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SUMMARY.

Recently supervised machine learning has been ascending in providing new predictive approaches 

for chemical, biological and materials sciences applications. In this Perspective we focus on the 

interplay of machine learning method with the chemically motivated descriptors and the size and 

type of data sets needed for molecular property prediction. Using Nuclear Magnetic Resonance 

chemical shift prediction as an example, we demonstrate that success is predicated on the choice 

of feature extracted or real-space representations of chemical structures, whether the molecular 

property data is abundant and/or experimentally or computationally derived, and how these 

together will influence the correct choice of popular machine learning methods drawn from deep 

learning, random forests, or kernel methods.
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Successful machine learning in the chemical sciences relies on the interplay of three key 

components: chemical representation, machine learning method, and relevant data. Molecules can 

be represented as extracted descriptors (fingerprints, chemical identities) or direct representations 

(3D coordinates, electron densities), a choice that will depend on the machine learning approach 

such as deep learning, kernel methods, and statistical models, as well as on the type, quality, and 

abundance of training and testing data.

INTRODUCTION

The rise (again) of machine learning (ML) in the molecular sciences is a transformation of 

the traditional ways in which we perform computational chemistry. Unlike von Neumann 

machine algorithms, which articulate mathematical equations that can be solved in a logical 

progression, most machine learning is formulated as ”non-algorithmic” computing in 

applications where the complexity of the data or learning task makes the formulation of the 

sequence of symbolic functions impractical or impossible to define. In this case, machine 

learning is best applied when a symbolic algebra for chemical properties is difficult or 

impossible to solve, instead using (typically) supervised learning of well-curated data to map 

molecules to chemical properties. With appropriate strategies, ML has been successfully 

applied to quantum mechanically derived energy and force evaluation1–3, molecular 

dynamics4, three-dimensional structure prediction of small molecule crystals to large 

proteins5–7, pathways for chemical reactivity and catalysis 8–10, and the rapid evaluation of 

spectroscopic and molecular properties11–14.

ML has a long and storied history that builds on traditional mathematical programming, 

statistical and clustering models, and early meta-heuristic methods such as genetic 

algorithms and artificial neural networks (ANNs)15. Broadly speaking, the most popular 

machine learning approaches used in the chemical sciences today have evolved from these 

early efforts to now include non-parametric statistical learning such as decision trees and 

random forests, kernel-based models such as Gaussian Process regression (GPR) or Kernel 
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Ridge regression (KRR), and deep learning (DL) networks exemplified by convolutional 

neural networks (CNNs)16.

Although machine learning methods were developed primarily by statisticians or computer 

scientists for other tasks such as image recognition17, the chemical sciences domain has 

arguably advanced most effectively the development of novel feature representations, or 

descriptors, that informs the physical nature of the input-output mapping. These well 

designed descriptors offer many benefits including greater interpretability of the ML 

approach, to incorporate physical constraints on the learning parameters, or to better utilize a 

ML surrogate model for classification or regression.

But in order for ML methods and chemical descriptors to be effective requires the 

appropriate form and amount of the training data. If there is abundant training data which 

covers a wide scope of chemical space, it empowers DL networks with their (typically) huge 

number of parameters to discover complicated patterns in the data through successive 

transformations through their layers. For example, the popular CNNs have utilized widely 

available 3D representations in successful application to enzyme classification 18, molecular 

representations 19, and amino acid environment similarity analysis 20. On the other hand, 

small datasets with a well formulated chemical representation can still be utilized by 

statistical or kernel models to make faithful predictions, such as predicting electronic 

structure correlation energies using sparse Hartreea Fock input 21. Hence the choice of 

machine learning approach will be decided by whether the data stems from first-principles 

but limited in quantity due to expensive calculations from quantum mechanics (QM) or from 

abundant inexpensive calculations, or experimental data that may also be noisy, error prone, 

or difficult to interpret.

In this perspective, we first describe the three elements of successful prediction: ML 

methods, chemical feature representations, and dataset sizes and quality. We then illustrate 

their interplay for predicting nuclear magnetic resonance (NMR) chemical shifts, either 

through a combination of engineered features with random forest regression for protein 

NMR chemical shifts in solution11 compared to shallow ANNs, while a deep learning CNN 

can improve performance over a KRR for chemical shift prediction in the solid state by 

exploiting physically motivated data augmentation12. Finally we conclude with an outlook 

for future directions of machine learning in the areas of feature representation development, 

data scarcity and sparsity, as well as physics-infused models and approaches to greater 

interpretability of machine learning.

