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Cost-effective methylome sequencing of cell-
free DNA for accurately detecting and locat-
ing cancer

Mary L. Stackpole 1,2,17, Weihua Zeng1,17, Shuo Li 1,2,17, Chun-Chi Liu2,
Yonggang Zhou1, Shanshan He1, Angela Yeh1, Ziye Wang1, Fengzhu Sun 3,
Qingjiao Li 4, Zuyang Yuan1, Asli Yildirim5, Pin-Jung Chen6, Paul Winograd6,
Benjamin Tran6, Yi-Te Lee 7, Paul Shize Li8, Zorawar Noor9, Megumi Yokomizo10,
Preeti Ahuja10,11, Yazhen Zhu 7,11, Hsian-Rong Tseng 7,11,
James S. Tomlinson6,9,11,12, Edward Garon 9,11, Samuel French 1,11,
Clara E. Magyar1,11, Sarah Dry1,11, Clara Lajonchere11,13, Daniel Geschwind 13,
Gina Choi9, Sammy Saab9, Frank Alber5,14, Wing Hung Wong 15,16,
Steven M. Dubinett1,7,9,11,12, Denise R. Aberle10,11, Vatche Agopian 6,11 ,
Steven-Huy B. Han 9 , Xiaohui Ni 2 , Wenyuan Li 1 &
Xianghong Jasmine Zhou 1,11,14

Early cancer detection by cell-free DNA faces multiple challenges: low fraction
of tumor cell-free DNA, molecular heterogeneity of cancer, and sample sizes
that are not sufficient to reflect diversepatient populations.Here,wedevelop a
cancer detection approach to address these challenges. It consists of an assay,
cfMethyl-Seq, for cost-effective sequencing of the cell-free DNA methylome
(with > 12-fold enrichment over whole genome bisulfite sequencing in CpG
islands), and a computational method to extract methylation information and
diagnose patients. Applying our approach to 408 colon, liver, lung, and sto-
mach cancer patients and controls, at 97.9% specificity we achieve 80.7% and
74.5% sensitivity in detecting all-stage and early-stage cancer, and 89.1% and
85.0% accuracy for locating tissue-of-origin of all-stage and early-stage cancer,
respectively. Our approach cost-effectively retains methylome profiles of
cancer abnormalities, allowing us to learn new features and expand to other
cancer types as training cohorts grow.

Detecting cancer beforemetastasis is the key tofighting it successfully.
Recently, cell-free DNA (cfDNA) has drawn attention for its utility in
early cancer detection1–3. Specifically, cfDNA methylation has been
shown to be a highly promising feature, capable of not just detecting
cancer but also locating its Tissue ofOrigin (TOO)2,4–10. Despite its great
promise, cfDNA-based cancer detection faces some major challenges:
(1) the fraction of tumor cfDNA in the blood of early-stage cancer
patients can be very low, (2) the signatures of cfDNA aberrations from

diverse cancer types, subtypes, stages and etiologies are hetero-
geneous; and (3) the currently available sample sizes are small com-
pared to the diversity of diseases and the patient population (age,
gender, ethnicity, and comorbidity), especially for pan-cancer
detection.

To address the challenge of a very low tumor fraction in cfDNA, a
methylome test can exploit as many cfDNA fragments in the blood as
possible, while traditional small-panel, deep-sequencing approaches
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only capture a small proportion of all tumor cfDNA fragments, likely
resulting in false negatives. To address the molecular heterogeneity of
cancer, a methylome-based test can cover the broad landscape of
methylation markers of different cancer types and etiologies. To
address the challenge of limited sample sizes currently available, a
methylome-based test can learn and exploit newly significant markers
as the training cohort grows, while for small panel-based approaches
the same set of markers are measured in all new patient samples, and
no new markers can be discovered and validated. Despite the advan-
tages offered by cfDNA methylome analysis, the commonly used
whole-genome bisulfite sequencing (WGBS) is too expensive to be
used in clinical applications.

Here, we present an integrated experimental and computational
system for the accurate and affordable detection of cancer. It consists
of (1) a cost-effective experimental assay, named cell-free DNA
Methylome Sequencing (cfMethyl-Seq), for genome-wide methylation
profiling of cfDNA, and (2) a computational method to extract four
types of cfDNA methylation features (cancer-specific and tissue-
specific hypermethylation and hypomethylation markers), and per-
form ensemble learning for detecting and locating cancer. Our
experimental approach cfMethyl-Seq performs methylation profiling
of CpG-rich regions, which occupy only ~3% of the whole genome.
Therefore, cfMethyl-Seq is dramatically cheaper thanWGBS, while still
capturing most (>90%) CpG islands. To fully characterize the cfDNA
methylome from cfMethyl-Seq data, we identify four types of methy-
lation features, cancer(tissue)-specific hyper(hypo)methylation fea-
tures, which are then integrated via an ensemble learning model. We
apply cfMethyl-Seq to cfDNA samples of 408 individuals, including 217
patients with colon, liver, lung or stomach cancer, and 191 individuals
without cancer (including patients with various other diseases). 54% of
the cancer patients are in early stages (I and II), and in particular 73% of
liver cancer patients are in Stage I. We demonstrate the performance
on two tasks: (1) Detecting cancer: we achieve an overall AUC of 0.974
(95% CI: 0.926 to 0.998), with the overall sensitivity of 80.7% (95% CI:
68.6% to 90.7%) at the specificity of 97.9%. The sensitivities of the
individual cancer types range from 75.9% to 92.3%. (2) Locating cancer:
the prediction of the tumor’s TOO yields an accuracy of 89.1% (95% CI:
73.9% to 96.9%). We perform extensive validations, e.g. cross-batch
validation, cross-source validation, age-matched validation, and inde-
pendent validation, to confirm the robustness of our results. In this
work, we develop a cost-effective cfDNA methylome sequencing
method, cfMethyl-Seq, and demonstrate its power in detecting and
locating cancer. Our results show that among individual methylation
features, cancer-specific hypermethylation exhibits the highest power
in detecting cancer while cancer-specific hypomethylation is most
informative for TOO prediction. Encouragingly, we demonstrate that
with increasing sample sizes, the detection power of our system con-
tinues to improve.

Results
Cost-effective cell-free DNA methylome sequencing (cfMe-
thyl-Seq)
We developed the cfMethyl-Seq technique to address the challenge of
cost-effectively profiling genome-wide methylation in cfDNA. Note
that the traditional method, reduced representation bisulfite sequen-
cing (RRBS), can also enrich CpG-rich regions—but only from intact
genomic DNA, not from cfDNA. RRBS employs restriction enzymes to
cut intact DNA into small fragments in regions with high CpG content,
then size-selects these fragments to enrich for CpG-dense regions.
Because cfDNA is already fragmented, the size selection step of RRBS
will select nearly all cfDNA and fail to enrich the CpG-dense regions.

In the cfMethyl-Seq process, as shown in Fig. 1a, we first block
both ends of all cfDNA fragments by dephosphorylating their 5’-ends
and adding ddNTP to their 3’-ends. After digestion with the restriction
enzyme MspI (cut site C | CGG), only those cfDNA fragments with two

ormore CCGGsiteswill be able to ligate to adapters. Sequencing these
fragments results in a library that is highly enriched in CpG sites. Note
that our adapters contain duplex unique molecular identifiers (UMIs).
This is necessary because enzymatic digestion causes many fragments
to map to the same start and end locations, creating challenges for
conventional PCR deduplication11.

The cfMethyl-Seq libraries built on cfDNA show characteristic
bands, with insert lengths of 68 bp, 135 bp, and 203 bp (Fig. 1b and
Supplementary Fig. S1). This structure is a result of MspI digestion of
Alu repeat elements. These bands are positioned similarly to those
seen in conventional RRBS libraries prepared fromsolid tissue (Fig. 1b).
However, the strongest band in conventional RRBS libraries prepared
from cfDNA (Fig. 1b) is located around 167 bp: the characteristic size of
full-length cfDNA fragments without MspI digestion. This confirms
that size selection in RRBS on cfDNA fails to achieve the desired
enrichment of CpG-dense fragments.

