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ABSTRACT OF THE DISSERTATION

Structured, Unstructured, and Semistructured Search in

Semistructured Databases

by

Andrey Balmin

Doctor of Philosophy in Computer Science

University of California, San Diego, 2006

Professor Yannis Papakonstantinou, Chair

A single framework for storing and querying XML data, using denormal-

ized schema decompositions, can support both structured queries and unstructured

searches, as well as serve as a foundation for combining the two forms of informa-

tion access.

XML data format becomes increasingly popular in applications that mix

structured data and unstructured text. These applications require integration of

structured query and text search mechanisms to access XML data.

First, we introduce a framework for storing and querying XML data using

denormalized schema decompositions. This framework was initially implemented

in the XCacheDB XML database system, which uses XML schemas to shred XML

data into relational storage. The XCacheDB supports a subset of XQuery lan-

guage and emphasizes query optimization to reduce latency and output first results

quickly.

The XCacheDB relies on XML schemas, which poses a novel challenge

for validation XML updates. We investigate the incremental validation of XML

documents with respect to DTDs and XML Schemas. We exhibit an O(m log n)

algorithm using an auxiliary structure of size O(n), where n is the size of the

document and m is the number of updates. We exhibit a restricted class of DTDs

called “local” that arise commonly in practice and for which incremental validation

xi



can be done in practically constant time by maintaining only a list of counters. We

present implementations and experimental evaluations of both general incremental

validation and local validation in the XCacheDB system.

We, then, present XKeyword system which uses a variation of XCacheDB

of schema decompositions to support keyword proximity searches in XML databases.

XKeyword decompositions include ID relations which store of IDs of target objects,

and pre-compute common joins.

Finally, we present an architecture of the Semi-Structured Search System

(S4) designed to bridge the gap between traditional database and information re-

trieval systems. S4QL query language combines features of structured queries and

text search to facilitate information discovery without knowledge of schema. S4

is based on the same schema decomposition framework of XCacheDB and XKey-

word. However, the combination structured and unstructured query features pose

novel challenges to efficient query processing. We outline these issues and possible

ways of addressing them.
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Chapter I

Introduction

I.A Search in Databases

Information discovery, also known as search, is one of the basic informa-

tion access operations, which involves retrieval of records that satisfy certain con-

ditions. In database systems, search queries are important in both On-Line Trans-

action Processing (OLTP) and On-Line Analytical Processing (OLAP) paradigms.

An OLTP transaction often includes search queries to identify a small set of records

which need to be updated and/or returned to the user. An OLAP cube may be

built from a set of records that is narrowed down by a search query. With the

advent of e-commerce sites efficient search access became important to facilitate

web-based catalog browsing. Typically, industrial relational database management

systems support two kinds of search queries: structured search where comparison

or range predicates are used to restrict values of certain fields, or unstructured

search, also known as keyword search, which filters out records that do not contain

some form of the specified keyword in a certain field.

Example 1 Consider a catalog of consumer electronics products stored in a rela-

tional database with the following schema.

Product(Type,Brand, Model, ScreenSize, Price,Description)

1
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The product table contains a row for each product in the catalog. For example,

(’TV’,’Sony’,’KX-27’,27,300,’27" Trinitron TV with S-Video and

composite inputs’) An e-commerce site that sells products from this catalog may

allow structured search queries that filter television set models based on their screen

size, brand, price, etc. The same site may allow unstructured search, that would

limit products to only those that contain a keyword in the product description. It

might even be possible to mix structured and unstructured predicates. For example,

a user could be looking for a Sony TV with screen size from 25 to 32 inches and

S-Video connection. Since relational schema does not have a separate field for con-

nection types, the web application will translate the user inputs into the following

SQL query:

SELECT * FROM Product

WHERE Type = ’TV’ AND Brand = ’Sony’

AND ScreenSize Between 25 And 32

AND Description LIKE ’%S-Video%’

Alternatively, a “LIKE” operator could be replaced by a call to a full-text

search extension. Such extensions are currently provided by all major database

vendors.

Notice that the web application in the above example needs to know the

schema of the relational database to accurately translate user requests into SQL

queries. Even keyword search has to be invoked on a specific column (in this case

Product.Description).

A number of projects such as DISCOVER [42], BANKS [16], and DB

Explorer [3], have investigated the keyword proximity search, which allows running

unstructured search queries on the entire database, instead of a particular column,

and does not require any schema knowledge from the user. These systems take

advantage of the relational schema information to find groups of connected tuples

that contain all keywords of the query. They model the database as a graph, where

tuples are nodes and primary key to foreign key relationships are edges. Each node
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is associated with a set of keywords, which are contained in the attributes of the

corresponding tuple. The goal of the proximity search is to find the smallest

subtrees of the database graph that cover all the keywords of the query. Thus,

keywords of the query may occur in different fields of a tuple, or even different, yet

related, tuples. For example, a query (“TV”,“Sony”,“S-Video”) will have effect

similar to that of the query in Example 1. However, a keyword query cannot be

used to approximate the SQL “between” predicate in this example.

I.A.1 Schema Evolution in Relational Databases

No real world application ever remains static. Applications and their

databases have to adapt to new kinds of data and new requirements. Since the ap-

plications’ query translation requires tight coupling with the database schema, any

change to this schema has to be reflected in the applications’ translation algorithm.

Consider adding LCD TV’s to the catalog of the previous example. LCD’s

have many new searchable parameters that are not applicable for the traditional

CRT TV’s, such as native resolution, brightness and contrast. There are three

typical solutions to this schema evolution problem. The first solution is to add

new columns to the existing Product table. For the old products, all new columns

are set to NULL. The downside of this approach is that after a few iterations of

schema evolution the Product table will become very wide and sparse, i.e., will

contain relatively few non-null values. Wide and sparse tables waste space and

make query processing, including search, less efficient. The second approach to

this schema evolution problem is to create a separate table for each type of the

product. This design avoids sparse tables, however it has another drawback –

application queries often have to scan large unions of tables. For example, if

information about LCD and CRT TV’s is stored in two different tables, the query

of Example 1 would have to scan both tables to find all matching TV’s. The large

number of tables complicates query processing especially for queries that include

joins. Finally, the third option is to store all features in a single table with three
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column

ProductFeaturs(ProductID, FeatureName, FeatureV alue)

In this schema, a product’s Type, Brand, Model, ScreenSize, Price, and Description

would each be represented by a separate tuple. While being the most flexible, this

approach presents serious query processing challenges since each selection condition

on a column of the Product table, now becomes a join with the ProductFeaturs.

Notice that keyword proximity search systems support schema evolution

much better than the structured search. For instance, the in the first two ap-

proaches, keyword proximity search can find tuples that contain keywords different

fields. And in the third approach keyword proximity search can find the keywords

in multiple tuples of the ProductFeaturs connected by the same ProductID 1.

However, the keyword search alone, clearly cannot satisfy all search needs.

Another solution is needed, that would support efficient structured and unstruc-

tured search in presence of schema evolution. One such solution that has been

gaining momentum is based on the eXtensible Markup Language (XML) [96] data

format. The problem of schema evolution has recently been called “the killer app”

for the XML databases [77].

I.A.2 Search in XML Databases

The need for search queries, which became clear in the relational databases,

only increases with the arrival of XML databases. XML data is less rigid than re-

lational. XML documents are not required to have a schema. Even if an XML

document has a schema, the schema declaration may contain elements with arbi-

trary structure. This feature is especially popular for XML documents that contain

free text, possibly with some markup. Different XML documents describing the

same type of information may have different schemas if they have different origins.

Furthermore, schemas of XML documents tend to evolve, and documents in the

same collection may correspond to different versions of the same schema.
1Assuming that the ProductID column is the foreign key to some central Product table.
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<Product>

<Type> TV </Type>

<Brand> Sony </Brand>

<Model> KX-27 </Model>

<ScreenSize>27</screenSize>

<Price>300</Price>

<Features> <S-Video/> <Composite/> </Features>

<Description> 27" Trinitron TV with S-Video and composite inputs

</Description>

</Product>

Figure I.1: XML representation of the Sony TV catalog entry of Example 1

Due to this flexibility XML is less likely to be used in traditional OLTP

and OLAP applications such as payroll systems or retail sales analysis. However,

structured search is still very important in XML databases. For example, catalog

search applications are more likely to use XML databases then relational, due

to their natural support for schema evolution. Catalogs take advantage of XML

flexibility, where different products can have different sets of searchable fields, and

addition of a new product feature does not trigger a schema redesign.

There have been a number of proposals for XML query languages, but

the most prominent one, at this time, is the XQuery [101] standard proposed

by the World Wide Web Consortium (W3C). XQuery is very complex language

with many features designed to appeal to different communities interested in the

processing of XML data. We will limit ourselves to a subset of XQuery relevant to

structured search. This subset is formally defined in Section II.E. The following

example illustrates the use of XQuery for structured search.

Example 2 Consider the XML fragment of Figure I.1, which represents the cat-

alog entry of Example 1: Notice that the “S-Video” feature, which is likely to be

queried by the user, can now be represented in markup, and not only as textual

description. Thus a structured search query can find TV’s with S-Video inputs
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person

order

lineitem

part

nation
["US"]

partkey
[1002]

name
["TV"]

quantity
[10 ]

shipdate
[Nov  13 2001]

name
["John"]

date
[Nov  3 2001]

person

order

lineitem

nation
["US"]

quantity
[10 ] shipdate

[Oct  14 2001]

name
["Mike"]

date
[Oct  4 2001]

order

lineitem

quantity
[10 ]

shipdate
[Oct  15 2001]

date
[Oct  3 2001]

part

partkey
[1005]

name
["TV"]

lineitem

quantity
[6]

shipdate
[Oct  14 2001]

supplier linepart

supplier linepart

supplier linepart

supplier linepart

part

partkey
[1008]

name
["VCR"]

product

prodkey
[2005]

descr
["set of VCR

and DVD "]

service_call

date
[Nov  13 2001]

descr
[DVD error]

part

partkey
[1009]

name
["VCR"]

subpartsubpart

Figure I.2: Sample XML document

without using the keyword search capabilities. The following XQuery statement

achieves the same effect as the SQL query of Example 1.

FOR $prod in collection(Products)/Product

WHERE Type = ’TV’ AND Brand = ’Sony’

AND ScreenSize[. gt 25 AND . lt 32]

AND Features/S-Video

RETURN $prod

The fact that a relational text search predicate could be replaced by

an XML structure predicate, does not mean that unstructured search in XML

databases is less important than in relational systems. To the contrary, instead

of a single, largely static relational schema, XML database users and application

developers have to deal with a large number of evolving XML schemas. Thus, it is

very important to be able to find information in XML databases without knowing

exactly how this information is organized.

We investigate keyword proximity search in XML databases in the con-

text of a XKeyword system described in Chapter IV. XKeyword modeled XML

databases as labeled graphs, where edges correspond to element-subelement rela-

tionships and to IDREF pointers. The nodes of the graph are XML fragments
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(called target objects) that are semantically meaningful to the user, yet small

enough to be easily displayed. Towards this direction, XKeyword associates a

minimal piece of information, called target object, to each node and displays the

target objects instead of the nodes in the results. A keyword proximity query is

a set of keywords and the results are trees of target objects that contain all the

keywords and are ranked according to the tree size. Trees of smaller sizes denote

higher association between the keywords, which is generally true for reasonable

schema designs.

Example 3 Consider the data graph of Figure I.2, which combines product catalog

information with customer orders. The keyword query “John, VCR” has two an-

swers in this graph. The first highlighted tree (thick edges)

name[John] ← person ← supplier ← lineitem → linepart → product →
descr[set of V CR and DV D] on the source XML graph of Figure I.2 is a re-

sult of size 6. The second highlighted tree (gray arrows) name[John] ← person ←
supplier ← lineitem → linepart → part → subpart → part → name[V CR] is a

result of size 8. The highlighted boxes show the four target objects that cover the

second result. For example, we display the target object

part[partkey[1005], name[TV ]] in the place of the intermediate part node. We

consider the first result to be “better” since the shorter distance corresponds to

the closer connection between “John” and “VCR” in the first solution, where the

“VCR” is the product that “John” supplied, as opposed to being a sub-part of an-

other part supplied by “John”. Notice that we allow edges to be followed in either

direction.

However, keyword search by itself does not satisfy all search needs. Even

though, the users do not know the exact details of each XML schema used in the

database, they may be aware of certain parts of the schemas and some logical

entities and relationships that exist in the database. We argue that a new kind

of search is needed in XML databases, which will combine elements of structured
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and unstructured search in a single query. This new kind of search should allow

users to query the logical structure of the database and the known fragments of

the schema using value predicates, joins, and other features of structured search,

and at the same time, use keyword search and wildcards where the structure of the

data is not known. We refer to this type of search as semi-structured search since it

explores the space between structured search, which requires complete knowledge

of the schema, and unstructured search, where users cannot take advantage of any

schema information.

Example 4 Consider the following semi-structured search query that looks for the

Sony TV’s with some connections to John.

Product[Type = ’TV’ AND Brand = ’Sony’

AND ScreenSize > 25 AND ScreenSize < 32 AND Features/S-Video

AND //*[’John’]]

Here the “//*” is a wildcard, which implies a close semantic connection (but not

necessarily ancestor-descendant) between the keyword “John” and the product we

are searching for.

Searching the mix of structured and unstructured XML

XML data is increasingly used to represent a mix of structured data and

unstructured text. Such mixed data is yet another reason why semi-structured

search is needed in XML databases. Providing only structured information dis-

covery or only keyword search is not sufficient in modern enterprise information

systems. It has long been the case that analytical applications can work only with

clean and completely structured data. Any data without a strict structure can

only be searched using keywords, or the data has to be cleaned up and normalized

to fit into a fixed schema suitable for complex querying.

Transforming unstructured and semi-structured data to fit a fixed schema

is an expensive, tedious, and error-prone process. This transformation process

has to be constantly maintained as the underlying data and its structure evolves.
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Due to high initial and maintenance costs, for most of the enterprise data that

transformation is not practically feasible. Ability to analyze the data is critical

to the success of the enterprise, and it is no longer acceptable that only a small

fraction of data is available for analysis. Naturally, precise On-Line Analytical

Processing (OLAP) style analysis is not possible on completely unstructured data.

However, some middle-of-the-road approach is needed to investigate the trade-off

between flexibility in data structure and complexity of the queries. Recently, there

has been a strong interest in application of natural language processing (NLP)

techniques to extract structured information from unstructured texts, even at the

cost of some imprecision [86]. This illustrates the importance of unstructured data,

and willingness of the users to accept a certain amount of error in analyzing this

data.

Example 5 For example, the product database of Figure I.2 could be extended

to include customer complaints records, which could be analyzed by NLP tools to

identify the types of the complaints and the defective parts of the products. A semi-

structured search query could be used to find parts of Sony TV’s that are related to

John and had high severity complaints on them.

Part[Product[Type = ’TV’ AND Brand = ’Sony’

AND ScreenSize > 25 AND ScreenSize < 32 AND Features/S-Video]

AND //*[’John’] AND //Complaint[Severity<2]]

I.B Structured Search in XML Databases

One approach towards building XML DBMS’s is based on leveraging

an underlying RDBMS for storing and querying the XML data. This approach

allows the XML database to take advantage of mature relational technology, which

provides reliability, scalability, high performance indices, concurrency control and

other advanced functionality.
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Figure I.3: The XML database architecture

We introduce a framework for schema-guided decomposition of XML data

into relations. We identify a class of decompositions into non-normal form rela-

tions, called inlined, which allow us to trade storage space for query performance.

The impact of inlined decompositions on query performance is especially notable

in the reduction of response time, i.e. the time it takes to output the first results

of a query, which makes them well suited for structured search.

We have implemented the inlined decompositions in the presented

XCacheDB XML DBMS designed to support structured search [10]. XCacheDB

follows the typical architecture (see Figure I.3) of an XML database built on top

of a RDBMS [58, 75, 80, 17, 25]. First, XML data, accompanied by their XML

Schema [91], is loaded into the database using the XCacheDB loader, which consists

of two modules: the schema processor and the data decomposer. The schema pro-

cessor inputs the XML Schema and creates in the underlying relational database

tables required to store any document conforming to the given XML schema. The

conversion of the XML schema into relational may use optional user guidance. The
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mapping from the XML schema to the relational is called schema decomposition.2

The data decomposer converts XML documents conforming to the XML schema

into tuples that are inserted into the relational database.

XML data loaded into the relational database are queried by the XCacheDB

query processor. The processor exports an XML view identical to the imported

XML data. A client issues an XML query against the view. The processor trans-

lates the query into one or more SQL queries and combines the result tuples into

the XML result. Notice that the underlying relational database is transparent to

the query client.

The key challenges in XML databases built on relational systems are

1. how to decompose the XML data into relational data,

2. how to translate the XML query into a plan that sends one or more SQL

queries to the underlying RDBMS and constructs an XML result from the

relational tuple streams.

A number of decomposition schemes have been proposed [80, 17, 33, 25].

However all prior works have adhered to decomposing into normalized relational

schemas. Normalized decompositions convert an XML document into a typically

large number of tuples of different relations. Performance is hurt when an XML

query that asks for some parts of the original XML document results into an SQL

query (or SQL queries) that has to perform a large number of joins to retrieve and

reconstruct all the necessary information.

We provide a formal framework that describes a wide space of XML

Schema-driven denormalized decompositions and we explore this space to optimize

query performance. Note that denormalized decompositions may involve a set of

relational design anomalies; namely, non-atomic values, functional dependencies

and multivalued dependencies. Such anomalies introduce redundancy and impede

the correct maintenance of the database [36]. However, given that the decompo-

2XCacheDB stores it in the relational database as well.
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sition is transparent to the user, the introduced anomalies are irrelevant from a

maintenance point of view. Moreover, the XML databases today are mostly used

in web-based query systems where datasets are updated relatively infrequently

and the query performance is crucial. Thus, in our analysis of the schema de-

compositions we focus primarily on their repercussions on query performance and

secondarily on storage space and update speed.

The XCacheDB employs the most effective of the described decompo-

sitions. It employs two techniques that trade space for query performance by

denormalizing the relational data.

• non-Normal Form (non-NF) tables eliminate many joins, along with the par-

ticularly expensive join start-up time.

• Binary Large OBjects (BLOBs) are used to store pre-parsed XML fragments,

hence facilitating the construction of XML results. BLOBs eliminate the

joins and “order by” clauses that are needed for the efficient grouping of the

flat relational data into nested XML structures, as it was previously shown

in [79].

Overall, both of the techniques have a positive impact on total query

execution time in most cases. The results are most impressive when we measure

the response time, i.e. the time it takes to output the first few fragments of the

result.

Our main contributions in the area of structured search are:

• We provide a framework that organizes and formalizes a wide spectrum of

decompositions of the XML data into relational databases.

• We classify the schema decompositions based on the dependencies in the

produced relational schemas. We identify a class of mappings called inlined

decompositions that allow us to considerably improve query performance by

reducing the number of joins in a query, without a significant increase in the

size of the database.
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• We describe data decomposition, conversion of an XML query into an SQL

query to the underlying RDBMS, and composition of the relational result

into the XML result.

• We have built in the XCacheDB system the most effective of the possible

decompositions.

• Our experiments demonstrate that under typical conditions certain denor-

malized decompositions provide significant improvements in query perfor-

mance and especially in query response time. In some cases, we observed up

to 400% improvement in total time (Figure II.22, Q1 with selectivity 0.1%)

and 2-100 times in response time (Figure II.22, Q1 with selectivity above

10%).

I.C Unstructured Search in XML

Despite the structural flexibility of XML data, one still needs sufficient

knowledge of the structure, role of the requested objects and XQuery in order to

formulate a meaningful query to XCacheDB or any other XML database. Keyword

search does not present such requirements; it enables information discovery by

providing a simple and intuitive interface.

The search engines available today provide keyword search on top of sets

of documents. When a set of keywords is provided by the user the search engine

returns all documents that are associated with these keywords. Typically, a set

of keywords and a document are associated if the keywords are contained in the

document. Their degree of associativity is often their distance from each other.

XKeyword follows a recent generation of information retrieval systems

that provide keyword proximity search [39, 42, 16, 3] to structured and semistruc-

tured databases. XKeyword differs from prior systems for proximity search on

labeled graphs in that it assumes the existence of a schema, similar to the XML

Schema standard [91], to which the graph conforms. The schema facilitates the
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p1: person
[name="John"

nation="US"]

l1: lineitem
[quantity=10

shipdate=Oct  14 2001]

l2: lineitem
[quantity=10

shipdate=Oct  15 2001]

pa3: part
[partkey=1005
name="TV"]

pa1: part
[partkey=1008
name="VCR"]

supplier

supplier

linepart

linepart
subpart

pa2: part
[partkey=1009
name="VCR"]

subpart

Figure I.4: Multivalued dependencies in results

presentation of the results and is also used in optimizing the performance of the

system. Note that the end-user does not need to be aware of the schema.

The presentation of the results faces two key challenges that have not been

addressed by prior systems. First, the results need to be semantically meaningful

to the user. Towards this direction, XKeyword associates a minimal piece of infor-

mation, called target object, to each node and displays the target objects instead of

the nodes in the results. For example, in the query result of Figure I.4 we display

the target object part[partkey[1005], name[TV ]] in the place of the intermediate

part node pa3. Target objects are designated by the system administrator who

splits the schema graph in minimal self-contained information pieces, which we call

Target Schema Segments (TSS) and correspond to the target objects presented to

the user. Furthermore, the edges connecting the target objects in the presentation

graph are annotated with their semantic description, which is defined on the TSS

graph. For example the part → part edge is named “subpart”. The edge labels are

displayed with the results to enhance the presentation.

