
UC San Diego
UC San Diego Previously Published Works

Title
Dissertation: A Data Center End-host Stack for Predictable Low Latency and Dynamic
Network Topologies

Permalink
https://escholarship.org/uc/item/5hf8f740

Author
Kapoor, Rishi

Publication Date
2015

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5hf8f740
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

A Data Center End-host Stack for Predictable Low Latency and Dynamic Network
Topologies

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Rishi Kapoor

Committee in charge:

Professor George Porter, Co-Chair
Professor Amin Vahdat, Co-Chair
Professor George C. Papen
Professor Alex C. Snoeren
Professor Geoffrey M. Voelker

2015

Copyright

Rishi Kapoor, 2015

All rights reserved.

The Dissertation of Rishi Kapoor is approved and is acceptable in quality

and form for publication on microfilm and electronically:

Co-Chair

Co-Chair

University of California, San Diego

2015

iii

DEDICATION

To my parents, my teachers and my family.

iv

EPIGRAPH

There is more to life than simply increasing its speed.

Mahatma Gandhi

Prediction is very difficult, especially about the future.

Internet quote, often attributed to Niels Bohr

If you can’t measure something, you can’t understand it ... and you can’t improve it.

H. James Harrington

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xi

Acknowledgements . xii

Vita . xv

Abstract of the Dissertation . xvii

Chapter 1 Introduction . 1
1.1 Background and challenges . 3

1.1.1 Internet services and tail latency . 3
1.1.2 Reconfigurable topologies . 4
1.1.3 Data center end-host traffic pattern . 5

1.2 Hypothesis and approach . 6
1.3 Contributions . 7

1.3.1 A study of NIC burst behavior at microsecond timescales 7
1.3.2 Predictable Low Latency for Data Center Applications 8
1.3.3 Closed-loop control plane for reconfigurable topologies 8

1.4 Organization . 9
1.5 Acknowledgements . 9

Chapter 2 Background and Related Work . 11
2.1 Study of traffic patterns . 11

2.1.1 Sources of bursts . 12
2.1.2 Application . 12
2.1.3 Transport . 13
2.1.4 Operating system . 14
2.1.5 Hardware . 14

2.2 Key-Value stores . 15
2.2.1 Memcached overview . 16
2.2.2 System description . 16
2.2.3 Other KV-stores . 19

vi

2.3 Predictable low latency . 20
2.3.1 Optimized Network/OS interfaces . 20
2.3.2 Operating System Improvements . 20
2.3.3 Lock Contention . 21
2.3.4 Data center Networks & Applications . 21

2.4 Reconfigurable topologies . 22
2.4.1 Demand estimation . 22

2.5 Acknowledgements . 23

Chapter 3 BulletTrains: A study of NIC burst behavior at microsecond timescales 24
3.1 Traffic measurements . 25

3.1.1 Measurement methodology . 26
3.1.2 Microbenchmarks . 29
3.1.3 Effect of application behavior . 30
3.1.4 Effect of NIC hardware . 32

3.2 Implications . 34
3.3 Summary . 37
3.4 Acknowledgments . 37

Chapter 4 Importance of tail latency in data centers . 38
4.1 The partition/aggregate pattern . 39
4.2 The dependent/sequential pattern . 42
4.3 Summary . 44
4.4 Acknowledgements . 45

Chapter 5 Data Center Latency Characterization . 46
5.1 Sources of end-to-end application latency . 46
5.2 End-to-end latency in Memcached . 50
5.3 Summary . 53
5.4 Acknowledgements . 54

Chapter 6 Chronos: Predictable Low Latency for Data Center Applications . . . 55
6.1 Design Goals . 55

6.1.1 Design and implementation . 56
6.1.2 Application case studies . 63

6.2 Evaluation . 64
6.2.1 Memcached on an optimized kernel . 67
6.2.2 Uniform request workload . 69
6.2.3 Skew in request inter-arrival times . 70
6.2.4 Skew in request access pattern . 74
6.2.5 Chronos Web Search . 75
6.2.6 Chronos OpenFlow controller . 76

6.3 Discussion . 77

vii

6.3.1 Effect of NUMA-awareness on latency . 78
6.4 Summary . 80
6.5 Acknowledgments . 80

Chapter 7 End-host support for Reconfigurable Topologies 82
7.1 Introduction . 82
7.2 REACToR overview . 84
7.3 TCP and control plane . 88

7.3.1 TCP under TDMA scheduling . 88
7.3.2 TCP and stateless scheduling . 90
7.3.3 Multipath packet reorder . 91
7.3.4 Packet switch incast . 94

7.4 MPTCP and stateless routing . 95
7.5 Closed loop evaluation . 96
7.6 Summary . 101
7.7 Acknowledgements . 101

Chapter 8 Conclusions and Future Research . 103
8.1 Limitations and future research . 105

Bibliography . 107

viii

LIST OF FIGURES

Figure 3.1. The data center testbed includes an Ethernet packet switch and an
FPGA that timestamps packets at a 6.4-ns granularity. 25

Figure 3.2. CDF of burst sizes with synthetic traffic patterns (with TSO and
LRO enabled). 28

Figure 3.3. NFS server. Read syscall size large determine the burst size. 29

Figure 3.4. HDFS DataNode server. The read-ahead parameter determine the
burst size. 30

Figure 3.5. MapReduce Sort.For MapReduce workloads, intermediate data
shuffling and various keep-alive messages reduce the burst length. 31

Figure 3.6. The TSO NIC mechanism directly increases the burst length, while
LRO acts indirectly with a smaller effect. 33

Figure 3.7. Increasing the TSO size beyond the default maximum of 64 KB
results in larger bursts. 35

Figure 4.1. Predicted by probabilistic analysis. As the scale of the Parti-
tion/Aggregate communication pattern increases, latency increases
due to stragglers. 40

Figure 4.2. Empirically observed. As the scale of the Partition/Aggregate
communication pattern increases, latency increases due to stragglers. 41

Figure 4.3. Predicted by queueing analysis. 42

Figure 4.4. Empirically-observed. 43

Figure 5.1. Memcached latency distribution at 30% (low) utilization. 48

Figure 5.2. Memcached latency distribution at 70% (high) utilization. 49

Figure 5.3. Web search latency of single Index server. 52

Figure 6.1. Chronos system overview. 57

Figure 6.2. Tail latency for one and four threads (1T and 4T) running in either
one process or four processes (1P or 4P). 66

ix

Figure 6.3. Latency of baseline Memcached (MC), Memcached with user-level
network APIs (UNet locks), and Chronos (CH) with 10 open loop
clients. 68

Figure 6.4. Latency as a function of the number of clients with the Memslap
benchmark (closed loop). 70

Figure 6.5. The effect of skewed request inter-arrival times on tail latency.
X-axis in logscale. 71

Figure 6.6. The latency with two threaded (2T) and four threaded (4T) instances
of Chronos-MC under skewed request arrivals. 72

Figure 6.7. An evaluation of the responsiveness of the Chronos load balancer
module. 73

Figure 6.8. The effect of NUMA-awareness on the Chronos-Memcached load
balancer. There is little difference at lower levels of utilization, and
an approximate doubling of latency (and latency variation) at the
highest levels of utilization. 79

Figure 7.1. 100-Gb/s hosts connect to REACToRs, which are in turn dual-
homed to a 10-Gb/s packet-switched network and a 100-Gb/s
circuit-switched optical network. 84

Figure 7.2. Network traffic estimates across the end-host layers 87

Figure 7.3. Scheduled Burst sizes for various workloads. 91

Figure 7.4. Solstice promotes a flow from the packet switch to a circuit. Pack-
ets from both paths initially arrive interleaved, and TCP triggers
duplicate ACKs and fast re-transmits, lowering throughput. 92

Figure 7.5. Packets from both EPS path and Circuit path arrive interleaved. . . 93

Figure 7.6. TCPPROBE results . 94

Figure 7.7. End-host stack with MPTCP. 96

Figure 7.8. MPTCP maintains good performance using separate per-path TCP
state machines. 97

Figure 7.9. Circuit utilization for a variant of one-to-all traffic pattern. 99

Figure 7.10. Circuit utilization for Hadoop terasort shuffle transfers 100

x

LIST OF TABLES

Table 2.1. Sources of network bursts. 13

Table 3.1. Average throughput with different NIC settings. 33

Table 3.2. The effect of LRO on CPU utilization and throughput 34

Table 5.1. Latency sources in data center applications. 47

Table 6.1. Latency of the OpenFlow Controller. 76

xi

ACKNOWLEDGEMENTS

As we continue to make technological advancements some (or most) of the work

done in this dissertation will be irrelevant down the road but the thing that will remain

constant will be the love and support of the people who helped me reach this point. I am

grateful to all of them.

I am indebted to my advisors Amin Vahdat and George Porter for their constant

guidance, support and encouragement without which this would not have been possible.

Amin inspired me to join grad school and also work with him after the grad school.

Discussions with Amin have been always been thought provoking and were turning point

for many of my projects. Amin leads by example and it would be a dream come true to

follow in his foot-steps. George is always around when you need him and still lets you

run with the ball. George has helped turn nascent ideas into papers, helped in writing, sat

through countless practice talks, and many more. I was extremely fortunate to work with

both of them and learn from their perspectives.

I would also like to thanks my committee members Geoffrey Voelker, Alex

Snoeren and George Papen for their regular feedback and encouragement. Geoff has

been a constant support while carefully nudging me to the right path. Geoffs’ and Alexs’

attention to detail made my graphs and papers more beautiful.

I am thankful to several of my collaborators and colleagues who made this

journey enjoyable and at the same time intellectually simulating. Thank you Mike

Conley, Sambit Das, Alex Forensich, He Liu, Feng Lu, Sivasankar Radhakrishnan and

Malveeka Tewari. Lonnie wrote the FPGA packet mirroring functionality which was

used in the BulletTrains experiment. Alex Forensich implemented the FPGA statistics

module for the Scheduling paper. I have benefited from working with several senior PhD

students who were patient with a naive and inquisitive grad student. Thank you Harsha

Madhyastha, James Anderson, Alex Rasmussen, Mohammad Al-Fares and members of

xii

the DCSwitch group.

Several other professors have helped me reach the doorstep of PhD. George

Candea gave me an opportunity and early exposure to research that convinced me to

apply for graduate school in US. Sudeep Sanyal and Sugata Sanyal pushed me to work

towards publications while I was an undergraduate.

I would like to thank all my friends who kept me in high spirits and made this

journey memorable. Often it was their enthusiasm that kept me going. I am grateful to

my extended family in India for being always supporting and encouraging. My younger

brother Rohit graciously stepped in to fill in for my share of responsibilities and ensured

that I can pursue my dreams without any other worries. Finally, last but not least, I

can’t express enough gratitude for my parents sacrifices, love and support. They have

inculcated values of hard work, discipline and persistence that was the most useful skill.

Chapter 1, 2, 4, 5, 6, 8 in part, contains material as it appears in Kapoor, Rishi;

Porter, George; Tewari, Malveeka; Voelker, Geoffrey M. ; Vahdat, Amin. “Chronos:

Predictable Low Latency for Data Center Applications”, Proceedings of the ACM Sym-

posium on Cloud Computing (SOCC), San Jose, CA, October 2012 The dissertation

author was the primary investigator and author on this paper.

Chapter 1, 2, 3, 8 in part, contains material as it appears in Kapoor, Rishi; Snoeren,

Alex C.; Voelker, Geoffrey M. ; Porter, George. “Bullet Trains: A study of NIC burst

behavior at microsecond timescales”, Proceedings of ACM CoNEXT, Santa Barbara,

CA, December 2013. The dissertation author was the primary investigator and author on

this paper.

Chapter 1, 7 in part, contains material that has prepared for submission for

publication. Liu, He; Kapoor, Rishi; Tewari, Malveeka; Forencich, Alex; Zhang, Sen;

Savage, Stefan; Voelker, Geoffrey M.; Papen, George; Snoeren, Alex C.; George, Porter.

“Scheduling Circuits in a Packet World”. The dissertation author is the second author on

xiii

this paper.

Chapter 2, 7 in part, contains material as it appears in Liu, He; Lu, Feng; Foren-

cich, Alex; Kapoor, Rishi; Tewari, Malveeka; Voelker, Geoffrey M.; Papen, George;

Snoeren, Alex C.; George, Porter. “Circuit Switching Under the Radar with REACToR”,

11th USENIX Symposium on Networked Systems Design and Implementation (NSDI),

Seattle, WA, April 2014 The dissertation author was the fourth author on this paper.

xiv

VITA

2003-2007 B.Tech in Information Technology,
Indian Institute of Information Technology, Allahabad, India

2009-2012 M.S in Computer Science,
University of California, San Diego

2011-2015 Doctor of Philosophy, University of California, San Diego

PUBLICATIONS

Circuit Switching Under the Radar with REACToR, He Liu, Feng Lu, Alex Forencich,
Rishi Kapoor, Malveeka Tewari, Geoffrey M. Voelker, George Papen, Alex C. Snoeren,
and George Porter, Proceedings of the 11th ACM/USENIX Symposium on Networked
Systems Design and Implementation (NSDI), Seattle, WA, April 2014.

Bullet Trains: A study of NIC burst behavior at microsecond timescales, Rishi Kapoor,
Alex C. Snoeren, Geoffrey M. Voelker, and George Porter, Proceedings of ACM
CoNEXT, Santa Barbara, CA, December 2013.

Dahu: Commodity Switches for Direct Connect Data Center Networks, Sivasankar
Radhakrishnan, Malveeka Tewari, Rishi Kapoor, George Porter, and Amin Vahdat,
Proceedings of the ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), San Jose, California, October 2013.

Chronos: Predictable Low Latency for Data Center Applications, Rishi Kapoor, George
Porter, Malveeka Tewari, Geoffrey M. Voelker, and Amin Vahdat, Proceedings of the
ACM Symposium on Cloud Computing (SOCC), San Jose, CA, October 2012.

ThemisMR: An I/O-Efficient MapReduce, Alexander Rasmussen, Michael Conley, Rishi
Kapoor, Vinh The Lam, George Porter, and Amin Vahdat, Proceedings of the ACM
Symposium on Cloud Computing (SOCC), San Jose, CA, October 2012

NetBump: User-extensible Active Queue Management with Bumps on the Wire.
Mohammad Al-Fares, Rishi Kapoor, George Porter, Sambit Das, Hakim Weatherspoon,
Balaji Prabhakar and Amin Vahdat Proceedings of the ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS), Austin, Texas,
October 2012.

xOMB: Extensible Open Middleboxes with Commodity Servers James William
Anderson, Ryan Braud, Rishi Kapoor, George Porter, and Amin Vahdat, Proceedings of

xv

the ACM/IEEE Symposium on Architectures for Networking and Communications
Systems (ANCS), Austin, Texas, October 2012

scc: Cluster Storage Provisioning Informed by Application Characteristics and SLAs,
Harsha V. Madhyastha, John C. McCullough, George Porter, Rishi Kapoor, Stefan
Savage, Alex C. Snoeren, and Amin Vahdat, USENIX ;login: 37(3), June 2012

scc: Cluster Storage Provisioning Informed by Application Characteristics and SLAs.
Harsha V. Madhyastha, John C. McCullough, George Porter, Rishi Kapoor, Stefan
Savage, Alex C. Snoeren, and Amin Vahdat. To appear in Proceedings of the 10th
USENIX Conference on File and Storage Technologies (FAST’12), San Jose, CA,
February 2012

xvi

ABSTRACT OF THE DISSERTATION

A Data Center End-host Stack for Predictable Low Latency and Dynamic Network
Topologies

by

Rishi Kapoor

Doctor of Philosophy in Computer Science

University of California, San Diego, 2015

Professor George Porter, Co-Chair
Professor Amin Vahdat, Co-Chair

The scale of modern data centers enables developers to deploy applications across

thousands of servers. The variety of applications and the scale of operations impose

onerous challenge of meeting application performance requirements while maintaining

efficiency. Today, data center operators typically over-provision the network and run

services at low utilization to rein in latency outliers, thus decreasing efficiency. This large

scale inefficiency results in high monetary, energy, and management expenses.

This dissertation focuses on redesigning the end-host network stack to improve

xvii

network efficiency and achieve low latency and latency variation at high utilizations . We

begin by studying traffic emanating from modern servers across a variety of data center

applications. We find that traffic is highly bursty, which contradicts the network flow

model where traffic is uncorrelated. We use this observation to design networks that can

benefit from bursty behavior.

Second, in data center applications, predictability in service time and controlled

latency, especially tail latency, are essential for building performant applications. Current

practice has been to run such services at low utilization to rein in latency outliers, which

decreases efficiency. To combat this, we present Chronos, which is a framework to reduce

end-host latency and latency variation. Chronos reduces Memcached latency by a factor

of 20 compared to typical deployments.

Third, a range of new data center switch designs incorporating wireless or optical

circuits depend on fast reconfiguration of the underlying topology. These hybrid designs

assume a perfect, closed-loop control plane which end-host network stacks cannot provide

today. We present the design and implementation of a closed-loop control plane using

only software changes at the end host operating system that enable these topologies to

support unmodified applications running over TCP.

Taken together, these contributions demonstrate we can meet performance require-

ments of data center applications while running data centers at high levels of efficiency.

xviii

Chapter 1

Introduction

The Internet has changed the way we communicate with each other and with

our surroundings. It is estimated that there are more than 2.9 billion people connected

to the Internet and for the majority, the Internet is still an abstract notion where they

store and access emails, photos, music and other bits of information. As the Internet

has so seamlessly integrated in our lives, the Internet services that help us to navigate

information and maintain and create new social and professional links are taken for

granted. Many of the everyday services we use, such as e-commerce, payment of bills,

and banking, now run on Internet.

The Internet has revolutionized the way we access and also from where we access

information. This transition has been remarkably fast over the past decade. For example,

in 1990s videos were stored on tapes, then came CDs followed closely by DVDs and

Blu-ray. Now, with Internet based video streaming services such as Netflix and YouTube,

users can access videos instantly from anywhere in the world. This instant access that was

a privilege a few years ago is already a presumed thing and with the growing popularity

of cell phones these services are a finger tap away. Many of these services are customized

based on user preference.

These services not only need to deliver Gigabytes of data and show customized

results and recommendations to the user (“Big-data”), but also deliver them instantly

1

2

and predictably (predictable latency). Studies have shown over the years, humans value

predictability in performance over faster average performance [72, 79] and can discern

variations in performance down to 150ms [80].

To support billions of users and a plethora of services, service operators have

built server farms (or data centers) across the globe. These facilities are spread across

10,000s of sq. ft with tens of thousands of servers storing petabytes of data. Inside the

data center the applications and services are distributed across hundreds of servers. These

servers are interconnected through complex networking fabric. The scale of data centers,

imposes high monetary, energy, and management costs, placing increased importance on

efficiency.

Within data centers, applications have different and stringent performance re-

quirements. For applications such as Web search and Memcached [53], the networks

must provide low-latency access to data that is spread across the cluster. For “Big data”

applications such as Hadoop [87], networks must deliver high bisection bandwidth. To

meet cost efficiency, services and applications often share the same networking and end-

host infrastructure. Thus, in addition to meeting the latency and bandwidth requirements

of applications, the operators also need to isolate different tenants and applications from

each other. For this data center operators deploy a variety of packet processing devices

that process data packets to implement several value-added services.

However, to meet these stringent applications requirements data center operators

typically over-provision the network and run these applications at low utilization to rein

in latency outliers, thus decreasing efficiency. This large scale inefficiency results in

high monetary, energy, and management costs. In this work, we focus on leveraging

the end-host stack i.e. applications, operating system and NICs to improve network

efficiency and application performance. Higher levels of efficiency can be leveraged to

either perform more work for each application, scan more data to return better results,

3

or to do the same amount of work on a smaller machine footprint, reducing capital and

operating expenses.

In the remainder of this chapter, we begin by describing trends and challenges in

data center and how it affects overall data center efficiency. In this context, we present

our hypothesis and describe the approach we took to solve these challenges. We end the

chapter by providing the organization of this thesis.

1.1 Background and challenges

1.1.1 Internet services and tail latency

Modern Web applications often rely on composing the results of a large number

of subservice invocations. For example, an end-user response may be built incrementally

from dependent requests to networked services such as caches or key-value stores. Or, a

set of requests can be issued in parallel to a large number of servers (e.g., Web search

indices) to locate and retrieve individual data items spread across thousands of machines.

Hence, the 99th percentile of latency typically defines service level objectives (SLOs):

when hundreds or thousands of individual remote operations are involved, the tail of the

performance distribution, rather than the average, determines service performance. Being

driven by the tail increases development complexity and reduces application quality [71].

To meet SLOs, Web service designers must consider the composition of the

latency of a large number of small requests. For example, to fulfill interactive requests

from end users, many modern Web applications must locate and retrieve thousands

of individual data items spread across thousands of machines. In social networking,

generating the “news feed” or Inbox for a user might involve retrieving thousands

of individual photos, news items, status feeds, and advertisements with little to no

spatial locality among the thousands of servers hosting the data items [48]. As another

4

example, performing a Web search involves retrieving portions of the inverted index

from hundreds to thousands of servers before performing a join and ranking across the

retrieved content [24].