We compared our cfMethyl-Seq libraries to cfDNAWGBS libraries,
as well as to the conventional RRBS protocol performed on solid tis-
sues. On average, 85.7% of reads in 408 cfMethyl-Seq libraries have
MspI cutting sites on both ends, compared to 91.8% of reads in the 251
RRBS libraries and only 0.00006% of reads in 37 WGBS libraries of
cfDNA (Fig. 1c). Consequently, 34.11%, 12.38%, and 13.14% of cfMethyl-
Seq reads come from CpG island, shore, and shelf regions, compared
to 33.65%, 13.35%, and 14.04%of conventional RRBS reads, respectively
(Fig. 1d). As for the WGBS cfDNA libraries, only 2.66% of reads come
from CpG islands but most (88.32%) come from uninformative “open
sea” regions (Fig. 1d). That is, cfMethyl-Seq offers a 12.8× enrichment
over WGBS in CpG islands. Comparisons between traditional RRBS
libraries on solid tissue and cfMethyl-Seq libraries on the same tissue’s
sheared gDNA show that cfMethyl-Seq can obtain similar methylation
levels, with correlation significantly increasing as coverage increases
up to 10x (Fig. 1e). For CpG sites with more than 10x coverage, the
Pearson correlation between methylation levels in cfMethyl-Seq on
sheared gDNA and RRBS on intact gDNA is 0.987 (P value <2.2e-16) for
the same sample. In replicate samples, the Pearson correlation of
depth of coverage is >0.98 (P value <2.2e-16) and the Pearson corre-
lation of methylation levels for CpG sites withmore than 10x coverage
is >0.99 (P value <2.2e-16).

Discovery of methylation markers for cancer detection and
tissue-of-origin prediction
We generated RRBS data for 328 solid tissues for marker discovery,
including 131 pairs of solid tumors and their adjacent normal tissues,
for colon (19 pairs), liver (53 pairs), lung (44 pairs), and stomach (15
pairs) cancer (see Fig. 2a for the overall study design, and Fig. 2b for
detailed sample usage for marker discovery). The unit regions of our
methylation markers are defined to be genomic locations that are
between twoadjacentMspI cutting sites (i.e., between twoCCGG sites)
and that are less than 350 bp (the average region size is 117 bp). Using
our read-based marker discovery method (see Methods and Supple-
mentary Information S1–S3), we identified cancer-specificmarkers that
significantly differ between solid tumors and their adjacent normal
tissues. In addition, we required the cancer-specific markers to have
differential methylation between solid tumors and the cfDNA of 30
reference noncancer individuals. The 30 reference noncancer indivi-
duals were randomly drawn in each validation run, resulting in slightly
different cancer-specific markers across runs. In each run, we merged
the identified markers from all cancer types, and across 10 runs we
obtained an average of 23,748 cancer-specific hypermethylation mar-
kers (Supplementary Table S1) and 28,197 cancer-specific hypo-
methylation markers for cancer detection (Supplementary Table S2).
Moreover, for TOO prediction we identified the markers that sig-
nificantly differ between any two solid tumor types as well as between
solid tumors and the 30 referencenoncancer plasma samples, by using
RRBS data of 134 solid tumors for colon (20), liver (53), lung (46), and
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stomach (15) cancer. Similarly, in each run, we merged the identified
markers from all pairwise comparisons, and across 10 runs we
obtained on average 30,474 cancer-specific hypermethylation (Sup-
plementary Table S3) and 33,890 cancer-specific hypomethylation
markers (Supplementary Table S4) for cancer TOO prediction. These
markers are referred to as cancer-specific methylation markers for
cancer TOO prediction.

Since organs that contain tumors undergo increased cell death
and therefore yield an elevated quantity of cfDNA12–14, tissue-specific
cfDNA deconvolution can aid in both detecting cancer and predicting
its TOO. Using RRBS data of 194 solid normal tissues (28 colon tissues,
72 liver tissues, 68 lung tissues, and 26 stomach tissues (Fig. 2b)), we
identified markers that significantly differ between any two types of
solid normal tissues, and merged the identified markers from every
two tissue types, resulting in 7547 tissue-specific hypermethylation
(Supplementary Table S5) and 7212 tissue-specific hypomethylation
markers (Supplementary Table S6) that candifferentiate betweenpairs
of tissue types.

To demonstrate the differential patterns of identified markers
between various sample classes, we visualized the methylation signals
on themarkers across those sample classes (e.g. the RRBS data of solid
tissues, and the cfMethyl-Seq and WGBS data15 of plasma cfDNA sam-
ples) with unsupervised clustering heatmaps (Supplementary
Fig. S2–S4). Additional scatter plots further confirmed these markers’
consistent methylation signals between the marker discovery sample
set (tumor tissues versus adjacent normal tissues) and the plasma
sample set (cfDNA from cancer versus noncancer subjects)

(Supplementary Fig. S5). Furthermore, we used the 450K methylation
array data of the Cancer Genome Atlas15 (TCGA) as an independent
data source to confirm themarkers’ differential power between cancer
and noncancer tissue samples (Supplementary Fig. S6).

Both cancer-specific and tissue-specific hypermethylation mar-
kers are enriched in promoters, 5’-UTR, simple repeats, H3K4me2,
H3K4me3, andH3K9ac, while hypomethylatedmarkers are enriched in
Alu, LINE, SINE repeats, and H3K9me3. Further inspection of the
MSigDB16,17 showed that 36% of genes adjacent to or inside the top
2000 cancer-specific markers are involved in known cancer modules,
and 44% of those are part of oncogenic signatures that are activated in
cancer cells upon perturbation in KRAS, PRC2, and TP53. Moreover,
68% (56%) of genes, the promoter regions of which overlap with the
top 50 cancer-specific hyper- (hypo-) methylation markers of each
cancer type, were reported in cancer-related publications (details in
Supplementary Information S4 and Supplementary Tables S7 and S8).
Intriguingly, the different types of methylation markers tend to be
enriched in different nuclear locations, with increasing or decreasing
trends towards the periphery, center, ormid-range of the nucleus. This
hint of 3D genome structural dependence in cancer methylation pat-
terns could warrant further investigation (details of 3D genome
structure analysis in Supplementary Information S4).

Methylation signal deconvolution and ensemble learning
Given the cfMethyl-Seq data of a patient’s cfDNA sample, we decon-
volve the reads likely to be derived from a tumor or from a specific
tissue, based on theirmethylation patterns, from all reads falling in the

Fig. 1 | cfMethyl-Seq assay. aDiagramof the cfMethyl-Seq protocol.bTypical TBE-
UREA PAGE image of cfMethyl-Seq libraries made from cfDNA, compared with
conventional RRBS with cfDNA or intact genomic DNA as input material. The non-
specific ligation product from cfDNA fragments with the conventional RRBS pro-
tocol is indicated by an arrow. This technical validation experiment was repeated
independently twice and showed similar results. For cfMethyl-Seq assays generat-
ing data for analysis, each sample was constructed into library without replicate.
c The percentage of reads with MspI sites on both ends, on only one end, and on
neither end from WGBS assay, our cfMethyl-Seq assay, and RRBS assay on cfDNA.
Source data are provided as a Source Data file. d The percentage of mapped

fragments that fall in CpG islands, CpG island shores, CpG island shelves, and open
sea regions is shown for cfMethyl-Seq libraries, RRBS libraries, and WGBS libraries
on cfDNA. Source data are provided as a Source Data file. e Methylation con-
cordance between a genomic DNA sample sequenced with RRBS, and sheared and
sequenced with cfMethyl-Seq, increases with depth of coverage. Pearson correla-
tion (y-axis) of the methylation rate (beta value) in the two datasets was calculated
on the CpG sites that are covered by both datasets at minimum depth of coverage
specified on the x-axis. Source data are provided as a Source Data file. Abbrevia-
tions: RRBS Reduced representation bisulfite sequencing.
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cancer-specific or tissue-specific marker regions, respectively (see
Methods). For each of the four types of markers (hyper/hypo-methy-
lation and cancer/tissue-specific), we construct a profile vector where
the length of the vector is the number ofmarkers and the value in each
entry is the logarithm of cancer-specific (tissue-specific) read counts.

