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A T M O S P H E R I C  S C I E N C E

Increasing forest fire emissions despite the decline 
in global burned area
Bo Zheng1,2*, Philippe Ciais2,3, Frederic Chevallier2, Emilio Chuvieco4, Yang Chen5, Hui Yang6

Satellites have detected a global decline in burned area of grassland, coincident with a small increase in burned 
forest area. These contrasting trends have been reported in earlier literature; however, less is known of their im-
pacts on global fire emission trends due to the scarcity of direct observations. We use an atmospheric inversion 
system to show that global fire emissions have been stable or slightly decreasing despite the substantial decline 
in global burned area over the past two decades caused by the carbon dioxide emission increase from forest fires 
offsetting the decreasing emissions from grass and shrubland fires. Forest fires are larger carbon dioxide sources 
per unit area burned than grassland fires, with a slow or incomplete follow-up recovery—sometimes no recovery 
due to degradation and deforestation. With fires expanding over forest areas, the slow recovery of carbon dioxide 
uptake over burned forest lands weakens land sink capacity, implying positive feedback on climate change.

INTRODUCTION
Global fires have widespread impacts on the global carbon cycle with 
immediate direct carbon emissions of about 2 gigatons (Gt) C year−1 
(1) to the atmosphere and indirect legacy carbon sinks of previously 
burned lands. Fires affect land carbon sinks through ecosystem re-
covery of CO2 uptake after fires and pyrogenic carbon production, 
which can be a net sink of atmospheric carbon if this production 
increases, e.g., from more fires with a higher flaming temperature. 
About 20% of the global fire emissions represent a source (2) of CO2 
that can be termed as irreversible on decadal to centennial time 
scales because it cannot be recovered by vegetation regrowth or soil 
carbon rebuild. This is the case for peatland fires, tropical deforesta-
tion, and degradation fires that have cascading effects on enhanced 
tree mortality and further carbon losses. Rainfall and temperature 
control the trends and interannual variability in fire regimes world-
wide (3–6). Extreme drought events tend to induce abnormally large 
fire activities and fire emissions (3, 7, 8). In addition, fire activity is 
also altered by the interaction between ecosystem susceptibility and 
human influences on fires. For example, cropland and pasture ex-
pansion and fire suppression activities have continued to drive a 
significant decline in the global burned area from 1998 to 2015 (9).

Identifying the trends and drivers of fire emissions in each region 
is key to understanding the dynamic role of fires in shaping the ter-
restrial carbon balance. Unlike the global burned area that has been 
readily monitored by satellites (10), the amount of CO2 emitted 
from fires cannot be measured easily. The heterogeneity and vari-
ability in fire duration and intensity, combustion completeness and 
efficiency, and plant mortality with subsequent carbon decay all 
hamper the extrapolation of a few site measurements to a large spa-
tiotemporal scale. Fire emission models based on remotely sensed 

fire activities provide global coverage with spatiotemporal detail but 
have large uncertainties in their emission estimates, as revealed by 
the large spread between models and their inconsistencies with ob-
servations (11, 12). One alternative powerful approach is to quantify 
fire carbon emissions from satellite observations of atmospheric 
carbon monoxide (CO) (7, 13), a key fire combustion tracer coemitted 
with CO2. Atmospheric inversion models combine transport mod-
eling and CO observations to deduce time-varying maps of fire CO 
emissions. This approach has provided the opportunity of observ-
ing the fire CO emissions from the whole globe at a high temporal 
frequency for the past two decades. However, the spatial resolution 
and uncertainties in atmospheric inversions are limited by atmo-
spheric transport models and satellite measurement. These long-
term observations were made with the Measurements of Pollution 
in the Troposphere instrument (MOPITT) (14), a satellite provid-
ing remotely sensed CO concentrations globally. Previous analyses 
of fire CO2 emissions based on MOPITT only focused on specific 
years and regions and used static CO2-to-CO combustion ratios to 
convert CO emissions maps into CO2 emissions maps, without ac-
counting for the spatial and seasonal variability in fire combustion 
efficiencies (15).

