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DEDICATION

This work is dedicated with deep affection and immense gratitude to my beloved grandmother.
Her recent departure has created an indelible void in my heart. Regrettably, the vast distance
between us—me in the United States and her in China—prevented me from being by her side in
her final moments. This missed opportunity has imbued me with a profound sense of loss and
sorrow, a sentiment that mere words fail to fully capture.

Grandma, your strength was a beacon that guided me, yet I wish you hadn’t had to be so strong,
for so long, all on your own, without telling us anything. In the future, I will carry your legacy
forward and keep your light shining bright within me.

The autumn chill that wakes me up
You loved the amber skies so much
Long limbs and frozen swims
You’d always go past where our feet could touch
And I complained the whole way there
The car ride back and up the stairs
I should’ve asked you questions
I should’ve asked you how to be
Asked you to write it down for me
Should’ve kept every grocery store receipt
’Cause every scrap of you would be taken from me
Watched as you signed your name Marjorie
All your closets of backlogged dreams
And how you left them all to me

What died didn’t stay dead
What died didn’t stay dead
You’re alive, you’re alive in my head
What died didn’t stay dead
What died didn’t stay dead
You’re alive, so alive
And if I didn’t know better
I’d think you were singing to me now
If I didn’t know better
I’d think you were still around
I know better
But I still feel you all around
I know better
But you’re still around
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In the rapidly evolving field of Natural Language Processing (NLP), the advent of Large

Language Models (LLMs) marks a significant milestone, setting new standards in language un-

derstanding and generation. This thesis focuses on augmenting and evaluating LLMs, introducing

ToolkenGPT, a novel method to integrate external tools via tool embeddings to enrich model func-

tionality and adaptability and RepoBench, a benchmark for assessing the proficiency of LLMs in

handling repository-level code auto-completion. Additionally, this thesis rethinks approaches

towards tabular data reasoning, exploring how LLMs can be better tailored to understand and

interpret structured data formats effectively.
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Chapter 1

Introduction

With the advent of large language models (LLMs) [12, 20, 153, 91, 92, 94, 124, 125],

the field of natural language processing (NLP) has witnessed a transformative shift, leading to

an unprecedented expansion in the range of potential applications. From generating human-

like text to facilitating complex conversational systems, LLMs have become a cornerstone in

the development of AI-driven solutions across various sectors including healthcare, education,

customer service, and content creation. Their ability to understand, generate, and interact using

natural language has opened new horizons, making technology more accessible and intuitive for

human users.

However, despite their impressive capabilities, LLMs are not without their limitations,

which pose significant challenges to their practical application and reliability. One of the most

notable issues is their propensity for generating hallucinated content [137] – fabrications or

false information that may appear convincing but lacks factual accuracy. This tendency not

only questions the trustworthiness of the output but also limits their use in scenarios where

precision and truthfulness are paramount. Moreover, LLMs often struggle with processing

long-context prompts, where the retention and coherent integration of information across a

lengthy text become cumbersome, leading to a decline in performance [78]. Their handling

of calculations and structured data, like tables or knowledge graphs also reveals a gap in their

capabilities, as their primary architecture design is tuned towards language processing rather

1



than numerical analysis or structured data interpretation. Furthermore, the static nature of

their training datasets means that LLMs cannot incorporate real-time information and it can be

impractical to consistently update parameters by continuing training [134], making it a herculean

task to maintain their knowledge base as up-to-date.

In response to these limitations, there is a growing trend towards augmenting LLMs [86]

with external information access. By integrating external tools and functionalities, such as

the ability to call functions or utilize specialized software within their processing, LLMs can

overcome some of their inherent constraints. Techniques like Retrieval-Augmented Generation

(RAG) [68] present solutions by combining the generative prowess of LLMs with the ability

to query external databases or documents in real-time, thereby enriching the model’s output

with up-to-date and factual information. This synergy between LLMs and external resources

opens up new avenues for applications that require a higher degree of accuracy and real-time

data, providing a more robust framework for LLMs to operate within.

On the other hand, evaluating LLMs, in light of these advancements and challenges, is also

important. As the application domains of LLMs expand, so does the necessity for comprehensive

evaluation metrics and methodologies that can accurately assess their performance, reliability,

and ethical implications. Evaluation goes beyond mere benchmarking on standard datasets;

it encompasses a holistic analysis of the model’s ability to produce coherent, contextually

appropriate, and factually accurate content, its resilience against generating hallucinations, and

its performance in long-context scenarios. Furthermore, evaluation must also consider the

model’s ethical implications, such as biases in generated content and the potential for misuse,

ensuring that advancements in LLMs contribute positively to society. The nuanced nature of

these models, combined with their wide-ranging applications, makes the task of evaluation

complex yet critically important. It serves not only as a measure of progress but also as a guide

for future research directions, ensuring that the development of LLMs remains aligned with

ethical standards and practical utility. In this context, the thorough evaluation of LLMs is an

indispensable component of their development, acting as the cornerstone upon which the future

2



of human-like artificial intelligence is built.

This thesis is structured as follows:

Chapter 1 introduces the motivation behind this research, delving into the challenges and

opportunities in the current landscape of large language models (LLMs) and their applications.

Chapter 2 lays the foundation by discussing the basics, including what is a large language

model, its underlying principles.

Chapter 3 introduces ToolkenGPT, a novel method that learns and integrates external

tools via tool embeddings, significantly enriching the model’s functionality and adaptability.

Chapter 4 presents RepoBench, a benchmark specifically designed to assess the profi-

ciency of Code LLMs in handling repository-level code auto-completion tasks. This benchmark

aims to evaluate the models’ ability to understand and generate code in a long and contextually

relevant manner.

Chapter 5 focuses on tabular data reasoning, exploring and comparing strategies for

tailoring LLMs to more effectively understand, interpret, and interact with tabular data.

Chapter 6 presents a thorough review of related work.

Chapter 7 concludes the thesis while discussing the novel possibilities and future outlook

of LLMs.
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Chapter 2

Background

The field of NLP has witnessed remarkable advancements with the advent of LLMs,

enabling unprecedented capabilities in text generation, understanding, and translation. These

powerful models leverage neural network architectures, specifically the Transformer architecture

[128], to process sequential data with remarkable efficiency and accuracy. The Transformer

architecture introduced a novel self-attention mechanism, which allows the model to contextualize

and relate different parts of the input sequence. This mechanism computes the attention weights

by measuring the similarity between a query vector Q and key vectors K from the input, and then

weighing the corresponding value vectors V . Mathematically, the attention function is defined as:

Attention(Q,K,V ) = softmax
(

QKT
√

dk

)
V (2.1)

where, dk represents the dimensionality of the keys, and the softmax function ensures

that the attention weights sum to 1. This self-attention mechanism enables the model to capture

long-range dependencies within the input sequence, a critical aspect for understanding and

generating coherent natural language.

LLMs are typically trained on massive text corpora, leveraging self-supervised learning

techniques. During training, the model learns to predict the next token in a sequence based on

4



the preceding tokens, optimizing a loss function such as the cross-entropy loss:

L(θ) =−
N

∑
i=1

log pθ (xi|xi−1, ...,x1) (2.2)

where L(θ) is the loss with respect to the model parameters θ , and pθ (xi|xi−1, ...,x1)

represents the conditional probability of predicting the next token xi given its predecessors, as

modeled by the LLM. The self-attention mechanism and the extensive training on large corpora

enable LLMs to capture intricate patterns and nuances in natural language, allowing them to

generate human-like text, understand and analyze textual data, and perform various NLP tasks

with remarkable accuracy.

Furthermore, LLMs can be fine-tuned on specific tasks or domains, enhancing their

performance and adapting them to specialized applications. This fine-tuning process involves

further training the pre-trained LLM on a smaller, task-specific dataset, adjusting the model

parameters to better capture the nuances and intricacies of the target task or domain.

Despite their impressive language abilities, LLMs face inherent limitations in their

capacity to interact with the real world, perform computations, and incorporate dynamic, real-

time information. These models are primarily trained on static text corpora, lacking the ability to

directly interact with external systems, execute calculations, or update their knowledge based

on evolving events. As a result, recent research has explored augmenting LLMs with external

tools and knowledge sources, enabling them to use tools, leverage structured data, perform

reasoning, integrate information from diverse sources, etc. This enhances the capabilities of

LLMs by combining their language understanding and generation abilities with external tools

and knowledge bases, thereby addressing the inherent limitations of these models in interacting

with the world and performing non-linguistic tasks.

Another key challenge faced by LLMs is the limited context window size, which restricts

their ability to process and understand long-range dependencies in textual data. Conventional

LLMs are typically trained on fixed-length sequences, limiting their capacity to capture and

5



leverage information from extended contexts effectively. Efforts have been made to address this

limitation through techniques such as sparse attention mechanisms, which aim to selectively

attend to relevant parts of the input sequence, reducing computational complexity and enabling

the processing of longer sequences.

The success of LLMs has sparked a paradigm shift in NLP, paving the way for more

advanced and versatile language models. These models are now being employed in a wide range

of applications, including machine translation, text summarization, question answering, content

generation, and various other domains. However, LLMs are not without their challenges. Their

enormous size and computational requirements pose significant challenges in terms of training

and deployment. Additionally, there are concerns regarding the potential for biases and ethical

issues stemming from the training data and model outputs. Ongoing research efforts aim to

address these challenges, further enhancing the capabilities and trustworthiness of LLMs, while

exploring new frontiers in language understanding and generation.
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Chapter 3

ToolkenGPT: Augmenting Frozen Lan-
guage Models with Massive Tools via Tool
Embeddings

Augmenting large language models (LLMs) with external tools has emerged as a promis-

ing approach to solving complex problems. In this chapter, we propose an alternative approach,

ToolkenGPT,where each tool is represented as a token (“toolken”) with its own embedding,

facilitating dynamic tool integration within LLMs. Our method significantly enhances LLMs’

performance across multiple domains, surpassing existing baselines, by enabling the flexible use

of an extensive tool set.1

3.1 Introduction

Large Language Models (LLMs) [12, 20, 124, 94] have established themselves as pow-

erful tools for diverse real-world applications, ranging from writing assistance to automated

customer support [10, 13, 30]. As these models continue to evolve, there is a growing interest in

their potential to interact with the real world and enhance their functionality through integration

with other tools, such as the calculator, databases, etc [97, 123, 111, 102]. The capability of

these models to master and control a wide array of tools not only serves as an indicator of

their intelligence, but also signals a promising path to overcome some of their fundamental

1Code is available at https://github.com/Ber666/ToolkenGPT
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Table 3.1. Comparison of different tool learning paradigms. Plug-&-Play means the LLMs can
be equipped and unequipped with a tool flexibly. Note that it doesn’t indicate zero-shot tool
learning.

Tool Learning Paradigms Frozen
LMs

Massive
Tools Plug-&-Play Ability to Use

Extensive Data

Fine-tuning [111, 97] ✗ ✗ ✗ ✓

In-context learning [144, 102, 15] ✓ ✗ ✓ ✗

ToolkenGPT (Ours) ✓ ✓ ✓ ✓

weaknesses. These include updating the latest world knowledge [87], reducing their halluci-

nations [109, 115], and executing symbolic operations [28, 36, 95], etc. However, the rapid

emergence of new tools, such as advanced software libraries, novel APIs, or domain-specific

utilities [75, 70, 58], introduces additional richness and complexity to the task of tool learning

for LLMs. This continuous evolution accentuates the importance of empowering LLMs with the

ability to adapt and master massive new tools swiftly.

Recent advancements in LLMs have witnessed two primary lines of research approaches

for tool integration with LLMs [86, 143, 102] (Table 3.1). The first paradigm involves fine-

tuning LLMs to learn specific tools [97]. For example, there are enormous efforts to integrate

the retrieval tool into LLMs [42, 67, 115, 11] and the recent Toolformer [111] fine-tuned GPT-

J to learn five tools. While this method could yield promising results, it is computationally

expensive and lacks the adaptability to new tools. The second approach relies on in-context

learning [144, 96, 102], where LLMs learn how to use the tool through in-context demonstrations

provided in the prompt. This method allows LLMs to handle newly introduced tools and drives

successful applications like LangChain [15] and ChatGPT Plugin 2. However, in-context learning

comes with its own unique limitations. Specifically, it struggles with the inherent limitation of

context length, making it impossible to demonstrate massive tools in the context. Also, mastering

new tools simply via few-shot examples could be challenging. For example, even the latest

models like GPT-4 face difficulties when handling unusual tools [13].

2https://openai.com/blog/chatgpt-plugins
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In this chapter, we introduce ToolkenGPT, an alternative solution that enables LLMs to

master massive tools without the need for any LLM fine-tuning, while still allowing for quick

adaptation to new tools. The key idea of ToolkenGPT is to represent each tool as a new token

(“toolken”) to augment the vocabulary. Specifically, each tool is associated with an embedding

inserted into the LLM head like a regular word token embedding. During generation, once a

toolken is predicted, the LLM temporarily switches into a special mode (through prompting) to

produce input arguments for the tool to execute, and inject the outputs back into the generation

(see Figure 3.1). This approach offers an efficient way for LLMs to master tools by only learning

the lightweight toolken embeddings. Consequently, ToolkenGPT combines the strengths of

both fine-tuning and in-context learning paradigms while avoiding their limitations (Table 3.1):

Compared to in-context learning that can only accommodate a small number of tools and few-

shot demonstrations, ToolkenGPT allows massive tools (by simply inserting respective toolkens

in the vocabulary) and can use extensive demonstration data for learning toolken embeddings; In

contrast to LLM fine-tuning, the tool embeddings not only requires minimal training cost, but

also provide a convenient means for plugging in arbitrary new tools on the fly by expanding the

toolken vocabulary.

We demonstrate the flexibility and effectiveness of our ToolkenGPT in leveraging nu-

merous external tools for solving a diverse set of problems, spanning from numerical reasoning

to knowledge-based question answering and embodied plan generation. In complex numer-

ical reasoning problems that involve a number of mathematical tools (numerical operations

such as finding greatest common divisor), we show that ToolkenGPT can effectively utilize

these tools during the reasoning process, which outperforms some of latest popular approaches,

such as Chain-of-Thought [135] and ReAct [144]. For knowledge-based question answering,

ToolkenGPT accommodates a substantial number of relation APIs (over 200) from the knowl-

edge base, thereby facilitating factual predictions. Furthermore, we apply our framework to

task planning for embodied agents, where an agent interacts with an environment using tools,

namely the actions and objects. The findings illustrate that our method offers better grounding
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→

Question: John has a rectangular garden, of which the length is 64 
meters and the width is 48 meters. He wants to divide the garden into 
identical square sections, each with the largest possible area. What’s 
the area of each section?