The four feature profiles have different value scales and statistical
distributions, because hypermethylated cfDNAs are more protected
by nucleosomes and therefore generally have higher abundances than
hypomethylated cfDNAs, for example, and tissue-specific cfDNAs are
generally more abundant than cancer-specific cfDNAs due to their
baseline existence in blood. To maximize the diagnostic power of the
features, we employed a stacked ensemble classification framework
with two layers: Level-1 consists of four independent predictive mod-
els, each using only features of one type (i.e., one “view” of the sam-
ples). Level-2 “stacks” the predictions of the four level-1 models as
inputs to make a final prediction (Supplementary Fig. S7). We devel-
oped two stacked ensemble models: one for detecting cancer, and

another for locating cancer. For both stacked ensemble models we
used the linear support vector machine at level 1, and the random
forest at level 2 (details in Methods and Supplementary
Information S5).

Performance of the cancer detection and tissue-of-origin
prediction
The cfMethyl-Seq data of 408 cfDNA samples were collected from 191
noncancer individuals and 217 cancer patients (49, 30, 106, 32 from
colon, liver, lung, and stomachcancer patients, respectively).Note that
the noncancer individuals are not restricted to healthy individuals, but
also include patients of various noncancer diseases (e.g. cirrhosis,
pancreatitis, hepatitis, diabetes, etc.), reflecting realistic clinical sce-
narios. We performed the random-split validation7,8,18 on the 408
cfDNA samples as follows: from the 217 cancer cfDNA samples we
randomly selected 75% to be the training data and 25% to be the test
data; from the 191 noncancer cfDNA samples we randomly selected

Fig. 2 | Study design and overview of the computationalmethod. aOverview of
the sample usage for marker discovery, model training, and validation. All tissue
samples are used for marker discovery, and all plasma samples are randomly split
into three sets, used for marker discovery, training, and validating the predictive
model. The plasma sample split is repeated 10 times and the prediction

performance is averaged over the 10 runs. b Details of sample usage for marker
discovery. Different types of methylation markers were discovered by using dif-
ferent samples. Note that 30 reference noncancer plasma samples (in blue boxes)
correspond to “marker filtration” in a. Abbreviations: TOO tissue of origin.
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25% for the test data, and among the remaining 75%, we randomly
reserved 30noncancer cfDNA samples solely formarker discovery and
used the remaining noncancer cfDNA samples as the training data
(Fig. 2a). The split was conducted 10 times, and the average and 95%
confidence interval (CI) of the performance metrics in the test data
across the 10 runs were reported. Supplementary Fig. S8a shows the
distribution of prediction scores for all 10 runs.

All individual marker types achieved AUROC>0.9 in cancer
detection. The ranking of individual marker types from highest to
lowest performance is cancer-specific hypermethylation markers
(0.966, 95% CI: 0.911–0.998), tissue hypermethylation markers (0.957,
95% CI: 0.902–0.993), cancer-specific hypomethylation markers
(0.944, 95% CI: 0.873–0.987), tissue hypomethylation markers (0.939,
95% CI: 0.879–0.982). By integrating four marker types, our cancer
detection ensemblemodel achieved an AUROCof 0.974 (95%CI: 0.926
to 0.998), yielding a sensitivity of 80.7% (95% CI: 68.6%–90.7%) at
97.9% specificity (one incorrectly classified normal sample) (Fig. 3a). By
comparing AUROCs of 10 runs between the stacked ensemble model
and each of four individual marker types (i.e. the Level 1 classifiers in
the stacked model), the one-sided paired Wilcoxon signed-rank test
showed that the AUROC of the ensemble model is not significantly
greater than that of cancer-specific hypermethylation markers
(P value = 0.07), and significantly greater than those of the other three
marker types (all P values <0.002). For early-stage cancer (stages I and
II) samples, our ensemblemodel achieved an AUROC of 0.964 (95% CI:
0.897 to 0.999), with a sensitivity of 74.5% (95% CI: 54.1%–87.7%) at
97.9% specificity. When breaking down these results to individual
cancer types and stages (Fig. 3b), we achieved sensitivities at or above
63% in all cases.

We used the same validation strategy to evaluate the performance
of TOO prediction on the cancer samples. Across the 10 runs and all
cancer stages of 4 organ sites (colon, liver, lung, stomach), the average
accuracies of all four individual marker types are 80.0% (95% CI:
64.0%–91.8%) for cancer-specific hypermethylation markers, 83.6%
(95% CI: 67.2%–93.6%) for cancer-specific hypomethylation markers,
79.4% (95% CI: 64.0%–91.8%) for tissue-specific hypermethylation
markers, and 80.0% (95% CI: 64.0%–91.8%) for tissue-specific hypo-
methylation markers. Among the four marker types, the hypomethy-
lation markers are more predictive for TOO prediction than the
hypermethylation markers. By integrating four marker types, our TOO
prediction ensemble model achieved an average accuracy of 89.1%
(95% CI: 73.9%–96.9%) across all stages. By comparing accuracies of 10
runs between the ensemble model and each of the four individual
marker types, the one-sided pairedWilcoxon signed-rank tests showed
that the AUROC of the ensemble model is significantly greater than
that of the individual marker types, with P value = 0.001, 0.004, 0.001,
and 0.004 for cancer-specific hyper-/hypo-methylation markers and
tissue-specific hyper-/hypo-methylation markers, respectively. For
early-stage cancer patients, our model achieved an average accuracy
of 85.0% (95% CI: 60.4%–96.6%). Particularly, the TOO prediction
accuracies of all-stage colon/liver/lung/stomach cancer are 86.7%/
89.7%/90.0%/83.3% (Fig. 4a), and 80.0%/81.2%/93.0%/81.8% (Fig. 4b)
for early-stage colon/liver/lung/stomach cancer.

Impact of the number of markers and the training sample size
on the performance
We examine how the number of methylation markers impacts the
performance of our classifiers. As shown in Figs. 5a, b, for all marker

Fig. 3 | Performanceof the stackedensemblemodel for cancerdetection. aROC
curve of the stacked ensemble method for detecting all four cancer types. Source
data are provided as a source datafile.b Sensitivity breakdown in each cancer stage
and cancer type. Sensitivity is shown at 1 false positive (97.9% specificity). The
average number of test cancer patients in each cancer type and stageover 10 runs is
indicated in the label of the horizontal axis. Sensitivity is not computed if the

average number of cancer patients in a cancer stage/type over 10 runs is <4. The
points and error bars represent the average sensitivity over 10 runs and 95% con-
fidence intervals. Source data are provided as a Source Data file. c Performance
(AUROC) of using all marker types and each individual marker type (n : 102 sam-
ples). The points and error bars represent the average AUROCover 10 runs and 95%
confidence intervals. Source data are provided as a Source Data file.
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types the performance (AUROC)of cancer detection increaseswith the
number of markers used. With 200 cancer-specific hypermethylation
markers from each cancer type, we can already reach an AUROC of
0.935. The increasing trend of AUROC slows down after the marker
number reaches 2000 (AUROC=0.961), and the AUROC plateaus
when the number of markers approaches 10,000 (AUROC=0.966).
Note that here we detect only four types of cancer, so if we want

the predictivemodel to covermore types of cancer and covariates, the
total number of combined markers will likely further increase. These
results highlight the advantage of using the whole methylome rather
than a small panel to cover the heterogenous cancer and population
landscape for enhanced performance.