Here, we provide the first global reconstruction of fire CO and 
CO2 emissions from 2000 to 2019 based on the MOPITT CO obser-
vations. We combine these fire emission maps with the high-resolution 
burned area and land cover maps to evaluate the trends and drivers 
of fire emissions in the context of the global decline in burned area 
(9). First, we infer CO weekly emissions at a horizontal resolution of 
3.75° × 1.9° from MOPITT version 8 CO column retrievals using an 
atmospheric Bayesian inversion system (16). Second, we establish 
empirical relationships between CO emission, combustion efficiency, 
and CO2 emission based on 127 field measurements from the liter-
ature (17). This allows us to convert MOPITT-based fire emissions 
of CO to CO2 considering variable combustion conditions on each 
inversion grid at a resolution of 3.75° × 1.9°. The conversion process 
uses the burned areas derived from the Global Fire Emissions Database 
(GFED 4.1s) and the Carnegie-Ames-Stanford Approach (CASA) 
model–simulated fuel loads to estimate fire CO emission factors and 
the associated combustion efficiencies (see Materials and Methods). 
Third, we attribute fire CO2 emission variations to the contribu-
tions of changes in burned areas and in emissions per unit of area 
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burned using the 500-m resolution burned area data, which are re-
motely sensed by NASA’s satellite of Moderate Resolution Imaging 
Spectroradiometer (MODIS) (10). We also examine the spatial rela-
tionships between fire CO2 emissions and plant functional types 
(PFTs) derived from 300-m resolution land cover maps of the European 
Space Agency (ESA) (18) to investigate the influence of different 
biomes on fire emission dynamics. Last, we compare our emission 
estimates with fire model simulations from the Fire Model Inter-
comparison Project (FireMIP) (19) to understand model capabili-
ties and limitations of those models that participated in FireMIP.

RESULTS
Trends and drivers of global fire emissions 
from 2000 to 2019
On the basis of our analysis of the MOPITT CO observations and 
atmospheric inversions, we estimate the global fire CO2 emissions 
to be 1.8 Gt C year−1, on average, during 2000–2019, with a non-
significant decreasing trend of −0.5 ± 0.8% year−1 (95% confidence 
interval; purple curve in Fig. 1A). The quasi-stable emissions com-
bined with a significant decline in global burned areas (−1.6 ± 
0.4% year−1; orange curve in Fig. 1A) suggest that the global mean 
emission intensity (i.e., CO2 emissions per unit of area burned) has 
increased by 0.9 ± 0.9% year−1 since 2000 (purple curve in Fig. 1B). 
Such an increasing emission intensity thus partially compensated 
for the decreasing trend in global burned areas and prevented a syn-
chronous, rapid decline in the fire CO2 emissions. Global fire CO 
emissions, directly inferred from the CO atmospheric inversion, 
showed a slightly more negative but still insignificant decline of −0.7 ± 
1.0% year−1 (cyan curve in Fig. 1A) than CO2 emissions, the emis-
sion intensity of CO increasing by 0.6 ± 0.9% year−1 since 2000 
(cyan curve in Fig. 1B). With the use of our dynamic model to con-
vert CO to CO2 emissions based on combustion conditions, the in-
terannual variations of emission magnitudes and intensities are still 
consistent between CO2 and CO over the past two decades, probably 
implying the same underlying drivers. Figure S1 presents the global 
maps of prior and posterior fire fluxes of CO and CO2 derived from 
our atmospheric inversion and dynamic model results.

The contrast between satellite-based declining burned areas and 
inversion-based stable CO and CO2 emissions implies a global positive 

trend in the global mean fire emission intensity, which is crucial to 
understanding the drivers of global fire emission variations. On the 
basis of a geospatial analysis with ESA’s annual land cover maps 
(e.g., tree cover fraction shown in fig. S2), we find that interannual 
anomalies of fire emission intensities coincide regionally with a 
higher fraction of burned area from forest-dominated grid cells 
(i.e., trees cover more than 50% of the vegetated area within a model 
grid cell, which is different from the definition of forest in the Food 
and Agriculture Organization based on a tree canopy cover of more 
than 10% with trees capable of reaching a height of 5 m; orange 
curve in Fig. 1B). The coefficient of determination (R2) between 
these two factors between 2000 and 2019 is 0.77, suggesting that the 
changes in forest-dominated burned areas correlate highly with 
(probably explain 77% based on the R2 value) the interannual vari-
ability of global mean fire emission intensities. Although grid cells 
dominated by forest only account for 5% of global burned areas, 
they disproportionately contribute 20 and 18% of global CO and 
CO2 fire emissions, respectively. This is because trees have a larger 
fuel load and lose more carbon to the atmosphere than grasses per 
unit of area burned.

