43 4643.04 15.00 < 0.01 < 0.01 

2 6 7283 7339 30259.86 34378.43 4118.57 13.31 < 0.01 < 0.01 

1 5 7017 7084 19161.38 22916.16 3754.78 11.92 < 0.01 < 0.01 

1 3 7017 7027 19161.38 22516.59 3355.21 10.63 < 0.01 < 0.01 

2 4 7283 7275 30259.86 29735.39 524.47 -1.69 0.09 1.00 

7 9 7320 7216 43694.13 44164.65 470.52 1.52 0.13 1.00 

3 5 7027 7084 22516.59 22916.16 399.57 1.27 0.20 1.00 

8 9 7244 7216 43803.82 44164.65 360.84 1.16 0.25 1.00 

7 8 7320 7244 43694.13 43803.82 109.68 0.35 0.72 1.00 

Na and Nb are the number of HMSI values along the cost path in each scenario, ranks a and b are the ranked sums per 

Dunn (1964), |diff| is the absolute value of difference in ranked sum between scenarios, z is the z statistic for testing 

significance at 95% confidence. padj is the adjusted p value using the Bonferroni method. Bolded p values are 

statistically significant.    
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Figure 2.8. Box and whisker plot indicating the median, quartiles, minima and maxima, and outliers (hollow 
circles) for HMSI values encountered along all cost paths in each scenario. 

3.3.4 Question 2: discharge ratio effect 

As with the KW test for Question 1 regarding differences among discharge scenarios, the KW test for 

differences in median HMSI values encountered in cost paths per discharge ratio was statistically significant 

at 95% confidence (p <0.01), indicating at least one of the four discharge ratios resulted in greater value 

habitat overall (Table 2.3 and Figure 2.9). The results of the Dunn’s test shown in Table 2.5 (ordered in the 

table by the size of difference between ranked sums for each ratio) showed the highest difference in median 

HMSI values encountered between discharge ratios of 1:1 and 4.9:1. The relationship between HMSI and 

discharge ratio appears to be more complicated than between HMSI and discharge magnitude, as the second 

greatest paired difference between ratios was 3.4:1 and 4.9:1. This is likely due to the 3.4:1 ratio appearing 

in three different discharge scenarios (as opposed to two, like the other three ratios examined), and so a 

greater sample of HMSI values represented by the 3.4:1 ratio. We did not find a directly proportional 
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relationship between ratio and HMSI, indicating confluence discharges and combined discharge magnitude 

are more important predictors of habitat value within the confluence. 

Table 2.5. Results of Dunn’s test for multiple comparisons. The pairwise comparisons of discharge 
scenarios are ordered by the absolute value of the difference in ranked sums between HMSI values along 
all cost paths per scenario, in each of the two scenarios analyzed. Adjusted p values are shown using the 
Bonferroni method. 

Ratio a Ratio b Na Nb rank a rank b |diff| z p padj 

1:1 4.9:1 14423 14499 28748.62 37180.13 8431.507 38.32363 <0.001 <0.001 

3.4:1 4.9:1 21536 14499 31022.25 37180.13 6157.879 30.64074 <0.001 <0.001 

1:1 2.4:1 14423 14347 28748.62 33321.61 4572.984 20.73084 <0.001 <0.001 

2.4:1 4.9:1 14347 14499 33321.61 37180.13 3858.523 17.51486 <0.001 <0.001 

2.4:1 3.4:1 14347 21536 33321.61 31022.25 2299.36 -11.4052 <0.001 <0.001 

1:1 3.4:1 14423 21536 28748.62 31022.25 2273.628 11.29548 <0.001 <0.001 

Na and Nb are the number of HMSI values along the cost path corresponding to each discharge ratio, ranks a and b are 

the ranked sums per Dunn (1964), |diff| is the absolute value of difference in ranked sum between discharge ratios, z 

is the z statistic for testing significance at 95% confidence. padj is the adjusted p value using the Bonferroni method. 

Bolded p values are statistically significant.      
 

 

Figure 2.9. Box and whisker plot indicating the median, quartiles, minima and maxima for HMSI values 
encountered along all cost paths corresponding to the four discharge ratios that occurred among the nine 
discharge scenarios. 
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3.4 Discussion 

3.4.1 Migratory routing in the LFR and LYR 

Our results suggest migratory routing at the LFR/LYR confluence is partially driven by micro-scale 

hydraulic cues, as hydraulic selectivity is driven by discharge conditions. The simulations presented here 

are intended to compliment the findings of Chapter 1 which showed hydraulic variables to be important 

factors in migratory microhabitat selection and rheotactic swimming behavior. Based on DIDSON surveys 

conducted in 2019, it appears conveyance is the strongest hydraulic component of microhabitat selectivity.  

Discharge magnitude was found to be an important driver of the amount and distribution of high-value 

hydraulic habitat. Results of the present study support previous patterns of adult Chinook escapement in 

this system, as the LYR has experienced elevated rates of strays in conditions where LYR discharge 

magnitude greatly outweighs that of LFR (YARMT 2013). The conveyance variable has a velocity 

component, and thus is strongly driven by discharge magnitude as can be seen in scenarios 6-9 which had 

relatively high HMSI values compared to scenarios 1-5.  

Discharge ratio was also found to be a statistically significant driver of hydraulic habitat distribution, though 

we expected to find a clearer relationship between discharge ratio and availability of high-value habitat at 

the confluence. Our investigation into this effect suggests discharge ratio may be an important predictor of 

migratory routing within a certain range of discharge magnitude values. At a confluence, depending on the 

size of discharge ratios, a backwater effect may also occur in the river with a lower discharge, lowering 

velocities in that river upstream of the confluence and yielding lower HMSI values that might be attractive 

to migrating salmon.  

An example of discharge ratio influencing migratory routing can be seen in Table 2.4 where scenarios 7-9 

are highly influential, having the three greatest combined discharge magnitudes among our simulations 

when compared to scenario 1. The differences in ranked HMSI sums among scenarios 7-9 were markedly 

different, with the comparison between scenarios 9 and 1 having almost twice the difference compared to 



   

87 

 

the comparison between scenarios 7 and 1. This can be seen graphically in Figure 2.7 where scenario 9 has 

higher overall HMSI values along the cost paths when compared to scenario 7. Therefore, in the context of 

potential drought conditions at the LFR/LYR confluence, a situation with a high combined discharge 

occurring simultaneously with a high discharge ratio has the potential to greatly determine migratory 

routing via hydraulic habitat selectivity. Again, this is the situation that was observed in 2010 in this system 

that resulted in an acute pulse of LFR-origin fall-run Chinook salmon straying into LYR. 

3.4.2 Information gaps and future modeling applications 

Even though adult salmon migration has been studied for decades in many different systems and species, 

researchers, managers, and policy makers still lack a cohesive, holistic quantitative model of the 

navigational cues for homing and upstream travel. To date, research has shown that this process is extremely 

complex, involving many different sensory inputs as well as endocrine responses in an individual fish. Our 

hope is that this modeling study provides some compelling evidence that micro-scale hydraulic cues also 

play an important role. These results may support future research and modeling efforts to unify olfactory 

responses, density-dependent behavior, micro-scale hydraulic selectivity, innate exploratory behavior, and 

responses to other habitat characteristics such as temperature, turbidity, pathogens, substrate, and channel 

complexity. A good starting point would be a study that tracks both hydraulic habitat selectivity and fidelity 

to olfactory cues so that degree of influence of micro-scale habitat characteristics could be disentangled 

from olfactory homing mechanisms for a given species, population, and location. It is well understood that 

olfaction is a primary driver of homing and is likely the dominant driver of an individual’s navigational 

choices (Cooper et al., 1976; Dittman et al., 1996; Hasler and Scholz, 1983; Ueda, 2011) However, there 

have also been multiple cases in which olfaction was shown to be compromised, such as hatchery-origin 

fish released away from their natal facility and denied the sequence of olfactory imprinting associated with 

outmigration (Huber et al., 2015; Jonsson et al., 2003; Keefer and Caudill, 2014; Murdoch et al., 2009; 

Sturrock et al., 2019). Exposure to waterborne pesticide compounds that are toxic to olfactory organs is 

another reason in which olfactory physiology may be compromised in adult salmon (Tierney et al., 2010, 
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2008). In these cases, hydraulic navigation cues may play a critical role in navigation in lieu of olfactory 

cues. The degree to which this occurs may also vary among species and migratory phenotypes. Bett and 

Hinch (2016) proposed a hierarchical navigation hypothesis based on existing empirical evidence that 

habitat selection in upstream migration occurs using a hierarchy of navigational cues with imprinted odors 

being the primary cue, conspecific odors being a secondary cue, and non-olfactory environmental factors 

as tertiary cues. Our intent was to provide some novel insight into how such non-olfactory cues may be 

incorporated in upstream navigation.    

3.4.3 Implications for environmental flow management strategies 

Our findings highlight a broad need for future research and development of modeling tools that account for 

environmental navigational cues on homing and migration in adult salmon. With the exception of pulse 

attraction flows, research supporting flow regulation and watershed management strategies for salmon 

habitat functionality focuses on spawning, incubation, and juvenile rearing and outmigration (Harnish et 

al., 2014; Matella and Merenlender, 2015; Schaller et al., 2014; Zeug et al., 2014). Supporting these life 

stages is important for maintaining and improving population productivity and abundance for broader 

ecosystem support as well as fishery management. However, population attributes such as genetic structure, 

migration phenology, and spatial structure are conserved through successful adult migration and homing to 

natal streams (Narum et al., 2008; Powell and Campbell, 2020; Vähä et al., 2007). In some cases, 

maintaining these attributes may be critically important for conservation efforts. For imperiled populations 

that experience high rates of straying, it may be prudent for water managers to consider developing and 

incorporating operational criteria into flow schedules that support successful homing by avoiding hydraulic 

conditions at key points along the migratory route that may encourage straying. 
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4 Chapter 3: Abiotic variables are often neglected in studies of homing and straying in anadromous 

salmonids 

4.1 Abstract 

Despite decades of research on homing and straying in anadromous salmonid fishes, there remains a broad 

lack of investigation into abiotic drivers of homing and straying behavior. This article accomplishes two 

goals: (1) it develops a conceptual framework supported by existing literature for why abiotic factors that 

drive homing and straying behavior in salmonids are important and should be considered in mechanistic 

frameworks, and (2) it conducts a meta-analysis using a targeted literature search in Web of Science via 

Boolean criteria based on this framework to test whether analyses of abiotic variables and testing of abiotic 

factors identified in our framework are (a) increasing though time in the published literature, and (b) 

disproportionately included among homing and straying-related study designs, study locations, and/or study 

species. After filtering search results to exclude duplicates and irrelevant articles, only 70 out of 169 articles 

included at least one abiotic variable. An augmented Dickey-Fuller time series analysis revealed that 

instances of abiotic variable inclusion and testing of abiotic factors in published studies per year have 

experienced slight increasing trends since 1990 (0.37 and 0.22 per year, respectively). Among study types, 

species, and locations, there were no differences in the number of abiotic variables included or tested. 

Biotelemetry studies had the greatest percentage of ≥1 abiotic variable included with 21 out of 32 papers 

(65.6%). The U.S. West Coast and British Columbia dominated study locations with 62 papers, 21 of which 

included ≥1 abiotic variable (33.9%). Atlantic salmon were used in the greatest number of papers at 38, 

followed closely by Chinook salmon at 34. Of the papers using these species, 19 (50.0%) and 13 (38.2%) 

included ≥1 abiotic variable, respectively. Taken together, results suggest a systematic lack of inclusion 

bias against abiotic components in the homing and straying literature. Homing and straying are critical 

facets of the salmonid lifecycle, and researchers currently lack a comprehensive conceptual model for how 

the abiotic environment drives migratory patterns of diverse salmon species. Future homing and straying 

research should be conducted in the context of both biotic and abiotic drivers. 
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4.2 Introduction 

Homing in anadromous salmonids, defined as the return from ocean spawning grounds to freshwater 

spawning habitat of natal origin, is a highly complex phenomenon intertwining biotic and abiotic dynamics 

(Dittman and Quinn, 1996). Decades of research on this topic have shown that a myriad of biotic and abiotic 

processes play out at each stage of the salmonid lifecycle to achieve upstream migration from coastal and 

estuarine habitats to riverine spawning grounds (Craigie, 1926; Hasler and Scholz, 1983; Hasler and Wisby, 

1951; Quinn, 1993; Quinn and Fresh, 1984; Westley et al., 2013). Straying is a facet of upstream adult 

migration that has received attention for various research and management interests. Straying refers to an 

individual’s upstream migration terminating at a location other than that of their natal origin. Keefer and 

Caudill (2014, referred to hereafter as "K&C") provided an excellent review of homing and straying 

mechanisms with a focus on the biological causes and consequences of straying in salmon populations. 

K&C outlined seven biological causal mechanisms for straying: (1) incomplete juvenile imprinting; (2) 

interrupted juvenile imprinting; (3) adult sensory failure; (4) adult memory failure; (5) density dependent 

reproductive behaviors; (6) genetic and life history effects; and (7) attraction to non-natal sites. These are 

hereafter referred to as “biological HS mechanisms”.  

Although these biological HS mechanisms have been studied extensively for several decades, we conjecture 

that the literature has underrepresented abiotic factors linked to homing and straying behavior. The term 

“abiotic variable” is used throughout this article. It describes a measurable quantity that represents either a 

single physical environmental parameter (e.g., water depth or water velocity) or an environmental indicator 

(e.g., water temperature indices or passage barrier classifications) that occurs in the environment that 

comprises anadromous salmonid habitats at all life stages. This term excludes artificial habitat attributes 

related to hatchery rearing facilities or controlled laboratory conditions. It also excludes attributes of 

environmental conditions that do not have an explicitly defined link to a habitat feature such as dates, times, 

and locations.  
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The first objective of this study was to provide new theoretical developments that extend the K&C 

framework by developing a comprehensive list of abiotic homing/straying factors (hereafter referred to as 

“abiotic HS factors”, defined and listed in Table 3.1a and Table 3.1b). These abiotic HS factors have direct 

links to the biological HS mechanisms identified by K&C. Our intent is not to criticize K&C’s review, but 

rather to support their findings and conclusions with an expanded analysis of abiotic HS factors that link 

anadromous salmonid species to the habitat features that they experience at each life stage. Certain causes 

of straying identified by K&C coincide with specific life stages and Table 3.1a and Table 3.1b are structured 

accordingly. Incomplete and interrupted juvenile imprinting are combined into one category and adult 

memory failure is excluded from this analysis, as it does not have an abiotic component. Figure 3.1 includes 

a flow chart describing the methods and analytical steps taken in this review. 

The second objective of this review was to conduct a meta-analysis to test hypotheses related to three 

specific questions about the existing literature in light of the broader conceptualization of abiotic-biotic 

linkages. The meta-analysis was designed to address the following three questions: (1) Are instances of 

inclusion of abiotic variables and tests of abiotic HS factors increasing over time? (2) Are abiotic variables 

incorporated into study designs disproportionately among study method types, study regions, and/or study 

species? (3) Are abiotic HS factors linking abiotic variables to K&C’s biological HS mechanisms being 

tested disproportionately among study method types, study regions, and/or study species? Figure 3.2 

includes two example analyses from our literature sample, identifying instances where abiotic variables 

were analyzed to test abiotic HS factors that link back to biological HS mechanisms identified by K&C. 
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Figure 3.1. Conceptual flow chart and summary of the literature review and metastudy conducted. 
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Figure 3.2. Examples of our analysis of sampled literature to identify abiotic variables and abiotic HS factors that drive the biological HS mechanisms 
identified by Keefer and Caudill (2014). Colors and symbols are consistent with items shown in Figure 3.1.
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4.2.1 Definitions of Criteria and Terms 

The scope of this review is limited to anadromous salmonid species. Freshwater resident salmonids are 

excluded as well as other fish species that exhibit diadromous life history strategies (Meyers, 1949). Table 

3.1a and Table 3.1b include categories related to study scale and life stage, which allowed for more explicit 

identification of relevant environmental drivers. “Local-scale” HS factors are those that may occur at the 

scale of a single river segment or any smaller area. “Large-scale” HS factors are those that may occur across 

one or more subcatchments (where a study catchment has been identified, but only specific river reaches, 

segments, or areas within it are analyzed), across a whole catchment, across multiple catchments, or in 

estuarine, coastal, and oceanic habitats. The “juvenile” category refers to any life stage ranging from egg 

to smolt at entry to brackish water. “Adult” ranges from sub-adult following entry to the marine 

environment to the spawner stage. 

4.2.2 Incomplete or Interrupted Juvenile Imprinting 

Early studies on olfactory imprinting in juvenile salmon revealed that the parr-smolt transformation is a 

critical point in the lifecycle in which a cascade of endocrine activity within individuals coincides with 

neurological mapping of odor cues (Dittman et al., 1996; Hasler and Scholz, 1983; Morin and Døving, 

1992). Recently, both Havey et al. (2017) and Armstrong et al. (2021) found that this phenomenon occurs 

much earlier, demonstrating olfactory imprinting in sockeye and Atlantic alevin, respectively. It is unclear 

how the timing of imprinting may occur across species, populations, or whether phenotypic plasticity may 

occur within a given population. However, existing evidence does suggest that olfactory imprinting may be 

impaired, interrupted, or prevented entirely by several abiotic HS factors. 

Juvenile freshwater residence time refers to the time spent rearing in freshwater habitats prior to 

smoltification and entry into the estuary. Residence time can vary depending on species and migratory 

phenotype, density and competitive interaction among individuals, and location of natal habitat within a 

catchment (Roni et al., 2012; Scheuerell et al., 2009; Unwin, 1986). However, this period may be cut short 
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in the event of flood flow pulses that force passive downstream transport through highly confined and 

channelized river habitats that experience high velocities (Pavlov et al., 2008). Density effects due to limited 

suitable rearing habitat at low flow periods may also initiate premature downstream movement as discussed 

by Walters et al. (2013) and Einum et al. (2006), though more research is needed in order to characterize 

density-dependent juvenile movement across species and life history types (Grossman and Simon, 2020). 

Increased production of thyroid hormones has been linked to olfactory imprinting and the endocrine 

controls in this process are well understood at this point (Dittman et al., 1994; Hasler and Scholz, 1983; 

Lema and Nevitt, 2004; Ueda et al., 2016). Because salmon are poikilothermic, thyroid activity is strongly 

mediated by temperature and can be inhibited under elevated temperature conditions (Grau et al., 1982; 

Nisembaum et al., 2020). In dry years where stream temperatures are elevated in spawning and rearing 

habitats, olfactory imprinting may be interrupted or inhibited due to physiological limitations. This may 

impact multiple age classes in a single population during a prolonged drought period. Because we now have 

evidence that imprinting occurs at the alevin stage, species-specific incubation temperature thresholds 

should also be put into the context of olfactory imprinting potential such as those identified by (Murray and 

McPhail, 1988). Physiological impediments to olfactory imprinting may also result from sublethal exposure 

to pesticide compounds such as atrazine in Atlantic salmon (Moore et al., 2007) and carbamates in coho 

salmon (Jarrard et al., 2004) which have been shown to inhibit critical electrophysiological olfactory 

processes at the parr/smolt stage. Pesticides have been shown to harm endocrine processes in alevin, though 

more work is needed to characterize contaminant effects to olfactory imprinting at this life stage (Du Gas 

et al., 2017; Giroux et al., 2019). 

4.2.3 Genetic and Life History Effects 

A critical facet of anadromous salmonid life histories is exploratory dispersal of behaviorally polymorphic 

juveniles and adults within a population (Hamann and Kennedy, 2012; Peterson et al., 2016; Quinn, 1993). 

This innate behavior is responsible for their persistence over the past 144 million years in the face of a 
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major ice age, violent geological activity, fluctuations in sea level, and changing patterns of habitat 

formation and destruction through stochastic processes (Waples and Hendry, 2008). With an innate baseline 

rate of straying, genetic diversity within a metapopulation can be conserved over time in fragmented 

populations in a phenomenon known as the portfolio effect (Figge, 2004). Waples et al. (2009) identified 

four key characteristics of disturbance regimes that may drive salmon dispersal and resultant population 

structure: (1) frequency, (2) magnitude, (3) duration, and (4) predictability; and that anthropogenic 

alterations to these characteristics might lead to loss of population resilience over time due to reduced 

facilitation of dispersal and fragmentation (i.e., a simplification of the genetic “portfolio”).  

Climate-driven hydrologic regimes, both floods and droughts, work together with topography, sediment 

regime, and other factors to yield habitat disturbance patterns expressed as flood frequency, timing, 

duration, and magnitude (Poff et al., 2006). Natural flow regimes drive the availability and amount of 

riverine habitats that support salmon based on: (1) floodplain inundation for juvenile foraging (Benke et 

al., 2000; Junk et al., 1989; Scott et al., 2019); (2) erosion and sediment transport dynamics (i.e. geomorphic 

effective discharges) that dictate grain size distributions and functional habitat units (Basso et al., 2015; 

Doyle et al., 2005; Yarnell et al., 2006); (3) vegetation in main channel or seasonally inundated floodplains 

for habitat complexity (Beland et al., 2004; Jeffres et al., 2008; Tabacchi et al., 1998); (4) nutrient 

availability and downstream transport for productivity (Doretto et al., 2020; Mallin et al., 1993; Vannote et 

al., 1980); and (5) stream hydrographs, temperature regimes, surface-hyporheic interaction, and dissolved 

oxygen supply in spawning reaches that are suitable for egg incubation and egg-to-fry survival (Beechie et 

al., 2006; Malcolm et al., 2004; Soulsby et al., 2009). 

Hydrologic disturbance regimes can also be dramatically altered by the construction of dams and regulation 

of flows (Magilligan and Nislow, 2005). This can also lead to profound changes to temperature regimes 

throughout a watershed, altering the dynamics of thermal disturbances that historically occurred (Lessard 

and Hayes, 2003; McCullough, 1999; Willis et al., 2021). For example, in a dam-free catchment prior to 

human development, small-scale thermal disturbances may have driven intra-basin dispersal and population 



   

104 

 

structuring such as the loss of riparian shading due to a wildfire. Having constructed dams and regulated 

flows and temperatures in that same catchment today, thermal disturbances may be more frequent, more 

widespread, and with greater magnitude. In response, populations may become more genetically 

homogenized when occupying habitat in a permanently disturbed condition. 