The second challenge is to avoid overwhelming the user with a huge num-

ber of often trivial results, as is the case with DISCOVER [42] and DBXplorer [3]3.

Both of those systems present all trees that connect the keywords. In doing so they

produce a large number of trees that contain the same pieces of information many

times. For example, consider the result of the keyword query “US, VCR” shown

in Figure I.4. This XML fragment contains four results:

3Both systems work on relational databases, but the presentation challenges are similar.
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N1 : p1 ← l1 → pa3 → pa1, N2 : p1 ← l2 → pa3 → pa2,

N3 : p1 ← l2 → pa3 → pa1, N4 : p1 ← l1 → pa3 → pa2

The above results contain a form of redundancy similar to multivalued dependen-

cies [36]: we can infer N3 and N4 from N1 and N2. In that sense, N3 and N4 are

trivial, once N1 and N2 are given. Such trivial results penalize performance and

overwhelm the user. XKeyword avoids producing “duplicate” results by employing

a smart execution algorithm, and avoids the presentation “blow-up” by showing

only a subset of the graph as it is formulated by various navigation actions of the

user.

Two key challenges arise on the way to providing fast response times.

First, the XML data has to be stored efficiently to allow the fast discovery of con-

nections between the elements that contain the keywords. We employ XCacheDB

database system which stores the XML data in a relational database (described in

Chapter II), which we tune to provide the needed indexing and clustering. Then

XKeyword builds a set of connection relations, which precompute particular path

and tree connections on the TSS graph. Connection relations are similar to path

indices [31] since they facilitate fast traversal of the database, but also different

because they can connect more than two objects and they store the actual path

between a set of target objects, which is needed in the answer of the keyword

query. A core problem is the choice of the set of connection relations that are

precomputed.

Second, the cost of computing the full presentation graph is very high.

Hence XKeyword uses an on-demand execution method, where the execution is

guided according to the user’s navigation. We present an algorithm that gener-

ates a minimal set of queries to the underlying database in response to the user’s

navigation.

In summary, we make a number of contributions in the area of keyword

proximity search:

• We present keyword proximity search semantics, extended to capture our
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novel result presentation method, which prevents information overflow and

allows the user to navigate in the result.

• We present an architecture and framework that allows for choosing which

connections between objects will be precomputed. We present rules to avoid

generating any useless connection relation, i.e., connection relations that are

not efficient to evaluate any CN. We show how to bound the number of joins

needed to output a solution.

• We address the on-demand performance requirement of the presentation ap-

proach and we compare and analyze different decomposition schemes with

respect to it. We also present an algorithm that efficiently generates the

full list of results by caching partial results and avoiding to recompute the

common result portions and show experimentally that it is up to 80% faster

than the naive approach used in [42] and [3].

XKeyword has been implemented (Figure IV.2) and a demo is available at

http://www.db.ucsd.edu/XKeyword, which operates on the XML data of the DBLP

database.

I.D Semi-Structured Search System

To bridge the gap between traditional databases and information retrieval

systems, we propose a Semi-Structured Search System (S4) architecture. The goal

is to enable a non-expert user to ask ad-hoc, information discovery queries without

any knowledge of the dataset and its schema.

The power of S4 comes from the combination of its three distinguishing

features:

• XML datasets are modeled as graphs of entities and relationships. This

conceptual model is much more intuitive to the user than a particular schema
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that implements the concept. It allows semantic querying without knowledge

of element names or the structure of the hierarchy.

• The S4 features efficient processing of tree pattern queries. A node of the

query tree can be labeled with an entity name, a wildcard, a keyword, or a

local predicate. Edges of the pattern are labeled with relationship names or

wildcards.

• The results of the search are fragments of the XML dataset that satisfy the

query conditions. The fragments are ordered by their query-specific rank,

computed by a schema aware, “Page-Rank like” authority ranking mecha-

nism.

We observe that many of the techniques designed to improve query pro-

cessing performance in the XCacheDB and XKeyword systems, translate well

into S4 setting. The same framework of schema fragments that was used in the

XCacheDB and XKeyword for XML data decomposition and storage can be used

in a hybrid DB/IR system. The fragments are a convenient way to model S4

materialized views, which are needed to provide reasonable query performance in

S4.

We do not claim to have solved the problem of bringing together the full

power of database and information retrieval systems. Some serious technical chal-

lenges still need to be addressed before S4 design can be successful in practice. For

instance, the view containment problem is NP-hard. We propose an incomplete,

but sound and efficient algorithm to decide view containment. However, there is

more work to be done in identifying classes of queries and views where this (or

other) algorithm will be successful. Also, the problems of query plan selection

and view selection remain open. We outline these challenges and possible ways of

addressing them.
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I.E Supporting Updates in XML Databases

Up to now we have concentrated on query processing in XCacheDB, how-

ever, any database also has to support data updates. The XCacheDB implements

XML updates by translating them into SQL update statements on the underlying

relational database. However, the relational database cannot enforce XML struc-

tural integrity. External processing is needed to verify that an updated document

still satisfies its schema. Doing this efficiently is a challenging problem. Brute-force

validation from scratch is not practical when the data are large, because it may

require reading and validating the entire database following each update. Instead,

it is desirable to develop algorithms for incremental validation. However, this

approach has been largely unexplored. We investigated the efficient incremental

validation of updates to XML documents.

An XML document can be viewed abstractly as a tree of nested elements.

The basic mechanism for specifying the type of XML documents is provided by

Document Type Definitions (DTDs) [89]. DTDs can be abstracted as extended

context-free grammars (CFGs). Unlike usual CFGs, the productions of extended

CFGs have regular expressions on their right-hand sides. An XML document

satisfies a DTD if its abstraction as a tree is a derivation tree of the extended CFG

corresponding to the DTD.

Verifying that a word satisfies a regular expression4 is the starting point

in checking that an XML document satisfies a DTD. An obvious way to do this

following an update is to verify it from scratch, i.e. run the updated sequence of

labels through the non-deterministic finite automaton (NFA) corresponding to the

regular expression. However, this requires O(n) steps, under any reasonable set of

unit operations, where n is the length of the sequence. We can do better by using

incremental validation, relying on an appropriate auxiliary data structure. Indeed,

we provide such a structure and corresponding incremental validation algorithm

that, given a regular expression r, a string s of length n that satisfies r, and a se-

4A word satisfies a regular expression if it belongs to the corresponding language.
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quence of m updates (inserts, deletes, label renamings) on s, checks5 in O(m log n)

whether the updated string satisfies r. The auxiliary structure we use material-

izes in advance relations that describe state transitions resulting from traversing

certain substrings in s. These are placed in a balanced tree structure that is main-

tained similarly to B-trees and is well-behaved under insertions and deletions. The

size of the auxiliary structure is O(n). In addition, we provide an O(m log n) time

algorithm that maintains the auxiliary structure, so that subsequent updates can

also be incrementally validated.

Our approach to incremental validation of trees with respect to DTDs

builds upon the incremental validation algorithm for strings. Incremental vali-

dation of m updates to a tree T with respect to a DTD can be done in time

O(m log |T |) using an auxiliary structure of size O(|T |) which can also be main-

tained in time O(m log |T |).
We then consider a restricted class of DTDs called “local”, that arises

very frequently in practice. Intuitively, these are DTDs using regular expressions

for which membership after an update can be determined locally, by examining

only substrings within bounded distance from the update position. This allows for

a very efficient incremental validation algorithm. Although the theoretical worst-

case data complexity of validating m updates is still O(m log |T |), and the auxiliary

structure has size O(i log(|T |/i)), where i is the number of internal nodes of T , the

algorithm can be implemented very efficiently. Furthermore, if no internal nodes

may be renamed, there is no need for an auxiliary data structure. In practice, the

technique provides constant time validation, with space overhead of O(i) counters

that are represented very efficiently by usual 32-bit integers, which are sufficient

when the maximum size of element lists in the database is 232. In addition to its

simple implementation and efficiency, local validation is very frequent. We tested

60 DTDs from OASIS (see [20]), which contained 2141 complex regular expressions.

Only 21 regular expressions in 10 DTDs were not local.

5For readability, we provide here the complexity with respect to the string and update sequence, for
fixed DTD or regular expression. The combined complexity is spelled out in the Chapter III.
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Finally, in the last part of the chapter, we evaluated the general DTD

incremental validation algorithm, the validation algorithm for local DTDs, and a

brute-force (re-)validation algorithm on an XML database that operates on top

of a commercial RDBMS system. We describe the XML database and the imple-

mentation of the necessary data structures on top of an RDBMS. We discuss the

applicability of the validation algorithm for local DTDs and a set of performance

results that indicate its superiority over general incremental validation in the case

of local DTDs. The experiments also quantify the significant superiority of both

incremental validation algorithms over the brute-force technique. Finally, the ex-

periments provide useful data for the optimization of various parameters of the

data structures.



Chapter II

XCacheDB: RDBMS Backed

Structured Querying of

Semistructured Data

II.A Introduction

The acceptance and expansion of the XML model creates a need for XML

database systems [80, 17, 25, 58, 75, 74, 48, 13, 63, 1, 38, 76, 29, 95]. Our approach

towards building XML DBMS’s is based on leveraging mature relational technol-

ogy, which provides reliability, scalability, high performance indices, concurrency

control and other advanced functionality.

We provide a formal framework for XML Schema-driven decompositions

of the XML data into relational data. The described framework encompasses the

decompositions described in prior work on XML Schema-driven decompositions

[80, 17] and extends prior work with a wide range of decompositions that employ

denormalized tables and binary-coded non-atomic XML fragments. The most ef-

fective among the set of the described decompositions have been implemented in

the presented XCacheDB, an XML DBMS built on top of a commercial RDBMS

[10].

21
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A number of decomposition schemes have been proposed [80, 17, 33, 25].

However all prior works have adhered to decomposing into normalized relational

schemas. Normalized decompositions convert an XML document into a typically

large number of tuples of different relations. Performance is hurt when an XML

query that asks for some parts of the original XML document results into an SQL

query (or SQL queries) that has to perform a large number of joins to retrieve and

reconstruct all the necessary information.

We provide a formal framework that describes a wide space of XML

Schema-driven denormalized decompositions and we explore this space to opti-

mize query performance. Note that denormalized decompositions may involve a

set of relational design anomalies; namely, non-atomic values, functional depen-

dencies and multivalued dependencies. Such anomalies introduce redundancy and

impede the correct maintenance of the database [36]. However, given that the

decomposition is transparent to the user, the introduced anomalies are irrelevant

from a maintenance point of view. Moreover, the XCacheDB is designed primarily

for use in web-based query systems where datasets are updated relatively infre-

quently and the query performance is crucial. Thus, in our analysis of the schema

decompositions we focus primarily on their repercussions on query performance

and secondarily on storage space and update speed.

The XCacheDB employs the most effective of the described decompo-

sitions. It employs two techniques that trade space for query performance by

denormalizing the relational data.

• non-Normal Form (non-NF) tables eliminate many joins, along with the par-

ticularly expensive join start-up time.

• BLOBs are used to store pre-parsed XML fragments, hence facilitating the

construction of XML results. BLOBs eliminate the joins and “order by”

clauses that are needed for the efficient grouping of the flat relational data

into nested XML structures, as it was previously shown in [79].
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Overall, both of the techniques have a positive impact on total query

execution time in most cases. The results are most impressive when we measure

the response time, i.e. the time it takes to output the first few fragments of the

result. Response time is important for web-based query systems where users tend

to, first, issue under-constrained queries, for purposes of information discovery.

They want to quickly, retrieve the first results and then issue a more precise query.

At the same time, web interfaces do not need more than the first few results since

the limited monitor space does not allow the display of too much data. Hence it

is most important to produce the first few results quickly.

Our main contributions are:

• We provide a framework that organizes and formalizes a wide spectrum of

decompositions of the XML data into relational databases.

• We classify the schema decompositions based on the dependencies in the

produced relational schemas. We identify a class of mappings called inlined

decompositions that allow us to considerably improve query performance by

reducing the number of joins in a query, without a significant increase in the

size of the database.

• We describe data decomposition, conversion of an XML query into an SQL

query to the underlying RDBMS, and composition of the relational result

into the XML result.

• We have built in the XCacheDB system the most effective of the possible

decompositions.

• Our experiments demonstrate that under typical conditions certain denor-

malized decompositions provide significant improvements in query perfor-

mance and especially in query response time. In some cases, we observed up

to 400% improvement in total time (Figure II.22, Q1 with selectivity 0.1%)

and 2-100 times in response time (Figure II.22, Q1 with selectivity above

10%).
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The rest of this chapter is organized as follows. In Section II.B we discuss

related work. In Section II.C, we present definitions and framework. Section II.D

presents the decompositions of XML Schemas into sets of relations. In Section II.E,

we present algorithms for translating the XML queries into SQL, and assembling

the XML results. In Section II.F, we discuss the architecture of XCacheDB along

with interesting implementation aspects. In Section II.G, we present the experi-

ment results. We conclude and discuss directions for future work in Section II.H.

II.B Related Work

The use of relational databases for storing and querying XML has been

advocated before by [17, 80, 33, 58, 25, 75]. Some of these works [33, 58, 25]

did not assume knowledge of an XML schema. In particular, the Agora project

employed a fixed relational schema, which stores a tuple per XML element. This

approach is flexible but it is less competitive than the other approaches, because

of the performance problems caused by the large number of joins in the resulting

SQL queries. The STORED system [25] also employed a schema-less approach.

However, STORED used data mining techniques to discover patterns in data and

automatically generate XML-to-Relational mappings.

The works of [80] and [17] considered using DTD’s and XML Schemas

to guide mapping of XML documents into relations. [80] considered a number

of decompositions leading to normalized tables. The “hybrid” approach, which

provides the best performance, is identical to our “minimal 4NF decomposition”.

The other approaches of [80] can also be modeled by our framework. In one respect

our model is more restrictive, as we only consider DAG schemas while [80] also

takes into account cyclic schemas. It is possible to extend our approach to arbitrary

schema graphs by utilizing their techniques. [17] studies horizontal and vertical

partitioning of the minimal 4NF schemas. Their results are directly applicable in

our case. However we chose not to experiment with those decompositions, since
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their effect, besides being already studied, tends to be less dramatic than the effect

of producing denormalized relations. Note also that [17] uses a cost-based optimizer

to find an optimal mapping for a given query mix. The query mix approach can

benefit our work as well.

To the best of our knowledge, this is the first work to use denormalized

decompositions to enhance query performance.

There are also other related works in the intersection of relational databases

and XML. The construction of XML results from relational data was studied by

[79, 32, 30]. [79] considered a variety of techniques for grouping and tagging results

of the relational queries to produce the XML documents. It is interesting to note

the comparison between the “sorted outer union” approach and BLOBs, which

significantly improve query performance. The SilkRoute [32, 30] considered using

multiple SQL queries to answer a single XML Query and specified the optimal

approach for various situations, which are applicable in our case as well.

Oracle 8i/9i, IBM DB2, and Microsoft SQL Server provide some basic

XML support [13, 74, 48]. None of these products support XQuery or any other

full-featured XML query language.

Another approach towards storing and querying XML is based on native

XML and OODB technologies [76, 63, 1, 38]. The BLOBs resemble the common

object-oriented technique of clustering together objects that are likely to be queried

and retrieved jointly [12]. Also, the non-normal form relations that we use are

similar to path indices, such as the “access support relations” proposed by Kemper

and Moerkotte [50]. An important difference is that we store data together with

an index, similarly to Oracle’s “index organized tables” [13].

A number of commercial XML databases are available. Some of these

systems [51, 27, 59] only support API data access and are effectively persistent im-

plementations of the Document Object Model [88]. However, most of the systems

[22, 29, 98, 43, 45, 94, 64, 76, 66, 95, 6, 104] implement the XPath query language

or its variations. Some vendors [76, 29, 64] have announced XQuery [101] support
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in the upcoming versions, however only X-Hive 3.0 XQuery processor [95] and

Ipedo XML Database [45] were publically available at the time of writing.

The majority of the above systems use native XML storage, but some

[29, 95, 94] are implemented on top of object-oriented databases. Besides the

query processing some of the commercial XML databases support full text searches

[45, 95, 104], transactional updates [22, 29, 98, 45, 94, 64] and document versioning

[45, 94].

Even though XPath does not support heterogeneous joins, some systems

[76, 66] recognize their importance for the data integration applications and provide

facilities that enable this feature.

Our work concentrates on selection and join queries. Another important

class of XML queries involve path expressions. A number of schemes [54, 46]

have been proposed recently that employ various node numbering techniques to

facilitate evaluation of path expressions. For instance, [54] proposes to use pairs of

numbers (start position and sub-tree size) to identify nodes. The XSearch system

[103] employs Dewey encoding of node IDs to quickly test for ancestor-descendant

relationships. These techniques can be applied in the context of XCacheDB, since

the only restriction that we place on node IDs is their uniqueness.

II.C Framework

We use the conventional labeled tree notation to represent XML data.

The nodes of the tree correspond to XML elements, and are labeled with the tags

of the corresponding elements. Tags that start with the “@” symbol stand for

attributes. Leaf nodes may also be labeled with values that correspond to the

string content.

Note that we treat XML as a database model that allows for rich struc-

tures that contain nesting, irregularities, and structural variance across the objects.

We assume the presence of XML Schema, and expect the data to be accessed via an
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LineItem
[id=21]

Part
[id=22] 
[3655]

Supplier
[id=23] 
[415]

Price
[id=23] 

[57670.05]

Quantity
[id=24] 
[37.0]

Discount
[id=25] 
[0.09]

Preferred
Supplier
[id=36]

Name [id=38] 
[“Supplier10”]

Number
[id=37]
[10]

Address
[id=39]

Nation
[id=42] 
[“USA”]

Street [id=40] 
[“1 supplier10 st.”]

City
[id=41] 

[“San Diego,
CA 92126”]

Customer
[id=2]

Address [id=43] 
[“1 furniture way, 

CA 92093”]

Market
Segment
[id=44] 

[“furniture”]

Name
[id=28] 

[“Customer#1”]Order
[id=13]

Status
[id=20] 
[“F”]

Number
[id=14] 

[135943]

Price
[id=26] 

[263247.53]

Date [id=27] 
[6/22/1993 0:0:0]

Customers
[id=1]

Preferred
Supplier
[id=29]

Number
[id=30]
[415]

Address
[id=32]

Nation
[id=35] 

[“USA”]

City [id=34 
[“San Diego,
CA 92126”]

Name [id=31]
[“Supplier415”]

Street [id=33] 
[“1 supplier415 st.”]

Order
[id=3]

Status
[id=5] 
[“O”]

Number
[id=4] 

[36422]

Price
[id=11] 

[268835.44]

Date [id=12] 
[3/4/1997 0:0:0]

LineItem
[id=6]

Part
[id=7] 

[15412]

Supplier
[id=8] 
[678] Price

[id=9] 
[35840.07]

Quantity
[id=10] 
[27.0]

LineItem
[id=15]

Part
[id=16] 
[9897]

Supplier
[id=17] 
[416]

Price
[id=18] 

[66854.93]

Quantity
[id=19] 
[37.0]

Figure II.1: A sample TPCH-like XML data set. Id’s and data values appear in

brackets.
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XML query language such as XQuery. We have excluded many document oriented

features of XML such as mixed content, comments and processing instructions.

Every node has a unique id invented by the system. The id’s play an

important role in the conversion of the tree to relational data, as well as in the

reconstruction of the XML fragments from the relational query results.

Definition 1 (XML document) An XML document is a tree where

1. Every node has a label l coming from the set of element tags L

2. Every node has a unique id

3. Every atomic node has an additional label v coming from the set of values V .

Atomic nodes can only be leafs of the document tree. 1

Figure II.1 shows an example of an XML document tree. We will use this

tree as our running example. We consider only unordered trees. We can extend

our approach to ordered trees because the node id’s are assigned by a depth first

traversal of the XML documents, and can be used to order sibling nodes.

II.C.1 XML Schema

We use schema graphs to abstract the syntax of XML Schema Definitions

[91]. The following example illustrates the connection between XML Schemas and

schema graphs.

Example 6 Consider the XML Schema of Figure II.2 and the corresponding schema

graph of Figure II.3. They both correspond to the TPC-H [85] data of Figure II.1.

The schema indicates that the XML data set has a root element named Customers,

which contains one or more Customer elements. Each Customer contains (in some

order) all of the atomic elements Name, Address, and MarketSegment, as well as

zero or more complex elements Order and PreferedSupplier. These complex ele-

ments in turn contain other sets of elements.