Variation of fire activities and emissions across regions 
and biomes
We next divide the globe into 18 fire regions (fig. S3) (16) to further 
understand the regional trends in burned areas, fire CO2 emissions, 
and emission intensities per unit of area burned (Fig. 2). Decadal 
changes (between 2000 to 2009 and 2010 to 2019) in fire CO2 emis-
sions (Fig. 2A) were smaller than those of burned areas in regions such 
as Northern Africa (NAF) and Equatorial Africa (EQAF). In some 
regions where burned areas declined [e.g., Russia (RUS) and Oceania 
(OCE)], CO2 emissions showed an opposite increasing trend as a 
result of a concurrent growth of emission intensities (Fig. 2B). Canada 
and Alaska (CAN) is the region where both burned areas and emis-
sion intensities increased rapidly, driving a substantial increase in its 
fire CO2 emissions from the 2000s to the 2010s. Brazil (BRA) is the 
only region with little changes in burned areas but reduced emissions 
from the 2000s to 2010s, thus providing evidence for a reduction in 
fire emission intensities.

In all studied regions (Fig. 2, C to H), both the trends and the 
interannual variations of regional fire emission intensities are 

Fig. 1. Global burned areas and fire emissions from 2000 to 2019. (A) Annual burned areas (orange curve) derived from MODIS 500-m resolution data product and the 
inversion-based estimates of fire CO (cyan curve) and CO2 (purple curve) emissions in this study. (B) Fraction of burned areas from the inversion model grid cells dominated 
by tree cover (orange curve) and the global average of the fire emissions of CO (cyan curve) and CO2 (purple curve) per unit of area burned. The values of trends are eval-
uated using the Mann-Kendall test.
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consistent with the changing fraction of burned area dominated by 
tree cover. The expansion of boreal forest fires in RUS (Fig. 2C) and 
CAN (Fig. 2D) increased fire emission intensities over these two 
regions. In BRA (Fig. 2E), the fire emission intensity increased from 
2000 to 2005, decreased from 2005 to 2013, and later increased 
again through 2019. This pattern of variability corresponds to the 
slowing of Amazonian deforestation through the application of 
strict policies between 2005 and 2013 (20), followed by accelerated 
deforestation since then due to the rollback of those policies, which 
is broadly coincident with reported deforestation rates in BRA’s 
Amazon (21). In addition to these political interventions, the in-
crease in fire incidence also shapes the fire emissions from Amazo-
nian forests during drought years (22, 23). In EQAF (Fig. 2F), the 
decline in burned areas led to small changes in the forest fire frac-
tions and the emission intensities, because, in that region, fires 
occur predominantly in the savanna biome. In OCE (Fig. 2G), we 

observed an anomalously high fire emission intensity in 2019 due to 
the widespread bushfire in eastern Australia (24, 25), a region that 
rarely burns. In Southeast Asia (SEAS) (Fig. 2H), the fire emission 
intensities are sensitive to drought events (7, 8, 13) with substantial 
interannual variations. The forest fires in RUS, Amazonia, Indonesia, 
and Australia presented simultaneous positive anomalies of fire emis-
sion intensity in 2019 (26, 27). Consequently, the global fire CO2 emis-
sions were 15% higher in 2019 than the 2000–2018 average, although 
the global burned areas were observed at the lowest level in 2019, in 
line with the long-term decreasing trend (Fig. 1A). Such a compound 
event with high forest fires in several regions is a source of concern 
for the stability of the land carbon sink.