Since each of these individual operations involves retrieving a relatively small

amount of data from a remote server, it is the latency of individual operations—the union

of application, operating system, network interface, and network fabric latency—that

matters for user satisfaction rather than any sustained throughput. At the same time, a

particular operation cannot complete until all of the operations required to build a page

complete, potentially requiring access to thousands of servers. This means that it is the

tail latency that determines the performance of an individual operation and certainly tail

latency that is critical to defining what is possible for achieving target SLOs.

Web service architecture has thus evolved to under-utilize available compute and

server performance. Predictability is more important than sustained throughput and the

higher the average level of utilization, the more variation in the performance of individual

operations, and hence the longer the tail.

1.1.2 Reconfigurable topologies

As more applications and services move to data centers, the data center operators

must scale up their infrastructure to support billions of users and services. Today, large-

scale data center installations are limited by the ability to provide sufficient internal

network connectivity. Delivering scalable packet-switched interconnects that can support

the continually increasing data rates required between literally hundreds of thousands of

servers is an extremely challenging problem that is only getting harder. Fundamentally,

the packet-switching technology underlying current data-center interconnects limits their

ability to scale: implementing control logic that is capable of deciding how to forward

each packet individually is costly at present, and will rapidly cease to be feasible as link

5

data rates increase.

Researchers have attempted to address this issue by adopting the superior power

and cost scaling enabled by optical circuit switching [33]. Traditionally, circuit switching

has been at odds with the packet-switch discipline that many applications depend upon

(to provide, for example, low latency connectivity to a large number of destinations).

Researchers have tried to address this discrepancy by proposing hybrid architectures that

combine packet and circuit-switched interconnects [33, 85].

At their core, these approaches search out large, stable flows and route them

over circuits, while forwarding the bulk of the traffic through the packet network. Initial

designs are limited by the slow switching time (10s of milliseconds) of commercially

available MEMS-based optical circuit switching technology, which makes it necessary to

combine traffic from multiple end hosts to get traffic aggregates that remain stable at the

timescales required (seconds) to achieve reasonable levels of circuit efficiency.

These “hybrid” networks propose to schedule appropriately large traffic demands

via a high-rate circuit switch and handle any remaining traffic with a low-rate packet

switch. All recent proposals for such hybrid designs assume a perfect closed-loop control

plane. In practice, the performance of any hybrid network is critically dependent on all

aspects of the closed-loop control plane including the speed of the demand estimation,

how that demand is used to calculate the schedule in near real-time, and the ability

to synchronize endpoints across circuits. However, researchers have stopped short of

addressing the resulting closed-loop control plane problem.

1.1.3 Data center end-host traffic pattern

To achieve different application performance requirements data center operators

deploy a variety of packet processing technologies and protocols spanning all layers of the

network stack. Individual data flows are forwarded through a variety of middleboxes [74],

6

which process data packets to implement a variety of value-added services. Most recently,

the adoption of software-defined networking (SDN) means that software controllers are

involved in providing basic connectivity services within the network—a task previously

assigned to custom, high-performance hardware devices [58]. At the same time, link

rates continue to increase, first from 1 Gbps to 10 Gbps, and now 10 Gbps to 40

Gbps, 100 Gbps [2], and beyond. Given the increasing speed of network links, and

increasing complexity of packet processing tasks, handling these data flows is a growing

challenge [74].

The result of each of these trends is that more devices, running a mixture of

software and hardware, sit on the data plane, handling packets. Designing efficient

and performant packet processing devices, either in software or hardware, relies on

having an understanding of the traffic that will transit them. Each of these devices has

to carefully manage internal resources, including TCAM entries, flow entry caches, and

CPU resources, all of which are affected by the arrival pattern of packets.

1.2 Hypothesis and approach

In the previous section we described some of the challenges facing data center

network operators. Towards tackling these challenges, we make the following hypothesis:

That by redesigning the end-host stack it is possible to overcome following challenges

• Designing cost-efficient networking devices.

• Building systems with predictable low latency at high levels of utilization.

• Supporting rapidly reconfigurable topologies.

At high level, we harness the fact that a single administrative entity owns the entire

end-host stack and the networking interconnect, thus enabling us to customize the end-

host stack. Our approach has been to conduct a series of systematic measurement studies

7

to identify key properties and performance bottleneck(s) in data center systems and use

these observations to design and build more performant and efficient systems. We begin

by analyzing network traffic emanating out of an end-host at microsecond timescales and

identify challenges associated with bursty traffic. We further extend the measurement

study to understand effects of latency variation on data-center communication patterns and

find out components that contribute to variance in latency in data center end-hosts. Using

these observations, we design and built two systems that tackle previously mentioned

challenges.

In the next section we look at our contribution towards tackling these challenges.

1.3 Contributions

1.3.1 A study of NIC burst behavior at microsecond timescales

To address the first challenge, we analyze the output of a modern end-host server

running a variety of data center workloads. With this study our aim is to better understand

the network dynamics of modern data center servers and applications, and through that

information, to enable more efficient packet processing across the network stack.

We begin by identify the causes of bursty traffic across the end-host stack in

a data center setting. Next, we performed a traffic analysis of a set of testbed servers

with different bandwidth-constrained applications, NIC settings, disk settings and OS

features. We find that traffic is highly bursty, which contradicts the network flow model

where traffic is uncorrelated. We use this observation to We further find that the level of

this burstiness is largely outside of application control, and independent of the behavior

of higher level applications. These short term bursts have both positive and negative

implications and we leverage this observation to design networks that can benefit from

bursty behavior.

8

1.3.2 Predictable Low Latency for Data Center Applications

To address the second problem of delivering predictable low latency for data

center applications, we begin by analyzing impact of tail latency on data center traffic

patterns. Next, we analyze sources of latency and latency variation, exposing application

bottlenecks with user-level networking APIs. Based on these observations, we design

Chronos, a communication framework that leverages both user-level networking APIs and

NIC-level request dispatch. Chronos directs incoming requests to concurrent application

threads in a way that drastically reduces, and in some cases eliminates, application lock

contention. Chronos also provides an extensible load balancer that spreads incoming

requests across available processing cores to handle skewed request patterns while still

delivering low latency response time. Finally, We evaluate the resulting performance of

three representative applications on a testbed with 50 servers.

1.3.3 Closed-loop control plane for reconfigurable topologies

Finally, to support a range of new data center switch designs incorporating

optical circuit technologies that are enabling fast reconfiguration of the underlying

topology. We propose and experimentally evaluate a practical first-generation closed-

loop control plane for a hybrid network using only software changes at the end-host

operating system that enable theses topologies to support unmodified applications running

over TCP. We show how the network traffic demand can be estimated in the host stack

and communicated to a controller. We demonstrate that the transport protocol TCP is not

affected if the underlying reconfigurable technology is rapidly switching, but performs

poorly if reconfigurable topology has paths of different capacity. Finally, we show that

MPTCP is better suited for reconfigurable topology with multiple paths and demonstrate

that our closed-loop control plane can respond to dynamic application demands.

9

1.4 Organization

In the remainder of this thesis, we first give background and related work. Second,

we present a study of NIC burst behavior for bandwidth-intensive data center applications

at microsecond timescales (chapter 3). Then we study the impact of tail latency on

latency-sensitive data center application (chapter 4). Next, we analyze sources of latency

and latency variation in data center applications (chapter 5). Based on our observations

in chapter 4 and chapter 5, we present Chronos, a framework using user-level networking

APIs that leverages NIC support to reduce lock contention and perform efficient load

balancing to reduce the tail latency in data center networks and evaluate the resulting

performance of three representative applications on a testbed with 50 servers (chapter

6). Next, we focus on challenges associated with network interconnect bandwidth and

present a closed-loop system for reconfigurable topology and experimentally evaluate it

(chapter 7). Finally, we summarize our findings and end the discussion with our system

limitations and open problems.

1.5 Acknowledgements

This chapter in part, contains material as it appears in Kapoor, Rishi; Porter,

George; Tewari, Malveeka; Voelker, Geoffrey M. ; Vahdat, Amin. “Chronos: Predictable

Low Latency for Data Center Applications”, Proceedings of the ACM Symposium on

Cloud Computing (SOCC), San Jose, CA, October 2012 The dissertation author was the

primary investigator and author on this paper.

Kapoor, Rishi; Snoeren, Alex C.; Voelker, Geoffrey M. ; Porter, George. “Bullet

Trains: A study of NIC burst behavior at microsecond timescales”, Proceedings of ACM

CoNEXT, Santa Barbara, CA, December 2013. The dissertation author was the primary

investigator and author on this paper.

10

This chpater in part, contains material that has prepared for submission for

publication. Liu, He; Kapoor, Rishi; Tewari, Malveeka; Forencich, Alex; Zhang, Sen;

Savage, Stefan; Voelker, Geoffrey M.; Papen, George; Snoeren, Alex C.; George, Porter.

“Scheduling Circuits in a Packet World”. The dissertation author is the second author on

this paper.

Chapter 2

Background and Related Work

In this chapter we give background upon which the rest of dissertation is built.

We start by giving historical context to study of traffic bursts in network, followed by

giving an overview of different layers of the end-host stack that accounts for bursty traffic.

In the second part of the chapter, we give a detailed overview of Memcached, a popular

Key-Value store deployed at several large Internet companies. Given Memcached wide

adoption and deployment, understanding and improving its latency performance will

enable more responsive and efficient applications for existing deployments. We follow

this by a discussion on existing work on achieving low latency and latency variation. and

building a closed-loop control plane for dynamic network topologies.

2.1 Study of traffic patterns

In data centers designing efficient and performant packet processing devices,

either in software or hardware, requires a deep understanding of the traffic that will transit

them. Each of these devices has to carefully manage internal resources, including TCAM

entries, flow entry caches, and CPU resources, all of which are affected by the arrival

pattern of packets.

There have been several studies which have looked at traffic patterns in deployed

networks. Nearly thirty years ago, Jain and Routhier [42] analyzed the behavior of

11

12

shared bus Ethernet traffic at MIT, and found that such traffic did not exhibit a Poisson

distribution. Instead, they found that packets followed a “train” model. In the train model,

packets exhibit strong temporal and spacial locality, and hence many packets from a

source are sent to the same destination back-to-back. In this model packets arriving

within a parameterized inter-arrival time are called “cars”. If the inter-arrival time of

packets/cars is higher than a threshold, then the packets are said to be a part of different

trains. The inter-train time denotes the frequency at which applications initiate new

transfers over the network, whereas the inter-car time reflects the delay added by the

generating process and operating system, as well as CPU contention and NIC overheads.

In Chapter 3, we re-evaluate modern data center networks to look for the existence and

cause of bursts/trains (two terms that we will use interchangeably).

A variety of studies investigate the presence of burstiness in deployed networks.

In the data center, Benson et al. [16] examine the behavior of a variety of real-world

workloads, noting that traffic is often bursty at short time scales, and exhibits an ON/OFF

behavior.

2.1.1 Sources of bursts

Next, we highlight the different layers of the network stack that account for bursts,

including the application, the transport protocol, the operating system, and the underlying

hardware (summarized in Table 2.1).

2.1.2 Application

Ultimately, applications are responsible for introducing data into the network.

Depending on the semantics of each individual application, data may be introduced

in large chunks or in smaller increments. For real-time workloads like the streaming

services YouTube and Netflix, server processes might write data into socket buffers in

13

Table 2.1. Sources of network bursts.

Batching
source

Examples Reason for batching

Application Streaming Services (Youtube,
Netflix)

Large send sizes

Transport TCP ACK compression, window scaling
OS GSO/GRO Efficient CPU & memory bus utiliza-

tion
NIC TSO/LRO Reduce per packet head
Disk drive Splice syscall, disk read-

ahead
Maximize disk throughput

fine-grained, ON/OFF patterns. For example, video streaming servers often write 64 KB

to 2 MB of data per connection [37, 67].

On the other hand, many “Big Data” data center applications are limited by the

amount of data they can transfer per unit time. Distributed file systems [12, 36] and bulk

MapReduce workloads [29, 68] maximize disk throughput by reading and writing files in

large blocks. Because of the large reads these systems require, data is sent to the network

in large chunks, potentially resulting in bursty traffic due to transport mechanisms, as

described in the next subsection. NFS performs similar optimizations by sending data to

the client in large chunks, in transfer sizes specified by the client.

2.1.3 Transport

At the transport layer, the widely used TCP protocol exhibits, and is the source

of, a considerable amount of traffic bursts [19, 3, 43, 9]. Aggarwal et al. [3] and Jiang

et al. [43] identify aspects of the mechanics of TCP, including slow start, loss recovery,

ACK compression, ACK reordering, unused congestion window space, and bursty API

calls, as the sources of these overall traffic bursts. Previous studies in the wide area

include Jiang et al. [44], who examined traffic bursts in the Internet and found TCP’s

self-clocking nature and in-path queuing to result in ON/OFF traffic patterns.

14

Beyond the basic protocol, some improvements have an impact on its resulting

burst behavior. One such example is TCP window scaling (introduced, e.g., in Linux

2.6), in which the TCP window representation is extended from 16-bits to 32-bits. The

resulting increase in the potential window allows unacknowledged data to grow as large

as 1 GB, resulting in potentially large traffic bursts.

2.1.4 Operating system

The operating system plays a large role in determining the severity of traffic bursts

though a number of mechanisms. First, the API call boundary between the application

and OS can result in bursty traffic. Second, a variety of OS-level parameters affect

the transport and NIC hardware behavior, including maximum and minimum window

sizes, window scaling parameters, and interrupt coalescing settings. Finally, the in-kernel

mechanisms Generalized Receive Offload (GRO) and Generalized Segmentation Offload

(GSO) can be used to reduce CPU utilization, at the expense of potentially increased

burstiness. GSO sends large “virtual” packets down the network stack and divides them

into MTU-sized packets just before handing the data to the NIC. GRO coalesces a number

of smaller packets into a single, larger packet in the OS. Instead of a large number of

smaller packets being passed through the network stack (TCP/IP), a single large packet

is passed.

2.1.5 Hardware

The behavior of hardware on either the sender or receiver affects the burstiness of

network traffic. We now review a few of these sources.

Disk drives: To maximize disk throughput, the OS and disk controller implement

a variety of optimizations to amortize read operations over relatively slow disk seeks,

such as read-ahead caches and request reordering (e.g., via the elevator algorithm). Of

15

particular interest is the interaction between the disk and the splice() or sendfile() system

calls. These calls improve overall performance by offloading data transfer between

storage devices and the network to the OS, without incurring data copies to userspace.

The OS divides these system call requests into individual data transfers. In Linux, these

data transfers are the size of the disk read-ahead, which are transferred to the socket in

batches and result in a train of packets. The read-ahead parameter is a configurable OS

parameter with a default value of 128 KB.

Segmentation offload: TCP Segmentation Offload (TSO) is a feature of the NIC that

enables the OS to send large virtual packets to the NIC, which then produces numerous

MTU-sized packets. Typical TSO packet sizes are 64 KB. The benefit of this approach is

that large data transfers reduces per-packet overhead (e.g., interrupt processing), thereby

reducing CPU overhead.

Interrupt Coalescing (IC) and Large Receive Offload (LRO): On the receive side

of the NIC driver, IC and LRO both further reduce the CPU overhead of receiving packets

at high speed. IC delays receive interrupts until a number of packets have been received,

delivering those packets in batches to the OS. LRO combines multiple consecutive

packets into a larger, virtual packet in the NIC (as opposed to GRO which combines the

packets in the OS). Both potentially affect the burstiness of TCP, as studied in [7, 64, 88].

2.2 Key-Value stores

Key-Value (KV) stores serve as a basic building block for building loosely-

coupled distributed systems. Memcached is a popular package supporting the operation

of a number of large-scale Web services, and given its wide adoption and deployment,

improving its latency performance will enable more responsive and efficient applications

16

for existing deployments.

2.2.1 Memcached overview

We provide an overview of Memcached, a widely used KV-store. It has been

deployed at Facebook, Zynga, Twitter, and others [17, 53], with approximately 2,000

Memcached servers in deployment at Facebook [60]. We start by describing Memcached

itself,

2.2.2 System description

Memcached is an open source, in-memory KV-store for small chunks of unstruc-

tured data. The API is quite simple, consisting of operations that get, set, delete, and

manipulate key-value pairs. KV pairs are stored entirely in-memory, with no persistence.

During low-memory conditions, KV-pairs are evicted from the cache according to a

least-recently used (LRU) discipline. Replication is not provided by the current release.

Memcached deployments split functionality between one or more servers and a

number of clients. KV-pairs are partitioned across the set of servers using a hash function

shared between the clients and the servers. In Memcached, clients are independent, and

issue requests directly to a single server responsible for a particular key based on the

shared hash. This simplifies the design of the distributed server tier, since servers do

not need to communicate with one another. Thus, scaling the server tier is trivial since

Memcached does not need to ensure cache consistency or invalidate data. Clients are

responsible for inserting KV-pairs into the cache, as well as deleting or invalidating them

according to the semantics of the application.

Internal data layout:

Memcached’s internal memory management layer works as follows. KV-pair

data is stored in a slab-managed data region. Memcached allocates a configured amount

17

of memory in 1 MB pages. These pages are assigned to one or more slab classes. Each

slab class corresponds to a particular fixed chunk size. A chunk holds a single KV-pair,

and KV-pairs are assigned to slab classes on a best fit basis. One or more pages are

assigned to the different slab classes depending on the sizes of objects inserted by the

clients. When a page is assigned to a slab class, it is divided into fixed-sized chunks

based on the particular slab class it is assigned to.

Initially, pages consist of empty chunks, available for storing new items. When

KV-pairs are deleted from the cache, they are simply marked as deleted, and lazily

reclaimed during runtime. When a KV-pair is inserted into a particular slab class (based

on its size), Memcached first looks for empty chunks, inserting the item there if possible.

If no chunks are empty, then Memcached tries to lazily delete items that have been

explicitly deleted, or have expired. If that is not possible, then it will evict an unexpired

data item according to an LRU-based replacement policy.

Memcached request handling

We now describe how the cache is manipulated from both the client and server

perspective.

Client-side get: To request an item, a client performs the following steps:

1. The client determines the server responsible for a desired KV-pair by hashing the

key using a globally shared hash function. In practice, this hash function is simply

computed as the value of the key modulo the number of servers. The most recent

version relies on consistent hashing.

2. The client issues a get() operation to the resulting server. For high-throughput

environments, this request is typically issued using UDP [73] to reduce latency and

require fewer kernel resources to support a large number of open TCP connections.

18

3. The server either returns the key and value if present, or an indication that the key

is not present.

4. If the key was not present, then the client will request the value from an authoritative

data source (typically a database), and then insert it back into the cache as described

below.

Client-side store: Storing data in Memcached proceeds as follows.

1. Initially, the client determines the data to store in the cache, typically by issuing a

query to an authoritative data source such as a database.

2. Using the same global hash function as above, the client determines the server

responsible for the target key.

3. The client issues a set() operation to the server. The server either indicates success,

or signals an exception.

Server side: On receiving a request, Memcached is notified by the O/S. Multithreaded

Memcached is based on libevent, and the request arrival is enqueued to the library as

a new event. The application wakes up all threads, and one of them successfully takes

ownership of the event and reads the packet (or socket) payload. The request is parsed to

determine the protocol used (e.g., ASCII or binary) as well as the type of operation.

When handling a get() request, the application thread must locate the appropriate

chunk corresponding to the KV-pair among the slab classes (and associated memory

pages). It does this by looking up the key in an in-memory hash table. This table contains

a pointer to the appropriate page in its slab class. To support multi-threading, this hash

table is protected by a single mutex. Furthermore, the entire set of slab classes is protected

by a single mutex as well.

19

There have been numerous efforts to improve Memcached throughput [17, 73],

though none specifically look at improving predictable tail latency. Previous efforts to

improve performance of Memcached over RDMA protocol [13, 46] required redesigning

Memcached from the ground up and works only for a single threaded implementation.

2.2.3 Other KV-stores

Other KV-stores have been deployed with different storage semantics. Dy-

namo [32] is an eventually-consistent distributed KV-store supporting a high insertion and

query rate while surviving failures of individual components. Other persistent KV-stores

include BerkeleyDB [18], LevelDB [50], and Redis [69].

Numerous proposals for managing internal storage of KV-pair data have been

made. BufferHash [10] employs multiple hash tables with an in-memory Bloom filter

to reduce the number of accesses to flash. HashCache [14] focuses on minimizing

memory requirements to support resource-constrained deployments by optimizing data

on large, external, persistent storage devices rather than relying on in-memory indexes.

FAWN [11] constructs a distributed KV-store relying on consistent hashing to determine

the appropriate node, and then relying on a log-structured on-disk data layout indexed

by an in-memory hash table to reduce the latency of accesses. FlashStore [30] uses a

log structured on-disk layout to reduce flash accesses (and resulting wear), and evicts

cold data from the flash tier to disk, using in-memory lookups to decrease latency.