THE COMPONENTS OF MACHINE LEARNING POPULAR ML METHODS IN 

THE CHEMICAL SCIENCES

Artificial neural network methods attempt to map the input-output relationship through a 

mathematical model which resembles the connections of neurons in a mammalian brain. In 

the chemical context, the input of a supervised machine learning model is a ”representation”, 

x, of a group of atoms that may form a drug molecule, a protein, a crystal structure, etc, and 

the output, y, is the chemical property of interest.
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The most basic computing element of an ANN, the simple perceptron22, is capable of 

performing linear or logistical regression and classification with appropriate activation 

functions (Figure 1), and can perform Boolean operations such as the simple OR and AND 

functions. A slightly more complex architecture is needed when executing the exclusive 

XOR function that requires a pre-processing ”hidden” layer between the input and output 

layers to appropriately define the linear decision boundaries that separates its solution space. 

Such early shallow ANN architectures, using everything from hand-crafted features to 

molecular structures, have successfully predicted more than 20 different types of 

physiochemical properties of a molecule, such as water solubility, Henry’s law constant, 

heats of formation and crystal packing.23

The universal approximation theorem states that a single hidden layer with many simple 

perceptrons and suitable activation functions can represent any function of {x} to predict f (y 

|{x}), regardless of complexity or how non-linear is its solution space. However what is not 

guaranteed is that there is a universal procedure for how to learn the transformation {x} → f 
(y |{x}) using a single layer rchitecture, nor what is the best feature representation of {x} to 

ensure that it will perform well on previously unobserved target function data. Hence most 

of the recent excitement in machine learning is centered around DL architectures, an 

approach that replaces a single hidden layer with many, many hidden layers each composed 

of many artificial neurons, and the rapidly evolving meta-heuristics used to calculate with 

them. The DL network learns the input-output representations by minimizing a loss function 

through adjustments of the weights that connect the neuronal nodes of its architecture.

The most classical example of a DL architecture are the CNNs that were originally 

introduced and popularized by LeCun for handwriting and other image recognition tasks17. 

CNNs are neural networks that use convolution operations in place of general matrix 

multiplication (as in standard ANNs) in at least one of their layers. During the learning 

process the convolutional layers typically generate multiple feature maps that when 

aggregated together represent new formulations of the input data. Figure 1 pictorially 

displays how the input data is ”transformed” by the processing units of the convolution 

through many layers. In order to aid the learning strategy of a CNN, the sparser L 

connections between L convolutional layers have been recently replaced by a ”denser” 

network of L(L+1)/2 direct connections, also known as a ”DenseNet”24. In this case the 

feature maps of all preceding layers are used as inputs to a current convolution layer, and its 

own resulting feature maps are then used as inputs into all subsequent layers of the deep 

layered architecture.

The primary distinction of a DL architecture is its much greater network capacity relative to 

early ANN’s, and thus its greater advantage in handling much larger data sets than 

previously possible. The DL approach has also advanced through better learning heuristics 

that are better established relative to early ANNs16: regularization through appropriate loss 

functions and back-propagation, data augmentation using noise injection or non-linear 

transformations, and the use of dropout and batch normalization; adaptive learning strategies 

that bear strong equivalence to a Newton step using preconditioners that are combined with 

stochasticity in the gradients as per methods like RMSProp25 and Adam26; and finally the 
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finetuning of the ”hyperparameters” in all of these learning choices through formulations of 

validation data sets and through methods such as early stopping and ensemble prediction.

As such, DL is ready for prime time in the chemical sciences as their architectures can be 

adapted to many types of problems, their hidden layers reduce the need for feature 

engineering, and they have benefited from several important regularizations that allows them 

to efficiently learn from high-dimensional data. At the same time DL approaches are not 

always suitable as general-purpose ML methods because they have orders of magnitudes 

more parameters to optimize and thus require much more expertise to tune (i.e. to set the 

architecture and optimize the hyperparameters), and especially because they require a very 

large amount of well-curated labelled data. We note that a DL model is characterized as 

being overfit when the test error increases from the minimum of the bias-variance trade-off 

curve16, reaching a maximum when the DL model is merely interpolating on the training 

data. However, very recent work has shown that increasing model capacity beyond the point 

of interpolation results in improved performance for reasons that are not well understood.27

Alternatively, machine learning methods such as GPR and KRR can be traced back to the 

advent of Support Vector Machines (SVMs), which formulate a clever choice of kernel to 

capture the similarities of a collection of data points. If the optimal kernel is found, the 

simplest linear regression is sufficient to predict the target value from its input data using 

similarity to the input features of the training dataset. As such kernel methods are powerful 

supervised classifiers that optimize non-linear decision boundaries directly. They have been 

found to be superior to multiple linear regression and radial basis function neural networks 

when applied to chemical toxicity prediction for example28. More recently, KRR has 

realized excellent performance on regression prediction for molecular properties such as 

NMR chemical shifts for small molecules either in solution29,30 or in the solid state31. In 

this case the physical understanding of a chemical system helped in the creation of a 

reasonable kernel function. Specifically the SOAP kernel32 is explicitly designed to 

faithfully represent an atomic environment of a molecule with uniqueness. Furthermore 

kernel methods naturally incorporate symmetry functions for which it is often desirable to 

enforce translational or rotational invariances that may be relevent to the chemical 

prediction32,33.