1However, not every leaf has to be an atomic node. Leafs can also be empty elements.
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<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2000/10/XMLSchema">
<xsd:element name = "customers">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref = "customer" minOccurs = "0" maxOccurs = "unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name = "customer">

<xsd:complexType>
<xsd:all>

<xsd:element ref = "number"/>
<xsd:element ref = "name"/>
<xsd:element ref = "address"/>
<xsd:element ref = "market"/>
<xsd:element ref = "orders" minOccurs = "0" maxOccurs = "unbounded"/>
<xsd:element ref = "preferred_supplier" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:all>
</xsd:complexType>

</xsd:element>
<xsd:element name = "number" type = "xsd:integer"/>
<xsd:element name = "name" type = "xsd:string"/>
<xsd:element name = "address" type = "xsd:string"/>
<xsd:element name = "market" type = "xsd:string"/>
<xsd:element name = "orders">

<xsd:complexType>
<xsd:all>

<xsd:element ref = "number"/>
<xsd:element ref = "status"/>
<xsd:element ref = "price"/>
<xsd:element ref = "date"/>
<xsd:element ref = "lineitem" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:all>
</xsd:complexType>

</xsd:element>
<xsd:element name = "preferred_supplier">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref = "number"/>
<xsd:element ref = "name"/>
<xsd:element ref = "address"/>
<xsd:element ref = "nation"/>
<xsd:element ref = "balance"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name = "status" type = "xsd:string"/>
<xsd:element name = "price" type = "xsd:float"/>
<xsd:element name = "date " type = "xsd:string"/>
<xsd:element name = "lineitem">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref = "part"/>
<xsd:element ref = "supplier"/>
<xsd:element ref = "quantity"/>
<xsd:element ref = "price"/>
<xsd:element ref = "disc ount" minOccurs = "0"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name = "part" type = "xsd:integer"/>
<xsd:element name = "supplier" type = "xsd:integer"/>
<xsd:element name = "quantity" type = "xsd:float"/>
<xsd:element name = "discount" type = "xsd:float"/>

<xsd:element name = "nation" type = "xsd:string"/>
<xsd:element name = "balance" type = "xsd:float"/>

</xsd:schema>

Figure II.2: The TPCH XML Schema
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LineItem

Part
[Integer]

Supplier
[Integer]

Price
[Float]

Quantity
[Float]

Discount
[Float]

?

Customers

Address
[String]

Market
Segment
[String]

Name
[String]

Customer

All

All

Order

*

Status
[String]

Number
[Integer]

Price
[Float]

Date
[Date]

All

Preferred
Supplier

Name
[String]

Number
[Integer]

Address

Nation
[String]

Street
[String]

City
[String]

*

�

All

All

*

Figure II.3: Schema Graph notation

Notice that XML schemas and schema graphs are in some respect more

powerful than DTDs [89]. For example, in the schema graph of Figure II.3 both

Customer and Supplier have Address subelements, but the customer’s address is

simply a string, while the supplier’s address consists of Street and City elements.

DTD’s cannot contain elements with the same name, but different content types.

Definition 2 (Schema Graph) A schema is a directed graph G where:

1. Every node has a label l that is one of “all”, or “choice”, or is coming from

the set of element tags L. Nodes labeled “all” and “choice” have at least two

children.

2. Every leaf node has a label t coming from the set of types T .

3. Every edge is annotated with “minOccurs” and “maxOccurs” labels, which

can be a non-negative integer or “unbounded”.

4. A single node r is identified as the “root”. Every node of G is reachable from

r.
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Address

Zip
[String]

Street
[String]

Choice

All

PO Box
[String]

T T T T (                  ) = {{ Address }}

T T T T (                ) = {{ PO Box }}T T T T (                ) = {{  Street }}

T T T T (               ) = {{ Street }, { PO Box }}

T T T T (           ) = {{ Zip , Street }, {  Zip , PO Box } }

1:1

1:1

1:1 1:1

1:1

T T T T (                ) = {{ Zip }}
PO Box
[id = 8]
[1000]

Zip
[id = 7]
[92126]

Address
[id = 6]

Figure II.4: Content Types and Document Tree Validation

Schema graph nodes labeled with element tags are called tag nodes; the

rest of the nodes are called link nodes.

Since we use an unordered data model, we do not include “sequence”

nodes in the schema graphs. Their treatment is identical to that of “all” nodes. We

also modify the usual definition of a valid document to account for the unordered

model. To do that, we, first, define the content type of a schema node, which

defines bags of sibling XML elements that are valid with respect to the schema

node.

Definition 3 (Content Type) Every node g of a schema graph G is assigned a

content type T (g), which is set of bags of schema nodes, defined by the following

recursive rules.

• If g is a tag node, T (g) = {{g}}

• If g is a “choice” node g = choice(g1, . . . , gn), with min/maxOccur labels

of the g → gi edge denoted mini and maxi, then T (g) =
⋃n

i=1 T maxi
mini

(gi),

where T maxi
mini

(gi) is a union of all bags obtained by concatenation of k, not

necessarily distinct, bags from T (gi), where mini ≤ k ≤ maxi, or mini ≤ k

if maxi = “unbounded”. If mini = 0, T maxi
mini

(gi) also includes an empty bag.

• If g is an “all” node g = all(g1, . . . , gn), then T (g) is a union of all bags

obtained by concatenation of n bags – one from each T maxi
mini

(gi).
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Definition 4 (Document Tree Valid wrt Schema Graph) We say that a doc-

ument tree T is valid with respect to schema graph G, if there exist a total mapping

M of nodes of T to the tag nodes of G, such that root(T ) maps to root(G), and

for every pair (t, g) ∈M, the following holds:

1. label(t) = label(g)

2. A bag of schema nodes to which the children of t map is a member of

T max
min (gc), where gc is the child of g, and min and max are min/maxOccur

labels of the g → gc edge.

Figure II.4 illustrates how the content types are assigned and used in the

document validation. The Address element on the right is valid with respect to

the schema graph on the left. Each schema node is annotated with its content

type. For example, the type of the “choice” node is {{Street},{PO Box}}. The

document validation is done by mapping XML tree nodes to the tag nodes of the

schema graph (mappings are shown by the dashed lines), in such a way that the

bag of types corresponding to the children of every XML node is a member of

the content type of the child of the corresponding schema node. For example, the

children of the Address element belong to the content type of the “all” node.

Normalized Schema Graphs To simplify the presentation we only consider

normalized schema graphs, where all incoming edges of link nodes have maxOccurs =

1. Any schema graph can be converted into, a possibly less restrictive, normal-

ized schema graph by a top-down breadth-first traversal of the schema graph that

applies the following rules. For every link node N that has an incoming edge

with minOccurs = inMin and maxOccurs = inMax, where inMax > 1, the

maxOccurs is set to 1 and the maxOccurs of every outgoing edge of N is multi-

plied by inMax. The result of the product is “unbounded” if at least one param-

eter is “unbounded”. Similarly, if inMin > 1, the minOccurs is set to 1 and the

minOccurs of every outgoing edge of N is multiplied by inMin. Also, if N is a
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Customer

Choice

Preferred
Supplier

Address

Zip
[String]

Street
[String]

All

Choice

All

PO Box
[String]

Customer

All

Preferred
Supplier

Address

Zip
[String]

Street
[String]

*

All

Choice

All

PO Box
[String]

Customer

Choice

Preferred
SupplierAddress

Zip
[String]

Street
[String]

All

Choice

All

PO Box
[String]

Zip
[String]

Street
[String]

Choice

All

PO Box
[String]

(a)

Addresses

(b) (c)

* *

*

Figure II.5: Schema graphs (a) and (b) are equivalent. Graph (c) is normalization

of graph (a).

“choice”, it gets replaced with an “all” node with the same set of children, and for

every outgoing edge the minOccur is set to 0. For example, the schema graph of

Figure II.5(a) will be normalized into the graph of Figure II.5(c). Notice that the

topmost “choice” node is replaced by “all”, since a customer may contain multiple

addresses and preferred supplier records.

Without loss of generality to the decomposition algorithms described

next, we only consider schemas where minOccurs ∈ {0, 1} and manOccurs is

either 1 or unbounded. We use the following symbols: “1”, “*”, “?”, “+”, to en-

code the “minOccurs”/“maxOccurs” pairs. For brevity, we omit “1” annotations

in the figures. We also omit “all” nodes if their incoming edges are labeled “1”,

whenever this doesn’t cause an ambiguity.

We only consider acyclic schema graphs. Schema graph nodes that are

pointed by a “*” or a “+” will be called repeatable.
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Order

LineItem

Part
Supplier Price

Quantity

Discount
?

Status

Number

Price

Date

Preferred
Supplier

Name

Number
Nation

Address

Street City

*

Customer

Address

Market
SegmentName

*

Customers

�

*

Figure II.6: An XML Schema decomposition

II.D XML Decompositions

We describe next the steps of decomposing an XML document into a

relational database. First, we produce a schema decomposition, i.e., we use the

schema graph to create a relational schema. Second, we decompose the XML data

and load it into the corresponding tables. We use the schema decomposition to

guide the data load.

The generation of an equivalent relational schema proceeds in two steps.

First, we decompose the schema graph into fragments. Second, we generate a

relational table definition for each fragment.

Definition 5 (Schema Decomposition) A schema decomposition of a schema

graph G is a set of fragments F1, . . . , Fn, where each fragment is a subset of nodes

of G that form a connected DAG. Every tag node of G has to be member of at least

one fragment.

Due to acyclicity of the schema graphs, each fragment has at least one

fragment root node, i.e., a node that does not have incoming edges from any other
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node of the fragment. Similarly, fragment leaf nodes are the nodes that do not

have outgoing edges that lead to other nodes of the fragment. Note that a schema

decomposition is not necessarily a partition of the schema graph – a node may be

included in multiple fragments (Figure II.6).

Some fragments may contain only “choice” and “all” nodes. We call

these fragments trivial, since they correspond to empty data fragments. We only

consider decompositions which contain connected, non-trivial fragments, where all

fragment leafs are tag nodes.

DAG schemas offer an extra degree of freedom, since an equivalent schema

can be obtained by “splitting” some of the nodes that have more than one ancestor.

For example, the schema of Figure II.5(b), can be obtained from the schema of

Figure II.5(a) by splitting at element Address. Such a split corresponds to a derived

horizontal partitioning of a relational schema [67].

Similarly, element nodes may also be eliminated by “combining” nodes.

For example, an all(a∗, b, a∗) may be reduced to all(a∗, b) if types of both a’s are

equal 2. Since we consider an unordered data model, the queries cannot distinguish

between “first” and “second” a’s in the data. Thus, we do not need to differentiate

between them. A similar DTD reduction process was used in [80]. However, unlike

[80] our decompositions do not require reduction and offer flexibility needed to

support the document order. Similar functionality is included in LegoDB [17].

Definition 6 (Path Set, Equivalent SchemaGraphs) A path set of a schema

graph G, denoted PS(G), is the set of all possible paths in G that originate at the

root of G. Two schema graphs G1 and G2 are equivalent if PS(G1) = PS(G2).

We define the set of generalized schema decompositions of a graph G

to be the set of schema decompositions of all graphs G′ that are equivalent to G

(including the schema decompositions of G itself.) Whenever it is obvious from the

context we will say “set of schema decompositions” implying the set of generalized

2We say that types A and B are equal, if every element that is valid wrt A is also valid wrt B, and
vice versa.
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schema decompositions.

Definition 7 (Root Fragments, Parent Fragments) A root fragment is a frag-

ment that contains the root of the schema graph. For each non-root fragment F

we define its Parent Fragments in the following way: Let R be a root node of F ,

and let P be a parent of R in the schema graph. Any fragment that contains P is

called a parent fragment of F . 3

Definition 8 (Fragment Table) A Fragment Table T corresponds to every frag-

ment F . T has an attribute ANID
of the special “ID” datatype4 for every tag node

N of the fragment. If N is an atomic node the schema tree T also has an attribute

AN of the same datatype as N . If F is not a root fragment, T also includes a

parent reference column, of type ID, for each distinct path that leads to a root of

F from a repeatable ancestor A and does not include any intermediate repeatable

ancestors. The parent reference columns store the value of the ID attribute of A.

For example, consider the Address fragment table of Figure II.7. Re-

gardless of other fragments present in the decomposition, the Address table will

have two parent reference columns. One column will refer to the Customer element

and another to the Supplier. Since we consider only tree data, every tuple of the

Address table will have exactly one non-null parent reference.

A fragment table is named after the left-most root of the corresponding

fragment. Since multiple schema nodes can have the same name, name collisions

are resolved by appending a unique integer.

We use null values in ID columns to represent missing optional elements.

For example, the null value in the POBox id of the first tuple of the Address table

indicates that the Address element with id=2 does not have a POBox subelement.

An empty XML element N is denoted by a non-null value in ANID
and a null in

AN .

3Note that a decomposition can have multiple root fragments, and a fragment can have multiple parent
fragments.

4In RDBMS’s we use the “integer” type to represent the “ID” datatype.
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Figure II.7: Loading data into fragment tables

Data Load We use the following inductive definition of fragment tables’ content.

First, we define the data content of a fragment consisting of a single tag node N .

The fragment table TN , called node table, contains an ID attribute ANID
, a value

attribute AN , and one or more parent attributes. Let us consider a Typed Document

Tree D′, where each node of D is mapped to a node of the schema graph. A tuple

is stored in TN for each node d ∈ D, such that (d → N) ∈ D′. Assume that d is a

child of the node p ∈ D, such that (p → P ) ∈ D′. The table TN will be populated

with the following tuple: 〈APID
= pid, ANID

= did, AN = d〉. If TN contains parent

attributes other than APID
, they are set to null.

A table T corresponding to an internal node N is populated depending

on the type of the node.

• If N is an “all”, then T is the result of a join of all children tables on parent

reference attributes.
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• If N is a “choice”, then T is the result of an outer union 5 of all children

tables.

• If N is a tag node, which by definition has exactly one child node with a

corresponding table TC , then T = TN =1 TC

The following example illustrates the above definition. Notice that the

XCacheDB Loader does not use the brute force implementation suggested in the

example. We employ optimizations that eliminate the majority of the joins.

Example 7 Consider the schema graph fragment, and the corresponding data

fragment of Figure II.7. The Address fragment table is built from node tables

Zip, Street, and POBox, according to the algorithm described above. A table cor-

responding to the “choice” node in the schema graph is built by taking an outer

union of Street and POBox. The result is joined with Zip to obtain the table cor-

responding to the “all” node. The result of the join is, in turn, joined with the

Address node table (not shown) which contains three attributes “customer ref”,

“supplier ref”, and “address id”.

Alternatively, the “Address” fragment of Figure II.7 can be split in two as

shown in Figure II.8(a) and (b). The dashed lines in Figure II.8(b) indicates that a

horizontal partitioning of the fragment should occur along the “choice” node. This

line indicates that the fragment table should be split into two. Each table projects

out attributes corresponding to one side of the “choice”. The tuples of the original

table are partitioned into the two tables based on the null values of the projected

attributes. This operation is similar to the “union distribution” discussed in [17].

Horizontal partitioning improves the performance of queries that access either side

of the union (e.g., either Street or POBox elements). However, performance may

degrade for queries that access only Zip elements. Since we assume no knowledge

5Outer union of two tables P and Q is a table T , with a set of attributes attr(T ) = attr(P )∪attr(Q).
The table T contains all tuples of P and Q extended with nulls in all the attributes that were not present
in the original.



39

(b) Address

Zip
[String]

Street
[String]

Choice

All

PO Box
[String]

Address_id       Zip_id         Zip             Street_id       Street

Address1 

2 3 92093              4          “9500 Gilman Dr.”

Address_id        Zip_id           Zip              POBox_id POBox

Address2 

6               7 92126                  8 1000

Address

Zip
[String]

Street
[String]

Choice

All

PO Box
[String]

Address_id      Zip_id           Zip          Street_id         Street

Address 

2 3 92093              4          “9500 Gilman Dr.”
6 7 92126           null                        null

Addresses_id         POBox_id POBox

POBox

2                     8 1000

(a)

Figure II.8: Alternative fragmentations of data of Figure II.7

of the query workload, we do not perform horizontal partitioning automatically,

but leave it as an option to the system administrator.

The following example illustrates decomposing TPCH-like XML schema

of Figure II.3 and loading it with data of Figure II.1.

Example 8 Consider the schema decomposition of Figure II.9. The decompo-

sition consists of three fragments rooted at the elements Customers, Order, and

Address. Hence the corresponding relational schema has tables Customers, Order,

and Address. The bottom part of Figure II.9 illustrates the contents of each table

for the dataset of Figure II.1. Notice that the tables Customers and Order are not

in BCNF.

For example, the table Order has the non-key functional dependency

“order id → number id”, which introduces redundancy.

We use “(FK)” labels in Figure II.9 to indicate parent references. Tech-

nically these references are not foreign keys since they do not necessarily refer to

a primary key.

Alternatively one could have decomposed the example schema as shown
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address_id c_preferredSupplier_ref street_id street city_id city

Address

32 29 33 “1 supplier10 St.” 34             “San Diego, CA 92126”

39 36 40                          “1 supplier415 St.” 41             “San Diego, CA 92126”

29 PreferredSupplier(29)[Number(30)[415],... 3 Order(3)[Number(4)[36422],Status... 

id    value

36 PreferredSupplier(36)[Number(37)[10],... 
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Order

LineItem

Part
Supplier Price

Quantity

Discount
?

Status

Number

Price

Date

Preferred
Supplier

Name

Number
Nation

Address

Street City

*

Customer

Address

Market
SegmentName

*

Customers

�

*

Customers

customers_id 
customer_id 
c_name_id 
c_name
c_address_id
c_address
c_marketSegment_id
c_marketSegment
c_preferredSupplier_id(PK)
p_number_id
p_number
p_name_id
p_name
p_nation_id
p_nation

address_id (PK)
c_preferredSupplier_ref (FK)
street_id
street
city_id
city

Address

order_id
customer_ref (FK)
number_id
number
status_id
status
price_id
price
date_id
date
lineitem_id (PK)
l_part_id
l_part
l_supplier_id
l_supplier
l_price_id
l_price
l_quantity_id
l_quantity
l_discount_id
l_discount

Order

id (PK)
value

PreferredSupplier_BLOBs

id (PK)
value

Order_BLOBs

Figure II.9: XML Schema and Data decomposition
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in Figure II.6. In this case there is a non-FD multi-valued dependency (MVD) in

the Customers table, i.e., an MVD that is not implied by a functional dependency.

Orders and preferred suppliers of every customer are independent of each other:

customers id, customer id, c name id, c address id,

c marketSegment id, c name, c address,

c marketSegment →→ c preferredSupplier id,

p name id, p number id, p nation id, p name,

p number, p nation, p address id, a street id,

a city id, a street, a city

The decompositions that contain non-FD MVD’s are called MVD decom-

positions.

Vertical Partitioning In the schema of Figure II.9 the Address element is not

repeatable, which means that there is at most one address per supplier. Using

a separate Address table is an example of vertical partitioning because there is a

one-to-one relationship between the Address table and its parent table Customers.

The vertical partitioning of XML data was studied in [17], which suggests that

partitioning can improve performance if the query workload is known in advance.

Knowing the groups of attributes that get accessed together, the vertical partition-

ing can be used to reduce table width without incurring a big penalty from the

extra joins. We do not consider vertical partitioning, but the results of [17] can be

carried over to our approach. We use the term minimal to refer to decompositions

without vertical partitioning.

Definition 9 (Minimal Decompositions) A decomposition is minimal if all

edges connecting nodes of different fragments are labeled with “*” or “+”.

Figure II.6 and Figure II.10 show two different minimal decompositions of

the same schema. We call the decomposition of Figure II.10 a 4NF decomposition
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Order
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*
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�

*

Figure II.10: Minimal 4NF XML Schema decomposition

because all its fragments are 4NF fragments (i.e. the fragment tables are in 4NF).

Note that a fragment is 4NF if and only if it does not include any “*” or “+”

labeled edges, i.e. no two nodes of the fragment are connected by a “*” or “+”

labeled edge. We assume that the only dependencies present are those derived by

the decomposition.

Every XML Schema tree has exactly one minimal 4NF decomposition,

which minimizes the space requirements. From here on, we only consider minimal

decompositions.

Prior work [80, 17] considers only 4NF decompositions. However we em-

ploy denormalized decompositions to improve query execution time as well as re-

sponse time. Particularly important for performance purposes is the class of inlined

decompositions described below. The inlined decompositions improve query per-

formance by reducing the number of joins, and (unlike MVD decompositions) the

space overhead that they introduce depends only on the schema and not on the

dataset.
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All Decompositions

4NF

MVD

Minimal Decompositions

Inlined

Non-MVD

Figure II.11: Classification of Schema decompositions

Definition 10 (Non-MVD Decompositions and Inlined Decompositions)

A non-MVD fragment is one where all “*” and “+” labeled edges appear in a single

path. A non-MVD decomposition is one that has only non-MVD fragments. An

inlined fragment is a non-MVD fragment that is not a 4NF fragment. An inlined

decomposition is a non-MVD decompositions that is not a 4NF decomposition.

The non-MVD fragment tables may have functional dependencies (FD’s)

that violate the BCNF condition (and also the 3NF condition [36]), but they have

no non-FD MVD’s. For example, the Customers table of Figure II.9 contains the

FD

customer ID → c name

that breaks the BCNF condition, since the key is “c preferredSupplier id”. How-

ever, the table has no non-FD MVD’s.

From the point of view of the relational data, an inlined fragment table is

the join of fragment tables that correspond to a line of two or more 4NF fragments.

For example, the fragment table Customers of Figure II.9 is the join of the fragment

tables that correspond to the 4NF fragments Customers and PreferredSupplier of
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Figure II.10. The tables that correspond to inlined fragments are very useful

because they reduce the number of joins while they keep the number of tuples in

the fragment tables low.

Lemma 1 (Space Overhead as a Function of Schema Size) Consider two

non-MVD fragments F1 and F2 such that when unioned, they result in an inlined

fragment F . 6 For every XML data set, the number of tuples of F is less than the

total number of tuples of F1 and F2.