Answer: The maximal side length of each section is 16 meters. 
Therefore, the area is _____

② call the tool

③ fill in text

Figure 3.1. Overview of ToolkenGPT framework. Toolken embeddings are appended to the
language model head like regular word tokens. In the “reasoning mode” for solving the problem,
the LLM generates text as usual, except that any plugged-in toolkens are also considered for
the next token generation. Once a toolken is predicted, (1) the LLM switch to the “tool mode”,
which provides a few demonstrations of the same tool to complete the arguments. Then, (2) the
tool call is executed, and (3) the result is sent back to the text to continue the reasoning mode
until the final answer is generated.

by learning toolken embeddings for 58 grounded actions and objects than previous in-context

learning and specialized decoding methods.

3.2 ToolkenGPT for Mastering Massive Tools

In this section, we present ToolkenGPT, which enables LLMs to learn and use massive

tools for complex problem-solving without the need for heavily fine-tuning the LLM. We begin

by introducing the background and notations of language modeling for tool use. Typically, LLMs

model the probability of a sequence of word tokens s = (t1, t2, ..., tn) as P(s) = ∑
n
i P(ti | t<i),

where each word token comes from the vocabulary of the LLM, i.e. ti ∈ V and t<i denotes

the partial word token sequence before i-th step. In practice, the user often sets the prefix

of a sequence (referred to as the prompt) to steer LLMs to generate desired contents, e.g.,

answering a question. Taking a step deeper, the distribution of the next token is predicted as

P(ti|t<i) = softmax(Wν ·hi−1), where hi−1 ∈Rd is the last hidden state of the current context and
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Wν ∈ R|V |×d is the embedding matrix for word tokens (also known as language model head).

Given a set of useful tools T = {τ1,τ2, ...}, our goal is to enable LLMs to call a subset

of these tools for solving the complex problem. Our flexible formulation allows tools to play a

role by either returning some results that can help LLMs with text generation (e.g. calculation)

or affecting the real-world environment (e.g. robot action). To call a tool during generation, the

LLM first needs to select a tool and then input the arguments. In the running examples shown in

Figure 3.1, during the answer generation process (“reasoning mode”), a math operator square is

selected as the tool, and an operand 16 is generated as the argument in the “tool mode”. Once

the external tool receives the call, it executes the tool and returns the result 256, back to the

“reasoning mode”.

3.2.1 Framework Overview

The core idea of ToolkenGPT is explicitly formulating tools as tokens (called “toolkens”).

Each toolken is parameterized as a toolken embedding vector, and we denote a set of toolken

embeddings as a matrix, i.e. Wτ ∈ R|T |×d . Assuming we have trained toolken embeddings (to

be described in Section 3.2.2), we first give an overview of our framework by introducing how

it works in inference. As shown in Figure 3.1, the LLM is in the reasoning mode by default,

generating the next token. Our framework allows the LLM to consider word tokens and toolkens

uniformly. Specifically, the tool embedding matrix is concatenated with Wν . Therefore, the LLM

predicts the next token with the probability as follows:

P(ti|t<i) = softmax([Wν ;Wτ ] ·hi−1) (3.1)

where the next token can be either a word token or a toolken, i.e. ti ∈ V ∪T , and [; ] is

the concatenation operation. As we can see, our formulation of tools as toolken embeddings

naturally allows for the fast adaption of new tools by expanding the toolken embedding matrix

easily.
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To execute a tool, the LLM switches into the “tool mode” once its toolken is predicted

as the next token (as shown in the “mode switch” in Figure 3.1), which aims to generate

the arguments for the tool. Specifically, the LLM pauses the generation and appends the

current generated context to another prompt. The prompt in tool mode consists of in-context

demonstrations for the predicted tool, showing how to generate the tool arguments by quoting

the tool calls in a special syntax of [tool](arguments). Then the LLM can follow the pattern

in demonstrations to complete the arguments of the current tool call. Contrasting previous

methods [144, 102] that fully rely on in-context learning for tool learning, our framework only

leaves the easy work of completing arguments to in-context learning. Besides, there would be

abundant context space for extensive demonstrations of a single specified tool. This design shares

similarities with the classic divide-and-conquer methods [65, 61, 29]. Finally, the arguments

are sent to the specified tool for execution, and the returned value is sent back to the text in the

reasoning mode.

3.2.2 Learning Toolken Embeddings

Our framework keeps the original LLM parameters frozen and introduces a minimal

additional training overhead with the toolken embeddings, Wτ . This embedding matrix contains

the only parameters to optimize, but unlike other efficient LLM tuning methods, e.g., prompt

tuning [66, 133] or prefix tuning [73], it does not require the gradients flowing through the major

body of LLM parameters, leading to much stable and efficient training. Therefore, the tuning of

toolken embeddings maintains nearly the same GPU memory as LLM inference. Whenever a

new tool is added, the toolken embedding can be conveniently expanded and then, subsequent

training on tool demonstration data involving the new tool gradually refines its embedding.

Moreover, unlike in-context learning methods that only digest a few examples as training signals,

ToolkenGPT is capable of tuning toolken embeddings from massive demonstrations.

Drawing parallels to how infants learn a new tool through demonstrations from adults [31],

in this chapter, we primarily focus on learning toolken embeddings with tool demonstrations,
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which can be either in-domain training data or synthetic data generated by LLMs (see Sec-

tion 3.3.1 and Section 3.3.2). We first describe the format of training data and the training

objective and we use the same example from Figure 3.1 to showcase how it can be used

for training. Specifically, “the area is 256 square feet ...” can be tokenized into a word

token sequence s = (“the”, “area”, “is”, “2”, “5”, “6”, “square”, “feet”, ...). To indicate when

to predict the toolkens, we need a parallel sequence mixed with word tokens and toolkens,

i.e. s′ = (“the”, “area”, “is”, “[square]”, “[N/A]”, “[N/A]”, “square”, “feet”, ...). The subse-

quence of (“2”, “5”, “6”) in s is where the returned tool results should fill in, and we choose the

corresponding first token in s′ as the toolken for the tool call with the following tokens are filled

with [N/A], indicating neglect in loss calculation. Thus, given a dataset composed of paired

sequences D = {(s,s′)}, the training objective of ToolkenGPT is:

L (Wτ) = ∑
(s,s′)∈D

N

∑
i=1

− logP(t ′i |t<i)1t ′i ̸=[N/A] (3.2)

where P(t ′i |t<i) is defined in Eq.(3.1), and 1t ′i ̸=[N/A] is the indicator function signaling

we ignore the [N/A] tokens during the training. Thus, our training process is largely consistent

with the inference in the reasoning mode. That is, to call a tool, the only job for the LLM is

to predict a toolken at the beginning, and then the returned value will be filled back to the text.

Here, [N/A] is introduced to skip the generation of the returned value of a tool call.

There are two primary ways to get the paired data. First, some datasets provide ground

truth tool calls along with natural language sequences, e.g. the facts in KB supporting the answer

to a question (Secion 3.3.2), or the calculation trace for solving a math problem (Section 3.3.1).

To use the data for supervised learning, we preprocess them to get the paired data required for

training as described in the above paragraph. Second, we explore synthesizing tool demonstra-

tions with LLMs, sharing a similar idea to self-instruct [131]. An intuitive interpretation of this

process is to distill the knowledge inside LLM to the new toolken embeddings. Specifically,

we can prompt LLMs with the tool document and a few demonstrations with a special syntax
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indicating tool calling, e.g., The capital of U.S. is <capital>(“U.S.”)=“Washington D.C.” Con-

ditioned on that, the LLMs can generate some new use cases that utilizes the given tool and

quote the tool call with the same syntax. We can then easily locate the tool calls and process the

data into the paired data for training.

3.3 Experiments

In this section, we apply ToolkenGPT to three distinct applications characterized by

meaningful tool-use scenarios: arithmetic tools for numerical reasoning, database APIs for

knowledge-based question answering, and robot actions for embodied plan generation. We focus

on how methods can accurately call the tools and how successfully they can solve the tasks.

Our experiments show that ToolkenGPT can efficiently master massive tools while leveraging

them to solve complex problems with improved performance, consistently better than advanced

prompting techniques.

3.3.1 Numerical Reasoning

LLMs often struggle with mathematical tasks since the models are inherently designed

for probabilistic estimation rather than symbolic operations. In this section, we aim to assess

the tool-learning capabilities of ToolkenGPT, compared with in-context tool learning (e.g.,

ReAct [144]). We first demonstrate that ToolkenGPT consistently matches or outperforms the

performance of in-context learning with the availability of four basic arithmetic functions (+, −,

×, ÷). Moreover, to benchmark the tool-handling capability in more complex math problems, we

include more available tools, i.e., an expanded (13) set of functions, and create a set of synthetic

data. The results show that ToolkenGPT significantly outperforms baselines by training only

on the synthetic data. Note that our focus is not to reach a state-of-the-art accuracy; Rather, the

experiment is designed to evaluate the tool learning ability in the setting where certain tools are

available.
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Datasets. To evaluate the tool-learning proficiency in numerical reasoning comprehen-

sively, we curate two new test datasets: (1) GSM8K-XL, an enhanced version of the existing

GSM8K [23] dataset. GSM8K is a dataset of linguistically diverse grade school math word

problems, involving performing a sequence of calculations using 4 basic arithmetic operations (+,

−, ×, ÷) to reach the final answer. In the original GSM8K dataset, the numbers for calculations

are typically small, which might be less challenging for the recent powerful LLMs [23, 13].

So in the test set, we magnify the numbers to increase the computational difficulty for LLMs,

which results in the GSM8K-XL dataset, featuring 568 test cases with much larger numbers.

(2) FuncQA is a synthetic dataset we created to increase the complexity of math problems

involving more arithmetic tools, which serves as a much more challenging benchmark to test the

model’s tool-learning capabilities. Specifically, This dataset requires at least 13 operators (e.g.,

power, sqrt, lcm) to solve, and it is challenging for both humans and LLMs to solve without

an external calculator. Furthermore, FuncQA is categorized into two subsets: 68 one-hop ques-

tions (FuncQAone) solvable with just one operation, and 60 multi-hop questions (FuncQAmulti)

requiring a few reasoning steps.

To train the toolken embeddings used in GSM8K-XL, we preprocess the original training

set of GSM8K which has the calculation annotation as described in Section 3.2.2. We get 6,054

examples, of which 1,000 were allocated for validation, and 5,054 for the training data. For the

FuncQA dataset, we prompt ChatGPT to generate some one-hop QA patterns for each operator,

and then randomly assign values to the patterns. This process yields 47 training data points and

3 validation data points for each operator, resulting in a total of 611 samples for training and 39

samples for validation.

Comparison Methods. We train toolken embeddings for each available math operator

as described in Section 3.2.2. During inference, we prompt the LLM with 4-shot Chain-of-

Thought [135] examples to enhance the reasoning ability of LLMs. The following baselines

are evaluated for comparison: (1) 0-shot CharGPT is the straightforward method asking LLMs

to answer a question. No examples will be provided in the context and tools are not available.
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Table 3.2. Results on the GSM8K-XL and FuncQA datasets. The numbers in parentheses
indicate how many available tools are available. For GSM8K-XL and FuncQAone dataset,
accuracy is evaluated based on an exact match (float numbers rounded to two decimals). In
FuncQAmulti, we allow a margin of error of 0.1% to account for potential errors at each step of
multi-hop reasoning.

Method GSM8K-XL (4)
FuncQA (13)

One-Hop Multi-Hops

0-shot ChatGPT 0.17 0.55 0.09
CoT [135] 0.18 0.20 0.03

ReAct [144] 0.32 0.57 0.06

ToolkenGPT (Ours) 0.33 0.73 0.15

We use ChatGPT as the base LLM in our experiment. This baseline measures the ability of the

LLM to answer complex numerical reasoning problems with its own reasoning and calculation

ability. (2) Chain-of-thougts (CoT) [135] is a more advanced prompting techniques. In this

approach, a series of interconnected prompts are carefully crafted to guide the LLMs through

a step-by-step reasoning process. The example reasoning chains are the same as the ones we

used for ToolkenGPT, but no functions are available. (3) ReAct [144] combines reasoning

and tools by prompting the LLMs to generate verbal reasoning traces and tool calls in an

interleaved manner. Concretely, instead of just providing reasoning chains such as “... The

cost is 50*3.2=160”, ReAct incorporates special syntax to call operators, e.g.“... The cost is

50*3.2=<multiply>(50,3.2)=160”. Once the syntax is detected during inference, the tool would

be called to calculate the result. We use the same reasoning chain examples as in both CoT and

ToolkenGPT, with only slight differences in the tool calling syntax. LLaMA-33B [124] is used

as the LLM for all settings other than zero-shot prompting.

Result Analysis. Table 3.2 shows the performance of all the methods on the GSM8K-XL

and FuncQA datasets. On the GSM8K-XL dataset, 0-shot ChatGPT and few-shot learning with

CoT struggle to calculate large numbers without the help of tools, while ReAct and ToolkenGPT

manage to increase accuracy consistently by a large margin. Generally, both methods can call

the correct tools when necessary, as the toolset is comprised of only the four basic operators.
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However, for both FuncQAone and FuncQAmulti datasets, learning to call applicable tools becomes

challenging to ReAct as the number of tools increases. In ReAct, though all the tools are listed

at the beginning of the prompt, it is infeasible to include demonstrations of every tool in the

limited context (In our experiment, we provide 4 examples including 5 tool demonstrations). As

a result, ReAct is susceptible to missing tool calls, making wrong tool calls, and predicting wrong

arguments, especially for the tools not demonstrated in context. ToolkenGPT outperforms all the

baselines across both one-hop and multi-hop scenarios, showing superior tool learning ability

when there are numerous tools. It is important to note that even though toolken embeddings are

trained solely using one-hop synthetic data, and without any CoT examples, they still manage

to enhance performance in multi-hop problem contexts and can be integrated effectively with

CoT prompting. This implies a degree of generalization of toolken embeddings, which is a very

desired property that lowers the requirements of in-domain training data.