While kernel methods work very well in practice, and are robust against overfitting even in 

high- dimensions, they are tricky to tune due to the importance of picking the right kernel, 

and if the kernel function is not smooth enough in the space of the atomic environment, the 

resulting kernel-based method will suffer from outliers in the training dataset that will 

degrade prediction performance. They also require the storage of and operation on all of the 

support or feature vectors, which can be prohibitive for application to large datasets. 

Especially in the case of KRR and GPR, because the similarity kernel needs to be applied 

between the pairwise features with all data examples in the training dataset, its unfavorable 

scaling with the number of training examples prevents it from benefiting from large datasets, 

although a number of strategies including parallelization can mitigate their cost34.

Often statistical models such as decision trees are preferred over kernel methods as they are 

more robust to outliers, are much more computationally scalable, and do not require the luck 
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of finding the kernel function as they quite naturally model non-linear decision boundaries 

thanks to their hierarchical structure.16 In a statistical learning model such as decision trees, 

training comprises the optimal splitting of the features driven by a decrease in the maximum 

entropy loss function from information theory. Decision tree models are equally suited for 

big or small datasets because once the cutting points have been identified, the application of 

the algorithm to new data is just a constant of time. The classification or regression 

prediction from a statistical model are also easier to interpret compared to other parametric 

models, because the splitting reveals causal relationships which are easy to understand and 

explain. For example, by analyzing the number of times each feature is used in a node to 

split data in a decision tree, we can understand the relative importance of different features 

and to determine those that are most influential for the predicted property35. But of all 

machine learning techniques, decision trees are amongst the most prone to overfitting 

because we cannot know a priori how to formulate the smallest tree that completes the 

learning task, and all practical implementations must mitigate this challenge. This has led to 

specialized approaches such as pruning or bagging and boosting to prevent overfitting, as 

well as other regularization techniques also developed in deep learning such as early 

stopping and ensemble learning for which decision trees benefit from becoming ”random 

forests”16. Statistical learning models have been successfully applied to molecular property 

predictions, as in the example of modeling of different quantitative structure- activity 

relationships with a decision tree based on random forest optimization36, and are starting to 

replace the use of SVMs in classification tasks more broadly.

FEATURE REPRESENTATION

Similar to all modeling tasks, a representation or descriptor, is a mathematical abstraction of 

the inherent nature of the input, x, such as its chemical structure. Therefore, it is subject to 

the limitations of omitted features that may be influential for the property of interest. Thus, it 

is common practice to add more physical details into the representation such that they then 

correlate better/easier with target properties, y. In fact, research topics like quantitative 

structure property/activity relationships (QSPR/QSAR) have been popular and effective in 

the feature domain before modern machine learning has become more widespread. For ML, 

feature representations, when matched with the capabilities of the learning algorithms, are 

our most effective means to learn a chemical pattern/trend in data37.

There are key criteria that we should consider for the construction of new descriptors:

• uniqueness.

The representation should be unique with respect to the relative spatial arrangement of 

atoms. Often we need to develop descriptors that are invariant to the symmetries of the 

system (e.g., translation, rotation, atomic permutation, etc.), but are also distinctive for 

asymmetries (e.g., stereochemical chirality of molecules). Hence we prefer a one-to-one 

mapping not only for the easier training of ML models but also for a better generalizability 

and prediction performance.
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• universality.

The representation should be easily extendable to any system. If a descriptor is more 

representative to the fundamental chemical nature of the system, it also exhibits better 

transferability to new and future datasets. This is a key point for the accelerated exploration 

of molecular space, for example by means of virtual high-throughput screening38.

• efficiency.

The representation should be computationally efficient. The key advantage of any ML model 

to its computational or experimental alternatives is the efficiency. However, for some type of 

descriptors the cost of feature representation is narrowly comparable to the generation of 

reference (computational) data. For example, this is specifically the case for higher-order 

many-body interactions 39.