4.2.4 Adult Sensory Failure 

The landscapes that many salmon populations traverse during their spawning migration often pose threats 

to olfactory physiology and other sensory systems that are critical for successful homing (Tierney et al., 

2010). Non-point source contamination by agricultural pesticides (many of which are toxic to salmonid 

olfactory processes, (see Tierney et al., 2008) can occur at a broad scale in a catchment with the primary 

driver of aquatic concentrations being stormwater runoff, though sediment and groundwater have also been 

shown to be an important means of storage and transport of certain pesticide compounds (McKnight et al., 

2015; Parker et al., 2007; Weston et al., 2004). Once contaminants are waterborne, fate is dependent on 

various physical, chemical, and microbial processes acting on each individual compound (Holvoet et al., 

2007). At a catchment scale, it is likely that intensity of application per unit area rather than the total area 

of application has more of an effect on aquatic toxicity levels (Hunt et al., 2006). 

Point-source contamination may also occur due to poor construction management practices or wastewater 

effluent (McNeill, 1996; Santhi et al., 2001). Management techniques involving construction of detention 

ponds and wetlands may result in reductions of waterborne contaminants (Fulton et al., 1999; Haberl et al., 

2003; Harrell and Ranjithan, 2003). In a study on efficacy of non-point source agricultural pollution 

removal in constructed wetlands, Díaz et al. (2012) found that continuous flow through wetlands were more 

effective than flood pulse wetlands, suggesting that different engineering approaches for water quality 

management may have varying reach-scale benefits to salmon olfaction (Vymazal and Březinová, 2015). 

The susceptibility of migrating adult salmon to pathogen infection is largely driven by host-pathogen-

environment interactions as recently demonstrated by Teffer et al. (2022). Temperature has been shown to 
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be a critical driver of pathogen abundance via increased rates of replication and may increase infection rates 

in cases where high temperatures cause thermal stress to salmon (Benda et al., 2015; Bettge et al., 2009; 

Ewing et al., 1986). Therefore, community composition of pathogenic organisms present in migratory 

habitat may be less important than the thermal regime that ultimately drives infection rates.   Pathogenic 

agents take the form of bacteria, viruses, ectoparasites, microsporidia, myxozoa, and other taxa; and 

pathogenic loads in individuals have shown to vary in time and space and by sex (Bass et al., 2017; Bradford 

et al., 2010; Miller et al., 2014). These antagonistic ecologies are known to affect rates of upstream 

migration, pre-spawn mortality, renal and respiratory function, and cause lesions on various organ tissues 

(Kocan et al., 2004; Teffer et al., 2018); but the direct physiological impacts to organs specifically involved 

in olfaction (olfactory rosette, olfactory bulb, or greater telencephalon) are not well understood (Abe et al., 

2020; Kudo et al., 2009). Given the physiological demands of olfactory navigation and the severe impacts 

to physiological function from various infection types, it is likely that pathogens directly affect olfaction 

though further research is needed to characterize this effect.  

Increased attention has been given in recent decades to effects of anthropogenic noise pollution on fishes 

(Popper and Hastings, 2009; Slabbekoorn et al., 2010). Lethal and sub-lethal injuries to fish tissue occur in 

the form of swim bladder barotrauma, a common source of this is impact pile driving during in-water 

construction projects (Casper et al., 2012; Halvorsen et al., 2012), as well as acute injuries to epithelial 

receptor and neuromast cells that are critical for detecting sound and water velocity which are important 

sensory inputs to navigation in current (Chambers et al., 2014; Hastings et al., 1996; McCauley et al., 2003; 

Smith and Monroe, 2016). In addition to acute injury, underwater noise impacts fish behavior with 

“startling” and avoidance behaviors observed in response to sound stimuli (Hawkins and Popper, 2018; 

Nedwell et al., 2006). Thresholds of sound pressure levels eliciting behavioral responses have been 

identified for some species though much of this work has taken place in pelagic settings. Neither acute 

injury nor behavioral effects resulting from anthropogenic sound have been investigated in the context of 

migrating adult salmon. However, there is abundant evidence to suggest noise pollution interferes with the 
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sensory mechanisms and environmental cues involved in homing, and managers do currently have access 

to baseline thresholds for developing regulatory requirements. For example, Popper et al. (2014) developed 

a set of fish-specific guidelines and best management practices for noise-generating activities including 

underwater explosions, pile driving, seismic air guns, low- and mid-frequency naval sonars, and 

commercial shipping. 

4.2.5 Density-dependent Reproductive Behaviors 

Density-dependent behavioral effects in migrating and spawning adult salmon are known to occur simply 

as a function of fish-density per unit of habitat area, and variability through time is often thought of in terms 

of run size. Behaviors in response to density include collective navigation, altered run timing, and localized 

straying due to spawning habitat saturation (Berdahl et al., 2017, 2016; Mortensen et al., 2002; Quinn and 

Fresh, 1984). However, it is also important to consider multi-scale habitat features that may result in 

limitation of migratory and spawning habitat, or otherwise result in greater densities. 

Perhaps the most widely publicized and studied cause of salmonid habitat limitation is construction of dams 

and other infrastructure that create impassible barriers, restricting access to various habitat types upstream 

of them. In a global assessment of 40,000 existing dams, Barbarossa et al. (2020) found the highest rates of 

aquatic habitat fragmentation occurring in the United States, Europe, South Africa, India, and China. Zarfl 

et al. (2015) estimated that at least 3,700 new hydropower projects (though most occur in tropical areas 

without endemic salmon populations) were planned or under construction which would reduce Earth’s free-

flowing rivers further by 21%. In addition to isolating upstream habitat and reducing the historical range of 

a salmon population, dam construction also leads to several geomorphic effects downstream which further 

reduce and degrade available habitat. The alteration of natural flood and sediment supply regimes by flow 

regulation at a dam (especially the magnitudes of peak flows) results in channel simplification with losses 

of multi-thread channels, channel avulsion, floodplain activation, and sediment recruitment and transport 

dynamics (Ligon et al., 1995; Pitlick and Wilcock, 2001). Loss of geomorphic processes results in a 
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corresponding loss of sediment particles that are of the size required for successful redd construction, 

limiting the amount of viable spawning habitat available overall (Kondolf and Wolman, 1993; Kondolf, 

2000). 

Flood duration and frequency may also play important roles in initiating upstream migration and driving 

density. Flood flows (even just high-flow “pulses”) are known to initiate upstream movement from 

estuarine to mainstem habitats by creating low salinity “freshets” near river mouths, allowing ocean going 

adults to follow a negative salinity gradient (Huntsman, 1948; Quinn, 2018). In regulated river systems, 

pulse attraction flows are often utilized to mimic a natural flood event and provide a cue for migration and 

these efforts have been met with mixed success (Hasler et al., 2014; Peterson et al., 2017; Thorstad and 

Heggberget, 1998). However, when pulses are too short or too few, many adults return simultaneously 

during a brief optimal period, leading to high densities upstream. Putative relationships between flood 

frequency/duration and density effects in adult salmon have not yet been explicitly tested. Although flow 

pulses are actively used as a fish-migration management tool, further research is needed to identify 

relationships between pulse flows and salmon movement, and they are likely to be species- and system-

specific. 

Thermal barriers may partially or totally restrict spawning habitat in cases where thermal refugia are not 

available and warm water temperatures signify non-viable spawning grounds. This possibility is discussed 

in more detail in the following section on attraction to non-natal sites. In such cases, spawner densities may 

increase in tributaries with viable spawning and incubation temperatures as strays compete with spawners 

of local origin. One final consideration of density-dependent behavior driven by habitat conditions is 

actually a lack of density-mediated fidelity to natal spawning grounds in small populations (the inverse of 

the “collective navigation” hypothesis presented by Berdahl et al. 2016). If collective migratory movement 

of spawners is facilitated by high densities, small populations may be more easily deterred by adverse 

habitat conditions in natal habitat. For low-density spawning runs, stray rates within or among catchments 

may be more sensitive to key habitat variables such as discharge and temperature. Further research is needed 
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across species and geographic regions to characterize multi-scale migratory responses of low-density 

spawning runs to adverse habitats encountered along their migration route. 

4.2.6 Attraction to Non-natal Sites 

The previous abiotic HS factors discussed include more intricate biological and ecological linkages between 

habitat features and homing/straying behavior. However, in some cases, salmon may simply find the 

physical characteristics of non-natal habitats more attractive relative to their reach of natal origin. This may 

occur as a product of natural phenomena or anthropogenic disturbance. The seasonal variation in likelihood 

of disturbance in salmon habitats means that run timing also may affect spawning site fidelity and rates of 

straying (Hendry and Day, 2005). As previously discussed regarding genetic effects, salmon exhibit 

exploratory behavior when homing and there is evidence that catchment size, tributary proximity, and 

distances between natal spawning habitat to the estuary may influence migratory routing and encourage 

exploration of non-natal tributaries over time (Olsen et al., 2010; Peterson et al., 2016). Total catchment 

area plays a role but so too does drainage pattern which is a function of topography driven by regional 

orogeny, epeirogeny, underlying lithology, climate and precipitation patterns, and vegetation cover 

(Dietrich et al., 2003; Howard et al., 1994; Istanbulluoglu and Bras, 2005; Massong and Montgomery, 2000; 

Sklar and Dietrich, 2001; Tomkin and Braun, 1999; Zernitz, 1932). The removal of total passage barriers 

typically opens access to more optimal spawning habitat (because this is often the goal of such projects), 

which may be more attractive than existing natal spawning grounds (Hogg et al., 2015; Lin and Robinson, 

2019; Pess et al., 2014). In cases where partial passage barriers exist, individuals with natal spawning 

grounds upstream of a barrier who do not pass successfully are forced to seek out non-natal habitat (Gowans 

et al., 2003). 

Stream discharge and temperature are critical environmental variables which mediate the quality and 

quantity of viable spawning habitat (Rand et al., 2006; Tetzlaff et al., 2005). In addition to the condition of 

surface flow entering upstream, hyporheic exchange at spawning sites provides inputs of cool water which 
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can be essential for successful egg incubation and post-hatch survival (Hanrahan, 2008; Tonina and 

Buffington, 2009). Warm temperatures can lead to a host of water quality issues including low dissolved 

oxygen in spawning gravels (Sear et al., 2014; Tonina and Buffington, 2009) and in the water column 

affecting spawning adults (Dahlberg et al., 1968; Priede et al., 1988; Sergeant et al., 2017), as well as 

increased parasite abundance (Benda et al., 2015; Bettge et al., 2009; Ewing et al., 1986). As such, migrating 

adult salmon have been shown to exhibit altered behavior in response to poor hydrologic and thermal 

conditions. Salinger and Anderson (2006) found adult Chinook to slow and delay upstream migration above 

an optimal temperature of 16.3°C in the Columbia River. Goniea et al. (2006) observed a similar delay in 

migration timing of adult Chinook salmon in the same system along with increased temporary use of cooler 

tributaries. Conversely, Keefer et al. (2008) found upstream migration rates for Snake River sockeye to 

increase in response to low flows and elevated temperatures, with only one individual permanently straying 

into a cooler tributary out of 31 radio-tagged fish. 

These contrasting behaviors likely point to different strategies for coping with low flows and elevated 

temperatures and strategies likely vary among species and systems. On one hand, it may be beneficial to 

delay migration and wait for cooler temperatures and higher flows to signify conditions that are adequate 

and stable for successful spawning. This same behavior would also allow more time for pioneering and 

possibly permanent straying. On the other hand, it may be beneficial to migrate rapidly in hopes of 

maximizing pre-spawn survival and minimizing exposure to elevated temperatures prior to reaching 

spawning grounds. Drought magnitude and frequency are expected to increase in the 21st century due to 

anthropogenic climate change which may permanently alter migratory dynamics for certain species 

(Prudhomme et al., 2014).  

The marine phase of the salmon lifecycle is notoriously difficult and expensive to study and as such, there 

are many information gaps as far as ocean habitats influencing homeward migration across species (Pearcy 

and McKinnell, 2007; Quinn, 2018). Temperature appears to influence ocean habitat use and has been 

studied in a variety of ecological contexts. Global-scale oceanographic phenomena such as the Pacific 
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Decadal Oscillation and North Atlantic Oscillation have been shown to affect population structuring in 

Atlantic salmon (Horreo et al., 2011) and dispersal patterns in Chinook salmon (Westley et al., 2015) 

stemming from migratory behavioral responses to thermal conditions in natal catchments. Behavioral 

thermoregulation during the marine phase has also been documented in Atlantic and chum salmon and 

appears to be an important facet of behavioral responses to sea surface temperatures with respect to somatic 

condition and foraging dynamics (Hanson et al., 2013; Kitagawa et al., 2016; Kitahashi et al., 2000; Lacroix, 

2013; Tanaka et al., 2000). 

In addition to thermal impacts to homing and migratory behavior, other physical habitat attributes may also 

play a role. Drenner et al. (2015) demonstrated that wind-driven currents can facilitate estuary entry in 

Fraser River sockeye salmon. This may be due to enhanced delivery of olfactory cues to coastal habitats, 

energy-saving movement in shoreward currents, or a combination of the two. In response to proposed 

marine renewable energy (MRE) infrastructure, Godfrey et al. (2015) investigated off-shore migratory 

behavior of Scottish Atlantic salmon and found that local MRE design alternatives would likely impact 

foraging and vertical migration. Copping et al. (2021) recently provided a comprehensive review of 

potential impacts of MRE infrastructure to fish including collision risk, underwater noise, electromagnetic 

fields (i.e. geomagnetic interference, see Lohmann et al., 2008 and Putman et al., 2013), aggregation 

behavior, and habitat displacement. It is unclear to what extent these may occur in the case of salmon and 

if existing MRE infrastructure is already having impacts to marine dispersal and migration. 

Avoidance of poor water quality may drive migratory behavior in coastal habitats, particularly with respect 

to hypoxic zones. Ocean hypoxia often results from a eutrophication event via nutrient enrichment 

combined with increased temperatures which can occur seasonally or episodically depending on the timing 

and frequency of oceanographic and terrestrial nutrient inputs (Breitburg, 2002; Levin and Breitburg, 2015). 

Avoidance of hypoxic zones in favor of oxygen refugia in coastal and estuarine habitats has been observed 

in several fish species (Craig, 2012; Ludsin et al., 2009), however little is known about salmonid-specific 

responses to low oxygen conditions. Nearshore coastal hypoxia is known to occur in important marine 
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salmon habitats such as the eastern Pacific coast, Gulf of Alaska, Gulf of Maine, northern European 

coastlines, and areas in northern Japan (Fennel and Testa, 2019; Grantham et al., 2004; Levin et al., 2009; 

Rabalais et al., 2010), and further research is necessary to characterize migratory behavioral responses of 

salmonid species to hypoxic conditions. 

An international collaborative effort is underway to survey multiple Pacific salmon species and their open 

ocean habitats to (1) characterize genetic population structure, (2) identify endocrine controls on growth 

and maturity during the ocean phase, (3) sample eDNA to identify other species utilizing pelagic habitats, 

(4) gauge the presence and risk of microplastic contaminants in ocean habitats (NMFS 2022). The results 

of this effort will aid in understanding biological and ecological aspects of the marine phase (especially 

pertaining to population structure and dispersal) and how habitat may drive patterns of homing and straying.
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Table 3.1a. Abiotic homing and straying (HS) factors are listed with their corresponding biological HS mechanisms identified by Keefer and Caudill 
(“K&C”, 2014), as well as the mechanistic links between abiotic HS factors and biological HS mechanisms. Biological HS mechanisms from K&C 
that were not habitat-related were omitted. This table includes those that occur at large spatial scales. Separate abiotic HS factors are listed that 
correspond to either juvenile or adult lifecycle phases. Abiotic HS factors are indicated by a number and a letter, the number indicates the biological 
HS mechanism that each is associated with.    

Biological HS 

Mechanisms 

(from Keefer 

and Caudill 

2014) 

Large-scale (single catchment, partial catchment, multi-catchment) 

Juveniles Adults 

Abiotic HS Factor (cause) Link to K&C’s Biological HS 

Mechanism (effect) 

Abiotic HS Factor (cause) Link to K&C’s 

Biological HS 

Mechanism (effect) 

1,2) 

Incomplete 

and 

Interrupted 

Juvenile 

Imprinting 

a Hydrologic regime during 

juvenile outmigration 

Flood flow pulses may reduce 

juvenile residence time by passive 

transport 

  

b Flood frequency Flashy floods may interrupt 

floodplain access, limiting 

residence time 

c Landscape scale geomorphic 

setting (constrained, incised 

channels), artificially simplified 

channels lacking complexity, 

rearing saturation effects 

Modified channels throughout 

migratory corridor may reduce 

rearing habitat and increase 

vulnerability to predation 

d Landscape with high levels of 

toxic runoff (ag valley) 

Impairment of olfactory imprinting 

  
 

 

 

  



   

 

 

1
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3) Genetic 

and life-

history 

effects 

a Interannual variation in flood 

flow magnitude (floods that may 

reduce juvenile residence time by 

passive downstream transport) 

Straying as a genetic adaptation 

(portfolio effect) 

e Hydrologic regime during adult 

escapement (Inconsistent or 

inadequate flow pulses (for 

delivery of olfactory cues to 

coastal habitat) among adjacent 

watersheds may inhibit migratory 
cues) 

Straying as a 

genetic adaptation 

(portfolio effect) 

b Flood duration and frequency 

(flashy floods may interrupt 

floodplain access, reducing 

residence time) 

f Within-species life history 

variations based on habitat use 

(i.e. "river-type" vs. "lake-type" in 

sockeye) 

c Landscape scale geomorphic 

setting: underlying lithology 

prone to erosion that may result 

in sedimentation that degrades 

rearing habitat. 

g Landscape scale geomorphic 

setting: underlying lithology 

prone to erosion that may result in 

sedimentation that degrades 

spawning habitat, also drainage 

pattern and elevation gradient 

affect population structure. 

d Water temperature fluctuations 

due to climatic influence like 

interannual variability in rain or 

snowpack/melt 

h Water temperature fluctuations 

due to climatic influence like 

interannual variability in rain or 

snowpack/melt 

4) Adult 

sensory 

failure 

  
a Landscape with high levels of 

toxic runoff (ag valley) 

Impairment of odor 

detection or other 

sensory 
mechanisms for 

navigation 
b Presence of pathogens that may 

affect homing ability (epizootic or 



   

 

 

1
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conditions promoting proliferation 

of marine-borne 

pathogens/parasites) 

6) Density-

dependent 

reproductive 

behaviors 

  
a Landscape scale geomorphic 

setting: limited spawning grounds, 

limited by suitable substrate or 

thermal barriers 

Watershed scale 

straying occurs due 

to spawner 

saturation 

b Flood duration and frequency Limited flood 

flows may attract 

the majority of a 

spawning cohort 

during a single 
event, resulting in 

spawner saturation 

c Adverse hydrologic conditions 

(low flows, high temps), or poor 

sedimentary conditions for 

spawning may deter small 

populations 

Adverse conditions 

across a watershed 

may cause small 

populations to 

stray (seeking 

secondary habitat 

criteria without 

density dependent 

behavioral cues) 

7) Attraction 

to non-natal 

sites 

  
a Watershed size High rates of 

straying may occur 

in shorter, more 
dynamic coastal 

watersheds as 

opposed to larger 

inland systems 
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(more efficient to 

explore), 

anthropomorphic 

disturbance may 

deter them 

b Adverse hydrologic conditions 

(low flows, high temps) 

Adverse conditions 

across a watershed 

may cause small 

populations to 

stray, seeking 

secondary habitat 

criteria. 

c Poor water quality (high temp, 

low DO) 

May lead to 

straying if initial 

freshwater 

conditions are not 

indicative of viable 

spawning habitat 
upstream. 

d Adverse oceanographic conditions Ocean conditions 

may alter 

migratory 

dynamics when 

homing as ocean 

adults (or returning 

to sea for 

iteroparous 

species) 
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Table 3.1b. Abiotic homing and straying (HS) factors are listed with their corresponding biological HS mechanisms identified by Keefer and Caudill 
(“K&C”, 2014), as well as the mechanistic links between abiotic HS factors and biological HS mechanisms. Biological HS mechanisms from K&C 
that were not habitat-related were omitted. This table includes those that occur at small spatial scales. Separate abiotic HS factors are listed that 
correspond to either juvenile or adult lifecycle phases. Abiotic HS factors are indicated by a number and a letter, the number indicates the biological 
HS mechanism that each is associated with. Lettering in this table is continuous from Table 1a for each biological HS mechanism.     

Biological 

HS 

Mechanisms 

(from Keefer 

and Caudill 

2014) 

Local scale (reach scale or finer) 

Juveniles Adults 

Abiotic HS Factor (cause) Link to K&C’s Biological HS 

Mechanism (effect) 

Abiotic HS Factor (cause) Link to K&C’s 

Biological HS 

Mechanism 

(effect) 

1,2) 

Incomplete 

and 

Interrupted 

Juvenile 

Imprinting 

e Habitat complexity in natal 
rearing areas 

The availability of predator refugia 
can impact both residence time and 

stress, affecting imprinting 

  

f Point source pollution in natal 

rearing habitats OR 

introduction of non-natal water 

via mechanical release 

Inhibits olfactory imprinting 

g Rearing habitat quality and 

quantity in natal reach (food 

availability, density-dependent 

competition, adverse 

incubation and rearing 

temperatures, and floodplain 

inundation time/frequency) 

The quality of available rearing 

habitat may influence juvenile 

residence time and imprinting 

physiology 
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3) Genetic 

and life-

history 

effects 

i Interannual variability in the 

quality and quantity of natal 

rearing habitat 

Straying as a genetic adaptation 

(portfolio effect) 

l Localized disturbances result in 

interannual variability in the viability 

of natal spawning reaches (prone to 

fires, landslides, etc.) 

Straying as a 

genetic 

adaptation 

(portfolio effect) 

j Local scale geomorphic 

setting: local area of interest 

prone to sedimentation which 
may degrade rearing habitat 

m Local scale geomorphic setting: 

geomorphic habitat unit types and 

resultant features 

k Interannual variability in 

localized controls to water 
temperature in natal rearing 

habitat (i.e., hyporheic flow or 

riparian shading) 

n Interannual variability in localized 

controls to water temperature in natal 

rearing habitat (i.e., hyporheic flow, 

tributary inflow, or riparian shading) 

4) Adult 

sensory 

failure 

  
c Point source contamination of 

compounds toxic to olfactory 

processes OR introduction of non-

natal water via mechanical release 

Impairment of 

odor detection, 

vision, lateral 

line function, or 

acute injury to 

swim bladder - 
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d Noise generating activity or light 

pollution that may affect migratory 

behavior (pile driving, construction, 

industrial processes) 

all used for 

navigation 

6) Density-

dependent 

reproductive 

behaviors 

  
d Local  scale geomorphic setting: 

confined spawning grounds, limited 

by suitable substrate due to channel 

simplification and/or lack of natural 

"channel evolution" processes. 