Proof: Let’s consider the following three cases. First, if the schema tree edge that

connects F1 and F2 is labeled with “1” or “?”, the tuples of F2 will be inlined with

F1. Thus F will have the same number of tuples as F1.

Second, if the edge is labeled with “+”, F will have the same number of tuples as

F2, since F will be the result of the join of F1 and F2, and the schema implies that

for every tuple in F2, there is exactly one matching tuple, but no more in F1.

Third, if the edge is labeled with “*”, F will have fewer tuples than the total of

F1 and F2, since F will be the result of the left outer join of F1 and F2. 2

We found that the inlined decompositions can provide significant query

performance improvement. Noticeably, the storage space overhead of such de-

compositions is limited, even if the decomposition include all possible non-MVD

fragments.

Definition 11 (Complete Non-MVD Decompositions) A complete

non-MVD decomposition, complete for short, is one that contains all possible non-

MVD fragments.

The complete non-MVD decompositions are only intended for the illus-

trative purpose, and we are not advocating their practical use.

Note that a complete non-MVD decomposition includes all fragments

of the 4NF decomposition. The other fragments of the complete decomposition

6A fragment consisting of two non-MVD fragments connected together, is not guaranteed to be non-
MVD .
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consist of fragments of the 4NF decomposition connected together. In fact, a 4NF

decomposition can be viewed as a tree of 4NF fragments, called 4NF fragment tree.

The fragments of a complete minimal non-MVD decomposition correspond to the

set of paths in this tree. The space overhead of a complete decompositions is a

function of the size of the 4NF fragment tree.

Lemma 2 (Space Overhead of a Complete Decomposition) Consider

a schema graph G, its complete decomposition DC(G) = {F1, . . . , Fk}, and a 4NF

decomposition D4NF (G). For every XML data set, the number of tuples of the

complete decomposition is

|DC(G)| =
k∑

i=1

|Fi| < |D4NF (G)| ∗ h ∗ n

where h is the height of the 4NF fragment tree of G, and n is the number of

fragments in D4NF (G).

Proof: Consider a record tree R constructed from an XML document tree T in

the following fashion. A node of the record tree is created for every tuple of the

4NF data decomposition D4NF (T ). Edges of the record tree denote child-parent

relationships between tuples. There is a one to one mapping from paths in the

record tree to paths in its 4NF fragment tree, and the height of the record tree h

equals to the height of the 4NF fragment tree. Since any fragment of DC(G) maps

to a path in the 4NF fragment tree, every tuple of DC(T ) maps to a path in the

record tree. The number of path’s in the record tree P (R) can be computed by the

following recursive expression: P (R) = N(R) + P (R1) + · · ·+ P (Rn), where N(R)

is the number of nodes in the record tree and stands for all the paths that start at

the root. Ri’s denote subtrees rooted at the children of the root. The maximum

depth of the recursion is h. At each level of the recursion, after the first one, the

total number of added paths is less than N . Thus P (R) < hN .

Multiple tuples of DC(T ) may map to the same path in the record tree,

because each tuple of DC(T ) is a result of some outerjoin of tuples of D4NF (T ),
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and the same tuple may be a result of multiple outer joins (e.g. A =1 B = A =1

B =1 C, if C is empty.) However the same tuple cannot be a result of more than n

distinct left outerjoins. Thus |DC(G)| ≤ P (R) ∗ n. By definition |D4NF (G)| = N ;

hence |DC(G)| < |D4NF (G)| ∗ h ∗ n. 2

II.D.1 BLOBs

To speed up construction of the XML results from the relational result-

sets XCacheDB stores a binary image of pre-parsed XML subtrees as Binary Large

OBjects (BLOBs). The binary format is optimized for efficient navigation and

printing of the XML fragments. The fragments are stored in special BLOBs ta-

bles that use node IDs as foreign keys to associate the XML fragments to the

appropriate data elements.

By default, every subtree of the document except the trivial ones (the

entire document and separate leaf elements) is stored in the Blobs table. This

approach may have unnecessarily high space overhead because the data gets repli-

cated up to H − 2 times, where H is the depth of the schema tree. We reduce

the overhead by providing a graphical utility, the XCacheDB Loader, which allows

the user to control which schema nodes get “BLOB-ed”, by annotating the XML

Schema. The user should BLOB only those elements that are likely to be returned

by the queries. For example, in the decomposition of Figure II.9 only Order and

PreferredSupplier elements were chosen to be BLOB-ed, as indicated by the

boxes. Customer elements may be too large and too infrequently requested by

a query, while LineItem is small and can be constructed quickly and efficiently

without BLOB’s.

We chose not to store Blobs in the same tables as data to avoid unnec-

essary increase in table size, since Blob structures can be fairly large. In fact, a

Blob has similar size to the XML subtree that it encodes. The size of an XML

document (without the header and whitespace) can be computed as

XMLSize = EN ∗ (2ESize + 5) + TN ∗ TSize
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$N

Result {$N,$O}

$O

Result Tree

Customers

$O: Order

LineItem

$N: Name

Condition Tree

$P: Price

Customer
$P > 30000

Condition 
Expression

root

Figure II.12: XML Query notation

where EN is the number of elements, ESize is the average size of the element tag,

TN is how many elements contain text (i.e. leafs) and TSize is the average text size.

The size of a BLOB is:

BLOBSize = EN ∗ (ESize + 10) + TN ∗ (TSize + 3)

The separate Blobs table also gives us an option of using a separate SQL

query to retrieve Blobs which improves the query response time.

II.E XML Query Processing

We represent XML queries with a tree notation similar to loto-ql [69].

The query notation facilitates explanation of query processing and corresponds to

FOR-WHERE-RETURN queries of the XQuery standard [101].

Definition 12 (Query) A query is a tuple 〈C, E,R〉, where C is called condition

tree, E is called condition expression, and R is called result tree.

C is a labeled tree that consists of:

• Element nodes that are labeled with labels from L. Each element node

n may also be labeled with a variable V ar(n).
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• Union nodes. The same set of variables must occur in all children sub-

trees of a Union node. Two nodes cannot be labeled with the same

variable, unless their lowest common ancestor is a Union node.

E is a logical expression involving logical predicates, logical connectives, constants,

and variables that occur in C.

R is a tree where internal nodes are labeled with constants and leaf nodes are labeled

either with variables that occur in C or with constants. Some nodes may also

have “group-by” labels consisting of one or more variables that occur in C.

If a variable V labels a leaf l ∈ R then V is in the group-by label of l or the

group-by label of an ancestor of l.

The query semantics are based on first matching the condition tree with

the XML data to obtain bindings and then using the result tree to structure the

bindings into the XML result.

The semantics of the condition tree are defined in two steps. First, we re-

move Union nodes and produce a forest of conjunctive condition trees, by traversing

the condition tree bottom-up and replacing each Union node non-deterministically

by one of its children. This process is similar to producing a disjunctive normal

form of a logical expression. Set of bindings produced by the condition tree is de-

fined as a union of sets of bindings produced by each of the conjunctive condition

trees.

Formally, let C be a condition tree of a query and t be the XML document

tree. conjunctive Let V ar(C) be the set of variables in C. Let C1...Cl be a set of

all conjunctive condition trees of C. Note that V ar(C) = V ar(Ci),∀i ∈ [1, l]. A

variable binding β̂ maps each variable of V ar(C) to a node of t. The set of variable

bindings is computed based on the set of condition tree bindings. A condition tree

binding β maps each node n of some conjunctive condition tree Ci to a node of

t. The condition tree binding is valid if β(root(Ci)) = root(t) and recursively,

traversing C depth-first left-to-right, for each child cj of a node c ∈ Ci, assuming
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c is mapped to x ∈ t, there exists a child xj of x such that β(cj)) = xj and

label(cj) = label(xj).

The set of variable bindings consists of all bindings β̂ = [V1 7→ x1, . . . , Vn 7→
xn] such that there is a condition tree binding β = [c1 7→ x1, . . . , cn 7→ xn, . . .],

such that V1 = V ar(c1), . . . , Vn = V ar(cn).

The condition expression E is evaluated using the binding values and if

it evaluates to true, the variable binding is qualified. Notice that the variables

bind to XML elements and not to their content values. In order to evaluate the

condition expression, all variables are coerced to the content values of the elements

to which they bind. For example, in Figure II.12 the variable P binds to an XML

element “price”. However, when evaluating the condition expression we use the

integer value of “price”.

Once a set of qualified bindings is identified, the resulting XML docu-

ment tree is constructed by structural recursion on the result tree R as follows.

The recursion starts at the root of R with the full set of qualified bindings B.

Traversing R top-down, for each sub-tree R(n) rooted at node n, given a partial

set of bindings B′ (we explain how B′ gets constructed next) we construct a forest

F (n,B′) following one of the cases below:

Label: If n consists of a tag label L without a group-by label, the result is an XML

tree with root labeled L. The list of children of the root is the concatenation

F (n1, B
′′)# . . . #F (nm, B′′), where n1, n2, . . . , nm are the children of n. For

each of the children, the partial set of bindings is B′′ = B′.

Group-By: If n is of the form L{V1, . . . , Vk}, where V1, . . . , Vk are group-by vari-

ables, F (n,B′) contains an XML tree Tv1,...,vk
for each distinct set v1, . . . , vk

of values of V1, . . . , Vk in B′. Each Tv1,...,vk
has its root labeled L. The list of

children of the root is the concatenation F (n1, B
′
1)# . . . #F (nm, B′

m), where

n1, n2, . . . , nm are the children of n. For Tv1,...,vk
and ni the partial set of

bindings is

B′
i = ΠV (ni)(σV1=v1AND...ANDVk=vk

B′), where V (ni) is the set of variables that
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occur in the tree rooted at ni.

Leaf Group-By: If n is a leaf node of form

V {V1, . . . , Vk}, the result is a list of values of V , for each distinct set v1, . . . , vk

of values of V1, . . . , Vk in B′.

Leaf Variable: If n is a single variable V , and V binds to an element E in B′,

the result is E. If the query plan is valid, B′ will contain only a single tuple.

The result of the query is the forest F (r, B), where r is the root of the

result tree and B is the set of bindings delivered by the condition tree and condition

expression. However, since in our work we want to enforce that the result is a single

XML tree, we require that r does not have a “group-by” label.

Example 9 The condition tree and expression of the query of Figure II.12 re-

trieve tuples 〈N,O〉 where N is the Name element of a Customer element with an

Order O that has at least one LineItem that has Price greater than 30000. For

each tuple 〈N, O〉 a Result element is produced that contains the N and the O.

This is essentially query number 18 of the TPC-H benchmark suite [85], modified

not to aggregate across lineitems of the order. It is equivalent to the XQuery of

Figure II.13.

For example, if the query is executed on data of Figure II.1, the following

set of bindings is produced, assuming that the Order elements are BLOB-ed.

〈$N/Name29[“Customer1”],

$O/Order3, $P/Price9[35840.07]〉
〈$N/Name29[“Customer1”],

$O/Order13, $P/Price18[66854.93]〉
〈$N/Name29[“Customer1”],

$O/Order13, $P/Price24[57670.05]〉



51

</root>

FOR $C IN document(‘‘customers.xml")/

Customers/Customer

$N IN $c/Name

$O IN $c/Order

WHERE not empty(

FOR $P IN $o/LineItem/Price

WHERE $P > 30000

RETURN $P

)

RETURN

<result>

{$N}
{$O}

</result>

</root>

Figure II.13: The XQuery equivalent to the query of Figure II.12
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Numbers in subscript indicate node ID’s of the elements; square brackets

denote values of atomic elements and subelements of complex elements. First, a

single root element is created. Then, the group-by on the Result node partitions the

bindings into two groups (for Order3 and Order13), and creates a Result element

for each group. The second group-by creates two Order elements from the following

two sets of bindings.

〈$O/Order3, $P/Price9[35840.07]〉
and

〈$O/Order13, $P/Price18[66854.93]〉
〈$O/Order13, $P/Price24[57670.05]〉

The final result of the query is the following document tree:

root100[

Result101[

Name29[‘‘Customer1"],

Order3[. . . ],

Result102[

Name29[‘‘Customer1"],

Order13[. . . ]

]

]

We can extend our query semantics to ordered XML model. To sup-

port order-preserving XML semantics, group-by operators will produce lists, given

sorted lists of source bindings. In particular the group-by operator will order the

output elements according to the node ID’s of the bindings of the group-by vari-

ables. For example, the group-by in query of Figure II.12 will produces lists of

pairs of names and orders, sorted by name ID and order ID.
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Figure II.14: Query Processing Architecture

II.E.1 Query Processing

Figure II.14 illustrates the typical query processing steps followed by XML

databases built on relational databases; the architecture of XCacheDB is indeed

based on the one of Figure II.14. The plan generator receives an XML query and

a schema decomposition. It produces a plan, which consists of the condition tree,

the condition expression, the plan decomposition, and the result tree. The plan

translator turns the query plan into an SQL query. Plan result trees outline how

the qualified data of fragments are composed into the XML result. The constructor

receives the tuples in the SQL results and structures them into the XML result

following the plan result tree. Formally a query plan is defined as follows.

Definition 13 ((Valid) Query Plan) A query plan wrt a schema decomposi-

tion D, is a tuple 〈C ′, P ′, E, R′〉, where C ′ is a plan condition tree, P ′ is a plan

decomposition, and R′ is a plan result tree.

C ′ has the structure of a query condition, except that some edges may be labeled
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$O: Order

$L: LineItem

$LR: Part

$LS: Supplier

$LP: Price
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$OP{$OP}

$OD{$OD}

Result{$N,$O}

$N

Result Tree
root

Condition Expression
$P > 30000

Figure II.15: Query Plan

as “soft”. However, no path may contain a non-soft edge after a soft one.

That is, all the edges below a soft edge have to be soft.

P ′ is a pair 〈P, f〉, where P is a partition of C ′ into fragments P1, . . . , Pn, and f is

a mapping from P into the fragments of D. Every Pi has to be covered by the

fragment f(Pi) in the sense that for every node in Pi there is a corresponding

schema node in f(Pi).

R′ is a tree that has the same structure as a query result tree. All variables that

appear in R′ outside the group-by labels, must bind to atomic elements7 or

bind to elements that are BLOB-ed in D.

C ′ and R′ are constructed from C, R and the schema decomposition D

by the following nondeterministic algorithm. For every variable V , that occurs in

R on node NR and in C on node NC , find the schema node S that corresponds to

NC , i.e. the path from the root of C to NC and the path from the schema root to

S have the same sequence of node labels. If S exists and is not atomic, there are

two options:

7It is easy to verify this property using the schema graph.
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1. Do not perform any transformations. In this case V will bind to BLOBs

assuming that S is BLOB-ed in D.

2. Extend NC with all the children of S. Label every new edge as “soft” if the

corresponding schema edge has a “*” or a “?” label, or if the incoming edge

of NC is soft. Label every new node with a new unique variable Vi. If S

is not repeatable, remove label V from NC ; otherwise, V will be used by a

“group-by” label in R′. For every Vi that was added to NC , extend NR with

a new child node labeled Vi. If S is repeatable, add a group-by label {V }
to NR.

The above procedure is applied recursively to all the nodes of C ′. For

example, Figure II.15 shows one of the query plans for the query of Figure II.12.

First, the Order is extended with Number, Status, LineItem, Price and Date. Then

the LineItem is extended with all its attributes. The edge between the Order and

the LineItem is soft (indicated by the dotted line) because, according to the schema,

LineItem is an optional child of Order. Since the incoming edge of the LineItem is

soft, all its outgoing edges are also soft. Group-by labels on Order and LineItem

indicate that nested structures will be constructed for these elements. Given the

decomposition of Figure II.16 which includes BLOBs of Order elements, another

valid plan for the query of Figure II.12 will be identical to the query itself, with a

plan decomposition consisting of a single fragment.

We illustrate the translation of query plans into the SQL queries with the

following example.

Example 10 Consider the valid query plan of Figure II.15, which assumes the

4NF decomposition without BLOBs of Figure II.10. This plan will be translated

into SQL by the following process. First, we identify the tables that should appear

in the SQL FROM clause. Since the condition tree is partitioned into four fragments,

the FROM clause will feature four tables:
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FROM Customer C, Order O,

LineItem L1, LineItem L2

Second, for each fragment of the condition tree, we identify variables de-

fined in this fragment that also appear in the result tree. For every such variable,

the corresponding fragment table attribute is added to the SELECT clause. In our

case, the result includes all variables, with the exception of $P :

SELECT DISTINCT C.name, O.order id, O.number,

O.status, O.price, O.date,L1.lineitem id,

L1.part number, L1.supplier number,

L1.price, L1.quantity, L1.discount

Third, we construct a WHERE clause from the plan condition expression

and by inspecting the edges that connect the fragments of the plan decomposition.

If the edge that connects a parent fragment P with a child fragment C is a regular

edge, then we introduce the condition

tbl P.parent attr = tbl C.parent ref

If the edge is “soft”, the condition

tbl P.parent attr =* tbl C.parent ref, where “=*” denotes a left outerjoin.

An outerjoin is needed to ensure accurate reconstruction of the original document.

For example, an order can appear in the result even if it does not have any lineit-

ems. In our case, the WHERE clause contains the following conditions:

WHERE C.cust id = O.cust ref

AND O.order id = L2.order ref

AND O.order id =* L1.order ref

AND L2.price > 30000
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Notice, that the above where clause can be optimized by replacing the

outerjoin with a natural join because the selection condition on L2 implies that the

order O will have at least one lineitem.

Finally, the clause ORDER BY O.order id is appended to the query to

facilitate the grouping of lines of the same order, which allows the XML result to

be constructed by a constant space tagger [79].

The resulting SQL query is:

SELECT DISTINCT C.name, O.order id, O.number,

O.status, O.price, O.date,L1.lineitem id,

L1.part number, L1.supplier number,

L1.price, L1.quantity, L1.discount

FROM Customer C, Order O,

LineItem L1, LineItem L2

WHERE C.cust id = O.cust ref

AND O.order id = L2.order ref

AND O.order id = L1.order ref

AND L2.price > 30000

ORDER BY O.order id

Now consider a complete decomposition without BLOBs. Recall, that a

complete decomposition consists of all possible non-MVD fragments. This decom-

position, for instance, includes a non-MVD fragment Customer-Order-LineItem

(COL for short) that contains all Customer, Order and LineItem information.

This fragment is illustrated in Figure II.16. The COL fragment can be used to

answer the above query with only one join, using the query plan illustrated in Fig-

ure II.17.
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Figure II.17: A Possible Query Plan
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SELECT DISTINCT COL.name, COL.order id,

COL.number, COL.status, COL.price, COL.date,

L1.lineitem id, L1.part number, L1.price,

L1.supplier number, L1.quantity, L1.discount

FROM COL, LineItem L1

WHERE COL.order id = L1.order ref

AND COL.line price > 30000

ORDER BY COL.order id

Finally, consider the same complete decomposition that also features Or-

der BLOBs. We can use the query plan identical to the query itself (Figure II.12),

with a single fragment plan decomposition. Again a single join is needed (with

Blobs table), but the result does not have to be tagged afterwards. This also means

that the ORDER BY clause is not needed.

SELECT DISTINCT COL.cust name, Blobs.value

FROM COL, Blobs

WHERE COL.line price > 30000

AND COL.order id = Blobs.id

The XCacheDB also has an option of retrieving BLOB values with a sep-

arate query, in order to improve the query response time. Using this option we

eliminate the join with the Blobs table. The query becomes

SELECT DISTINCT COL.cust name, COL.order id

FROM COL WHERE COL.line price > 30000

The BLOB values are retrieved by the following prepared query:
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SELECT value FROM Blobs WHERE id = ?

The above example demonstrates that the BLOBs can be used to facili-

tate construction of the results, while the non-4NF materialized views can reduce

the number of joins and simplify the final query. The BLOBs and inlined decom-

positions are two independent techniques that trade space for performance. Both

of the techniques have their pros and cons.

Effects of the BLOBs

Positive: Use of BLOBs may replace a number of joins with a single join with the

Blobs table, which, as our experiments show, typically improves performance.

BLOBs eliminate the need for the order-by clause, which improves query

performance, especially the response time. BLOBs do not require tagging,

which also saves time. BLOBs can be retrieved by a separate query which

significantly improves the response time.

Negative: The BLOBs introduce significant space overhead. The join with the

Blobs table can be expensive especially when the query results are large.

Effects of the Inlined decomposition

Positive: The denormalized decompositions reduce number of joins, which may

lead to better performance. For instance, eliminating high start-up costs of

some joins (e.g. hash join), improves query response time. Since the query

has fewer joins, it is simpler to process; as the result, query performance is

much less dependant on the relational optimizer. During our experiments

with the normalized decompositions, we encountered cases when a plan pro-

duced by the relational optimizer simply could not be executed by our server.

For example, one of such plans called for a Cartesian product of 5000 tuples

with 600000. We never encountered such problems while experimenting with

the inlined decompositions.
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Negative: The scans of denormalized tables take longer because of the increased

width. The inlining, also introduces space overhead.

II.E.2 Minimal Plans

Out of the multiple possible valid plans we are interested in the ones that

minimize the number of joins.

Definition 14 (Minimal Plan) A valid plan is minimal if its plan decomposition

P ′ contains the smallest possible number of partitions Pi.

Still, there may be situations where there are multiple minimal plans. In

this case the plan generator uses the following heuristic algorithm, which is linear

in the size of the query and the schema decomposition. When the algorithm

is applied on a minimal non-MVD decomposition it is guaranteed to produce a

minimal plan.