3.3.2 Knowledge-based Question Answering

LLMs are known to often make factual errors and hallucinate [54, 151, 150, 6] because

of their limited knowledge [44]. Equipping them with access to knowledge bases (KBs) has been

a promising research direction to reduce their hallucinations [115]. We formulate the access

to the KB as APIs querying the database [122, 34]. Thus, each relational query can be treated

as a tool to which the input argument is a subject entity, and the output is the corresponding

tail entity. An example tool call is “P1346(2005-06 FA CUP) → LIVERPOOL F.C.” “P1346”

is a relation identifier in Wikidata, representing the winner of a competition or similar event

(referred to winner of below for ease of reading). In this section, we show that ToolkenGPT

can accurately query a large knowledge base of up to 234 tools (relations). We further show that

even only with synthetic data (as described in Section 3.2.2 and explained below), we can train

strong toolken embeddings that outperform popular tool-learning methods.

Dataset. KAMEL [59] is a question-answering dataset built with the facts in Wikidata.

In line with ToolFormer [111], which uses its earlier version [100] as a benchmark to evaluate the
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Figure 3.2. Performance of ToolkenGPT and baselines on 4 testsets involving different numbers
of tools (relations) from KAMEL. ICL is short for In-context Learning [102]. Due to the context
length limit of 2048 tokens, we list the descriptions and demonstrations of up to 30 relations for
ICL and up to 60 relation descriptions for ICL (desc).

tool use, we adopt KAMEL to evaluate the use of KB query tools. KAMEL contains knowledge

about 243 relations from Wikidata, each of which is associated with a question template (e.g.

winner of: ”Who is the winner of [S]?”) to turn a fact in Wikidata into a question. We have

234 tools in total for this dataset. In order to analyze the performance provided with different

numbers of tools, we create four subsets by sampling from the original test set. Each subset

consists of questions related to different numbers of relations, corresponding to 30, 60, 100, and

234, respectively. The size of each subset is 500.

Comparison Methods. We set up two different variants of the ToolkenGPT framework.

(1) ToolkenGPT (sup): We sample 200 examples per relation from the training set of KAMEL and

train the toolken embeddings via supervised learning. This setting represents real-world scenarios

where sufficient in-domain training data is available. (2) ToolkenGPT (syn): In a more challenging

setting where we assume in-domain training data is not available, we use the text description of

each relation to synthesize training data with ChatGPT, e.g. “The Nobel Peace Prize in 2020 was
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awarded to the United Nations World Food Programme for its efforts...”, where the underlying

tool call is winner of(NOBEL PEACE PRIZE IN 2020)→UNITED NATIONS WORLD FOOD

PROGRAMME. On average, 40 examples are used to train each toolken embedding.

We introduce the following baselines for comparisons: (1) Prompting [59] is a straight-

forward method that answers the questions with the LLM’s internal knowledge. We frame each

question within the prompt ”Question: [QUESTION]\nThe answer is” and ask the LLM to

continue the sentence. (2) In-context Learning (ICL) [102] is a standard method to augment

LLMs with tools. Before asking the question, we list the tool demonstrations and descriptions

of all available tools. The demonstrations are shown in a specific syntax so that the LLM can

generate in a similar style to be parsed. An example demonstration for winner of is “Question:

Who is the winner of 2005-06 FA Cup?\nAnswer: The answer is <winner of>(2005-06 FA

Cup)=Liverpool F.C.” In a recent survey [102], this setting is referred to as “few-shot”. (3)

In-context Learning (desc) [102] is another common practice to augment LLMs with tools. The

descriptions of all available tools will be provided in context, but their demonstrations are not

directly shown. Instead, we show 8 demonstrations of the tools not included in the test subset to

inform LLMs about the tool call format. This setting is referred to as ”zero-shot” in Qin et al.

[102]. The base model for all methods is LLaMA-13B [124].

Result Analysis. We show the experiment results on 4 testsets involving different

numbers of relations in Figure 3.2. Note that the number of involved relations is the number

of tools we can use. For all testsets, the accuracy of Prompting is about 20%, which indicates

LLMs still struggle to store accurate facts in their parameters and it’s necessary to augment them

with a knowledge base. ToolkenGPT (sup) achieves the highest results with a large margin,

showing that learning toolken embeddings is an effective method when there is massive in-

domain training data. On the contrary, even though In-context learning also sees in-domain

training data in the context, it still gets confused about which tools to call. Furthermore, the

context length limit leads to drastic performance drops when there are more than 30 tools to use.

The failure in the many-tools scene reveals the fundamental limitation of the in-context learning
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paradigm. ToolkenGPT (syn) also outperforms all other baselines in all subsets, without seeing

any in-domain training data. The synthetic training data, often in very different expression styles

from the dataset, still helps the LLM understand these relations.

This success reflects the flexibility of our framework which can be applied even if there

is no in-domain training data available. In-context learning (desc) generally fails in this task,

because the LLM has difficulties memorizing text descriptions shown in contexts and mapping

them to relation identifiers. The results provide more evidence to the previous discovery that

LLMs have trouble using unfamiliar tools [13]. Based on this observation, it is reasonable to

speculate that LLMs mostly recall the tools from their identifier instead of really learning to use

tools from their descriptions.

3.3.3 Embodied Plan Generation

Recently, there have been many research attempts to utilize LLMs as the controller of

embodied agents [51, 117, 1, 53, 139]. Despite the preliminary success of prompting LLMs,

teaching LLMs about an environment and enabling them to make grounded predictions remain

challenging. As discussed in Mialon et al. [86], tools that gather additional information (e.g.

math or KB tools) and tools that have an effect on the physical world (e.g. actions taken by

embodied agents) can be called in similar styles by the LLM. In this section, we demonstrate

how our framework can also be applied to plan generation for embodied agents. Compared to

previous methods that prompt LLMs, our ToolkenGPT can understand the environment better by

learning toolken embeddings for agent action and object.

Dataset. VirtualHome [101] is a simulation platform for typical household activities,

and ActivityPrograms knowledge base [101] consists of many tasks with plans executable in

VirtualHome. We derive a subset of 297 tasks from ActivityPrograms.

Specifically, for each task, the model is given a high-level goal (e.g. ”Read book”), a

detailed instruction (e.g. ”I would go lie down in my bed and open the book and start reading.”,

and a description of the environment, which includes the initial state of the agent, and the object
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Table 3.3. Results on VirtualHome. Grounding means the proportion of scripts in which all
the actions and objects can be grounded to the environment. Executable means the proportion
of scripts that can be executed in VirtualHome without violating any rules. Success means the
proportion of scripts that leads to the correct final state. Success (R) is a relaxed variant meaning
the proportion of scripts that have reached the correct final state, but not necessarily ending with
it.

Method Grounding Executable Success Success (R)

In-context Learning 0.74 0.42 0.20 0.30
+ Translation [51] 1.00 0.52 0.24 0.32

+ Grounded Decoding [53] 1.00 0.66 0.38 0.42

ToolkenGPT (Ours) 1.00 0.82 0.68 0.70

list of the environment (e.g. ”I am in [’home office’]. The objects I can manipulate are [’mail’,

’freezer’, ’television’, ..., ’novel’]”. The model is expected to output an executable plan, which is

an ordered list of verb-object instructions (e.g. ”[FIND] <novel>”). Each task comes with an

initial and final state graph, enabling the verification of the generated plans with the simulator

and the comparison of the resulting final state with ground truth. We split the dataset into a

training set of 247 tasks and a test set of 50 tasks, with a total of 25 verbs and 32 objects used in

the dataset.

Comparison Methods. We consider all the actions and objects in VirtualHome as tools.

With an additional [END] function indicating the end of a plan, we have 58 toolkens in total. For

this dataset, we do not need the argument generation process described in Figure 3.1 because

the tools do not take arguments. During inference, ToolkenGPT alternatively generates action

toolkens and object toolkens, and ends with the [END] toolken. The toolken embeddings are

trained on the training set.

We compare our method to the following baselines: (1) In-context Learning prompts the

LLM and parses its outputs as the plan. The LLM is shown with the action list, 3 demonstration

plans, and a new task with its goal, detailed description, and environment description. This

method is the base of most recent methods [51, 1, 53] that apply LLMs to embodied AI. (2)

Translation [51]: To avoid plans that include unavailable actions or objects, Huang et al. [51]
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Work
Go to office, sit at desk, turn on computer, enter 

password, open application and begin work

[WALK] <home_office>
[WALK] <desk>
[FIND] <desk>
[SIT] <desk>
  

ToolkenGPTTranslation

[WALK] <home_office>
[WALK] <chair>
[FIND] <chair>
[SIT] <chair>
… error: desk not sittable!

Figure 3.3. Case study on VirtualHome. ToolkenGPT predicts a successful script while other
baselines fail to produce an executable one due to their misunderstanding of the SIT action.

proposes to use a translation model to translate the LLM’s generation to admissible instructions.

Following Huang et al. [51], we use SentenceRoBERTa-large [107] and translate the actions or

objects to available ones with the highest cosine similarities. (3) Grounded Decoding [53] is

a recent decoding-stage grouding method. The next token is predicted considering both LLM

logits and ”grounded functions”. Specifically, we apply the affordance grounding function [53],

encouraging LLMs to generate valid actions and objects. We do not consider other previous

methods that heavily fine-tune the whole language model [72]. The base model of all methods is

LLaMA-13B [124].

Result Analysis. We list results in Table 3.3. Though all valid actions and objects

are explicitly listed in the context for the LLM using In-context Learning, it sometimes fails

to ground its prediction to admissible instructions. Even though the actions and objects are

valid, they often violate the physical rule in VirtualHome, resulting in a low success rate. We

notice that while most of the plans generated with In-context Learning appear reasonable to

humans, they are not grounded to the specific environment of VirtualHome. Translation [51]

helps solve some shallow grounding problems, e.g. [tv] → [television], while Grounded

Decoding [53] further improves executable and success rate by considering grounding earlier in

the decoding stage. Although these methods ensure all plans are grounded, neither significantly
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Table 3.4. Comparison between ToolkenGPT and fine-tuning (LoRA) in terms of training cost
and performance on FuncQA dataset. Both methods are based on Llama-7B.

Method One-hop Multi-hop Computing Resource Training Time

ReAct 0.40 0.03 - -
Prompting 0.10 0.00 - -

Fine-tune w/ LoRA [50] 0.62 0.07 8 × A100 (80G) 40 min

ToolkenGPT 0.55 0.06 1 × RTX3090 (24G) 2 min

improves the LLM’s understanding of actions and objects, leading to unsatisfactory executable

and success rates. ToolkenGPT not only predict valid actions and objects naturally by its design,

but also achieves the highest success rate by learning toolken embeddings from more training

tasks. A concrete example is shown in Figure 3.3 to illustrate the difference: All the baselines

predict [SIT] <desk>, presumably guided by the description ”sit at desk”, but in VirtualHome

[SIT] refers to ”sit on”, and a desk is regarded as not sittable. ToolkenGPT is the only one to

successfully learn this rule from demonstrations and instead predict [SIT] <chair>.

3.3.4 Analysis

Computational Cost. We conduct experiments to compare ToolkenGPT with fine-tuning,

specifically using LoRA [50], in terms of computation efficiency and performance. Due to the

cost of fine-tuning LLMs, we implement both methods on LLaMA-7B. The results are listed in

Table 3.4.

Fine-tuning LLMs results in slightly better performance than ToolkenGPT on FuncQA.

Even though we apply LoRA, which is known for efficiency, the time consumption for fine-tuning

exceeds significantly when compared to training toolken embeddings. It is also worth noting

that ToolkenGPT enjoys additional benefits other than efficiency (Table 3.1), especially the

plug-and-play of massive tools, thanks to the decoupled parameters for different tools.

Ablation Study. The design of ToolkenGPT benefits both tool selection and argument

completion (tool mode in Figure 3.1). To understand their respective contributions to the

performance, we further implement a baseline combining ReAct-style prompting and the sub-
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Table 3.5. Ablation study on FuncQA dataset with LLaMA-30B.

Method One-hop Multi-hop

ReAct 0.57 0.06
+ Tool mode 0.60 0.07

ToolkenGPT 0.73 0.15

Table 3.6. ToolkenGPT with different configurations of training data on KAMEL.

# Examples Synthetic Supervised

10 0.36 0.56
20 0.46 0.90
40 0.52 0.95

routine of argument completion (tool mode). In the tool mode, the LLM is prompted with

demonstrations using only the selected tool, which will provide more relevant knowledge than

ReAct prompt for argument completion. As shown in Table 3.5, adding a tool mode could indeed

improve the vanilla ReAct prompting method by enhancing the accuracy of argument completion.

However, ToolkenGPT still outperforms this improved baseline by a large margin, indicating

that toolken embeddings effectively help LLMs to decide when and which tool to call.

Training Data. In this section, we explore the effects of training data on learning the

toolken embeddings. We choose to extend our experiments on KAMEL (Section 3.3.2), because

there are two different sources of training data and it is easy to process or synthesize more data.

Specifically, we sample 10/20/40 training examples of each tool for both ToolkenGPT (sup) and

ToolkenGPT (syn), and report the accuracy on the test set involving 30 tools.

The results are summarized in Table 3.6. Under the same budget of data size, training

with supervised data leads to better performance. Though we do not observe obvious mistakes in

most of synthetic data instances, the distribution gap between synthetic data and test set may

prevent toolken embedding from performing well. A larger training set benefits the performance

for both data sources.
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Chapter 4

RepoBench: Benchmarking Repository-
Level Code Auto-Completion Systems

Large Language Models (LLMs) have greatly advanced code auto-completion systems,

yet lack benchmarks for multi-file programming scenarios. In this chapter, we introduce Re-

poBench, a benchmark for repository-level code auto-completion, covering Python and Java, with

tasks for code retrieval, completion, and complex pipelines. Each task respectively measures

the system’s ability to retrieve the most relevant code snippets from other files as cross-file

context, predict the next line of code with cross-file and in-file context, and handle complex

tasks that require a combination of both retrieval and next-line prediction. RepoBench aims to

facilitate a more complete comparison of performance and encouraging continuous improvement

in auto-completion systems. RepoBench is actively maintained with the latest code, serving as a

live benchmark publicly available at https://github.com/Leolty/repobench.

4.1 Introduction

Large language models (LLMs; [12, 20, 124, 94]) have been instrumental in paving new

avenues for innovative applications across diverse domains, with programming being a notably

attractive and promising domain [16, 127, 5, 132]. In particular, the rise and application of code

auto-completion systems like GitHub’s Copilot 1, driven by OpenAI’s Codex [16], have the

1https://github.com/features/copilot
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potential to substantially changed the manner in which we interact with code. These changes

facilitate coding for beginners and improve efficiency of the coding process for experienced

developers.