Local scale 

straying occurs 

due to spawner 

saturation 

e Localized disturbances result in 

interannual variability in the viability 

of natal spawning reaches (prone to 

fires, landslides, etc.) 

f Localized degradation to spawning 

habitat (high temps, low flows, 

sedimentation, low DO, etc.) may 

deter small populations 

Localized 

adverse 

conditions may 

cause small 

populations to 

alter migratory 

timing/movement 
or even stray 

(seeking 

secondary habitat 

criteria without 

density-

dependent 

behavioral cues) 

7) 

Attraction 

to non-natal 

sites 

  
e Drainage pattern and spatial 

arrangement of adjacent spawning 

tributaries, or passage issues (partial 

barriers) 

Spatial proximity 

to adjacent 

spawning 

tributaries is 
thought to be a 

factor in straying 



   

 

 

1
1
9

 

f Large discrepancies in flow and 

temperature at river confluences 

during the migration of small 

populations 

Physical 

migratory cues 

may dominate in 

low-density 

spawning cohorts 

Spawners that are 

olfactorily 

impaired may 

rely on secondary 

cues like flow 

and temperature 
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4.3 Meta-analysis 

The goal of the literature metastudy was to evaluate the extent to which abiotic variables are included in 

study designs of homing and straying and whether abiotic HS factors that drive homing and straying 

patterns are actually being tested. After a systematic literature search, each of 169 final publications in the 

dataset was examined for study type, region where the study occurred, spatial extent (scale) at which the 

study occurred, species investigated, and all variables measured and analyzed. Abiotic variables and 

corresponding studies were identified as well as the abiotic HS factors that were directly tested. 

4.3.1 Systematic Literature Search 

The five causes of straying identified by K&C that have links to abiotic HS factors were used to generate 

Boolean search criteria to sample existing literature. The Web of Science™ (“WoS”, Clarivate) database 

was queried using targeted Boolean search criteria specific to each of the biological HS mechanisms 

identified by K&C but containing search terms specific to the potential abiotic HS factors that we identified. 

These search strings, including terms and Boolean operators, are listed in Table 3.2Table 3.3. Five searches 

were conducted according to the five biological HS mechanisms investigated. 

The five WoS searches yielded 332 articles, but that included 75 duplicate items that were eliminated. 55 

of the remaining articles pertained to species other than anadromous salmonids and were also eliminated 

(including freshwater resident salmonids and other diadromous species). Of the 202 remaining, 33 articles 

focused on anadromous salmonids but were found to not be relevant to the topic of homing and straying 

and were eliminated. Existing reviews, syntheses, and guidance documents were also excluded from the 

metastudy. A final set of 169 articles was investigated in the metastudy, the full list as well as their attributes 

is included in Table A.C.1 in Appendix C. 
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Table 3.2. Biological homing and straying mechanisms identified by Keefer and Caudill (2014) and 
corresponding Boolean search criteria used in Web of Science search. 

Straying Mechanism 

from K&C 

Boolean Search String 

Incomplete/Interrupted 
Juvenile Imprinting 

TS = (Salmon AND imprinting AND (juvenile OR smolt OR smoltification 
OR parr OR fry) AND (natal OR rearing OR hatchery OR stress OR 

hormones OR "residence time" OR "water quality" OR odor)) 

 

Adult Sensory Failure TS = (Salmon AND adult AND (homing OR straying) AND (olfaction OR 
toxicity OR pesticide  OR runoff OR "sensory impairment" OR 

sedimentation OR "gill fouling" OR hydroacoustic OR noise OR pile 

driving OR turbidity OR geomagnetic OR rheotaxis OR pathogens)) 

Density Dependent 

Reproductive Behaviors 

TS = (Salmon AND adult AND (homing OR straying) AND (abundance 

OR saturation OR competition OR density OR "spawning habitat" OR 

"carcass survey" OR counts OR telemetry OR discharge OR "flow pulse" 
OR hydrograph)) 

Genetic and Life History 

Effects 

TS = (Salmon AND (homing OR straying) AND (portfolio effect OR 

landscape OR stochasticity OR stability OR phenology OR "migration 

timing" OR microsatellites OR "single nucleotide polymorphism" OR 

"genetic marker"))    

Attraction to Non-Natal 

Sites 

TS = (Salmon AND adult AND (homing OR straying) AND (proximity OR 

watershed OR basin OR  temperature OR "dissolved oxygen" OR 

"water quality" OR discharge OR hydraulics OR turbidity OR 
sedimentation OR "spawning gravel" OR substrate OR "hyporheic flow")) 

  

4.3.2 Analytical Methods 

An augmented Dickey-Fuller (ADF) test in the R package tseries was used to test whether instances of 

inclusion of abiotic variables in study designs and tests of abiotic HS factors per year have increased over 

time (Dickey and Fuller, 1979; Said and Dickey, 1984; Trapletti, 2022). The ADF test uses an 

autoregressive model and is designed to test for the presence of a “unit root” in a time series (null 

hypothesis), or whether the time series exhibits “stationarity”. The presence of a unit root in the model 

would result in either a positive or negative directional trend through time. A stationary process is stochastic 

and may oscillate, but its unit root is equal to zero. It does not trend in any direction and its unconditional 

probability distribution does not change in time. In an ADF test, the autoregressive model takes the 

following form:  
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 ∆𝑦𝑡 = 𝛼 +  𝛽𝑡 + 𝛾𝑦𝑡−1 + 𝛿1∆𝑦𝑡−1 + ⋯ + 𝛿𝑝−1∆𝑦𝑡−𝑝+1 + 휀𝑡  (1) 

where y is a variable at time t, α and β are regression constants, γ is the coefficient representing the unit 

root, δ is a unit root coefficient given the change operator Δ, and p is the lag order used in the autoregression 

model. The R package tseries defaults to a lag order integer value p based on the following:  

 𝑝 = (𝑁𝑡 − 1)
1

3⁄   (2) 

where Nt is the number of time steps analyzed in the time series. 

The ADF test produces a t statistic “DFτ” based on the following ratio of the γ coefficient to its standard 

error: 

 𝐷𝐹𝜏 =
�̂�

𝑆𝐸(�̂�)
  (3) 

A 95% confidence level was used to test for statistical significance (ADF test is statistically significant if 

DFτ < DFτ crit). 

A one-way ANOVA test (see Ross and Willson, 2017) at a 95% confidence level was used to test for 

differences among mean values of (i) number of abiotic variables included per study, and again among 

mean values of (ii) number of abiotic HS factors tested per study among categories of the following: study 

method type, study location, and study design (see stated hypotheses 2a-c and 3a-c in Table 3.3). These 

hypotheses were tested using the whole set of papers as well as the subset that contained at least one abiotic 

variable. 
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Table 3.3. Hypotheses tested in this review. 

 Hypothesis 

 
H1 

a The number of abiotic variables included in the literature have increased consistently 
over time 

b The number of abiotic HS factors tested in the literature have increased consistently 

over time 

 

H2 

a Abiotic variables are included disproportionately among study types. 

b Abiotic variables are included disproportionately among study regions. 

c Abiotic variables are included disproportionately among study species. 

 

H3 

a Abiotic HS factors are tested disproportionately among study types 

b Abiotic HS factors are tested disproportionately among study regions 

c Abiotic HS factors are tested disproportionately among study species 

 

4.4 Results 

Of the 169 papers analyzed, only 70 (41%) included at least one abiotic variable in their study design; 42 

included two or more abiotic variables (25%) and 21 included three or more (12%, see Figure 3.3). The 

most common study method type (Table 3.4) was population genetics/dynamics (42 papers) and 12 of those 

included at least one abiotic variable (28.6%). Biotelemetry studies had the greatest percentage of ≥1 abiotic 

variable included with 21 out of 32 papers (65.6%). The U.S. West Coast and British Columbia dominated 

study locations (Table 3.5) with 62 papers, 21 of which included ≥1 abiotic variable (33.9%). Atlantic 

salmon were used in the greatest number of papers at 38 (Table 3.6), followed closely by Chinook salmon 

at 34. Of the papers using these species, 19 (50.0%) and 13 (38.2%) included ≥1 abiotic variable, 

respectively. Table 3.7 includes a list of all species included in our sample of the literature as well as their 

taxonomic classification. Table A.C.2 in Appendix C includes a summary of frequencies of abiotic variable 

type among classes of study method type, study location, and study species. 
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Figure 3.3. Number of abiotic variables included in each source vs. how many abiotic homing/straying (HS) 
factors were tested in each of those sources. Point sizes and adjacent number indicate how many sources 
correspond to each combination of abiotic variables and abiotic homing and straying factors. The point at 
(0,0) indicates that 99 sources contained zero abiotic variables and tested zero abiotic homing and straying 
factors. 
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Table 3.4. Summary of abiotic variables included, and abiotic homing and straying factors tested among 
study method types. 

Study Type 

Total number 
and percentage 

of studies 

included in 
review 

Number and 
percentage of 

studies measuring ≥ 

1 environmental 
habitat variable 

Mean number of 

abiotic variables 

included 

Mean 

number of 

abiotic HS 
factors 

directly 

tested 

Population 
Genetics/Dynamics 

42 (24.9%) 12 (28.6%) 2.7 1.8 

Mark-recapture 36 (21.3%) 14 (38.9%) 2.1 1.7 

Biotelemetry 32 (18.9%) 21 (65.6%) 2.8 1.4 

Lab-based/Closed 

system 
27 (16.0%) 12 (44.4%) 1.9 1.2 

Phenotype, Gene 

Expression, 

Morphometrics, 
Endocrine Response 

12 (7.1%) 5 (41.7%) 1.0 1.0 

Modeling (population, 

lifecycle, habitat) 
11 (6.5%) 4 (36.4%) 3.5 1.3 

Microchemistry to 
track movement 

6 (3.6%) 1 (16.7%) 2.0 1.0 

Stationary counts 

(weir, redd, etc.) or 
catch data 

3 (1.8%) 1 (33.3%) 4.0 2.0 

All Studies 169 70 (41.4 %) 2.4 1.5 
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Table 3.5. Summary of abiotic variables included, and abiotic homing and straying factors tested among 
study locations. 

Study Location 

Total number 

of studies 

included in 
location 

Number of studies 

measuring ≥ 1 

environmental habitat 
variable 

Mean number of 
abiotic variables 

included 

Mean number 

of abiotic HS 

factors 
directly tested 

U.S. West Coast 

and B.C. 
62 21 (33.9%) 3.0 1.7 

Europe 36 18 (50.0%) 2.8 1.6 

Lab or Model 31 12 (38.7%) 2.0 1.2 

AK and Yukon 22 9 (40.9%) 1.8 1.3 

Japan 8 4 (50.0%) 2.5 1.0 

North American 

Atlantic Coast 
7 4 (57.1%) 3.0 1.8 

South America 2 1 (50.0%) 1.0 1.0 

New Zealand 1 1 (100.0%) 1.0 1.0 

All Studies 169 70 (41.4%) 2.4 1.5 
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Table 3.6. Summary of abiotic variables included, and abiotic homing and straying factors tested among 
study species. 

Study Species 

Total number of 

studies including 

species 

Number of studies 

measuring ≥ 1 
environmental 

habitat variable 

Mean number of 

abiotic variables 

included 

Mean 

number of 

abiotic HS 
factors 

directly 

tested 

Atlantic 38 19 (50.0%) 2.5 1.7 

Chinook 34 13 (38.2%) 2.5 1.8 

Sockeye 22 11 (50.0%) 2.4 1.2 

Coho 15 4 (26.7%) 3.0 1.0 

Chum 14 8 (57.1%) 3.0 1.3 

Steelhead 12 4 (33.3%) 1.8 1.8 

Multiple 

Oncorhynchus 

spp. 

10 2 (20.0%) 1.5 1.5 

Pink 7 2 (28.6%) 1.5 1.5 

Brown Trout 5 3 (60.0%) 1.7 1.3 

N/A, theoretical 

model 
5 1 (20.0%) 2.0 1.0 

Charr (Salvelinus 

spp.) 
4 0 (0.0%) 0.0 0.0 

Brook Trout 1 1 (100.0%) 2.0 1.0 

Grayling 1 1 (100.0%) 3.0 1.0 

Masu 1 1 (100.0%) 1.0 1.0 

All Studies 169 70 (41.4%) 2.4 1.5 
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Table 3.7. Species included in the literature sample used in the metanalysis component of this study and 
their taxonomic classification. 

Family Subfamily Tribe Genus Species 

Common 

Name 

Salmonidae 

Salmoninae 

Oncorhynchini Oncorhynchus 

O. tshawytscha 
(Walbaum, 1792) 

Chinook 
salmon 

O. nerka (Walbaum, 

1792) 

sockeye 

salmon 

O. kisutch 
(Walbaum, 1792) coho salmon 

O. keta (Walbaum, 

1792) chum salmon 

O. gorbuscha 
(Walbaum, 1792) pink salmon 

O. masou (Brevoort, 

1856) masu salmon 

O. mykiss 
(Walbaum, 1792) 

steelhead 
trout 

Salmonini 

Salmo 

S. salar (Linnaeus, 

1758) 

Atlantic 

salmon 

S. trutta (Linnaeus, 
1758) brown trout 

Salvelinus 

S. leucomaenis 

(Pallas, 1814) 

whitespotted 

char 

S. alpinus 
(Linnaeus, 1758) arctic char 

S. fontinalis 

(Mitchill, 1814) brook trout 

Thymallinae 
N/A Thymalus 

T. thymallus 
(Linnaeus, 1758) 

European 
grayling 

 

Among the 169 papers analyzed, one was dated in 1968 and did not include any abiotic variables. The 

remainder of sample continues onward from 1990, so we began our time series analysis there (Figure 3.4). 

The ADF test for stationarity in the number of abiotic variables included in study designs through time and 

the number of abiotic HS factors tested through time resulted in non-significant p values of 0.42 and 0.38, 

respectively (Table 3.8). This indicates the presence of a unit root in each time series, resulting in positive 

directional (non-stationary) trends through time. At 95% confidence, the literature sample shows a positive 

directional increase through time for both, though the rates of increase are still low (increases of 0.37 abiotic 

variables included per year and 0.22 abiotic HS factors tested per year). The time series exhibits peaks and 

valleys, with the magnitude of the peaks increasing through time. 
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Figure 3.4. Time series plot of both the number of abiotic variables included in study designs, and the 
number of abiotic homing/straying factors tested in published papers per year. Trendlines for both show a 
linear increase through time since 1990.    

 

 
Table 3.8. Results of the augmented Dickey-Fuller test for timeseries stationarity. Hypotheses test whether 
there is a “unit root” present (i.e. non-stationarity) at 95% confidence in (a) the number of variables included, 
or (b) the number of abiotic homing and straying factors tested per year through time among the studies in 
our literature sample. Non-significant results indicate that there is a unit root present which results in a 
positive linear trend in the time series. 

 

 

  DFτ DFτ crit. Lag Order P-value 

H1 a -2.40 -3.45 3 0.42 

b -2.49 -3.45 3 0.38 
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ANOVA tests for differences in mean abiotic variables included and abiotic HS factors tested among study 

method types, locations, and species did not yield any statistically significant differences at 95% confidence 

(p > 0.05 for both hypotheses, see Table 3.9 and Table 3.10). We failed to reject our null hypotheses. These 

results suggest that both abiotic variables and abiotic HS factors are excluded uniformly in study designs 

across the literature on homing and straying in anadromous salmonids. 

Table 3.9. Results from the one-way ANOVA tests for differences in mean values of abiotic variables 
included (H2) and abiotic homing and straying factors tested (H3) among all papers analyzed. a, b, and c 
are study method type, study location, and study species, respectively. 

  SS df MS F P-value F crit 

H2 a 32.99 7 4.71 1.75 0.10 2.07 

b 8.49 7 1.21 0.43 0.88 2.07 

c 31.28 13 2.41 0.86 0.60 1.78 

H3 a 5.36 7 0.77 0.84 0.56 2.07 

b 3.34 7 0.48 0.52 0.82 2.07 

c 8.42 13 0.65 0.70 0.76 1.78 

 

Table 3.10. Results from the one-way ANOVA tests for differences in mean values of abiotic variables 
included (H2) and abiotic homing and straying factors tested (H3) among only the papers that included at 
least one abiotic variable in their study design. a, b, and c are study method type, study location, and study 
species, respectively. 

  SS df MS F P-value F crit 

H2 a 24.69 7 3.53 1.06 0.40 2.16 

b 13.43 7 1.92 0.96 0.47 2.18 

c 13.87 13 1.07 0.28 0.99 1.90 

H3 a 5.48 7 0.78 0.81 0.58 2.16 

b 1.64 7 0.23 0.84 0.56 2.18 

c 3.56 13 0.27 0.27 0.99 1.96 

 

4.5 Discussion 

Our results illustrate a systemic bias of excluding abiotic variables in the literature on salmon homing and 

straying. Only 41.4% of studies including at least one in their study design (25% with two or more and 12% 

with three or more), largely independent of study method type, location, or species. The Boolean search 

criteria that we generated were based on a thorough review of potential abiotic HS factors that coincide 
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with K&C’s biological HS mechanisms of straying behavior. Admittedly, we did not conduct an exhaustive 

literature review including white and gray literature, government reports, fish monitoring databases, etc., 

but we designed the metastudy to sample existing peer-reviewed literature in a way that would represent 

all facets of research on homing and straying in anadromous salmonids. Furthermore, our impression is that 

inclusion of this additional non-peer-reviewed literature would not appreciably change the results of our 

analysis of peer-reviewed papers. Our findings point to a significant lack of focus in the peer-reviewed 

literature on biotic-abiotic interactions that play important roles in driving patterns of homing and straying. 

In many cases, published analyses and results could be better contextualized and synthesized with the 

addition of an abiotic component that characterizes migratory responses to habitat conditions. Our time 

series analysis shows a trend of improvement of this issue, though it still appears to be pervasive. 

4.5.1 Study Method Types 

4.5.1.1 Population genetics 

Whether an individual adult salmon successfully homes to its natal stream or strays to a non-natal site has 

obvious implications from the perspective of that individual’s reproductive success. However, patterns of 

homing and straying among many individuals may have profound population-level effects. It is this aspect 

of their life history that has allowed salmonids to persist over multiple landscape scale disturbance events 

throughout the last 24 million years (Waples et al., 2008, 2009; Waples and Hendry, 2008). From a 

management and conservation genetics standpoint, maintaining genetic population structure within a 

population or among subpopulations is often a high priority for the sake of resilience in the face of future 

disturbances (Folke et al., 2004; Schindler et al., 2010). Therefore, using genetic markers to characterize 

population structure is a common research approach to inform conservation programs and prioritize species 

recovery actions. However, it has been our experience that published research in this area tends to ignore 

many of the potential abiotic HS factors that may have led to present-day population structures. The results 

of our metastudy support this hypothesis, with only 28.6% of population genetics studies including one or 

more abiotic variables despite being the most frequent study method type among the papers that we 
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analyzed (42 out of 169). Conservation programs could be aided by addition of abiotic variables in study 

designs to help identify management actions that facilitate desired migratory routing and the conservation 

or improvement of future genetic structure and diversity. 

4.5.1.2 Tracking migratory movement 

Mark-recapture, biotelemetry, microchemistry, and stationary count methods accounted for a combined 

46% of papers analyzed. Each of these methods are used to track or account for movement of individuals 

in order to understand the consequences of precise movements in various ecological contexts. As noted in 

our abiotic framework, drivers of straying may occur in early or late lifecycle stages, and therefore 

characterizing migratory movement in the context of homing and straying may require different 

methodological approaches depending on the life stage being analyzed. Mark-recapture studies, accounting 

for 21.3% of papers analyzed had 38.9% include one or more abiotic variable. Some key metrics that can 

be generated from this method are abundance, survival, migration and passage rates, and habitat utilization 

(Bottom et al., 2005; Letcher and Horton, 2008; Levy and Northcote, 1982; Schwarz and Dempson, 1994). 

Mark-recapture methods are well-suited for investigating the effects of abiotic HS factors on migratory 

routing and habitat selection, and responses to abiotic stressors that may influence rates of straying in 

accordance with our abiotic framework. We found that many mark-recapture studies that did not include 

an abiotic component, often included location information (i.e. tagging and recovery sites) without any 

accompanying abiotic data attributes. This can be useful for continuing specific projects in a given location 

by researchers with local and institutional knowledge of the project, but ultimately this hinders the 

advancement of the basic understanding of salmonid life history as well as applied research elsewhere. 

Biotelemetry studies accounted for 18.9% of all papers analyzed but had the highest instance of one or more 

abiotic variables included in study designs at 65.6%. Biotelemetry research applications are similar to mark-

recapture in that they track movement, but they differ in that they are designed to directly measure 

continuous movement rather than infer movement indirectly based on two observed locations. Perhaps 

biotelemetry studies had a higher instance of abiotic study components because there is a natural inclination 
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to characterize potential abiotic drivers of real-time movements because they can be measured concurrently 

and compared directly. Microchemical analysis is often used to track movements by comparing stable 

isotope ratios in various tissues with georeferenced isotopic signatures of habitats that have been occupied 

by an individual. 3.5% of papers analyzed used this method and only 16.7% (one paper) included an abiotic 

variable. Similar to the other studies tracking migratory movement, the microchemistry studies that did not 

measure any abiotic variables only included location information via habitat occupancy at various life 

stages without any abiotic data attributes to help explain patterns of movement among those locations. 

Finally, stationary counts made up 1.7% (3 papers), one of which measured an abiotic variable. Methods 

of this kind, such as redd surveys, can generate metrics similar to mark-recapture studies where movement 

between detections must be inferred.  