We further examined how the training sample size impacts the
classifier performance. As shown in Fig. 5c, as we increased the size of

Fig. 4 | Performanceof the stackedensemblemodel for cancerTissue-Of-Origin
prediction. a Confusion matrix for all-stage cancer samples. Source data are pro-
vided as a Source Data file. bConfusionmatrix for early-stage (i.e., stage I/II) cancer
samples. Source data are provided as a Source Data file. c The accuracy of using all

marker types and each individualmarker type (n : 35 samples in the test set of each
run). The points and error bars represent the average accuracy over 10 runs and
95% confidence intervals. Source data are provided as a Source Data file.

Fig. 5 | Impact of the number of markers and the training sample size on the
cancerdetectionperformance. a Performanceof using the union of topM cancer-
specific markers of four cancer types. Source data are provided as a Source Data
file. b Performance of using the union of top M tissue-specific markers of each
tissue pair. Source data are provided as a Source Data file. c Performance of the

ensemblemodel for cancer detection increaseswith increasing training sample size
(using 30% to 100% of the training samples). Source data are provided as a Source
Data file. In all figures, the points and error bars represent the average AUROC over
10 runs and 95% confidence intervals (n : 102 test samples per run).
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the training samples (e.g., 30%, 50%, 70%, and 100% of the original
training samples), the average performance of the cancer detection
model improved substantially. This observation also holds for the
level-1 model of each individual marker type. Moreover, the perfor-
mance variance of all predictive models for the cancer detection task
decreases. This indicates that the performance of the models will
improve with larger training sizes.

Evaluating the robustness of the classifiers against potential
confounders
To evaluate whether the above performance could be inflated by
potential confounders such as batches, sample sources, and ages,
we performed the following additional validations (Supplemen-
tary Fig. S9):
(1) Cross-batch validation, where samples in the testing and training

sets were from non-overlapping batches. A batch of samples is
defined as a set of samples that were built into libraries and
subsequently sequenced together. Specifically, we randomly
selected 3 out of the total 19 batches as the testing set and used
the remaining nonoverlapping batches as the training set,
splitting the data 15 times such that each batch was in at least
one testing set. Note that some samples were sequenced twice
and their data was combined, meaning they came from two
batches, and when these samples were involved in the testing set,
all samples from overlapping batches were removed in the
training to avoid information leak. Therefore, on average the total
number of samples used in a cross-batch validation is 331 ± 36. For
each cross-batch validation, as a comparison we randomly
selected the same numbers of training and testing samples with
matched age-distribution and cancer types from the total
408 samples. Note that due to the reduced sample size of both
training and testing sets, the validation performance from this
down-sized “random-split” validation is expected to be lower than
that of the original sample size. The cross-batch validation
achieved an AUROC of 0.943 (95% CI: 0.822–1.000), which is
comparable to an AUROC of 0.954 (95% CI: 0.863–1.000) in the
random-split validation, showing that our classifier is reasonably
robust against batch effects.

(2) Cross-source validation, where samples in the testing and training
sets were collected at different sites. Specifically, we chose
samples from twomajor sources: those collected fromUCLA, and
those from a commercial vendor, in total 170 samples. Using
samples from UCLA for training, and those from the commercial
source for testing, we achieved an AUROC of 0.992 (95% CI:
0.970–1.000). We then randomly selected the same number of
training/testing samples with matched age-distribution and
cancer types from the 408 samples 10 times to conduct the
random-split validation, yielding a comparable AUROC of 0.982
(95% CI: 0.862–1.000). Reversing training/testing for both
validations, we achieved the AUROC of 0.954 (95% CI:
0.876–1.000) for cross-source validation, comparable to the
AUROC of 0.951 (95% CI: 0.849–1.000) of the random-split
validation.

(3) Age-matched validation, where we performed the random-split
validation but added a constraint of selecting only those
noncancer samples that match the age-distribution of all cancer
samples in both training and testing sets, respectively. This
procedure was performed 10 times with the average sample size
310 ± 2 and their average AUROC is 0.948 (95% CI: 0.786–1.000),
comparable to an AUROC of 0.931 (95% CI: 0.796–0.999) of the
random-split validation by keeping the same training and testing
sample sizes as those of the age-matched validation. Our
classifiers’ robustness to age can possibly be attributed to the
fact that we used paired tumor and adjacent normal tissues from
the same patients for marker selection, therefore any marker

selected should be due to tumor/normal differences, not age
differences.

(4) Independent validation, where we used our data (generated
with the cfMethyl-Seq platform) as the training set, and applied
the level-1 classifier of cancer detection to a published WGBS
dataset of 66 plasma samples (including 40 noncancer and 26
liver cancer samples)19. Specifically, for each sample in the
independent validation set, its prediction score is averaged
across the 10 scores assigned by the 10 classifiers, each trained
by a random split of cfMethyl-Seq data, and the AUROC was
generated based on the average prediction scores of all
samples of the independent validation set2. For the level-1
models, we achieved an AUROC of 0.998 (95% CI: 0.991–1.000)
and 0.956 (95% CI: 0.899–0.989) using cancer-specific hypo-
methylation and hypermethylation markers, respectively,
comparable to the published cross-validation performance
within the same WGBS dataset7,19, demonstrating the robust-
ness of our markers and level-1 classifiers. Tissue-specific
hypomethylation and hypermethylation markers yielded lower
performance at the AUROCs of 0.939 (95% CI: 0.880–0.985)
and 0.882 (95% CI: 0.791–0.957), respectively. This is reason-
able, since the independent WGBS data has very low coverage
(1x~3x), which is a challenging scenario for revealing subtle
tissue-specific signals, particularly for early-stage cancer
patients, due to the existing tissue baseline signals and their
variances. The level-2 random forest classifier, learned from the
cfMethyl-Seq platform, however, cannot be directly applied to
the WGBS platform, because the level-1 output from different
platforms (cfMethyl-Seq and WGBS) have different ranges (see
Supplementary Fig. S10a, b), demanding different branching
cutoff values in the level-2 random forest model (see an
example in Supplementary Fig. S10c). Therefore, a direct
validation of our level-2 random forest classifier is not
appropriate with this WGBS dataset. Nevertheless, to validate
the “spirit” of the stacked level-2 feature integration, instead of
random forest we trained linear classifiers (such as logistic
regression and linear SVM) on the cfMethyl-Seq data and then
applied the trained classifier to the WGBS data. Because the
AUROCs of linear models depend only on the relative ranks of
the prediction scores among samples, linear models are more
interoperable between different platforms than random forest
models that use absolute branching cutoffs. Note that due to
the insufficient sequencing coverage for tissue-specific mar-
kers, we only used the level-1 outputs of cancer-specific
hypermethylation and hypomethylation markers as the input
for the level-2 linear classifiers, which achieved AUROCs of
0.998 (95% CI: 0.990–1.000 for logistic regression; and 95% CI:
0.991–1.000 for linear SVM), showing the dominant contribu-
tion from the level-1 cancer-specific hypomethylation markers
(Supplementary Fig. S10d). Supplementary Fig. S8b shows the
distribution of the average prediction scores for level-1 and
level-2 classifiers.

The above four validations demonstrated that our cancer detec-
tion classifiers are robust against potential batch effects, different
samples sources, age, and even different experimental platforms (for
level-1 classifiers). For cancer TOO prediction, there are not sufficient
numbers of samples to perform analyses to support the above
validations.

Discussion
We develop an integrated experimental and computational system to
address the major challenges of cfDNA-based early cancer detection:
i.e., the low tumor burden in blood, the molecular heterogeneity of
cancer, and the fact that currently available training sample sizes are
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too small to accurately represent the heterogeneity of the disease and
the patient population.