A variety of code auto-completion models [16, 39, 33, 90, 71, 3] have emerged in recent

years, each boasting unique capabilities and performance characteristics. This emergence of

models emphasizes the increasing importance of AI in the realm of programming, leading

to a more diversified and competitive landscape. However, current evaluation datasets and

benchmarks [84, 105, 4] predominantly focus on completion tasks within the scope of a single

file. This focus fails to reflect the complexity and intricacies of real-world programming

scenarios, where developers frequently work on multi-file projects, often navigating through and

understanding code spanning several repositories.

Recognizing the need for a more comprehensive evaluation, we introduce RepoBench,

a new benchmark for evaluating the effectiveness of repository-level code auto-completion

systems. Specifically, RepoBench offers three distinct evaluation sub-tasks, each emphasizing

a unique aspect of a fully functioning code auto-completion system: (1) The Retrieval Task

(RepoBench-R), which tests the system’s ability to retrieve the most relevant code snippets,

thereby providing the necessary context for the prediction of the next line of code. (2) The Code

Completion Task (RepoBench-C), where the task is to predict the next line of code given a

pre-defined context. The context can involve content from different files (cross-file context) and

within the file (in-file context) with a moderate length setting that can fit most models. (3) The

End-to-End Pipeline Task (RepoBench-P), which is designed to simulate the complete process

of a code auto-completion system like GitHub Copilot - first retrieving relevant snippets and

then completing the code by predicting the next line. In this scenario, the system may encounter

a large set of potential snippets for retrieval, resulting in longer and broader contexts, which

leads to the need for the system to optimize the efficient selection of numerous candidates to

facilitate code completion while ensuring that the extensive context remains within the system’s

processing capabilities.
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We conduct a series of experiments on RepoBench, analyzing the efficacy of various

retrieval methods and code completion models of different magnitudes, and the assessment of

their combined performance in a full pipeline, providing some insights for future research and

development. Our results underscore the significance of code models that can manage extended

contexts and maintain generalizability in real-world coding environments.

4.2 The RepoBench Dataset

RepoBench is a live benchmark for auto-code completion, with a commitment to contin-

uously incorporate the latest data for model evaluation. This section introduces the construction

and findings of RepoBench’s inaugural iteration (v1.0).

4.2.1 Data Sources

Github-Code Dataset: The first source of RepoBench is the github-code dataset2,

which consists of a vast collection of code files sourced from GitHub repositories under open-

source licenses with a data cutoff date of March 16, 2022. Specifically, we aggregate files based

on their repository name as the github-code dataset is originally stored at the file-level. Given

that the code in this dataset has been widely utilized for training various models [71, 90], we

primarily use this dataset for constructing our training data. The use of this data for training

specifically addresses the adoption of patterns that concatenate cross-file context and in-file

context for next-line prediction. Fine-tuning on this dataset is optional, as sufficiently robust

models may already exhibit this generalizability.

Newly Crawled GitHub Data: To mitigate impacts regarding data leakage and memo-

rization, we augment the dataset by incoporating the most recent, non-forked GitHub repositories

that are permitted under their respective licenses. Specifically, we use GitHub’s official API to

crawl Python and Java repositories created after February 9, 2023, which aligns with the newest

knowledge cutoff date of The Stack [63], and before August 3, 2023. This newly-crawled data

2https://huggingface.co/datasets/codeparrot/github-code
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serves exclusively as our test set for evaluation.

Continuous Updates: In response to the rapid advancement of Code LLMs and their

training datasets, RepoBench is committed to a regimen of continuous updates, to ensure that

RepoBench keeps pace with the latest developments and avoids potential data leakage, which

could compromise the integrity of model evaluations. As of this writing, RepoBench v1.1 is

already available. Detailed discussions on RepoBench v1.1 can be found in Section 4.4.

4.2.2 Data Processing

The data processing procedure for this study involves multiple steps. For the training

data sourced from github-code, repositories with a number of Python or Java files between 32

and 128 are selected. This range is chosen to ensure an adequate cross-file dependency while

avoiding excessive complexity and keeping the data volume within a reasonable range. While

for the newly crawled test data, we do not set file number constraints to ensure a thorough

evaluation. To identify cross-file dependencies and their usage, we use tree-sitter3 to parse each

file. This parsing is primarily directed at import statements, enabling us to identify all cross-file

modules and the lines utilizing these modules (termed cross-file lines). Further, we track the

corresponding code snippets that define these imported modules.

After processing the data, our dataset comprises 10,345 Python and 14,956 Java historical

repositories, serving as training data and are available for optional fine-tuning. Additionally,

we have 1,075 Python and 594 Java new repositories from GitHub designated as test data for

evaluation.

4.2.3 Task Construction

Task Settings To effectively evaluate next-line prediction in auto-completion systems,

we define three settings:

• Cross-File-First (XF-F): This is the most challenging setting, where we mask the first

3https://tree-sitter.github.io/tree-sitter/
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Figure 4.1. Construction of a prompt for repository-level cross-file code completion. The com-
mented cross-file context (path + snippet), parsed from import statements using tree-sitter,
is concated with the in-file context (path + import statements + preceding lines), which cropped
to a maximum of 30 lines in RepoBench to form the input prompt, with the objective is to predict
the next line . Note that for clarity, certain lines of code are omitted in this figure, which is an
abbreviated and simplified version derived from a real example.

appearance of a cross-file line within a file. In this setting, there is no prior usage of the

module in the in-file context to aid the prediction, thereby requiring the system to handle

long-range cross-file context for better accuracy.

• Cross-File-Random (XF-R): In this setting, we mask a random and non-first occurrence

of a cross-file line. Unlike the XF-F setting, the prior in-file usage of the module may

serve as a hint for the prediction.

• In-File (IF): In this setting, we mask an in-file line that does not involve any cross-file

modules. This setting serves as a robustness test to ensure that the incorporation of
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cross-file context does not greatly affect the accuracy of predictions.

Note that RepoBench-R (Retrieval) is designed with only XF-F and XF-R settings, as IF

does not involve retrieval and thus cannot be evaluated in this task, while both RepoBench-C

(Code Completion) and RepoBench-P (Pipeline) involve all three settings: XF-F, XF-R, and IF.

RepoBench-R RepoBench-R targets the retrieval component of a repository-level auto-

completion system, focusing on extracting the most relevant code snippet from a project reposi-

tory for next-line code prediction.

In RepoBench-R, every snippet parsed from import statements is treated as a potential

candidate for next-line prediction, where only one ‘gold snippet’ is the optimal context for

prediction. This task considers scenarios with 5 or more candidate snippets, and specifically, we

categorize them into two subsets: those with 5-9 candidates as the easy subset, and those with 10

or more candidates as the hard subset. As demonstrated in Table 4.1 (top), both the easy and

hard subsets contain 12,000 samples for the XF-F setting, whereas for the XF-R setting, each

subset consists of 6,000 samples. We also provide training data for optional usage, further details

can be also located in Table 4.1 (bottom). For evaluative purposes, the Accuracy@k (acc@k)

metric is employed to assess retrieval performance. The easy subset is evaluated using acc@1

and acc@3, while the hard subset is examined through acc@1, acc@3, and acc@5 metrics.

RepoBench-C RepoBench-C simply focuses on the prediction of the next line of code,

given a set of in-file context (including several preceding lines and import statements), and

cross-file context.

In RepoBench-C, as shown in Figure 4.1 the prompt is created by combining all the

parsed snippets as cross-file contexts and an in-file context. The in-file context includes import

statements and several preceding lines of code with a maximum limit of 30 lines. To address the

varying context length in existing models, RepoBench-C is divided into two subsets: RepoBench-

C-2k and RepoBench-C-8k. RepoBench-C-2k, designed for models with a token limit of 2,048,

holds prompts that do not exceed 1,925 tokens. Concurrently, RepoBench-C-8k is architected
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Table 4.1. (Top) Test data overview for RepoBench across Python and Java for 3 different tasks;
(Bottom) Training data for RepoBench.

Lang. Task Subset XF-F XF-R IF Mean Candidates Mean Tokens

Python

RepoBench-R
Easy 12,000 6,000 - 6.7 -
Hard 12,000 6,000 - 17.8 -

RepoBench-C
2k 12,000 5,000 7,000 - 1,035
8k 18,000 7,500 10,500 - 3,967

RepoBench-P 10,867 4,652 6,399 24 44,028

Java

RepoBench-R
Easy 12,000 6,000 - 6.8 -
Hard 12,000 6,000 - 25.5 -

RepoBench-C
2k 12,000 5,000 7,000 - 1,093
8k 18,000 7,500 10,500 - 4,179

RepoBench-P 10,599 4,459 6,196 26 139,406

Language Task XF-F XF-R IF

Python
Code Retrieval 175,199 86,180 -

Code Completion 349,023 179,137 214,825

java
Code Retrieval 340,121 216,642 -

Code Completion 683,890 447,464 709,218

with a higher threshold, encompassing up to 7,685 tokens, apt for models with an 8,192 token

limit (e.g., StarCoder [71]) or 8,000 token limit (e.g., Codex [16]).

RepoBench-C is designed primarily for 0-shot learning, in order to examine the model’s

ability to handle long-range contexts. Despite this, we also provide a large amount of training

data to allow fine-tuning, thereby enhancing the transfer capabilities of relatively smaller models,

and for the test set, we allocate more data under XF-F settings compared with XF-R and IF

settings. Details of this data are provided in Table 4.1. For evaluation metrics, we adopt Exact

Match (EM) and Edit Similarity (Edit Sim) [121] following the previous work [84] and extend

our evaluation with CodeBLEU [108] to evaluate the accuracy of the predicted code line.

RepoBench-P RepoBench-P evaluates the model’s performance by combining the scenes

of RepoBench-R and RepoBench-C: retrieval of relevant snippets and next-line code prediction,
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presenting a challenging pipeline task. This task mirrors complex real-world scenarios that a

practical auto-completion system would face, assessing the model’s comprehensive performance

and flexibility.

In RepoBench-P, each setting (XF-F, XF-R, and IF) requires the model to first identify

the most pertinent snippets and then employ these snippets as cross-file context in conjunction

with the in-file context to predict the subsequent line. Contrary to specifying a maximum token

limit, we define a minimum token threshold: 12,000 for Python and 24,000 for Java, and the gold

snippet retrieval process requires a minimum of 10 candidates. Due to the substantial amount

of data resulting from these constraints, we opt to down-sample to ensure parity between Java

and Python datasets. Details of this data are provided in Table 4.1. For evaluating the predicted

next line, we also use the Exact Match, Edit Similarity amd CodeBLEU metrics, in line with the

RepoBench-C setting.

4.3 Experiments

In this section, we present the detailed introduction, baselines, results and analysis of our

three tasks defined above in RepoBench.

4.3.1 RepoBench-R

The primary objective of the retrieval task in RepoBench-R is to identify the most relevant

code snippets to predict the next line given an in-file context. The process generally involves

cropping certain lines of the in-file code before the predicted line, followed by the calculation

of the degree of relevance (we use the term ‘similarity’ uniformly) between the cropped code

and each candidate snippet. Formally, the general method for retrieval can be mathematically

formulated as follows:

k
argmax
i∈{1,...,n}

f (C[−m :],Si)
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where C denotes the in-file code, Si refers to the i-th candidate snippet, n is the total

number of candidate snippets, m is the number of lines from the in-file code retained, k represents

the top k candidates to be retrieved, and f is the function computing the similarity (or other

scores) between the cropped in-file code and the candidate snippets.

Baseline. In our baseline approach, three strategies are employed for the retrieval task:

(1) Random Retrieval involves retrieving code snippets in a random manner, serving as a lower-

bound benchmark against which we can compare the effectiveness of the other retrieval methods.

To ensure the stability and reliability of our results, this random process is repeated 100 times

and the outcomes are averaged. (2) Lexical Retrieval uses Jaccard Similarity and Edit Similarity

to assess the relevance between the cropped code from the in-file context and the candidate code

snippets. (3) Semantic Retrieval applies encoder models, including CodeBERT [32] based

on BERT [24], UnixCoder [39] based on UniLM [27] ( we use the Encoder-only mode), and

InstructOR [119] to obtain the code embeddings. We also include some other encoder-decoder or

decoder models, include CodeGPT [84], CodeT5+ [132] and CodeGen [90]. Cosine Similarity

is employed to measure the semantic similarity between the cropped code and the candidate

snippets. In baseline, we crop m = 3 lines from the in-file code as specified in the general

method (C[−m :]), indicating the last three lines before the line to predict. All computations for

determining the similarity score are executed at the token level.

Results and Analysis. Table 4.2 presents a detailed comparison of different retrieval

strategies in RepoBench-R. We have the following abservations: (1) InstructOR Outperforms

Retrieval Models, Followed by UniXcoder: InstructOR consistently outperforms other retrieval

models across tasks, with UniXcoder achieving comparable results despite having only 1/10

of InstructOR’s parameters. This performance of UniXcoder can be partially attributed to its

unique approach that includes multi-modal data representation learning and the utilization of

both multi-modal contrastive learning (MCL) [37] and cross-modal generation tasks (CMG). (2)

Jaccard Similarity Offers a Competitive Lexical Retrieval Alternative: Within the lexical

retrieval category, Jaccard similarity has shown to be competitive, offering a viable and light-
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Table 4.2. Baseline weighted average results of RepoBench-R on Python and Java retrieval
tasks for Easy and Hard subset. The models used are codebert-base for CodeBERT,
unixcoder-base for UniXcoder, CodeGPT-small-py and CodeGPT-small-small

for CodeGPT in Python and Java respectively, and codegen-350M-mono and
codegen-350M-multi for CodeGen in Python and Java respectively, codet5p-220m

for CodeT5+ and instructor-xl for InstructOR.