4.5.1.3 Other methods 

In addition to tracking fish movement and characterizing population-level consequences of movement, 

there are also complex physiological processes within individuals that influence patterns of migratory 

movements throughout the lifecycle, and ultimately drive patterns of homing and straying in adults. These 

processes can often be measured both in controlled lab conditions and in field samples. Lab-based studies 

accounted for 16.0%, of which 44.4% included abiotic variables. By isolating effects and controlling for 

confounding variables, laboratory-based methods can be extremely useful for quantifying effects of abiotic 

variables on behavioral and physiological responses. We found that many of the studies without abiotic 

analyses focused on characterizing olfactory physiology, isolating endocrine responses to odor cues and 

mapping sequences of neurological activity in the organs involved in olfaction. Lab-based studies will 

remain important in the future, as many conservation research programs continue to pivot their focus to 

climate change effects and models of physiological tolerances in salmonid species (Debes et al., 2021; 

Elliott and Elliott, 2010; Zhang et al., 2019). For this reason, we expect to see increased focus on biotic-

abiotic linkages in this category. The broad category of phenotype expression, gene expression, 

morphometrics, and endocrine response accounted for 7.1% of papers analyzed with 41.7% including an 
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abiotic variable. Methods in this category are also well suited for investigating biotic-abiotic linkages as 

they can resolve mechanistic gaps between abiotic drivers and observed physiological processes that have 

direct or indirect consequences for homing and straying dynamics. One example is sampling levels of 

cortisol in juveniles which is an indicator of stress, and which has also been shown to affect olfactory 

imprinting at critical life stages (Carruth, 2002). Continued investigations into physiological responses to 

habitat conditions will benefit future research on homing and straying in salmonids as more biotic-abiotic 

linkages are disentangled and characterized. The final methodological category was modeling studies, 

accounting for 6.5%, with 36.4% including one or more abiotic variables. Publishing conceptual models of 

population dynamics, lifecycle processes, and habitat interactions in the context of homing and straying can 

be beneficial for establishing a quantitative framework for future empirical investigations.     

4.5.2 Study Locations 

4.5.2.1 The U.S. Pacific Coast and British Columbia 

The US Pacific Coast and British Columbia was the dominant study region among our sampled literature, 

having both a wide variety of ecosystems and many of the anadromous salmonid species ranges represented 

within it. Rather than discuss every major watershed in this region, we compare and contrast British 

Columbia with California. The southernmost extent of the US Pacific coast includes the California Central 

Valley and coastal California watersheds, which have been highly degraded since the mid-19th century due 

to natural resource exploitation, construction of water management infrastructure, alteration of natural 

hydrologic regimes, and intensive agricultural and industrial land use (Mount, 1995; Yoshiyama et al., 

2001, 1998). Being southernmost in latitude and having a relatively arid climate, California salmon-bearing 

streams will also be put under immense pressure as mean annual temperatures increase and precipitation 

decreases with anthropogenic climate change (Matella and Merenlender, 2015; Moyle et al., 2017; 

Trenberth, 2011). Elevated levels of straying in California Chinook salmon populations as a result of 

hatchery production practices has already been documented and continues to be an issue of concern (Huber 

et al., 2015; Sturrock et al., 2019). 
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The northernmost extent of the Pacific North American range includes the Fraser River catchment as well 

as other coastal catchments including the Skeena, Stikine, Nass, and Taku drainages. A status review of 

Oncorhynchus spp. in British Columbia by Slaney et al. (1996) found that out of 5487 stocks analyzed, 624 

stocks were at high risk, 78 were at moderate risk, 230 were of special concern, and 142 had been extirpated 

in the 20th century. Since then, additional risk analyses have identified imperiled populations in the face of 

climate change, land use, passage barriers, and fishing pressure (Finn et al., 2021; Healey, 2011; Hinch et 

al., 2012). Although loss and degradation of existing habitat has not been as dire as in California, relatively 

high rates of straying have been found to occur such as 42.9% of coho in the Coldwater River catchment in 

the interior Fraser basin (Turcotte and Shrimpton, 2020). In a setting like British Columbia where straying 

may not have such severe consequences for conserving specific evolutionarily significant units via 

migratory phenotypes (i.e. winter-run Chinook in the California Central Valley, see Thompson et al., 2020), 

straying may be perceived by researchers and managers in a different light. For Chinook salmon in the 

upper Fraser River, Walter et al. (2009) demonstrated that gene flow via straying resulted in increased 

effective populations sizes among subpopulations and enhanced a diverse genetic structure, though they 

only alluded to potential abiotic drivers of straying patterns. Our analysis found that 33.9% of papers from 

the U.S. West Coast and British Columbia included one or more abiotic variables in their study designs. 

Given the diversity of species, habitats, and management goals in this region, future studies conducted in 

the context of homing and straying would have more utility with the inclusion of biotic-abiotic linkages to 

identify drivers of homing and straying patterns that may have important management implications. 

4.5.2.2 Alaska and Yukon 

Continuing north, Alaska and the Yukon Territory are home to a wide range of salmonid species as well, 

including the northernmost extent of the range of Oncorhynchus spp. and representing 13% of papers in 

our analysis. With less human development than areas to the south, Alaska and Yukon contain some of the 

most pristine salmon habitat in the world. Nevertheless, many of these populations have felt the effects of 

fishing pressure, mining, extraction of petroleum products, and urbanization in some areas (Alessa et al., 
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2011; Mauger et al., 2017; Trammell et al., 2021). Similar to fishery management considerations in British 

Columbia, understanding patterns of gene flow via straying and genetic drift in small, isolated populations 

lacking interaction with strays can be useful in understanding contemporary genetic stock structure in wild 

populations (Garvin et al., 2013; Olsen et al., 2003). Unlike areas to the south, little is known about the 

consequences of hatchery strays in Alaska and the Yukon Territory. Grant (2012) noted that approximately 

31% of Alaska’s salmon are hatchery-produced and that over time, managers may expect to see some of 

the consequences of reproductive interaction between wild- and hatchery-origin populations that have been 

documented elsewhere. With a large proportion of wild salmon production and economically important 

ocean salmon fisheries that depend on wild production, future research on homing and straying in this area 

must investigate abiotic drivers of dispersal. Significant climate change impacts are predicted in far northern 

latitudes as well as continued mining and natural resource extraction in the 21st century (Cheung and 

Frölicher, 2020; Conley et al., 2013; Hinzman et al., 2005). 

4.5.2.3 Europe 

Europe was the second most represented region in our analysis at 21% of papers analyzed. Atlantic salmon 

is the dominant species in this region and dispersal among European nations in the North Atlantic is 

complex. With centuries of human land use in this region, habitat fragmentation has often limited dispersal 

and driven contemporary genetic stock structure (Nielsen et al., 1999; Seliger and Zeiringer, 2018). 

Northern Europe also leads the world in Atlantic salmon farming with Norway being the number one 

producer (Iversen et al., 2020). Approximately half of Norway’s wild stocks have experienced genetic 

introgression with farmed escapees and the extent of genetic interactions with other populations in the North 

Atlantic remains unknown (Glover et al., 2017, 2012). Bolstad et al. (2017) documented significant 

alterations in life history traits of previously wild stocks that had experienced multiple generations of 

hybridization with farmed escapees, suggesting that wild Atlantic salmon populations in the North Atlantic 

are at risk of degraded genetic structure if current farming practices continue. Another challenge to these 

populations is susceptibility of recruitment and post-smolt survival to climate forcing indices such as the 
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Atlantic Multidecadal Oscillation and the North Atlantic Oscillation (Friedland et al., 2009; Horreo et al., 

2019; Todd et al., 2008). Homing and straying dynamics among Atlantic salmon in Europe are complicated 

by the widespread exposure to artificially reared individuals and sea surface temperature anomalies that 

result in poor ocean rearing conditions that affect migration. Future studies of abiotic drivers affecting 

dispersal of both wild and farmed individuals will be critical in developing management plans that can 

mitigate the genetic homogenization that is taking place in this region and restore population resilience. 

4.5.2.4 Other regions 

Japan, the North American Atlantic Coast, South America, and New Zealand were represented in the fewest 

papers in our analysis at a combined 10.7%. Hokkaido Island in Japan produces a large number of hatchery-

origin fish and ocean harvest rates have steadily increased for pink and chum salmon as a result (rates of 

masu salmon harvest are still in decline, see Morita et al., 2006). Efforts are underway in Japan to refine 

management strategies to mitigate straying of hatchery-origin salmon and maintain genetic integrity of wild 

populations, however knowledge of abiotic drivers of straying in Japanese populations is limited at this 

point (Kitada, 2020; Nagata et al., 2012). Atlantic salmon occur along the North American Atlantic Coast, 

ranging from the Connecticut River north to Newfoundland and Labrador in Northern Canada, with a 

distinct demographic divide between northern and southern populations around the Gulf of St. Lawrence 

(Rougemont and Bernatchez, 2018). Commercial exploitation of these populations in the 20th century was 

so intense that it led to indefinite closures of the ocean fishery in the U.S. and Canada (Dempson, 2001; 

Saunders, 1981). Currently, hatchery supplementation occurs and salmon-focused watershed restoration 

efforts in recent decades have had some success in restoring habitat functionality and connectivity 

(Holbrook et al., 2011; Izzo et al., 2016; Kocik et al., 2022). For northern populations in Newfoundland 

and Labrador, Bradbury et al. (2014) demonstrated that genetic structure is mostly determined by genetic 

drift within populations and little effective straying occurs. In the southern extent of this region, straying 

among populations may be more of a management concern due to habitat fragmentation and hatchery 

practices. Similar to observations in California hatcheries, Gorsky et al. (2009) demonstrated the 
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importance of hatchery release strategies for homing and straying rates of Atlantic salmon in the Penobscot 

River basin. New Zealand and areas of southern South America (Argentina and Chile) have had 

anadromous salmon species introduced to their waterways and farming occurs in these areas as well (Di 

Prinzio and Pascual, 2008; Fløysand et al., 2016; Quinn et al., 2001; Soto and Norambuena, 2004). Research 

on non-native salmon straying in these areas has focused more on characterizing contemporary population 

structure, genetic stability, rates of gene flow, and threats to endemic species than informing conservation 

goals or management intervention to conserve them (Ciancio et al., 2015, 2005; Correa and Gross, 2008; 

Kinnison et al., 2011, 2002; Unwin and Quinn, 1993).         

4.5.3 Study Species  

In their synthesis of published data on straying in anadromous salmonids, Keefer and Caudill (2014) 

included a breakdown of straying patterns by species so we will not duplicate that effort here. Rather, we 

discuss specific life history strategies by species or groups of species in the context of biotic-abiotic linkages 

that are meaningful for homing and straying dynamics. Although these are defining characteristics, some 

may apply across multiple species in certain cases. 

4.5.3.1 River spawners with complex age structures 

The majority of salmonid species that turned up in our search primarily spawn in freshwater rivers and have 

complex age structures in ocean stocks and in a given spawning cohort. Three out of the eight species in 

this category exhibit semelparity (Chinook, coho, and masu) with sexually mature individuals spawning 

only once in their lifecycle. Atlantic and Chinook salmon were the most dominant species with 38 and 34 

papers, respectively. This is not surprising given the cultural significance as well as their importance from 

a natural resource perspective (Dyrset et al., 2022; Woo and Noakes, 2014). Notably however, 50% of 

Atlantic salmon papers included at least one abiotic variable while only 38% of Chinook papers did so. 

These findings are closely aligned with percentages of abiotic study variables present in European studies 

(also 50%) compared to the U.S. West Coast and British Columbia (33.9%). Coho and masu comprise the 
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remaining semelparous species in this category and they appear to receive less research attention with 15 

and 1 paper, respectively. Remaining iteroparous species were steelhead, brown trout, brook trout, and 

European grayling and were represented in 12, 5, 1, and 1 papers, respectively. Species that rely on riverine 

habitat for spawning and juvenile rearing are vulnerable to a wide array of potential hazards to olfactory 

imprinting and homing as we identified above in our abiotic framework (Table 3.1a and Table 3.1b). It is 

somewhat encouraging to see the high instance of abiotic components included among the Atlantic salmon 

literature. Much of the terrestrial range of this species has seen centuries of intensive land use practices that 

degraded and fragmented river networks critical to the persistence of wild stocks (Aas et al., 2011). With 

continued cooperation and investment among natural resource agencies, the research on abiotic influences 

on this species can serve as an example to others in this category (Lennox et al., 2021). 

4.5.3.2 Chum salmon and the estuarine environment 

Chum salmon utilize brackish estuarine habitats for juvenile rearing (as do pink salmon in some cases), and 

spawning occurs in lower river reaches that may be tidally and chemically influenced by estuarine water 

(Johnson et al., 1997; Quinn, 2018). As such, they face some challenges to abiotic HS factors that are 

characteristic of these environments. Appearing in 14 papers in our analysis (8 with one or more abiotic 

variables included), chum received relatively less attention than the freshwater spawning species despite 

the complexity of the habitats utilized by this species. Pesticide compounds, many of which are toxic to 

olfactory physiology, have been shown to accumulate in estuarine sediments via agricultural runoff (Arias 

et al., 2011; Cruzeiro et al., 2016; Kuivila and Foe, 1995). In a review on this topic, Cuevas et al. (2018) 

highlight the innovations that have come about in recent years for detecting concentrations of pesticide 

compounds in the estuarine environment that are relevant to the salmonid lifecycle and new understandings 

of physiological and trophic pathways for exposure. For chum salmon, exposure to elevated levels of 

estuarine pesticides may inhibit olfactory imprinting in early juvenile stages or at the critical parr-smolt 

transformation. Another stressor typical of estuarine habitats is the development of hypoxic zones via 

eutrophication (Breitburg, 2002; Breitburg et al., 2009; Howarth et al., 2011). Salmon exhibit elevated 
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levels of cortisol in response to hypoxic conditions, and rates of cortisol production are directly linked to 

the endocrine pathways that underlie olfactory imprinting (Björnsson et al., 2011; Carruth, 2002; Kvamme 

et al., 2013; Oldham et al., 2019). Kim et al. (2015) also demonstrated that for chum salmon, salinity has a 

direct link to olfactory imprinting and odor memory. This has potential management implications for 

estuaries that have salinity compliance requirements based on freshwater outflow. 

4.5.3.3 Sockeye salmon and lakes 

Sockeye were the third-most represented species in our analysis with 22 papers (11 including one or more 

abiotic variables). Despite reductions in annual recruitment, sockeye still account for a significant portion 

of commercial ocean harvest which has resulted in increased focus from fishery managers over the last two 

decades from a perspective of population productivity, abundance, and population structure (Peterman and 

Dorner, 2012; Ruggerone and Connors, 2015). Having adapted to complex aquatic environments, sockeye 

salmon utilize lakes for rearing and spawning. Phenotypic differentiation occurs within some populations 

with “stream type” individuals spawning in streams and “lake type” individuals utilizing littoral habitats to 

spawn (often alluvial fans at stream outlets, see Arostegui and Quinn, 2019 and Pavey et al., 2011). Changes 

in air temperatures and hydrologic regimes are expected to alter water temperatures, stratification patterns, 

timing of mixing events, and food web dynamics in temperate lakes within the range of this species (Hill 

et al., 2009; Shimoda et al., 2011). Thermal stress to early lifecycle stages may inhibit olfactory imprinting 

for some individuals. Over time, this may also cause selection pressure to favor the stream spawning 

phenotype, simplifying population structure, and altering homing and straying dynamics. Depending on 

land uses in their surrounding drainage area, lakes can also susceptible to pesticide accumulation which can 

inhibit olfactory processes at multiple life stages (Ackerman et al., 2008; Lukyanova et al., 2016; O’Toole 

et al., 2006). 

4.5.3.4 Pink salmon and their simplified age structure 

Pink salmon were represented in only seven papers in our analysis (with two including one or more abiotic 

variables), suggesting that they are relatively understudied. We expect this to change in the next several 
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decades as they become an increasingly more important commercial harvest species, and also in response 

to introductions in the Great Lakes and in Scandinavia which have been problematic for salmonid species 

in these regions (Sandlund et al., 2019; Urawa et al., 2016; Wen-Hwa and Lawrie, 1981). Pink salmon are 

unique among the salmonid species in that they have a predominantly simplified age structure (strict two 

year life-cycle), meaning that they have a lack of variation in age at maturity which results in highly 

predictable spawning cycles of two years with greater abundance in odd years for Pacific Ocean populations 

(Kaev, 2012; Radchenko et al., 2007). Phenotypic plasticity is a hallmark of salmonid species and has 

allowed them to persist through multiple global-scale disturbance events (Waples et al., 2009). However, 

the simplified age structure of pink salmon makes them vulnerable to acute disturbances that may impact a 

spawning cohort of rigid age class distribution in a given year. A disturbance event may result in high rates 

of straying such as sea surface temperature anomalies or alterations to thermal regimes in river networks, 

potentially resulting in decreased recruitment in a single age class. Deviations from the two-year cycle have 

been observed in introduced populations in the Great Lakes (Kennedy et al., 2005; Wagner and Stauffer, 

1980). The extent to which this may occur in the endemic Pacific Ocean populations as a response to climate 

change is uncertain, as is the implications for homing and straying dynamics in the face of potential changes 

to competition and density effects in a more complex age structure. 

4.5.3.5 Char in a warming subarctic 

Our analysis turned up two species of char: the arctic char (3 papers), and whitespotted char (1 paper), 

comprising a small portion of our set. Char generally spawn in cool freshwater streams in subarctic latitudes. 

Populations at the southernmost extent of their range are susceptible to elevated stream temperatures (Mari 

et al., 2021). Arctic char are the northernmost freshwater fish that occur in the world and are an important 

species in commercial harvests. Zhu et al. (2017) recently noted that there is likely interannual variation in 

spawning cohort abundance, and differences in recruitment rates among populations, though more 

monitoring data is needed to characterize population dynamics across their range. This finding is consistent 

with the lack of information turned up in our search. Because juvenile char are known to be susceptible to 



   

142 

 

low survival rates in elevated stream temperatures, stress brought on by a warming subarctic climate may 

impact olfactory imprinting at critical early life stages which may ultimately affect homing and straying 

dynamics (Bolduc and Lamoureux, 2018; Nilsson et al., 2015; Schindler and Smol, 2006). In a transplant 

experiment in southern Hokkaido, Japan, Morita et al. (2000) documented phenotypic plasticity with 

respect to anadromous migrators vs. freshwater residents in a fragmented population. Individuals 

transported from above an impassable dam showed higher incidence of freshwater residency compared to 

those that had existed below the dam. The degree to which climate-driven selection pressure on rates of 

anadromy may occur in char species in the future is unknown.     

4.5.4 Abiotic variables vs. abiotic HS factors 

We found that the majority of studies in our analysis that included at least one abiotic variable in their study 

design tended to test only one or two of the abiotic HS factors that we identified in our framework (Figure 

3.3). This result is not surprising, but it is concerning. Our collective professional experience has been that 

studies designed to comprehensively address environmental drivers of homing and straying behavior in 

salmonids are rare, which was the primary motivation for conducting this review and metastudy. Abiotic 

variables are often included in study designs without a direct mechanistic link to the causes of homing and 

straying as defined by K&C. Within our three study variables (study method type, location, and species), 

the two most prevalent classes each had the greatest mean number of abiotic HS factors tested (excluding 

the stationary counts study type), though our ANOVA test did not yield a statistically significant difference 

among classes for any variable. What little differences we found are likely a product of disproportionate 

funding and management priorities among salmon research programs. From both a basic and applied 

science perspective, future research on homing and straying could benefit from more comprehensive 

research approaches that are designed to test multiple abiotic HS factors to fill knowledge gaps more quickly 

and efficiently and work toward a universal model of homing and straying across salmonid species and 

regions. Our time series analysis indicates that there has been improvement over the last three decades, but 
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more attention to this aspect of salmonid research is still greatly needed to advance conservation of 

declining populations and species.   

4.6 Conclusion 

In developing the abiotic framework to support the existing synthesis of K&C, we established biotic-abiotic 

linkages between the biological causes of straying and the abiotic drivers that may promote these causes. 

Our hope is that this framework can help guide future research on homing and straying patterns in salmonid 

species by identifying abiotic variables that are relevant to scientific questions that have yet to be 

investigated. We also hope that future investigations into abiotic HS factors can incorporate results into a 

holistic understanding of this behavioral phenomenon among salmon researchers. One of the key take 

aways from K&C is that results from existing literature on this topic are difficult to adopt into unifying 

conceptual models because studies are carried out a different spatial scales, time scales, and have other 

confounding attributes. This issue could be alleviated in the future by proactive incorporation of a holistic 

mechanistic framework into study designs during the planning and scoping phase. 

Our metastudy of existing literature confirmed our hypothesis that abiotic drivers of homing and straying 

have been largely neglected in the existing literature. It included a targeted literature search based on key 

terms that represent the biotic-abiotic linkages we identified in our abiotic framework. It was not an 

exhaustive search of all material on this topic. However, with only 41% of the papers in our search having 

any sort of investigation into abiotic drivers of homing and straying, we conclude that this is a glaring bias. 

The environment in which salmonid species occur is changing quickly as a result of anthropogenic climate 

change, land use, water management infrastructure, fragmentation, and rates of commercial exploitation 

(Moyle et al., 2017). The ability to home is a critical facet of the salmonid lifecycle and a key factor in 

maintaining their biological and ecological integrity. Research on this topic must improve to more 

adequately conserve and manage salmonids at all scales. 
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5 Appendix A: Local hydraulics influence habitat selection and swimming behavior in adult California 

Central Valley fall-run Chinook salmon at a large river confluence 

This file is organized by sections that correspond to the main chapter. It includes additional background 

information to support the conceptual diagram presented in the chapter as well as additional details of the 

study methods. The details on hydraulic modeling included in this appendix also apply to the models run 

in Chapter 2.   

5.1 Introduction 

5.1.1 Landscape-scale Habitat Attributes 

5.1.1.1 Hydro Facility Operations, Climate, Hydrology 

Climate, hydrology, and hydro-facility operations control the joint flow regime occurring at a river 

confluence. Regional climate drives precipitation and thermal regimes. These in turn influence the amount 

and frequency of rainwater pulses a basin receives each year and the extent of snow-water equivalent that 

will provide meltwater flow pulses during spring and summer months (Rasouli et al., 2020; Singh et al., 

2000). Landscape-scale hydrologic regimes act as top-down controls on flow magnitude, frequency, 

duration, timing, and rate of change, including and interannual variation of these attributes (Edwards et al., 

2015). River discharge at a basin or reach scale has been used to partially explain the timing of population-

level adult salmon migratory movements with implications for flow management in the context of 

accommodating or facilitating migration (Anderson and Beer, 2009; Dahl et al., 2004; Peterson et al., 2017). 

In basins with regulated rivers, many dam operation schedules are partially planned to control downstream 

discharges (Acreman et al., 2009; Bradford et al., 2011; Gendaszek et al., 2018; Saltveit et al., 2019), as 

well as temperatures (Ahmad and Hossain, 2020; Nichols et al., 2014; Rheinheimer et al., 2015) to 

accommodate specific salmonid lifecycle stages and their habitat requirements. Basin-scale hydrologic and 

thermal regimes that result from dam operations and impoundment may directly influence discharge and 
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temperature discrepancies at major river confluences, creating localized patches of physical habitat 

heterogeneity (Daniels and Danner, 2020; Petts, 1979).  