Our experimental assay, cfMethyl-Seq, cost-effectively profiles
the genome-wide methylation of cfDNA, offering >12× enrichment
over WGBS in CpG islands. A recent approach, cf-RRBS20, has also
attempted to cost-effectively profile the cfDNA methylome. The cf-
RRBS method blocks input cfDNA fragments only on their 5’-ends. In
contrast, our cfMethyl-Seq procedure blocks the input cfDNA frag-
ments on both ends. Thus, cfMethyl-Seq prevents all input cfDNA
fragments lacking the desired digestion sites from ligating to adapters.
In cf-RRBS, cfDNA fragments without the desired digestion sites can
still ligate to adapters, but this process forms a nick between
the adapter and the cfDNA fragment. A subsequent step removes the
nicked fragments with exonuclease digestion21. However, exonuclease
digestion removes all DNA fragments that contain nicks, a scenario
that has been estimated to occur in 30% of cfDNA fragments22, leading
to the loss of precious cfDNA. Hence, we expect that the cfMethyl-Seq
library retains significantly more cfDNA. Furthermore, in cf-RRBS,
adapters and ligases are consumed by the majority of cfDNA frag-
ments, including those without the desired digestion sites, leading to
lower ligation efficiency for the fragments of interest and lower library
yields. Another cfDNAmethylome sequencingmethod, cfMeDIP23, was
primarily developed to bypass bisulfite conversion and allow for low
input amounts. cfMeDIP uses immunoprecipitation to pull down
cfDNA fragments with at least onemethylated CpG site. This standard,
however, applies to ~50%of all cfDNA fragments. Further refiningwash
conditions may help to enrich the CpG-rich fragments, although this
still remains to be demonstrated. Note that cfMeDIP does not have
base-pair resolution, so it cannot determinewhich specific CpG sites in
a cfDNA fragment are methylated. Other existing approaches
using targeted methylation2 need to establish fixed panels a priori, so
their data cannot be used to discover new markers as sample sizes
increase.

From cfMethyl-Seq profiles, we extract four types of cfDNA
methylation information in blood. We demonstrate the power of
cfMethyl-Seq in a cohort of 217 colon, liver, lung, and gastric cancer
patients and 191 individuals without cancer, for detecting cancer and
locating cancer. For cancer detection, we achieved a sensitivity of
80.7% (95% CI: 68.6%–90.7%) across all stages and 74.5% (95% CI:
54.1%–87.7%) for stages I and II, with a specificity of 97.9%. For
locating a tumor’s TOO, we achieved an accuracy of 89.1% (95% CI:
73.9%–96.9%) for all stages and85.0% (95%CI: 60.4%–96.6%) for early
stages. While the cancer hypomethylation markers are most pre-
dictive for TOO and integrating other marker types further sig-
nificantly improve the TOO prediction, the cancer hypermethylation
markers are most informative for cancer detection and integrating
more marker types does not improve the cancer detection perfor-
mance significantly. To further confirm that our classifiers are robust
to various potential confounders, we have performed extensive
validations, e.g. cross-batch, cross-sample-source, age-matched, and
independent validation (data generated with different experimental
platforms and in different laboratories). We believe that the robust-
ness of the classifiers can be at least partially attributed to our
identification of tumor methylation signals at the read-level, where
individual reads are assessed in terms of their likelihood to come
from tumors.

Finally, our data show that as training sample sizes increase, the
detection power of our method continues to increase. Although all
existing cancer detection studies are limited by training sample sizes,
cfMethyl-Seq uniquely and cost-effectively retains the genome-wide
epigenetic profiles of cancer abnormalities, thereby permitting the
classification models to learn and exploit newly significant features as
training cohorts grow, as well as expanding their scope to other cancer
types. Therefore, cfMethyl-Seq can truly facilitate a big data approach
for cancer detection.

Methods
The institutional review board (IRB) of the University of California at
Los Angeles approved this study (IRB#19-000618, IRB#19-000230,
IRB#19-001488, IRB#16-000659, IRB#17-000985), and our research
complies with all relevant ethical regulations. All participants gave
their written informed consent.

Plasma and solid tissue sample source
Plasma samples of cancer patientswere collected atUCLAhospitals (75
from Ronald Reagan UCLA Medical Center and UCLA Santa Monica
hospital) or purchased from Biopartners, Inc. (Woodland Hills, CA)
(200 samples). Plasma samples of patients without cancer were col-
lected at UCLA hospitals24 (86 samples) or purchased from Biochain
Institute, Inc (Newark, CA) (49 samples) or Biopartners, Inc. (69 sam-
ples). The solid tumor tissue and adjacent normal samples were col-
lected from the UCLA Translational Pathology Core Laboratory (44
pairs), theUCLA LungCancer SPORE Bank (2 pairs), or purchased from
Origene, Inc. (Rockville, MD) (37 pairs), Biochain Institute, Inc (10
pairs), Gundersen, Inc (La Crosse, WI) (4 pairs), or Biopartners, Inc. (4
pairs). The enrollment criteria at UCLA hospitals are as follows: (1) at
least 18 years old, (2) able to give consent, and (3) either patients
without cancer or diagnosed as colon cancer, liver cancer, lung cancer,
or gastric cancer. The enrollment criteria for commercial sources are
as follows: (1) at least 18 years old, (2) either patients without cancer or
diagnosed as colon cancer (adenocarcinoma), liver cancer (hepato-
cellular carcinoma), lung cancer (squamous cell or adenocarcinoma),
or gastric cancer (adenocarcinoma) (3) known stage, age, gender, and
grade, and (4) no cancer treatment at time of collection. However, the
sources of solid tissue samples were not required to have no cancer
treatment. The characteristics of the patients who provided plasma
samples are in Supplementary Table S9. The characteristics of the
patients who provided tissue samples are listed in Supplementary
Table S10. The amount of starting plasma is 1–4ml. cfDNA was
extracted from plasma samples with QIAGEN QIAamp circulating
nucleic acid kits (Catalog# 55114, Germantown, MD) following their
protocol. The solid tissue gDNA samples were extracted with QIAGEN
blood and tissue kits (Catalog# 69506). 10–100mg of tissue was used
to extract gDNA from each sample.

cfMethyl-Seq library construction
5–40 ng of cfDNA in the volume of 25 µl was used as input material.
5’-end dephosphorylation was done with 3 µl 10xCutSmart buffer
and 2 µl quick CIP from NEB (Ipswich, MA) at 37oC for 30min then
heat-inactivated at 80oC for 5min. The 3’-end blocking was done
with 0.5 µl 10xCutSmart buffer, 3 µl 2.5 mM CoCl2, 1 µl terminal
transferase (all from NEB) and 0.5 µl 1 mM ddGTP at 37 oC for 2 h
followed by 75 oC for 20min. The mixture was then purified with 2x
AmpureXP beads (Beckman Coulter, Indianapolis, IN) and eluted
in 21.5 µl RT-PCR grade water (Thermo-Fisher, Waltham, MA).
Restriction digestion was done with 2.5 µl 10xCutSmart buffer and
1 µl MspI (NEB) for 18 h at 37 oC and 20min at 65oC. 0.5 µl 10xCutS-
mart buffer, 0.3 µl dACGTP mixture (100mM dATP, 10mM dCTP,
10mMdGTP), 1 µl Klenow (exo-, 5U/µl, NEB) and 2.6 µl RT-PCRwater,
0.6 µl 50mMDTT (ThermoFisher) was added to the mixture for end
repair and A-overhang addition with the program 30 oC for 20min,
37 oC for 1 h and 75 oC for 20min. Adapter ligation was then per-
formed with 1 µl 10xThermoFisher HC T4 ligase buffer, 0.4 µl
100mM ATP (ThermoFisher), 0.2 µl 50mM DTT, 1 µl ThermoFisher
HC T4 DNA ligase (30 Weiss Unit/µl), 5 ng home-made duplex UMI
adapter with all the cytosines methylated (protocol adopted from
Kennedy et al25.) at 16 oC for 20 h and 65 oC for 20min. Bisulfite
conversion of the adapter-ligated product was carried out with
QIAGEN EpiTect plus DNA bisulfite kit following their protocol for
two rounds of conversion. The converted product was purified with
Qiagen MinElute spin column and eluted with 20 µl RT-PCR water.
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PCR amplification was done using the NEBNext Multiplex Oligos for
Illumina (2.5 µl of universal and index primer each) and 25 µl KAPA
HiFi HotStart Uracil+ ReadyMix (Roche) with the following cycling
conditions: 98 oC for 45 s, 15 cycles of 98 oC for 15 s, 60 oC for 30 s
and 72 oC for 30 s, followed by a final extension at 72 oC for 5min.
The PCR product was purified with 1x AmpureXP beads and eluted
with 30 µl EB buffer. DNA concentration measured by Qubit
1xdsDNA HS assay, 5% TBE-UREA PAGE and bioanalyzer assay was
performed as quality control on each library before sequencing.
Sequences of oligos used in this study are provided in Supple-
mentary Table S11.