Fulfilling all these criteria for the development of a desirable descriptor is a challenging task 

that necessitates expert knowledge of chemistry and computer science. In addition, the 

comparison of descriptors in terms of performance and efficiency is a nontrivial task, as it 

strongly depends on the data type and molecular diversity. Thus, for a given data set and 

choice of ML method, a fair comparison of feature representations also requires the same 

training setup in terms of training set size and sampling. The main reason is that if a data set 

is sparse and less representative of the entire molecular space, their feature representation is 

also limited to the available molecular makeup. Thereby, the resulting prediction 

performance is also restricted to the applicability domain of model that is imposed by 

training data.

Considering a broad spectrum of representations used to build ML models 40, the required 

chemical information to encode molecular descriptors varies based on their availability and 

necessity for a given task. For example, inspired by QM we might consider atomic numbers, 

Z, and their chemical bonding sufficient to differentiate chemical systems from each other 

(2D descriptors). Moreover, if we aim to ultimately sidestep expensive QM calculations, we 

hope for the availability of atomic coordinates in order to correlate with rigorous electronic 

properties of the system (3D descriptors)41. Basic inputs with topological features of 

chemical structures such as type and size of ring or walk and path counts are also useful.

The computational cost of obtaining the chemical information affects the overall efficiency 

of feature representation, and should be considered for their usage. For instance, the choice 

of 3D descriptors for training on QM computational data may require almost equally 

expensive geometry optimization for data generation. Thus, for future predictions the cost of 

preparing ML model inputs will be comparable to the reference QM calculations. However, 

if the atomic coordinates are available in advance, e.g., from experimental characterizations, 

or if the reference data is more demanding than geometry optimization (e.g., experimental 

data that is not easy to simulate such as melting point or solubility) the computational cost is 

often justifiable.

In addition, physicochemical properties such as electronegativity, polarizability, and 

ionization potential has been commonly used in the drug discovery community. These types 

of data can be obtained using first principles or data mining, and has its roots in the 
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bioinformatics and cheminformatics domains. Descriptors based on such processed 

information are commonly referred to as hand-crafted descriptors or ”engineered” 

features42.

The employed techniques for determining feature representation rely on different factors, 

including data type, ML approach, and of course the developer’s creativity. For example, one 

may consider a molecule as a weighted graph with features assigned to its nodes and edges, 

i.e., atomic features and bond features, and their consecutive interactions of atomic and bond 

features of their nearest neighbours. Thus, the overall representation is built using local 

atomic environments that rely on 2D chemical information. In 2015, Duvenaud and 

coworkers applied this idea in the form of graph convolutional networks (GCNs) to 

generalize the well established fingerprint algorithms that describe molecular makeups43. 

The hierarchical complexity of GCNs helped to extract from the topological combination of 

atomic and bond features an accurate explanation of a variety of chemical properties. Since 

then, a large number of published studies have reported successful improvements by tuning 

types of atomic/bond features and their interactions13,44. Several recent studies also consider 

non- bonded interactions (i.e., disconnected nodes) by accounting for interatomic distances 

as pairwise features45,46 (see Figure 2). Alternatively, one may consider many-body 

interactions beyond only pairs of atoms and assign a unique functional form, e.g. symmetry 

functions, to represent the histogram of available interactions up to a certain degree32,33.47. 

Thus, similar to composing molecular descriptors from atomic and pairwise features, they 

decompose many-body interactions and build a descriptor that relies on all terms 

individually and simultaneously.

More recent attention has focused on the provision of 3D structures with minimum 

information loss. The idea is to represent molecules to the ML model in the same way that 

they are visualized 12,18, e.g., using a set of atomic densities. This type of representation has 

similarities with both QM, i.e., by providing electron density distribution of atoms, and 

computer vision, i.e., by replicating human vision using the complete configuration of the 

elements of a system 48.

Due to the flexibility in design and hierarchical manipulation of latent feature space, neural 

networks have become the cornerstone of creative ideas to integrate chemical information 

with the ML workflow. The results of such efforts has created a new branch of feature 

representation that is commonly known as learned features. Later in this paper, we present 

notable examples from our lab of employing engineered and learned features in the course of 

molecular property prediction.

TYPES OF DATA AND THEIR ABUNDANCE

The quality of labelled chemical datasets, composed of (x, y) pairs, is one of the key 

components in developing an accurate and predictive ML model. Even though generating 

systematic and exhaustive datasets which samples the chemical space computationally has 

arrived recently49, experimental datasets are indispensable because some properties are 

either difficult or impossible to compute. In developing ML models, one needs to be aware 

Haghighatlari et al. Page 8

Chem. Author manuscript; available in PMC 2021 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of the inherent differences between computational and experimental data, and take them into 

account when designing suitable representation for a given target property.

The reliability, accuracy, and reproducibility of computational data is improved by applying 

a concrete computational protocol across the dataset and carefully choosing and reporting its 

parameters, like level of theory, basis set, convergence criteria, and number of grid points. 