We also analyzed ESA’s annual land cover maps (18) with MODIS- 
observed burned areas (10) and our MOPITT-constrained fire 
emission estimates using a grid-based approach. The land cover of each 
inversion model grid (3.75° longitude × 1.9° latitude) is categorized 

Fig. 2. Regional trends in burned areas, fire CO2 emissions, and fire CO2 emissions per unit of area burned. Each dot in (A) and (B) represents a region according to 
fig. S3, with the color of the dots representing annual average fire CO2 emissions between 2000 and 2019. These dots are plotted according to the relative change in 
decadal average burned areas between 2000 to 2009 and 2010 to 2019 on the horizontal axis. The vertical axes represent the relative changes from 2000s to 2010s in fire 
CO2 emissions and fire CO2 emissions per unit of area burned in (A) and (B), respectively. (C to H) Regional trends in fire CO2 emissions per unit of area burned (purple 
curve) and the fraction of burned area from the inversion model grid cells dominated by tree cover (orange curve) from 2000 to 2019.
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into tree, shrub, and grass fractions in the vegetated areas, and the 
spatial connections between burned areas and fire emissions are il-
lustrated on the basis of those three land cover types (Fig. 3). The 
grassland vegetation dominates both the global burned areas (Fig. 3A) 
and the declining trends in burned areas since 2000 (Fig. 3, E and I). 
In contrast, the burned areas present statistically significant increas-
ing trends in the grid cells, with a tree cover fraction larger than 50%. 
The biomes that exhibit statistically significant trends in burned 
areas did not show statistically significant trends in CO2 emission 
intensities (Fig. 3H). Consequently, the grass-dominated lands sig-
nificantly reduced fire emissions of both CO (Fig. 3F) and CO2 
(Fig. 3G), while the tree-dominated lands tended to increase fire 
emissions. On a decadal scale from the 2000s to 2010s, although 

large interannual variations existed, we observe more fire emissions 
from the tree cover–dominated grid cells but fewer emissions from 
grassland grid cells (Fig. 3, J and K). To confirm this, we also inte-
grate our inversion-based gridded fire emissions with the global 
forest change product of Hansen et al. (28) and the driver map of 
global forest loss from Curtis et al. (29) (fig. S4), suggesting that 
the increase in fire CO2 emissions mainly occurred over grid cells 
affected by tree loss. The analysis further suggests that the increase 
in forest fire emissions was not primarily caused by commodity- 
driven deforestation and shifting agriculture over the past decade. 
The tendency toward more forest burning drove up the global aver-
age fire emission intensities, which led to the distinct fire emis-
sion trends between grasslands and forests and lastly caused the 

Fig. 3. Spatiotemporal dynamics of burned areas, fire CO and CO2 emissions, and CO2 emissions per unit of area burned. Ternary plots are used to depict the 
spatial distribution patterns across tree, shrub, and grass cover fractions in the vegetated area within an inversion model grid cell. The plots of the first row (A to D) show 
the annual averages between 2000 and 2019, the plots of the second row (E to H) show the trends from 2000 to 2019 estimated by the Mann-Kendall test with the gray 
color representing a lack of statistically significant trends, and the plots of the third row (I to L) show the change in decadal averages between 2000 to 2009 and 2010 to 
2019. The plots of the first column (A, E, and I) are for burned areas, the plots of the second column (B, F, and J) are for fire CO emissions, the plots of the third column (C, 
G, and K) are for fire CO2 emissions, and the plots of the fourth column (D, H, and L) are for fire CO2 emissions per unit of area burned.
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decoupling of burned area trends and fire emission trends at the 
global scale.

Comparison with FireMIP model simulations
The global fire modules incorporated into terrestrial biosphere models 
from the FireMIP project (30) do not capture the decadal trends in 
fire CO2 emissions nor the fire emission intensity trends (Fig. 4). 
The seven FireMIP models shown in Fig. 4 gave global fire CO2 emis-
sions of 1.6 to 2.6 Gt C year−1, on average, from 2000 to 2012 and 
simulated CO2 emission intensities within the range of 3.9 to 
5.4 metric tons C ha−1. Our inversion-based analysis estimated 
1.8 Gt C year−1 emissions and 3.8 metric tons C ha−1 for emission 
intensities during the same period. Besides, the inversion-based emis-
sion estimates present small declines in CO2 emissions at a rate 
of −0.7 ± 0.6% year−1 (black dot in Fig. 4B) from 2000 to 2012, the 
trend of which is missed by the FireMIP models. The MOPITT- based 
inversions combined with MODIS burned areas produce an in-
creasing trend of 0.3  ±  0.7% year−1 from 2000 to 2012  in global 
mean fire emission intensity (black dot in Fig. 4D); however, only 
two FireMIP models simulated such an increasing trend. Three models 
even simulated decreasing trends in fire emission intensities, prob-
ably because they did not reproduce the tendency of the decreasing 