Sequencing setting, data preprocessing
cfMethyl-Seq libraries were generated for 479 cfDNA samples and
were sequenced with 150 bp paired-end reads on Illumina machines
by Genewiz, Inc. (South Plainfield, NJ, USA). Among them, 408 sam-
ples passing the quality control criteria (coverage higher than 15x and
bisulfite conversion rate higher than 98.7%) were used in this study.
We performed three steps to preprocess the cfMethyl-Seq data. In
Step 1, the UMI sequence was removed and the read was trimmed.
Our custom adapters contain an 8 bp random UMI and a 5 bp fixed
sequence at the beginnings of both forward and reverse reads. These
sequences are removed before adapter trimming (and written into
the read name). Then Trim-galore26 was used to trim the default
Illumina adapters from the sequencing reads (using the options --
three_prime_clip_R1 15 --three_prime_clip_R2 13 --clip_R2 2 --length
15 --phred33). In Step 2, we performed sequence alignment, dedu-
plication and methylation calling. We first used Bismark11 to align the
trimmed reads to the reference genome hg19 (GRCh37 (GCA
000001405.1)). Then Umi-Grinder27 was used to remove PCR dupli-
cates based on the UMI labels (now in the read names), allowing 4
mismatches in the total 16 bp UMI. Bismark11 methylation extractor
was then used to callmethylation in themapped, deduplicated reads.
In Step 3, the chromosome-wise sequence alignment statistics and
whole-methylome methylation statistics of CpG islands, CpG shores,
gene promoters and repetitive regions were summarized from the
individual read information obtained in Step 2. Summary statistics of
the cfMethyl-Seq data are available in Supplementary Table S12 with
column explanations in Supplementary Table S13. In Step 4, the
mapping locations of R1 and R2 were merged to form one fragment.
Tissue RRBS samples were sequenced and processed in the same
manner as cfMethyl-Seq data.

Read-based discovery of methylation markers
Given the heterogeneity of DNA extracted from tumor tissues or
plasma, we developed a marker discovery framework to stratify
tumor-like DNA fragments from background fragments in order to
sensitively capture tumor signals. Conventional methods for
methylation marker discovery rely on population-average methyla-
tion values, the β-value, defined as the number of methylated alleles
out of all alleles mapped to a CpG site in a DNA sample. Such β-value-
based approaches, however, are not sensitive to tumor signals if the
tumor fraction is low in the sample. We previously proposed the
concept of α-value7, defined as the percent of methylated CpGs out
of all CpG sites in a sequencing read. Supplementary Fig. S11a shows a
conceptual illustration of α-value and β-value. The α-value of an
individual sequencing read captures the pervasive nature of methy-
lation, therefore allowing us to “purify” tumor DNA reads from
background reads for enhancing the signal-to-noise ratio. A recent
study further used the α-value concept for identifying liver cancer
methylation markers28. Here we developed a general framework for
using read-level α-values to robustly identify markers from impure
tissue samples or even cfDNA plasma samples. The essence of our
marker discovery method is to (1) compare the samples at the read

level, by the α-values of individual sequencing reads in a genomic
region (so called “α-value distribution” for each sample, see Sup-
plementary Fig. S11b); and (2) find regions where the α-value dis-
tributions of the sequencing reads in positive samples have a well-
separated component from those in the negative samples. Since α-
value distributions often do not follow any known statistical dis-
tributions, we develop a non-parametric method to compare two α-
value distributions. Taking hypermethylation marker discovery as an
example, our marker discovery method automatically determines an
α-value threshold, i.e., αhyper, where reads with α-values ≥αhyper are
defined as hypermethylated reads. Given an αhyper, if hypermethy-
lated read counts of tumors are significantly larger than those of
their adjacent normal tissues, then this genomic region carries sig-
nificant tumor signals (Supplementary Fig. S11c). The more pairs of
tumor and adjacent normal tissues that demonstrate such tumor
signals, the more stable the marker is. The same principle applies to
the hypomethylation marker discovery, where an α-value threshold,
i.e., αhypo, will be determined and those reads with α-values ≤αhypo

are defined as hypomethylated reads. The framework can be flexibly
adapted to (1) identify the hyper- or hypo-methylation markers; (2)
discover markers from tumor tissues (with or without adjacent nor-
mal tissues), plasma samples, or normal tissues (for tissue-specific
markers); (3) discover markers for cancer detection and TOO pre-
diction. Refer to Supplementary Information S1–S3 for a detailed
description.

Generation of the methylation marker profiles with the read-
based signals
Using the read-based methylation marker discovery method, each
marker is associated with two thresholds which are learned from the
data, i.e., αhypo and αhyper, which define hypomethylated and hyper-
methylated reads, respectively. Therefore, for hypermethylation mar-
kers, we can identify those reads whose α-values ≥αhyper as cancer-
specific or tissue-specific hypermethylated reads, normalize the
number of these reads by the sample sequencing depth, and use a
logarithm transformation as the final input profile value of thismarker,
i.e., dcount markerð Þ= ln 109 countðmarkerÞ

raw read count of genome + 1
� �

. Similarly, for
hypomethylationmarkers, we can identify those reads whose α-values
≤αhypo as cancer-specific or tissue-specific hypomethylated reads,
normalize the number of these reads by the sample sequencing depth,
and use a logarithm transformation as the final input profile value of
thismarker. The normalized, logarithmic read counts of allmarkers are
concatenated into a vector, which is used as the methylation profile of
the cfDNA sample.

Ensemble predictive model integrating multiple methylation
marker types
The conceptual illustration of the stacked ensemble learning model
for cancer detection and TOO prediction is shown as a two-level
structure in Supplementary Fig. S7 and the details of training the
stacked ensemble model and making predictions are shown in Sup-
plementary Fig. S12. For both cancer detection and TOO prediction,
in level 1, a Linear Support Vector Machine (LSVM) classifier (with the
L2 penalty) is trained for each of the four feature profiles generated
from (1) tumor-derived read counts of cancer-specific hypermethy-
lation markers, (2) tumor-derived read counts of cancer-specific
hypomethylationmarkers, (3) tissue-derived counts of tissue-specific
hypermethylation markers, (4) tissue-derived counts of tissue-
specific hypomethylation markers. We set the C parameter to C = 1
and all other hyperparameters use the default values provided by the
python scikit-learn machine learning package29. In level 2, a random
forest model with 2000 trees and the default values provided by the
python scikit-learn machine learning package29 for all other hyper-
parameters are used to make the final prediction.
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We implemented ensemble models separately for cancer detec-
tion and TOO prediction:
(1) Cancer detection model. The output prediction score of the

ensemble model is the probability of getting cancer. When the
prediction score is less than a threshold, the subject is predicted
as noncancer, otherwise the subject is predicted as cancer.