SkimpyStash [31] and SILT [51] both aim to reduce the memory requirements of the

KV-store. In the former case, SkimpyStash relies on a hash table with linear chaining on

collision, persisting those chains to persistent storage. In the case of SILT, a multistore

consisting of one of three data layout policies is employed to reduce the memory overhead

of storing data to close to minimal. We consider Chronos complimentary to these efforts

in that we focus on lowering the latency and latency variation of forwarding requests

20

from the network to the black-box application logic.

2.3 Predictable low latency

In Chronos, we observe that the operating system accounts for more than 90% of

end-host latency. We also find that lock contention limits application performance. In

this section, we discuss related work in area of operating system improvements and lock

contention.

2.3.1 Optimized Network/OS interfaces

A key bottleneck that our work addresses is the kernel and network stack overhead.

We share this goal with several academic and industrial efforts. User-level networking

was developed to support applications which emit packets at a high rate, and to reduce

latency in the kernel [25, 20, 84]. Arsenic [65] proposed installing custom filters in

NIC for packet classification. While user-level networking APIs are integral to the early

partitioning aspect of our design, Chronos also facilitates per-CPU core load balancing

and removing application lock contention through deep-packet inspection using these

APIs to reduce application tail latency. Myrinet [21] and Infiniband [40] are examples of

low-latency, high bandwidth interconnect fabrics that are often used in high-performance

computing clusters. While Myrinet and Infiniband address a key bottleneck, Chronos

focuses on commodity Ethernet switching and eliminates latency across the entire end-

to-end application path, including application lock contention and hotspots.

2.3.2 Operating System Improvements

There have been various proposals on improving the scalability and performance

of the Linux kernel. Corey [22] identified numerous instances of in-kernel data structure

sharing which reduced potential parallelism across threads, and proposed address ranges,

21

kernel cores, and sharing to improve kernel performance. In [70], the authors conclude

that locking and blocking system calls were significant causes of application perfor-

mance degradation. Boyd-Wickizer et al. [23] study the scalability of seven applications,

including Memcached, across a 48-core machine and conclude that by modifying the

kernel and applications, it is possible to remove many performance bottlenecks. However,

their study focused on throughput, and not latency. With Chronos, we find that even

for single-threaded processing the kernel introduces significant additional latency, even

after accounting for these recent improvements. An analysis of latency in the end-host

network stack was carried out by Larsen et al. [49].

2.3.3 Lock Contention

Lock contention has long been recognized as a key impediment to performance

of shared memory and multi-threaded applications [78]. Replacing mutex locks with

read/write locks may have little advantage [26]. Triplett et al. [81] propose a dynamic

concurrent hash table with resizing using a read-copy update (RCU) mechanism. This

mechanism works well in situations where the number of reads is significantly greater

than writes. VoltDB [83] and H-Store [45] partition application state in memory across

the CPU cores to achieve scalability. Here, incoming requests are partitioned at the

application layer after arriving to the process. Our approach is different in that we rely

on deep-packet capabilities of the NIC hardware to partition requests before they arrive

to the OS or application.

2.3.4 Data center Networks & Applications

New transport protocols like QCN [5] and DCTCP [6] reduce in-network queue-

ing and congestion, further reducing network latency. Recent proposals such as De-

Tail [89] and HULL [7] also focus on reducing latency by performing in-network traffic

22

management.

2.4 Reconfigurable topologies

In section 2.1 we looked at sources of bursts in a data center end-host. One

application of these bursts is that these bursts can be scheduled on short point to point

link created between hosts by fast reconfigurable topologies. A range of new data

center switch designs incorporating wireless or optical circuit technologies are enabling

fast reconfiguration of the underlying topology. These “hybrid” networks propose to

schedule appropriately large traffic demands via a high-rate circuit switch and handle

any remaining traffic with a low-rate packet switch. Helios [34] and c-Through [85] are

hybrid topologies that propose replacing electrical switch at the core layer of data centers

with ‘MEMS’ based optical switch with electrical packet switch on the side. Similarly,

several topologies have been proposed using wireless links [39, 47, 91].

2.4.1 Demand estimation

Demand estimation is the key to data-center traffic engineering. Existing Traffic

engineering (TE) approaches collect network traffic matrix and runs an algorithm to

identify elephant flows and then schedules them. The existing TE frameworks estimate

network demand either based on heuristics e.g., Helios or uses buffer occupancy e.g.,

C-through. Helios collect port statistics from switches and uses this information as an

indicator of future network traffic demand. Due to the nature of jobs running in data

center demand may not be accurate e.g., if traffic lacks predictability. Helios demand

estimator module takes few milliseconds to gather statistics and is not suited for rapidly

switch reconfigurations like REACToR.

C-Through uses network statistics tool (netstat) to gather information about

socket buffer occupancy. Netstat is a user space tool and launching and gathering this

23

information takes milliseconds on our testbed. We use a similar approach but using a

custom Linux kernel module. In our kernel module, we also restrict the size of hash-table

that stores socket connections making it more efficient.

Fastpass demand estimator instruments send() and sendto() system calls and

report the sizes of these calls to the controller.

2.5 Acknowledgements

This chapter in part, contains material as it appears in Kapoor, Rishi; Porter,

George; Tewari, Malveeka; Voelker, Geoffrey M. ; Vahdat, Amin. “Chronos: Predictable

Low Latency for Data Center Applications”, Proceedings of the ACM Symposium on

Cloud Computing (SOCC), San Jose, CA, October 2012 The dissertation author was the

primary investigator and author on this paper.

Kapoor, Rishi; Snoeren, Alex C.; Voelker, Geoffrey M. ; Porter, George. “Bullet

Trains: A study of NIC burst behavior at microsecond timescales”, Proceedings of ACM

CoNEXT, Santa Barbara, CA, December 2013. The dissertation a

Chapter 3

BulletTrains: A study of NIC burst
behavior at microsecond timescales

In data centers designing efficient and performant packet processing devices,

either in software or hardware, requires a deep understanding of the traffic that will transit

them. Each of these devices has to carefully manage internal resources, including TCAM

entries, flow entry caches, and CPU resources, all of which are affected by the arrival

pattern of packets.

While numerous studies have examined the macro-level behavior of traffic in

data center networks–overall flow sizes, destination variability, and TCP burstiness–little

information is available on the behavior of data center traffic at packet-level timescales.

Whereas one might assume that flows from different applications fairly share available

link bandwidth, and that packets within a single flow are uniformly paced, the reality is

more complex. To meet increasingly high link rates of 10 Gbps and beyond, batching

is typically introduced across the network stack –at the application, middleware, OS,

transport, and NIC layers. This batching results in short-term packet bursts, which have

implications for the design and performance requirements of packet processing devices

along the path, including middleboxes, SDN-enabled switches, and virtual machine

hypervisors.

24

25

Mirrored Link

10G Virtex 6
FPGA M

S C 2 C 3 C 4 C 5 C 6

Packet Switch

10G Copper

Figure 3.1. The data center testbed includes an Ethernet packet switch and an FPGA
that timestamps packets at a 6.4-ns granularity.

In this chapter, we study the burst behavior of traffic emanating from a 10-Gbps

end host across a variety of data center applications. We find that at 10–100 microsecond

timescales, the traffic exhibits large bursts (i.e., 10s of packets in length). We further find

that the level of this burstiness is largely outside of application control, and independent

of the behavior of higher level applications. Through this study our aim is to better

understand the network dynamics of modern data center servers and applications, and

through that information, to enable more efficient packet processing across the network

stack and support high bandwidth reconfigurable topologies.

3.1 Traffic measurements

To better understand the burst behavior of traffic emanating from hosts in data

center environments, we have performed a traffic analysis of a set of testbed servers. Our

evaluation seeks to:

1. Measure the burstiness of a set of data center workloads. For simple, long-

lived communication patterns between a small number of nodes (e.g., a stride

pattern), bursts can be quite large—up to about 100 packets. Even for workloads

26

with low destination stability, such as all-to-all patterns, bursts the length of a TSO

segment (i.e., 64 KB) are seen in practice.

2. Understand how each layer of the network stack contributes to burstiness.

We find that application behavior largely determines burstiness, yet even among

bandwidth-constrained applications, configuration parameters strongly affect bursti-

ness (for example, NFS configuration parameters or syscall parameters).

3. Determine the effect of NIC and OS performance features (like GRO and

TSO) on traffic emanating from the host. For bandwidth-constrained workloads,

we find that performance enhancing features strongly affect burstiness, especially

TSO and LRO.

4. Determine whether burstiness can be controlled through software changes.

Through modification of the TSO code in the kernel, it is possible to generate

larger bursts.

We first describe our measurement methodology and then present our results.

3.1.1 Measurement methodology

In absence of packet-level traces and measurements on real data centers, we

deployed a set of applications on a small, seven-node cluster. The applications we

chose are the network file server (NFS), the Hadoop Distributed FileSystem (HDFS), a

Hadoop MapReduce-based Terasort, and a set of microbenchmark applications generating

synthetic traffic. Each of the applications we evaluate are bandwidth constrained.1

Hardware: We deployed the above applications on a set of HP DL360p servers, each

with a pair of Intel E5-2630 six-core CPUs (2.3 GHz) running Debian Linux with kernel
1We also evaluated latency-sensitive applications like Memcached, but omit those results since they

produced little to no traffic bursts.

27

version 3.6.6. Each server has 16 GB of memory and eight 146 GB 15K RPM hard

drives (with an ext3 partition). Each server has an Intel 82599-based 10 Gbps NIC. The

measurement server has a Myricom 10G-PCIE2-8B2-2S+E NIC. We used the Intel ixgbe

driver (version 3.12.6) with default parameters and multiqueue disabled. With multiqueue

enabled, we found that the traffic pattern was dependent on the specific NIC scheduling

policy and hence we omitted multiqueue enabled results from our discussion.

OS configuration: The disk read-ahead buffer was configured to be 128 KB with a

CFQ disk scheduler. At the start of our experiment, we drop caches to ensure that read

requests go directly to the disk. The network interface was configured with a 1500-byte

MTU. Unless otherwise noted, in all our experiments we enable both TSO and LRO on

the NIC, though we increased the socket buffer size to be 32 MB to avoid bandwidth

throttling due to receive window limitations. Linux 3.6.6’s default setting of the TCP

parameter tcp limit output bytes was limiting the number of in-flight TCP packets,

which reduced overall performance. Thus, we increased this parameter from 128 KB to 2

MB.

Network and packet capture: Each of the servers is directly connected to a 10 Gbps

Xilinx Virtex 6 FPGA. The FPGA “passes through” each connection to ports on a 10 Gbps

Fulcrum Monaco packet switch. The purpose of the FPGA is to, on demand, measure

the traffic transiting to and from one of the servers. The FPGA generates a measurement

record for each packet, including the packet’s source and destination address, its size, and

a timestamp of when the packet left or arrived to the port. The timing precision of the

timestamp is 6.4 ns. The FPGA places per-packet measurements into packets destined to

a dedicated measurement server, labeled M, as shown in Figure 3.1. For all the traces we

ignore the TCP slow start behavior.

28

0 20 40 60 80 100 120 140
Burst Length (in packets)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
til

e

all-to-all
stride
pstride
hstride

Figure 3.2. CDF of burst sizes with synthetic traffic patterns (with TSO and LRO
enabled).

Application configuration: For the NFS experiments, we use NFS server version 3,

and the NFS server exports a partition located on a single drive. The in-kernel NFS client

reads a file by making multiple pipelined read calls to the server. The read size is specified

while mounting the file system and the maximum read size supported by the NFS client

is 1 MB. For the HDFS experiments, both the NameNode and the DataNode processes

run on the same server, and the DataNode manages data on a single disk per machine.

The HDFS data block size is 512 MB. Both the NFS and HDFS servers serve randomly

generated files ranging in size from 25 MB to 5 GB. Each client, labeled C1 through C6

in Figure 3.1, copies data from the server to its local disk. We created identical copies of

the same file on the server to allow parallel downloads from the clients. To ensure that all

the clients start their downloads at the same time, we generate a coordination broadcast

packet from a control host.

29

0 500 1000 1500 2000 2500
Burst Size (in KB)

0.0

0.2

0.4

0.6

0.8

1.0

Read size
256 KB
512 KB
1 MB

Figure 3.3. NFS server. Read syscall size large determine the burst size.

3.1.2 Microbenchmarks

To begin our evaluation, we measure a set of synthetic microbenchmarks, which

are generated via simple memory-to-memory data transfers to eliminate any effects from

the disks, application logic, and think time. The traffic patterns we consider are a stride

pattern, in which a source host sends data to an intermediate host, which is in turn sending

data to a destination host. This pattern differs from a simple transfer in that ACKs are

intermixed with data packets. Next we consider two variants of the stride workload,

both based on workloads used by Farrington et al. [34]. The pstride workload is similar

to the stride workload, except that each host changes its destination in unison. In the

hstride workload, each host opens many flows to each destination, and slowly changes

the destination host at a flow level. Finally we consider an all-to-all workload where

every host sends data to every other host.

Figure 3.2 shows burst lengths in packets. A burst is an uninterrupted sequential

30

0 200 400 600 800 1000 1200
Burst Size (in KB)

0.0

0.2

0.4

0.6

0.8

1.0
Read ahead
 size

64 KB
128 KB
256 KB
512 KB

Figure 3.4. HDFS DataNode server. The read-ahead parameter determine the burst size.

stream of packets from one source to one destination with an inter-packet spacing of

less than 40 ns. The burst length is the number of such closely spaced packets in the

stream. We observe that the burst lengths for both the stride and hstride patterns are quite

large—up to about 100 packets in the median case. Each of the jumps in the CDF fall at

multiples of the TSO size (which in our testbed is 64 KB). This pattern corresponds to

the NIC sending one or more TSO-sized amounts of data before switching destination

flows. Most surprisingly, in the all-to-all pattern, the median burst length is 44 packets,

corresponding to a TSO-sized amount of data. Even though there is no correlation at the

application layer, the buffering done via TSO results in bursts of several dozen packets.

3.1.3 Effect of application behavior

We now analyze the burst behavior of three common, bandwidth-intensive ap-

plications: NFS, the Hadoop Distributed FileSystem (HDFS), and a MapReduce-based

sorting program.

31

0 50 100 150 200 250 300 350 400
Burst Length (in packets)

0.0

0.2

0.4

0.6

0.8

1.0
Map Reduce sort

Figure 3.5. MapReduce Sort.For MapReduce workloads, intermediate data shuffling and
various keep-alive messages reduce the burst length.

NFS: We configure six NFS clients to concurrently request a file from a single NFS

server. Each client specifies the read size at volume mount time, and issues pipelined read

requests to the server with a file offset and the read size. Figure 3.3 shows the resulting

burst lengths. The length of the packet burst is highly correlated with the underlying

read request size configured at the client. This correlation is due to a combination of

mechanisms. The NFS server relies on the in-kernel splice() system call, which copies

data from the disk in configurable batches (e.g., 128 KB by default). The default value of

128 KB can be tuned by changing the disk read ahead size via sysctl. Furthermore, the

NFS server also performs its own batching as well, based on the read size that the client

specified. As a result, the server reads the entire read size (e.g., 1 MB) off the disk into

the memory buffers and then sends the buffered data to the networking stack. Our results

confirm that application-layer batching can lead to highly bursty behavior.

32

HDFS: We next configured six HDFS clients to concurrently request a file from a single

HDFS DataNode server. Figure 3.4 shows the resulting burst lengths. As in the NFS

application, HDFS-based packet burst sizes are highly correlated with the read-ahead size,

since HDFS indirectly uses the sendfile() call (via Java’s transferTo() method).

The sendfile() call copies data from the disk into the network buffers in batches of

disk read-ahead size. Unlike the NFS server, no additional buffering or batching is done

by the server process, and so the observed burst lengths correspond more directly to the

implementation of sendfile().

MapReduce Sort: To evaluate an all-to-all application we use Hadoop’s Terasort. We

installed both the NameNode and TaskTracker on node C6, and generated 120 GB of data

spread across six remaining nodes (S and C1–C5). The resulting burst behavior is shown

in Figure 3.5. The median burst length is approximately 64 packets, which is lower than

the file transfer workloads above. Although still large, this lower burst length is due in

part to a mixture of flows on each server, since each node exchanges intermediate data,

status updates, keep-alive messages, and file transfer requests.

3.1.4 Effect of NIC hardware

We now examine several recent mechanisms designed to improve network perfor-

mance and lower CPU utilization. Specifically, we examine LRO and TSO, deployed in

the NIC, and GRO, which runs in the kernel. We repeated the microbenchmark experi-

ments from Section 3.1.2, enabling or disabling these NIC parameters. Figure 3.6 shows

the results of the all-to-all workload.

We find that enabling TSO affects the burst length directly, whereas LRO, by coa-

lescing several packets on the receive side into larger acknowledged segments, indirectly

causes burstiness. Thus, disabling TSO has a more prominent effect on shrinking the

33

0 20 40 60 80 100
Burst Length (in packets)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
til

e

TSO ON LRO ON
TSO ON LRO OFF
TSO OFF LRO ON
TSO OFF LRO OFF

Figure 3.6. The TSO NIC mechanism directly increases the burst length, while LRO
acts indirectly with a smaller effect.

Table 3.1. Average throughput with different NIC settings.

TSO LRO Average Throughput

ON ON 8.7 Gbps
ON OFF 7.1 Gbps
OFF ON 5.5 Gbps
OFF OFF 2.4 Gbps

burst size, as compared to disabling LRO. However, both strongly affect CPU utilization,

as shown in Table 3.1. Disabling both LRO and TSO drops throughput to 2.4 Gbps,

since the kernel cannot keep up with the rate of packets necessary to saturate the link.

Combinations of LRO and TSO result in intermediate throughputs, and both enabled

produce the highest throughput, as expected.

To understand the effect of LRO on burst size, we collected measurements of

an iperf session between two servers with LRO either on or off, and calculated the

throughput, CPU utilization, and ACK ratio for each case. The ACK ratio is the average

number of data bytes acknowledged by a single ACK, one indication of burstiness.

34

Table 3.2. The effect of LRO on CPU utilization and throughput. The ACK ratio
represents the amount of data acknowledged by a single ACK packet, and the “pinned”
case refers to a configuration in which the application and interrupts are pinned to separate
cores.

LRO
Setting

CPU
Util (%)

Throughput
(Gbps)

ACK Ratio
(KB)

ON 53 9.49 44
OFF 100 7.3 3
OFF

(pinned)
95 9.25 3

Table 3.2 shows these results. Without LRO an ACK is generated for every other segment,

whereas with LRO enabled up to 44 KB are acknowledged at a time, resulting in increased

burstiness.

Noting that link-level burst lengths are highly correlated with the TSO sizes

configured on our NICs, we next seek to understand whether the OS and applications

would be able to send larger bursts if the TSO size were increased. Linux is limited

to TSO sizes of 64 KB, and the NIC we used supports up to 256 KB. We were able to

modify Linux to support a TSO size of up to 148 KB. Figure 3.7 shows the resulting

burst lengths of an one-to-all workload, and indeed the OS and applications were able to

send bursts up to this new maximum. Thus traffic leaving a server could be even more

bursty by modifying the TSO mechanism.

3.2 Implications

We now discuss the implications—both positive and negative—of such bursts.

Negative effects of bursts: Blanton and Allman [19] analyze packet traces from three

different networks and find that, for large burst lengths (e.g., those greater than 10

segments), the probability of dropping packets increases. In fact, with very large bursts

35

0 20 40 60 80 100 120 140 160
Burst Size (in KB)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
til

e

TSO Size
64 KB
96 KB
128 KB
148 KB

Figure 3.7. Increasing the TSO size beyond the default maximum of 64 KB results in
larger bursts.

(i.e., 60 segments or more), the probability of dropping a single segment increases to

100%. This connection between packet bursts and packet loss is not confined to these

examples. For example, in the YouTube network, bursty traffic is responsible for 40%

of total packet losses [67]. Jiang et al. [43] show that flow-level bursts can result in

increased queuing delay in the network. Alizadeh et al. [7] show that bursty traffic causes

temporary increases in network buffer occupancy, which results in variable latency and

higher packet losses within a data center. To reduce burstiness, Blanton and Allman

have proposed placing a limit on the sending of new segments in response to an ACK,

called MaxBurst [9]. Several efforts [7, 90, 3] argue for pacing packets to reduce TCP

burstiness.

Positive effects of bursts: Designing efficient and performant packet processing de-

vices (e.g., middleboxes, switches, SDN controller) relies on having an understanding of

the traffic that will transit them. Each of these devices has to carefully manage internal

36

resources including TCAM entries, flow entry caches, and CPU resources, which are

affected by the arrival pattern of packets. The presence of bursts show that packets to a

destination have temporal locality. Given a packet to a destination, we can predict with

some probability that the next packet will be for the same destination. This temporal

effect has interesting implications for data center traffic rule and policy management and

middle-boxes. Routhier [42] argue that the presence of trains enable certain optimiza-

tions in the network, such as amortizing classification operations across a large number

of consecutive packets to enable path caching. FastTrak [57] and vCRIB [54] exploit

locality in flows to offload rules from the hypervisor to the limited memory on hardware

NICs and switches. Similarly, software middleboxes (e.g., CoMb [74]) can offload packet

classification and policy rules on to the NIC. A CoMb middlebox may also run different

applications on the same hardware platform. A CoMb server might exploit burstiness

by carefully scheduling applications for better CPU and cache utilization, for example,

by running an individual application on an entire burst of packets, followed by the next

application, instead of context-switching applications on per-packet basis. Jain and More,

and recently, Sinha et al. [75] exploit the burstiness of TCP to schedule “flowlets” on mul-

tiple paths through the network. Wischik finds that traffic bursts can potentially inform

the sizing of buffers in routers and gateways along the path [86]. Recently, Vattikonda et

al. [82] proposed overlaying a data center network with a TDMA-based link arbitration

scheme, which replaces Ethernet’s shared medium model. With TDMA support, each

host would periodically have exclusive access to the link. To maximally utilize that

resource, each host would ideally send a burst of data. Porter et al. [63] rely on a similar

TDMA scheme to implement an inter-ToR optical circuit switched interconnect.