Even though similar standards can be applied in generating experimental data, the nature of 

experimental protocol or experimental conditions (e.g., solvent, temperature, pH) is most 

likely different as the data is commonly compiled from various sources. This leads to an 

inherent inconsistency in data compounded by different measurement errors in different 

experiments. For example, Nuclear magnetic resonance (NMR) chemical shift prediction 

utilizes X-ray crystal structures and solution NMR measurements to define the ( x, y ) 

labelled pairs, although their correspondence is not one-to-one.

The comprehensiveness of computational data is systematically improvable by continued 

enumeration of chemical compounds and their properties. In contrast, experimental 

measurements are timeconsuming and resource-intensive, and adding additional data points 

to an experimental set is difficult, thus they sample chemical space more sparsely. This has 

led to combining experimental and computational data in some cases50. To further capture 

the inherent complexity of experimental data, their feature representation can be augmented 

with environmental conditions (like temperature, pH, and solvent). For example, hydrogen-

bonding environments from crystal waters in the X-ray structure were also included in the 

prediction of a chemical shift of atoms in proteins to account for solvent effects11. Data 

augmentation from computation can be designed to incorporate ensemble averaging of 

experimental structures, such as introducing backbone flexibility commensurate with X-ray 

diffraction 51 and/or side chain repacking that reproduces NMR J-couplings52 for proteins. 

Alternatively, one can include multiple input representations to the same property value 

which also increases the size of the dataset. Typically these augmentation approaches seek 

the sweet spot of low computational cost and high chemical/structural diversity to achieve 

the desirable experimental prediction accuracy.

INTERPLAY OF REPRESENTATION, DATA, AND MACHINE LEARNING ALGORITHM TO 
PREDICT CHEMICAL PROPERTIES

NMR spectroscopy is one of the most important molecular probes of chemical composition, 

structure and dynamics of small molecules through to large proteins. The least invasive 

techniques of NMR are the chemical shifts and spin-spin splittings which can be measured 

to very high accuracy. Because they are sensitive to their functional groups, detailed 

geometries, and chemical environments, they allow for prediction of solution phase protein 

structures or to identify or verify the structure of chemical compounds in the crystalline 

phase.53

The connection between NMR chemical shifts to structural or dynamical properties, while 

true in principle, is nevertheless sometimes difficult to reveal in practice through direct 

assignment of the spectrum. One solution to this problem is to rely on expensive QM 

methods that often can accurately predict spectral observables from structure of small 

molecular fragments54. While chemical physics approaches have achieved considerable 
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success in spectral assignment and structure determination, here we consider two recent 

examples of supervised learning approaches where the interplay of chemical descriptors, 

data size and augmentation strategies, and choice of ML algorithm has significantly 

improved the accuracy of chemical shift predictions and their connections to complex 

structure in aqueous solution and in the solid state.

ENGINEERED FEATURES AND RANDOM FOREST REGRESSION TO 

PREDICT CHEMICAL SHIFTS FOR AQUEOUS PROTEINS

Given the expense of QM calculation for magnetic properties, heuristic NMR ”calculators” 

have been developed for efficient chemical shift evaluations for aqueous proteins. In 

particular, the single-layer feed-forward network developed and packaged as SPARTA+55 

remains among the most popular of chemical shift prediction methods. Better predictive 

power can also be gained by exploiting sequence homology as that used in SHIFTX256, as 

the expectation is that as more sequence and spectroscopic data is deposited in public 

repositories, it will allow interpolation to replace extrapolation for a variety of NMR 

observables.

Even with these successes, these algorithms are still open to change as modern day ML 

approaches march forward alongside accumulating biological data. Furthermore, engineered 

features are ideal for predicting experimental chemical shifts for proteins in solution because 

they are not overly sensitive to different instantaneous conformations in the thermalized 

ensemble while still differentiating between atomic environments of aqueous proteins that 

exhibit different chemical shifts. Specifically, classification features, like whether an atom is 

involved in a hydrogen bond or a residues secondary structure category, are relatively stable 

for different conformations in the ensemble relative to the coordinates of the atoms in 3D 

space, while still being distinct enough for different residues, secondary structure, or 

proteins being predicted.

Recently engineered features extracted from protein X-ray crystal structures has been 

utilized together with random forest regression to formulate the UCBShift chemical shift 

predictor for aqueous proteins.11 All backbone atoms and the side chain β-carbon chemical 

shifts of a residue are mapped from numerical and non-numerical features built from the 

geometries and biophysical properties of a tripeptide centered at the target residue. The 

features were designed with uniqueness, universality and efficiency in mind, which include 

backbone and side chain torsion angles, BLOSUM numbers identifying the likelihood of 

residue substitution, secondary structure, hydrogen bond geometries, ring currents, half 

surface exposure, accessible surface area, and non-linear transformations of distance features 

which have physical relevance from QM. All of these features are formulated as internal 

properties of the protein which naturally exhibit translational and rotational invariance, 

hence being unique to the structure itself while universal for the global frame. All these 

features could be efficiently calculated from a given protein structure within seconds.