(2) Cancer TOO prediction model. Here, one-vs-rest multiclass
classifiers are used for both level-1 and level-2 models. We
performed cancer TOO prediction for all cancer samples. The
plasmacfDNA samples of cancer patients arepredicted tobe from
one of four classes: colon, liver, lung, and stomach cancer. The
prediction score of the ensemble model is the cancer-type-
membership probability for each cancer type; the cancer type
with the highest membership probability is the predicted cancer
type. However, when two or more cancer types receive similarly
highmembership probabilities, we used the fold change between
the highest membership probability and the second highest
membership probability as a metric to indicate the cancer TOO
prediction confidence. The higher this confidence is, the more
certain we are in the cancer type prediction. No TOO prediction
was assigned for those subjects whose cancer TOO confidence
was less than a threshold. The threshold of cancer TOO
confidence was set as 2.5.

Performance evaluation of two ensemble models
For the binary classification of cancer detection, the AUROC (Area
Under the Receiver Operating Characteristic curve) and the sensi-
tivity at a certain specificity are the most popular performance
metrics. For the multiclass cancer TOO prediction, the overall accu-
racy, i.e., accuracy = #correctly predicted samples

total # samples is the most commonly
used measure. We use a confusion matrix to further break down the
overall accuracy into specific cancer TOOs for the correctly and
incorrectly predicted samples. Using the confusion matrix, we can
also calculate the precision for each cancer type, defined as
precisionðcancer typeÞ= #samples correctly predicted as this cancer type

total # samples predicted as this cancer type . Due to
the limited sample size, here we generated the confusion matrix by
accumulating the confusion matrices calculated from over 10 runs.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Rawsequencing data generated in this study (RRBSdata from328 solid
tissue samples and cfMethyl-Seq data from 479 plasma samples) have
been deposited into the European Genome-Phenome Archive under
accession code EGAS00001006020. Data access can be obtained
through a request to the corresponding authors. Access to thedatawill
be restricted to non-commercial entities. The corresponding authors
will generally respond to requests within three days. Once granted, the
access has no time restriction. Data from the study19

EGAS00001000566, (40 non-cancer and 26 liver cancer WGBS sam-
ples) were used for independent validation and are associated with
Supplementary Fig. S4, S8b and S10. TCGA 450k array data were
obtained from https://cancergenome.nih.gov/and are associated with
Supplementary Fig. S6. Reference genome hg19 (GRCh37 (GCA
000001405.1) was used for mapping samples. The remaining data are
available within the Article, Supplementary Information, or Source
data. Source data are provided with this paper.

Code availability
Software code is available at https://github.com/jasminezhoulab/
cfMethyl-Seq and can be freely used for educational and research
purposes by non-profit institutions and U.S. government agencies. For

information on the use for a commercial purpose or by a commercial
or for-profit entity, please contact Professor Xianghong Jasmine Zhou.

References
1. Cohen, J. D. et al. Detection and localization of surgically resectable

cancers with a multi-analyte blood test. Science 359,
926–930 (2018).

2. Liu, M. C. et al. Sensitive and specific multi-cancer detection and
localization using methylation signatures in cell-free DNA. Ann.
Oncol. 31, 745–759 (2020).

3. Cristiano, S. et al. Genome-wide cell-free DNA fragmentation in
patients with cancer. Nature 570, 385–389 (2019).

4. Guo, S. et al. Identification of methylation haplotype blocks aids in
deconvolution of heterogeneous tissue samples and tumor tissue-
of-origin mapping from plasma DNA. Nat. Genet 49,
635–642 (2017).

5. Xu, R.-H. et al. Circulating tumour DNA methylation markers for
diagnosis and prognosis of hepatocellular carcinoma. Nat. Mater.
https://doi.org/10.1038/nmat4997 (2017).

6. Shen, S. Y. et al. Sensitive tumour detection and classification using
plasma cell-free DNA methylomes. Nature 563, 579–583 (2018).

7. Li, W. et al. CancerDetector: ultrasensitive and non-invasive cancer
detection at the resolution of individual reads using cell-free DNA
methylation sequencing data. Nucleic Acids Res 46, e89 (2018).

8. Kang, S. et al. CancerLocator: non-invasive cancer diagnosis and
tissue-of-origin prediction using methylation profiles of cell-free
DNA. Genome Biol. 18, 53 (2017).

9. Chen, X. et al. Non-invasive early detection of cancer four years
before conventional diagnosis using a blood test.Nat. Commun. 11,
3475 (2020).

10. Liang, N. et al. Ultrasensitive detection of circulating tumour DNA
via deep methylation sequencing aided by machine learning. Nat.
Biomed. Eng. 5, 586–599 (2021).

11. Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and
methylation caller for Bisulfite-Seq applications. Bioinformatics 27,
1571–1572 (2011).

12. Zeybel, M. et al. Multigenerational epigenetic adaptation of the
hepatic wound-healing response. Nat. Med. 18, 1369–1377 (2012).

13. Angulo, P. et al. Liver Fibrosis, but No Other Histologic Features, Is
Associated With Long-term Outcomes of Patients With Nonalco-
holic Fatty Liver Disease. Gastroenterology 149, 389–97.e10 (2015).

14. Hardy, T. et al. Plasma DNA methylation: a potential biomarker for
stratification of liver fibrosis in non-alcoholic fatty liver disease.Gut
66, 1321–1328 (2017).

15. Grossman, R. L. et al. Toward a Shared Vision for Cancer Genomic
Data. N. Engl. J. Med. 375, 1109–1112 (2016).

16. Liberzon, A. et al. The Molecular Signatures Database Hallmark
Gene Set Collection. Cell Syst. 1, 417–425 (2015).

17. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0.
Bioinformatics 27, 1739–1740 (2011).

18. Simon, R. Fundamentals of data mining in genomics and pro-
teomics. In Fundamentals of Data Mining in Genomics and Pro-
teomics (eds. Dubitzky, W., Granzow, M. & Berrar, D.) 173–186
(Springer, 2007). https://doi.org/10.1007/978-0-387-47509-7.

19. Chan, K. C. A. et al. Noninvasive detection of cancer-associated
genome-wide hypomethylation and copy number aberrations by
plasma DNA bisulfite sequencing. Proc. Natl Acad. Sci. USA 110,
18761–18768 (2013).

20. van Paemel, R. et al. Minimally invasive classification of paediatric
solid tumours using reduced representation bisulphite sequencing
of cell-freeDNA: aproof-of-principle study.Epigenetics 16, 196–208
https://doi.org/10.1080/15592294.2020.1790950 (2020).

21. de Koker, A., van Paemel, R., deWilde, B., de Preter, K. &Callewaert,
N. A versatile method for circulating cell-free DNA methylome

Article https://doi.org/10.1038/s41467-022-32995-6

Nature Communications |         (2022) 13:5566 10

https://ega-archive.org/studies/EGAS00001006020
https://ega-archive.org/studies/EGAS00001000566
https://cancergenome.nih.gov/and
https://github.com/jasminezhoulab/cfMethyl-Seq
https://github.com/jasminezhoulab/cfMethyl-Seq
https://doi.org/10.1038/nmat4997
https://doi.org/10.1007/978-0-387-47509-7
https://doi.org/10.1080/15592294.2020.1790950


profiling by reduced representation bisulfite sequencing. bioRxiv
https://doi.org/10.1101/663195 (2019).

22. Chabon, J. J. et al. Integrating genomic features for non-invasive
early lung cancer detection. Nature 580, 245–251 (2020).

23. Shen, S. Y., Burgener, J. M., Bratman, S. V. & De Carvalho, D. D.
Preparation of cfMeDIP-seq libraries for methylome profiling of
plasma cell-free DNA. Nat. Protoc. 14, 2749–2780 (2019).

24. Lajonchere, C. et al. An Integrated, Scalable, Electronic Video
Consent Process to Power Precision Health Research: Large,
Population-Based, Cohort Implementation and Scalability Study. J.
Med. Internet Res. 23, e31121 (2021).