37

3.3 Summary

Thus far, we have shown that traffic exhibits large bursts at sub-100 microsecond

timescales, and these bursts are highly correlated with the size of TSO segments, disk

read-ahead settings, and application send sizes. Our results indicate that irrespective

of higher layer application behavior, packets come out of a 10-Gbps server in bursts

due to batching. The bursty traffic has implications towards designing cost efficient

packet processing devices. Moreover, these short-term bursts is an important result for

REACToR, a hybrid electrical and circuit ToR with rapidly reconfiguring short circuit

connections (chapter 7), because if a circuit is allocated an interval at a time, any instant

when the instantaneous demand or burst does not fully saturate the link rate implies that

circuit bandwidth is wasted. Presence of these bursts, means that, given a circuit-switch

configuration the entire link bandwidth would be dedicated to servicing a single burst of

traffic.

3.4 Acknowledgments

This work was supported in part by grants from the National Science Foundation

(CNS-1314921 and CNS-1018808) and by generous research, operational and/or in-kind

support from Microsoft, Google, and the UCSD Center for Networked Systems (CNS).

This chapter contains material as it appears in Kapoor, Rishi; Snoeren, Alex C.;

Voelker, Geoffrey M. ; Porter, George. “Bullet Trains: A study of NIC burst behavior at

microsecond timescales”, Proceedings of ACM CoNEXT, Santa Barbara, CA, December

2013. The dissertation author was the primary investigator and author on this paper.

Chapter 4

Importance of tail latency in data cen-
ters

In chapter 1 we looked at traffic pattern of bandwidth intensive applications at

microsecond scales. Another class of applications that run inside data centers is latency

sensitive applications such as Web search and Memcached. These applications or services

generate a user response by accessing data across thousands of servers. For example,

an end-user response may be built incrementally from dependent, sequential requests to

networked services such as caches or key-value stores. Or, a set of requests can be issued

in parallel to a large number of servers (e.g., web search indices) to locate and retrieve

individual data items spread across thousands of machines Hence, the 99th percentile of

latency typically defines service level objectives (SLOs): when hundreds or thousands of

individual remote operations are involved, the tail of the performance distribution, rather

than the average, determines service performance. Being driven by the tail increases

development complexity and reduces application quality [71].

In this chapter we present a systematic measurement study to understand the

tail latency in the data center context. We discuss the effect of latency and high latency

variation on two data center workload patterns — (1) Partition/Aggregate, (2) Depen-

dent/Sequential traffic pattern and how high latency variation impacts the end-to-end

38

39

performance and operation of data center applications. We use Memcached as an ex-

ample of each of these communication patterns. Memcached is a popular, in-memory

Key-Value (KV) store, deployed at Facebook, Zynga, and Twitter [17, 53]. Its simple API

consists of operations that get, set, delete, and manipulate KV pairs. For high throughput,

Memchached requests are typically issued using UDP [73].

4.1 The partition/aggregate pattern

In the Partition/Aggregate communication pattern, data is retrieved from a large

number of servers in parallel prior to being combined into a response for the requesting

service. An example of this pattern is a horizontally scaled Web search query that must

access state from hundreds to thousands of inverted indices to generate the final response.

The achievable service-level objective of an application relying on this pattern is limited

by the slowest response generated, since all requests must complete before a response

can be sent back to the user. In practice, this means that the latency seen by the end

user approaches the tail latency of the underlying services. Here, the key insight is that

increasing the number of servers increases the probability of hitting the tail latency more

often, and hence increases the overall latency seen by the end user. We now show this

straggler behavior both theoretically and experimentally.

Analysis: We first consider a client issuing a single request to each of S service

instances in parallel. For simplicity, we assume the service time is an independent and

identically distributed (i.i.d.) random variable with a normal distribution. Consider an

S-length vector of the form:

~v =< N(µ,σ),N(µ,σ), ...,N(µ,σ)> (4.1)

where N() is the normal distribution, and µ = 90µs and σ = 50µs (these values are

40

based on our observations of Memcached’s latency, described in Section 5). We estimate

service time by computing values of sets of i random variables, where i ranges from 1 to

100. For each set we compute the maximum over the values of the variables in the set,

repeating each measurement five times to determine the latency and variance. Figure 4.1

shows the result.

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

M
ax

im
u

m
 E

x
p

ec
te

d
 L

at
en

cy
 (

in
 u

s)

Simulated Number of Servers

99% N(90,50) distribution
50% N(90,50) distribution

Figure 4.1. Predicted by probabilistic analysis. As the scale of the Partition/Aggregate
communication pattern increases, latency increases due to stragglers.

As the number of servers increases, the maximum observed value in~v increases as

well. We also plot the 50th and 99th percentiles of the underlying N(90,50) distribution.

In this simulation, when the number of servers is small, the maximum expected latency

is close to the mean of 100 µs (the 50th percentile of the random variable). However, as

S grows the maximum observed value approaches the 99th percentile value of 254.25µs.

In this way, the end-to-end latency of the Partition/Aggregate communication pattern is

driven by the tail-latency of nodes at scale.

41

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25

L
at

en
cy

 (
in

 u
s)

Number of Servers

Empirically observed latency
99% latency single server
50% latency single server

Figure 4.2. Empirically observed. As the scale of the Partition/Aggregate communication
pattern increases, latency increases due to stragglers.

Experimental validation: To validate the above probabilistic analysis, we per-

form the following experiment on our testbed. We set up six Memcached clients, each on

different machines, and measured the latency seen by one of these clients. Each client

issues S parallel get requests to a set of S server instances (where S ranges from 1 to

24). Clients waits for response from all the servers before generating next set of requests.

Each server instance runs on its own machine. In addition, we used the memslap load

generator included with Memcached to generate requests uniformly distributed across

the key-space at a low request rate, so as not to induce significant load on the servers.

Figure 4.2 shows the results of experiments and observed single-server median

latency (approximately 100µs) and the 99th percentile of latency (approximately 255µs).

As expected, when issuing a single request to a single server the observed latency is

nearly the 50th percentile of service time. However, as S increases, the observed latency

42

of the set of requests quickly approaches the long tail of latency, in this case just below

the 99th percentile.

4.2 The dependent/sequential pattern

 1000

 10000

 100000

 1e+06

 1e+07

 5 10 15 20 25 30 35 40 45 50

#
R

eq
u

es
ts

 w
it

h
in

 S
L

A

Server load in requests/sec x(1000)

50ms SLA stddev=2us
50ms SLA stddev=1us

Figure 4.3. Predicted by queueing analysis. For the Dependent/Sequential communica-
tion pattern, the number of subservice invocations permitted by the developer to meet
end-to-end latency SLAs depends on the variance of subservice latency.

Another communication pattern in data centers is the dependent/sequential work-

flow pattern, where applications issue requests one after another such that a subsequent

request is dependent on the results of previous requests. Dependent/sequential patterns,

for example, force Facebook to limit the number of requests that can be issued to build a

user’s page to between 100 and 150 [71]. The reason for this limit is to control latency,

since a large number of sequential requests can add up to a large aggregate latency. With

a large number of sequential requests the number of requests hitting the tail latency will

43

 10

 100

 1000

 10000

 0 20 40 60 80 100

#
R

eq
u

es
ts

 w
it

h
in

 S
L

A

Server load in requests/sec x(1000)

SLA 50ms Baseline
SLA 50 ms Chronos

Figure 4.4. Empirically-observed. For the Dependent/Sequential communication pattern,
the number of subservice invocations permitted by the developer to meet end-to-end
latency SLAs depends on the variance of subservice latency.

also increase, thus lowering the number of otherwise possible sequential invocations.

Another example of this pattern is search queries that are iteratively refined based on

previous results.

In both cases, increasing the load on the subservices results in increased service

time, lowering the number of operations allowed during a particular time budget. This

observation is widely known, and in this subsection we show how it can be validated

both through a queueing analysis as well as a simple microbenchmark.

Consider a simple model of a single-threaded server where clients send requests

to the server according to a Poisson process at a rate λ . The server processes requests

one at a time with an average service time of µ . Since the service time is variable, we

model the system as an M/G/1 queue. Using the Pollaczek-Khinchine transformation [8],

44

we compute the expected wait time as a function of the variance of the service time using

W =
ρ +λ µVar(S)

2(µ−λ)
(4.2)

where ρ = λ/µ .

Based on this model, we can predict the service latency as a function of service

load, mean latency, and the standard deviation of variance. To observe the effect of

latency variation, we evaluated the model against σ = 1 (based on our observations of

Memcached), and σ = 2 (representing a higher variance service). For each σ value,

we use the model to compute the latency, and from that, we compute the number of

service invocations that a developer can issue while fitting into a specified end-to-end

latency budget, and plot the results in Figure 4.3. As expected, that budget is significantly

reduced in the presence of increased latency variance.

To validate this model, we compare the predicted number of permitted service

invocations to the actual number as measured with Memcached deployment in our testbed,

shown in Figure 4.4. The experimental setup and experiments are described in detail

in Section 6.2.2. Here, we measure the 99th percentile of latency for both baseline

Memcached as well as Memcached implemented on Chronos (CH) with uniform inter-

arrival time and access pattern for requests. Each point in figure represents the number of

service invocations permitted with the specified SLA, as a function of the server load, in

requests per second.

4.3 Summary

The overall trends in these simple studies confirm the intuition that delivering

predictable, low latency response requires not just a low mean latency, but also a small

variation from the mean. We have shown that the end-to-end latency for the Parti-

45

tion/Aggregate communication pattern is driven by the tail-latency at scale. In the case

of the Dependent/Sequential pattern, the tail latency determines the number of service

invocations allowed within the SLO. Thus, it is important to reduce the variance in service

latency in addition to bringing down overall latency.

4.4 Acknowledgements

This chapter in part, contains material as it appears in Kapoor, Rishi; Porter,

George; Tewari, Malveeka; Voelker, Geoffrey M. ; Vahdat, Amin. “Chronos: Predictable

Low Latency for Data Center Applications”, Proceedings of the ACM Symposium on

Cloud Computing (SOCC), San Jose, CA, October 2012 The dissertation author was the

primary investigator and author on this paper.

Chapter 5

Data Center Latency Characterization

In previous chapter we have shown that the end-to-end latency for different

application communication pattern is driven by the tail-latency at scale. In this chapter,

we give a detailed analysis of the main components contributing to the end-to-end latency

in the data center applications. Understanding and analyzing sources of latency and

latency variation is important to build performant and efficient applications.

We summarize the results in Table 5.1 and report the contribution of each compo-

nent in the end-to-end latency. This includes one-way network latency for a request to

reach from the client to the server, the latency at end-host server to deliver the request to

the application and application latency for processing the request and sending the out the

response from the server. As a concrete example, we further analyze the impact of server

load and lock contentions due to concurrent requests on the Memcached server latency.

5.1 Sources of end-to-end application latency

Data center Fabric: The data center fabric latency is the amount of time it

takes a packet to traverse the network between the client and the server. This latency

can be further decomposed into propagation delay and in-switch delay. Within a data

center, speed of light propagation delay is approximately 1 µs. Within each switch, the

46

47

Table 5.1. Latency sources in data center applications. Underlying operating system is
the Debian Linux 2.6.28 kernel. †The network fabric latency assumes six switch hops
per path and at most 2-3 switches congested along the path. Switch latency is calculated
assuming 32 port switch with a 2MB shared buffer (i.e., 64KB may be allocated to each
port). ∗Application latency is based on Memcached latency.

Component Description Mean
latency
(µs)

99 %ile
latency
(µs)

Overall
share

DC Fabric
Propagation delay <1 - -
Single Switch 1-4 40-60 1%
Network Path† 6 150 7 %

End-host
Net. serialization 1.3 1.3 1.4 %
DMA 2.6 2.6 3 %
Kernel (incl. lock con-
tention)

76 1200-
2500

86-95 %

Application Application∗ 2 3 2 %
Total latency 88 1356-

2656
100 %

switching delay is approximately 1–4 µs. Low-latency, cut-through switches further

reduce this packet forwarding latency to below one microsecond. A packet from client

to server typically traverses 5–6 switches [4]. A packet can also suffer queueing delay

based on prevailing network congestion. We calculate the queueing delay by measuring

the additional time a packet waits in switch buffers. Typical commodity silicon might

have between 1–10MB buffers today for 10Gbps switches. However, this memory is

shared among all ports. So for a 32-port switch with relatively even load across ports

and with 2MB of combined buffering, approximately 64KB would be allocated to each

port. During periods of congestion, this equates to an incoming packet having to wait

for up to 50 µs (42 1500-byte packets) before it can leave the switch. If all buffers

along the six hops between the source and destination are fully congested, then this

delay can become significant. Several efforts described in Section 2.3.4 aim to minimize

congestion and thus latency. We expect that, in the common case, the networks paths

48

will be largely uncongested. While in network bottlenecks such as delay in data center

fabric are outside the scope of this effort, the value of Chronos is that it addresses the key

latency bottlenecks in the end-host to deliver low-latency services.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Latency (in us)

46 clients
92 clients

115 clients
161 clients

Figure 5.1. Memcached latency distribution at 30% (low) utilization.

End-host: End-host latency includes the time required to receive and send

packets to and from the server NIC, as well as delivering them to the application. This

time includes the latency incurred due to network serialization, DMA the packet from

the NIC buffer to an OS buffer, and traversing the OS network stack to move the packet

to its destination user-space process.

To understand the constituent sources of end-host latency under load, we profile

a typical Memcached request. We issued 20,000 requests/second to the server, which is

approximately 2% network utilization in our testbed. We instrumented Memcached 1.6

beta and collected timestamps during request processing. To measure the server response

49

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
D

F

Latency (in us)

46 clients
92 clients

115 clients
161 clients

Figure 5.2. Memcached latency distribution at 70% (high) utilization.

time, we installed a packet mirroring rule into our switch to copy packets to and from our

server to a second measurement server running Myricom’s Sniffer10G stack, delivering

precise timestamps for a 10Gbps packet capture (at approx. 20ns resolution). Section 6.2

presents full details on the testbed setup.

A median request took 82µs to complete at low utilization, with that time divided

across the categories shown in Table 5.1. Network Serialization latency is based on a

100B request packet and a 1500B response at 10Gbps. DMA latency is the transfer time

of a 1600B (request and response) calculated assuming a DMA engine running at 5GHz.

Application: This is the time required to process a message or request, perform

the application logic, and generate a response. In the case of Memcached, this includes

the time to parse the request, look up a key in the hash table, determine the location of

value in memory and generate a response for the client. We measured the Memcached

50

application latency by wrapping timer calls around the application. We record the start

time of this measurement immediately after the socket recv call is issued; the end time

is measured just before the application issues the socket send call. The application

latency in Memcached is 2µs. In Section 5.2 we discuss other factors that contribute to

application latency, including application thread lock contention.

The remainder of the time between the observed request latency and the above

components includes the kernel networking stack, context switch overhead, lock con-

tention, kernel scheduling overhead, and other in-kernel, non-application end-host activity.

The contribution of kernel overhead alone accounts for more than 90% of the end-host

latency and approximately 85% of end-to-end latency. In the next section, and in rest of

the paper, we focus our efforts on understanding the effect of kernel latency on the end-

host application performance, aiming to reduce this important and significant component

of latency.

5.2 End-to-end latency in Memcached

In this section we further analyze Memcached latency. We show how increasing

the load at the server results in queueing of pending requests in the kernel which signif-

icantly increases the tail latency. We further show that lock contention for processing

concurrent requests also results in significant latency variation.

Effect of server load: To measure Memcached performance, we use a config-

urable number of Memslap clients [1], which are closed-loop (i.e., each client sends a

new request only after receiving the response from the previous request) load generators

included with the Memcached distribution to send requests to a Memcached server with

four threads. Each client is deployed on its own core to lower measurement variabil-

ity. We observe that Memcached can support up to 120,000 requests/second with sub

51

millisecond tail latency. We next subject the Memcached server to a fixed request load,

and observe the distribution of latency. We evaluated the server at a low request load

of 40,000 requests per second, which is approximately 30% of the server’s maximum

throughput, and also at a high load of 90,000 requests per second, or about 70% of its

maximum throughput. On each of the 23 client machines, we reserve one CPU core for

Linux, leaving seven for client instances, which means we can support up to 161 clients.

At low server utilization (30%), increasing the number of clients had little effect

on distribution of latency as shown in Figure 5.1. By increasing the number of clients

we increase the number of concurrent requests at the server, even though load offered by

each client drops. Most responses completed in under 150 µs, with the tail continuing

up to approximately 300 µs, shown in Figure 5.1. This corresponds to lower levels of

load at which developers run their services to ensure low tail-latency. However, at high

server utilization (70%), increasing the number of clients had a pronounced effect on

observed latency. High load resulted in a significant latency increase as the number of

clients increased, reaching a maximum at about 2,000µs, shown in Figure 5.2. These

measurements aid our understanding of current practices of running services at low levels

of utilization. Operating these services at higher utilization necessitates reining in the

latency outliers.

Request queueing in the application plays a significant role in the latency increase.

Two sources of this queueing are variance in kernel service time and an increase in lock

contention within the application due to an increase in concurrent requests. Profiling

CPU cycles spent during the experiment shows that the bulk of the time is spent copying

data and context switching.

Lock contention: We used the mutrace [55] tool during runtime to validate this

last point and saw a significant amount of lock contention. We evaluated a Memcached

instance with concurrent requests from 20 memslap clients and found that more than

52

 0

 500

 1000

 1500

 2000

 0 50 100 150 200 250 300

L
at

en
cy

 (
in

 u
s)

Number of clients

Mean RCU search
Mean CH search
Mean R/W lock search
99% RCU search
99% CH search
99% R/W lock search

Figure 5.3. Web search latency of single Index server.

50% of lock requests were contested, with that contested time accounting for about a

third of the overall experiment duration. We found that the source of this lock contention

in Memcached was a shared hash table protected by a pthread lock. This lock must

be acquired both for update as well as lookup operations on the table. With pthread

locks (used by Memcached), contention not only induces serialization, but must also be

resolved in the kernel, adding further delay and variance to observed latency.

To quantify lock overhead, we modified a Memchached based Web search applica-

tion to use two different synchronization primitives, (1) read/write locks and (2) an RCU

(read copy update) mechanism [81] in place of the conventional pthread system locks in

Memcached. These synchronization primitives are more efficient for the read-dominant

workloads that are common in applications like key-value stores (where the number of

get requests is much larger than set requests) and search (where index-update is less

53

frequent than index-lookup).

In addition to using the new locking primitives, we also modify the applications

to use user-level networking APIs to bypass the kernel and eliminate kernel overheads in

latency. We describe the user-level APIs in more detail in Section 6.1, but for illustration

we can assume that use of these APIs removes kernel overhead completely. Bypassing the

kernel with user-level APIs allows us to quantify the overhead caused due to application

lock contention alone. For evaluation, we vary the number of memslap clients that

send requests to the modified Memcached instances. We used 10-byte keys and 1400-

byte values with a get/set requests ratio equal to 9:1 as suggested in [28]. Figure 5.3

shows the results of this experiment (the 99% and Mean CH search curves correspond

to the Chronos results and can be ignored for now). Here, we see that even with an

implementation based on read/write locks and RCU, latency remains high. Read/write

locks do not scale because the state associated with them (number of readers) still needs

to be updated atomically. For a small number of concurrent clients RCU performs well

but as load increases there is significant variation in latency. Note that the performance

of these synchronization primitives would be reduced if the workload pattern shifted

towards a more write-heavy demand.

5.3 Summary

Our observations, summarized in Table 5.1, indicate that the operating system ac-

counts for more than 90% of end-host latency at low and high requests loads. To eliminate

this kernel and network stack overhead, we studied user-level, kernel bypass, zero-copy

network functionality. These APIs are known to minimize latency by eliminating the

kernel from the critical message path, and thus avoiding overheads due to multiple copies

and protection domain crossings [20, 25, 65, 84]. While user-level networking removes

kernel overhead, its usage alone is not sufficient to achieve substantial performance

54

improvements. In fact, use of these APIs exposes two new bottlenecks in the system:

lock contention and high load hotspots, both of which limit application performance.

5.4 Acknowledgements

This chapter in part, contains material as it appears in Kapoor, Rishi; Porter,

George; Tewari, Malveeka; Voelker, Geoffrey M. ; Vahdat, Amin. “Chronos: Predictable

Low Latency for Data Center Applications”, Proceedings of the ACM Symposium on

Cloud Computing (SOCC), San Jose, CA, October 2012 The dissertation author was the

primary investigator and author on this paper.