• 1. Pick any leaf node N of the query.

• 2. Find the fragment F that covers N and goes as far up as possible (covers

the most remote ancestor of N)

• 3. Remove from the query tree, the subtree covered by F

• 4. Repeat the above steps until all nodes of the query are covered.

The advantage of this algorithm is that it avoids joins at the lower levels

of the query – where most of the data is usually located. For example, in the TPC-

H dataset we used for the experiments (it conforms to the schema of Figure II.3,

the Order 1 LineItem join is 40 times bigger (and potentially more expensive)

than the Customer 1 Order join.

II.F Implementation

The XCacheDB system [10] of Enosys Software, Inc., is an XML database

built on top of commercial JDBC-compliant relational database systems. The ab-
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Figure II.19: The XCacheDB Loader utility
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Figure II.20: Annotating the XML schema and resulting relational schema

stract architecture of Figure I.3 has been reduced to the one of Figure II.18, where

the plan translation and construction functions of the query processor are provided

by the XMediator [28] product of Enosys Software, Inc. Finally, the “optional user

guidance” of Figure I.3 is provided via the XAnnotator user interface, which pro-

duces a set of schema annotations that affect decomposition.

The XCacheDB loader supports acyclic schemas, which by default are

transformed into tree schemas. By default, the XCacheDB loader creates the

minimal 4NF decomposition. However, the user can control the decomposition

using the schema annotations and can instruct the XCacheDB what to inline and

what to BLOB. In particular, the XAnnotator (Figure II.20) displays the XML

Schema and allows the user to associate a set of annotation keywords with nodes

of the schema graph. The following six annotation keywords are supported. We
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provide a brief informal description of their meaning:

INLINE: placed on a schema node n it forces the fragment rooted at n to be merged

with the fragment of the parent of n.

TABLE: placed on a schema node n directs the loader to create a new fragment

rooted at n.

STORE BLOB: placed on a schema node n it indicates that a BLOB should be created

for elements that correspond to this node.

BLOB ONLY: implies that the elements that correspond to the annotated schema

node should be BLOB-ed and not decomposed any further.

RENAME, DATATYPE: those annotations enable the user to change names of the ta-

bles and columns in the database, and data types of the columns respectively.

A single schema node can have more than one annotation. The only

exception is that INLINE and TABLE annotations cannot appear together, as they

contradict each other.

The XCacheDB loader automatically creates a set of indices for each

table that it loads. By default, an index is created for every data column to

improve performance of selection conditions, but it can be switched off. An index

is also created for a parent reference column, and for every node-ID column that

gets referenced by another table. These indices facilitate efficient joins between

fragments.

Query processing in XCacheDB leverages the XMediator, which can ex-

port an XML view of a relational database and allow queries on it. The plan gen-

erator takes an XML query, which was XCQL [68] and is now becoming XQuery,

and produces a query algebra plan that refers directly to the tables of the underly-

ing relational database. This plan can be run directly by the XMediator’s engine,

since it is expressed in the algebra that the mediator uses internally.
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II.G Experimentation

This section evaluates the impact of BLOBs and different schema decom-

positions on query performance. All experiments are done using an “TPC-H like”

XML dataset that conforms to the schema of Figure II.3. The dataset contains

10000 customers, 150000 orders, ∼120000 suppliers and ∼600000 lineitems. The

size of the XML file is 160 MB. Unless otherwise noted, the following system con-

figuration is used. The XCacheDB is running on a Pentium 3 333MHz system with

384MB of RAM. The underlying relational database resides on a dual Pentium 3

300MHz system with 512MB of RAM and 10000RPM hard drives connected to a

40MBps SCSI controller. The database server is configured to use 64MB of RAM

for buffer space. We flush the buffers between runs, to ensure the independence of

the experiments. Statistics are collected for all tables and the relational database

is set to use the cost-based optimizer, since the underlying database allows both

cost-based and rule-based optimization. The XCacheDB connects to the database

through a 100Mb switched Ethernet network. We also provide experiments with

11Mb wireless Ethernet connection between the systems, and show the effects of

a lower-bandwidth, high-latency connection.

All previous work on XML query processing, concentrated on a single

performance metric – total time, i.e. time to execute the entire query and output

the complete result. However, we are also interested in response time. We define

the response time as the time it takes to output the first ten results.

Queries We use the following three queries (see Figure II.21):

Q1 The selection query of Example 9 returns pairs of customer names and their

orders, if the order contains at least one lineitem with price > P , where P is

a parameter that ranges from 75000 (qualifies about 15% of tuples) to 96000

(qualifies no tuples).

Q2 also has a range condition on the supplier. The parameter of the supplier
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Figure II.21: Three queries used for the experiments

condition is chosen to filter out about 50% of customers on the average.

Notice that since this query refers to both orders and suppliers, it cannot be

answered using a single non-MVD fragment.

Q3 This query finds customers that have placed expensive orders with preferred

suppliers (i.e. customer contains a prefered supplier and an order with an

expensive item from this supplier.) Notice the join between Supplier and

LineItem.

Testing various decompositions We compare the following query decompo-

sitions:

1. 4NF schema decomposition without BLOBs, which consists of the following

four tables: Customer, Order, LineItem, and PrefSupplier (Figure II.10).

The above four tables occupy 64 MB of disk space. This case corresponds to

a typical decomposition considered in the previous work [80, 17].

2. Same 4NF decomposition as above with the addition of a BLOBs table that

stores Order subtrees. This table takes up 150 MB.
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3. Inlined decomposition of Figure II.16, which includes two non-MVD frag-

ments: Supplier and Customer-Order-Line. These two tables occupy 137.5

MB. This decomposition also includes Order BLOBs.

We also consider a decomposition that contains an MVD fragment

Customer-Order-Supplier and a separate table for LineItem. However, the ex-

periments show that this approach is not competitive. The space overhead (the

two tables take up almost 600 MB) translates into poor query performance.

Discussion The left side of Figure II.22 shows the total execution time of the

three queries plotted against the selectivity of the condition on price, which es-

sentially controls the size of the result. For Q1, 1% selectivity translates into a

1.5 MB result XML file. For Q2 and Q3 the rates are about 0.75 MB and 0.4

MB respectively. The right side of Figure II.22 shows the response time of the

same queries. Recall, in the response time experiments the queries return top ten

top-level objects, i.e. the result size is constantly around 10 KB.

All the “total time” graphs exhibit the same trend. The “4NF” line starts

higher than the “inlined” one, because of the time it takes the database to initiate

and execute multiway joins. However, the slope of the “inlined” line is steeper

because of the space and I/O overhead derived from the denormalization. Table

scans take longer on the “inlined” tables.

BLOBs improve performance of the small queries, but their effects also

diminish as the result sizes grow. For smaller results (less than 2 MB of XML) 4NF

with BLOBs consistently outperforms 4NF without BLOBs by 200% to 300%. As

the result sizes increase, join with the BLOBs table becomes more expensive in

comparison to the extra joins needed to reconstruct the result fragments.

The main advantage of the XCacheDB is its response time. Both inlining

and BLOBs significantly simplify the SQL query which is sent to the relational

database, which allows the server to create the result cursor, in some cases, almost

instantaneously.
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Figure II.22: Experimental results



69

The irregularities that are be observed in the graphs (e.g. a notch on

the “4NF without BLOBs” line of all three “total time” graphs around the 1%

selectivity) are mostly due to the different plans picked by the relational optimizer

for different values of the parameter. Notice that on the Q3 response time graph the

“Inlined” line uncharacteristically dips between the 6-th and 7-th points (selectivity

values 1.6% and 4.3%). It turns out that at that point the optimizer reversed the

sides of the hash join of COL and Supplier tables, which improved performance.

II.G.1 Effects of higher CPU/bandwidth ratio

Query processing on the inlined schema requires less CPU resources than

on the 4NF schema, since fewer joins need to be performed. However, pre-joined

data needs to be read from the disk, which requires more I/O operations than

reading data required for the join. If the database optimizer correctly picks join

ordering and join strategies, a table will not be scanned more than twice for a join,

and most of the time, a single scan will be sufficient [36]. This tradeoff was observed

when the database was installed on a 500MHz system with a slow (4200RPM) IDE

disk. In this setting, the 4NF decomposition with BLOBs often provided for faster

querying than the inlined one. For example, in a fast disk setup a Q1-type query

with result size 2 MB according to Figure II.22 takes about 7.5 sec on both 4NF

and Inlined schemas. On a server with slower disk the same query took 8.2 sec

with the 4NF decomposition and 11.6 sec with the Inlined decomposition.

BLOBs are sensitive to interconnect speeds between the database server

and the XCacheDB, since they include tags and structure information in addi-

tion to the data itself. BLOB-ed query results are somewhat larger than those

containing only atomic values, and on slower, high-latency links, network speed

can become the bottleneck. For example, Q1 with BLOBs takes 34.2 seconds to

complete on a 11Mb wireless network. The same query in the same setup, but on

a 100Mb Ethernet takes only 7.5 sec.
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Figure II.23: The total execution time of Q1 on native XML databases vs.

XCacheDB

II.G.2 Comparison with a Commercial XML Database

We compared the performance of XCacheDB against two commercial na-

tive XML database systems: X-Hive 4.0 [95] and Ipedo 3.1 [45]. For this set of

experiments we only measured total execution time, because these two databases

could not compete with the XCacheDB in response time, since they are unable to

return the first result object before the query execution is completed.

Both systems support subsets of XQuery which include the query Q1, as

it appears in Example 9 and as it was used in the XCacheDB experiments above.

However, we did not use Q1 because the X-Hive was not able to use the value index

to speed-up range queries. Thus, we replaced range conditions on price elements

with equality conditions on “part”, “supplier”, and “quantity” elements, which

have different selectivities.

For Ipedo we were not able to rewrite the query in a way that would enable

the system to take advantage of the value indices. As a result, the performance

of the Ipedo database was not competitive (Figure II.23), since a full scan of the

database was needed every time to answer the query.

In all previous experiments we measured and reported “cold-start” execu-

tion times, which for X-Hive were significantly slower than when the query ran on
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“warm” cache. For instance, the first execution of a query that used a value index,

generated more disk traffic than the second one. It may be the case that X-Hive

reads from disk the entire index used by the query. This would explain relatively

long (22 seconds) execution time for the query that returned only four results. The

second execution of the same query took 0.3 seconds. For the less selective queries

the difference was barely noticeable as the “warm” line of Figure II.23 indicates.

We do not report results for the Q3 query, since both X-Hive and Ipedo

where able to answer it only by a full scan of the database, and hence they were

not competitive.

II.H Conclusions and Future Work

Our approach towards building XML DBMS’s is based on leveraging an

underlying RDBMS for storing and querying the XML data in the presence of XML

Schemas. We provide a formal framework for schema-driven decompositions of the

XML data into relational data. The framework encompasses the decompositions

described in prior work and takes advantage of two novel techniques that employ

denormalized tables and binary-coded XML fragments suitable for fast navigation

and output. The new spectrum of decompositions allows us to trade storage space

for query performance.

We classify the decompositions based on the dependencies in the pro-

duced relational schemas. We notice that non-MVD relational schemas that fea-

ture inlined repeatable elements, provide a significant improvement in the query

performance (and especially in response time) by reducing the number of joins in

a query, with a limited increase in the size of the database.

We implemented the two novel techniques in XCacheDB – an XML DBMS

built on top of a commercial RDBMS. Our performance study indicates that

XCacheDB can deliver significant (up to 400%) improvement in query execution

time. Most importantly, the XCacheDB can provide orders of magnitude improve-
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ment in query response time, which is critical for typical web-based applications.

We identify the following directions for future work:

• Extend to more complex queries.

• Extend our schema model from DAG’s to arbitrary graphs. This extension

will increase the query processing complexity, since it will allow recursive

queries which cannot be evaluated in standard SQL.

• Consider a cost-based approach for determining a schema decomposition

given a query mix, along the lines of [17].

• Enhance the query processing to consider plans where some of the joins may

be evaluated by the XCacheDB. Similar work was done by [30], however,

they focused on materializing large XML results, whereas our first priority

is minimizing the response time.



Chapter III

Incremental Validation of XML

Data Under Updates

We investigate the incremental validation of XML documents with respect

to DTDs [89], under updates consisting of element tag renamings, insertions and

deletions. We exhibit an O(m log n) incremental validation algorithm using an

auxiliary structure of size O(n), where n is the size of the document and m is the

number of updates. This is a significant improvement over brute-force re-validation

from scratch.

We exhibit a restricted class of DTDs called “local” that arise commonly

in practice and for which incremental validation can be done in practically constant

time by maintaining only a list of counters. We present implementations of both

general incremental validation and local validation on an XML database built on

top of a relational database.

Our experimentation includes a study of the applicability of local vali-

dation in practice, results on the calibration of parameters of the auxiliary data

structure, and results on the performance comparison between the general incre-

mental validation technique, the local validation technique, and brute-force vali-

dation from scratch.

Both general and local algorithms are also applicable to validation of

73



74

XML documents with respect to XML Schemas [91], under insertions and dele-

tions. Incremental validation of XML Schema wrt renaming of internal nodes, is

more involved and requires a “specialized DTDs” incremental validation algorithm,

which can be found in [11]

III.A Background

The emergence of XML as a standard representation format for data on

the Web has led to a proliferation of databases that store, query, and update

XML data. Typically, valid XML documents must conform to a specified type

that places structural constraints on the document. When an XML document is

updated, it has to be verified that the new document still satisfies its type. Doing

this efficiently is a challenging problem that is central to many applications. Brute-

force validation from scratch is not practical when the data are large, because it

requires reading and validating the entire database following each update. Instead,

it is desirable to develop algorithms for incremental validation. However, this

approach has been largely unexplored. In this chapter we investigate the efficient

incremental validation of updates to XML documents.

We model XML documents as trees of nested elements. Document Type

Definitions (DTDs) [89], which are the basic mechanism for specifying the type of

XML documents, can be abstracted as extended context-free grammars (CFGs).

Unlike usual CFGs, the productions of extended CFGs have regular expressions

on their right-hand sides. An XML document satisfies a DTD if its abstraction as

a tree is a derivation tree of the extended CFG corresponding to the DTD. XML

Schemas [91] provide XML typing mechanisms that extend DTDs in several ways.

Most notable is the ability to decouple the type of an element from its label. In

this chapter we use specialized DTDs [70], that capture the decoupling of element

tags from types, by allowing the type of an element to depend on the full set of

node labels (tags) of the XML tree. XML Schema is abstracted as a restriction of
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specialized DTDs where the type of an element only depends on its label and the

type of its parent.

Verifying that a word satisfies a regular expression1 is the starting point

in checking that an XML document satisfies a DTD. An obvious way to do this

following an update is to verify it from scratch, i.e. run the updated sequence of

labels through the non-deterministic finite automaton (NFA) corresponding to the

regular expression. However, this requires O(n) steps, under any reasonable set of

unit operations, where n is the length of the sequence (note that, in complexity-

theoretic terms, membership of a word in a regular language is complete in NC1

under dlogtime reductions [87].) We can do better by using incremental val-

idation, relying on an appropriate auxiliary data structure. Indeed, we provide

such a structure and corresponding incremental validation algorithm that, given a

regular expression r, a string s of length n that satisfies r, and a sequence of m

updates (inserts, deletes, label renamings) on s, checks2 in O(m log n) whether the

updated string satisfies r. The auxiliary structure we use materializes in advance

relations that describe state transitions resulting from traversing certain substrings

in s. These are placed in a balanced tree structure that is maintained similarly

to B-trees and is well-behaved under insertions and deletions. The size of the

auxiliary structure is O(n). In addition, we provide an O(m log n) time algorithm

that maintains the auxiliary structure, so that subsequent updates can also be

incrementally validated.

Our approach to incremental validation of trees with respect to DTDs,

specialized DTDs and XML Schemas builds upon the incremental validation algo-

rithm for strings. DTDs turn out to be easier to validate than specialized DTDs,

whereas XML Schemas fall between specialized DTDs and DTDs in difficulty. In-

deed, based on the algorithm for string validation, incremental validation of m

updates to a tree T with respect to a DTD can be done in time O(m log |T |)
1A word satisfies a regular expression if it belongs to the corresponding language.
2For readability, we provide here the complexity with respect to the string and update sequence, for

fixed (specialized) DTD or regular expression. The combined complexity is spelled out in the paper.



76

using an auxiliary structure of size O(|T |) which can also be maintained in time

O(m log |T |). The same complexity results apply to XML Schemas for all up-

date operations, except internal node renamings, which require extension of the

algorithm to the specialized DTDs that can be found in [11].

We then consider a restricted class of DTDs called “local”, that arises

very frequently in practice. Although we did not pursue this, we expect that

“local” XML Schemas are equally frequent and their incremental validation can

benefit in the same way. Intuitively, these are DTDs using regular expressions

for which membership after an update can be determined locally, by examining

only substrings within bounded distance from the update position. This allows for

a very efficient incremental validation algorithm. Although the theoretical worst-

case data complexity of validating m updates is still O(m log |T |), and the auxiliary

structure has size O(i log(|T |/i)), where i is the number of internal nodes of T , the

algorithm can be implemented very efficiently. Furthermore, if no internal nodes

may be renamed, there is no need for an auxiliary data structure. In practice, the

technique provides constant time validation, with space overhead of O(i) counters

that are represented very efficiently by usual 32-bit integers, which are sufficient

when the maximum size of element lists in the database is 232. In addition to its

simple implementation and efficiency, local validation is very frequent. We tested

60 DTDs from OASIS (see [20]) and only 10 DTDs were not local.

Finally, in the last part of the paper, we evaluated the general DTD in-

cremental validation algorithm, the validation algorithm for local DTDs, and a

brute-force (re-)validation algorithm on an XML database that operates on top

of a commercial RDBMS system. We describe the XML database and the imple-

mentation of the necessary data structures on top of an RDBMS. We discuss the

applicability of the validation algorithm for local DTDs and a set of performance

results that indicate its superiority over general incremental validation in the case

of local DTDs. The experiments also quantify the significant superiority of both

incremental validation algorithms over the brute-force technique. Finally, the ex-
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periments provide useful data for the optimization of various parameters of the

data structures.

Related Work As mentioned earlier, XML databases need to efficiently validate

updates on their content. Ipedo’s XML database [45] validates update commands

with respect to XML Schemas; however, to our knowledge no technical informa-

tion is publicly available on the underlying structures and algorithms. Another

application where efficient validation is useful is XML editors (see [97] for a sur-

vey of available products). Some XML editors like XMLMind [99] and XMLSpy

[100] feature incremental validation of DTDs. Recently, XMLSpy also included

validation of XML Schemas [100]. No information is provided on their incremental

validation algorithms.

Note that our abstraction of the content models of DTDs [89] by ar-

bitrary regular expressions removes the requirement for 1-unambiguous regular

expressions. The incremental validation algorithm of [14] utilizes the fact that

1-unambiguousness leads to deterministic Glushkov automata for the regular ex-

pressions of DTDs. Consequently [14] use the Glushkov automata to develop a

local incremental validation algorithm. Our definition of “locality” is more general

in two aspects. First, the “CF” concept of locality in [14] corresponds to particular

cases of 1-local of our development. We define a more general concept of “k-local”,

whose significance is that an update can be validated by inspecting only the sib-

lings within distance k from the update. Second, our definition of locality is based

on the locality of the minimal automata of the regular expressions, while [14] base

the definition on the Glushkov automata. We prove that if an automaton (includ-

ing potentially a Glushkov automaton) recognizes a regular expression is local then

the minimal automaton is also local, but the converse does not necessarily hold.

Hence detecting locality using the minimal automata provides a wider definition.

Our locality property is orthogonal to the “1,2 CF” property of [14], which was

designed exclusively to validate individual atomic updates. Instead, our validation
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algorithm supports transactions consisting of multiple updates.

Closely related to incremental validation is incremental parsing, which

is key to incremental program compilation. Research on incremental parsing has

focused on LR parsing [37, 92, 47, 52, 72] and LL (recursive descent parsing)

[62, 55, 56], since programming languages are typically described by LR(0), LR(1),

LL(1), LALR(1) and LL(1) grammars. All techniques start by parsing the input

text and producing a parse tree, which is typically annotated with auxiliary in-

formation. The parse tree is updated as a result of the updates to the input

text. A typical theme of the incremental parsing techniques is identifying minimal

structural units of the parse tree that are affected by the modifications (see [37]

for LR(0) parsing and [52] for a generalization to LR(k).) However, the perfor-

mance of the incremental parsing algorithms is hard to compare to our validation

algorithm because of the differences in settings and goals, which typically involve

minimization of the changes on the parse tree. Indeed, the best-case performance

of incremental parsers will generally beat the one of our regular expression vali-

dation algorithm, which always takes O(log n) steps for a single update. This is

because incremental parsers take advantage of natural “termination points” used

in programming languages syntax [56], that typically occur close to the update.

Logarithmic complexity in the size of the string is achieved for LALR grammars

by [92] but only if the grammar is such that its parse trees have depth O(log n) for

a string of length n. One can easily see that there are LALR grammars that do

not meet this property, and neither do the cfgs corresponding to DTDs. Further-

more, [92] require that the interpretation of iterative sequences be independent

of the context. In particular, [92] provide the following “bad grammar”, which

recognizes the regular expression (a|b)x∗

S → aC+|bD+

C → x

D → x
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This grammar is problematic for their algorithm because the reduction

of an x to either a C or a D is determined by the initial symbol in the sentence,

which is arbitrarily distant. In this case their algorithm needs O(n) recomputation,

where n is the size of the string. Notice that our divide-and-conquer algorithm for

the incremental validation of regular expressions does not pose any restriction on

the regular expression.