25. Kennedy, S. R. et al. Detecting ultralow-frequency mutations by
Duplex Sequencing. Nat. Protoc. 9, 2586–2606 (2014).

26. Krueger, F. Software “Trim Galore.” http://www.bioinformatics.
babraham.ac.uk/projects/trim_galore/.

27. Krueger, F. Unique Molecule Identifiers (UMIs) based sequencing
deduplication software. https://github.com/FelixKrueger/Umi-
Grinder.

28. Li, J. et al. DISMIR: Deep learning-based noninvasive cancer
detection by integrating DNA sequence and methylation informa-
tion of individual cell-free DNA reads. Brief Bioinform 22, 53 (2021).

29. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J.
Mach. Learn. Res. 12, 2825–2830 (2011).

Acknowledgements
This work was supported by the National Cancer Institute (grant no.
U01CA230705 to X.J.Z., S.F., and S-H.B.H., grant no. R01CA246329 to
X.J.Z., W.L., and S.M.D, grant no. U01CA237711 to W.L., grant no.
R43CA246941 to X.N., grant nos. R01CA210360 and U01CA214182 to
D.R.A., and grant nos. R01CA253651 and R01CA246304 to V.A.), the
National Science Foundation Graduate Research Fellowship (grant no.
DGE-1418060 to M.L.S), and the National Institute of Health (grant no.
UM1HG011593 to F.A. and grant no. R01CA255727 to Y.Zhu). This work
was supported by a Stand Up To Cancer-LUNGevity-American Lung
Association LungCancer InterceptionDreamTeamTranslational Cancer
Research Grant (grant number: SU2C-AACR-DT23–17 to S.M.D). Stand
Up To Cancer is a division of the Entertainment Industry Foundation.
Research grants are administered by the American Association for
Cancer Research, the scientific partner of SU2C. Research funding from
the Department of Veteran Affairs. We are grateful to the UCLA DGSOM
and UCLA Health for their support of the IPH and its ATLAS community
health andbiobanking initiative, and to TPCL for providingbiospecimens
used in this study. The results shown here are in part based upon data
generated by the TCGA Research Network: https://www.cancer.gov/
tcga. This work was supported by the Integrated Diagnostics Shared
Resource, a collaboration between the Department of Radiological
Sciences & Department of Pathology and Laboratory Medicine, David
Geffen School of Medicine at UCLA.

Author contributions
X.J.Z conceived the study. X.N., W.Z., M.L.S., Y.Zhou and S.H. designed
the cfMethyl-Seq assay (X.N and W.Z. equally contributed to the assay
development). W.Z. X.N., Y.Zhou, S.H., and Z.Y. performed experiments
and generated data. M.L.S. developed and performed the sequencing
data analysis pipeline. M.L.S., W.Z., X.N., and S.H. interpreted sequen-
cing data for use in troubleshooting and improving the cfMethyl-Seq

assay. M.L.S, W.L., and S.L. developed the marker selection framework.
M.L.S. and W.L. performed the cancer detection analyses. W.L. and S.L.
performed the cancer typing analyses. C-C.L. performed functional
analyses. C-C.L, A.Yildirim, F.A., and P.S.L. performed the 3D genome
analyses. Z.W., F.S., andQ.L. were involved in other data analyses. X.J.Z.
and W.L. supervised the analysis. S-H.B.H, V.A., D.R.A., E.G., D.G., and
C.L. led the patient enrollments and provided clinical guidance. A.Yeh,
P-J.C., P.W., B.T., Z.N., S.F., C.E.M., S.F., S.D., S.S., G.C., Y-T.L., Y.Zhu,
H-R.T, J.S.T., P.A., andM.Y. contributed topatient enrollment or provided
patient samples. W.H.W. and S.M.D. provided scientific advice. W.L.,
M.L.S, W.Z., and X.J.Z. wrote the paper with input from other authors.
X.J.Z supervised the overall study.

Competing interests
X.J.Z., W.L., andW.H.W. are co-founders of EarlyDiagnostics, Inc., M.L.S,
X.N., and C-C.L. are employees of EarlyDiagnostics, Inc, S.L., W.Z., and
Y.Zhou are consultants to EarlyDiagnostics, Inc, and S.M.D. was a sci-
entific advisor to EarlyDiagnostics, Inc. The authors have filed a patent
application on methods described in this manuscript. The other authors
have no competing interests to declare.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-022-32995-6.

Correspondence and requests for materials should be addressed to
Vatche Agopian, Steven-Huy B. Han, Xiaohui Ni, Wenyuan Li or
Xianghong Jasmine Zhou.

Peer review informationNature Communications thanks Yaping Liu and
the other, anonymous, reviewer(s) for their contribution to the peer
review of this work.

Reprints and permission information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

1Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
2EarlyDiagnostics, Inc., 570 Westwood Plaza, Los Angeles, CA 90095, USA. 3Department of Quantitative and Computational Biology, University of Southern
California, LosAngeles, CA90089, USA. 4The Eighth AffiliatedHospital, SunYat-SenUniversity, Shenzhen, China. 5Department ofMicrobiology, Immunology
andMolecular Genetics, University of California at LosAngeles, Los Angeles, CA90095, USA. 6Department of Surgery, University of California at Los Angeles,
LosAngeles, CA90095, USA. 7Department ofMolecular andMedical Pharmacology, DavidGeffenSchool ofMedicine, University ofCalifornia at LosAngeles,
Los Angeles, CA 90095, USA. 8Westlake High School, 100N Lakeview Cyn Road, Westlake Village, CA 91362, USA. 9Department of Medicine, David Geffen

Article https://doi.org/10.1038/s41467-022-32995-6

Nature Communications |         (2022) 13:5566 11

https://doi.org/10.1101/663195
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://github.com/FelixKrueger/Umi-Grinder
https://github.com/FelixKrueger/Umi-Grinder
https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
https://doi.org/10.1038/s41467-022-32995-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA. 10Department of Radiological Sciences, David Geffen School of
Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA. 11Jonsson Comprehensive Cancer Center, University of California at Los
Angeles, Los Angeles, CA90095, USA. 12VAGreater Los Angeles Health Care System, Los Angeles, CA90073, USA. 13Institute for PrecisionHealth, University
of California at Los Angeles, Los Angeles, CA 90095, USA. 14Institute for Quantitative and Computational Biosciences, University of California at Los Angeles,
Los Angeles, CA 90095, USA. 15Department of Statistics, Stanford University, Stanford, CA 94305, USA. 16Department of Biomedical Data Science, Stanford
University, Stanford, CA 94305, USA. 17These authors contributed equally: Mary L. Stackpole, Weihua Zeng, Shuo Li. e-mail: vagopian@mednet.ucla.edu;
steven.han@ucla.edu; xiaohui.ni@earlydx.com; wenyuanli@mednet.ucla.edu; xjzhou@mednet.ucla.edu

Article https://doi.org/10.1038/s41467-022-32995-6

Nature Communications |         (2022) 13:5566 12

mailto:vagopian@mednet.ucla.edu
mailto:steven.han@ucla.edu
mailto:xiaohui.ni@earlydx.com
mailto:wenyuanli@mednet.ucla.edu
mailto:xjzhou@mednet.ucla.edu

	Cost-effective methylome sequencing of cell-free DNA for accurately detecting and locating cancer
	Results
	Cost-effective cell-free DNA methylome sequencing (cfMethyl-Seq)
	Discovery of methylation markers for cancer detection and tissue-of-origin prediction
	Methylation signal deconvolution and ensemble learning
	Performance of the cancer detection and tissue-of-origin prediction
	Impact of the number of markers and the training sample size on the performance
	Evaluating the robustness of the classifiers against potential confounders

	Discussion
	Methods
	Plasma and solid tissue sample source
	cfMethyl-Seq library construction
	Sequencing setting, data preprocessing
	Read-based discovery of methylation markers
	Generation of the methylation marker profiles with the read-based signals
	Ensemble predictive model integrating multiple methylation marker types
	Performance evaluation of two ensemble models
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