Chapter 6

Chronos: Predictable Low Latency for
Data Center Applications

Based on our observations in chapter 4 and chapter 5, we propose Chronos, a

communication framework that leverages both kernel bypass and NIC-level request

dispatch to deliver predictable low latency for data center applications. Chronos directs

incoming requests to concurrent application threads in a way that drastically reduces,

and in some cases eliminates, application lock contention. Chronos also provides an

extensible load balancer that spreads incoming requests across available processing cores

to handle skewed request patterns while still delivering low-latency response time.

Our evaluation shows that Chronos substantially improves data center application

throughput and latency. We show that Memcached implemented on Chronos, can support

200,000 requests per second with a mean operation latency of 10µs with a 99th percentile

latency of only 30 µs, a factor of 20 lower than unmodified Memcached. We find similar

benefits for Web search and the OpenFlow controller.

6.1 Design Goals

Our goal is to build an architecture with these features:

1. Low mean and tail latency: Achieve low predictable latency by reducing the

55

56

overhead of handling sockets and communication in the kernel. Reducing the

application tail latency improves the latency predictability and the application

performance.

2. Support high levels of concurrency with reduced or no lock contention: Re-

duce or eliminate application lock contention by partitioning requests across appli-

cation threads within a single end-host.

3. Early request assignment and introspection: Partition incoming client requests

as early as possible to avoid application-level queue build-up due to request skew

and application lock contention.

4. Self tuning: Dynamically load balance requests within a single node across inter-

nal resources to avoid hotspots and application-level queueing, without assuming

apriori knowledge of the incoming request pattern and application behavior.

6.1.1 Design and implementation

We now describe the design of Chronos (shown in Figure 6.1). Chronos partitions

application data to allow concurrent access by the application threads (described in

Section 6.1.1). It maintains a dynamic mapping between application threads and data

partitions in a lookup table, and when a packet arrives at the server, Chronos examines

the partition ID in the application header and consults the lookup table to steer the request

to the proper application thread. The Chronos load balancer periodically updates the

mapping between partitions and application threads to balance the load on each thread

such that the request response time is minimized. In Chronos, requests are demultiplexed

between application threads early, in the NIC, to avoid lock contention and multiple

copies. At a high level, the Chronos request servicing pipeline is carried out in three

stages: (1) request handling, (2) request partitioning and (3) load balancing.

57

Partition
1

Partition
3

Partition
2

Partition
4

Memory

Thread 1 Thread 3 Thread 2

Packet

CPU

Data

Partition ID: 2

Header

NIC

Partition Thread
1 1
2 2
3 1
4 3

Hash

Load
Balancer (LB)

Module
1. Request

Handling at NIC
2. Early Request

Partitioning

3. Load Balance
Requests	

Thread Assignment

Figure 6.1. Chronos system overview.

Request handling

As described in Section 5, a major source of latency in end host applications is

the operating system stack. Chronos eliminates the latency overhead introduced due to

kernel processing by moving request handling out of the kernel to user-space by using

zero-copy, kernel-bypass network APIs. These APIs are available from several vendors

and can be used with commodity server NICs [56, 76, 77].

We now explain one possible way of implementing user-level networking. When

the NIC driver is loaded, it allocates a region of main memory dedicated for storing

incoming packets. This memory is managed as send and receive ring buffers, called NIC

queues. To bypass the kernel, an application can request an exclusive handle to one or

more receive ring buffers for its different threads. The receive ring buffers are mapped to

addresses in the application address space. Outgoing packets from the application are

58

enqueued into a selected ring, and are sent on the wire by the NIC. The incoming packets

at the NIC are classified to a receive ring based on the output of a hash function. This

classifying function can be implemented in the hardware or in software. Though in-NIC

request classification will be most efficient, it is less flexible than a software classifier.

Chronos is not tied to any specific NIC implementation for user-level networking as long

as it can correctly classify the incoming packets and assign them to the right application

thread. For hardware classification, one could extend the receive-side scaling (RSS)

feature in the NICs such that it hashes packets into rings based on a custom offset instead

of hashing on the fixed 5-tuple in the packet header.

For prototyping Chronos, we use a custom hash function implemented in user

space for request classification. The custom hash function enables deep packet inspection

and arbitrary processing over the packet contents by executing the hash function on any

one of the CPU cores. This function works by registering a C function with the NIC API,

and then when a new packet arrives, the NIC will call the function, passing it a pointer to

the packet and the packet length. This function returns the receive ring buffer id which

the packet should be classified to. Note that there is no additional copying involved.

However, software hashing has performance cost as it may cause cache misses. This is

because the custom hash function would read the packet header first and then assign it

logically to a ring buffer. The packet may then be processed by an application thread on

a different CPU core, which may not share an L2 cache with the classifying core. For our

implementation, the performance penalty due to user space processing was outweighed by

the latency incurred in the kernel. For the simple custom hash functions we implemented

the execution overhead is in nanoseconds, less than the packet inter-arrival times for 10

Gbps links.

Finally, note that the application is not interrupted as the packets arrive at the

server. Instead, it must poll the receive ring buffer for new packets using receive(). For

59

Chronos, we have a dedicated thread monitoring the NIC queues that registers packet

reception events with the applications.

Request partitioning

Bypassing the kernel significantly reduces the latency, since a request can now be

delivered from the NIC to the application in as low as 1-4 µs. However, this reduction in

packet transfer latency exposes new application bottlenecks namely lock contention, core

overloading or processing hot-spots due to skewed requests. These bottlenecks are re-

sponsible for significant variation in latency causing unpredictability. A classic approach

to reducing lock contention is to separate requests that manipulate disjoint application

state as early as possible. Chronos uses this approach and minimizes shared state with

static division of the state into disjoint partitions that can be processed concurrently. For

instance, in case of Memcached, we replace a single centralized hash table with the

entire keyspace and associated slab class lists with N hash tables and slab class lists with

smaller regions of the keyspace. Each of these N hash tables represents a partition and

can now be assigned to a hardware thread for concurrent processing. A single thread can

handle multiple data partitions.

With partitioned data, we now need to send each request to the thread handling that

partition. Chronos uses a classifying function (described in Section 6.1.1) to examine the

application header for the partition ID and steering the request to the receive ring buffer of

the thread which handles the data partition for the request. While it is possible to add a new

field (partition ID) to the application header to steer requests to the appropriate application

threads, we choose instead to overload an existing field. In case of Memcached, we rely

on the virtual bucket, or vBucket field, which denotes a partition of keyspace. For the

search application we use the search term itself, and for the OpenFlow controller we use

60

the switch ID.

The partitionable data assumption fits well for classes of applications like key-

value stores, search, and OpenFlow. Handling requests for data from multiple partitions

is an active area of research [45], and one we hope to study in future work.

Extensible load balancing

The end-host should be able to handle large spikes of load, with multiple concur-

rent requests, while running the underlying system at high levels of utilization. While

static request partitioning helps in reducing lock contention, it could still lead to hot-spots

where a single thread has to serve a large number of requests. To this end, we present a

novel load balancing algorithm that dynamically updates the mapping between threads

and partitions such that the incoming requests are equally distributed across the threads.

We now describe the load balancing mechanism. Chronos uses a classifier based

on the partition ID field in the application header, and a soft-state table to map the

partition ID field to an application thread. To reduce lock contention, the partition-to-

thread mapping should ensure that each partition is exclusively mapped to a single thread.

The load balancing module periodically updates the table based on the offered load and

popular keys. For simplicity, assume that the Chronos load balancer measures the load on

a data partition as a function of the number of incoming requests for that partition. This

is true for key-value stores when each request is identical in terms of time required for

processing the request (table lookup) but not for applications like in-memory databases.

In general, the load on a partition is representative of the expected time taken to process

the assigned requests. The number of requests served for each partition is maintained in

user space for each ring buffer. A counter is updated by the classifying function while

handling requests, and the load balancer could optionally be extended to measure the

load in other ways as well. The load on a thread is the total load on all partitions assigned

61

Algorithm 1. Chronos Load Balancer updates partitionID to thread mapping based on
load offered in last epoch.

1: IdealLoad = totalE pochLoad/totalT hreads
2: for all k ∈ {totalT hreads} do
3: threadLoadMap[k] = 0
4: end for
5: for all v ∈ partitionID do
6: t = epochMap.getT hread(v)
7: if threadLoadMap[t]≤ IdealLoad then
8: currentEpochMap.assign(v, t)
9: threadLoadMap[t].add(v.load)

10: else
11: for all k ∈ {totalT hreads−{t}} do
12: if threadLoadMap[k]≤ IdealLoad then
13: currentEpochMap.assign(v, k)
14: threadLoadMap[k].add(v.load)
15: break
16: end if
17: end for
18: end if
19: end for
20: epochMap = currentE pochMap

to a thread.

The Chronos load-balancing algorithm divides time into epochs, where each

epoch is of maximum configurable duration T . The load balancer maintains a mapping of

each partition to an application thread in the epoch, epochMap, along with per-partition

load information. The load balancer also maintains a separate map for measuring thread

load, threadLoadMap which indicates the number of requests served by an application

thread in the current epoch.

The load balancing algorithm greedily tries to assign partitions to the least loaded

thread only if the thread to which partition is already assigned is overloaded with requests.

This is to avoid unnecessary movement of partitions across threads. When the application

starts, the Chronos load balancer initializes the table with a random mapping of partition

62

IDs to threads. Algorithm 1 shows psuedocode for the Chronos load-balancer module.

A new epoch is triggered when the duration T elapses. At the start of a new epoch, the

load balancer computes the new mapping as described in Algorithm 1. The load balancer

computes the total load in the last epoch and divides that by the number of threads to

obtain the ideal load each thread should serve in the next epoch, under the assumption

that load distribution will remain the same. In each epoch, it initializes the load for

each thread to be zero. It then iterates through all partitions, checking if the thread it is

currently assigned to can accommodate the partition load or not. If not, the algorithm

assigns the partition to the first lightly loaded thread.

For the proposed algorithm to work effectively, the number of partitions should

be at least the number of cores available across all of the application instances. Note that

Chronos load balancing does not add to cache pollution that might happen due to sharing

of partitions among threads. In fact, the baseline application will have lower cache

locality given that all of its threads access a centralized hash table. While the proposed

load balancing algorithm tries to distribute the load uniformly on all threads, Chronos can

also be used with other load balancing algorithms which optimize for different objectives.

Note that concurrent access to the partitioned data is still protected by a mutex

to ensure program correctness, however the partitioning function ensures that there is

a serialized set of operations for a given partition. The only time that two application

threads might try to access the same partition is during the small windows where the

load balancing algorithm updates its mapping. This remapping can cause some requests

to follow the new mapping, while other requests are still being processed under the

previous mapping. We will show in the evaluation that this is a relatively rare event, and

for reasonable update rates of the load balancer, would not affect the 99th percentile of

latency.

63

6.1.2 Application case studies

Chronos does not require rewriting the application to take full advantage of its

framework. Chronos requires only minor modifications to the application code for using

the user-level networking API. To demonstrate the ease of deploying Chronos, we port

the following three data center applications to use Chronos and evaluate the improvement

in their performance.

Memcached: Rather than building a new key-value store, we base Chronos-

Memcached (Chronos-MC) on the original Memcached codebase. Chronos-MC is

a drop-in implementation of Memcached that modifies only 48 lines of the original

Memcached code base, and adds 350 lines. These modifications include support for

user-level network APIs, for the in-NIC load balancer, and for adding support for multiple

partitions.

Web Search: Another application we consider is Web search, a well-studied

problem with numerous scalable implementations [24, 35]. We choose Web search since

it is a good example of a horizontally-scalable data center application. Web search query

evaluation is composed of two components. The first looks up the query term in an

inverted-index server to retrieve the list of documents matching that term. The second

retrieves the documents from the document server. The inverted index is partitioned

across thousands of servers based on either document identifier or term. For Chronos-

WebSearch (Chronos-WS), we implement term-based partitioning. We wrote our own

implementation of Web search based on Memcached.

It is important that Web search index tables are kept updated, and so modifications

to them are periodically necessary. One approach is to create a completely new copy of

the in-memory index and to then atomically flip to the new version. This would impose

a factor of two memory overhead. Another option is to update portions of the index in

64

place, which requires sufficient locking to protect the data structures. We implemented

an index server using read/write locks and UNet APIs. The index server maintains the

index-table as search term and associated documents IDs, as well as word frequency and

other related information. We also implemented a version of the index server with an

RCU mechanism from an open-source code base provided by the RCU authors [81]. We

modified it to work with the UNet APIs. Chronos-WS further divides the index server

table into several partitions based on terms for efficient load balancing.

OpenFlow Controller: We also implemented an OpenFlow controller applica-

tion on Chronos (Chronos-OF) using code provided by [59]. This application is different

from the Memcached and Web search applications since it is typically not horizontally

scaled in the same way as these other applications. However, given that the OpenFlow

controller can be on the critical path for new flows to be admitted into the network, its

performance is critical, even if the entire application is only deployed on a single server.

This application receives requests from multiple switches and responds with forwarding

rules to be inserted in the switch table.

6.2 Evaluation

In this section we evaluate the Chronos-based Memcached, Web server and

OpenFlow controller using micro and macro-benchmarks. Overall, our results show that:

• Even with Memcached running on the MOSBENCH [22] kernel with an efficient

network stack, the tail latency is still high. This justifies the use of kernel bypass

networking APIs to deliver predictable low latency.

• Chronos-MC exhibits up to 20x lower mean latency compared to stock Memcached

for a uniform request arrival rate of 200,000 requests/sec. For bursty workloads, it

65

reduces the tail latency by 50x for a request rate of 120,000 requests/sec. Reduced

tail latency improves the latency predictability and application performance.

• Chronos-MC can effectively scale up to 1 million requests/sec taking advantage of

load balancing across concurrent threads.

• Chronos-WS achieves an improvement of 2.5x in mean latency as compared to

baseline Web Server application that uses Read/Write locks.

• Chronos-OF achieves an improvement of 12x in mean latency as compared to

baseline OpenFlow application.

We now describe our experiment setup, the workloads we use, and performance

metrics we measure.

Testbed: We deployed Chronos on 50 HP DL380G6 servers, each with two Intel

E5520 four-core CPUs (2.26GHz) running Debian Linux with kernel version 2.6.28.

Each machine has 24 GB of DRAM (1066 MHz) divided into two banks of 12 GB

each. All of our servers are plugged into a single Cisco Nexus 5596UP 96-port 10 Gbps

switch running NX-OS 5.0(3)N1(1a). This switch configuration approximates the ideal

condition of nonblocking bandwidth on a single switch. We do not focus on network

sources of latency variability in this evaluation. Each server is equipped with a Myricom

10 Gbps 10G-PCIE2-8B2-2S+E dual-port NIC connected to a PCI-Express Gen 2 bus.

Each NIC is connected to the switch with a 10 Gbps copper direct-attach cable. When

testing against kernel sockets, we use the myri10ge network driver version 1.4.3-1.378

with interrupt coalescing turned off. For user-level, kernel-bypass experiments we use

the Sniffer10G driver and firmware version 2.0 beta. We run Memcached version 1.6

beta, configured to use UDP as the transport layer protocol, along with support for binary

protocol for efficient request parsing and virtual buckets for enabling load balancing.

66

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140 160

L
at

en
cy

 (
in

 u
s)

Number of clients

99% 1T-4P MC MOSBENCH
99% 1T-4P MC Stock linux kernel
99% 1T-1P MC MOSBENCH
99% 4T-1P MC MOSBENCH

Figure 6.2. Legend: nT-mP stands for n thread m processes of Memcached(MC). Shown
is the tail latency for one and four threads (1T and 4T) running in either one process or
four processes (1P or 4P).

Metrics and Workloads: Like any complex system, the performance observed

from Memcached and Chronos is heavily dependent on the workload, which we define

using the following metrics: 1) request rate, 2) request concurrency, 3) key distribution,

and 4) number of clients. The metrics of performance we study for both systems are

the 1) number of requests per second served, 2) mean latency distribution, and 3) 99th

percentile latency distributions. To evaluate baseline Memcached and Chronos under

realistic conditions, we use two load generators. The first, Memslap [1], is a closed-

loop benchmark tool distributed with Memcached that uses the standard Linux network

stack. It generates a series of get and put operations using randomly generated data. We

configure it to issue 90% get and 10% put operations for 64-byte keys and 1024-byte

67

values since these values are representative of read-heavy data center workloads [28].

For the results that follow, we found that varying the key size had a minimal effect

on the relative performance between Chronos and baseline Memcached. The second

load generator is an open-loop load program (i.e client generates requests at a fixed rate

irrespective of pending previous requests) we built in-house using low-latency, user-level

network APIs to reduce measurement variability. Each instance of this second load

generator issues requests at a configurable rate, up to 10Gbps per instance, with either

uniform or exponential inter-arrival times. The KV-pair distribution used by the tool is

patterned on YCSB [28]. Note that the latency numbers reported in figures generated

by the closed-loop clients are higher by 50–70 µs compared to open loop clients since

closed loop clients also report the kernel and network stack latency. For Chronos, we run

the load-balancer every 50µs, unless specified otherwise.

6.2.1 Memcached on an optimized kernel

We examine the latency of different configurations of Memcached instances

– i) one single threaded, ii) one multi threaded (with four threads) and iii) multiple

single threaded processes (four processes each running on its own core) – using the

MOSBENCH kernel (pk branch) with an efficient network stack. The multi threaded

Memcached incurs intra-thread lock contention, while the single threaded and multi-

process configurations are free of intra thread lock contention. However, multiple single

threaded Memcached processes can support more clients as compared to single threaded

instances.

To measure the performance of these different configurations we use a config-

urable number of Memslap clients, each deployed on its own core to lower the mea-

surement variability. A Memslap client opens a socket connection to one of the four

Memcached process. While running in single threaded mode, and thus free of intra-thread

68

 0

 500

 1000

 1500

 2000

 0 50 100 150 200

L
at

en
cy

 (
in

 u
s)

 200 400 600 800 1000

Requests/sec (x 1000)

Mean MC
99% MC

Mean UNet + Locks
99% UNet + Locks

Mean CH
99% CH

Figure 6.3. Latency of baseline Memcached (MC), Memcached with user-level network
APIs (UNet locks), and Chronos (CH) with 10 open loop clients.

resource contention, we expect the single threaded, multiple process Memcached latency

and variance to be lower than multi-threaded instance on MOSBENCH. Figure 6.2 shows

our results. For comparison, we also plot the performance of Memcached with the stock

linux kernel. Our results show that even with the optimized MOSBENCH kernel, the

99th percentile latency for four single threaded multi-process configuration is as high as

810 µs with 140 clients (35 clients/process), indicating that the kernel’s contribution to

the tail latency is significant despite kernel optimizations and a lack of application lock

contention.

69

6.2.2 Uniform request workload

In this subsection we show that Chronos-MC reduces the mean application latency

by a factor of 20x as compared to baseline Memcached for a workload with uniform

inter-arrival time and access pattern for requests. Chronos-MC also outperformed a

Memcached implementation that only leveraged user-level networking but no other

Chronos feature (request partition or load balancing). We started instances of the three

different Memcached implementations with four threads each. We also instantiated 10

client machines running our custom open-loop load generator utilizing user-level network

APIs. Each client issues requests at a configurable rate, measuring the response time as

perceived by the client as well as any lost responses. The server is pre-installed with

4GB of random data, and clients issue requests from this set of keys using a uniform

distribution with uniform inter-request times. We use 1KB values and 64 byte keys in a

9:1 ratio of gets to sets. To avoid overloading the server beyond its capacity, each client

terminates when the observed request drop rate exceeds 1%.

Figure 6.3 shows the results for this experiment. While baseline Memcached

supports up to approximately 120,000 requests per second before dropping a significant

number of requests, Chronos supports a mean latency of about 25 µs up through 500,000

requests per second and rises just above 50µs at 1M requests per second. The Memcached

instance with just the socket API replaced with the user-level kernel API not only has

higher mean latency, but the variation of latency is significantly higher, as shown by

the 99th percentile, indicating that reducing variability in the network stack, operating

system, and application are all important to reduce tail latency.

We also evaluate the performance of Chronos-MC with a larger number of closed

loop clients. We instantiated eight client Memslap processes on each physical client

machine, and scaled up to 50 client machines. As shown in Figure 6.4, we see that

70

 0

 800

 1600

 2400

 3200

 0 50 100 150 200 250 300 350 400

L
at

en
cy

 (
in

 u
s)

Mean MC
99% MC
Mean CH
99% CH

 0

 400

 800

 1200

 0 50 100 150 200 250 300 350 400

T
P

S
 (

x
 1

0
0
0

)

Number of clients

MC
CH

Figure 6.4. Latency as a function of the number of clients with the Memslap benchmark
(closed loop).

Chronos-MC supports over 1 million transactions per second (TPS), limited only by the

NIC’s throughput limit of 10Gbps. With 120 clients, the number of requests served levels

out, causing a small amount of additional latency as requests wait to be transmitted at the

client. In contrast, baseline Memcached serves fewer request/sec with high latency.