The complexity of validation is related to that of membership of a word

in a regular language, and of a tree in a regular tree language. The problem of

word membership in a regular language is known to be complete in uniform NC1

under dlogtime reductions [87] and acceptance of a tree over a ranked alphabet

by a tree automaton is complete in uniform NC1 under dlogtime reductions if

the tree is presented in prefix notation [57], and complete in logspace if the tree

is presented as a list of its edges [78]. To our knowledge, no complexity results

exist on the incremental variants of these problems, with the exception of a result

of [71] discussed below.

Incremental evaluation of queries by first-order means is studied by [26]

using the notion of first-order incremental evaluation systems (FOIES) A related

descriptive complexity approach to incremental computation is developed by Pat-

naik and Immerman in [71]. They define the dynamic complexity class Dyn-FO

(equivalent to FOIES), consisting of properties that can be incrementally verified

by first-order means. They exhibit various problems in Dyn-FO, such as multi-

plication, graph connectivity, and bipartiteness. Most relevant to our work, they

show that membership of a word in a regular language is in Dyn-FO. For label

renamings, they sketch an approach similar to ours. The incremental algorithm

and auxiliary structure for node insertions and deletions that modify the length

of the string are not spelled out. Also, no extension to regular tree languages is

discussed. The study in [71] is pursued in [41], where an extension of Dyn-FO is in-

troduced and it is shown that the single-step version of the circuit value problem is

complete in Dyn-FO under certain reductions. Complexity models of incremental
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computation are considered in [61]. The focus is on the classes incr-polylogtime

(incr-polylogspace) of properties that can be incrementally verified in poly-

logarithmic time (space). Interesting connections to parallel complexity classes

are exhibited, as well as complete problems for classical complexity classes under

reductions in the above incremental complexity classes.

Organization The chapter is organized as follows. Section III.B presents our

abstraction of XML documents and DTDs. It also presents specialized DTDs,

their restriction capturing XML Schemas, and their connection to tree automata.

We also spell out formally the incremental validation problem and the assump-

tions made in our complexity analysis. In Section III.C we examine the incre-

mental validation of strings with respect to regular expressions and develop the

core divide-and-conquer strategy used later for DTD and XML Schema validation.

Section III.D presents an O(m log |T |) validation algorithm for DTDs and an O(m)

algorithm for local DTDs. Those algorithms are also applicable to the incremen-

tal validation of XML Schemas wrt insertions, deletions and leaf node renamings.

Section III.E describes our implementation of incremental validation for DTDs.

Section III.F presents an evaluation of the applicability of local validation, and

experimental results comparing our general incremental algorithm for DTDs, the

algorithm for local DTDs, and a brute-force revalidation algorithm. Section IV.H

contains concluding remarks and future work.

III.B Basic Framework

We introduce here the basic formalism used throughout the paper, in-

cluding our abstractions of XML documents, DTDs, and XML Schemas. We also

recall basic definitions relating to tree automata.

Labeled ordered trees We abstract XML documents as labeled ordered trees.

Our abstraction ignores data values present in XML documents, because their vali-
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dation with respect to an XML Schema is trivial. For example, an XML document

holding ads for used cars and new cars is shown in Figure III.1 (left), together with

its abstraction as a labeled tree.

An ordered labeled tree over finite alphabet Σ is a pair T = 〈t, λ〉, where

t is an ordered tree and λ is a mapping associating to each node n of t a label

λ(n) ∈ Σ. Trees are assumed by default to be unranked, i.e. there is no fixed

bound on the number of children each node may have. The set of all labeled

ordered trees over Σ is denoted by TΣ. We sometimes denote a tree consisting of

a root v with subtrees T1 . . . Tk by v(T1 . . . Tk). We will also consider binary trees,

where each node has at most two children. If every internal node has exactly two

children, the binary tree is called complete.

We assume that finding (i) the label, (ii) the parent, (iii) the immediate

left (right) sibling, and (iv) the first child of a specified node, are unit operations,

i.e., they can be accomplished in O(1).

Types and DTDs As usual, we define XML document types in terms of the

document’s structure alone, ignoring data values. The basic specification method

is (an abstraction of) DTDs. A DTD consists of an extended context-free gram-

mar over alphabet Σ (we make no distinction between terminal and non-terminal

symbols). In an extended cfg, the right-hand sides of productions are regular

expressions over Σ. An ordered labeled tree 〈t, λ〉 over Σ satisfies a DTD d if the

tree 〈t, λ〉 is a derivation tree of the grammar. For example, the tree is valid with

respect to the DTD in Figure III.1.

The start symbol of a DTD d is denoted by root(d). We can assume

without loss of generality that for each a ∈ Σ the DTD has a single rule a → ra

with a on the left-hand side. and we denote by Na a standard non-deterministic

finite-state automaton (NFA) recognizing the language ra. The set of labeled trees

satisfying a DTD d is denoted by sat(d).

We use the following notation for NFA. An NFA is a 5-tuple
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<dealer>

<UsedCars>

<ad>

<model>Honda</model>

<year>92</year>

</ad>

</UsedCars>

<NewCars>

<ad>

<model>BMW</model>

</ad>

</NewCars>

</dealer>

dealer

NewCars

ad ad

UsedCars

yearmodel model

<!DOCTYPE dealer>

<!ELEMENT dealer

(UsedCars, NewCars)>

<!ELEMENT UsedCars (ad*)>

<!ELEMENT NewCars (ad*)>

<!ELEMENT ad (model, year?)>

<!ELEMENT model PCDATA>

<!ELEMENT year PCDATA>

root : dealer

dealer → UC NC

UC → ad∗

NC → ad∗

ad → model (year|ε)
model → ε

year → ε

root : dt

dt → UCt NCt µ(dt) = dealer

UCt → (adu)∗ µ(UCt) = UC

NCt → (adn)∗ µ(NCt) = NC

adu → mt yt µ(adu) = ad

adn → mt µ(adn) = ad

mt → ε µ(mt) = model

yt → ε µ(yt) = year

Figure III.1: XML, DTD and specialized DTD (UC and NC stand for UsedCars

and NewCars)



83

N = 〈Σ, Q, q0, F, δ〉 where Σ is a finite alphabet, Q is a finite set of states,

q0 ∈ Q is the start state, F ⊆ Q is the set of final states, and δ is a mapping

from Σ × Q to P(Q). A string a1 . . . an is accepted by N iff there exists a map-

ping σ : {1, . . . , n} → Q such that σ(a1) ∈ δ(a1, q0), σ(an) ∈ F , and for each

i, 1 ≤ i < n, σ(ai+1) ∈ δ(ai+1, σ(ai)). The set of strings accepted by N is denoted

L(N). N is a deterministic finite-state automaton (DFA) iff δ returns singletons

on each input. Recall that for each regular expression r there exists an NFA N

whose number of states is linear in r, such that N accepts the regular language

r. In general, a DFA accepting r requires exponentially many states wrt r. How-

ever, for certain classes of regular expressions, the corresponding DFA remains

linear in the expression. One such class consists of the 1-unambiguous regular lan-

guages [19]. This is relevant in the context of XML types, since DTDs and XML

Schemas require the regular expressions used to specify the contents of elements

to be 1-unambiguous.

An important limitation of DTDs is the inability to separate the type of

an element from its name. For example, consider the dealer document in Figure

III.1. Used cars have model and year while new cars have model only. There is

no mechanism to specify this using DTDs, since rules depend only on the name

of elements, and not on its context. To overcome this limitation, XML Schema

provides a mechanism to decouple element names from their types and thus allow

context-dependent definitions of their structure. We abstract and extend this

mechanism using the notion of specialized DTD (studied in [70] and equivalent to

formalisms proposed in [15, 21]).

Definition 15 (Specialized DTD) A specialized DTD is a 4-tuple

〈Σ, Σt, d, µ〉 where Σ is a finite alphabet of labels, Σt is a finite alphabet of types,

d is a DTD over Σt and µ is a mapping from Σt to Σ.

Intuitively, Σt provides, for each a ∈ Σ, a set of types associated to a,

namely those at ∈ Σt for which µ(at) = a. In our specialized DTD example (lower
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right corner of Figure III.1) we create two types for the element ad: a type adn

whose content is just a “model” type, and a type adu whose content is “model” and

“year”. Note that µ induces a homomorphism on words over Σt, and also on trees

over Σt (yielding trees over Σ). We also denote by µ the induced homomorphisms.

Let τ = 〈Σ, Σt, d, µ〉 be a specialized DTD. A tree t over Σ satisfies τ

(or is valid wrt τ) if t ∈ µ(sat(d)). Thus, t is a homomorphic image under µ

of a derivation tree in d. Equivalently, a labeled tree over Σ is valid if it can be

“specialized” to a tree that is valid with respect to the DTD over the alphabet of

types. The set of all trees over Σ that are valid w.r.t. τ is denoted sat(τ). When

τ is clear from the context, we simply say that a tree is valid.

An XML Schema is abstracted as a specialized DTD 〈Σ, Σt, d, µ〉 where

two additional constraints apply: For every rule a → ra of d, the regular expression

ra does not contain two types at and at′ such that µ(at) = µ(at′). Intuitively, the

constraint implies that for every node v of a tree t that satisfies an XML Schema,

the type of v is a function of its label and of the type of its parent.

The incremental validation problem Given a (specialized) DTD τ , a tree

T ∈ sat(τ), and a sequence s of updates to T yielding another tree T ′, we wish

to efficiently check if T ′ ∈ sat(τ).3 In particular, the cost should be less than

re-validation of T ′ from scratch. The individual updates are the following:

(a) replace the current label of a specified node by another label,

(b) insert a new leaf node after a specified node,

(c) insert a new leaf node as the first child of a specified node, and

(d) delete a specified node; if the node is an internal one, the subtree

rooted at the node is also deleted.

We allow some cost-free one-time pre-processing to initialize incremental

validation, such as computing the NFA corresponding to the regular expressions

3Notice that a subsequence (prefix) of s may produce a tree T ′′ 6∈ sat(τ), while the complete sequence
produces a consistent tree T ′ ∈ sat(τ).
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used by the DTDs. We will also initialize and then maintain an auxiliary structure

A(T ) to help in the validation. The cost of the incremental validation algorithm

is evaluated with respect to:

(a) the time needed to validate T ′ using T and A(T ), as a function of |T | and |s|
(b) the time needed to compute A(T ′) from T, s, and A(T ),

(c) the size of the auxiliary structure A(T ) as a function of |T |.

The complexity analysis is provided in terms of the number of update operations

and will also make explicit the combined complexity taking into account the spe-

cialized DTD.

The algorithms can be trivially extended to accomodate insertions of

subtrees. In this case the provided algorithmic complexity results are modified to

account for the straightforward non-incremental validation of the subtree.

III.C Warmup: Incremental Validation of Strings

As warmup to the validation problem, we consider in this section the

incremental validation of strings with respect to a regular language specified by an

NFA. We first consider the case when all updates consist of label renamings. We

discuss inserts and deletes later.

Consider an NFA N = 〈Σ, Q, q0, F, δ〉, and a string a1 . . . an ∈ L(N).

For compatibility with our tree formalism, we view a string as a sequence of nodes

(or elements) each of which has a label. When there is no confusion we sometimes

blur the distinction between an element and its label.

Consider a sequence of element renamings u(ai1 , b1), . . . , u(aim , bm), where

i1 < i2 < . . . < im. The renaming u(aij , bj) requires that the label of element aij

be renamed to bj. We would like to efficiently check whether the updated string

a1 . . . ai1−1b1ai1+1 . . . aim−1bmaim+1 . . . an ∈ L(N).

Validating the new string from scratch by running it through the automaton N

takes O(n|Q|2 log |Q|). We can easily do better by maintaining some auxiliary
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information. For simplicity in the presentation, we assume that we can find the

rank of a specified node among its siblings in O(1). This assumption is removed

later.

Consider the case of a single renaming u(i, b) for 1 ≤ i ≤ n. Suppose that

we have pre-computed, for each i, 1 < i < n, the sets Pre(i) = δ(q0, a1 . . . ai−1)

and Post(i) = {s | δ(s, ai+1 . . . an) ∈ F}. If we precompute Pre and Post in arrays

then we can retrieve Pre(i) or Post(i) in O(|Q|). An O(|Q|2) algorithm for checking

whether the string is in L(N) following the update u(i, b) is now obvious: If there

is a state s1 ∈ Pre(i), a state s2 ∈ Post(i1 + 1) such that s2 ∈ δ(b, s1) then the

updated string is in L(N).

However, the Pre and Post technique does not scale to m updates. Fur-

thermore, maintaining Pre and Post is problematic because, following each update

u(i, b), we need to recompute all Pre(j) for j > i and Post(j) for j < i. This

requires O(n|Q|2 log |Q|) time.

As the next step in the warmup, we can try to keep some additional

auxiliary information in order to better handle multiple updates. For each i, j,

1 ≤ i < j ≤ n, let Tij be the transition relation {〈p, q〉 | p, q ∈ Q, q ∈ δ(p, ai . . . aj)}.
Note that Tij = Tik ◦ Tkj, i < k < j, where ◦ denotes composition of bi-

nary relations. We also denote by δa the relation {〈p, q〉 | q ∈ δ(p, a)} for

a ∈ Σ. If all Tij are available, then checking validity of the updated string

a1 . . . ai1−1b1ai1+1 . . . aim−1bmaim+1 . . . an reduces to verifying that

〈q0, f〉 ∈ T0(i1−1) ◦ δb1 ◦ T(i1+1)(i2−1) ◦ . . . ◦ T(im+1)(n)

for some f ∈ F . This takes time O(m|Q|2 log |Q|), if we assume that we have pre-

computed in a 2-dimensional array all relations Tij. In particular, the composition

of two relations is a join operation. It can be accomplished in O(|Q|2 log |Q|2) =

O(|Q|2 log |Q|) by employing sort-merge join. Each relation is sorted in

O(|Q|2 log |Q|) and then they are merged in O(|Q|2). The same complexity can be

derived if we assume binary tree indices on each attribute of the relations and we
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T18

T14 T58

T12 T34 T56 T78

T11 T22 T33 T44 T55 T66 T77 T88

Figure III.2: The tree T18

employ index-based join [36]. The size of the array required for the precomputa-

tion is n2|Q|2. However, maintaining the precomputed structure is prohibitively

expensive, since we have to recompute every relation Tij if there is an update be-

tween the ith and jth position of the string. We are therefore led to consider a

more promising approach, which provides the basis for the solution we adopt.

Divide-and-conquer validation We describe a divide-and-conquer approach

that allows validating a sequence of m renamings to a string of length n, as well

as update the auxiliary structure, in O(m|Q|2 log |Q| log n) time. The size of the

auxiliary structure is O(|Q|2n). Note that the approach below is similar to that

briefly sketched in [71].

For simplicity, assume first that n is a power of 2, say n = 2k. The main

idea is to keep as auxiliary information just the Tij for intervals [i, j] obtained

by recursively splitting [1, n] into halves, until i = j. More precisely, consider

the transition relation tree Tn whose nodes are the sets Tij, defined inductively as

follows:

• the root is T1,2k

• each node Tij for which j − i > 0 has children Tik

and T(k+1)j where k = j−i+1
2

,

• Tii are leaves, 1 ≤ i ≤ n.

For example, T8 is shown in Figure III.2.
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Note that Tn has n + (n/2) + . . . + 2 + 1 = 2n− 1 nodes and has

depth log n. Thus, the size of the auxiliary structure is O(n|Q|2).
Consider now a string a1a2 . . . an ∈ L(N), and a sequence of renamings

u(i1, b1), u(i2, b2), . . . , u(im, bm), where i1 < i2 < . . . < im. The updated string

is a1 . . . ai1−1b1ai1+1 . . . aim−1bmaim+1 . . . an. Note that the relations Tij that are

affected by the updates are those laying on the path from a leaf Tiviv (1 ≤ v ≤ m)

to the root of Tn. Let I be the set of such relations, and note that its size is at

most m log n.

The tree Tn can now be updated by recomputing the Tij’s in I bottom-

up as follows: First, the leaves Tiviv ∈ I are set to δbv , 1 ≤ v ≤ m. Then each

Tij ∈ I with children Tiv and Tvj for which at least one has been recomputed is

replaced by Tiv ◦ Tvj. Thus, at most m log n Tij’s have been recomputed, each in

time O(|Q|2 log |Q|), yielding a total time of O(m|Q|2 log |Q| log n).

The validation of the string a1 . . . ai1−1b1ai1+1 . . . aim−1bmaim+1 . . . an is

now trivial: it is enough to check, in the updated auxiliary structure, that 〈q0, f〉 ∈
T1n for some f ∈ F . Thus, validation is also done in time O(m|Q|2 log |Q| log n).

The above approach can easily be adapted to strings whose length is not

a power of 2 (for example, by appropriately truncating T2k where k = dlog ne).

Dealing with inserts and deletes We next extend the divide-and-conquer

approach outlined for renamings to the case when node inserts and deletes are also

allowed. The above approach no longer works, for two reasons: First, inserts and

deletes cause the position of nodes in the string to change. Second, the length

n of the string, and therefore the set of relevant intervals used to construct Tn,

are now dynamic. Due to these differences, inserts and deletes would require

recomputing the entire tree Tn, which is inefficient. Instead, we would like to use a

tree structure T that can be incrementally maintained under inserts and deletes,

as well as renamings, while preserving the properties that enabled our divide-and-

conquer approach. Most importantly, the tree should continue to be balanced and
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have depth O(log n). This suggests adopting an approach based on B-trees, that

we describe next. We assume basic familiarity with B-trees (e.g., see [36]).

The B-tree variant we use is the 2-3 tree, which was a precursor to B-trees

[23]. Each node contains 3 cells. Each cell is either empty or contains a transition

relation Ts corresponding to some subsequence s of v1 . . . vn, conforming to the

rules described below. At most one of the 3 cells in a node can be empty, assuming

n ≥ 2. Each nonempty cell is either contained in a leaf node or has one node (with

three cells) as a child. The following rules apply to the transition relations stored

in the cells:

• if the root has two nonempty cells containing the relations Ts1 and Ts2 (resp.

three cells containing the relations Ts1 , Ts2 and Ts3) then Ts1 ◦ Ts2 = T[v1...vn]

(resp. Ts1 ◦ Ts2 ◦ Ts3 = T[v1...vn)]);

• if an internal cell contains a relation Ts and its child node contains Ts1 , Ts2

(resp. Ts1 , Ts2 , and Ts3) then Ts = Ts1 ◦ Ts2 (resp. Ts = Ts1 ◦ Ts2 ◦ Ts3);

• the sequence of non-empty leaf cells is Ts1 . . . Tsn and Tsi
= T[vi], 1 ≤ i ≤ n.

We also maintain pointers providing in O(1), for each element v in the

input string, the leaf cell Ts for which the singleton s consists of v. Note that the

position of the element is never recorded explicitly.

For example, the left part of Figure III.3 shows a sequence of seven nodes,

several subsequences, and the corresponding tree. Note that the subscript of a

node does not necessarily indicate its position in the string. Each sequence si is

the singleton sequence ni, for i ∈ {1, 2, 3, 5, 6, 7, 9}.
The requirement of having 3 cells per node of which at least 2 are non-

empty ensures that the tree T remains balanced and of depth O(log n) as it is

updated. This follows from the standard analysis of B-tree behavior under the

maintenance algorithm [36], which we describe here. In a disk-based implemen-

tation one should increase the maximum number of cells per node. Furthermore,

the leaf node cells need not correspond to singleton element lists. Indeed, we
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〈Tsa , Tsb
, Tsc〉

〈Ts1 , Ts2〉 〈Ts3 , Ts5 , Ts6〉 〈Ts7 , Ts9〉

〈Tse , Tsf
〉

〈Tsa
, Tsb′ 〉 〈Tsb′′ , Tsc

〉

〈Ts1 , Ts2〉 〈Ts3 , Ts4〉 〈Ts5 , Ts6〉 〈Ts7 , Ts8 , Ts9〉

sa︷ ︸︸ ︷
n1︸︷︷︸
s1

n2︸︷︷︸
s2

sb︷ ︸︸ ︷
n3︸︷︷︸
s3

n5︸︷︷︸
s5

n6︸︷︷︸
s6

sc︷ ︸︸ ︷
n7︸︷︷︸
s7

n9︸︷︷︸
s9

se︷ ︸︸ ︷
sa︷ ︸︸ ︷

n1︸︷︷︸
s1

n2︸︷︷︸
s2

sb′︷ ︸︸ ︷
n3︸︷︷︸
s3

n4︸︷︷︸
s4

sf︷ ︸︸ ︷
sb′′︷ ︸︸ ︷

n5︸︷︷︸
s5

n6︸︷︷︸
s6

sc︷ ︸︸ ︷
n7︸︷︷︸
s7

n8︸︷︷︸
s8

n9︸︷︷︸
s9

Figure III.3: A T tree before and after the insertion of nodes n4 and n8

reduce storage requirements by associating each leaf node cell with a substring.

Section III.F provides an evaluation of the performance effect of the number of

cells in nodes and of the substring size corresponding to leaf node cells.