5.1.1.2 Geology, Sediment Supply 

At the broadest spatial scale, migratory habitat for salmonids is dictated by the combination of tectonic 

uplift and erosive forces. These act to create a topographic regime and lithological setting in which a 

watershed is formed. Along with climate and precipitation patterns, lithology acts as a major driver of 

sediment transport dynamics, drainage pattern, and spatial distribution of channel types (Dietrich et al., 

2003; Howard et al., 1994; Massong and Montgomery, 2000; Sklar and Dietrich, 2001). These landscape-

scale processes ultimately determine the amount and type of habitat available to a salmon population by 

dictating the spatial extent and distribution of alluvial channel forms in which much of the salmon lifecycle 

occurs (Church, 2006). Depending on the species, salmon rely on a somewhat specific range of bed 

sediment particle sizes in alluvial channel reaches for building redds and depositing their eggs. Due to 

species-specific body size limitations on their ability to move sediments of varying particle size during redd 

construction, it has been suggested that regional variations on lithology and geomorphic processes that 

control particle size may also act as controls on the geographic distribution of Pacific salmon species (Riebe 

et al., 2014). In cases where an impoundment blocks sediment supply, an alluvial river experiences net 

erosion of grain size classes that are key to redd construction which can be detrimental to reproduction and 

may deter migrating adults (Hauer et al., 2018; Kondolf, 2000). Confluences are hydraulically and 

geomorphologically complex features of fluvial channel networks. Our understanding of their dynamics 

has become increasingly more sophisticated since the mid-20th century (Best, 1986; Gualtieri et al., 2017; 

Miller, 1958; Richards, 1980). For salmon migrating upstream, each confluence that is encountered 

represents a critical navigational step in a sequence of decisions that must be made between entering the 

estuary and finally reaching their spawning grounds. Confluence hydraulics are most often dictated by 

regulated flows in each river, though other factors such as channel geometries and variability between 
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sediment particle size and transport/deposition rates may also play a role (Blettler et al., 2016; Penna et al., 

2018). 

5.1.1.3 Pollution, Disrupted Juvenile Imprinting 

At a landscape scale, there may be multiple factors that negatively impact the ability for adult salmon to 

utilize olfactory navigational cues at river confluences during their upstream migration. A common practice 

among hatchery production facilities is to rear juveniles to a parr/smolt stage and release them off site to 

avoid mortality associated with downstream migration (Huber et al., 2015; Murdoch et al., 2009). This is 

thought to result in increased rates of straying as adults due to the interruption of olfactory imprinting at 

earlier life stages (Jonsson et al., 2003; Keefer and Caudill, 2014; Sturrock et al., 2019). In addition to 

hatchery release practices, some pollutants are known to disrupt olfaction via toxicity to the olfactory 

physiology of salmonids by multiple biochemical pathways (Tierney et al., 2010). Many salmon 

populations occur in regions that experience extensive agricultural land use and large-scale application of 

pesticide compounds that enter waterways via agricultural runoff. Tierney et al. (2008) demonstrated acute 

injury to olfactory tissue in juvenile rainbow trout (O. mykiss) following exposure to pesticides specifically 

found to occur in the Nicomekl River in British Columbia. This was an important finding, but more work 

is needed on identifying region-specific links between locally used pesticide mixtures and olfactory toxicity 

across salmonid species.  

The importance of olfactory navigation in the salmonid lifecycle has been well understood for decades. In 

the 1950’s, the first research was conducted to investigate fish olfactory cues as a means of navigation in 

migratory species (Hasler and Wisby, 1951; Wisby and Hasler, 1954). Since then, many salmonid specific 

studies have been conducted to characterize the importance of olfaction during the migratory phases of their 

lifecycle (Cooper et al., 1976; Dittman et al., 1996; Hasler and Scholz, 1983; Ueda, 2011). Early 

experimental work in hatchery facilities showed that odor imprinting in early life stages is critical for the 

successful return of individuals to their natal stream as spawning adults (Donaldson and Allen, 1958). 

Important work by Nevitt et al. (1994) also demonstrated that olfactory receptor cells in coho salmon (O. 
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kisutch) could develop sensitization to specific odors, allowing a fish to detect not only the presence of an 

odor cue, but its relative concentration as well. Laboratory studies have demonstrated that amino acids elicit 

the strongest behavioral response in multiple species of (Ueda, 2018, 2011; Yamamoto et al., 2010). These 

results suggest that tissue or waste from conspecifics may be the source of odor material in an individual’s 

natal stream habitat that is most important for olfactory imprinting. In cases where imprinted natal odor 

cues are not present, the “olfactory hierarchy hypotheses” suggests that odor cues from conspecifics that 

are first detected as adults may act as a secondary cue (Bett and Hinch, 2015).   

5.1.2 Reach-scale Habitat Attributes 

5.1.2.1 Temperature, Discharge, Channel Type 

With the exception of some Alaskan chum salmon (O. keta) runs (which are known to occasionally spawn 

in intertidal areas of river mouths, see Johnson et al. 1997), most adult Pacific salmon undergo some degree 

of upstream migration into a watershed, encountering a sequence of tributary confluences. The distance 

travelled along a migration route can vary within and among species (Quinn, 2018) and the types of riverine 

habitats occupied by Pacific salmon species throughout their range are highly variable as well. Variability 

in these habitats occurs as a function of latitude, climate, regional orogeny, regional lithology and 

geomorphic processes, and hydrologic regime (Quinn, 2018). As they progress through their upstream 

migration, salmon experience variation in both channel discharge as well as channel geometry. It is this 

dynamic combination of flow and channel shape that dictates the hydraulic conditions that each fish 

experiences at any given point along their migratory corridor. At the reach scale, different geomorphic 

settings tend to result in generalized hydraulic conditions (such as lower, more consistent water velocity 

magnitudes in estuarine areas, vs. much higher, episodic velocities experienced in bedrock channels that 

occur higher in a watershed). Riverine habitats within the geographical range of Pacific salmon have 

experienced varying degrees of anthropomorphic impacts, ranging from minimal (such as some isolated 

coastal populations in Canada and Alaska), to highly impacted (such as the urbanized and industrialized 

watersheds in Washington, Oregon, and California) (Gustafson et al., 2007; Nehlsen et al., 1991).  
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Although watershed drainage patterns may vary within the range of Pacific salmon, (i.e. dendritic, trellis, 

radial, etc.), a general pattern in channel slope tends to prevail across drainages. With the exception of 

hillslope noses where channel formation begins, channel slope tends to decrease with increasing drainage 

area (Montgomery, 2001). Channel networks exhibit the following downstream progression of geomorphic 

processes: 1) colluvial channels (small, low-order channels dominated by colluvial sediment transport and 

deposition; 2) bedrock channels (steep channels dominated by episodic hydrology, sediment erosion, and 

bedrock incision; 3) alluvial channels (large channels with a shallow slope that experience both sediment 

erosion and deposition, but are dominated by unconsolidated sediment deposits; and 4) estuarine channels 

(very large channels dominated by tidal forces and deposition of fine material). Also, due to localized 

variations in underlying lithology and sediment transport dynamics, bedrock and alluvial channel forms can 

be longitudinally mixed, with alternating sequences of occurrence (Johnson and Whipple, 2007; Massong 

and Montgomery, 2000). This has important implications for the migration of adult salmon due to the 

geomorphic conditions necessary to provide adequate spawning habitat. Hydraulic connectivity and 

passage capability at knickpoints are major factors that determine how far into a mixed alluvial-bedrock 

channel network an individual fish can swim. From a standpoint of characterizing migratory habitat within 

a watershed, there are clear links between watershed geomorphology and the distance in which a spawning 

migration may occur. Confluences within a basin can be important drivers of reach-scale geomorphic 

features and resultant physical migratory habitat structure. In a review of studies on confluence effects in 

drainage networks, Benda et al. (2004) found a correlation between the ratio of tributary and mainstem 

drainage area and the probability of “confluence effects” (meaning the formation of fluvial landforms 

associated with confluences such as fans, bars, and terraces) occurring. They also noted that climate and 

disturbance regime are important drivers of these reach-scale effects with semiarid regions experiencing 

more frequent flash flood events, resulting in debris flows along a greater longitudinal gradient compared 

to humid regions. In certain cases, sediment aggradation at channel confluences may interrupt downstream 

sediment supply, disrupting alluvial processes that facilitate physical habitat heterogeneity downstream of 
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the confluence. The extent to which this occurs within a basin is largely driven by drainage area and stream 

network length (Rice, 2017).      

As poikilotherms, one of the most important environmental variables influencing the bioenergetics and 

timing of upstream migration for salmon is water temperature (Goniea et al., 2006). Temperature along the 

migratory corridor is driven regionally by climatic and hydrologic interactions (Johnson et al., 2020), and 

also at the reach scale by riparian shading (Dugdale et al., 2018) and groundwater interaction (Schmidt et 

al., 2006). Because migratory phenology is diverse across the salmon species and along latitudinal 

gradients, individual phenotypic groups have evolved to carry out the adult phase of their lifecycle in 

accordance with a variety of thermal regimes. A generalized relationship between average migratory 

swimming speed and temperature in adult Chinook salmon and steelhead trout (O. mykiss) in the Columbia 

River was characterized by Salinger and Anderson (Salinger and Anderson, 2006), identifying a 

temperature for peak swimming speed. For spring-run Chinook salmon, more nuanced migratory behavior 

has been characterized that allows them to migrate in elevated thermal conditions by selectively occupying 

cooler refugia. Berman and Quinn (1991) demonstrated this thermoregulatory strategy by inserting 

temperature-sensitive radio transmitters into the stomachs of 19 adult spring-run Chinook salmon and 

monitored internal body temperatures for four months as they migrated up the Yakima River in Washington 

State. Results showed internal temperatures to be consistently lower than ambient river temperatures, 

suggesting that the individuals were preferentially occupying cooler temperature refugia during that time. 

Torgersen et al. (1999) later showed similar patterns of thermal selectivity in upstream migrating adult 

Chinook salmon in disturbed areas of the Middle and North Fork John Day River in northeastern Oregon.  

5.1.2.2 Water Quality, Odor Cues, Predation, Exploratory Dispersal, Density-Dependent Movement  

Water quality may act as a reach-scale driver of habitat selection and focus is given to pesticide 

contaminants here due to their demonstrated effects to salmonid olfaction as described above. Because 

acute injury to olfactory organs has been demonstrated in the presence of certain pesticide compounds 

(Tierney et al., 2008), it is possible that it may have some influence in migratory routing at confluences 
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above a concentration threshold for acute toxicity. This has not yet been investigated. Dissolved and 

suspended contaminants that impact olfactory navigation cues may vary in presence and concentration 

within a basin for several reasons. Point source contamination may also have reach-scale impacts to adult 

salmon migratory habitat via contaminant spills, poor pesticide management practices, or concentrated 

discharge of agricultural runoff during dry periods (Holvoet et al., 2007; McKnight et al., 2015). The extent 

to which varying degrees of contaminant concentration between mainstem and tributary channels at a 

confluence may influence navigational choices for migrating adult salmon has not been studied.  

It is also important to note that some amount of straying occurs naturally across the Pacific salmon species. 

Exploratory dispersal as an innate behavior appears to be expression of the portfolio effect in their life 

history strategy (Schindler et al., 2010). If a certain percentage of individuals home to a non-natal stream 

reach and the natal reach (containing the bulk of the spawning run) is destroyed through some stochastic 

event such as a wildlife or landslide, or an anthropogenic habitat disturbance, the population may still persist 

(Waples et al., 2009, 2008). Because straying dynamics have been studied at varying spatial scales, and 

across multiple watersheds, it is difficult to make sweeping generalizations about stray rates for a single 

species or across all Pacific salmon species. Keefer and Caudill (2014) examined a total of 62 studies on 

homing and straying and found variable straying percentages reported within and among species. Due to 

the presence of hatchery-origin fish examined in some of these studies, it is likely that these percentages 

are inflated from true natural or “background” stray rates to some degree. 

Beyond biological cues at the individual level, evidence is emerging that suggests the existence of density-

dependent movement of spawning cohorts. A recent study gathered evidence from sockeye salmon (O. 

nerka) indicating that adult salmon exhibit temporal pulses of migratory movements that seem to be dictated 

by social interactions and aggregate group dynamics that may be independent of environmental cues 

(Berdahl et al., 2017, 2016). Adults migrating upstream have long been known to exhibit schooling 

behavior, as noted in an early review of upstream migration (Banks, 1969). It is likely that group dynamics 

play a role in collective navigation at a confluence when group density reaches a certain threshold (Guttal 
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and Couzin, 2010). Further investigation is needed before a density threshold for aggregated group 

movement can be identified across salmonid taxa. Although much of a spawning cohort returns to their 

natal stream, active dispersal behavior has been shown to occur in Chinook, sockeye, and steelhead and is 

thought to be exploratory behavior or even a thermoregulatory strategy in some cases  (Goniea et al., 2006; 

High et al., 2006; Peterson et al., 2016).  Finally, little is known about predator avoidance dynamics in 

migrating adult salmon, though it is thought to be most important on or near spawning grounds (Quinn, 

2018; Quinn et al., 2001). Bentley et al. (2014) observed fine-scale diel movement of Alaskan sockeye 

salmon between lake and spawning stream habitat suggesting avoidance of bear predation, though more 

work is needed to characterize this behavior across taxa. The extent to which predator avoidance influences 

navigation at confluences is not yet known. 

5.1.3 Micro-scale Habitat Attributes 

Channel discharge, geometry, and sediment composition act together to produce fine-scale physical habitat 

conditions commonly referred to as “microhabitats”. The microhabitat spatial scale is defined by Baldes 

and Vincent (1969) as “the physical conditions immediately surrounding an animal at a given time and 

place”. The term has its theoretical roots in early writings on organismal habitat selection as a function of 

spatial scale such as Thorpe (1945). One of its earliest uses in relation to fish ecology was in a pair of 

studies that investigated patterns in microhabitat selection in two species of riverine sculpin as a function 

of substrate type and flow velocity (Fenwick, 1968; Taylor, 1966). Wickham (1967) provided the first 

microhabitat investigation on a salmonid species based on velocity, depth, substrate type, and vegetation 

cover, and Giger (1973) compiled an influential report describing streamflow requirements for salmonids 

and is an early example of the microhabitat concept being applied in a regulatory context. Since then, this 

spatial scale has been utilized in investigations into life stage-specific habitat requirements (Carnie et al., 

2016; Moir and Pasternack, 2010; Nielsen, 1992; Shirvell, 1994), restoration design and planning 

applications (Brown and Pasternack, 2009; Fangue et al., 2021; Favrot et al., 2018), and evaluation of 

passage infrastructure (Li et al., 2021; Nestler et al., 2008; Weber et al., 2006). To date, the influence of 
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confluence hydraulics on species-specific microhabitat distribution in space and time has not yet been 

studied. 

The studies mentioned above are primarily concerned with physical habitat attributes including velocity 

magnitude and/or direction, depth, sheer stress, and sediment grain size. Channel geometry and hydraulics 

also influence the magnitude and distribution of turbulent flow features at spatial scales relevant to flow 

depth and roughness height (Franca and Brocchini, 2015). Channel confluence morphology may result in 

areas of high turbulence under certain conditions such as low flow periods at discordant confluences (Biron 

et al., 1996; Boyer et al., 2006). In turn, this may act as a deterrence to migrating adult salmon either due 

to bioenergetic constraints (Enders et al., 2003; Lupandin, 2005) or potentially through disruption of 

rheotactic cues. Even though Elder and Coombs (2015) were able to demonstrate that rheotaxis of a much 

smaller riverine fish (Mexican tetra, Astyanax mexicanus) persisted in the face of turbulent flow conditions, 

microscale habitat selection as a function of turbulence for migrating adult salmon is not yet fully 

understood. 

5.2 Methods 

5.2.1 Status of Chinook Salmon in the CA Central Valley 

The California Central Valley is home to four phenotypically distinct populations of Chinook salmon: 

Sacramento River winter-run Chinook salmon, Central Valley spring-run Chinook salmon, and Central 

Valley fall- and late fall-run Chinook salmon (NMFS 2014). All four phenotypes have experienced 

precipitous population declines beginning in the mid-19th century. Yoshiyama et al. (1998) estimated 

average annual escapement rates of Central Valley fall-run Chinook in the mainstem Sacramento River to 

have declined from 192,300 to 40,900 from 1992-1997. In 2017, that number fell to 2,260 fall-run 

individuals in the mainstem Sacramento River (CDFW 2021). Causes of decline include passage barriers, 

altered hydrologic regimes, harvest pressure, disease, and water quality degradation among others (Arkush 

et al., 2002; Gresh et al., 2000; Yoshiyama et al., 2001; Zeug et al., 2011). Several hatchery production 
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facilities have been constructed on major tributaries to the Sacramento and San Joaquin Rivers. A common 

practice among these hatcheries is to raise Chinook salmon to a juvenile life cycle stage and release them 

offsite in the San Francisco Bay-Delta estuary, thus eliminating the opportunity for olfactory imprinting 

during outmigration (CDFG and NMFS 2001). When this occurs, adult stray rates upon return years later 

may increase up to eight times their natural background rate of 5-10% of a Central Valley Chinook salmon 

population released onsite (Huber et al., 2015; S.P. Cramer and Associates, 1991). There is interest among 

fisheries managers and conservationists in California in reducing stray rates in hatchery-origin Chinook 

(Bett et al., 2017). One reason is that straying leads to introgression between wild- and hatchery-origin 

individuals, resulting in decreased wild-origin fitness due to inbreeding depression and may mask overall 

wild-origin population decline (Garza et al., 2008; Johnson et al., 2012; Keller and Waller, 2002; Naish et 

al., 2007).  
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5.2.2 Sediment Survey 

Table A.A.1. Results of a sediment grain size distribution survey at each DIDSON deployment site throughout the project area in January 2020. 
Sizes were classified by ranges in diameter with percent distribution reported. 

DIDSON 

Site < 2mm 2mm < D < 32mm 32mm < D < 90mm 

90mm < D < 

128mm 

128mm < D < 

256mm 

> 

256mm 

FS2 100% 
     

YD1 10% 
    

90% 

YS1 100% 
     

YD2 90% 
    

10% 

YS2 100% 
     

DD1 98% 2% 
    

DS1 5% 75% 20% 
   

DD2 98% 2% 
    

FD1 100% 
     

FS1 98% 2% 
    

FD2 100% 
     

DS2 40% 45% 

5% 
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5.2.3 Geometric Solution Scheme 

 

Figure A.A.1. An example geometric solution scheme used to compute the total volume sampled by the DIDSON sonar at each deployment site. 
The vertical area computed in this scheme was used to compute volume based on the fixed horizontal angle of the DIDSON beams. 
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Figure A.A.2. An image of the DIDSON sonar deployed at site "DS1". 
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5.2.4 DIDSON Site Attributes 

Table A.A.2. A summary of DIDSON site attributes for each deployment. 

Deployment 

Name 

Detections 

(#) 

Detection rate: 

[detections 
(#)]/[duration 

(min)/Volume(m3)] 

Volume 

Sampled 

(m3) 

Mean 

Depth (m) 

ADCP Depth-
averaged 

Vmag, mean 

w/in search 

area (ft/s) 

ADCP Depth-
averaged 

Vmag, mean 

w/in search 

area (m/s) 

Vmag*d 

(m2/s) 

Froude 

number 

Sept_DD1_dep1 1 0.051 1.15 2.31 2.52 0.77 1.77 0.16 

Sept_DD2_dep1 13 0.053 4.10 1.75 3.01 0.92 1.61 0.22 

Sept_DD2_dep2 10 0.061 4.92 1.79 3.01 0.92 1.65 0.22 

Sept_DS1_dep1 6 0.087 1.16 1.50 4.05 1.23 1.85 0.32 

Sept_DS1_dep2 5 0.036 4.54 1.50 4.05 1.23 1.85 0.32 

Sept_FD1_dep1 3 0.104 0.75 No ADCP Data 

Sept_FD1_dep2 8 0.112 1.81 No ADCP Data 

Sept_FD2_dep1 17 0.022 23.49 2.74 1.32 0.40 1.10 0.08 

Sept_FD2_dep2 109 1.870 1.22 2.61 1.32 0.40 1.05 0.08 

Sept_FS1_dep1 2 0.005 6.79 2.45 1.69 0.51 1.26 0.11 

Sept_FS1_dep2 4 0.194 0.60 2.12 1.69 0.51 1.09 0.11 

Sept_FS2_dep1 11 0.274 1.05 1.56 1.80 0.55 0.86 0.14 

Sept_FS2_dep2 4 0.094 1.09 1.58 1.80 0.55 0.86 0.14 

Sept_YD1_dep1 6 0.184 0.53 No ADCP Data 

Sept_YD2_dep2 1 0.004 7.94 2.87 0.32 0.10 0.28 0.02 
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Sept_YS1_dep1 2 0.006 5.79 2.28 0.43 0.13 0.30 0.03 

Sept_YS2_dep1 3 0.010 10.18 2.45 0.30 0.09 0.23 0.02 

Oct_DD1_dep1 1 0.001 14.15 No ADCP Data 

Oct_DD2_dep2 7 0.017 6.07 1.55 1.48 0.45 0.70 0.12 

Oct_DS1_dep1 2 0.075 0.92 No ADCP Data 

Oct_DS2_dep1 4 0.012 5.76 1.11 1.91 0.58 0.65 0.18 

Oct_DS2_dep2 1 0.003 5.76 1.11 1.91 0.58 0.65 0.18 

Oct_FD1_dep1 1 0.013 2.44 1.82 0.87 0.26 0.48 0.06 

Oct_FD1_dep2 1 0.004 3.21 1.93 0.87 0.26 0.51 0.06 

Oct_FD2_dep1 2 0.005 13.79 2.04 1.01 0.31 0.63 0.07 

Oct_FD2_dep2 4 0.029 2.29 2.22 1.01 0.31 0.69 0.07 

Oct_FS1_dep2 3 0.045 1.09 1.18 0.88 0.27 0.32 0.08 

Oct_FS2_dep2 5 0.014 5.84 1.29 0.46 0.14 0.18 0.04 

Oct_YD1_dep1 3 0.023 8.41 3.01 0.55 0.17 0.50 0.03 

Oct_YD2_dep2 1 0.003 7.21 2.80 0.31 0.10 0.27 0.02 

Oct_YS1_dep1 5 0.005 26.09 2.14 0.44 0.13 0.29 0.03 

Oct_YS1_dep2 1 0.002 14.43 1.97 0.44 0.13 0.26 0.03 

Oct_YS2_dep1 1 0.002 13.93 1.95 0.36 0.11 0.21 0.03 

Oct_YS2_dep2 1 0.001 20.29 2.17 0.36 0.11 0.24 0.02 

Sept_DS2_dep1 0 N/A N/A 1.03 2.30 0.70 0.72 0.22 

Sept_YD2_dep1 0 N/A N/A 2.77 0.32 0.10 0.27 0.02 

Sept_DD1_dep2 0 N/A N/A 2.14 2.52 0.77 1.64 0.17 
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Sept_YS2_dep2 0 N/A N/A 2.38 0.30 0.09 0.22 0.02 

Sept_DS2_dep2 0 N/A N/A 1.02 2.30 0.70 0.72 0.22 

Sept_YS1_dep2 0 N/A N/A 2.29 0.43 0.13 0.30 0.03 

Sept_YD1_dep2 0 N/A N/A 3.21 0.55 0.17 0.54 0.03 

Oct_YD2_dep1 0 N/A N/A 2.55 0.31 0.10 0.24 0.02 

Oct_FS1_dep1 0 N/A N/A 1.19 0.88 0.27 0.32 0.08 

Oct_FS2_dep1 0 N/A N/A 1.34 0.46 0.14 0.19 0.04 

Oct_DD2_dep1 0 N/A N/A 1.62 1.48 0.45 0.73 0.11 

Oct_DS1_dep2 0 N/A N/A No ADCP Data 

Oct_DD1_dep2 0 N/A N/A No ADCP Data 

Oct_YD1_dep2 0 N/A N/A 3.11 0.55 0.17 0.52 0.03 
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5.2.5 Checks for Sample Bias 

The following data plots are included as checks for sample bias in our methods. The first was to ensure that 

we were not detecting more individuals simply because we were sampling greater volumes of water with 

the DIDSON sonar. As shown in Figure A.A.3, the opposite was true. This is because many of the deeper 

sites where we were able to capture a greater volume of the channel occurred in slow-moving portions of 

the channel that were preferentially avoided. Figure A.A.4 Figure A.A.5 show detection rates as a function 

of both time of day and duration of footage. Neither show any pattern which demonstrates that there was 

not a time of day (within the window of time in which all sampling occurred, ~0800 to ~1600) in which 

individuals preferentially moved through the study area. Also, the amount of footage gathered during each 

deployment did not affect the rate of detection. Finally, as shown in Figure A.A.6, no pattern emerged 

between mean estimated body length in each deployment and the rate of detection.    