6.2.3 Skew in request inter-arrival times

In this subsection, we show that the techniques used in Chronos deliver predictable

low latency even with skewed request inter arrival times. With the skewed workload

Chronos achieves 50x improvement relative to baseline Memcached while serving 10,000

requests per second.

The presence of skewed request inter-arrival times means that, although the

71

 0

 200

 400

 600

 800

 1000

 10 100 1000

9
9
th

 P
er

ce
n
ti

le
 L

at
en

cy
 (

in
 u

s)

Request/sec (x 1000)

Baseline MC 1T
Baseline CH 1T

1ms burst MC 1T
1ms burst CH 1T

50ms burst MC 1T
50ms burst CH 1T

Figure 6.5. The effect of skewed request inter-arrival times on tail latency. X-axis in
logscale.

average request load might be manageable, there are short periods of request overload.

Depending on how skewed the request pattern is, there might be several back-to-back

requests followed by a gap in requests. From the server point of view, skewed workload

induces a momentary state of overload, which results in application-layer queueing. To

study this behavior, we use the methodology described by Banga and Druschel [15],

originally presented in the context of Web server evaluation. Here, multiple clients

generate traffic at a fixed rate, punctuated with synchronized short bursty periods. These

bursty periods are characterized by two parameters: 1) the ratio of the maximum request

rate in the burst and the overall average request rate, and 2) the duration of bursts. We

fix the maximum-to-average request ratio to be 10, and limit the burst duration such

that each burst has 10% of the total requests sent. Lastly, we ensure that the number of

72

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900

9
9
th

 P
er

ce
n
ti

le
 L

at
en

cy
 (

in
 u

s)

Request/sec (x 1000)

1ms burst 2T
1ms burst 4T
5ms burst 2T
5ms burst 4T
50ms burst 2T
50ms burst 4T

Figure 6.6. The latency with two threaded (2T) and four threaded (4T) instances of
Chronos-MC under skewed request arrivals.

requests in a burst are fixed across the experiments.

Figure 6.5 shows the 99th percentile of latency for baseline Memcached (MC) as

well as Chronos-MC (CH) across a range of burst periods. We see that in the baseline

even short burst durations of 1ms impose significant levels of application queueing at

10,000 requests per second, driving latency up to over a millisecond. Note that without

request inter-arrival time skew, baseline Memcached supported up to 120,000 requests

per second with sub 500µs latency. (Figure 6.3). For Chronos-MC under a uniform

request inter-arrival rate, latency stays largely flat up through 500,000 requests per second

(Figure 6.3). However, just as in the baseline Memcached case, inducing request bursts

drives up latency significantly while reducing the throughput of the system. For 1ms

bursts, the request rate is reduced to 40,000 requests per second for keeping the latency

73

 0

 500

 1000
Epoch duration 10us

 0

 500

 1000

L
at

en
cy

 (
in

 u
s)

Epoch duration 100us

 0

 500

 1000

5 10 15 20 25

Time (in ms)

Static Mapping

Figure 6.7. An evaluation of the responsiveness of the Chronos load balancer module
across two time epochs (10µs on top and 100µs in the middle) and the static mapping
strategy (on the bottom).

under 30µs, with an observed latency of up to 1ms at over 150,000 requests per second.

For longer burst durations, this effect is more pronounced.

Figure 6.6 shows how load balancing with more threads improves the performance

of Chronos-MC. We consider request loads up to 1M requests per second forwarded to

Chronos instances with either two or four application threads, each running on its own

CPU core. As in the single-thread case, bursts in request rates arriving faster than the

effective service time of the application induce application queueing, and thus increases

in delay. This effect is more pronounced at higher loads, given that there is less time

between arriving requests. Adding additional cores mitigates the effect of bursts, but for

sufficient burst lengths queueing will still build up with any fixed number of CPU cores.

74

6.2.4 Skew in request access pattern

In this section, we show how loadbalancing with Chronos at fine grained time

scales significantly reduces the latency variation with skewed request access patterns.

Results are shown in Figure 6.7. The Chronos load balancing module periodically

reapportions requests across application threads to evenly balance the load. As described

in Section 6.1.1, the load balancer works in concert with the NIC-level hash function

to ensure that requests are sent to application threads in such a way as to minimize or

eliminate lock contention. Thus, with Chronos-MC, it is expected that the load balancer

assigns requests across application threads such that each thread sees a strict partition of

vBuckets.

We run the following experiment, to evaluate the responsiveness of Chronos-MC

to request access skew. We set up a Chronos-MC instance with four threads and configure

the load balancing module with an epoch time of 10µs and 100µs. A single open-loop

client sends requests at a rate of 1 million requests/sec. Keys are chosen at random at the

start of each client epoch such that three keys receive 99% of the requests. This pattern is

motivated by the desire to have three of the four cores handling the hot/popular keys, and

have the remaining core receive all of the cold/unpopular keys. We know by construction

that without an adaptive load balancing module, each time the client epoch changes

overload would occur since two or more popular keys would be handled by a single

application thread, and the rate of requests is sufficiently high as to induce overload in

that case. Note the client and the server epochs are not synchronized. We repeat the same

experiment for a Chronos instance with static mapping of keys to threads. Figure 6.7

shows the latency distribution for Chronos at 10µs (top), 100µs (middle), and for the

static mapping (bottom). At the start of each epoch, we see occasional long spikes in the

100 µs case before it is able to adapt to shifts in workload. The static mapping approach

75

fails when two or more popular keys are served from the same application since these

types of co-located request hotspots cannot be migrated to other cores. Unlike previous

figures which show only 99th percentile latency number, Figure 6.7 shows all data-points

including few outliers.

Discussion: Due to our reliance on partitioning to spread load across cores, there

are certain cases that will cause the load balancing element in Chronos to perform poorly.

When a single key in a partition, or the partition itself, becomes hugely popular, the rate

of requests to that partition can overload a single thread. This happens when the request

load approaches 500,000 requests/sec (which is greater than 5 Gbps of traffic). When

a single key becomes that popular, we are limited in our response, and would suggest

that the application itself be re-architected, since such a high get/set load on a single

key would not be practical at scale. However, it is more likely that several keys in the

same partition might together induce such a high load. We can alleviate this condition by

moving those common keys to separate vBuckets, or by modifying the request handling

logic in Chronos to allow the server to split and join buckets based on load demands. We

have not yet evaluated these possible features.

6.2.5 Chronos Web Search

As described in Section 6.1.2, the Web search application maintains a hash table

to store the term and associated document, protected by read/write locks. In Chronos-

WS, we further divide this index into twelve partitions based on the term, and store

them in separate tables protected by a mutex. We evaluate Chronos in comparison to

an RCU lock-based implementation of the hash table that was provided by Triplett et

al [81]. Additionally, we modified this implementation to work with the same user-level

networking API used in Chronos to provide a direct comparison. For search we used

10-byte keys and 1400-byte values in the inverted index list, with a get/set requests ratio

76

Table 6.1. Latency of the OpenFlow Controller.

Component # Switches
Mean

latency (µs)
99 %ile

latency (µs)
OpenFlow 1 65 140
OpenFlow 16 120 250

Chronos-OF 1 8 50
Chronos-OF 16 10 51

equal to 9:1. Figure 5.3 shows the results of our evaluation. Even with an implementation

based on read/write locks and RCU, we see higher latency compared to Chronos-WS

with large number of clients. The performance improvement of Chronos-WS would be

higher if the workload shifted towards a more write-heavy mixture. The reason for this

is that these primitives are optimized for read-heavy workloads and Chronos makes no

such assumption about workload type. The RCU implementation based on user-level

APIs scales up to 550K requests/sec, while the Chronos implementation scales up to 1M

requests/sec. At low request rates and low levels of concurrency, the RCU implementation

has similar performance as Chronos-WS. But as we increase the number of clients, and

thus load on the server, the application latency increases from 2-3 microseconds to 6-11

microseconds for RCU-WS. This small variation in application latency results in a large

end-to-end latency at high loads due to increased queuing delay.

6.2.6 Chronos OpenFlow controller

Finally, we show that the Chronos based implementation of the OpenFlow con-

troller (Chronos-OF), which uses TCP for handling requests, reduces the mean latency

for request processing by a factor of 12x as compared to baseline.

For this experiment, we replaced the default kernel TCP network implementation

in the controller with the user-level TCP implementation provided by our NIC vendor in

our evaluation testbed. The controller software itself is single-threaded. For generating

77

load, we used the Cbench benchmark [27]. Cbench emulates switches that send packet-

in messages to the controller, and waits for flow modification rules to be inserted in

the switch forwarding tables in response. The controller implements a learning switch

application, which generates appropriate forwarding rules in response to packet-in events.

We simulated 16 switches supporting 1M MAC entries as suggested in [27]. To measure

the controller latency, we installed a packet mirroring rule described in Chapter 5.

Table 6.1 shows the results of this experiment. We see that removing the kernel

has the predictable effect of reducing average latency. However, the effect on the 99th

percentile of latency is that the difference between one emulated switch and sixteen

emulated switches is only a single microsecond, as compared to 110 microseconds in

the baseline case. We expect Chronos-OF controller performance to improve further by

enabling load balancing for a multi-threaded implementation.

6.3 Discussion

To achieve high efficiency, data center networks often rely on multi-tenancy and

server virtualization to maximize resource usage. The feasibility of Chronos depends on

being able to support these techniques in in a variety of different data center environments.

In a large, multi-tenancy data center, latency sensitive applications share the same

end-host with other jobs. A key question for Chronos is what impact this sharing has on

latency, and in particular tail latency. To gain some insight into this question, we setup

an experiment to test this condition. We first set up a Memcached server, and started a

background job that receives traffic from six clients in parallel. Each client sends traffic

at rate of 440Mb/s to this background job. We instantiated 21 Memslap clients, and

measured the latency of both a stock Memcached server, and Chronos, with and without

the presence of the background traffic. These particular rates and numbers of clients

78

were chosen to induce sufficient load on the system to evaluate this question. In the

case of baseline Memcached, the presence of background traffic resulted in more than a

60% increase in tail latency, while Chronos-MC’s performance was not affected by the

presence of the background traffic. This initial result indicates that Chronos can provide

low latency in the presence of multi-tenancy, and we seek to further evaluate this in more

depth in future work.

Supporting virtualization in the data center and consolidating multiple VMs on a

single end-host have become common place today. NIC hardware has been augmented to

support SR-IOV, or Single Root I/O Virtualization. SR-IOV allows a guest OS to directly

configure access to virtualized instances of the NIC without going through the hypervisor.

Although not implemented in this work, we expect Chronos to leverage these features to

provide predictable latency in a virtualized setting.

6.3.1 Effect of NUMA-awareness on latency

Modern processor architectures employ non-uniform memory access (NUMA)

architectures, in which memory is partitioned across two or more banks, or domains.

The access time to a core-local domain is lower than that of a remote domain, and so

it is advantageous to organize memory to be as domain-local as possible. To evaluate

the effect of NUMA on Chronos, we setup an experiment as follows. We choose a

Chronos-based Memcached instance with four threads, of which two are in one NUMA

domain, and two are in the other. We then adjust the memory allocator to allocate

domain-local memory for each thread. We compared the observed latency of this with

a second Chronos-based Memcached instance in which the allocator selects entirely

domain-remote memory for each thread.

Figure 6.8 show the latency in these two cases. At low to medium rates of

requests, there is little difference between the two policies. As the request rate exceed 1

79

 0

 100

 200

 300

330 500 650 1000 1111

M
ed

ia
n

 L
at

en
cy

 (
in

 u
s)

Request/sec (x 1000)

Local domain memory access
Remote domain memory access

Figure 6.8. The effect of NUMA-awareness on the Chronos-Memcached load balancer.
There is little difference at lower levels of utilization, and an approximate doubling of
latency (and latency variation) at the highest levels of utilization.

million requests per second, there is a divergence in which the NUMA-remote instance

imposes almost double the latency of the NUMA-local instance, with significantly high

latency variation.

In our testbed, each NUMA domain contained four cores, which alone were

enough to saturate the 10 Gbps NIC. Thus, it is not necessary to load balance requests

across NUMA domains to meet throughput requirements. So ensuring that the load

balancer restricts requests to NUMA-local cores is adequate for current link speeds.

Furthermore, when running the server in low or moderate request loads, the effect is

minimal in either case. Thus NUMA effects are not significant to the efficiency of

Chronos, however their effect might become more pronounced in environments utilizing

80

virtual machines. The specific issue arises when cores from different NUMA domains

are assigned to the same virtual machine, causing high memory latencies and increasing

tail latency.

6.4 Summary

The scale of modern data centers enables developers to deploy applications across

thousands of servers. However, that same scale imposes high monetary, energy, and

management costs, placing increased importance on efficiency. To meet strict SLA

demands, developers typically run services at low utilization to rein in latency outliers,

which decreases efficiency. In this work, we present Chronos, an architecture to reduce

data center application latency especially at the tail. Chronos removes significant sources

of application latency by removing the kernel and network stack from the critical path of

communication by partitioning requests based on application-level packet header fields in

the NIC itself, and by load balancing requests across application instances via an in-NIC

load balancing module. Through an evaluation of Memcached, OpenFlow, and a Web

search application implemented on Chronos, we show that we can reduce latency by up

to a factor of twenty, while significantly reining in latency outliers.

6.5 Acknowledgments

We would like to thank Abhijeet Bhorkar and Mohammad Naghshvar for input

on our analytical analysis. We woild also like to thank authors of [81] for sharing RCU

implementation. This work was supported in part by NSF Grants CSR-1116079 and MRI

CNS-0923523, and a NetApp Faculty Fellowship.

This chapter in part, contains material as it appears in Kapoor, Rishi; Porter,

George; Tewari, Malveeka; Voelker, Geoffrey M. ; Vahdat, Amin. “Chronos: Predictable

Low Latency for Data Center Applications”, Proceedings of the ACM Symposium on

81

Cloud Computing (SOCC), San Jose, CA, October 2012 The dissertation author was the

primary investigator and author on this paper.

Chapter 7

End-host support for Reconfigurable
Topologies

7.1 Introduction

In chapter 6 we looked at an end-host architecture to reduce data center application

latency especially at the tail. Though latency is an important metric but the existing

large-scale data center installations are limited by the ability to provide sufficient internal

network connectivity. Delivering scalable packet-switched interconnects that can support

the continually increasing data rates required between literally hundreds of thousands of

servers is an extremely challenging problem that is only getting harder. Fundamentally,

the packet-switching technology underlying current data-center interconnects limits their

ability to scale: implementing control logic that is capable of deciding how to forward

each packet individually is costly at present, and will rapidly cease to be feasible as link

data rates increase.

Researchers have attempted to address this issue by adopting the superior power

and cost scaling enabled by optical circuit switching [33]. Traditionally, circuit switching

has been at odds with the packet-switch discipline that many applications depend upon

(to provide, for example, low latency connectivity to a large number of destinations).

Researchers have tried to address this discrepancy by proposing hybrid architectures

82

83

that combine packet- and circuit-switched interconnects [33, 85]. At their core, these

approaches search out large, stable flows and route them over circuits, while forwarding

the bulk of the traffic through the packet network. Initial designs are limited by the slow

switching time (10s of milliseconds) of commercially available MEMS-based optical

circuit switching technology, which makes it necessary to combine traffic from multiple

end hosts to get traffic aggregates that remain stable at the timescales required (seconds)

to achieve reasonable levels of circuit efficiency.

These “hybrid” networks propose to schedule appropriately large traffic demands

via a high-rate circuit switch and handle any remaining traffic with a low-rate packet

switch. All recent proposals for such hybrid designs assume a perfect closed-loop

control plane, including an omniscient scheduling oracle that can compute a switch

configuration instantly and map traffic to these circuits in an optimal fashion. In practice,

the performance of any hybrid network is critically dependent on all aspects of the closed-

loop control plane including the speed of the demand estimation, how that demand is

used to calculate the schedule in near real-time, and the ability to synchronize endpoints

across circuits.

In this chapter, we explore ways to build a closed-control plane for “hybrid” ToR

that is itself both electrical and optical. We describe the requirements on the closed-loop

control plane and on the transport protocol that are necessary to make it practical to

implement in both existing and recently proposed hybrid switches. We propose and

experimentally evaluate a practical first-generation closed-loop control plane for a hybrid

network that features a data center network. We show how the network traffic demand

can be estimated in the host stack and communicated to a controller. Next, we show that

the transport protocol TCP is insusceptible if the underlying reconfigurable technology is

rapidly switching. We demonstrate that TCP protocol performs poorly if reconfigurable

topology has paths of different capacity. Finally, we show that MPTCP is better suited

84

Packet-switched
 Fabric(EPS)

Circuit-switched
Fabric
(OCS)

n 100G downlinks

p packet uplinks c circuit uplinks

RE
A

CT
oR

To

R

. . .

Classifiers(C)

Scheduler

Figure 7.1. 100-Gb/s hosts connect to REACToRs, which are in turn dual-homed to a
10-Gb/s packet-switched network and a 100-Gb/s circuit-switched optical network.

for reconfigurable topology and evaluate the closed-loop control plane.

7.2 REACToR overview

We now give an overview of a REACToR-enabled data center network. A

REACToR-enabled data center consists of N servers grouped into R racks, each consisting

of n nodes. REACToR assumes a preexisting 10-Gb/s packet-switched network (EPS)

and overlays it with an additional 100-Gb/s circuit-switched network (OCS). At each rack

is a hybrid ToR called a REACToR, which is connected to the packet-switched network

with p uplinks and is connected to the circuit-switched network with a separate set of c

uplinks.

85

Referring to Figure 7.1, an (n, p,c)-port REACToR consists of n downward-facing

ports connected to servers at 100 Gb/s, p = n uplinks connected to the packet-switched

network at 10 Gb/s, and c= n uplinks connected to the 100-Gb/s circuit-switched network.

At each of the n server-facing input ports, there is a classifier (marked C in the figure)

which directs incoming packets to one of three destinations: to packet uplinks, to circuit

uplinks, or through an interconnect fabric to downward-facing ports to which the other

rack-local servers are attached. There is no buffering on circuit uplinks, instead packets

are buffered in the end-host. When a circuit is established from the REACToR to a given

destination, the REACToR explicitly pulls the appropriate packets from the attached

end-host and forwards them to the destination.

REACToR relies upon a control protocol to interact with each of its n local

end-hosts to: (1) direct the end host to start or stop draining traffic from its output queues

(which we refer to as unpausing or pausing the queue, respectfully), (2) set per-queue rate

limits, (3) provide circuit schedules to the end-host, and (4) retrieve demand estimates

for use in computing future circuit schedules.

End-hosts: Each end-host buffers packets destined to the REACToR in its local

memory, which is organized into traffic classes, one per destination ToR, with an addi-

tional class for packets specifically destined for the EPS (e.g., latency-sensitive requests).

Each traffic class has its own dedicated output queue. At any moment in time, the

REACToR can ask an end host to send packets from at most two classes: one forwarded

at line rate to an OCS uplink (or local downlink port), and another forwarded to an EPS

uplink. Within each host, there is a traffic class per destination host, and task the OS with

classifying outgoing packets into the appropriate class based on, e.g., the destination IP

address. REACToR then uses the host control protocol to pause and unpause end-host

queues. End-host rate limit the EPS traffic class to to link speed of EPS to ensure that

EPS is not overrun. Similarly, OCS traffic class is rate limited at the end-host to ensure

86

that EPS and OCS traffic can be merged at downward facing port of REACToR .

Host control plane: An instance of the REACToR host control protocol runs

between each end-host and its REACToR switch. REACToR uses the protocol to retrieve

demand estimates collected by end-hosts, to set per-queue rate limits, as described above,

and to convey impending schedules to the end host from the circuit scheduler. REACToR

also uses this control plane to manage end-host traffic classes and buffering. Each traffic

class in the end host corresponds to a PFC class. At the end of each schedule, for each

attached host, the REACToR first sends a PFC frame to pause the traffic class destined

for the current schedule’s circuit (if any). Note that PFC frames are selective, so traffic

destined to the EPS will continue to flow while the OCS is being reconfigured. Once

inbound circuit traffic has ceased, the OCS can be reconfigured. After reconfiguration,

the traffic class corresponding to the next schedule’s circuit can be enabled by a PFC

unpause frame.

Circuit scheduling: To make effective use of the capacity of the circuit switch,

REACToR must determine an appropriate schedule of circuit switch configurations to

service the estimated demand over an accumulation period W . This is the responsibility

of a logically centralized, but potentially physically distributed, circuit scheduling service,

which implements a hybrid circuit scheduling algorithm. This service collects estimates

of network-wide demand, in the form of an N×N matrix D. The service computes a

schedule, Pk, of m circuit switch configurations, which are permutation matrices1, and

corresponding durations, φk. REACToR uses Solstice , a scheduler designed specifically

for hybrid switching. Solstice is a stateless scheduler i.e. when Solstice computes a

schedule, it only considers demand collected during a given accumulation period W

Traffic Demand Estimation: Effective utilization of circuits require accurate

1A permutation matrix is a matrix of 0s and 1s in which each row and column has and only has a single
1.