fires in grassland regions and the increasing fires in forest regions. 
Therefore, the representation of spatiotemporal dynamics of fires in 
different biomes needs to be improved in the fire models. The pre-
vious literature also shows that the FireMIP models cannot capture 
the observed decline in global burned area (9).

DISCUSSION
The major uncertainties in our study could lie in (i) the mismatch in 
spatial resolutions between atmospheric inversions and explanatory 
variables (e.g., burned area and land cover) and (ii) the uncertain-
ties underlying these data. First, our conclusions on emission trends 
and drivers are not affected by the discrepancy in spatial resolutions 
of data. To characterize emission drivers across biomes, we estimate 
the fraction of vegetation cover in each inversion model grid cell 
and investigate the spatial variation of fire emissions with vegeta-
tion cover composition (Fig. 3). Such an analysis leads to the same 
conclusion as the large-scale regional analysis (Fig. 2), both suggest-
ing that the contribution of fire emissions from tree-dominated lands 
has been increasing in recent years. This phenomenon has also been 
confirmed by an independent dataset of global forest change (fig. S4). 
Second, the uncertainties in atmospheric inversions have been 

Fig. 4. Comparisons of the FireMIP model simulations, GFED 4.1s, and FINN1.5 emissions with the inversion-based estimates. (A and B) Global fire CO2 emissions 
from 2000 to 2013 (several FireMIP model simulations are available up to 2012) and the trends from 2000 to 2012, respectively. (C and D) Global average fire CO2 emissions 
per unit of area burned from 2000 to 2013 and the trends from 2000 to 2012, respectively. The error bars in (B) and (D) are the range of ±1 SD that represents uncertainties 
in the trend estimation. The black curves and dots represent the inversion-based emission estimates in this study, and the other curves and dots are derived from the 
FireMIP models (19, 38), GFED 4.1s (1), and FINN1.5 (39). Here, we only use the simulation results from seven of the nine models in FireMIP. Two models were discarded, 
because they estimated more than 80% lower global burned areas than the others.
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evaluated in our previous study (16), which shows that the trends 
of inversion emissions were robust to different observation con-
straints, prior fluxes, and hydroxyl radical fields. The magnitudes of 
global burned areas differ among different data products while they 
present consistent declining trends since 2000 (fig. S5). Another 
source of uncertainty comes from the approximation of small fires 
from 2017 to 2019 based on the ratio map of GFED 4.1s to MODIS 
burned areas averaged between 2000 and 2016 (fig. S6). The as-
sumption of no time dependency in the ratio map could cause 
uncertainties at grid scale, while the small interannual variability 
in the ratios constrains the uncertainties in the analysis of burned 
areas at global and regional scales, which is not expected to influ-
ence the trend analysis in this study.

This study suggests that although global burned areas have de-
clined over the past two decades, the carbon emissions from global 
fires were not reduced proportionally. The declining CO2 emissions 
from the reduced burned areas over grasslands, mainly in African 
savannas, were partially compensated by larger fire emissions caused 
by the tendency of increased forest burning, particularly in the 
boreal and Amazonia ecosystems. Those opposite trends have been 
retrieved from the satellite observations of CO concentrations over 
different biomes and can be interpreted through the atmospheric 
inverse modeling in terms of the spatiotemporal dynamics of fire 
CO2 emissions. However, the current generation of fire models 
does not capture these trends, which reveals substantial gaps in our 
understanding of fire dynamics and drivers for different biomes. 
The increasing area burned over forests and the inability of models 
to reproduce this behavior over the study period implies that realis-
tically projecting future fire emissions is difficult. Unlike grassland 
fires, forest fires account for a large part of the net irreversible 
source of fire CO2 emissions. More forest fires without rapid recovery 
weaken the land carbon sink capacity in the following years, indi-
cating that pressures from fires on climate have not been relieved 
despite the decline in global burned area. We need to extend our 
ability not only to monitor an anomaly of fire emissions but also to 
track the decreased land carbon sink after fires, which could be 
monitored by satellites observing the recovery over forests.