Recall that we wish to validate strings with respect to an NFA

N = 〈Σ, Q, q0, F, δ〉. We describe below the maintenance algorithm for T . Once

T is computed for the current string, validation is easy: check that for some f ∈ F ,

〈q0, f〉 belongs to the composition of the sets Ts in the cells of the root node of T ,

at cost O(|Q|2 log |Q|).
The auxiliary structure T corresponding to a valid string w is initialized

by starting from the empty string and constructing w by a sequence of inserts,

using the maintenance algorithm. Then T is maintained incrementally as follows.

If the update is a renaming of element v, T is updated much like Tn: we use the

index to find the leaf cell of Tv corresponding to v, then update all sets Ts along

the path from Tv to the root. This involves O(log n) updates.

If the update is the insertion or deletion of a new labeled element, the

maintenance algorithm mimicks the one for B-trees. In particular, recall that if

nodes in a B-tree become too full as the result of an insertion they are split, and if

they contain fewer than two non-empty cells as a result of a deletion they are either

merged with a sibling node or non-empty cells are transferred from a sibling node.

The node splits and merges may propagate all the way to the root. Due to the

similarity to classical B-tree maintenance we omit the details but illustrate how to
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handle the first variant of insertion; deletion and the second variant of insertion are

similar. Assume that an element y with label a is inserted after element x in the

current string. If there is some empty cell in the leaf node n of T containing the

set Tx corresponding to x we insert the relation Ty = δa in the cell following that

for x and we revise the appropriate Ts relations in ancestor nodes. For example,

if a new node n8 is inserted in the left string of Figure III.3 after n7, we insert Ts8

in the node 〈Ts7 , Ts9〉, as shown in the right side of Figure III.3, and we revise Tsc ,

which becomes Ts7 ◦ Ts8 ◦ Ts9 .

If the leaf node n for x has no non-empty cells, then we split n into two

nodes n′ and n′′ containing two relations each. We delete from the parent the

relation Ts, where s is the subsequence that corresponds to the node n, and we

attempt to insert in the parent relations Ts′ and Ts′′ , which correspond to n′ and

n′′. If the parent already has three relations, the deletion of Ts and the insertion

of Ts′ and Ts′′ will require splitting the parent into two nodes. As is the case for B-

trees, this process may propagate all the way to the root and may end up creating

a new root. For example, the insertion of a node n4 following n3 leads to splitting

the node 〈Ts3 , Ts5 , Ts6〉 into 〈Ts3 , Ts4〉 and 〈Ts5 , Ts6〉. The relation Tsb
is deleted and

two new relations Tsb′ and Tsb′′ are inserted into 〈Tsa , Tsb
, Tsc〉, which leads to a

new split and a new root. The result tree is shown in the right side of Figure III.3.

In the worst case, when an insertion in a leaf node results in splits propagating

all the way to the root, we need to recompute 2 log n new relations (one at the

leaf level, one at the new root, and 2(log n− 1) at the internal nodes). Hence, the

worst case complexity is O(|Q|2 log |Q| log n). Deletion proceeds similarly and may

lead to node merging or root deletion, with the same complexity. As in the case of

B-trees, the maintenance algorithm guarantees that T always has depth O(log n)

for strings of length n. Altogether, maintenance of T after m updates takes time

O(m|Q|2 log |Q| log n).
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1-unambiguous regular expressions As discussed earlier, XML Schemas re-

quire regular expressions used in type definitions to be 1-unambiguous. If r is a

1-unambiguous regular expression, the corresponding DFA is of size linear in r. In

this case, the relations Ts used in the above auxiliary structure have size O(|Q|)
rather than O(|Q|2). This brings down the size of the auxiliary structure to O(|Q|n)

and the complexity of maintenance and validation to O(m|Q| log |Q| log n).

III.D Incremental DTD and XML Schema Validation

We begin this section by presenting an extension to DTDs and XML

Schemas of our incremental validation algorithm for strings. Next, we study in

depth a special class of regular languages, called local, that arises frequently in

practice and that can be validated very efficiently. DTDs and XML schemas whose

rules involve only local regular languages benefit from the efficient validation al-

gorithm we present.

III.D.1 From strings to DTDs and XML Schemas

The incremental validation of DTDs and XML Schemas extends the

divide-and-conquer algorithm for incremental validation of strings described in

Section III.C. The following discussion excludes XML Schema validation for inter-

nal node renamings, which can be handled using the specialized DTD validation

algorithm described in [11].

Let d be a DTD, T = 〈t, λ〉 a labeled tree satisfying d, and consider

first updates consisting of a sequence of m label modifications yielding a new tree

T ′ = 〈t′, λ′〉. To check that T ′ satisfies d, we must verify that for each node v in

t′ with children v1 . . . vn for which at least one label was modified, the sequence of

labels λ′(v1) . . . λ′(vn) belongs to rλ′(v). If the label of v has not been modified, i.e.

λ(v) = λ′(v), then validation can be done using the divide-and-conquer algorithm

described in Section III.C for strings. However, if the label of v has been modified,



93

so that λ(v) 6= λ′(v), the sequence λ′(v1) . . . λ′(vn) has to be validated with respect

to the new regular language rλ′(v) rather than rλ(v). Thus, it would seem that, in

this case, validation has to start again from scratch. To avoid this, we preemptively

maintain information about the validity of each string of siblings with respect to all

regular languages ra for a ∈ Σ. To this end we maintain some additional auxiliary

information. Specifically, for each sequence s of siblings in the tree, we compute the

transitions relations Ts of the divide-and-conquer algorithm described in Section

III.C, for each NFA Na corresponding to ra, and a ∈ Σ. We denote the sets Ts for

a particular a ∈ Σ by T a
s .4 Since the auxiliary structure for each fixed NFA and

string of length n has size O(|Q|2n) (where Q is the set of states of the NFA), the

size of the new auxiliary structure is at most O(|Σ||d|2|T |), where |T | is the size of

T and |d| = max{|ra| | a → ra ∈ d}. The maintenance of the auxiliary structure

is done in the same way as in the string case, at a cost of O(m|Σ||d|2 log |d| log |T |)
for a sequence of m modifications. Finally, the updated tree T ′ is valid wrt d if for

each node v with label a in T ′ such that either v or one of its children has been

updated, 〈q0, f〉 is in the relation T a
s where s is the list of children of v, q0 is the

start state of Na, and f is one of its final states. Each such test takes O(|d|2 log |d|)
and the number of tests is m in the worst case. This yields a total validation time

of O(m|Σ||d|2 log |d| log |T |).
For the efficient incremental XML Schema validation of renamings of leaf

nodes we maintain for each node of the tree its type; recall that the type of a node

can be inferred from its label and the type of its parent. For each list of siblings,

whose parent has type at, we maintain a transition relation tree for the NFA of the

regular expression rat that describes the content of nodes with type at. However,

XML Schema validation for internal node renamings cannot be handled in the

same way as DTD validation. The reason is that the renaming of a node v may

change the types of all descendants of v. Indeed, it is easy to see that incremental

validation of XML Schemas with respect to internal node renamings is at least

4Examples 14 and 15 of Section III.E illustrate the need and the remedy for a particular example.
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as hard as validation of strings. This case requires a specialized DTDs validation

algorithm, such as one described in [11].

Insertions and deletions are handled by a straightforward extension of the

B-tree approach outlined in Section III.C, for both the DTD and XML Schema

cases. In the case of XML Schemas we also compute and store the type of the

inserted node. Insertion of m subtrees can be implemented by a sequence of inser-

tions of the individual nodes of the subtrees. The data complexity of this imple-

mentation is O(M log |T |), where M is the total number of nodes of the inserted

subtrees. A more efficient implementation first inserts the roots of the subtrees in

O(m log |T |). Then it validates from scratch each subtree. In the case of DTDs

the subtree rooted at node v must conform to a DTD that has the same rules

but its root is λ(v). In the case of XML Schemas the subtree rooted at node v

must conform to an XML Schema that has the same types, rules and mapping

from types to symbols but its root type is the type of v, which can be inferred

from the parent of v and the label of v. The complexity of this implementation is

O(M + m log |T |).

III.D.2 Local DTDs

In the remainder of this section we focus on a restricted class of DTDs

that arises commonly in practice, and for which incremental validation can be done

very efficiently. Specifically, these are DTDs using regular expressions for which

validity of a string can be decided after an update by examining only substrings of

bounded length around the position of the update. This is ensured by a property

of the regular expressions called locality, which we define shortly. Locality turns

out to be a very appealing property, since it immediately yields an incremental

validation algorithm that, for all practical purposes, has constant data complexity.

In addition, locality is a very common property in practice. We analyzed a set of

60 DTDs collected from OASIS and described in [20]. The DTDs contained 2141

complex regular expressions. Only 21 regular expressions in 10 DTDs were not
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ab
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Figure III.4: Example DFAs: (a) and (b) define local languages; (c) does not.

local. We further analyzed these 21 expressions, by examining their content and

contacting the authors. We determined that only 8 non-local regular expressions in

3 DTDs describe potentially large sequences of elements. The above experimental

results are influenced by the fact that OASIS DTDs primarily describe message

exchange information formats and relatively small files. As XML databases mature

we expect that large sequences in XML documents will become more common

and more non-local regular expressions will be in need of efficient incremental

validation. Nevertheless, the results are indicative of how common locality is in

practice.

III.D.3 Local regular languages

Before defining local regular languages, we illustrate the intuition with

the following example.

Example 11 Consider the language defined by the following regular expression,

taken from the WellLogML DTD [93] CurveData = (data|(piV alue, data))+. Its

minimal DFA is shown in Figure III.4 (a). It has four states: state 1 is a starting

state, state 2 is the only accept state (indicated by shading), and state 0 is a reject
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sink, i.e. a state from which no accepting state is reachable (note that a minimum

DFA has at most one such state). Observe that the DFA has the following special

property: when run on a valid string, the current state is uniquely determined by

the most recent symbol. Indeed, all transitions from states other than the reject

sink lead to state 2 for symbol “data”, and to state 3 for symbol “piValue”. Thus,

when running on a valid string, the DFA is in state 2 if the last processed symbol

was “data”, and in state 3 if the last symbol was “piValue”.

In the minimum DFA for the regular expression in Example 11, the state

is determined by the most recently read symbol (unless it is the sink state). As

might be expected, some regular expressions require more than one symbol to

determine the current state, as illustrated next.

Example 12 The following regular expression is taken from DDML.DTD, avail-

able at http://www.w3.org/TR/NOTE-ddml: choice = (seq|ref)(seq|ref)+. This

expression specifies that a “choice” element should have two or more children. This

expression defines a local language. The minimal DFA is shown in Figure III.4 (b).

From any given state, after a single symbol, the DFA may be in state 2 or 3. How-

ever, any two letter word always brings the DFA to state 3.

We will call k-local a regular expression for which the current non-sink

state is determined by the previous k symbols. Before providing the formal defi-

nition, we introduce the following notation. Given a DFA M = 〈Σ, Q, q0, F, δ〉, we

denote by δ∗ the natural extension of the transition function δ to Q× Σ∗, defined

by δ∗(q, ε) = q and δ∗(q, sa) = δ(δ∗(q, s), a). The set of potentially accepting states

of M , denoted QA, consists of the states in Q other than the reject sink state. We

denote the reject sink state, if any, by qrej.

Definition 16 (Local regular languages and DTDs) A DFA is k-local if for

every string s of length at least k, there are no distinct p, q ∈ QA, such that for

some p′, q′ ∈ Q, δ∗(p′, s) = p, and δ∗(q′, s) = q. A regular language is k-local iff the
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minimum DFA accepting it is k-local. A regular language is local iff it is k-local

for some k. The minimum k for which a regular language is k-local is called its

degree of locality. A regular expression is (k-)local iff the language it defines is

(k-)local. A DTD is (k-)local iff all regular expressions it uses are (k-)local.

Let r be a k-local regular language. Note that, given a string w of length

≥ k and a potentially accepting state p, either δ∗(p, w) = qrej or δ∗(p, w) = q where

q is a potentially accepting state independent of p. We call a string w rejecting

iff δ∗(p, w) = qrej for every p ∈ Q. For every string w of length ≥ k that is not

rejecting, we denote by δ∗(−, w) the unique potentially accepting state q such that

δ∗(p, w) = q for some potentially accepting p.

Note that the locality of a language is defined as a property of the min-

imum DFA accepting the language. The following useful fact shows that locality

of any DFA for the language is sufficient.5

Proposition III.D.1 If a regular language is accepted by some k-local DFA, then

it is k-local.

Proof: Suppose a regular language r is accepted by some k-local DFA D, and let

M be the minimum DFA accepting r. We show that M is also k-local. Recall

that the DFA minimization algorithm produces M from D by merging equivalent

states. Specifically, states p and q are equivalent if for all strings s ∈ Σ∗, δ∗D(p, s)

is accepting iff δ∗D(q, s) is accepting, where δD is the transition function of D.

The algorithm builds equivalence classes of states and replaces each class with a

single state of the minimum automaton M . Thus, the minimization algorithm

constructs a total mapping µ from the states of D onto the states of M that

preserves transitions.

Consider a string s such that |s| > k. Let p, q, r, t be states in QA
M such

that δ∗M(p, s) = r and δ∗M(q, s) = t. There exist states p′, q′, r′, t′ in QA
D such

5In the cases where a language/DTD is non-local it may be worthwhile to consider modifying the
DTD to a non-equivalent local one.
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that µ(p′) = p, µ(q′) = q, µ(r′) = r, µ(t′) = t. Furthermore, δD(p′, s) = r′ and

δD(q′, s) = t′. Since D is k-local, it follows that r′ = t′, so r = µ(r′) = µ(t′) = t.

Thus, M is k-local. 2

Notice that Proposition III.D.1 does not imply that all DFAs accepting

a k-local language must be k-local, or even local. For example, the language a∗ is

0-local, and is accepted by a DFA with two accepting states and two a transitions

from each state to the other. Clearly, this DFA is not local.

It is critical to our approach to determine, given a regular language,

whether it is local, and if so to compute its degree of locality. We will show that

both questions can be answered in time O(|M |4) where M is the minimum DFA

for the language and the size of M , denoted by |M |, is |Q|+ |Σ|+ |δ|. Furthermore,

if M is local, then the degree of locality is bounded by |Q|2 where Q is the set of

states of M .

Theorem 13 Given a regular language r and its minimum DFA

M = 〈Σ, Q, q0, F, δ〉, it can be decided in O(|M |4) time whether r is local. Fur-

thermore, if r is local, its degree of locality is at most |Q|2 and can be computed in

O(|M |4).

Proof: Consider the directed labeled graph G whose vertices are pairs 〈p, q〉 where

p, q are in QA, p 6= q, and there is an edge labeled a ∈ Σ from 〈p, q〉 to 〈p′, q′〉 iff

δ(p, a) = p′ and δ(q, a) = q′. Note that the size of G is at most |M |2. From the

definition of locality, it follows that M is local iff G does not contain infinite paths.

In other words, M is local iff G is acyclic.

Acyclicity of G can be tested in O(|G|2) by attempting to perform a

topological sort of the vertices of the graph: first compute the in-degree of each

node. Next, start with the nodes with in-degree zero, then remove their outgoing

edges and decrease the in-degree count of the target nodes, and repeat. G is acyclic

iff eventually all nodes have in-degree zero.

Now suppose G is acyclic, so M is local. From the definition it imme-

diately follows that the degree of locality of M is the longest path in G, which
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is bounded by |Q|2. This can be computed while the previous topological sort

algorithm is performed, by associating a counter with each node n that stores the

length of the maximum path from some initial node of in-degree zero to n at the

point when n is reached. When the algorithm ends, the maximum value of the

counters provides the length of the maximum path in G. Since G itself is quadratic

in M , this yields an algorithm of O(|M |4).
Note that the analysis yielding O(|G|2) complexity of the above algorithm

is extremely conservative, since it assumes that the complexity of finding a node v,

that is the target of an edge, and its associated counter is O(|G|). Assuming a data

structure that allows locating a node in O(1), which is a reasonable assumption in

practice, the complexity is linear with respect to G. 2

III.D.4 Incremental validation of local DTDs

We next show how the locality property of regular languages can be used

to obtain a very efficient incremental validation algorithm, of constant time data

complexity. Given a DTD using only local regular expressions, if updates only af-

fect leaf nodes without changing the labels of internal nodes, we can use a constant-

time incremental validation algorithm without any additional data structure. How-

ever, if updates may also cause a renaming of a parent node the sequence of its

children needs to be validated against the regular expression for the new label.

As in the general incremental validation algorithm for DTDs, we therefore need

to maintain some auxiliary information allowing to validate each string of siblings

with respect to any of the regular expressions of the DTD, whenever the need

arises. In the case of DTDs using only local regular expressions, we attach to each

internal node a counter for each regular expression. Each counter’s size should be

at least dlog2 ne, where n is the maximum size of a sibling list. Notice that 4-byte

integers can accommodate sibling lists of up to 232 elements and, hence, in our

implementation we just use 4-byte integers for counters.

Our algorithm relies on the following observation.
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Lemma 3 Let r be a k-local regular expression. A string s ∈ Σ∗ of length ≥ k is

valid with respect to r iff the following conditions hold:

1. there is no rejecting substring w of s of length k + 1.

2. δ∗(q0, w) 6= qrej, where w is the prefix of s of length k;

3. δ∗(−, w) ∈ F , where w is the suffix of s of length k.

Proof: Clearly, conditions (1-3) are necessary for validity. We show they are also

sufficient. Suppose s = a1 . . . an is a string of length ≥ k that satisfies conditions

(1)-(3). We show that

(†) δ∗(q0, a1 . . . ai) 6= qrej for all i, k ≤ i ≤ n.

Clearly, (†) proves the statement, since in conjunction with condition (3)

and k-locality it implies that δ∗(q0, a1 . . . an) = δ∗(−, an−k+1 . . . an) ∈ F .

We prove (†) by induction. The basis (for i = k) is true by condition

(2). For the induction step, suppose that i ≥ k and δ∗(q0, a1 . . . ai) 6= qrej. Con-

sider a1 . . . ai+1. By the induction hypothesis and k-locality, δ∗(q0, a1 . . . ai+1) =

δ(δ∗(−, ai−k+1 . . . ai), ai+1). By condition (1), ai−k+1 . . . ai+1 is not rejecting (since

it has length k + 1). Therefore, there exist potentially accepting states p, p′ such

that δ∗(p, ai−k+1 . . . ai+1) = p′. By k-locality,

δ∗(p, ai−k+1 . . . ai+1) = δ(δ∗(−, ai−k+1 . . . ai), ai+1).

It follows that

δ∗(q0, a1 . . . ai+1) = δ(δ∗(−, ai−k+1 . . . ai), ai+1) = p′ 6= qrej.

This completes the induction and the proof of (†). 2

Lemma 3 suggests the following validation algorithm for the sequence

of siblings in an XML document. For each regular expression r of the DTD,

determine its degree k of locality. As long as the string remains of length at most

k, we validate the string with respect to r from scratch if needed. When the string
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exceeds length k (if ever), we check conditions (1)-(3) of the lemma. Conditions

(2) and (3) are easy to check from scratch in constant time whenever required.

Condition (1) is checked incrementally by maintaining some auxiliary information

consisting in the count of the number of rejecting substrings of length k + 1 in

the current string. To do so, we first initialize the count in a pre-processing step

that takes linear time in the size of the string (we do so as soon as the length of

the string exceeds k). A single update occuring at position i affects the substrings

of length k + 1 containing i, whose number is constant. For each such affected

substring we determine whether or not it becomes (or ceases to be) rejecting, and

update the count accordingly. Whenever validation with respect to r is needed,

we check that the count of rejecting substrings is zero. For multiple updates,

we maintain the counters one update at a time. Thus, the required auxiliary

structure consists, for each internal node in the XML tree, of one counter for each

regular expression in the DTD. For a tree T with i internal nodes, the size of

the auxiliary structure is O(i log(|T |/i)), neglecting the fact that in practice lists

will be smaller than 232, which can be accomodated by a typical 4-byte counter.

Maintaining incrementally the auxiliary structure takes O(m log |T |) time with

respect to the string for m updates. Although its theoretical worst-case complexity

is no better than the general DTD validation algorithm, the incremental validation

algorithm has a very efficient implementation, which practically provides constant

time validation. First, the auxiliary structure consists of counters. Assuming

that no list of siblings is longer than 232 elements, then each counter can be a

usual 32-bit integer. The counters are stored together with the data tree (internal

nodes), hence simplifying their access, and their maintenance consists of simply

incrementing or decrementing them, which in practice takes constant time.

Notice that, if updates do not involve the renaming of internal nodes,

then we do not need to maintain counters. Instead, the number of rejecting sub-

strings is zero before the transaction starts and we check that it remains zero after

the transaction has ended. This requires that the updates generate no rejecting
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substring, the prefix of the sequence was not rejecting when starting at q0, and the

suffix of the sequence leads to an accepting state.

Furthermore, we do not need to maintain counters if every pair (r, r′) of

regular languages used by the DTD is incompatible, in the sense that it is impossible

to turn a string that belongs to L(r) into a string that belongs to L(r′), without a

transaction performing a number of updates that is in the order of the size of the

resulting string - hence, making revalidation of r′ from scratch equally attractive

to incremental validation. Indeed, whenever two regular expressions r and r′ do

not contain any common symbol a within the scope of a ∗ they are incompatible.

Notice that the reverse is not always true.