Language Retrieval Model Params. Easy Hard

acc@1 acc@3 acc@1 acc@3 acc@5

Python

Random - - 15.66 46.96 6.43 19.31 32.12

Lexical
Jaccard - 21.97 53.75 10.47 25.93 40.01
Edit - 18.69 50.98 7.83 21.77 36.49

Semantic

CodeGPT 124M 16.18 47.05 8.27 22.79 36.35
UniXcoder 125M 27.09 60.42 18.48 39.69 54.00
CodeBERT 125M 16.94 48.27 6.72 19.89 33.05
CodeT5+ 220M 18.32 50.95 8.58 23.03 36.24
CodeGen 350M 21.03 54.27 13.20 31.64 46.22
InstructOR 1.5B 28.22 62.77 19.10 39.91 53.54

Java

Random - - 15.36 46.03 5.61 16.89 28.16

Lexical
Jaccard - 16.58 48.49 7.84 20.83 32.80
Edit - 15.19 45.92 6.09 17.63 28.69

Semantic

CodeGPT 124M 16.46 48.46 7.87 22.97 37.53
CodeBERT 125M 15.68 46.51 6.02 17.52 28.80
UniXcoder 125M 19.61 52.96 12.23 28.74 41.88
CodeT5+ 220M 16.12 47.67 6.46 18.50 30.50
CodeGen 350M 20.09 52.60 11.09 29.32 44.22
InstructOR 1.5B 19.94 53.91 13.07 31.28 44.52

weighted alternative to semantic methods. (3) Python Code Retrieval Tasks Yield Higher

Accuracy than Java: Tasks involving Python code retrieval tend to yield higher accuracy

than those with Java, which is partially hypothesized to be due to the common Python practice

of defining function arguments in close proximity to their calls, thereby providing valuable

contextual cues for retrieval. In contrast, Java’s extensive use of class structures may introduce

additional complexities into the retrieval process.
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4.3.2 RepoBench-C

The code completion task, RepoBench-C, aims to predict the next line of code based

on a given in-file context (Cin), consisting of import statements and preceding lines before the

target line, as well as a cross-file context (Cx), comprising snippets from other files parsed by

import statements. This task commonly uses autoregressive language models trained on code for

prediction. The formal expression of this task can be illustrated as follows:

P(Y ) =
n

∏
i=1

P(yi|y<i,Cx,Cin) (4.1)

where P(Y ) is the joint probability of all tokens in the predicted sequence Y . The variable yi

denotes the ith token in sequence Y, while y<i symbolizes the sequence of all preceding tokens.

Cx and Cin represent the cross-file context and the in-file context, respectively. This product

notation represents the autoregressive assumption that each token yi is conditionally dependent

on all preceding tokens y<i and the given contexts Cx and Cin.

Baseline. To establish a performance baseline, our benchmark compares 4 series of

models: (1) Codex4 [16] (i.e. code-davinci-002), developed by OpenAI, recognized for

its code generation capabilities and serving as the base model for Copilot.(2) CodeGen [90],

a family of autoregressive language models for program synthesis, available in multiple size

variants (350M, 2B, 6B, 16B). We use CodeGen-Mono for Python and CodeGen-Multi for

Java in our evaluations. (3) StarCoder [71], a 15.5B parameter model trained across over

80 programming languages. We adopt StarCoder for Python and StarCoderBase for Java.

(4) CodeLlama [110], a family of large language models for code based on Llama 2 [124],

include with 7B, 13B and 34B parameters. Similarly, we use CodeLlama-Python for Python

and CodeLlama for Java.

Results and Analysis. Table 4.3 presents the updated results of RepoBench-C. Our

findings on the two RepoBench-C subsets provide several insights: (1) CodeLlama-34B Excels
4Codex has been decommissioned as of January 4th, 2024 and is no longer accessible.
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Table 4.3. Performance comparison of models on RepoBench-C across Python and Java, using
weighted average Exact Match (EM), Edit Similarity (Edit Sim), and CodeBLEU scores from
three settings, for 2k (top) amd 8k (bottom) subset.

Model Params. Python Java

EM Edit Sim CodeBLEU EM Edit Sim CodeBLEU

CodeGen 350M 20.71 64.21 32.60 21.21 63.62 37.18
CodeGen 2.7B 27.35 68.28 38.34 28.31 69.15 43.84
CodeGen 6.1B 31.67 70.67 42.15 29.59 70.27 44.87
CodeLlama 7B 34.10 71.24 43.46 35.80 76.75 49.98
CodeLlama 13B 36.18 72.25 45.60 36.26 75.72 49.44
StarCoder 15.5B 31.67 71.27 41.46 37.35 77.00 51.81
CodeGen 16.1B 33.41 71.20 43.58 30.45 70.29 45.91
CodeLlma 34B 37.40 72.98 47.04 39.41 78.52 53.56
Codex - 31.31 72.21 41.45 42.47 80.01 55.62

Model Params. Python Java

EM Edit Sim CodeBLEU EM Edit Sim CodeBLEU

CodeLlama 7B 33.24 70.44 43.14 33.45 74.33 47.64
CodeLlama 13B 35.56 71.57 45.10 36.26 75.72 49.44
StarCoder 15.5B 29.93 68.84 40.39 32.49 74.29 46.92
CodeLlama 34B 36.26 72.19 45.71 36.84 76.06 50.77
Codex - 32.13 71.89 42.27 40.52 77.97 53.63

in Python for Both 2k and 8k: CodeLlama-34B achieves the highest performance across all

metrics for Python code generation tasks in both the 2k and 8k subsets, outperforming Codex

and other models. (2) Codex Maintains Dominance in Java for both 2k and 8k: Despite

the strong performance of CodeLlama and other models, Codex consistently emerges as the

top-performing model for Java code generation tasks across both the 2k and 8k subsets. This

demonstrates Codex’s specialized capabilities for multilingual code generation.

4.3.3 RepoBench-P

RepoBench-P combines the retrieval and code completion tasks to form a pipeline, where

the goal is to first retrieve the most relevant code snippets given an in-file context and then

predict the optimal next line of code based on the retrieved snippets and the in-file context.
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This pipeline approach aims to leverage the strengths of both tasks to enhance code assistance

systems’ capabilities. The formal expression of RepoBench-P can be represented as follows:

P(Y ) =
n

∏
i=1

P(yi|y<i,S1, . . . ,Sk,Cin) (4.2)

where P(Y ) denotes the joint probability of all tokens in the predicted sequence Y . yi represents

the i-th token in sequence Y , while y<i symbolizes the sequence of all preceding tokens. S1, . . . ,Sk

refer to the retrieved code snippets, and Cin represents the in-file context. This product notation

signifies the autoregressive assumption that each token yi is conditionally dependent on all

preceding tokens y< i, the given in-file context Cin, and the retrieved snippets S1, . . . ,Sk.

Baseline. To establish a performance baseline for the end-to-end task RepoBench-P, we

test Codex (code-davinci-002) as the base model. We reserve 1,600 tokens for the in-file context,

with a cropping limit of 60 preceding lines. Any unused tokens from this allocation are then

filled by the cross-file context, up to a total prompt size of 6,400 tokens.

For the retrieval component, we delve into several strategies for retrieving relevant

snippets from the cross-file context: (1) Gold-Only: In cross-file completions, the cross-file

context includes just the ‘gold snippet’. For in-file completions, the context is left empty. (2)

Gold-Filled: The cross-file context integrates the ‘gold snippet’ alongside with other randomly

fetched snippets until the 6,400-token capacity is filled. Inspired by the work of [78], we employ

two variant strategies for the placement of the ‘gold snippet’: Gold-Filled-Head, where the ‘gold

snippet’ is positioned at the beginning; and Gold-Filled-Tail, where it is positioned at the tail-end.

(3) UniXcoder: Using UniXcoder as cross-file context retriever, snippets are obtained based on

their relevance to the cropped preceding three in-file lines while adhering to a 6,400-token limit

for the input length. The includes the UniXcoder-H2L (High-to-Low) variant, ranking snippets

from the most to least relevant, and the UniXcoder-L2H (Low-to-High) approach, ranking in the

reverse order. (5) Random: Cross-file context snippets are totally randomly selected without

considering their relevance until the token limit is reached. Due to the constraints imposed by
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Table 4.4. Comparison of various retrieval strategies on the RepoBench-P for Python and
Java using Codex [16] (code-davinci-002). Each strategy is evaluated in terms of Exact Match
(EM) and Edit Similarity (ES) metrics for XF-F, XF-R, and IF settings. ‘All’ represents the
average performance over the mixture of all test data, weighted by the size of each test setting.
Strategies (Gold-Only and Gold-Filled), marked with an asterisk (∗), include gold snippets for
benchmarking purposes and serve only as references; they do not embody oracle capabilities.

Retrieval Method Python Java

EM Edit Sim CodeBLEU EM Edit Sim CodeBLEU

Baseline 33.15 72.19 44.07 40.40 74.28 56.64
Random 34.94 73.10 45.89 40.77 74.51 56.88
Jaccard 36.46 73.66 46.76 41.48 74.93 57.39

UniXcoder-H2L 36.61 74.02 47.28 41.70 74.82 57.29
UniXcoder-L2H 37.11 74.31 47.15 41.83 74.93 57.12

Gold-Only∗ 35.79 73.58 46.55 41.62 74.95 57.09
Gold-Filled-Head∗ 36.07 73.67 46.90 41.59 74.88 56.99
Gold-Filled-Tail∗ 36.18 73.76 46.75 41.49 74.91 57.09

the codex rate limit, we are unable to perform multiple runs for the random retrieval, which

is necessary to mitigate the inherent randomness; consequently, the results presented should

be considered indicative and not conclusive. (6) Baseline: In this strategy, a token limit of

6,400 is solely allocated for the in-file context, abstaining from using any cross-file context

during completion. It serves as a fundamental point of comparison, highlighting the model’s

performance when exclusively dependent on the in-file context.

Results and Analysis. Table 4.4 presents a comparison of various retrieval strategies

using Codex in RepoBench-P. From this comparison, we present the following insights: (1)

Inclusion of Cross-file Contexts Improves Performance: Integrating more cross-file contexts

enhances performance, irrespective of retrieval quality. Even randomly selected contexts sig-

nificantly boost performance, potentially by fostering contextual understanding, enabling the

model to draw from a broader code repository. (2) Effective Retrieval Enhances Performance:

Retrievers deploying specific models or methods like UniXcoder model, outperform random

retrieval systems. Notably, this improvement is not confined to cross-file line prediction (XF-F

38



and XF-R) but is also observed in in-file next-line prediction (IF), highlighting the value of

retrieving code related to current code in the same repository as cross-file contexts, even if the

succeeding line does not encompass cross-file modules. (3) Placement Order of Retrieved

Code Snippets Matters: The positioning of related code snippets influences code completion

effectiveness. Positioning higher similar code snippets adjacent to or in close proximity to the

line requiring completion tends to improve code completion performance.

4.4 Additional Introduction of RepoBench V1.1

In this section, we provide a description of the newest version of RepoBench v1.15,6 as

of the writing. This version of RepoBench, also including datasets for Python and Java, was

constructed from GitHub data spanning from October 6, 2023, to December 31, 2023. To

further address potential concerns of data leakage and memorization, which could bias model

evaluations, we also performed a deduplication process on the Stack v2 [82].

In RepoBench v1.1, to accommodate models capable of handling longer inputs and to

streamline the evaluation process, we have reduced the volume of the test dataset and categorized

the next-line prediction tasks into distinct levels based on their prompt lengths utilizing OpenAI’s

GPT-4 tokenizer for tokenization. The levels are determined by specific token ranges, including

Level 2k (640 ∼ 1,600 tokens), Level 4k (1,600 ∼ 3,600 tokens), Level 8k (3,600 ∼ 7,200

tokens), Level 12k (7,200 ∼ 10,800 tokens), Level 16k (10,800 ∼ 14,400 tokens), Level

24k (14,400 ∼ 21,600 tokens), Level 32k (21,600 ∼ 28,800 tokens), Level 64k (28,800 ∼

57,600 tokens), and Level 128k (57,600 ∼ 100,000 tokens).

RepoBench v1.1 is featured in the StarCoder 2 [82] technical report as a benchmark

for evaluating the capabilities of base models for repository-level code completion. It includes

evaluations at 5 levels, specifically 2k, 4k, 8k, 12k, and 16k, to accommodate the 16k sequence

length for most of the current open-source models. Table 4.5 presents the performance of

5https://huggingface.co/datasets/tianyang/repobench python v1.1
6https://huggingface.co/datasets/tianyang/repobench java v1.1
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Table 4.5. Average exact match (EM), edit similarity (Edit Sim), and CodeBLEU scores for open-
access base models on RepoBench v1.1. (Table copy from StarCoder 2 techincal report [82])

Model Python Java

EM Edit Sim CodeBLEU EM Edit Sim CodeBLEU

StarCoderBase-3B 29.99 69.37 36.77 36.01 74.18 45.30
DeepSeekCoder-1.3B 31.02 70.07 37.88 37.75 75.66 46.69
StableCoder-3B 34.48 71.79 40.43 40.13 76.56 49.00
StarCoder2-3B 32.47 71.19 39.25 38.46 76.53 47.96

StarCoderBase-7B 32.70 71.08 39.48 37.97 75.66 47.47
CodeLlama-7B 33.85 71.79 40.47 39.61 76.71 48.92
DeepSeekCoder-6.7B 36.79 73.85 42.65 42.87 78.93 51.69
StarCoder2-7B 33.72 72.07 40.34 39.84 77.23 48.96

StarCoderBase-15B 33.51 71.64 40.39 39.34 76.24 48.36
CodeLlama-13B 35.50 72.98 42.02 41.27 77.57 50.26
StarCoder2-15B 36.99 74.08 43.25 42.57 79.05 51.45

CodeLlama-34B 37.22 73.77 43.38 42.35 78.22 50.99
DeepSeekCoder-33B 39.25 75.20 45.21 44.59 79.92 52.70

open-access base models on RepoBench v1.1.

In comparison, it is noteworthy that StarCoder2 exhibits a significant improvement over

StarCoder1, which can be attributed to two main factors. Firstly, the increase in context length has

likely contributed to better model performance. More importantly, however, is the pre-training

of StarCoder2 at the repository-level, underscoring the essential role of repository-level training

in enhancing model capabilities.
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Chapter 5

Rethinking Tabular Data Understanding
with Large Language Models

Large Language Models (LLMs) have shown to be capable of various tasks, yet their

capability in interpreting and reasoning over tabular data remains an underexplored area. In

this context, this chapter investigates from three core perspectives: the robustness of LLMs to

structural perturbations in tables, the comparative analysis of textual and symbolic reasoning

on tables, and the potential of boosting model performance through the aggregation of multiple

reasoning pathways.