87

NIC

OS

Application Hints

Circuit friendly applications, scheduled
backups

Traffic
Estimation/
Prediction KB

GB

Accuracy/
Readiness of
Transfer

End
Host
Stack

Figure 7.2. Network traffic estimates across the end-host layers

and timely estimation of network traffic demand. To this need, an end-host can be

instrumented to collect network traffic statistics. Figure 7.2 shows different layers across

the end-host stack from which network traffic demand can be collected. From the figure

two trends are apparent. The size of network traffic that can be estimated from a layer

increases as you go up the pyramid. At the bottom of the pyramid is the NIC buffers with

size varying from 1-2 MB [41]. The next layer is the operating system buffers which

can hold up to several Megabytes of network traffic. The socket system API can indicate

transfer size up to few Gigabytes. A network demand estimator can report the size of

these buffers indicating amount of bytes queued up at the end-host. Centralized job

schedulers e.g.,Yarn Resource Manager [38] has a list of map tasks which are completed

and are waiting for being fetched by the reduce tasks. These transfers can be reported

hundreds of millisec ahead of the actual transfer.

However, the readiness of transfer follows an inverse trend i.e. timeliness of

transfer decreases as we move down the pyramid. The reason being, packets queued up

in the NIC buffers are ready to leave the host, whereas the flows reported by a centralized

job scheduler e.g., Yarn Resource Manager could take few 100s of millisec to start.

Implementation: We instrumented the end host stack to collect network traffic

88

demand from the OS socket buffers and the NIC queues. We wrote a kernel module that

keeps track of send and sendto calls made by applications. This connection information

is stored in a hash table. A separate control thread loops over the hash table to obtain

socket buffer occupancy. The control thread aggregates demand across these connections

and builds a demand packet. This demand packet is sent to a centralized controller which

further aggregates the individual estimates from end hosts to build a network wide traffic

matrix.

7.3 TCP and control plane

The BulletTrains study (chapter 1) shows that any application flow exhibits

intrinsic short-term correlated bursts as a consequence of batching in the end-host stack.

This is important for REACToR because if a circuit is allocated an interval at a time, any

moment when the instantaneous demand does not fully saturate (to at least 90%, in our

example) the circuit’s link rate implies that some of the circuit bandwidth is wasted.

In this section we consider the coherence properties under a circuit scheduler,

and particularly we focus on interaction of the control-plane with end-host transport

protocol TCP. TCP is used by applications to communicate within data centers; hence its

perfomance need to be evaluated. We study the impact of pausing and unpausing on TCP

followed by studying the impact of circuit scheduling and multipath (EPS and OCS) on

TCP.

7.3.1 TCP under TDMA scheduling

Here, we consider a scheduler that pauses flows while they wait for a circuit to

be assigned to them, and then unpauses them when that circuit is established. During

the time that a flow is paused, additional packets from that flow may be generated by the

corresponding application, which should increase the length of the burst when the flow

89

is unpaused. However, the increased latency and latency variation induced by pausing

and unpausing the flows may have a detrimental impact on the transport protocol (e.g.,

TCP) or the application itself. As a first step we study the impact of pause and unpause

behavior on a bi-directional circuit, i.e., pausing both data and TCP ACKs at the same

time.

To study this impact, we recreated several workloads taken from the Helios [33]

work on a set of six nodes connected to the same switch (a Fulcrum Monaco 10-Gb/s

Ethernet switch), using Intel 82599-based NICs with TCP segmentation offload enabled.

To collect fine-grained time stamps for traffic emanating from a source host in this test

bed, we installed optical transceivers in both the source host and the Monaco switch,

connected with a fiber. Along this fiber we interposed an optical splitter, which sends

the signal to the switch, and an identical copy of the signal to a monitoring host with a

Myricom Sniffer10G packet capture tool.

We also connected a scheduler host containing a 1QB/s-Netflix card to the switch

using an RJ45-to-SFP+ interface. The NetFPGA is responsible for sending out 802.1Qbb

pause frames at precise timings to a multicast address, which causes it to arrive to each

of the hosts at close to the same time. By emitting alternating pause and unpause frames,

we can emulate a circuit schedule with varying-length day and night time intervals.

Figure 7.3(a) shows the resulting burst distribution when varying the day length

for the all-to-all workload. For short and medium-length days (up to 500 µs), the resulting

bursts are quite close to the ideal length. For example, for a 500 µs day, the burst length

is 412 1500-byte packets, which is 494 µs. At 750 µs, about 10% of the bursts are shorter

than the day length, distributed uniformly between about 180 µs and 750 µs. The stride

workload (not shown) is quite similar to the all-to-all workload, except that nearly all of

the 750-µs day lengths are fully utilized.

Next, we consider cases where we pause the data in the flow, but allow ACKs

90

to return unimpeded (e.g., via the EPS), as well as cases where we enable the data in

the flow, but pause the ACKs. Figure 7.3(b) shows the resulting normalized throughput

when varying the night time under the stride workload. In the first case, we see that

the normalized throughput of uni-directional and bi-directional circuits is close to ideal,

showing that pausing the data portion of flows on the end hosts does not affect throughput

for pause lengths considered by REACToR. In the case of pausing ACKs, we find that

there are two regimes to consider. During slow start, pausing ACKs decreases the overall

throughput of the flow—up to 30% for 3-ms night times. For shorter periods (e.g., ≤1

ms) there is no detectable effect for pausing ACKs). Once the flow leaves slow start,

there is no effect on throughput regardless of the night time.

These experiments consider the effect of circuit scheduling on TCP traffic in

the absence of packet loss. In reality, packets may be lost for a variety of reasons, so

it is important to understand the impact that scheduling has on TCP’s loss recovery

mechanisms. We repeated the experiments where each end host drops packets uniformly

at random with a configurable probability. While TCP throughput suffers as expected

with increasing drop rates, we find that the difference in performance with and without

scheduling (e.g., with and without issuing PFC pause frames) is insignificant for steady

state loss rates up to 1%; higher loss rates pose significant challenges for TCP in our

setting in either case.

7.3.2 TCP and stateless scheduling

We now consider the interaction of TCP with the other components of a control

loop using using the REACToR hybrid switch testbed [52]. The testbed consists of a

10-Gb/s hybrid ToR switch connected to eight end hosts.

When Solstice computes a schedule, it only considers demand collected during a

given accumulation period W , making it a stateless scheduler. As a result, it is possible

91

0 100 200 300 400 500 600 700
Burst Length (in packets)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Day Length

100 us
200 us
500 us
750 us

(a) Scheduled all-to-all burst sizes

0 500 1000 1500 2000 2500 3000
Night Time (in us)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

No
rm

al
iz

ed
 T

hr
ou

gh
pu

t

Pause Data & ACKs
Pause-Data
Pause-ACKs(Small Flow)
Pause-Acks(Large Flow)

(b) Scheduled stride burst sizes

Figure 7.3. Scheduled Burst sizes for various workloads.

that over several consecutive invocations, it might alternate the assignment of a particular

flow between the packet-switched path and one or more circuit-switched paths. Given

the short duration of scheduling periods (e.g., a few milliseconds), this oscillation has the

potential to disrupt the control plane of transport protocols such as TCP. In this section,

we discuss this problem and propose an endhost-based mechanism to mitigate its effects.

7.3.3 Multipath packet reorder

When a new flow begins, its sending rate is small (due to slow-start) and so

unless a circuit was already established to its destination, this new flow will be initially

assigned to the packet-switched path. As its rate increases, its demand will grow and

eventually trigger a circuit assignment from Solstice. During the next scheduling period,

packets are sent over a dedicated circuit that does not have any intermediate queues. As a

consequence, packets from both paths can arrive at the receiver in an interleaved fashion,

triggering duplicate acknowledgments that cut the sender’s congestion window, lowering

overall throughput. Figure 7.8 depicts this scenario during a simple 128 MB file transfer

using TCP CUBIC on Linux 3.14.22.

To verify out of order receive, we assigned VLAN numbers to queues in the

end-host NIC. This VLAN number was then used to distinguish the path a packet took

92

0 20 40 60 80 100 120
Week Number

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
Li

n
k

B
/W

Circuit TCP
Packet TCP

Figure 7.4. Solstice promotes a flow from the packet switch to a circuit. Packets
from both paths initially arrive interleaved, and TCP triggers duplicate ACKs and fast
re-transmits, lowering throughput.

i.e EPS or circuit switch. Figure 7.5 shows a zoom in version of TCP sequence number

vs time. In the experiment, we have a single TCP flow between a client and a server.

Initially flow is assigned to the packet switch path and is promoted to circuit switch path

after few ms. In the graph, we can see that packets are initially send out on the packet

switch queue and then when circuit is assigned there is a TCP sequence number jump.

Also, we can see that same sequence number packets are sent over the packet switch

queue and circuit queue indicating “re-transmissions”.

To verify re-transmissions, we used TCP probe module on the end-host. The

TCP probe module exports TCP connection state information that can be accessed and

analyzed offline. Figure 7.6 shows congestion window (cwnd), ssthreshold (ssthresh) and

total re-transmissions (re-transmit) for the connection. In this case the re-transmissions

occur because packets from the circuit path appear before the packet switch path packets

93

0

Week Number

0

100000

200000

300000

400000

500000

T
C

P
 S

e
q
u
e
n
ce

 n
u
m

b
e
r

packet

circuit

Figure 7.5. Packets from both EPS path and Circuit path arrive interleaved.

94

0 20 40 60 80 100 120
Week Number

0

20

40

60

80

100

#
 o

f
P
a
ck

e
ts

CWND
SSThresh
Retransmit

Figure 7.6. Solstice promotes a flow from the packet switch to a circuit. Packets
from both paths initially arrive interleaved, and TCP triggers duplicate ACKs and
fast re-transmits, lowering throughput. ‘Retransmit’ shows the numbers of packets
re-transmitted. ‘CWIND’ indicate TCP congestion window size. ‘SSThresh’ indicates
TCP SSTHRESHOLD value.

resulting in out of order delivery that triggers fast re-transmission from the sender.

Mitigation technique: To avoid performance loss due to reordering, TCP re-

ordering buffer can be introduced. Another solution is to disable TCP fast recovery and

fast re-transmit. Yet another solution is to increase the tcp reordering parameter in Linux.

This parameter indicates number of packets that can be received out of order without

assuming packet has been lost on the way. Downside of these schemes is that recovering

from packet loss is delayed further.

7.3.4 Packet switch incast

Depending on the specific configuration of the circuit schedule, TCP can also suf-

fer performance issues even after this startup phase. Specifically, if the delay-bandwidth

95

product of a circuit is higher than the packet-switched path, a flow at steady-state might

achieve a much larger congestion window than can be supported on the packet switch.

This situation exists for the prototype control plane. As a result, when Solstice migrates

that flow from a dedicated circuit back to the packet-switched path, the sender will

transmit a burst of packets into the packet-switched path, potentially causing congestion

and interfering with other flows. If the flow continues to remain on the packet-switched

path, TCP will eventually converge to a fair sending rate, however it will be too late to

mitigate the damage done by this initial “incast” behavior.

Mitigation technique: Currently, Solstice leaves a residual amount of the traffic

matrix for the packet switch to “take care of.” Instead, another method is to compute a

deliberate schedule for the packet switch as well, for example via FastPass [61]. Solstice

can determine the appropriate rate for each sender based on the residual traffic matrix

assigned to the packet switch, and can share those rates with endhosts for each scheduling

period. Constructing a deliberate schedule for the packet switch in concert with the

circuit switch is future work.

7.4 MPTCP and stateless routing

A straight-forward way to mitigate TCP reordering problem is to support separate

congestion windows and sequence spaces for the packet-switched path and the dedicated

circuit path. To do that we added support for MPTCP [66] to the hardware testbed.

Figure 7.7 shows the end-host stack with MPTCP. At a flow creation time, we instantiate

two MPTCP subflows: one assigned to the packet-switched path, and one to the circuit-

switched path. Unlike a true multipath environment, we only want one subflow to be

active for any given time interval. This means that either the packet subflow is active or

the circuit subflow is active. To enforce this, we assign each subflow to its own hardware

NIC queue, associated with a unique 802.1Qbb Priority Flow Control (PFC) [62] class

96

1 2 P3 2 3

MPTCP	
SCHEDULER	

CIRCUIT	
SUBFLOW	

CKT	
QUEUES	

CKT-‐PKT	
QUEUES	

PKT	 	
QUEUE	

LATENCY	
SENSITIVE	

PACKET	
SUBFLOW	 KERNEL	

NIC	

APPLICATION	

Figure 7.7. End-host stack with MPTCP.

of service. We then configure a controller colocated with the Solstice scheduler to issue

802.1Qbb pause and unpause messages to these NIC queues.

Figure 7.8 also shows the same file transfer as before, except relying on MPTCP.

The file transfer initial takes the packet-switched path, until Solstice promotes it to

a circuit. Although packets arrive interleaved as before, MPTCP’s maintenance of

separate state machines per path prevents the sender’s congestion window from shrinking

prematurely, reducing the transfer time.

7.5 Closed loop evaluation

We now consider applications performance on the closed-loop REACToR hybrid

switch testbed. This testbed consists of a 10-Gb/s hybrid ToR switch connected to eight

97

0 10 20 30 40 50 60 70 80 90
Week Number

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
Li

n
k

B
/W

Circuit MPTCP
Packet MPTCP

Figure 7.8. MPTCP maintains good performance using separate per-path TCP state
machines.

end hosts. For this experiment, we have instrumented REACToR with a closed-loop

control plane using Solstice for the scheduling. This control plane collects demand using

a custom-written kernel module described in section 7.2. The kernel module sends

a demand estimate packet at configurable time intervals (e.g., 1.5 millisecond). The

demand estimate packet is currently sent via a separate control network. We use MPTCP

as the transport protocol unless otherwise stated. We instrumented NETFPGA to provide

bytes and packets transferred for every circuit switch configuration.

To begin our evaluation, we first measure the reaction time of our closed-loop

control plane. Next, we measure performance of a set of synthetic microbenchmarks,

which are generated via simple memory-to-memory data transfers to eliminate any effects

from the disks, application logic, and think time. Finally, we analyze the behavior of two

real world applications, Hadoop terasort (bandwidth intensive) and Memcached (latency

sensitive).

98

Performance: The overall speed of the closed-loop control plane is bounded by

the speed of demand estimation at end-host, latency of communicating the estimate to a

controller, computation of the schedule and the switch reconfiguration time. To quantify

the overall control plane latency we microbenchmark individual components and also the

complete system. In our 8 node setup, the demand estimate loop takes 400 nanoseconds,

packet generation and delivery takes 2-5 µs, schedule computation for 8 node testbed

take 50-100 µs and the switch reconfiguration time is 30 µs.

Next, we evaluate the reaction time of our closed-loop control plane that is how

long does it take when a new flow appears at the end-host and when the circuit is assigned

to the flow. To measure this latency, we start a UDP flow between two hosts. For the

purpose of this experiment we assume that flow has sufficient demand to trigger circuit

assignment. We take timestamps at the application layer, the time the demand estimate

packet is received at controller and when the first packet is sent over the OCS. We find that

the worst-case reaction time is 1.9 ms and the primary component of that latency is the

accumulation period which is set to 1.5 ms. In addition, the scheduler starts computing

future schedule 200 - 400 µs period in advance.

Microbenchmarks: The microbenchmark traffic patterns we consider is one

to all traffic pattern. In a one to all, one host sends data to remaining hosts. With

microbenchmark traffic we show that our control loop is functional across several hosts,

demand estimate is accurate and the Solstice computed schedule is along the expected

lines. We use a variant of one-to-all traffic pattern where flows are added and removed

over a period of time. This traffic tests whether our control loop can react to changes

in the demand. Figure 7.9 shows the bandwidth utilization of flows for one such traffic

pattern. At the start of the experiment there is a single flow and it gets an exclusive full

circuit. As more flows are added into the system the bandwidth is equally shared between

the flows, week 3K to 5K. Between week 7.5K to 8K the demand varies across the flows

99

and Solstice assign circuits to the flows proportional to the demand, hence the bandwidth

is different between two flows. The key takeaway from the graph is that our control loop

can quickly react to changes in the system.

0 2000 4000 6000 8000 10000 12000
Week Number

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
Li

n
k

B
/W

Host 1
Host 2
Host 3

Figure 7.9. Circuit utilization for a variant of one-to-all traffic pattern.

Next, we analyze the behavior of a bandwidth-sensitive application (i.e., Hadoop

terasort) [87] and a latency-sensitive application (i.e., Memcached [53]).

Hadoop: We configured the NameNode and Yarn resource manager to run on a

single server. Three other hosts on the testbed were configured as DataNode with data

stored in memory to speedup the network transfer. Hadoop control traffic between nodes

was always classified to the packet switch queue. The number of map and reduce tasks

are chosen such each host is assigned one map and one reduce task. We ran terasort

application, a bandwidth intensive application, on closed loop REACToR and compare

its performance to equivalent 10Gbps EPS. We logged the time it took to complete the

job. Figure 7.10 shows circuit utilization for different flows during the shuffle phase of

100

0 50 100 150 200 250 300
Week Number

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
Li

n
k

B
/W

Host 1->2
Host 1->3
Host 2->1
Host 2->3
Host 3->1
Host 3->2

Figure 7.10. Circuit utilization for Hadoop terasort shuffle transfers

terasort job. In the graph, we can see that these shuffle operations can utilize full available

circuit bandwidth. The job completion time was same for REACToR and 10Gbps EPS.

Ideally, the job should took more time on REACToR when compared to equivalent packet

switch but the terasort application is not network limited even when data is stored in

memory. The takeaway from this experiment is that applications can run on REACToR

without any performance degradation.

Memcached: Next we configured Memcached a latency sensitive application

and observe latency on REACToR closed-loop prototype. For this experiment we have

a Memcached server running version 1.4.22. We also have a host running Memslap

client. The Memslap client, a multi-threaded client, requests objects from the server. For

each request client logs the time it takes to get a response back from the server. Our

experiment shows that if server response is sent out on the EPS path, latency incurred is

not significant. However, if the response is sent on circuit switch path it incurs additional

latency of circuit set up time which is 1.5 ms in our current setup.

101

In summary, we found that REACToR performance for bandwidth-intensive

applications is akin to equivalent packet switch. For latency-sensitive applications

REACToR incurs additional delay penalty to the flows assigned to the circuit path.

7.6 Summary

The ever-increasing demand for low-cost, high-performance network fabrics in

data center environments has generated tremendous interest in alternative switching

architectures. Researchers have recently proposed hybrid switches that combine various

flavors of circuit and packet switching technologies but, so far, have stopped short of

addressing the resulting control loop problem. We propose and experimentally evaluate a

practical first-generation closed-loop control plane for a hybrid network. We show how

the network traffic demand can be estimated in the host stack and communicated to a

controller. We demonstrate that the transport protocol TCP is not affected if the underly-

ing reconfigurable technology is rapidly switching, but performs poorly if reconfigurable

topology has paths of different capacity. Finally, we demonstrate that our control loop

plane responds to dynamic application demands.

7.7 Acknowledgements

This chapter in part, contains material that has prepared for submission for

publication. Liu, He; Kapoor, Rishi; Tewari, Malveeka; Forencich, Alex; Zhang, Sen;

Savage, Stefan; Voelker, Geoffrey M.; Papen, George; Snoeren, Alex C.; George, Porter.

“Scheduling Circuits in a Packet World”. The dissertation author is the second author on

this paper.

This chapter in part, contains material as it appears in Liu, He; Lu, Feng; Foren-

cich, Alex; Kapoor, Rishi; Tewari, Malveeka; Voelker, Geoffrey M.; Papen, George;

Snoeren, Alex C.; George, Porter. “Circuit Switching Under the Radar with REACToR”,

102

11th USENIX Symposium on Networked Systems Design and Implementation (NSDI),

Seattle, WA, April 2014 The dissertation author was the fourth author on this paper

Chapter 8

Conclusions and Future Research

As an increasing array of services and applications move to the cloud, Internet

data centers must adapt to meet their needs. Unlike software installed on a single machine,

data center applications are spread across potentially thousands of hosts. The variety of

applications and the scale of operations impose onerous challenge of meeting application

performance requirements while maintaining efficiency. To meet this challenge, we

harness the fact that a single administrative entity owns the entire end-host stack and the

networking interconnect, that allows us to customize the end-host stack to achieve higher

levels of efficiency. Our approach has been to conduct a series of systematic measurement

studies to identify performance bottleneck(s) in systems and use these observations to

design and build more performant and efficient systems.

As we discussed in chapter 3, data center end-host traffic exhibits large bursts at

sub-100 microsecond timescales, and these bursts are highly correlated with the size of

TSO segments, disk read-ahead settings, and application send sizes. Our results indicate

that irrespective of higher layer application behavior, packets come out of a 10-Gbps

server in bursts due to batching. We have shown that this short-term packet bursts have

implications for the design and performance requirements of packet processing devices

along the path, including lower cost reconfigurable topologies.

In chapter 4, we show that end-to-end latency for data center communication

103

104

patterns is driven by the tail-latency at scale. Thus, it is important to reduce the variance

in latency. In chapter 5, we show that operating system accounts for more than 90% of

latency inside data centers, and that kernel scheduling and processing increase latency

variation, especially at high request loads.