However, the universality of the representation is limited to proteins without functional 

group modifications or bonding with ions, ligands or other hydrogen-bonding motifs with 

water. To increase the applicability of our ML model, we have also included extraction of 
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crystal water positions in the evaluation of features such as hydrogen bonding, and 

alignment scores that characterize sequence and structural homology to other proteins with 

recorded chemical shifts, aiding the chemical shift prediction through learned direct transfer 

if the similarity is faithful enough to the query protein.11

The UCBShift algorithm utilizes two successive decision tree ensemble models (Figure 3a), 

one which differentiates the various atomic environments in a protein utilizing engineered 

features, and a second that make predictions based on the most similar sequence and/or 

structural alignments in the training dataset. As a result, UCBShift has significantly lower 

root-mean-square-error (RMSE) when applied to an independently generated test dataset 

when compared to SPARTA+ and SHIFTX2 on all the relevant protein atom types (Figure 

3b). Further analysis of the total number of decisions made in each tree, which is visualized 

in Figure 3c, reveals that the QM-inspired transformations of the features account for more 

than 20% of the feature importance.11 Even though some features like half surface exposure 

seem to play a more limited role in prediction, their existence extends the model’s capacity 

in recognizing some atomic environments which might be differentiated by this feature, 

therefore making the representation more unique.

SPARTA+55 and SHIFTX256, which are based on simpler machine learning models, as well 

as our own attempts with deep recurrent neural networks with residual connections, have not 

performed as well as the random forest model presented here. This is because simple MLs 

do not have sufficient capacity to recognize the complexity of the mapping from engineered 

features to chemical shifts, and the limited number of well-formulated structure-chemical 

shift pair in the dataset prevents those more complicated deep neural networks to effectively 

train. This consequence once again reinforces that choice of the ML method, together with 

the appropriate representation, need to be regulated by the size and intrinsic structure of the 

dataset in order to achieve excellent predictive power for solution- phase NMR properties. 

Future improvements are still possible once more data becomes available so that features 

could be learned directly from a deep learning setup.

CHEMICAL SHIFT PREDICTION IN THE SOLID STATE FROM LEARNED FEATURES USING 
DL AND DATA AUGMENTATION

Crystal structures of small molecules can be identified by comparing the experimental 

measurements of solid-state NMR chemical shifts with the calculated results using DFT, 

typically using the Gauge- Including Projector-Augmented Waves (GIPAW) method 54. 

However, because of the cubic scaling with the size of the atomic basis sets used in the DFT 

calculation, ML methods have been investigated to approximate the QM physics. For 

example, a shallow ANN using engineered features was used to predict chemical shifts (and 

quadrupolar couplings) in silica materials using symmetry functions operating on the 

Cartesian coordinates to respect rotational invariance of the chemical shift value to applied 

magnetic field57. Paluzzo et al. devised a ML approach using 3D structures, while also 

directly incorporating rotational symmetry using KRR and the SOAP kernel32, yielding very 

good results for chemical shift prediction for small molecule crystal systems31. Even though 

a significant acceleration factor was achieved over QM using these ML approaches, the 

training data generation using DFT is itself a bottleneck, thereby making a shallow ANN 
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necessary, while the quadratic-to-cubic complexity for calculating and inverting the kernel 

matrix makes it also impractical for KRR to treat larger datasets, although a number of 

strategies including parallelization can mitigate the cost34.

The question we set out to address was whether a deep learning approach was tenable for the 

prediction of DFT chemical shifts for hydrogen (1H), carbon (13 C), nitrogen (15N) and 

oxygen (17O) of organic molecules in molecular crystals. The input representation was 

comprised of the 3D coordinates of atoms in the unit cell taken from the Cambridge 

Structural Database (CSD), ”imagery” that was ideally suited to a multi-resolution CNN 

based on a DenseNet approach as shown in Figure 4a. This way of presenting molecules is 

similar to the sum of Gaussians representation of Bartok et al. 58 or the use of atom-centered 

wavelets as used by Eickenberg and co-workers59.