MATERIALS AND METHODS
Global fire CO emissions inferred from atmospheric 
inversions
We use a global atmospheric inversion system developed within our 
previous study (16) with improved data input to estimate the global 
fire CO emissions from 2000 to 2019. This inversion system is built 
upon the global three-dimensional transport model of the Laboratoire 
de Météorologie Dynamique (LMDz) coupled with the Simplified 
Atmospheric Chemistry Assimilation System (SACS) (31, 32) and 
can infer the surface fluxes of trace gases from observations based 
on the Bayes’ theorem (33). This model framework has been devel-
oped and maintained by the research group at the Laboratoire des 
Sciences du Climat et de l’Environnement for more than 10 years, 
with the latest version developed and applied to reconstruct the 
global atmospheric CO budget from 2000 to 2017 (16) constrained 
by the MOPITT version 7 retrievals of CO columns. The optimized 
CO budget corrected the modeling bias of the prior data and agreed 
well with the independent measurement of surface CO concentra-
tions. The trends of the optimized CO emissions were robust to dif-
ferent observation constraints, prior interannual variation, and the 

trends of hydroxyl radical according to the sensitivity analysis and 
matched the independent estimates from accurate regional inventories 
(16). In this study, the LMDz-SACS inversion system is further im-
proved in two aspects. First, the meteorological field is nudged to the 
ERA5 global reanalysis (34), a new generation European Centre for 
Medium Range Weather Forecasts atmospheric reanalysis product 
that replaces the ERA-Interim data. Second, we use the MOPITT 
version 8 data as an observational constraint, which reduces the long- 
term bias drift and geographically variable retrieval bias compared 
to the previously used version 7 data (14).

With the improved inversion system, we estimated the global fire 
CO emissions from 2000 to 2019 based on the method of our previ-
ous studies (7, 15, 16). We first inferred surface total fluxes of CO 
from the MOPITT satellite CO retrievals at a spatial resolution of 
3.75° longitude × 1.9° latitude every 8 days. Then, the CO total fluxes 
were split into three sources on land (i.e., anthropogenic, biomass 
burning, and biogenic) and the oceanic source based on the distinct 
spatial seasonal distributions of CO emissions from these four dif-
ferent sources. Anthropogenic sources are incomplete combustion 
processes of fossil fuels and biofuels. Biomass burning sources are 
the fires caused by humans or lightning on fire-prone landscapes 
such as grasslands and forests. Biogenic sources refer to the CO 
emissions generated by plant leaves. The oceanic sources release 
CO to the atmosphere from marine biogeochemical cycling. The 
proportions of emissions from each source in the model grids 
(3.75° × 1.9°) are derived from the latest prior emission inventories 
(16). Since fires dominate the local CO emissions in the fire season 
and the trend analysis cancels out a major part of the systematic 
errors, the reconstruction of the fire emissions from our atmo-
spheric inversions constrains the attribution bias of source-specific 
CO fluxes. In this work, we analyzed the fire emissions at an aggre-
gated level (by region and land cover type), which further reduces 
the uncertainties in fire emission estimates at grid scale.

Global fire CO2 emissions derived from dynamic  
CO2-to-CO ratios
Our estimate of fire CO2 emissions is based on the inversion-based 
fire CO emissions and on the modeling of the modified combustion 
efficiency (MCE). MCE is defined as the ratio of carbon in fire CO2 
emissions to carbon in fire emissions from both CO and CO2. MCE 
is a key metric that represents burning efficiency in vegetation fires, 
reflecting the relative role of flaming and smoldering combustions 
(17). Following the definition of MCE, we write the CO2 fire 
emissions as

   E  CO2,i,j   =   
 MCE  i,j   ─ 1 −  MCE  i,j  

   ×  E  CO,i,j   ×   44 ─ 28    

where i represents a month between 2000 and 2019, j represents a 
model grid cell, ECO2 and ECO are the fire emissions of CO2 and CO, 
respectively. The spatiotemporal dynamics of MCE are reconstruct-
ed using the method established by our previous study (15), where 
MCE was written as a linear function of CO emission factors based 
on the field measurements and the CO emission factors were de-
rived from inversion emissions combined with a fire fuel combus-
tion database.