 

Figure A.A.3. Detection rates as a function of volume sampled in each DIDSON deployment. 
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Figure A.A.4. Detection rates as a function of deployment time (time of day in which footage was captured). 

 

Figure A.A.5. Detection rates as a function of duration (the number of minutes in which the DIDSON sonar 
was capturing usable footage). 
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Figure A.A.6. Detection rate as a function of mean estimated body length for each deployment. 

5.2.6 Species Identification Criteria 

A 2012 snorkel survey conducted by YARMT indicated that the following fish species may occur in the 

project area: California roach (Hesperoleucus symmetricus, and various other species of Cyprinids), 

Chinook salmon (O. tshawytscha), steelhead trout (O. mykiss), riffle sculpin (Cottus gulosus), Sacramento 

pikeminnow (Ptychocheilus grandis), Sacramento sucker (Catostomus occidentalis), Tule perch 

(Hysterocarpus traskii), and largemouth bass (Micropterus salmoides) (YARMT, 2013). According to the 

PISCES database on fish community composition and species ranges in California, the following species 

may also occur within the project site throughout the year: white sturgeon (Acipenser transmontanus), green 

sturgeon (Acipenser medirostris), western brook lamprey (Lampetra richardsoni), striped bass (Morone 

saxatilis), Sacramento splittail (Pogonichthys macrolepidotus), Sacramento hitch (Lavinia exilicauda 

exilicauda), Sacramento blackfish (Orthodon microlepidotus), prickly sculpin (Cottus asper), Pacific 
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lamprey (Entosphenus tridentatus), inland three-spine stickleback (Gasterosteus aculeatus), and hardhead 

(Mylopharadon conocephalus) (Santos et al., 2014). Criteria were generated to differentiate adult Central 

Valley fall-run Chinook salmon from other potential species to the best extent possible using information 

on body length, migration phenology, and swimming behavior. 

In a study on the fecundity of Chinook salmon as a function of body length, California Department of Fish 

and Wildlife gathered extensive data on body lengths of spawning adult Central Valley fall-run Chinook 

salmon passing a video monitoring station on the Lower Mokelumne River, as well as length data from fish 

spawned at the Mokelumne River hatchery (Kaufman et al., 2009). 9,981 individuals were seen passing the 

video monitoring station and the length range was 300–1190 mm (approximate error in length data was 

reported to be +/- 5 cm, mean not reported). More accurate fork lengths were taken at the hatchery from 93 

spawned individuals with sizes ranging from 527-991 mm (mean: 762 mm). Grilse (individuals that spend 

only one year in the ocean) were designated in both video data and spawner data as having body length 

ranges of 300–640 mm and 527–610 mm, respectively. Because Kaufman et al. (2009) examined body 

lengths of the same evolutionarily significant unit of Chinook salmon that is examined in this study, these 

data will be used as morphological criteria for discerning fall-run Chinook salmon from other fish species 

that may be present in the DIDSON footage. The grilse length range will be excluded here to aid in avoiding 

misidentification of species. A size range criterion of 600–1200 mm is used in this study.  

In studies by Burwen et al. (2010) using Chinook salmon, and Hightower et al. (2013) using several other 

riverine fish species, R2 values of 0.90 and 0.89 (respectively) were reported when correlating observed 

fish lengths with estimated lengths using the DIDSON measuring tool. These results indicate relatively 

accurate measuring capabilities when using the measuring tool. In a large river of comparable width and 

average depth to the LFR/LYR confluence, Mueller et al. (2010) observed adult Chinook salmon migrating 

upstream using passive DIDSON observations to develop a technique for identifying this species in the 

footage (and to differentiate between simultaneous observations of sockeye salmon). Using the DIDSON 
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measuring tool, they made every effort to ensure that each fish’s length was in full display, and they 

measured each fish at three different frames and took the average length. The same technique is used here. 

Originally proposed by Breder (1926), and later expanded upon by Domenici and Kapoor (2010), five 

different locomotive “styles” occur in fishes depending on body morphology (anguilliform, sub-

carangiform, carangiform, thunniform, and ostraciiform). Chinook salmon (along with all other salmonids) 

exhibit sub-carangiform locomotion, which is characterized by a waveform swimming style in which most 

of the kinetic work is performed by the posterior 2/3rds to 1/2 of the body. However, this type of locomotion 

is very common in riverine fishes due to similarities in body morphology and habitat needs. Therefore, 

locomotive style alone cannot be used as an identifier in this case without body length data. 

Of the freshwater fishes that comprise the potential community composition of the project area (based on 

past observational data in the LYR as well as known species ranges from the PISCES database), the species 

that may be confused for adult fall-run Chinook based on length, body shape, phenology, and swimming 

behavior are California Central Valley steelhead and striped bass. Striped bass can reach lengths in excess 

of 700 mm as very mature adults (it is rare, but also possible in largemouth bass), and although their body 

shape has a distinct vertical taper near the caudal fin, they may be confused for fall-run Chinook salmon 

simply based on body length (Moyle, 2002). 
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5.2.7 Hydrodynamic model 

The following summary table includes the pertinent details of the TUFLOW models that were run and 

referenced in the Hydraulic Data section of the main article.  

Table A.A.3. Hydraulic model summary 

Topo-bathymetric data 

sources 

The topographic data mosaic was sourced from the following (Figure A.A.7): 

• Hydrolite single beam echosounder (minimum depth of 0.3 m; 

depth accuracy of 1 cm; sampling frequency of 200 Hz; 
Seafloor Systems, Inc.) in sync with a Trimble R8 real-time 

kinematic GPS (horizontal and vertical accuracies of ~ 1 and 2 

cm, respectively) receiving ground-based corrections on the fly 
at 1 Hz. 

• Bare-earth topography was collected at the island located at the 

confluence junction using a Trimble R8 RTK GPS. 

• A very small clip of pre-existing near-infrared and green 

LiDAR data was used, it accounted for 0.04% of the greatest 
wetted extent (September sampling period). It had been 

collected in 2017 by Yuba Water Agency and processed by our 

group to obtain a 0.9144 m (i.e., 3-ft) raster (Silva and 

Pasternack 2018) 

• Augmented points were added manually to conserve known 
contours in the DEM and avoid any artifacts in the DEM that 

might occur from surface interpolation. 

Topo-bathymetric data 
resolution 

Topo-bathymetric point density within the model domain was 1.46/3 
m2. 

Topo-bathymetric uncertainty  For surveying on the LYR, RTK GPS precisions are typically within 1 

cm horizontal and 2 cm vertical. Data from different collection methods 

are calibrated to align vertically using overlapping points, typically with 
~ 3 cm standard deviation after calibration. 

Model discharges The first period occurred from September 23-26 and the second from 

October 22-25. During the first sampling period, mean discharges on 

the LFR and LYR were ~ 213 and 24 m3/s, respectively. During the 
second period, discharges on the LFR and LYR were ~ 68 and 17 m3/s, 

respectively (CDWR 2022). 

Downstream water surface 
elevation (WSE) data 

Figure A.A.8 shows the second order polynomial stage-discharge rating 
curve that was generated for our study area. WSEs were measured using 

a Trimble R8 RTK GPS near the downstream boundary of the study 

area from 2017 to 2019, capturing discharges ranging from 

approximately 200-1400m3/s. We used the curve to interpolate WSEs 
that correspond to our modeled discharge scenarios. Discharge data was 

collected from the California Department of Water Resources’ Data 

Exchange Center (CDWR 2022). 

River roughness specification We used a uniform Manning’s n value of 0.03 in all model runs in this 

study as the sediment was dominated by sand-sized substrate with 

gentle bedforms and intermittent bank vegetation (Limerinos 1970, 

Arcement and Schneider 1989) 
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Eddy viscosity specification We used the Smagorinsky formulation for eddy viscosity to account for 
momentum diffusion via turbulence in the model’s momentum 

equations (BMT Commercial Australia Pty Ltd 2018). Constant 

coefficient and initial Smagorinsky coefficient were 0.4 and 0.5, 

respectively. 

Hydraulic validation 

procedure 

This study used the 2D model water velocity validation method of 

Barker et al. (2018). This approach is a variation of large-scale particle 

image velocimetry (e.g., Dramais et al. 2011). On a windless day, a 
kayaker moved at the speed and direction of the water around it, 

referencing surrounding floating debris. A Trimble R8 RTK GPS 

tracked kayak position at 1 Hz. The distance travelled per second was 

computed as a surface velocity. In addition, the method of Barker et al. 
(2018) was used to find a depth-average velocity constant of 0.63 and 

apply this to the observed data to obtain field-estimated depth-average 

velocities. Both the observed surface values and the estimated depth-
averaged values were compared to modeled depth-average velocities at 

the same coordinates for the same steady flow regime that occurred 

during the day of the kayak survey (28.97m3 in the LYR and 67.83m3 
in the LFR for a combined discharge of 96.80m3). A TUFLOW model 

was used to simulate hydraulic conditions on the day of the kayak 

surveys in accordance with the methods outlined here.  

Velocity magnitude 
prediction accuracy 

The velocity validation procedure found the model predictions to be a 
good fit to the data on the basis of an r2 value of 0.76 (Figure A.A.9). 

Model mass conservation Volume errors were < 1 m3 for the September and October models and 

1.93m3 for the validation model. All mass errors were <0.01% 

Model outputs Figure A.A.10 
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Figure A.A.7. Sources of elevation point data used to construct the final digital elevation model used in this 
study. 
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Figure A.A.8. Stage-discharge relationship used to interpolate water surface elevations used in 2D 
hydrodynamic models. 
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Figure A.A.9. Results of the kayak velocity validation survey. This plot compares the observed surface 
velocities multiplied by the depth-averaged velocity constant (DAVC) to the modeled depth-averaged 
velocity magnitude values from the TUFLOW model outputs to assess model accuracy and performance. 
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Figure A.A.10. TUFLOW hydrodynamic model outputs of velocity magnitude (Vmag) and depth for 
September and October DIDSON sampling periods. 
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Table A.A.4. Regression model descriptions and a priori rationale for inclusion in the AICc analysis.   

Model Description and A Priori Rationale 

D ~ Vmag These models test the effect of each hydraulic variable 

individually on DIDSON detection rate. D ~ d 

D ~ C 

D ~ Fr 

D ~ T These models test the individual effect of temperature and 

turbidity on detection rate.  D ~ TU 

D ~ T + TU This model tests the combined effect of both temperature and 

turbidity on detection rate, to determine if their combined effect 

has more influence than their individual effects. 

D ~ C + T A preliminary examination of the data indicated that conveyance 
was the strongest predictor of detection rate among the four 

hydraulic variables tested. This model tests the combined effect of 

conveyance with temperature. Based on the range of temperature 
values that we observed in our surveys compared to the range of 

turbidity values, temperature appeared to be the more important of 

the two.  

D ~ C + T +TU This model is similar to the one above, but tests the combined 
effect of conveyance, temperature, and turbidity, to determine if 

the combined effect of temperature and turbidity, along with 

conveyance, has a greater influence over detection rate than 
conveyance and temperature alone. 

D ~ Vmag + d + C + Fr This model tests the combined effect of all hydraulic variables. 

This model was included to assess whether hydraulic drivers of 

habitat selection among DIDSON sites varied among all four of 
these variables or if one or more were dominant.  

D ~ Vmag + d + C + Fr + T + TU This model tests the combined effect of all variables. This model 

was included in the event that no single variable stood out as a 

strong predictor and relative influence among all six of them 
would need to be assessed. 

D = detection rate; d = depth; Vmag = velocity magnitude; C = conveyance; Fr = Froude number; T = temperature; 

and TU = turbidity 
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6 Appendix B: Hydraulic microhabitats at a regulated river confluence influence Chinook salmon 

migratory routing during drought 

This file is organized by sections that correspond to the main chapter. It includes performance and validation 

metrics for the 2D hydrodynamic models that were generated in this study.  

6.1 Methods 

6.1.1 2D hydrodynamic models and model validation 

 

Figure A.B.1. Stage-discharge relationship used to interpolate water surface elevations used in 2D 
hydrodynamic models. 
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Table A.B.1. Performance summary statistics for the TUFLOW model validation procedure. 

Statistic Vdiff |Vdiff| %error |%error| 

Mean 0.05 0.09 -4.11 28.27 

Standard Error 0.00 0.00 3.62 3.59 

Median 0.03 0.06 -11.74 19.16 

Standard Deviation 0.13 0.10 252.48 250.93 

Range 1.45 0.81 17532.29 17433.42 

Minimum -0.64 0.00 -98.86 0.01 

Maximum 0.81 0.81 17433.42 17433.42 
Vdiff is the difference between modeled, depth-averaged velocity and the observed surface velocity from the kayak 

surveys, multiplied by the depth averaged velocity constant found in our analysis (DAVC = 0.63).  
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7 Appendix C: Abiotic variables are often neglected in studies of homing and straying in anadromous 

salmonids 

This file is organized by sections that correspond to the main chapter. It includes a complete list of articles 

analyzed in the literature metastudy portion of the main chapter.  

7.1 Literature Metastudy 

7.1.1 Systematic Literature Search 

  



   

 

 

1
9
9

 

 

Table A.C.1. A list of the 169 articles analyzed in the metastudy portion of the main article. Sources are alphabetized by lead author and include 
additional attributes used in our study. 

Authors Article Title Study Type Location Species Spatial 

Scale 

Life 

Stage 

Abiotic 

variable

s 

included 

(#) 

Abioti

c HS 

factors 

tested 

(#) 

Abe et al. 

2020 

Gene expression of 

neuronal soluble N-

ethylmaleimide-

sensitive factor 
attachment protein 

receptor complex 

components in the 

olfactory organ and 

brain during seaward 

and homeward 

migration by pink 

salmon (Oncorhynchus 

gorbuscha) 

Phenotype/gene 

expression/morphometrics/endocrin

e response 

Japan Pink N/A Both 0 0 

Abe et al. 

2019 

Chum salmon 

migrating upriver 

adjust to 
environmental 

temperatures through 

metabolic 

compensation 

Lab-based/Closed system Lab or 

N/A 

Chum N/A Adult 5 2 

Anderson et 

al. 2008 

Summer distribution 

and growth of juvenile 

coho salmon during 

colonization of newly 

accessible habitat 

Stationary Counts U.S. West 

Coast and 

B.C. 

Coho Partial 

Catchment 

Adult 0 0 

Austin et al. 

2021 

In a warming river, 

natural-origin Chinook 

salmon spawn later but 

Modeling 

 

 
  

U.S. West 

Coast and 

B.C. 

Chinook Single 

Catchment 

Both 1 1 



   

 

 

2
0
0

 

hatchery-origin 

conspecifics do not 

Ayllon et al. 

2006 

Maintenance of a 

small anadromous 

subpopulation of 

brown trout (Salmo 
trutta L.) by straying 

Population genetics/dynamics Europe Brown Trout Multiple 

Catchments 

Adult 0 0 

Bandoh et al. 

2011 

Olfactory Responses 

to Natal Stream Water 

in Sockeye Salmon by 

BOLD fMRI 

Lab-based/Closed system Lab or 

N/A 

Sockeye N/A Adult 0 0 

Barnett et al. 

2019 

Differential Marking 

of Embryos by 

Location and Date of 

Release Reveals 

Within-River Natal 

Homing and Parental 

Influence on Progeny 

Return Timing in 

Sockeye Salmon 

Mark-recapture U.S. West 

Coast and 

B.C. 

Sockeye Partial 

Catchment 

Both 0 0 

Berland et al. 

2004 

Movements of wild 

Atlantic salmon parr in 

relation to peaking 

flows below a 

hydropower station 

Biotelemetry Europe Atlantic Reach Juvenile 2 3 

Bett and 

Hinch 2015 

Attraction of migrating 

adult sockeye salmon 

to conspecifics in the 

absence of natal 

chemical cues 

Lab-based/Closed system Lab or 

N/A 

Sockeye N/A Adult 1 1 

Bett et al. 

2017 

Causes and 

Consequences of 

Straying into Small 

Populations of Pacific 
Salmon 

Population genetics/dynamics U.S. West 

Coast and 

B.C. 

Sockeye Partial 

Catchment 

Adult 0 0 

Bett et al. 

2018 

Effects of natal water 

dilution on the 

migration of Pacific 

salmon in a regulated 

river 

Lab-based/Closed system U.S. West 

Coast and 

B.C. 

Multiple 

Oncorhynchu

s spp. 

N/A Adult 1 1 



   

 

 

2
0
1

 

Bett et al. 

2016 

Evidence of Olfactory 

Imprinting at an Early 

Life Stage in Pink 

Salmon 

(Oncorhynchus 
gorbuscha) 

Lab-based/Closed system Lab or 

N/A 

Pink N/A Both 0 0 

Bond et al. 

2017 

Combined Effects of 

Barge Transportation, 

River Environment, 

and Rearing Location 

on Straying and 

Migration of Adult 

Snake River Fall-Run 

Chinook Salmon 

Mark-recapture U.S. West 

Coast and 

B.C. 

Chinook Single 

Catchment 

Adult 2 2 

Bottom et al. 

2005 

Patterns of Chinook 

salmon migration and 

residency in the 

Salmon River estuary 

(Oregon) 

Mark-recapture U.S. West 

Coast and 

B.C. 

Chinook Estuary 

(marine and 

freshwater 

components

) 

Juvenile 1 1 

Bowlby et al. 
2016 

Applying landscape 
genetics to evaluate 

threats affecting 

endangered Atlantic 

salmon populations 

Population genetics/dynamics North 
American 

Atlantic 

Coast 

Atlantic Multiple 
Catchments 

Juvenile 8 3 

Bracis and 

Anderson 

2013 

Inferring the Relative 

Oceanic Distribution 

of Salmon from 

Patterns in Age-

Specific Arrival 

Timing 

Modeling U.S. West 

Coast and 

B.C. 

Chinook Coastal/Off 

Shore 

Ocean 

Adult 

0 0 

Bradbury et 

al. 2014 

Landscape structure 

and climatic variation 

determine Atlantic 
salmon genetic 

connectivity in the 

Northwest Atlantic 

Population genetics/dynamics Europe Atlantic Multiple 

Catchments 

Juvenile 6 7 

Brannon et al. 

2006 

Results from a sixteen 

year study on the 

effects of oiling from 

the Exxon Valdez on 

Mark-recapture AK and 

Yukon 

Pink Multiple 

Catchments 

Adult 1 2 



   

 

 

2
0
2

 

adult pink salmon 

returns 

Bumgarner et 

al. 2009 

Returns of Hatchery 

Steelhead with 

Different Fin Clips and 

Coded Wire Tag 
Lengths 

Mark-recapture U.S. West 

Coast and 

B.C. 

Steelhead Partial 

Catchment 

Adult 0 0 

Burgerhout et 

al. 2017 

Genetic background 

and embryonic 

temperature affect 

DNA methylation and 

expression of 

myogenin and muscle 

development in 

Atlantic salmon 

(Salmo salar) 

Phenotype/gene 

expression/morphometrics/endocrin

e response 

Europe Atlantic N/A Juvenile 1 1 

Campos et al. 

2007 

Spatio-temporal 

genetic variability in 

sea trout (Salmo trutta) 

populations from 
north-western Spain 

Population genetics/dynamics Europe Brown Trout Multiple 

Catchments 

Adult 2 1 

Candy and 

Beacham 

2000 

Patterns of homing and 

straying in southern 

British Columbia 

coded-wire tagged 

chinook salmon 

(Oncorhynchus 

tshawytscha) 

populations 

Mark-recapture U.S. West 

Coast and 

B.C. 

Chinook Multiple 

Catchments 

Both 0 0 

Cauwelier et 

al. 2018 

Across rather than 

between river genetic 

structure in Atlantic 

salmon Salmo salar in 
north-east Scotland, 

UK: potential causes 

and management 

implications 

Population genetics/dynamics Europe Atlantic Single 

Catchment 

Juvenile 1 1 

Chappell et 

al. 2017 

Sockeye salmon 

immunoglobulin V-H 

usage and pathogen 

Lab-based/Closed system Lab or 

N/A 

Sockeye N/A Adult 1 1 



   

 

 

2
0
3

 

loads differ between 

spawning sites 

Ciancio et al. 