Based on these observations, we designed and built Chronos (chapter 6), a frame-

work to reduce data center application latency especially at the tail. Chronos removes

significant sources of application latency by removing the kernel and network stack from

the critical path of communication by partitioning requests based on application-level

packet header fields in the NIC itself, and by load balancing requests across application

instances via an in-NIC load balancing module. Through an evaluation of Memcached,

OpenFlow, and a Web search application implemented on Chronos, we show that we can

reduce latency by up to a factor of twenty, while significantly reining in latency outliers.

Reducing the tail latency of data center applications results in improving efficiency of

data center applications since more clients can be served from a limited set of resources.

The result is a system that can enable more throughput by increasing predictability, a key

contribution to improving data center efficiency.

In Chapter 7, we described a closed-loop system for REACToR, a reconfigurable

topology. Through REACToR TCP based experiments we have shown that independent

states at the end-host (stateful, single path) and network fabric (stateless, multipath) leads

to severe performance degradation. With MPTCP and the demand estimate control plane

modifications we demonstrate that network efficiency can be achieved by leveraging the

end-host stack and coupling the host stack with network interconnect.

Taken together, we have built systems that demonstrate we can meet performance

requirements of data center applications while running data centers at high levels of

efficiency.

105

8.1 Limitations and future research

We highlight the limitations of the proposed system and how these limitation

could be overcome in future.

Traffic pattern study: One avenue for future research is to conduct a Bullet-

Trains type study in real-world data centers and corroborate the observations. Lack of

access to real world data center traces prevented us from conducting the study.

Predictable latency by replicating data: Chronos addresses latency variance

by making overall latency as small as possible – but nothing fundamental has changed

i.e., close to Chronos peak utilization, the variance is still high (albeit Chronos runs at

10x higher utilization compared to previous systems). Another question we can ask, is

it possible to fundamentally change the variance observed by applications aside from

just making latency small? One standard technique would be to replicate data across

multiple machines, and any application read is actually a read to multiple machines and

the system just uses the fastest one. Obviously that’s a costly approach because it doubles

resource utilization. In future we may want to explore whether the 2x increase in network

load is worth the substantial increase in predictability.

Other sources of latency: Like any other system the end to end performance of

Chronos depends heavily on the network interconnect. Given our improvements in the

host, end-to-end latency may become dominated by multiple switch hops, in-network

queuing, and congestion losses, a problem worth revisiting.

Circuit scheduling with application hints: In our closed-loop control plane,

the demand estimator reports buffer occupancy based on packets queued in the operating

system and NIC. Though these demand estimates are accurate but the flows will need to

wait for the next scheduling period before being sent out from the host. To reduce the

scheduling latency we can predict the network traffic ahead of time. To this end, demand

106

can be obtained directly from the applications ahead of time. An application can provide

hints to network about impending transfer e.g., when application reads from storage

followed by a network transfer. Similarly, job schedulers like Map-Reduce scheduler

can co-ordinate with TDMA scheduler for shuffle transfers. Another approach could be

to build a hybrid compile and run time solution for predicting application demand. The

compiler can instrument the application binary to provide run time hints about the size

of transfer. The size of transfer could be obtained at the run time based on application

buffer size for network send call or based on size of the file read from the disk. Network

scheduler then combined these demand estimates of different time granularities to obtain

a fast and optimal schedule.

Bibliography

[1] Memslap Benchmark. http://docs.libmemcached.org/memslap.html.

[2] 100Gb/s Ethernet Task Force. http://www.ieee802.org/3/ba/.

[3] Amit Aggarwal, Stefan Savage, and Thomas E. Anderson. Understanding the
Performance of TCP Pacing. In Proc. INFOCOM, 2000.

[4] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A Scalable, Com-
modity Data Center Network Architecture. In SIGCOMM, 2008.

[5] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, Rong Pan, B. Prabhakar,
and M. Seaman. Data center transport mechanisms: Congestion control theory and
IEEE standardization. In CCC, 2008.

[6] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen
Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data center TCP
(DCTCP). In Proc. ACM SIGCOMM, 2010.

[7] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat,
and Masato Yasuda. Less is More: Trading a little Bandwidth for Ultra-Low Latency
in the Data Center. In Proc. NSDI, 2012.

[8] Arnold Allen. Probability, Statistics, and Queueing Theory with Computer Science
Applications. Academic Press, 1978.

[9] Mark Allman and Ethan Blanton. Notes on Burst Mitigation for Transport Protocols.
SIGCOMM Comput. Commun. Rev., 35(2):53–60, April 2005.

[10] Ashok Anand, Steven Kappes, Aditya Akella, and Suman Nath. Building Cheap
and Large CAMs Using BufferHash. Technical Report TR1651, University of
Wisconsin Madison, 2009.

[11] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee,
Lawrence Tan, and Vijay Vasudevan. FAWN: A Fast Array of Wimpy Nodes.
In SOSP, 2009.

107

http://docs.libmemcached.org/memslap.html
http://www.ieee802.org/3/ba/

108

[12] Apache Software Foundation. HDFS Architecture Guide. http://hadoop.apache.
org/docs/hdfs/current/hdfs design.html.

[13] Jonathan Appavoo, Amos Waterland, Dilma Da Silva, Volkmar Uhlig, Bryan Rosen-
burg, Eric Van Hensbergen, Jan Stoess, Robert Wisniewski, and Udo Steinberg.
Providing a cloud network infrastructure on a supercomputer. HPDC ’10.

[14] Anirudh Badam, KyoungSoo Park, Vivek S. Pai, and Larry L. Peterson. HashCache:
Cache Storage for the Next Billion. In NSDI, 2009.

[15] Gaurav Banga and Peter Druschel. Measuring the Capacity of a Web Server. In
USENIX USITS, 1997.

[16] Theophilus Benson, Aditya Akella, and David A. Maltz. Network Traffic Charac-
teristics of Data Centers in the Wild. In Proc. IMC, 2010.

[17] Mateusz Berezecki, Eitan Frachtenberg, Mike Paleczny, and Kenneth Steele. Many-
Core Key-Value Store. In IGCC, 2011.

[18] BerkeleyDB. http://www.oracle.com/technology/products/berkeley-db/index.html/.

[19] Ethan Blanton and Mark Allman. On the Impact of Bursting on TCP Performance.
In Proc. PAM, 2005.

[20] M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. W. Felten, and J. Sandberg.
Virtual Memory Mapped Network Interface for the SHRIMP Multicomputer. In
ISCA, 1994.

[21] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik, Charles L.
Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet: A Gigabit-per-Second Local
Area Network. IEEE Micro, 1995.

[22] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, M. Frans Kaashoek,
Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yuehua Dai, Yang Zhang,
and Zheng Zhang. Corey: An Operating System for Many Cores. In OSDI, 2008.

[23] Silas Boyd-Wickizer, Austin Clements, Yandong Mao, Aleksey Pesterev, M. Frans
Kaashoek, Robert Morris, and Nickolai Zeldovich. An Analysis of Linux Scalability
to Many Cores. In OSDI, 2010.

[24] Sergey Brin and Lawrence Page. The Anatomy of a Large-scale Hypertextual Web
Search Engine. In WWW Conference, 1998.

[25] Philip Buonadonna, Andrew Geweke, and David Culler. An Implementation and
Analysis of the Virtual Interface Architecture. In SC, 1998.

[26] Bryan Cantrill and Jeff Bonwick. Real-world concurrency. Commun. ACM, 2008.

http://hadoop.apache.org/docs/hdfs/current/hdfs_design.html
http://hadoop.apache.org/docs/hdfs/current/hdfs_design.html
http://www.oracle.com/technology/products/berkeley-db/index.html/

109

[27] OpenFlow Cbench Controller Benchmark. http://www.openflow.org/wk/index.php/
Oflops#Benchmarks.

[28] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking Cloud Serving Systems with YCSB. In SoCC, 2010.

[29] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In Proc. OSDI, 2004.

[30] Biplob Debnath, Sudipta Sengupta, and Jin Li. FlashStore: High Throughput
Persistent Key-value Store. In VLDB, 2010.

[31] Biplob Debnath, Sudipta Sengupta, and Jin Li. SkimpyStash: RAM space skimpy
key-value store on flash-based storage. In SIGMOD, 2011.

[32] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s Highly Available Key-value Store. In
SOSP, 2007.

[33] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Bazzaz,
Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin Vahdat. Helios:
A Hybrid Electrical/Optical Switch Architecture for Modular Data Centers. In Proc.
ACM SIGCOMM, August 2010.

[34] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajabdolali
Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin Vahdat.
Helios: A Hybrid Electrical/Optical Switch Architecture for Modular Data Centers.
In Proc. ACM SIGCOMM, August 2010.

[35] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer, and Paul
Gauthier. Cluster-based scalable network services. In SOSP, 1997.

[36] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System.
In Proc. SOSP, 2003.

[37] Monia Ghobadi, Yuchung Cheng, Ankur Jain, and Matt Mathis. Trickle: Rate
Limiting YouTube Video Streaming. In Proc. ATC, 2012.

[38] Apache Hadoop. Apache Hadoop NextGen MapReduce (YARN). http://hadoop.
apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html.

[39] Daniel Halperin, Srikanth Kandula, Jitendra Padhye, Paramvir Bahl, and David
Wetherall. Augmenting data center networks with multi-gigabit wireless links. In
Proc. ACM SIGCOMM, 2011.

[40] Infiniband. http://www.infinibandta.org/.

http://www.openflow.org/wk/index.php/Oflops#Benchmarks
http://www.openflow.org/wk/index.php/Oflops#Benchmarks
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://www.infinibandta.org/

110

[41] Intel. Intel, 82599 10 Gigabit Ethernet Controller: Datasheet. http://www.intel.com/
content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html.

[42] R. Jain and S. Routhier. Packet Trains–Measurements and a New Model for
Computer Network Traffic. IEEE J.Sel. A. Commun., 4(6):986–995, September
1986.

[43] Hao Jiang and Constantinos Dovrolis. Source-level IP Packet Bursts: Causes and
Effects. In Proc. IMC, 2003.

[44] Hao Jiang and Constantinos Dovrolis. Why is the Internet Traffic Bursty in Short
Time Scales? In Proc. SIGMETRICS, 2005.

[45] Evan P.C. Jones, Daniel J. Abadi, and Samuel Madden. Low overhead concurrency
control for partitioned main memory databases. In SIGMOD, 2010.

[46] Jithin Jose, Hari Subramoni, Miao Luo, Minjia Zhang, Jian Huang, Md. Wasi-
ur Rahman, Nusrat S. Islam, Xiangyong Ouyang, Hao Wang, Sayantan Sur, and
Dhabaleswar K. Panda. Memcached Design on High Performance RDMA Capable
Interconnects. ICPP ’11.

[47] Srikanth Kandula, Jitendra Padhye, and Paramvir Bahl. Flyways To De-Congest
Data Center Networks. In Proc. ACM HotNets, 2009.

[48] Avinash Lakshman and Prashant Malik. Cassandra - A Decentralized Structured
Storage System. SIGOPS Oper. Syst. Rev., 2010.

[49] Steen Larsen, Parthasarathy Sarangam, Ram Huggahalli, and Siddharth Kulkarni.
Architectural Breakdown of End-to-End Latency in a TCP/IP Network. IJPP, 2009.

[50] LevelDB: A Fast and Lightweight Key/Value Database Library. http://code.google.
com/p/leveldb/.

[51] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. SILT: A
Memory-Efficient, High-Performance Key-Value Store. In SOSP, 2011.

[52] He Liu, Feng Lu, Alex Forencich, Rishi Kapoor, Malveeka Tewari, Geoffrey M.
Voelker, George Papen, Alex C. Snoeren, and George Porter. Circuit switching
under the radar with REACToR. In Proc. USENIX NSDI, April 2014.

[53] Memcached. http://memcached.org/.

[54] Masoud Moshref, Minlan Yu, Abhishek Sharma, and Ramesh Govindan. Scalable
rule management for data centers. In Proceedings of the 10th USENIX conference on
Networked Systems Design and Implementation, nsdi’13, pages 157–170, Berkeley,
CA, USA, 2013. USENIX Association.

http://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html
http://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html
http://code.google.com/p/leveldb/
http://code.google.com/p/leveldb/
http://memcached.org/

111

[55] Mutrace. http://git.0pointer.de/?p=mutrace.git.

[56] Myricom Sniffer. http://www.myricom.com/sniffer.html.

[57] Radhika Niranjan Mysore, George Porter, Subramanya, and Amin Vahdat. FasTrak:
Enabling Express Lanes in Multi-Tenant Data Centers. In Proc. CoNEXT, 2013.

[58] ONF. Software-Defined Networking: The New Norm for Networks. https://www.
opennetworking.org/.

[59] OpenFlow Controller Source Code. http://www.openflow.org/wp/downloads/.

[60] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob
Leverich, David Mazières, Subhasish Mitra, Aravind Narayanan, Guru Parulkar,
Mendel Rosenblum, Stephen M. Rumble, Eric Stratmann, and Ryan Stutsman.
The case for RAMClouds: scalable high-performance storage entirely in DRAM.
SIGOPS Oper. Syst. Rev., 2010.

[61] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans
Fugal. Fastpass: A Centralized ”Zero-queue” Datacenter Network. In Proc. ACM
SIGCOMM, August 2014.

[62] IEEE 802.1Qbb Priority Flow Control. http://www.ieee802.org/1/pages/802.1bb.
html.

[63] George Porter, Richard Strong, Nathan Farrington, Alex Forencich, Pang-Chen Sun,
Tajana Rosing, Yeshaiahu Fainman, George Papen, and Amin Vahdat. Integrating
Microsecond Circuit Switching into the Data Center. In Proc. SIGCOMM, 2013.

[64] Ravi Prasad, Manish Jain, and Constantinos Dovrolis. Effects of Interrupt Coales-
cence on Network Measurements. In Proc. PAM, 2004.

[65] Ian Pratt and Keir Fraser. Arsenic: A User-Accessible Gigabit Ethernet Interface.
In INFOCOM, 2001.

[66] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh, Damon
Wischik, and Mark Handley. Improving Datacenter Performance and Robustness
with Multipath TCP. In Proc. ACM SIGCOMM, August 2011.

[67] Ashwin Rao, Arnaud Legout, Yeon-sup Lim, Don Towsley, Chadi Barakat, and
Walid Dabbous. Network Characteristics of Video Streaming Traffic. In Proc.
CoNEXT, 2011.

[68] Alexander Rasmussen, George Porter, Michael Conley, Harsha V. Madhyastha,
Radhika Niranjan Mysore, Alexander Pucher, and Amin Vahdat. TritonSort: A
Balanced Large-Scale Sorting System. In Proc. NSDI, 2011.

http://git.0pointer.de/?p=mutrace.git
http://www.myricom.com/sniffer.html
https://www.opennetworking.org/
https://www.opennetworking.org/
http://www.openflow.org/wp/downloads/
http://www.ieee802.org/1/pages/802.1bb.html
http://www.ieee802.org/1/pages/802.1bb.html

112

[69] Redis. http://redis.io/.

[70] Yaoping Ruan and Vivek S. Pai. The Origins of Network Server Latency & the
Myth of Connection Scheduling. In SIGMETRICS, 2004.

[71] Stephen M. Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosenblum, and
John K. Ousterhout. It’s Time for Low Latency. In HotOS, 2011.

[72] Avi Rushinek and Sara F. Rushinek. What makes users happy? Communication
ACM, 29(7), 1986.

[73] Paul Saab. Scaling Memcached at Facebook. http://facebook.com/note.php?note
id=39391378919, 2008.

[74] Vyas Sekar, Norbertand Egi, Sylvia Ratnasamy, Michael K. Reiter, , and Guangyu
Shi. Design and Implementation of a Consolidated Middlebox Architecture. In
Proc. NSDI, 2012.

[75] Shan Sinha, Srikanth Kandula, and Dina Katabi. Harnessing TCPs Burstiness using
Flowlet Switching. In Proc. HotNets, 2004.

[76] SMC SMC10GPCIe-10BT Network Adapter. http://www.smc.com/files/AY/DS
SMC10GPCIe-10BT.pdf.

[77] SolarFlare Solarstorm Network Adapters. http://www.solarflare.com/
Enterprise-10GbE-Adapters.

[78] Nathan R. Tallent, John M. Mellor-Crummey, and Allan Porterfield. Analyzing
lock contention in multithreaded applications. In ACM PPoPP, 2010.

[79] A. J. Thadhani. Interactive User Productivity. IBM Systems Journal, 20, December
1981.

[80] Niraj Tolia, David G. Andersen, and M. Satyanarayanan. Quantifying Interactive
User Experience on Thin Clients. IEEE Computer, 39(3), 2006.

[81] Josh Triplett, Paul E. McKenney, and Jonathan Walpole. Resizable, Scalable,
Concurrent Hash Tables via Relativistic Programming. In USENIX ATC, 2011.

[82] Bhanu Vattikonda, George Porter, Amin Vahdat, and Alex C. Snoeren. Practical
TDMA for Datacenter Ethernet. In Proc. ACM EuroSys, 2012.

[83] VoltDB. http://voltdb.com/.

[84] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels. U-Net: A
User-Level Network Interface for Parallel and Distributed Computing. In SOSP,
1995.

http://redis.io/
http://facebook.com/note.php?note_id=39391378919
http://facebook.com/note.php?note_id=39391378919
http://www.smc.com/files/AY/DS_SMC10GPCIe-10BT.pdf
http://www.smc.com/files/AY/DS_SMC10GPCIe-10BT.pdf
http://www.solarflare.com/Enterprise-10GbE-Adapters
http://www.solarflare.com/Enterprise-10GbE-Adapters
http://voltdb.com/

113

[85] Guohui Wang, David G. Andersen, Michael Kaminsky, Konstantina Papagiannaki,
T. S. Eugene Ng, Michael Kozuch, and Michael Ryan. c-through: Part-time optics
in data centers. In Proc. ACM SIGCOMM, August 2010.

[86] D. Wischik. Buffer Sizing Theory for Bursty TCP Flows. In Communications, 2006
International Zurich Seminar on, pages 98–101, 2006.

[87] Apache Hadoop. http://hadoop.apache.org/.

[88] Takeshi Yoshino, Yutaka Sugawara, Katsushi Inagami, Junji Tamatsukuri, Mary
Inaba, and Kei Hiraki. Performance Optimization of TCP/IP over 10 Gigabit
Ethernet by Precise Instrumentation. In Proc. SC, 2008.

[89] David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and Randy H.
Katz. DeTail: Reducing the Flow Completion Time Tail in Datacenter Networks.
Technical Report UCB/EECS-2012-33, 2012.

[90] Lixia Zhang, Scott Shenker, and Daivd D. Clark. Observations on the Dynamics
of a Congestion Control Algorithm: The Effects of Two-Way Traffic. In Proc.
SIGCOMM, 1991.

[91] Xia Zhou, Zengbin Zhang, Yibo Zhu, Yubo Li, Saipriya Kumar, Amin Vahdat,
Ben Y. Zhao, and Haitao Zheng. Mirror mirror on the ceiling: Flexible wireless
links for data centers. In Proc. ACM SIGCOMM, 2012.

http://hadoop.apache.org/

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Background and challenges
	Internet services and tail latency
	Reconfigurable topologies
	Data center end-host traffic pattern

	Hypothesis and approach
	Contributions
	A study of NIC burst behavior at microsecond timescales
	Predictable Low Latency for Data Center Applications
	Closed-loop control plane for reconfigurable topologies

	Organization
	Acknowledgements

	Background and Related Work
	Study of traffic patterns
	Sources of bursts
	Application
	Transport
	Operating system
	Hardware

	Key-Value stores
	Memcached overview
	System description
	Other KV-stores

	Predictable low latency
	Optimized Network/OS interfaces
	Operating System Improvements
	Lock Contention
	Data center Networks & Applications

	Reconfigurable topologies
	Demand estimation

	Acknowledgements

	BulletTrains: A study of NIC burst behavior at microsecond timescales
	Traffic measurements
	Measurement methodology
	Microbenchmarks
	Effect of application behavior
	Effect of NIC hardware

	Implications
	Summary
	Acknowledgments

	Importance of tail latency in data centers
	The partition/aggregate pattern
	The dependent/sequential pattern
	Summary
	Acknowledgements

	Data Center Latency Characterization
	Sources of end-to-end application latency
	End-to-end latency in Memcached
	Summary
	Acknowledgements

	Chronos: Predictable Low Latency for Data Center Applications
	Design Goals
	Design and implementation
	Application case studies

	Evaluation
	Memcached on an optimized kernel
	Uniform request workload
	Skew in request inter-arrival times
	Skew in request access pattern
	Chronos Web Search
	Chronos OpenFlow controller

	Discussion
	Effect of NUMA-awareness on latency

	Summary
	Acknowledgments

	End-host support for Reconfigurable Topologies
	Introduction
	REACToR overview
	TCP and control plane
	TCP under TDMA scheduling
	TCP and stateless scheduling
	Multipath packet reorder
	Packet switch incast

	MPTCP and stateless routing
	Closed loop evaluation
	Summary
	Acknowledgements

	Conclusions and Future Research
	Limitations and future research

	Bibliography