Specifically, MCE and fire CO emission factors are estimated by 
the following two equations
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   MCE  i,j   = a + b ×  EF  CO,i,j    

   EF  CO,i,j   =   
 E  CO,i,j   ─  BA  i,j   ×  Fuel  i,j  

    

where EFCO is the fire CO emission factor, a and b are the coeffi-
cients that determine the relation between MCE and EFCO, BA is 
the burned area, and Fuel is the biomass combustion per unit area 
burned. The coefficients a and b are estimated using the robust lin-
ear regression method based on 127 sets of field measurements 
collected by Andreae (17), including the measurement of fires in 
savanna and grassland (sample number: 31), boreal forest (13), 
temperate forest (39), tropical forest (9), peatland (6), and agricul-
tural residues in fields (29). All of these measurement data and the 
regression line are presented in fig. S7. The R2 of the linear regres-
sion is 0.94, indicating the robustness of this model that predicts 
MCE based on EFCO. a and b are estimated as 0.9971 and −0.0009, 
respectively, which are consistent with other estimates from the 
literature (15, 35). We use this linear model built upon wildfire 
measurement campaigns for different biome categories to estimate 
the gridded monthly MCE from 2000 to 2019 over the globe. The 
monthly maps of BA and Fuel are both derived from the fourth ver-
sion of the GFED 4.1s (1), which retrieved BA accounting for small 
fires and estimated Fuel using the CASA model with some necessary 
adjustments based on field measurements and literature values. For 
the years from 2017 to 2019, the GFED 4.1s only provided a beta 
version of the estimate of biomass combustion (i.e., BA × Fuel) 
when this study was conducted but has not given the BA and Fuel 
values separately.

Burned area and land cover maps
The burned areas used in this study are derived from the MODIS 
500-m resolution burned area product (MCD64A1) (10) after im-
plementing the corrections to account for small fires. The coarse 
resolution satellite data could lead to omission errors in the MODIS- 
observed burned areas (36, 37). The GFED 4.1s dataset develops 
algorithms to estimate the burned areas of small fires, and the 
comparison between MODIS and GFED 4.1s burned area suggests 
that the MODIS data are slightly lower than the GFED 4.1s one, 
probably due to the omission of small fires in MODIS. To correct 
the underestimation bias, we build a map (fig. S6) representing the 
ratios of GFED 4.1s burned areas to MODIS ones at the spatial resolu-
tion of 3.75° × 1.9° using the multiannual average between 2000 and 
2016 when the two datasets are both available. This map is used to 
adjust the MODIS burned area data from 2017 to 2019 to create 
consistent burned area maps as the GFED data used in this analysis. 
Besides, this study mainly focuses on the analysis of decadal trends, 
which are not expected to be affected by the difference in absolute val-
ues of burned areas between the MODIS and GFED 4.1s estimates.

The global land cover maps used in this study are derived from 
the 300-m resolution annual land cover product produced by the 
ESA Climate Change Initiative, which divides the land surface into 
37 classes at a spatial resolution of 300 m from 1992 to 2018. We use 
the tool developed by Li et al. (18) to translate the 37 original land 
cover classes into 14 different PFTs, which are further aggregated 
into three vegetated categories (i.e., tree, shrub, and grass) and a 
nonvegetated category. The 2019 data are not available at present; 
therefore, the 2018 data were used instead. All of the PFTs maps are 

aggregated into the spatial resolution of 3.75° × 1.9° in our analysis. 
To illustrate the spatial correlation between fire emissions and tree 
loss, we also use the global forest change product (30 m × 30 m) 
from Hansen et  al. (28) and the driver map of global forest loss 
(0.1° × 0.1°) from Curtis et al. (29), which are aggregated into the 
resolution of 3.75° × 1.9° in the analysis.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abh2646
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