2015 

The invasion of an 

Atlantic Ocean river 

basin in Patagonia by 

Chinook salmon: new 
insights from SNPs 

Population genetics/dynamics South 

America 

Chinook Partial 

Catchment 

Both 0 0 

Clarke et al. 

2013 

Density Effects on 

Subyearling Fall 

Chinook Salmon 

During Hatchery 

Rearing in Raceways 

with Oxygen 

Supplementation and 

After Release 

Mark-recapture U.S. West 

Coast and 

B.C. 

Chinook Partial 

Catchment 

Juvenile 0 0 

Clarke et al. 

2012 

Performance of Spring 

Chinook Salmon 

Reared in Acclimation 

Ponds for Two and 

Four Months before 
Release 

Mark-recapture U.S. West 

Coast and 

B.C. 

Chinook Reach Juvenile 0 0 

Clarke et al. 

2017 

Increased harvest of 

anadromous hatchery 

steelhead, 

Oncorhynchus mykiss 

(Walbaum), through 

return timing 

manipulation 

Mark-recapture U.S. West 

Coast and 

B.C. 

Steelhead Partial 

Catchment 

Both 0 0 

Connor and 

Garcia 2006 

Prespawning 

movement of wild and 

hatchery fall Chinook 

salmon adults in the 

Snake River 

Biotelemetry U.S. West 

Coast and 

B.C. 

Chinook Reach Adult 0 0 

Courtenay et 
al. 1997 

Factors affecting the 
recognition of 

population-specific 

odours by juvenile 

coho salmon 

Lab-based/Closed system Lab or 
N/A 

Coho N/A Juvenile 1 1 



   

 

 

2
0
4

 

Crossin et al. 

2007 

Behaviour and 

physiology of sockeye 

salmon homing 

through coastal waters 

to a natal river 

Biotelemetry U.S. West 

Coast and 

B.C. 

Sockeye Estuary 

(marine and 

freshwater 

components

) 

Ocean 

Adult 

0 0 

Crozier et al. 
1997 

Comparative 
performance of native 

and non-native strains 

of Atlantic salmon 

(Salmo salar L.) 

ranched from the River 

Bush, Northern Ireland 

Mark-recapture Europe Atlantic Single 
Catchment 

Adult 0 0 

Dempson 

1999 

Evaluation of an 

alternative strategy to 

enhance salmon 

populations: Cage 

rearing wild smolts 

from Conne River, 

Newfoundland 

Biotelemetry North 

American 

Atlantic 

Coast 

Atlantic Estuary 

(marine and 

freshwater 

components

) 

Both 0 0 

Dillane et al. 
2007 

Spatial and temporal 
patterns in 

microsatellite DNA 

variation of wild 

Atlantic salmon, 

Salmo salar, in Irish 

rivers 

Population genetics/dynamics Europe Atlantic Multiple 
Catchments 

Both 1 2 

Dittman et al. 

2010 

Homing and Spawning 

Site Selection by 

Supplemented 

Hatchery- and Natural-

Origin Yakima River 

Spring Chinook 
Salmon 

Mark-recapture U.S. West 

Coast and 

B.C. 

Chinook Partial 

Catchment 

Both 0 0 

Dittman et al. 

1996 

Timing of imprinting 

to natural and artificial 

odors by coho salmon 

(Oncorhynchus 

kisutch) 

Lab-based/Closed system Lab or 

N/A 

Coho N/A Juvenile 0 0 

Dittman et al. 

1997 

Sensitization of 

olfactory guanylyl 

Lab-based/Closed system Lab or 

N/A 

Coho N/A Juvenile 0 0 



   

 

 

2
0
5

 

cyclase to a specific 

imprinted odorant in 

coho salmon 

Drenner et al. 

2018 

Whole-river 

manipulation of 

olfactory cues affects 
upstream migration of 

sockeye salmon 

Biotelemetry U.S. West 

Coast and 

B.C. 

Sockeye Reach Adult 3 1 

Drenner et al. 

2015 

Environmental 

conditions and 

physiological state 

influence estuarine 

movements of homing 

sockeye salmon 

Biotelemetry U.S. West 

Coast and 

B.C. 

Sockeye Estuary 

(marine and 

freshwater 

components

) 

Adult 5 1 

Ebbesson et 

al. 2003 

Neural circuits and 

their structural and 

chemical 

reorganization in the 

light-brain-pituitary 

axis during parr-smolt 
transformation in 

salmon 

Phenotype/gene 

expression/morphometrics/endocrin

e response 

AK and 

Yukon 

Coho N/A Juvenile 0 0 

Ebbesson et 

al. 1996 

Transient alterations in 

neurotransmitter levels 

during a critical period 

of neural development 

in coho salmon 

(Oncorhynchus 

kisutch) 

Lab-based/Closed system Lab or 

N/A 

Coho N/A Juvenile 0 0 

Ensing et al. 

2011 

Complex pattern of 

genetic structuring in 

the Atlantic salmon 

(Salmo salar L.) of the 
River Foyle system in 

northwest Ireland: 

disentangling the 

evolutionary signal 

from population 

stochasticity 

Population genetics/dynamics Europe Atlantic Single 

Catchment 

Juvenile 0 0 



   

 

 

2
0
6

 

Erdman et al. 

2018 

Release of hatchery 

adult steelhead for 

angler opportunity 

increases potential for 

interactions with 
endemic steelhead 

Biotelemetry U.S. West 

Coast and 

B.C. 

Steelhead Single 

Catchment 

Adult 0 0 

Feeken et al. 

2019 

Distribution and 

Movement of 

Steelhead and Anglers 

in the Clearwater 

River, Idaho 

Biotelemetry U.S. West 

Coast and 

B.C. 

Steelhead Partial 

Catchment 

Adult 0 0 

Feldhaus et 

al. 2016 

The Influence of Size 

at Release on 

Performance of 

Imnaha River Chinook 

Salmon Hatchery 

Smolts 

Mark-recapture U.S. West 

Coast and 

B.C. 

Chinook Partial 

Catchment 

Both 0 0 

Fujiwara et 

al. 2014 

The Effects of 

Disease-Induced 

Juvenile Mortality on 
the Transient and 

Asymptotic Population 

Dynamics of Chinook 

Salmon 

(Oncorhynchus 

tshawytscha) 

Modeling U.S. West 

Coast and 

B.C. 

Chinook Single 

Catchment 

Both 0 0 

Garvin et al. 

2013 

Recent physical 

connections may 

explain weak genetic 

structure in western 

Alaskan chum salmon 

(Oncorhynchus keta) 
populations 

Population genetics/dynamics AK and 

Yukon 

Chum Multiple 

Catchments 

Adult 0 0 

Gharrett et al. 

2001 

Use of a genetic 

marker to examine 

genetic interaction 

among subpopulations 

of pink salmon 

(Oncorhynchus 

gorbuscha) 

Population genetics/dynamics AK and 

Yukon 

Pink Multiple 

Catchments 

Adult 0 0 



   

 

 

2
0
7

 

Gilk et al. 

2004 

Outbreeding 

depression in hybrids 

between spatially 

separated pink salmon, 

Oncorhynchus 
gorbuscha, 

populations: marine 

survival, homing 

ability, and variability 

in family size 

Population genetics/dynamics AK and 

Yukon 

Pink Multiple 

Catchments 

Both 0 0 

Godfrey et al. 

2015 

Depth use and 

migratory behaviour of 

homing Atlantic 

salmon (Salmo salar) 

in Scottish coastal 

waters 

Biotelemetry Europe Atlantic Coastal/Off 

Shore 

Ocean 

Adult 

2 1 

Gorsky et al. 

2009 

The Effects of Smolt 

Stocking Strategies on 

Migratory Path 
Selection of Adult 

Atlantic Salmon in the 

Penobscot River, 

Maine 

Biotelemetry North 

American 

Atlantic 
Coast 

Atlantic Reach Adult 1 2 

Gowans et al. 

2003 

Movements of Atlantic 

salmon migrating 

upstream through a 

fish-pass complex in 

Scotland 

Biotelemetry Europe Atlantic Reach Adult 3 1 

Groves et al. 

1968 

Roles of olfaction and 

vision in choice of 

spawning site by 

homing adult Chinook 
salmon (Oncorhynchus 

tshawytscha) 

Mark-recapture U.S. West 

Coast and 

B.C. 

Chinook Partial 

Catchment 

Adult 0 0 

Gudmundsso

n et al. 2013 

Spatio-temporal 

effects of stray 

hatchery-reared 

Atlantic salmon Salmo 

salar on population 

genetic structure 

Population genetics/dynamics Europe Atlantic Single 

Catchment 

Both 0 0 
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within a 21 km-long 

Icelandic river system 

Hamann and 

Kennedy 

2012 

Juvenile dispersal 

affects straying 

behaviors of adults in 

a migratory population 

Microchemistry U.S. West 

Coast and 

B.C. 

Chinook Partial 

Catchment 

Both 0 0 

Hanson et al. 
2013 

Reconstructing marine 
life-history strategies 

of wild Atlantic 

salmon from the stable 

isotope composition of 

otoliths 

Microchemistry Europe Atlantic Coastal/Off 
Shore 

Ocean 
Adult 

2 1 

Hauser et al. 

2017 

Homing of Pacific 

Salmon to a Marine 

Release Site: A Case 

Study of the Homer 

Spit Fishing Hole, 

Alaska 

Mark-recapture AK and 

Yukon 

Multiple 

Oncorhynchu

s spp. 

Coastal/Off 

Shore 

Both 0 0 

Havey et al. 

2017 

Experimental 

Evidence for Olfactory 
Imprinting by Sockeye 

Salmon at Embryonic 

and Smolt Stages 

Lab-based/Closed system Lab or 

N/A 

Sockeye N/A Juvenile 0 0 

Hess and 

Matala 2014 

Archival genetic 

analysis suggests 

recent immigration has 

altered a population of 

Chinook salmon in an 

unsupplemented 

wilderness area 

Population genetics/dynamics U.S. West 

Coast and 

B.C. 

Chinook Single 

Catchment 

Adult 0 0 

Hess et al. 

2014 

Monitoring Stock-

Specific Abundance, 

Run Timing, and 

Straying of Chinook 
Salmon in the 

Columbia River Using 

Genetic Stock 

Identification (GSI) 

Population genetics/dynamics U.S. West 

Coast and 

B.C. 

Chinook Single 

Catchment 

Adult 0 0 

Hill et al. 

2002 

The effects of small 

dispersal rates on 

Modeling Lab or 

N/A 

N/A Single 

Catchment 

Adult 0 0 
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extinction times in 

structured 

metapopulation 

models 

Hofmann and 

Meyer 1993 

Visual-evoked 

responses in the 
salmon telencephalon 

change during smolt 

transformation 

Lab-based/Closed system Lab or 

N/A 

Coho N/A Juvenile 2 1 

Horreo et al. 

2011 

Impact of climate 

change and human-

mediated introgression 

on southern European 

Atlantic salmon 

populations 

Population genetics/dynamics Europe Atlantic Multiple 

Catchments 

Adult 1 1 

Horreo et al. 

2018 

Nature versus nurture? 

Consequences of short 

captivity in early 

stages 

Phenotype/gene 

expression/morphometrics/endocrin

e response 

Europe Atlantic N/A Both 0 0 

Ikediashi et 
al. 2012 

The origins of Atlantic 
salmon (Salmo salar 

L.) recolonizing the 

River Mersey in 

northwest England 

Population genetics/dynamics Europe Atlantic Multiple 
Catchments 

Both 0 0 

Ioannidou 

and O’Hanley 

2019 

The importance of 

spatiotemporal fish 

population dynamics 

in barrier mitigation 

planning 

Modeling U.S. West 

Coast and 

B.C. 

Coho Single 

Catchment 

Both 7 1 

Jackson et al. 

2013 

Impact of 

Lepeophtheirus 

salmonis infestations 

on migrating Atlantic 

salmon, Salmo salar 
L., smolts at eight 

locations in Ireland 

with an analysis of 

lice-induced marine 

mortality 

Mark-recapture Europe Atlantic Coastal/Off 

Shore 

Ocean 

Adult 

1 1 



   

 

 

2
1
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Jarrard 1997 Postembryonic 

changes in the 

structure of the 

olfactory bulb of the 

Chinook salmon 
(Oncorhynchus 

tshawytscha) across its 

life history 

Lab-based/Closed system Lab or 

N/A 

Chinook N/A Both 0 0 

Jasper et al. 

2013 

Source-Sink Estimates 

of Genetic 

Introgression Show 

Influence of Hatchery 

Strays on Wild Chum 

Salmon Populations in 

Prince William Sound, 

Alaska 

Population genetics/dynamics AK and 

Yukon 

Chum Multiple 

Catchments 

Adult 0 0 

Jensen et al. 

2017 

Rapid evolution of 

genetic and phenotypic 

divergence in Atlantic 
salmon following the 

colonisation of two 

new branches of a 

watercourse 

Population genetics/dynamics Europe Atlantic Partial 

Catchment 

Adult 0 0 

Johnson and 

Banks 2009 

Interlocus variance of 

F-ST provides 

evidence for 

directional selection 

over an olfactory 

receptor gene in Coho 

salmon (Oncorhynchus 

kisutch) populations 

Phenotype/gene 

expression/morphometrics/endocrin

e response 

U.S. West 

Coast and 

B.C. 

Coho N/A Adult 0 0 

Johnstone et 
al. 2011 

Expression of 
olfactory receptors in 

different life stages 

and life histories of 

wild Atlantic salmon 

(Salmo salar) 

Phenotype/gene 
expression/morphometrics/endocrin

e response 

North 
American 

Atlantic 

Coast 

Atlantic N/A Both 0 0 

Jonsson and 

Jonsson 2018 

Egg incubation 

temperature affects the 

timing of the Atlantic 

Mark-recapture Europe Atlantic Partial 

Catchment 

Both 2 1 



   

 

 

2
1
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salmon Salmo salar 

homing migration 

Jonsson et al. 

2018 

Water level influences 

migratory patterns of 

anadromous brown 

trout in small streams 

Mark-recapture Europe Brown Trout Multiple 

Catchments 

Adult 2 2 

Kaitala and 
Getz 1995 

Population-dynamics 
and harvesting of 

semelparous species 

with phenotypic and 

genotypic variability 

in reproductive age 

Modeling Lab or 
N/A 

N/A Coastal/Off 
Shore 

Ocean 
Adult 

0 0 

Keefe and 

Winn 1991 

Chemosensory 

attraction to home 

stream water and 

conspecifics by native 

brook trout, Salvelinus 

fontinalis from 2 

southern New England 

streams 

Lab-based/Closed system Lab or 

N/A 

Brook trout N/A Juvenile 2 1 

Keefer et al. 

2008 

Overwintering 

distribution, behavior, 

and survival of adult 

summer steelhead: 

Variability among 

Columbia river 

populations 

Mark-recapture U.S. West 

Coast and 

B.C. 

Steelhead Single 

Catchment 

Adult 2 2 

Keefer et al. 

2006 

Route selection in a 

large river during the 

homing migration of 

Chinook salmon 

(Oncorhynchus 

tshawytscha) 

Biotelemetry U.S. West 

Coast and 

B.C. 

Chinook Single 

Catchment 

Adult 0 0 

Keefer et al. 
2008b 

Non-direct homing 
behaviours by adult 

Chinook salmon in a 

large, multi-stock river 

system 

Biotelemetry U.S. West 
Coast and 

B.C. 

Chinook Single 
Catchment 

Adult 2 3 



   

 

 

2
1
2

 

Keefer et al. 

2008c 

Transporting juvenile 

salmonids around 

dams impairs adult 

migration 

Biotelemetry U.S. West 

Coast and 

B.C. 

Multiple 

Oncorhynchu

s spp. 

Single 

Catchment 

Both 0 0 

Keefer et al. 

2019 

Temperature and depth 

profiles of Chinook 
salmon and the 

energetic costs of their 

long-distance homing 

migrations 

Biotelemetry U.S. West 

Coast and 
B.C. 

Chinook Single 

Catchment 

Adult 3 2 

Keefer et al. 

2004 

Hydrosystem, dam, 

and reservoir passage 

rates of adult Chinook 

salmon and Steelhead 

in the Columbia and 

Snake Rivers 

Mark-recapture U.S. West 

Coast and 

B.C. 

Multiple 

Oncorhynchu

s spp. 

Partial 

Catchment 

Adult 2 2 

Kitagawa et 

al. 2016 

Atmospheric 

depression-mediated 

water temperature 

changes affect the 
vertical movement of 

chum salmon 

Oncorhynchus keta 

Biotelemetry Japan Chum Coastal/Off 

Shore 

Adult 1 1 

Kitahashi et 

al. 2000 

Micro data logger 

analyses of homing 

behavior of chum 

salmon in Ishikari Bay 

Biotelemetry Japan Chum Coastal/Off 

Shore 

Ocean 

Adult 

2 1 

Kock et al. 

2016 

Angler Harvest, 

Hatchery Return, and 

Tributary Stray Rates 

of Recycled Adult 

Summer Steelhead 

Oncorhynchus mykiss 
in the Cowlitz River, 

Washington 

Biotelemetry U.S. West 

Coast and 

B.C. 

Steelhead Partial 

Catchment 

Adult 2 1 

Kock et al. 

2018 

Responses of 

Hatchery- and Natural-

Origin Adult Spring 

Chinook Salmon to a 

Trap-and-Haul 

Biotelemetry U.S. West 

Coast and 

B.C. 

Chinook Partial 

Catchment 

Adult 1 1 



   

 

 

2
1
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Reintroduction 

Program 

Kudo et al. 

2009 

Morphometry of 

Olfactory Lamellae 

and Olfactory 

Receptor Neurons 
During the Life 

History of Chum 

Salmon 

(Oncorhynchus keta) 

Phenotype/gene 

expression/morphometrics/endocrin

e response 

Japan Chum N/A Both 0 0 

Labelle 1992 Straying patterns of 

coho salmon 

(Oncorhynchus 

kisutch) stocks from 

southeast Vancouver 

Island, British 

Columbia 

Mark-recapture U.S. West 

Coast and 

B.C. 

Coho Multiple 

Catchments 

Both 2 1 

Lacroix 2013 Population-specific 

ranges of oceanic 

migration for adult 
Atlantic salmon 

(Salmo salar) 

documented using 

pop-up satellite 

archival tags 

Biotelemetry North 

American 

Atlantic 
Coast 

Atlantic Coastal/Off 

Shore 

Ocean 

Adult 

2 1 

Lee and Ueda 

2012 

Effects of aggressive 

interaction on 

downstream 

movement and 

olfactory function in 

masu salmon, 

Oncorhynchus masou 

Lab-based/Closed system Lab or 

N/A 

Masu N/A Juvenile 1 1 

Lehtonen et 
al. 2009 

Spatio-temporal 
genetic structuring of 

brown trout (Salmo 

trutta L.) populations 

within the River Luga, 

northwest Russia 

Population genetics/dynamics Europe Brown Trout Partial 
Catchment 

Both 1 1 

Lema and 

Nevitt 2004 

Evidence that thyroid 

hormone induces 

Lab-based/Closed system Lab or 

N/A 

Coho N/A Juvenile 0 0 



   

 

 

2
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olfactory cellular 

proliferation in salmon 

during a sensitive 

period for imprinting 

Lennox et al. 

2018 

Biotic and abiotic 

determinants of the 
ascent behaviour of 

adult Atlantic salmon 

transiting passable 

waterfalls 

Biotelemetry Europe Atlantic Reach Adult 5 1 

Leunda et al. 

2013 

Homing and straying 

of Atlantic salmon in 

the Bidasoa River: 

report of an unusual 

stray from Great 

Britain to the Iberian 

Peninsula 

Mark-recapture Europe Atlantic Multiple 

Catchments 

Adult 0 0 

Lim et al. 

2020 

Elevated incubation 

temperature improves 

later-life swimming 
endurance in juvenile 

Chinook salmon, 

Oncorhynchus 

tshawytscha 

Lab-based/Closed system Lab or 

N/A 

Chinook N/A Juvenile 1 1 

Lin and 

Robinson 

2019 

How do migratory fish 

populations respond to 

barrier removal in 

spawning and nursery 

grounds? 

Modeling Lab or 

N/A 

N/A Partial 

Catchment 

Adult 0 0 

Lin et al. 

2008 

Contrasting patterns of 

morphological and 

neutral genetic 

divergence among 
geographically 

proximate populations 

of sockeye salmon 

Oncorhynchus nerka 

in Lake Aleknagik, 

Alaska 

Phenotype/gene 

expression/morphometrics/endocrin

e response 

AK and 

Yukon 

Sockeye Lake and 

Connected 

Streams 

Adult 1 1 



   

 

 

2
1
5

 

Lin et al. 

2011 

Self-sustaining 

populations, 

population sinks or 

aggregates of strays: 

chum (Oncorhynchus 
keta) and Chinook 

salmon (Oncorhynchus 

tshawytscha) in the 

Wood River system, 

Alaska 

Population genetics/dynamics AK and 

Yukon 

Multiple 

Oncorhynchu

s spp. 

Multiple 

Catchments 

Adult 0 0 

Lister 2014 Natural Productivity in 

Steelhead Populations 

of Natural and 

Hatchery Origin: 

Assessing Hatchery 

Spawner Influence 

Population genetics/dynamics U.S. West 

Coast and 

B.C. 

Steelhead Single 

Catchment 

Both 0 0 

Lohmann et 

al. 2008 

Geomagnetic 

imprinting: A unifying 

hypothesis of long-
distance natal homing 

in salmon and sea 

turtles 

Modeling Lab or 

N/A 

N/A Coastal/Off 

Shore 

Both 2 1 

Lower and 

Moore 2007 

The impact of a 

brominated flame 

retardant on 

smoltification and 

olfactory function in 

Atlantic salmon 

(Salmo salar L.) 

smolts 

Lab-based/Closed system Lab or 

N/A 

Atlantic N/A Juvenile 0 0 

Madsen et al. 

2019 

Differential expression 

of olfactory genes in 
Atlantic salmon 

(Salmo salar) during 

the parr-smolt 

transformation 

Phenotype/gene 

expression/morphometrics/endocrin
e response 

Europe Atlantic N/A Both 1 1 

Martin et al. 