5.1 Introduction

Large Language Models (LLMs; Brown et al. 12, Chowdhery et al. 20, Zhang et al. 153,

OpenAI 91, 92, 94, Touvron et al. 124, 125) have revolutionized the field of NLP, demonstrating

an extraordinary ability to understand and reason over rich textual data [136, 130, 159, 64, 74].

On top of LLMs’ existing capabilities for NLP, further bolstering their potential for decision-

making by drawing from external knowledge sources remains an exciting research frontier [88,

86, 43, 57]. Amongst such knowledge sources, tabular data serve as a ubiquitous kind due to

their expressiveness for relations, properties and statistics, and their being easy to construct by

human curators.

Like humans, LLMs can also benefit from reading tabular data accompanying text.
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df['Position'].value_counts()

> KeyError: 'Position'

Year 1999 2000 … 2008 2012

Competition European Junior 
Championships

World Junior 
Championships

… Olympic Games European Championships

Venue Riga, Latvia Santiago, Chile … Beijing, China Helsinki, Finland
Position 4th 1st … 7th 18th (sf)

Event 400 m hurdles 400 m hurdles … 4x400 m relay 400 m hurdles
Notes 52.17 49.23 … 3:00.32 50.77

Marek Plawgo

Using Python Shell… 

Figure 5.1. A demonstration of the challenges faced by LLMs in comprehending and in-
terpreting table structures. In the first example , despite the LLM correctly identifying table
headings, it falters in accurately determining the headings’ positions within the table structure.
In the second example , the model using Python Shell as an external tool erroneously defaults to
interpreting headings (located in first column) as column headers, leading to subsequent mistakes
in the generated code. Some logos in this and subsequent figures are generated by OpenAI’s
DALL-E3 [93].

However, as indicated in Figure 5.1, the structural nature of tables presents unique challenges to

these models. Inherently designed to parse and process vast expanses of unstructured textual

content, LLMs confront a paradigm shift when facing tabular data. Linearizing tables to suit

the LLM paradigm can obscure the inherent structural and relational information, making tasks

such as precise localization and complex statistical analyses. Additionally, the design variations

in tables, whether ‘column tables’ with headers in the first row or ‘row tables’ with headers

in the first column, further complicate the interpretation process. Beyond structural concerns,

numerical reasoning and aggregation over tabular data present another layer of complexity.

While LLMs excel at textual understanding, they occasionally stumble when confronted with

tasks necessitating precise numerical computation within tables. Moreover, tables often present

a dense amalgamation of textual or numerical data. The sheer volume and intricacy of this

information can risk overshadowing crucial details, potentially impeding the LLM’s decision-
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Figure 5.2. Illustrative examples sampled from the WIKITABLEQUESTIONS dataset,
wherein a comparison is exhibited between textual reasoning via direct prompting and
symbolic reasoning through Python Shell interactions . Top: The table and its title. Bottom

Left: The first question example where textual reasoning erroneously interprets due to the
limitation of precision localization, while symbolic reasoning accurately locates the answer
with Python code. Bottom Right: The second question example where textual reasoning suc-
cessfully identifies the answer, but symbolic reasoning mistakenly treats the special row total

row as the final answer.

making abilities [113].

With the emergence of instruction fine-tuning techniques [134, 22] and the application of

Reinforcement Learning from Human Feedback (RLHF) [118, 35, 21], LLMs have witnessed

significant enhancements in their alignment capabilities, paving the way for transitioning from

few-shot to zero-shot learning settings [64]. In light of these advancements, this chapter delves

deep into the the challenges and intricacies of tabular understanding and reasoning by LLMs,

exemplified in Figure 5.2. We organize our exploration around three pivotal research questions:

(1) How well do LLMs perceive table structures and how can we ensure robustness against

structural variations? (2) Comparing textual and symbolic reasoning for table data in LLMs,

which prevails in effectiveness, and what advantages and challenges manifest in each strategy?

(3) Will the aggregation of multiple reasoning pathways enhance the accuracy and reliability of
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tabular data interpretation by LLMs?

In pursuit of answering the aforementioned research questions, we conduct experiments

on SOTA LLMs such as GPT-3.5 [92]. Our findings in Section 5.3 underscore that while

LLMs are adept at semantically interpreting tables, their capability to resist structural variance

(Section 5.3.1) and understand table structures (Section 5.3.2) is suboptimal. Motivated by

these findings, we propose a table structure normalization method to enhance LLMs’ resilience

against structural table variations in Section 5.3.3. Intriguingly, Section 5.4.1 reveals that

textual reasoning surpasses symbolic reasoning in contexts with limited table content, defying

conventional conceptions of symbolic reasoning’s dominance in other domains [86]. Both textual

and symbolic reasoning strategies encompass different advantages and challenges, which is

detailed in Section 5.4.2. To harness the unique strengths of each, we implement mix self-

consistency mechanism (Section 5.5) that remarkably attains SOTA performance on Table QA,

exemplifying the synergistic potential when both reasoning strategies are aggregated.

5.2 Preliminaries

This section succinctly introduces the foundational aspects of our study over structurally

perturbed tabular data. Section 5.2.1 formally defines the problem, delineating the critical

notations and conceptual frameworks, and Section 5.2.2 explicates our experimental setup

details, elucidating dataset choice, model utilization, and evaluation strategy.

5.2.1 Problem Definition

Question answering (QA) over tabular data, commonly known as the TableQA task, is

an important challenge in NLP. In this study, we targets TableQA to explore and enhance the

proficiency of LLMs, in reasoning over tabular data. Additionally, we probe the robustness and

adaptability of these models by introducing structural perturbations to tables.

Let T represent a table consisting of R rows and C columns, and τ represent its

title/caption. Each cell in T is denoted by Ti, j, where i ∈ [0,R−1] and j ∈ [0,C −1]. T0, j are
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headers. Given a question Q pertaining to the table, our task is to identify an answer A . This

answer is generally a collection of values, denoted as {a1,a2, . . . ,ak}, where k ∈ N+.

Furthermore, to delve deeper into the structural comprehension of LLMs, we introduce

structural perturbations, which include:1

1. Transposed Table (T ⊤): A table obtained by converting rows to columns and vice-versa,

maintaining the row and column order:

T ⊤
i, j = T j,i ∀i ∈ [0,R−1], j ∈ [0,C −1].

2. Row Shuffled Table (TΠ): A table obtained by randomly shuffling the rows (excluding

the headers) with a random permutation function π , while keeping the order of columns

unchanged:

TΠi, j = Tπ(i), j ∀i ∈ [1,R−1], j ∈ [0,C −1]

3. Row Shuffled and Transposed Table (T ⊤
Π

): A table obtained by first randomly shuffling

the rows (excluding headers) and then applying transposition:

T ⊤
Πi, j

= T j,π(i) ∀i ∈ [1,R−1], j ∈ [0,C −1]

Defining our research problem more formally: our primary objective is to investigate

the function, f , that can appropriately answer the posed question using the provided table.

Specifically, this function will take three arguments: the table variant T ′ ∈ {T ,T ⊤,TΠ,T
⊤

Π
},

its title τ , and the question Q. It will output an answer A . The entire problem can be formally

framed as:

f (T ′,τ,Q)→ A , ∀T ′ ∈ {T ,T ⊤,TΠ,T
⊤

Π }
1Column shuffling was not employed as the typical number of columns is limited and this shuffling had minimal

impact on accuracy [157].
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5.2.2 Experimental Setup

This section details the experimental setup adopted in our study, including the datasets

employed, model selection, evaluation metrics, reasoning methods, and other details.

Dataset. We used the WIKITABLEQUESTIONS (WTQ; [98]) dataset for our experiments.

The test set comprises 421 tables. Each table provides up to two question-answer pairs; if a table

has fewer than two, only one was chosen, totaling 837 unique data points. With our four table

configurations (original and three perturbations), the overall evaluation data points amount to

837×4 = 3,348.

Models. We employ the GPT-3.5 [92] series for our research. Given that tables usually

have extensive data, depending on the prompt length, we dynamically use gpt-3.5-turbo-0613

and gpt-3.5-turbo-16k-0613, with a primary aim to optimize cost when querying the API.

Evaluation Metrics. Following prior works [56, 89, 19, 145], we employ Exact Match

Accuracy as the evaluation metric to validate predictions against ground truths, embedding

instructions in prompts for consistent and parseable outputs.

Reasoning Methods. Our evaluation hinges on two distinct zero-shot reasoning ap-

proaches:

• Direct Prompting (DP) is a textual reasoning method that prompts LLMs to answer

questions in a zero-shot manner. Rather than directly providing the answer, LLMs are

instructed to reason step-by-step before concluding.

• Python Shell Agent (PyAgent) is a symbolic reasoning approach where the model

dynamically interacts with a Python shell. Specifically, LLMs use the Python Shell as an

external tool to execute commands, process data, and scrutinize results, particularly within

a pandas dataframe, limited to a maximum of five iterative steps.

Other Details. Depending on the scenario, we adjust the temperature setting. In cases

not employing self-consistency, we set it to 0. For scenarios involving self-consistency, the
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Table 5.1. Accuracy of GPT-3.5 under different table perturbations using Direct Prompting (DP)
and Python Shell Agent (PyAgent).

Perturbation DP PyAgent

Original (T ) 59.50 55.91

+Shuffle (TΠ)
52.21
-12.25%

47.91
-14.31%

+Transpose (T ⊤)
51.14
-14.05%

12.45
-77.73%

+Transpose&Shuffle (T ⊤
Π
)

37.51
-36.96%

8.96
-83.97%

temperature is set to 0.8. Importantly, it should be noted that all prompts are deployed in a

zero-shot manner, without any demonstrations or examples.

5.3 LLM Robustness to Structural Perturbations

This section explores how LLMs interpret varied table structures in response to our first

research question (Section 5.1). We probe the impact of three table perturbations on LLM perfor-

mance (Section 5.3.1), uncover LLMs’ challenges and limitations for direct table transposition

and recoganize tranposed tables (Section 5.3.2), and introduce a structure normalization strategy

(NORM) to mitigate these issues (Section 5.3.3).

5.3.1 Impacts of Table Perturbations on LLMs

In Section 5.2.1, we present three types of structural table perturbations: transposition

(T ⊤), row-shuffling (TΠ), and their combination (T ⊤
Π

). As demonstrated in Table 5.1, both

reasoning methods, DP and PyAgent, exhibit significant performance declines, with more

pronounced when transposition is applied. DP consistently outperforms PyAgent largely across

perturbations, indicating that textual reasoning tends to be more resilient to these structural

changes. This resilience can be attributed to LLMs’ ability to grasp semantic connections

and meanings irrespective of structural shifts. In contrast, symbolic reasoning, exemplified

by PyAgent, is heavily reliant on table structure, making it more vulnerable, especially to
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Table 5.2. Evaluation results of GPT-3.5 on the 421 distinct tables of WTQ dataset, including
three tasks: Transposer involving switching between original (T ) and transposed tables (T ⊤),
Detector for identifying need for table transposition (0 for no transposition, 1 for transposition
required), and Determinator to choose probable table headings either from the first row (T0,∗) or
the first column (T∗,0).

LLMs As Task Description Accuracy

Transposer
f (T )→ T ⊤ 53.68
f (T ⊤)→ T 51.07

Detector
f (T )→ 0 93.35
f (T ⊤)→ 1 32.54

Determinator
f (T ,T0,∗,T∗,0)→ T0,∗ 97.39
f (T ⊤,T0,∗,T∗,0)→ T∗,0 94.77

transposition.

5.3.2 Limitations of Table Transposition with LLMs

To better understand LLMs’ capabilities with regards to table structures, we investigate

their ability on detecting tables in need of transposition and performing table transposition.

LLMs as Transposition Detectors. Given a table T , the goal is to detect whether a

table should be transposed for better comprehension by LLMs. This is formulated as a binary

classification task:

f (T )→ 0, f (T ⊤)→ 1,

Where 0 denotes ‘no need of transposition’ and 1 indicates ‘transposition needed’. Table 5.2

shows the results. GPT-3.5 correctly classified 93.35% of original tables T as not requiring

transposition. However, its accuracy dramatically decreased to 32.54% on transposed tables T ⊤.

Our observations highlight that LLMs suffer from structural bias in the interpretation of table

orientations, predominantly leading to recommendations against transposition.

LLMs as Table Transposers. The objective is to switch between original and transposed

table formats. Specifically, the goal is to directly yield T ⊤ given T , and vice versa. Formally,
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the task is:

f (T )→ T ⊤, f (T ⊤)→ T

We observed that GPT-3.5’s proficiency in this task is limited, with an accuracy of 53.68%

transposing row tables and 51.07% for the inverse operation, suggesting that LLMs can not

transpose tables precisely.

5.3.3 Table Structure Normalization

In addressing structural variations in tables, our goal is to ensure consistent interpretation

and utility across diverse table structures. To normalize various table structures into well-ordered

row-tables prior to downstream tasks, we introduce NORM, which is a two-stage normalization

strategy: the first stage detects column-tables and transposing them into row-tables, while the

second stage sorts the row-tables for enhanced comprehensibility. Through this approach, NORM

accommodates for structural perturbations without compromising the understanding of the

standardized row-tables.

Content-Aware Transposition Determination In the straightforward methods men-

tioned in Section 5.3.2, LLMs are affected by the loss of structure information of the table. Our

approach aims to reduce this structural dependence by introducing a content-aware determination

process, which leverages the semantic reasoning capabilities of LLMs, instead of perceiving the

table’s structure. Specifically, we analyze the inherent content within the first row (T0,∗) and the

first column (T∗,0) of a given table (T ) to decide which is more semantically fitting to serve as

the table’s heading. This content-aware approach can be mathematically modeled as:


f (T ,T0,∗,T∗,0)→ T0,∗

f (T ⊤,T0,∗,T∗,0)→ T∗,0

Here, a selection of the first row suggests that the current table structure is preferred, whereas

opting for the first column signifies a need for transposition. Results in Table 5.2 highlight
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Table 5.3. Accuracy of GPT-3.5 under different table perturbations for Direct Prompting (DP)
and Python Shell Agent (PyAgent) with NORM applied.

Method T TΠ T ⊤ T ⊤
Π

DP 59.50 52.21 51.14 37.51

+NORM
58.66 58.66 58.30 57.71
-1.41% +12.35% +14.00% +53.85%

PyAgent 55.91 47.91 12.43 8.96

+NORM
56.87 57.11 55.44 55.08
+1.72% +19.20% +346.02% +514.73%

capability of GPT-3.5 in discerning table headings semantically, with accuracies of 97.39% and

94.77% respectively for original table and tranposed table.