We utilized the chemical environment for each atom whose chemical shift is predicted is 

represented on a 3D grid with a calculated Gaussian density at each atom center. This input 

representation describes local bonding characteristics that arrange atoms into 3D shapes with 

more global spatial organization. CNNs are ideally suited to the 3D structural data and 

electron density representation. This is because the network architecture of a CNN was 

originally formulated to operate on data that has temporal organization, i.e. 2D images 

arranged in a time series, but for which the time axis can be replaced by a 3rd spatial 

dimension to represent the electron density distribution. Hence we benefited from the open 

access to the original DFT chemical shifts calculated on 2000 organic molecules containing 

~30 – 40 atoms to create the labelled data.31

Furthermore, better data representations and data quantity proved crucial to the success of 

our DL approach. First, we showed that the chemical environment for each atom type could 

be represented by multiple resolutions (MR), thereby incorporating the atomic densities of 

the other atoms over different grid sizes of d (4Å, 6Å, 8Å, 10Å, and 14Å) with 16×16×16 

voxels, and representing each resolution with its own dedicated channel. Under each 

resolution, we divided the density based on the atom types into 4 different channels for 1H, 
13 C, 15N, 17O, respectively, similar to RGB channels used in image recognition. Second, 

given the limited number of examples in the training dataset, and the prohibitive expense of 

creating an order of magnitude more data, we recognized that a cheap data augmentation 

method was obviously available. Instead of enforcing chemical shift invariance through 

explicit rotational symmetry operations, we instead just augmented the data by rotating the 

Cartesian coordinates of atoms randomly with the Euler angles uniformly distributed 

between [−π
2 ,π

2 ] along each of x, y and z axis. During the training phase, both the original 

data and augmented data are included in the training dataset, while during the testing phase 

we average the prediction results over the different rotation configurations, thereby 

manifesting ensemble learning.16

Figure 4b summarizes the results for the MR-3D-DenseNet workflow in terms of the root 

mean square error (RMSE) for chemical shift prediction of the DFT results for each atom 

type. Using the greater capacity of the MR-3D-DenseNet deep network, we obtain nearly 

15% improvement for 17O and close to 25% for 13 C, 15N, and 1H chemical shifts over 
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KRR, for which hydrogen chemical shifts are similar in error between ab initio calculations 

and experimental measurements.

CONCLUSIONS AND OUTLOOK

We have shown that three key components of a machine learning workflow - algorithm, 

features, and data - are inexorably intertwined for achieving predictive success for 

biological, chemical, and materials applications. Inconsistent decisions about choice of ML 

methods and feature representation with respect to size and source of data can lead to 

inaccurate deployment of techniques in molecular property prediction. We illustrated that 

proper execution of the ML triad can lead to successful prediction of NMR chemical shifts 

of molecules in solution or for crystalline states. When a molecular property is symmetry-

invariant we can enforce symmetry operations in the ML method or through data 

augmentation that permits one to exploit a deep learning strategy. Data augmentation was 

important in the solid state NMR chemical shift deep learning model, since generating new 

QM data is computationally expensive. By contrast while chemical shifts are very sensitive 

to 3D representations, the predicted solution NMR data is noisy and highly averaged and 

feature extracted data can be beneficial. We showed this on the example of aqueous protein 

chemical shift prediction, in which the choice of expertly-crafted features can facilitate the 

learning task in a direct and concise form to avoid redundancy and curse of dimensionality.

Not surprisingly, these three key components are also at the heart of current developments in 

ML, and many open questions and challenges need to be addressed to push the boundaries 

toward new applications. In terms of feature representation, systematic development of new 

descriptors, standardization of their evaluation, and easier accessibility via user interfaces 

(e.g., Python libraries) are necessary to establish their long-term development 60. A 

transparent and sustained study of feature representation would involve researchers with 

variety of domain knowledge and expertise to accelerate future developments.

In addition, technical challenges involved with scarce and sparse data sets need to be 

vigorously discussed, as it is often a prevalent case for applying ML to real-world chemical 

applications when expensive calculations or difficult experiments are the bottleneck. The 

good news is that the entire ML community has been giving more attention to this issue, and 

as a result, techniques that can deal with limited data have been growing:

• methods that are intrinsically suitable for small size data, such as kernel methods 

or low-variance models with feature reduction capabilities,

• methods that leverage small size data in the learning task, for example by 

transfer learning 61 from pre-trained or high-fidelity models, or in some cases by 

multitask learning,

• methods for data curation, such as learning to impute missing data10 or 

representation goals can be achieved with data augmentation when it is not 

practical to incorporate symmetries explicitly in the feature representation12

• decreasing the number of data generation trials via sampling methods using an 

active learning (AL) approach 60,62; AL methods can discover the uncertainty of 

Haghighatlari et al. Page 13

Chem. Author manuscript; available in PMC 2021 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



trained models in the high-dimensional data distribution and query more 

informative training data that improves the model most

• future work would be to investigate imbalanced data and underrepresented 

regions of the solution space studied in the form of unsupervised ML techniques, 

such as clustering methods.