2013 

Persistence of a 

southern Atlantic 

salmon population: 

diversity of natal 

Microchemistry Europe Atlantic Single 

Catchment 

Both 0 0 
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origins from otolith 

elemental and Sr 

isotopic signatures 

McConnell et 

al. 2019 

Is blood cortisol or 

vateritic otolith 

composition associated 
with natal dispersal or 

reproductive 

performance on the 

spawning grounds of 

straying and homing 

hatchery-produced 

chum salmon 

(Oncorhynchus keta) 

in Southeast Alaska? 

Phenotype/gene 

expression/morphometrics/endocrin

e response 

AK and 

Yukon 

Chum N/A Both 2 1 

McCormick 

et al. 2003 

Endocrine and 

physiological changes 

in Atlantic salmon 

smolts following 
hatchery release 

Phenotype/gene 

expression/morphometrics/endocrin

e response 

North 

American 

Atlantic 

Coast 

Atlantic N/A Juvenile 1 1 

McGlauflin et 

al. 2011 

Spawning Habitat and 

Geography Influence 

Population Structure 

and Juvenile Migration 

Timing of Sockeye 

Salmon in the Wood 

River Lakes, Alaska 

Population genetics/dynamics AK and 

Yukon 

Sockeye Single 

Catchment 

Adult 1 1 

McPhee et al. 

2009 

Genetic Diversity and 

Population Structure in 

the Kuskokwim River 

Drainage Support the 

Recurrent Evolution 
Hypothesis for 

Sockeye Salmon Life 

Histories 

Population genetics/dynamics AK and 

Yukon 

Sockeye Partial 

Catchment 

Adult 1 1 

Michael et al. 

1990) 

Predictability in a 

small commercial 

Atlantic salmon 

fishery in western 

Newfoundland 

Stationary Counts North 

American 

Atlantic 

Coast 

Atlantic Coastal/Off 

Shore 

Both 0 0 



   

 

 

2
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Middleton et 

al. 2018 

Effects of natal water 

concentration and 

temperature on the 

behaviour of up-river 

migrating sockeye 
salmon 

Biotelemetry U.S. West 

Coast and 

B.C. 

Sockeye Partial 

Catchment 

Adult 4 2 

Moore et al. 

2007 

The impact of a 

pesticide on migratory 

activity and olfactory 

function in Atlantic 

salmon (Salmo salar 

L.) smolts 

Lab-based/Closed system Lab or 

N/A 

Atlantic N/A Juvenile 3 2 

Morin et al. 

1994 

Changes in serum-free 

thyroxine, prolactin, 

and olfactory activity 

during induced 

smoltification in 

Atlantic salmon 

(Salmo salar) 

Lab-based/Closed system Lab or 

N/A 

Atlantic N/A Juvenile 0 0 

Morin and 
Døving 1992 

Changes in the 
olfactory function of 

Atlantic salmon 

Salmo-salar in the 

course of 

smoltification 

Lab-based/Closed system Lab or 
N/A 

Atlantic N/A Juvenile 0 0 

Murdoch et 

al. 2009 

Migration Patterns and 

Spawning Distribution 

of Adult Hatchery 

Sockeye Salmon 

Released as Parr from 

Net-Pens in Lake 

Wenatchee, 
Washington 

Biotelemetry U.S. West 

Coast and 

B.C. 

Sockeye Lake and 

Connected 

Streams 

Both 0 0 

Musleh et al. 

2020 

Mixed-stock analyses 

of migratory, non-

native Chinook salmon 

at sea and assignment 

to natal sites in fresh 

water at their 

Population genetics/dynamics South 

America 

Chinook Multiple 

Catchments 

Adult 1 1 



   

 

 

2
1
8

 

introduced range in 

South America 

Narum et al. 

2008 

Localized Genetic 

Structure Persists in 

Wild Populations of 

Chinook Salmon in the 
John Day River 

Despite Gene Flow 

from Outside Sources 

Population genetics/dynamics U.S. West 

Coast and 

B.C. 

Chinook Single 

Catchment 

Adult 0 0 

Naughton et 

al. 2018 

Reservoir provides 

cool-water refuge for 

adult Chinook salmon 

in a trap-and-haul 

reintroduction program 

Biotelemetry U.S. West 

Coast and 

B.C. 

Chinook Partial 

Catchment 

Adult 2 1 

Negus 2003 Determination of 

smoltification status in 

juvenile migratory 

rainbow trout and 

Chinook salmon in 

Minnesota 

Lab-based/Closed system Lab or 

N/A 

Multiple 

Oncorhynchu

s spp. 

N/A Juvenile 0 0 

Nevitt et al. 

1994 

Evidence for a 

peripheral olfactory 

memory in imprinted 

salmon 

Lab-based/Closed system Lab or 

N/A 

Coho N/A Both 0 0 

Nickelson 

and Lawson 

1998 

Population viability of 

coho salmon, 

Oncorhynchus kisutch, 

in Oregon coastal 

basins: application of a 

habitat-based life cycle 

model 

Modeling U.S. West 

Coast and 

B.C. 

Coho Multiple 

Catchments 

Both 0 0 

Nordeng 

2009 

Char ecology. Natal 

homing in sympatric 

populations of 
anadromous Arctic 

char Salvelinus alpinus 

(L.): roles of 

pheromone recognition 

Mark-recapture Europe Charr 

(Salvelinus 

spp.) 

Multiple 

Catchments 

Both 0 0 
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Nordeng and 

Bratland 2006 

Homing experiments 

with parr, smolt and 

residents of 

anadromous Arctic 

char Salvelinus alpinus 
and brown trout Salmo 

trutta: transplantation 

between neighbouring 

river systems 

Mark-recapture Europe Charr 

(Salvelinus 

spp.) 

Partial 

Catchment 

Both 0 0 

Ochs et al. 

2017 

Organization of 

Glomerular Territories 

in the Olfactory Bulb 

of Post-Embryonic 

Wild Chinook Salmon 

Oncorhynchus 

tshawytscha 

Lab-based/Closed system Lab or 

N/A 

Chinook N/A Juvenile 0 0 

Olsen et al. 

2010 

The influence of 

hydrology and 

waterway distance on 
population structure of 

Chinook salmon 

Oncorhynchus 

tshawytscha in a large 

river 

Population genetics/dynamics AK and 

Yukon 

Chinook Single 

Catchment 

Adult 4 2 

Östergren et 

al. 2012 

Linking genetic 

assignment tests with 

telemetry enhances 

understanding of 

spawning migration 

and homing in sea 

trout Salmo trutta L. 

Biotelemetry Europe Brown Trout Multiple 

Catchments 

Adult 0 0 

Ozerov et al. 
2016 

Genomewide 
introgressive 

hybridization patterns 

in wild Atlantic 

salmon influenced by 

inadvertent gene flow 

from hatchery releases 

Population genetics/dynamics Europe Atlantic Multiple 
Catchments 

Juvenile 0 0 

Parkinson et 

al. 1999 

A preliminary 

investigation of 

Biotelemetry Europe Grayling Reach Adult 3 1 



   

 

 

2
2
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spawning migrations 

of grayling in a small 

stream as determined 

by radio-tracking 

Pascual et al. 

1995 

Factors affecting the 

homing of fall 
Chinook salmon from 

Columbia River 

hatcheries 

Mark-recapture U.S. West 

Coast and 
B.C. 

Chinook Single 

Catchment 

Both 0 0 

Pearsons and 

O’Connor 

2020 

Stray Rates of Natural-

Origin Chinook 

Salmon and Steelhead 

in the Upper Columbia 

River Watershed 

Biotelemetry U.S. West 

Coast and 

B.C. 

Multiple 

Oncorhynchu

s spp. 

Multiple 

Catchments 

Adult 0 0 

Perrier et al. 

2010 

Natural recolonization 

of the Seine River by 

Atlantic salmon 

(Salmo salar) of 

multiple origins 

Population genetics/dynamics Europe Atlantic Multiple 

Catchments 

Adult 0 0 

Peterson et al. 
2016 

Exploratory behavior 
of dispersers within a 

metapopulation of 

sockeye salmon 

Mark-recapture AK and 
Yukon 

Sockeye Lake and 
Connected 

Streams 

Adult 0 0 

Peterson et al. 

2020 

Stability in 

reproductive timing 

and habitat usage of 

Chinook salmon 

across six years of 

varying environmental 

conditions and 

abundance 

Stationary Counts U.S. West 

Coast and 

B.C. 

Chinook Reach Adult 4 2 

Petrou et al. 

2014 

Fine-scale sampling 

reveals distinct 

isolation by distance 
patterns in chum 

salmon (Oncorhynchus 

keta) populations 

occupying a glacially 

dynamic environment 

Population genetics/dynamics AK and 

Yukon 

Chum Multiple 

Catchments 

Adult 0 0 



   

 

 

2
2
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Poćwierz-

Kotus et al. 

2015 

Restitution and genetic 

differentiation of 

salmon populations in 

the southern Baltic 

genotyped with the 
Atlantic salmon 7K 

SNP array 

Population genetics/dynamics Europe Atlantic Multiple 

Catchments 

Both 0 0 

Pollock et al. 

2020 

Within-river straying: 

sex and size influence 

recovery location of 

hatchery Chinook 

salmon (Oncorhynchus 

tshawytscha) 

Mark-recapture U.S. West 

Coast and 

B.C. 

Chinook Single 

Catchment 

Adult 0 0 

Powell and 

Campbell 

2020 

Contemporary genetic 

structure affects 

genetic stock 

identification of 

steelhead trout in the 

Snake River basin 

Population genetics/dynamics U.S. West 

Coast and 

B.C. 

Steelhead Single 

Catchment 

Adult 0 0 

Quinn et al. 
2012 

Population dynamics 
and asynchrony at fine 

spatial scales: a case 

history of sockeye 

salmon (Oncorhynchus 

nerka) population 

structure in Alaska, 

USA 

Mark-recapture AK and 
Yukon 

Sockeye Lake and 
Connected 

Streams 

Both 0 0 

Quinn et al. 

2006 

Experimental evidence 

of homing to site of 

incubation by mature 

sockeye salmon, 

Oncorhynchus nerka 

Mark-recapture AK and 

Yukon 

Sockeye Partial 

Catchment 

Both 1 1 

Quinn et al. 
1999 

Natural otolith 
microstructure patterns 

reveal precise homing 

to natal incubation 

sites by sockeye 

salmon (Oncorhynchus 

nerka) 

Phenotype/gene 
expression/morphometrics/endocrin

e response 

AK and 
Yukon 

Sockeye N/A Both 1 1 



   

 

 

2
2
2

 

Quiñones et 

al. 2014 

Hatchery practices 

may result in 

replacement of wild 

salmonids: adult trends 

in the Klamath basin, 
California 

Mark-recapture U.S. West 

Coast and 

B.C. 

Multiple 

Oncorhynchu

s spp. 

Single 

Catchment 

Adult 0 0 

Richins and 

Skalski 2018 

Steelhead Overshoot 

and Fallback Rates in 

the Columbia-Snake 

River Basin and the 

Influence of Hatchery 

and Hydrosystem 

Operations 

Biotelemetry U.S. West 

Coast and 

B.C. 

Steelhead Single 

Catchment 

Adult 1 1 

Santaquiteria 

et al. 2016 

Contrasting levels of 

strays and 

contemporary gene 

flow among 

anadromous 

populations of Arctic 
charr, Salvelinus 

alpinus (L.), in 

northern Norway 

Population genetics/dynamics Europe Charr 

(Salvelinus 

spp.) 

Multiple 

Catchments 

Both 0 0 

Saura et al. 

2008 

Are there atlantic 

salmon in the river 

tambre? 

Population genetics/dynamics Europe Atlantic Single 

Catchment 

Adult 0 0 

Schroeder et 

al. 2001 

Origin and straying of 

hatchery winter 

steelhead in Oregon 

coastal rivers 

Mark-recapture U.S. West 

Coast and 

B.C. 

Steelhead Multiple 

Catchments 

Both 0 0 

Shrimpton et 

al. 2014 

Freshwater movement 

patterns by juvenile 

Pacific salmon 

Oncorhynchus spp. 
before they migrate to 

the ocean: Oh the 

places you'll go! 

Microchemistry U.S. West 

Coast and 

B.C. 

Coho Partial 

Catchment 

Both 0 0 

Small et al. 

2011 

Does Lower Crab 

Creek in the Eastern 

Washington Desert 

Have a Native 

Population genetics/dynamics U.S. West 

Coast and 

B.C. 

Chinook Partial 

Catchment 

Both 0 0 



   

 

 

2
2
3

 

Population of Chinook 

Salmon? 

Small et al. 

2006 

Genetic structure of 

chum salmon 

(Oncorhynchus keta) 

populations in the 
lower Columbia River: 

are chum salmon in 

Cascade tributaries 

remnant populations? 

Population genetics/dynamics U.S. West 

Coast and 

B.C. 

Chum Partial 

Catchment 

Adult 0 0 

Stewart et al. 

2003 

Evidence for fine-scale 

natal homing among 

island beach spawning 

sockeye salmon, 

Oncorhynchus nerka 

Population genetics/dynamics AK and 

Yukon 

Sockeye Lake and 

Connected 

Streams 

Adult 0 0 

Tanaka et al. 

2000 

Behavioural 

thermoregulation of 

chum salmon during 

homing migration in 

coastal waters 

Biotelemetry Japan Chum Coastal/Off 

Shore 

Adult 3 1 

Tattam and 

Ruzycki 2020 

Smolt Transportation 

Influences Straying of 

Wild and Hatchery 

Snake River Steelhead 

into the John Day 

River 

Mark-recapture U.S. West 

Coast and 

B.C. 

Steelhead Single 

Catchment 

Both 2 2 

Tentelier et 

al. 2016 

Space use and its 

effects on reproductive 

success of anadromous 

Atlantic salmon 

Biotelemetry Europe Atlantic Single 

Catchment 

Adult 0 0 

Thedinga et 

al. 2000 

Effects of stock, 

coded-wire tagging, 

and transplant on 

straying of pink 
salmon (Oncorhynchus 

gorbuscha) in 

southeastern Alaska 

Mark-recapture AK and 

Yukon 

Pink Multiple 

Catchments 

Both 0 0 

Turcotte and 

Shrimpton 

2020 

Assessment of 

spawning site fidelity 

in interior Fraser River 

Microchemistry U.S. West 

Coast and 

B.C. 

Coho Partial 

Catchment 

Both 0 0 



   

 

 

2
2
4

 

Coho salmon 

Oncorhynchus kisutch 

using otolith 

microchemistry, in 

British Columbia, 
Canada 

Ueda et al. 

2016 

Involvement of 

hormones in olfactory 

imprinting and homing 

in chum salmon 

Phenotype/gene 

expression/morphometrics/endocrin

e response 

Japan Chum N/A Both 0 0 

Unwin and 

Quinn 1993 

Homing and straying 

patterns of Chinook 

salmon (Oncorhynchus 

tshawytscha) from a 

New Zealand hatchery 

– spatial distribution of 

strays and effects of 

release date 

Mark-recapture New 

Zealand 

Chinook Multiple 

Catchments 

Adult 1 1 

Vähä et al. 

2007 

Life-history and 

habitat features 
influence the within-

river genetic structure 

of Atlantic salmon 

Population genetics/dynamics Europe Atlantic Single 

Catchment 

Adult 5 1 

Walter et al. 

2009 

Gene flow increases 

temporal stability of 

Chinook salmon 

(Oncorhynchus 

tshawytscha) 

populations in the 

Upper Fraser River, 

British Columbia, 

Canada 

Population genetics/dynamics U.S. West 

Coast and 

B.C. 

Chinook Partial 

Catchment 

Adult 0 0 

Wellband et 
al. 2012 

Fine-Scale Population 
Genetic Structure and 

Dispersal of Juvenile 

Steelhead in the 

Bulkley-Morice River, 

British Columbia 

Population genetics/dynamics U.S. West 
Coast and 

B.C. 

Steelhead Single 
Catchment 

Juvenile 0 0 

Wertheimer 

et al. 2000 

Straying of adult pink 

salmon from their 

Mark-recapture AK and 

Yukon 

Pink Multiple 

Catchments 

Both 2 1 



   

 

 

2
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natal stream following 

embryonic exposure to 

weathered Exxon 

Valdez crude oil 

Westley et al. 

2015 

Signals of climate, 

conspecific density, 
and watershed features 

in patterns of homing 

and dispersal by 

Pacific salmon 

Mark-recapture U.S. West 

Coast and 
B.C. 

Chinook Single 

Catchment 

Adult 9 5 

Westley et al. 

2013 

Rates of straying by 

hatchery-produced 

Pacific salmon 

(Oncorhynchus spp.) 

and steelhead 

(Oncorhynchus 

mykiss) differ among 

species, life history 

types, and populations 

Mark-recapture U.S. West 

Coast and 

B.C. 

Multiple 

Oncorhynchu

s spp. 

Single 

Catchment 

Adult 0 0 

Wilson et al. 
2014 

Coastal marine and in-
river migration 

behaviour of adult 

sockeye salmon en 

route to spawning 

grounds 

Biotelemetry U.S. West 
Coast and 

B.C. 

Sockeye Estuary 
(marine and 

freshwater 

components

) 

Adult 7 2 

Wirth et al. 

2012 

A Remote-Sensing, 

GIS-Based Approach 

to Identify, 

Characterize, and 

Model Spawning 

Habitat for Fall-Run 

Chum Salmon in a 
Sub-Arctic, Glacially 

Fed River 

Modeling AK and 

Yukon 

Chum Reach Adult 4 2 

Withler et al. 

2000 

Intact genetic structure 

and high levels of 

genetic diversity in 

bottlenecked sockeye 

salmon (Oncorhynchus 

nerka) populations of 

Population genetics/dynamics U.S. West 

Coast and 

B.C. 

Sockeye Single 

Catchment 

Adult 0 0 



   

 

 

2
2
6

 

the Fraser River, 

British Columbia, 

Canada 

Yamaguchi et 

al. 2016 

Population structure 

and conservation 

genetics of 
anadromous white-

spotted char 

(Salvelinus 

leucomaenis) on 

Hokkaido Island: 

Detection of isolation-

by-distance 

Population genetics/dynamics Japan Charr 

(Salvelinus 

spp.) 

Multiple 

Catchments 

Adult 0 0 

Yamamoto et 

al. 2010 

Olfactory Imprinting 

of Amino Acids in 

Lacustrine Sockeye 

Salmon 

Lab-based/Closed system Lab or 

N/A 

Sockeye N/A Juvenile 0 0 

Yamamoto et 

al. 2013 

Olfactory Homing of 

Chum Salmon to 

Stable Compositions 
of Amino Acids in 

Natal Stream Water 

Lab-based/Closed system Lab or 

N/A 

Chum N/A Adult 3 1 

Yano and 

Nakamura 

1992 

Observations on the 

effect of visual and 

olfactory ablation on 

the swimming 

behavior of migrating 

adult chum salmon 

Oncorhynchus keta 

Biotelemetry Japan Chum Coastal/Off 

Shore 

Ocean 

Adult 

4 1 

Yeakel et al. 

2018 

Eco-evolutionary 

dynamics, density-

dependent dispersal 

and collective 
behaviour: 

implications for 

salmon 

metapopulation 

robustness 

Modeling Lab or 

N/A 

N/A Single 

Catchment 

Adult 0 0 



   

 

 

2
2
7

 

Zimmerman 

et al. 2013 

Species and Life 

History Affect the 

Utility of Otolith 

Chemical Composition 

for Determining Natal 
Stream of Origin for 

Pacific Salmon 

Microchemistry AK and 

Yukon 

Multiple 

Oncorhynchu

s spp. 

Multiple 

Catchments 

Both 0 0 
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Table A.C.2. Frequency of abiotic variable type per study attribute class.  

  
N Temperat

ure or 

temperatu

re proxy 

Dischar

ge 

Dept

h 

Spatial 

Dimensio

ns 

(distances, 

areas, 

elevation, 

etc.) and 

geomorphi

c 

classificati

on 

Oceanographic/Geophysical/C

limatic Condition (tides, 

magnetic field,  PDO, ENSO, 

etc.) 

Photoperi

od 

Passa

ge 

Barrie

rs 

Other 

habitat 

disturbance 

(infrastructu

re, land use, 

parasite, 

etc.) 

Other 

water 

chemistry 

(natal 

water 

concentrati

on, salinity, 

turbidity, 

pH, DO, 

contaminan

ts) 

Study 

metho
d 

catego

ry 

Biotelemetry 2

1 

13 13 11 8 4 1 3 0 5 

Stationary 
Counts 

1 1 1 0 2 0 0 0 0 0 

Lab/Closed 

System 

1

2 

5 0 0 4 0 2 0 1 11 

Microchemis

try 

1 2 0 0 0 0 0 0 0 0 

Modeling 4 1 0 0 3 4 0 6 0 0 

Mark-

Recapture 

1

4 

11 11 1 1 1 0 0 1 4 

Pheno/genot

ype 

5 4 0 0 1 0 0 0 0 0 

Population 
Genetics 

1
2 

1 1 0 16 2 0 2 7 3 

Study 

locatio

n 

AK and 

Yukon 

9 2 1 0 8 2 0 0 0 3 

Europe 1

8 

9 7 4 11 2 0 4 1 3 

Japan 4 4 0 4 1 0 0 0 0 1 

Lab or N/A 1

2 

5 0 0 4 0 2 0 1 10 

New 

Zealand 

1 0 1 0 0 0 0 0 0 0 

NA Atlantic 

Coast 

4 1 1 2 0 0 0 0 7 1 



   

 

 

2
2
9

 

South 

America 

1 0 0 0 1 0 0 0 0 0 

US West 

Coast 

2

1 

17 16 2 10 5 1 7 0 5 

Study 

specie

s 

Atlantic 1

9 

7 7 2 9 2 0 3 1 5 

Brook Trout 1 0 0 0 0 0 0 0 0 2 

Brown Trout 3 1 0 1 2 0 0 1 0 0 

Chinook 1

3 

10 11 0 10 1 0 0 0 0 

Chum 8 0 0 4 6 2 0 0 0 4 

Coho 4 0 0 0 1 0 0 6 0 1 

Grayling 1 1 0 1 0 0 0 0 0 1 

Masu 1 0 0 0 1 0 0 0 0 0 

N/A 
(theoretical 

model) 

1 0 0 0 0 2 0 0 0 0 

Multiple 

Oncorhynch

us 

2 1 1 0 0 0 0 0 0 1 

Pink 2 0 0 0 0 0 0 0 0 3 

Sockeye 1

1 

6 1 2 6 4 1 1 1 4 

Steelhead 4 3 4 0 0 0 0 0 0 0 
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