Row Reordering. Upon transposition, our next objective is to ensure the logical co-

herence of the table data through reordering the rows. We instruct LLMs to suggest improved

reordering strategies.

Due to the subjective nature involved in identifying the most suitable order of a tabular

data, and given that there are no widely recognized standards for this process, the effectiveness of

the proposed sorting strategy will be evaluated based its downstream impact on the results of table

QA task. We notice that when the entire well-ordered table is exposed, GPT-3.5 occasionally

suggests alternative sorting strategies, leading to unnecessary complexity. To counteract this

tendency and ensure a better sorting proposal, we strategically present the model with only the

first three and the last three rows of the table. This selective exposure typically allows the model

to discern logical ordering patterns without being influenced by existing table configurations.

Table 5.3 underscores the efficacy of NORM when applied prior to the two reasoning

methods – DP and PyAgent. Demonstrably, NORM robustly mitigates structural perturbations,

optimizing table comprehensibility for LLMs. The results illustrate that applying NORM does

not detrimentally affect the original results (T ), and it effectively refines perturbated data,

aligning the outcomes closely with the original results, and in some instances, even showing

slight improvement. This suggests that NORM as a preprocessing step for preparing tabular data
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can enhance robust analysis by LLMs.

In addressing our initial research question, the analysis indicates that LLMs’ perfor-

mance is sensitive to table structural variations, with significant struggles observed in accu-

rately interpreting the same tabular content under transposition and shuffling. While textual

reasoning demonstrates some resilience to structural variations, symbolic reasoning is sig-

nificantly impacted, particularly with transposed tables. The NORM strategy effectively

navigates these challenges by eliminating dependency on table structures, providing consistent

interpretation across diverse table structures without compromising the integrity or meaning of

the original content.

5.4 Comparing Textual and Symbolic Reasoning

In this section, we delve into the comparison of textual and symbolic reasoning methods

in LLMs for tabular data understanding (Section 5.4.1), further conducting a detailed error

analysis (Section 5.4.2) to address the second research question (Section 5.1). We evaluate the

performance of each reasoning strategy using GPT-3.5, shedding light on their strengths and

challenges. In Section 5.3.3, we explored NORM to mitigate structural perturbations, enhancing

generalized LLM performance and successfully restoring perturbed tables to accuracy levels

similar to their original states. Therefore, subsequent analyses will exclusively consider the

original tables (T ).

5.4.1 Results

Table 5.4 showcases the performance of GPT-3.5 when employed for both direct textual

reasoning using DP and interactive symbolic reasoning using PyAgent. By instructing the model

with the CoT [136] reasoning strategy to think step by step, and then give the final answer,

we can achieve an accuracy of 58.66%. This surpasses the StructGPT’s Iterative Reading-

2For SC, results are derived by conducting an average over 100 shuffles to accommodate instances of ties during
majority voting. In the Mix-SC method, DP-derived answers are prioritized over PyAgent due to DP’s observed
superior performance. All experiments regarding SC follow this.

51



Table 5.4. Performance on the sampled WTQ dataset (T ). ⋆ denotes methods based on Codex,
while ♠ represents those based on GPT-3.5. The term SC refers to self-consistency.2 NORM

W/O RESORT means that reordering stage for NORM is not performed.

Method Accuracy (%)

Few-shot Prompting Methods
BINDER⋆ [19] 63.61
BINDER♠ [19] 55.07
DATER W/O SC⋆ [145] 61.75
DATER W/ SC⋆ [145] 68.99

Zero-shot Prompting Methods
STRUCTGPT♠ [55] 51.77
NORM+DP♠ 58.66
NORM+PYAGENT♠ 56.87
NORM+PYAGENT-OMITTED♠ 52.45
NORM+DP&PYAGENT W/ EVAL♠ 64.22
DP W/ SC♠ 66.39

+NORM♠ 64.10
+NORM W/O RESORT♠ 66.99

PYAGENT W/ SC♠ 61.39
+NORM♠ 63.77
+NORM W/O RESORT♠ 62.84

DP&PYAGENT W/ MIX-SC♠ 73.06
+NORM♠ 72.40
+NORM W/O RESORT♠ 73.65

then-Reasoning method, which concentrates reasoning tasks by continually collecting relevant

evidence. For tables with limited tokens, symbolic reasoning via PyAgent offers an accuracy of

56.87%, which is slightly behind the accuracy by DP in a single attempt. A distinct advantage

of symbolic reasoning is its ability to only present parts of the table in the prompt. As our

experiments revealed, after excluding the central rows and showcasing only the initial and final

three rows, we manage to maintain an accuracy of 52.45% with a 4.42% drop compared to

the full-table PyAgent results. This makes it possible to deal with larger tables with numerous

rows using LLMs with limited context window. In the following sections, we will present a

comprehensive analysis of the discrepancies and errors observed across these methods.
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Table 5.5. Error types of DP and PyAgent methods. †This does not imply that PyAgent does not
make table interpretation errors; these are included under coding errors to avoid overlapping.
Note that the percentages for each reasoning method might not sum up to 100%; the remaining
percentage points are attributable to other errors, such as problems with dataset labeling, which
are not categorized here.

Error Types DP PyAgent Description

Table Misinterpretation 42% -† LLMs incorrectly interpret the content in tables.

Coding Errors - 38%
LLMs produce inaccurate code, typically due to
issues with minor details.

Misalignment Issue 24% 28%
Outputs are conceptually correct but the answers
do not align with the instructions.

Logical Inconsistency 20% 10%
LLMs exhibit failures in reasoning, leading to
contradictions or inconsistencies.

Execution Issue - 12%
Issues emerge related to the execution of Python
code.

Resorting Issue 10% 8%
The resorting stage in NORM changes the an-
swers of some sequence-dependent questions.

5.4.2 Error Analysis

To elucidate the challenges and limitations of DP and PyAgent, this section presents an

in-depth error analysis by sampling 50 erroneous outputs for each. Table 5.5 summarizes the

predominant error types for DP and PyAgent methods. Table interpretation errors significantly

afflict the DP method, comprising 42% of its total errors, highlighting substantial challenges

for LLMs in accurately interpreting table data. PyAgent primarily struggles with coding errors,

constituting 38% of its total errors. These errors either originate from misunderstandings of

table content, often overlooking subtle details, or manifest as inherent deficiencies in coding

capabilities. These prevalent errors underscore the intrinsic challenges and limitations each

method faces in the reasoning process.

In response to the second research question, the analysis indicates DP marginally

surpasses PyAgent within single attempts. Despite this, PyAgent can handle larger tables

by processing partial table views. Notably, DP encounters difficulties in accurate table
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interpretation, while PyAgent reveals instability in coding capabilities.

5.5 Reasoning Aggregation

This section examines how combining multiple reasoning pathways can boost LLMs’

accuracy in interpreting tabular data, which is in response to the third research question (Sec-

tion 5.1).

5.5.1 Methods

Self-Consistency. Previous work has highlighted the advantages of generating mul-

tiple outputs from LLMs and adopting the most frequent answer, a mechanism known as

self-consistency (SC; [130]). Table 5.4 showcases the notable improvements realized through

self-consistency (aggregating 10 outputs), with DP achieving an accuracy of 64.84% and PyAgent

attaining 63.49%.

Self-Evaluation. Based on our error analysis in Section 5.4.2, different reasoning

methods excel at specific tasks. For instance, symbolic reasoning tends to outperform textual

reasoning in counting and column localization tasks. To optimize the choice between these

methods, we strategically prompt the LLMs, which avoids directly validating answers against

tables but guides the LLM to choose between the two reasoning approaches based on the

question’s nature and each answer’s clarity. By weighing the problem against the known

strengths and weaknesses of each reasoning strategy, this tactic mitigates potential bias towards

textual reasoning by LLMs and enhances answer accuracy. As evidenced by Table 5.4, using

self-evaluation boosts accuracy to 64.99%. Impressively, this method, using only two reasoning

paths, matches the performance of using 10 paths of DP or PyAgent independently.

Mix Self-Consistency. According to Section 5.4.1, symbolic and textual reasoning

exhibit distinct focuses but deliver similar performance. Consequently, we introduce Mix Self-

Consistency, a method that selects a predetermined number of outputs for each type of inference,

aiming for self-consistency. This approach hinges on the idea that multiple outputs can reflect the
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confidence levels of LLMs in answer generation. In scenarios where LLMs are less proficient,

they tend to produce a diverse set of answers. Conversely, for tasks that LLMs handle adeptly,

consistent answers are often generated across multiple reasoning attempts, converging towards

one answer. Such convergence allows for the aggregation of model outputs that align with

areas where LLMs exhibit stronger reasoning capabilities, thereby substantially improving

accuracy. The detailed mechanics of how this approach is operationalized within the framework

of Mix Self-Consistency, including the aggregation and interpretation of these outputs. Table 5.4

demonstrates that using mix self-consistency (generating 5 outputs per inference type,3 totaling

10) enhances performance substantially, achieving an impressive accuracy of 72.40%, which

achieves SOTA performance on the sampled WTQ data.

5.5.2 Overall Evaluation

To evaluate our method thoroughly, we conduct a comprehensive pass of testing using the

complete WTQ test set, integrating both NORM and Mix self-consistency mechanisms. Since

re-sorting may change the answers of row index-related questions, we perform NORM without

resorting in this evaluation.4 However, it is noteworthy that re-sorting can be advantageous for

questions not dependent on row indexes, particularly when dealing with tables that are initially

unorganized or messy.

As illustrated in Table 5.6, our proposed method exhibits outstanding efficacy with an

accuracy of 73.6%, significantly outperforming existing models to achieve SOTA performance

on the complete WTQ test set. Importantly, our approach is conducted in a fully zero-shot

manner. For a detailed analysis of how table size impacts method performance, see Section 5.6.

In response to the third research question, our findings reveal that reasoning path
3The choice of generating 5 outputs per inference type (5+5) is a hyperparameter selection influenced by the

dataset’s distribution. We conducted an ablation study regarding this in Secrion 5.7.1. We use an equal split (5+5)
based on observed comparable performance between the two reasoning strategies.

4Originally, the NORM process included a re-sorting step to counteract the row-shuffling perturbation. How-
ever, re-sorting may inadvertently alter answers reliant on the initial sequence, as explored in the error analysis
(Section 5.4.2).
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Table 5.6. Comparison of various methods on all test data of WTQ. ⋆ denotes methods based
on the GPT-3.5 [92]; ♠ denotes methods based on the Codex [91].

Method Accuracy (%)

Fine-tuning Based Models
TAPAS [47] 48.8
T5-3B [140] 49.3
TAPAX [80] 57.5
REASTAP [156] 58.7
OMNITAB [56] 63.3

LLMs Based Methods
STRUCTGPT⋆ [55] 48.4
BINDER⋆ [19] 55.5
BINDER♠ [19] 64.6
LEVER♠ [89] 65.8
DATER♠ [145] 65.9

Ours⋆ 73.6

aggregation significantly enhances LLMs’ accuracy in table reasoning tasks. Notably,

the Mix Self-Consistency method achieves an accuracy of 73.6% on the WTQ dataset,

surpassing the previous SOTA by a considerable margin. The Self-Evaluation strategy also

contributes to this remarkable performance by adeptly selecting between reasoning approaches.

5.6 Additional Results on impact of Table Size on WTQ
Performance

This section presents an analysis of the impact of table size (quantified by row numbers)

on the performance of different methods when applied to the WikiTableQuestions benchmark.

Specifically, we examine how the average accuracy of DP, PyAgent, and the combination by

applying mix self-consistency is affected by the number of rows in a table.

To systematically evaluate the impact, we segmented the row numbers into 10 ranges,

each containing approximately 430 data points, and calculated the average accuracy within these

intervals. Figure 5.3 visualizes the average accuracy across these ranges for each method. It
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Figure 5.3. The impact of table size on the accuracy of DP, PyAgent, and Mix-SC on the all
the test set of WIKITABLEQUESTIONS. The x-axis represents the row number ranges, and the
y-axis shows the average accuracy for each method.

is evident that there is a shared trend of diminishing accuracy as the number of rows increases.

This observation suggests that all methods are subject to decreased efficacy in the context of long

tables.

The decline in performance with larger tables can be attributed to the complexity of

handling long-context data and the abundance of potentially interfering information. This

complexity often results in an increased error rate. The insights gained from this analysis point

towards a need for the development of better symbolic methods for handling long tables, which

might be capable of effectively narrowing down the scope of larger tables, either by selective

attention to relevant segments or by intelligently summarizing the data, to mitigate the challenges

posed by long-context information.

5.7 Additional Analysis of Mix Self-Consistency

5.7.1 Ablation Study of Output Selection

This section presents an ablation study conducted to elucidate the effect of various

combinations of DP and PyAgent outputs on the performance of the Mix Self-Consistency

method. For this experiment, we systematically explored different combinations while keeping

the total output count constant at ten. Each combination was tested 100 times through random
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Figure 5.4. Accuracy results for the Mix Self-Consistency method applied to the sampled WTQ
dataset, with varying combinations of DP and PyAgent outputs (depicted as DP vs. PyAgent on
the x-axis). The combinations range from 10 DP vs. 0 PyAgent to 0 DP vs. 10 PyAgent. Each
data point represents the maximum, minimum, and average accuracies obtained from 100 tests
per combination, conducted using random sampling. Note that for the 10 DP vs. 0 PyAgent and
0 DP vs. 10 PyAgent combinations, there is no random sampling of paths. However, variance is
observed due to the presence of multiple equally probable answer sets generated by the 10 paths,
leading to different possible selections of answers even without sampling, thereby introducing
randomness into the results.

shuffling. For each test, maximum, minimum, and average accuracies were recorded.

Figure 5.4 shows the results of the ablation study. The 5+5 combination (5 DP + 5

PyAgent) consistently gives the highest minimum and average accuracies among all tested

combinations, making it a robust and reliable choice for this task. The 4+6 combination (4 DP +

6 PyAgent) secured the highest maximum accuracy in our tests.

Through this ablation study, we aim to provide insights into how different output selec-

tions influence the effectiveness of the Mix Self-Consistency method. Importantly, the choice of

output combination should be considered as a hyperparameter that is intimately related to the

distribution of the dataset being used. Given that different reasoning strategies exhibit unique
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Figure 5.5. An illustration of Mix Self-Consistency by aggreagting outputs from multiple
reasoning methods to form a unified, high-confidence prediction..

strengths and weaknesses, it is crucial to tailor the output combination to align with the charac-

teristics of the specific tasks and datasets in question, thereby maximizing the performance of

the Mix Self-Consistency method.