Moreover, future research needs to examine more closely the interpretability of chemical 

ML models. In this regard, gaining chemical insights and understanding direct relationships 

between molecular observables and their properties is the ultimate goal. The issue with 

model interpretability is that ML methods are designed to learn patterns (or mappings) in 

high-dimensional data that is otherwise not obvious to ourselves. Thus, predictive models 

are generally perceived as a so-called black-box model with limited transparency63. 

However, we argue that this would not be the case if we work with hand-crafted features and 

the simplest possible ML model. Hence part of the current concern regarding interpretability 

of ML models stems from highly parameterized models with arbitrary choice of hidden 

states. Thus, a general practice for the future work is to simplify state-of-the-art models and 

evaluate model shrinkage as part of a cost-benefit analysis. For instance, a learning curve 

based on the number of trainable parameters (or number and type of layers) should become a 

trend in applications of deep learning models.

On the other hand, ML complexity is still sometimes needed, and the interpretability of 

models requires greater contributions from expertise equipped with domain knowledge. For 

example relevance propagation techniques64 can help interpret a trained ML model. Recent 

efforts on developing visualization tools can also help to monitor the change/gain by adding 

extra layers to deep learning models.

Often there is a fear that a new approach such as ML could supplant existing computational 

chemistry techniques or suppress models designed for physical insight. This will never be 

the case. Given the considerable progress in algorithms, molecular feature representation, 

and data accessibility, we expect interest in applying ML to almost any vein of chemical and 

materials sciences will continue to grow and ultimately settle in as a long term player in the 

general computational chemistry landscape.
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Opportunities/Challenges:

• Scarce and sparse chemical data sets. The number of unique small molecules 

is practically infinite, with number estimates of possible synthesizable small 

molecules ranging from 1024-1060. Machine learning could expand coverage 

of chemical space – for instance in design, synthesis, and development stages 

of drugs – that traditionally is a resource-intensive task.

• Machine learning chemical reactions is a far more difficult task than using ab 
initio data to train non-reactive potential energy surfaces. It is the next frontier 

of machine learning in the molecular sciences– to generate a predictive map 

of chemical reactivity space which can chart all reaction pathways in complex 

environments.

• Physics-informed machine learning: Machine learning is designed to 

determine patterns in high-dimensional data that is otherwise not obvious and 

thus are perceived to have limited transparency. A worthy goal is to develop 

physics-inspired features and creation of data sets that model experiments for 

better understanding of machine learning outcomes.
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Figure 1. 
The use of a simple perceptron of an ANN as part of the transformation of a 3D 

representation of a molecule with convolutions accumulated through layers of a CNN to 

yield atomic magnetic properties in a molecular framework, such as a chemical shift or 

scalar coupling value.
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Figure 2. 
The illustration of graph convolutional networks (GCN) with different representations of the 

caffeine molecule as input. Molecular information can be represented as atomic and bond 

feature tensors extracted from connectivity based 2D information, or as distance matrices 

obtained from 3D coordinates, or any other form of sensible chemical representations.

Haghighatlari et al. Page 21

Chem. Author manuscript; available in PMC 2021 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
(a) Illustration of the UCBShift algorithm11 (b) Testing RMSEs (ppm) for each atom type 

from SPARTA+, SHIFTX2 and UCBShift, when evaluated on an independently generated 

test dataset (c) Relative importance of all the input features analyzed from UCBShift model.
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Figure 4. 
(a) Illustration of MR-3D-DenseNet architecture (b) Testing RMSEs (ppm) for each atom 

type from KRR, 3D-DenseNet without data augmentation and 3D-DenseNet with data 

augmentation.

Haghighatlari et al. Page 23

Chem. Author manuscript; available in PMC 2021 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	SUMMARY.
	Graphical Abstract
	INTRODUCTION
	THE COMPONENTS OF MACHINE LEARNING POPULAR ML METHODS IN THE CHEMICAL SCIENCES
	FEATURE REPRESENTATION
	uniqueness.
	universality.
	efficiency.

	TYPES OF DATA AND THEIR ABUNDANCE
	INTERPLAY OF REPRESENTATION, DATA, AND MACHINE LEARNING ALGORITHM TO PREDICT CHEMICAL PROPERTIES

	ENGINEERED FEATURES AND RANDOM FOREST REGRESSION TO PREDICT CHEMICAL SHIFTS FOR AQUEOUS PROTEINS
	CHEMICAL SHIFT PREDICTION IN THE SOLID STATE FROM LEARNED FEATURES USING DL AND DATA AUGMENTATION

	CONCLUSIONS AND OUTLOOK
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.