5.7.2 Mechanics of Mix Self-Consistency in Output Selection

The effectiveness of the Mix Self-Consistency method in achieving high accuracy largely

stems from its ability to harness the strengths of different reasoning methods. Intuitively, the

multiple outputs from certain reasoning method can be interpreted as the confidence score for

the generated answers. In scenarios where a method excels, its outputs often tend to converge

towards a common answer, signifying higher confidence and reliability. In contrast, a method

less suited to the problem at hand tends to produce more diverse results, indicative of a lower

level of confidence. By aggregating these outputs from different methods and applying majority

voting, the Mix Self-Consistency method refines these variations into a more accurate prediction.

As shown in Figure 5.5, This process leverages the strengths of the employed reasoning methods,

thereby enhancing overall performance.
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Chapter 6

Related Work

6.1 Related Work for ToolkenGPT

Fine-tuning LLMs to use tools. Early research relied heavily on fine-tuning to augment

LMs with tools. In these works, LMs were mostly fine-tuned to use one or a few tools in a

specific domain. For example, the retriever has been a crucial tool for augmenting LLMs with

external knowledge sources [147]. The prominent works in this line include REALM [42],

RAG [67], and RETRO [11]. More recently, WebGPT [87] fine-tuned GPT-3 on human web

search behaviors to learn how to use the web browser. With the advancements in LLMs, there has

also been growing interest in tuning these models on a collection of general tools, including the

QA model, calculator, translator, etc. Example works include TALM [97] and Toolformer [111].

However, LLM fine-tuning is costly and these tuned LLMs struggle to generalize to emergent or

updated tools. ToolkenGPT learns lightweight toolken embeddings for new tools, without any

gradient calculation for the parameters of LLMs. This enables efficient adaption to new tools and

maintains a minimal GPU memory overhead for training toolken embeddings, at a cost similar

to LLM inference.

In-context learning for tools. LLMs exhibit a strong in-context learning ability [12],

which becomes a prevalent method to use tools by showing tool descriptions and demonstrations

in context [86, 102]. Building on this idea, reasoning chains can be incorporated to tackle more

complex problems [144, 61, 96]. This paradigm has given rise to popular industry products such
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as ChatGPT plugins and Langchain [15], along with many successful applications in important

research topics. For instance, a code interpreter can effectively address the LLM’s shortcomings

in symbolic operations [18, 36, 45, 85, 141, 76]. Furthermore, by calling ”tools” that have

an effect on the virtual or physical world, the LLM is capable of guiding embodied agents to

accomplish various household tasks [51, 1, 52, 117, 53]. Recent attempts to utilize LLMs as a

controller to coordinate multiple neural models also achieve promising progress in multimodal

reasoning tasks [112, 83]. Nevertheless, all methods based on in-context learning suffer from

inferior performance in complex scenarios, where the tools are unfamiliar or numerous. One

concurrent work, Li et al. [70] propose to retrieve the tools based on the text embedding of their

documents, which may mitigate that issue. However, ToolkenGPT is fundamentally different

from their method, in that the toolken embeddings can encode the implicit semantics of tools

from extensive demonstrations, which can never be inferred from the surface text (A concrete

example is shown in Figure 3.3). Also, note that ToolkenGPT is compatible with the recent

advanced prompting techniques, e.g., Chain-of-Thought (CoT) [135], to improve the LLMs

performance further.

Efficient tuning of large language models. Adapting pre-trained frozen LLMs effi-

ciently to new tasks is an active research area, leading to a surge of interest in parameter-efficient

fine-tuning (PEFT) methods [60, 73, 25, 81, 79]. The idea is to only fine-tune a small subset

of parameters of the LLM while freezing most of its parameters, which bears similarity to our

toolken embedding method. Which part of parameters to tune is the key to PEFT methods; for

instance, Adapters [49] insert trainable layers, BitFit [149] tunes the bias parameters, prompt

tuning [66, 133] appends parameters to the input embedding layer, and LoRA [50] learns low-

rank matrices within specific dense layers, etc. However, existing PEFT methods have not

proven suitable for efficient tool learning, and utilizing these methods on tool demonstrations

may not efficiently capture the desired tool knowledge as ToolkenGPT does. To the best of our

knowledge, we are the first to explore efficient tuning methods for predicting tools as tokens for

tool learning of massive tools.
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6.2 Related Work for RepoBench

LLMs for Code Completion Code completion, also referred to as auto-completion

or intelligent code completion, is an essential feature provided by many modern Integrated

Development Environments (IDEs) and code editors. It aids programmers in writing code more

efficiently by predicting and automatically completing the next line or multiple next lines. The

inception of Language Models (LMs) in code completion can be traced back to the usage of

n-gram based LMs [126, 48], RNN models [138], and probabilistic grammar-models [9, 106, 46],

which laid the foundation for the subsequent introduction of more advanced LMs in this field.

With the advent of transformer-based models [128, 24, 103, 104, 12], decoder-only models

trained on large-scale code datasets have been proposed to foster the advancements in code

completion. For instance, GPT-C [120] and CodeGPT [84] following the underlying architecture

of GPT-style models are pre-trained on vast amounts of code. UniXCoder [39] and CugLM [77]

incorporates multi-task learning strategies, and leverages code structures to enhance pretraining.

More recent LLMs, including Codex [16], PolyCoder [142], CodeGen [90], In-Coder [33],

CodeGeeX [158], SantaCoder [3], StarCoder [71, 82], LongCoder [40], CodeLlama [110] and

DeepSeekCoder [41] employ billions of parameters and excel in code generation tasks, benefiting

from large-scale, high-quality code corpora. The scope of code completion has expanded with

works like RLPG [114], CoCoMIC [26], and RepoCoder [152], emphasizing the integration

of in-file and cross-file contexts and the importance of specialized benchmarks for evaluating

repository-level code autocompletion systems.

Code Completion Datasets The task of code completion serves as a foundation for

programming language models and plays a pivotal role in intelligent code completion systems.

While public benchmarks like CodeXGLUE [84] with datasets PY150 [105] and Github Java

Corpus [4] play a key role in evaluating models within single-file contexts, they may not fully

encapsulate the intricacies of real-world coding projects which often entail cross-file interactions.

To address this, Ding et al. [26] proposed CoCoMIC, a model for cross-file completion and a
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code completion dataset with retrieved cross-file context. Different from the CoCoMIC data, our

benchmark extends beyond code completion and includes evaluation of retrieval and pipeline

construction, thus can better capture the complexity of such cross-file code completion systems.

RepoEval by Zhang et al. [152] serves as a project-oriented benchmark, focusing on 16 selected

Python repositories to simulate real-world coding environments. However, its limitation arises

from being integrated into the training data of StarCoder. RepoBench not only spans a wider

range of repositories across Python and Java, but also offers a segmented evaluation into retrieval,

completion, and end-to-end tasks.

Transitioning from file-based to repository-level code completion not only offers a more

realistic representation of practical coding scenarios but also serves as a platform for evaluating

the transfer learning capabilities of language models, as most models are not initially pre-

trained with cross-file contexts included. This shift also introduces the challenge of handling

longer prompts, a situation less common in single-file contexts, and a known limitation of many

Transformer-based models. Recent research on long-range transformers [148] has shown promise

in handling long sequences, with notable contributions from initial works like LongFormer [7]

and Reformer [62], as well as more recent advancements like CoLT5 [2], UnlimiFormer [8],

and Claude-100k [99], which has demonstrated their potential in effectively processing and

generating code with much more cross-file context included.

6.3 Related Work for Tabular Data Reasoning

PLMs for Tabular Data Processing. Tabular reasoning presents unique challenges

due to the fusion of free-form natural language questions with structured or semi-structured

tabular data, for which PLMs jointly trained on tables and text are developed in the past few

years, including TaBERT [146], TaPas [47], TAPEX [80], ReasTAP [156], and PASTA [38]. The

recent development of TableLlama [154], an open-source model excelling in a variety of table-

based tasks, adds a new dimension to the field. Despite these advancements, recent studies have
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identified generalization issues under table perturbations [157, 14], raising concerns regarding the

robustness of PLMs. Specific efforts like LETA [157] and LATTICE [129] have investigated and

mitigated the vulnerabilities related to structural perturbations of tabular data, like row/column

shuffling and table transpose, through various techniques, including data augmentation and order-

invariant graph attention. However, these approaches require whitebox access to the models,

limiting their applicability to SOTA LLMs with only blackbox accessibility, a limitation directly

addressed in this work.

Tabular Data Processing with LLMs. Recent advancements in LLMs, notably within

few-shot learning, have demonstrated their potential for tabular reasoning. Chen [17] leveraged

the Chain-of-Thought (CoT) technique [136] to illustrate LLMs’ effectiveness in this domain.

Building upon CoT, Cheng et al. [19] and Ye et al. [145] introduced frameworks that incorporate

symbolic reasoning for improved comprehension, with Ye et al. emphasizing their ability to

adeptly decompose both evidence and questions. The advent of aligned models, such as Chat-

GPT, has enabled zero-shot table reasoning. However, these models often lack sensitivity to

table structures, struggling with structural perturbations. StructGPT [55], while introducing a

promising framework for LLMs to efficiently engage with structured data, has its effectiveness

limited by not integrating symbolic reasoning, a critical aspect for enhancing the full capabil-

ities of LLMs in tabular reasoning, which is the focal point of this study. Furthermore, while

programming-based approaches can mitigate some challenges, they are limited in addressing

free-form queries, creating a gap in the landscape. Innovations like AutoGPT [116] have sought

to address this, spawning the development of tabular agents like LangChain [15], SheetCopi-

lot [69], and DataCopilot [155]. These agents offer solutions unattainable through conventional

programming but still require rigorous evaluation in various scenarios. In our study, we delve

into addressing these challenges for enhancing LLMs’ reasoning capabilities within structural

perturbations, hence providing insights that facilitate improved accuracy in the current context.

Chapter 3 and 6, in part, is a reprint of the material as it appears in “ToolkenGPT: Aug-

menting Frozen Language Models with Massive Tools via Tool Embeddings.” by Shibo Hao,
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Tianyang Liu, Zhen Wang and Zhiting Hu, which was published at Conference on Neural Infor-

mation Processing Systems (NeurIPS), 2023. This thesis author was the co-primary investigator

and author of this paper.

Chapter 4 and 6, in part, is a reprint of the material as it appears in “RepoBench:

Benchmarking Repository-Level Code Auto-Completion Systems.” by Tianyang Liu, Canwen

Xu and Julian McAuley, which was published at The International Conference on Learning

Representations (ICLR), 2024. This thesis author was the primary investigator and author of this

paper.

Chapter 5 and 6, in part,is a reprint of the material as it appears in “Rethinking Tabular

Data Understanding with Large Language Models.” by Tianyang Liu, Fei Wang and Muhao

Chen, which was published at North American Chapter of the Association for Computational

Linguistics (NAACL), 2024. This thesis author was the primary investigator and author of this

paper.
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Chapter 7

Conclusion and Future Work

In summary, this thesis encompasses three works, focusing on augmenting and evaluating

LLMs in the realm of NLP. The first work introduces ToolkenGPT, a novel method for integrating

external tools into LLMs to enrich their functionality and adaptability. The second work presents

RepoBench, a benchmark designed to assess the proficiency of LLMs in handling repository-level

code auto-completion tasks. The third work delves into the challenges and intricacies of tabular

data understanding and reasoning by LLMs, exploring how they interpret varied table structures

and the effectiveness of textual versus symbolic reasoning. Together, these works contribute

to a deeper understanding of LLM capabilities and limitations, while proposing innovative

approaches to augment their utility in complex tasks.

Looking ahead, I have following questions regarding the future work:

1. How Can We Rethink Benchmark Evaluation for More Authentic Insights? As we

strive to understand the true capabilities of Large Language Models (LLMs), the question

arises: Are our current benchmarks truly reflective of real-world user experiences? The

current benchmarks, while informative, may focus on aspects that are easier to measure

but not entirely representative of real-world user experiences. This can lead to a skewed

perception of model performance. Future efforts should aim to develop benchmarks that

better capture long-form generation and long-context generation tasks, providing a more

holistic view of LLM capabilities.
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2. What Strategies Can Maximize Learning from High-Quality Data? The cornerstone

of any high-performance model is the quality of its training data. The challenge lies in

not just collecting vast amounts of information, but in ensuring the relevance, diversity,

and accuracy of the data. This involves sophisticated data collection strategies, rigorous

deduplication processes, and thorough cleaning procedures to eliminate noise and irrelevant

information. Future research should delve into innovative methods for data curation that

prioritize these aspects, enhancing the model’s ability to learn efficiently and effectively

from the best possible data sources.

3. Can We Achieve Superior Model Performance with Smaller Sizes? In an era where

bigger often equates to better in the realm of LLMs, the challenge ahead lies in defying

this norm by pioneering “anti-scaling” techniques. The objective is to cultivate models

that maintain, or even surpass, the efficacy of their larger counterparts while being more

compact and versatile. This approach promises to democratize access to cutting-edge

LLMs, enabling a wider range of applications and users to harness the power of advanced

AI without prohibitive resource requirements.

4. What New Frontiers Await LLM Applications? The potential applications for LLMs

are expanding rapidly, opening doors to unexplored territories. From revolutionizing

healthcare diagnostics and personalized education to innovating in creative industries, the

possibilities are vast. Future endeavors should be bold, venturing into new areas where

LLMs can provide significant value, and exploring innovative use cases that could redefine

industries.
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Riedel, and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp
tasks, 2021.

[69] Hongxin Li, Jingran Su, Yuntao Chen, Qing Li, and Zhaoxiang Zhang. Sheetcopilot:
Bringing software productivity to the next level through large language models, 2023.

[70] Minghao Li, Feifan Song, Bowen Yu, Haiyang Yu, Zhoujun Li, Fei Huang, and Yongbin
Li. Api-bank: A benchmark for tool-augmented llms. arXiv preprint arXiv:2304.08244,
2023.

[71] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii
Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade,
Armel Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin,
Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp Patel,
Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Nour Fahmy, Urvashi
Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas, Maxim
Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire
Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer
Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy,
Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes,
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