Even if we cannot fully eliminate counters, we may still be able to reduce

the number of counters we have to maintain for each sibling list. Consider a sibling

list whose parent is labeled a and the list belongs to L(ra). Consider also a label

b and the corresponding regular expression rb, which is incompatible with ra. We

do not need to maintain a counter for rb since a renaming of a to b needs to be

accompanied by a large number of updates on the sibling list and it is not beneficial

to incrementally validate such a number of updates.

III.E Implementation

We implemented incremental and local validation algorithms on the

XCacheDB XML database [9] which is built on top of a commercial relational

database engine. The XCacheDB gives an administrator control over the decom-

position of XML data into relations of the underlying RDBMS. For the purposes

of this study we decomposed the XML data into normalized relational schemas.

The following description applies exclusively to the normalized approach, which

is similar to the “hybrid inlining” of [80]. [9] provides a description of alternative

approaches.

The XCacheDB creates a table for every repeatable element in the DTD.
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We say that an element is repeatable if it can occur an unlimited number of times

in a sibling list. A table contains zero or one data attributes, one system-generated

node ID attribute, and at least one of prnt, rsib, and tid. A data attribute is

created for every element with string content. We encode the tags of elements in

the elements’ IDs to efficiently identify the table that needs to be accessed given an

element’s ID. To preserve the parent-child relationship, each table includes a parent

reference prnt, with the exception of the table that stores the root element of the

DTD. We extended XCacheDB to preserve the document order of XML elements,

by adding the rsib attribute to every relation in the schema. This attribute stores

the ID of the element’s right sibling. Since the ID encodes the tag, the value of

rsib also determines the table in which the sibling is stored.

Every element whose parent requires validation6 also stores a tid at-

tribute. The tid is a foreign key into the transtion relation storage table, which

we will describe shortly, and stands for the pointers from elements to transition

relation tree leafs.

We illustrate the XCacheDB data storage and auxiliary storage used for

incremental validation with an example, which will be the running example of this

section.

Example 14 Consider the following DTD:

r = (r1|r2)∗
r1 = (b|ab)+

r2 = (b|abb)+

where a and b are elements with string content. The DTD is based on the Well-

LogML DTD [93], which contains the expression

CurveData = (data|(piV alue, data))+. To illustrate the validation of the renam-

ing of intermediate nodes, we added the r2 element to the DTD. The minimal

DFAs of the expressions r1 and r2 are shown in Figure III.5 (c). Figure III.5 (a)

shows the relational schema created by the XCacheDB. The tables R, R1, R2, A and

6We do not validate trivial regular expressions, with minimal DFAs containing a single state.
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R
r_id
rsib

tid int (PK) 
TR1 char(3)
TR2 char(4)
prnt int
ord int
count int

TR

a_id (PK)
prnt
data
rsib
tid

A

b_id (PK)
prnt
data
rsib
tid

B

1 2 3

a

bb

b a

0

a

a

b

r1=(b|ab)+

1 2 3

a

bb

b a

0

a

a

b

r2=(b|abb)+

4

b

a

(c)

(a) (b)

R1
r1_id
prnt
rsib

R2
r2_id
prnt
rsib

Figure III.5: Relational schema of XCacheDB and TR storage.

B hold the data of the XML document. The string content of elements a and b is

stored in the data attributes of tables A and B respectively. Tables A and B include

parent references to r1 or r2 elements, since both r1 and r2 can have a and b

as their children. For example, A.prnt references either R1.r1 id or R2.r2 id.

Recall that the element IDs encode the tags of elements. In this example, the last

two bits of the element ID determine whether the element is a, b, r1, or r2. Thus

by looking at the value of the parent attribute of an element we immediately know

whether it references r1 or r2. In Figure III.6 we explicitly show the tags as part

of the elements’ ID for clarity of exposition. For example, 3b is the ID of the b3

element, and 1r1 is the ID of r11.

We implemented the three basic update operations, insert, delete and

rename, as well as three validation algorithms, incremental (Section III.D), local

(Section III.D.4), and a naive, which involves reading the whole sibling list and

re-validating it from scratch.
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A

a_id prnt rsib tid tord

2a  1r1   3b   1  1024
5a  1r1 100b 2 2048
7a  1r1   8b   3  1024

12a  1r1  13b   5  1024 

B

b_id prnt rsib tid tord

3b  1r1   4b   1  2048
4b  1r1   5a   2  1024
6b  1r1   7a   9  2048
8b  1r1   9b   3  2048
9b  1r1  10b   4  1024

10b  1r1  11b   4  2048
11b  1r1  12a   4  3072
13b  1r1  null  5  2048

100b 1r1   6b   9  1024

tid tr1   tr2    prnt count  ord

1   “220” “4400”   6     2    1024
2 “333” “3303”   6     2    2048
3   “220” “4400”   7     2    1024
4   “222” “2222”   7     3    2048
5   “220” “4400”   7     2    3072
6 “220” “2200”   8     3    1024
7   “220” “4400”   8     3    2048
8   “220” “4400”   0     2       0
9   “222” “2222”   6 2    3072

a2 b3 b4 a5 b6 a7 b8 b9 b10 b11 a12 b13

�����������

�����

��������
�	
��

�	������
����	
��

���������

TR

r0

r11 

TR 1 TR 2       TR 3 TR 4 TR 5

TR 6 TR 7
�	�
 �	��

TR 8

R1

r1_id prnt rsib

1r1 0r null

Counts

id  r1_vps  r2_vps r1_cnt r2_cnt

1r1 true   false    0      0  

R

r_id rsib

0r null

R2

r2_id prnt rsib

Figure III.6: The state of the storage after a new b element is inserted.

Incremental Validation The transition relations (TR) trees required by the

incremental update validation algorithm are stored in the TR relation, as illustrated

in Figure III.5 (b). We store m TR nodes per tuple, where m is the number of

regular expressions that the string has to be validated against. The transition

relations that correspond to the same sequence of nodes with respect to different

regular expressions are always accessed simultaneously, and it is advantageous to

store them together. For instance, the DTD of Example 14 contains two regular

expressions r1 and r2 that we need to be able to validate. Thus, the TR table

for this DTD will have two columns tr1 and tr2 as shown in Figure III.6. We

do not need to validate trivial regular expressions, such as r, with minimal DFAs

containing a single state.

Each transition relation is stored as a string of length n, where n is

the number of states in the minimal DFA of the regular expression that is being

validated. We assume that the minimal DFA has at most 256 states and, hence,
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a byte is enough to represent a state. The reject sink is by convention the state

0, and its transitions are not stored in the database. For example, the minimal

DFAs for r1 and r2 are shown in Figure III.5 (c). These DFAs have three and four

potentially accepting states respectively. Hence, tr1 is a string of size 3, and tr2

has length 4.

Each tuple of the TR relation has a unique tid attribute, and a prnt

attribute that references the parent TR node. The attribute count stores the

number of children TR nodes, and ord is used for ordering sibling TR nodes, which

map to the same parent. When assigning the ord numbers, we leave enough space

to accommodate many updates without renumbering. Notice, that renumbering

does not entail much overhead since the ord numbers have to be unique only among

the children of the same TR node.

We create an index on the pair (prnt,ord), to facilitate efficient validation

and TR splits. These operations require access to a list of sibling TR nodes.

Example 15 Consider the XML fragment of Figure III.6 that is valid with respect

to the DTD of Example 14. Note that the TR table maintains transition relations

that validate the list of siblings both against r1’s content definition (those relations

are stored in tr1) and transition relations that validate against r2’s content def-

inition (those relations are stored in r2) despite the fact the parent of the list of

siblings is not r2. The reason is that, as we explained in Section III.D, we need

to be able to validate a renaming of r1 to r2 without validating the sequence of

siblings from scratch. Assume that the TR tree is constructed for the list of a’s

and b’s as shown in Figure III.6. Assume that the maximum TR tree node size is

3 (nodes cannot have more than 3 children).

The first tuple of the TR relation in Figure III.6, corresponds to the TR1

node, which covers the substring a2b3. If we run this string on the r1 DFA, the

automaton will terminate in states 2, 2, and 0 if it was initialized at states 1, 2, and

3 respectively. Thus, the transition relation TR.tr1 for this substring is encoded

by “220”.



107

Now consider an insertion of a new b element with id = 100 between the

fourth and fifth child of r1. Figure III.6 shows the state of the database after the

insertion. Shading indicates elements and transition relations that were accessed

to validate the insertion. Notice that a new TR node (“TR 9”) has to be created,

since “TR 2” cannot have 4 children elements, due to the maximum TR node size

assumption.

Local Validation The table Counts stores counters used for validation of com-

plex node renames by the local validation algorithm described in Section III.D.4.

For each complex element, i.e., for each internal node of the data tree, we store a

tuple that contains the element’s ID and a pair of vps and cnt attributes for each

regular expression that needs to be validated. The vps attribute is a boolean “valid

prefix/suffix” flag which indicates whether conditions (2) and (3) of Lemma 3 are

satisfied for the element’s children list. The cnt attribute stores the number of

rejecting sequences of length k + 1 in the list. The condition (1) of Lemma 3 is

satisfied if this number is 0.

Example 16 Figure III.6 shows a Counts tuple that corresponds to r11.

The list of the element’s children is valid with respect to expression r1. Indeed,

r1 vps=true and r1 cnt=0. However, this element cannot be renamed to r2, since

the same list is not valid with respect to expression r2. Even though the sequence

does not contain any rejecting substring (r2 cnt=0), the last two elements leave

the minimal DFA of r2 in state 4, which is not accepting (see Figure III.5 (c)).

This breaks condition (3) of the lemma, hence r2 vps=false.

To facilitate efficient access to the element’s left sibling, which is required

by the local validation algorithm, we create indices on A.rsib and B.rsib.
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III.F Applicability and Performance Experiments

Local validation was applicable on the majority of 60 real-world DTDs

found at OASIS and described at [20]. In particular, there were only 21 non-

local regular expressions in 10 DTDs; the total number of regular expressions

was 2141. By investigating the documentation of the DTDs and contacting their

authors we determined that 8 of those expressions describe potentially very large

lists of data. In addition, the minimal k, which affects the performance of the

local validation algorithm was always less than 4. In total, 2070 expressions were

1-local, 23 expressions were 2-local but not 1-local, and 27 expressions were 3-local

but not 2-local. 39 DTDs contained only 1-local expressions, 8 DTDs contained

only 2-local expressions (recall, the set of 2-local expressions includes the set of 1-

local expressions) and 3 DTDs contained only 3-local expressions; recall, 10 DTDs

contained non-local expressions.

Next we experimentally compare the performance of three update valida-

tion algorithms: local validation, described in Section III.D.2, general incremental

validation described in Section III.D, and a naive algorithm that involves reading

whole sibling lists and re-validating them from scratch. We simulated a number of

update scenarios and analyzed the running time and space overhead of the algo-

rithms under various parameters. We have considered a case where the database

objects are perfectly clustered and a case where a fraction of the database objects

is not placed at the optimal clusters, which is a typical assumption for a database

that is being updated.

III.F.1 Experiment Setup

All the experiments were performed on a 1.2 GHz Pentium system with

512 MB of memory and 5400 rpm hard drive. The XCacheDB server and the

RDBMS were installed on the same system. To offset the relatively small dataset

size, the RDBMS was configured to use only 16 MB for the buffer cache.
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We used a synthetic XML dataset containing about 150000 elements. The

dataset conformed to the DTD of Example 14, which is similar to the WellLogML

DTD [93]. The a and b elements have text content, which does not alter the

validation algorithms, but its size affects the performance of the implementation

since it increases the size of the dataset. Notice that this DTD is local, as the r1

expression is 1-local, and r2 is 2-local. Since the DTD is local, we use the same

dataset to compare all three algorithms: local, incremental, and naive.

Scenarios and Parameters We controlled the following parameters of the

dataset, and of the Transition Relation (TR) storage.

1. Sibling list size: Each dataset had 150000 leaf elements, evenly distributed

between 10, 100, 1000, or 10000 top-level (r1 or r2) elements. Thus, the

average length of a sibling list that had to be validated was 15000, 1500, 150,

and 15 respectively. This is the number of elements that has to be accessed

by a naive algorithm to validate each update.

2. Size of the data attributes of relations A and B. These attributes store text

content for the leaf a and b elements. We tried sizes 25, 100, and 400 bytes,

which translated to 8MB, 20MB and 65MB relational database sizes respec-

tively.

3. Transition Relation (TR) Tree Leaf Node Size: This size refers to the maxi-

mum number of XML elements that can point to the same transition relation

tree node. For every update the incremental algorithm has to read the data

elements belonging to the same leaf TR node. For this parameter we tested

values of: 4, 16, 64, and 256.

4. TR Tree Non-Leaf Node Size: This size refers to the maximum number of

children an internal TR tree node is allowed to have. For this parameter we

tested values of: 4, 16, 64, 256 and 1024.
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Figure III.7: Relative frequency and cumulative distribution of NURand() func-

tion, used in TPC-C.

We tested the performance of element renames and three insert scenarios:

uniformly distributed insertions, insertions distributed according to the TPC-C

benchmark, and append-only access.

Unless otherwise specified, the experiments were conducted with the tran-

sition relation tree nodes being 75% full. For example, when the TR leaf node size

was 4 and the non-leaf node size was 64, a leaf TR node would be created for every

3 XML elements and a non-leaf TR node would be created for every 48 sibling TR

nodes.

In the random insertion scenario, 10000 b elements were inserted at uni-

formly distributed random points in the document. All insertions were done as a

part of a single transaction. The incremental algorithm had to maintain the data

structure for each insertion. Notice that all our transactions are valid to avoid an

(orthogonal) issue of transaction roll-backs. Since the DTD is local, incremental

validation requires reading only a single TR tree node, unless the insertion happens

at distance less than k from the end of the sub-list of elements that point to the

same transition relation tree leaf node.

In the “average case” insertion scenario, which follows TPC-C, the same

10000 b elements were inserted at points picked by the NURand() non-uniform
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random function. The cumulative distribution of this function, for the case when

one element is picked out of a list of 256 elements, is shown in Figure III.7 (taken

from [53]). The same random function is used to construct update transactions in

the TPC-C benchmark [84].

In the “append-only” scenario the dataset was constructed in the same

way. However, the 10000 b elements were all appended to one of the r lists. Notice,

that this scenario caused the maximum number of node splits, and, at the same

time, took maximum advantage of database caching.

We performed the experiments on both clustered and unclustered datasets.

In the first case, each list of siblings was stored consecutively in the tables A and

B, hence leading to perfect clustering of the data. In the second case, 15% of

randomly picked records were shuffled around by deleting and reinserting them

back into the table. The second case models a databases that has been updated

up to 15%, without having been reorganized for clustering purposes yet. Without

the perfect clustering the naive approach was at even greater disadvantage, as it

requires accessing full sibling lists for each update.

Optimizing the TR parameters First, we experimented with the TR node size

parameters to maximize the performance of the incremental algorithm. Figure III.8

shows the average insertion time, which includes actual insertion and incremental

validation time, for the uniform, average and append scenarios described above.

The last graph corresponds to the “full nodes” scenario, which is a random insertion

scenario modified so that all nodes were initially created 100% full. Thus any

insertion will trigger one or more node splits. This is essentially a worst-case

scenario for the incremental validation algorithm, as it requires the highest number

of node splits and the database server cannot take full advantage of caching, due

to the random locations of the updates.

All four graphs of Figure III.8 exhibit the tradeoff between large number

of node splits needed for smaller node size and large sibling lists that need to be
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Figure III.8: Effects of the node size parameters under different update scenarios.

read to validate for larger node size. In all four scenarios, leaf node size of 16

performed better than very small and very large values.

The TR leaf node size affects the performance more than the size of the

internal TR nodes, since leaf TR tree nodes need to be accessed for every insertion,

while internal ones are accessed much less frequently7. The sibling list size and

data attribute size for these experiments were fixed at 15000 and 100 respectively

and the dataset was perfectly clustered. We don’t include the graphs for different

sibling list sizes and unclustered data, since they are very similar with the ones of

Figure III.8.

The effects of the size of the data attribute on the “average-case” scenario

are shown in Figure III.9. The non-leaf node size does not significantly affect this

experiment and was fixed at 64. We report only validation time, as the insertion

time, naturally, increases with the data size and creates the same offset for all

methods.
7Since our DTD is locally updateable, non-leaf TRs are accessed only when the leaf node is split, or

when the updated element happens to be within k of the end of sibling sub-list that maps to a particular
TR leaf node.
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Figure III.9: Effects of the “data” attribute size.

Notice that in all three cases the leaf size 16 performed the best. However,

with 25 byte data attributes, leaf size 64 performed better than leaf size 4, while

with 400 byte data attributes the opposite can be observed. The reason is that with

larger column size fewer tuples fit on a database page. Thus there is higher chance

that an update validation will require access to multiple pages. This increases the

negative effects of larger leaf node sizes.

In the rest of the experiments reported in this section we fix leaf and

non-leaf node sizes to be 16 and 64 respectively, since these values consistently

provide good performance.

Comparing the algorithms Figure III.10 shows that the local and incremental

update validation algorithms are virtually insensitive to the sibling list size, while

the naive algorithm scales almost linearly. Notice that the graphs are in logarithmic

scale. The data attribute size was fixed at 100.

The local validation algorithm is a winner even when the updated element

has as few as 15 siblings. This is remarkable considering how much more efficient

the local validation implementation could have been if we had lower level access

to the data. With small sibling list size, performance of the incremental validation

is comparable to that of the naive algorithm. As the sibling list size grows, the
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Figure III.10: Performance of the three validation algorithm under different update

scenarios on clustered and non-clustered datasets.

incremental validation outperforms the naive by more than an order of magnitude

(sibling list of length 15000).

Naturally, all three algorithms perform worse on non-clustered data, as

they cannot take full advantage of caching and prefetching done by the database

server. However, the naive algorithm’s performance is impacted more since it has

to access more data per update.

Figure III.11 shows effects of the data attribute size on all three validation

algorithms in the “average-use” case. The sibling list size was fixed at 15000. Once

again, the graph is in logarithmic scale. With all three algorithms the validation

for larger data size takes longer as it requires reading more data. Notice that

with small data size, clustering almost does not impact the performance of the

naive algorithm. In this case the entire database fits in the buffer space of the

RDBMS. However, when the data attribute size is large and the database is 4

times bigger than the buffer space, the naive algorithm slows down by almost an
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Figure III.11: Effects of the data attribute size on the three validation algorithms,

on clustered and non-clustered datasets, in “average-use” case.

order of magnitude when running on non-clustered data. In this case the data has

to be read from disk, and without the clustering, the algorithm cannot take full

advantage of the prefetching.

Construction Overhead of Transition Relations Table III.1 shows time and

space required to initially construct transition relations, with various node sizes,

for datasets with average sibling list sizes 1500, 150, and 15. Notice that larger TR

node sizes do not incur larger overhead. Local validation algorithm also has space

overhead as it stores an integer counter for each complex element and each regular

expression that the element is validated against. In our experiments this overhead

ranged from 80 bytes (10 internal nodes) to 80 KB (10000 internal nodes).

Summary We compared naive (”from scratch”) update validation with the de-

scribed in Section III.E implementation of general incremental validation and local

validation, in the context of an XML database built on a relational database. The

following key results and guidelines emerged. First, local validation should always

be used, when applicable, since it outperforms naive and general incremental val-

idation in all scenarios. Fortunately, our investigation in real-life DTDs posted
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Table III.1: Overhead of Transition Relations

node size fan-out time (sec) size (KB)
4 15000 194 1875

16 15000 40 341

64 15000 12.5 80

256 15000 6.6 20

1024 15000 5.2 5.3

4 1500 198 1886

16 1500 59 344

64 1500 26 82

256 1500 19.8 23

1024 1500 19 7.5

4 150 282 1912

16 150 128 395

64 150 103 126

256 150 92 25

1024 150 94 25

4 15 1068 2027

16 15 1051 685

64 15 881 244

256 15 881 244

1024 15 872 244
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at OASIS showed that local DTDs are very common. Second, the tuning of the

leaf node size parameters of the auxiliary structure needed for general incremental

validation is relatively easy, since values in the 16-64 range consistently provided

good results. General incremental validation marginally outperforms naive valida-

tion for sibling list sizes around 150 and significantly outperforms naive validation

for sibling list sizes in the thousands and beyond. The relative comparison results

were not significantly sensitive to how the data were clustered and the pattern of

the sequence of updates.



Chapter IV

XKeyword: Keyword Proximity

Search In Semistructured

Databases

IV.A Introduction

XML and its labeled graph abstraction emerge as the data model of choice

for representing semistructured self-describing data. Novel query languages (see

[2] for a survey and [101] for the emerging XQuery standard) provide features,

such as flexible path expressions, that allow one to query semistructured data, i.e.,

graph data that are not characterized by rigid structure. However, one still needs

sufficient knowledge of the structure, role of the requested objects and XQuery

in order to formulate a meaningful query. Keyword search does not present such

requirements; it enables information discovery by providing a simple interface. It

has been the most popular information discovery method since the user does not

need to know either a query language or the structure of the underlying data.

Typically the search engines enable keyword search on top of sets of doc-

uments. Given a set of keywords, the search engine returns all documents that

are associated with these keywords. Usually, a set of keywords and a document

118
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are associated if the keywords are contained in the document. Their degree of

associativity is often their distance from each other.

XKeyword follows a recent generation of information retrieval systems

that provide keyword proximity search [39, 42, 16, 3] to structured and semistruc-

tured databases. In particular, XKeyword provides keyword proximity search on

XML data that are modeled as labeled graphs, where the edges correspond to the

element-subelement relationship and to IDREF pointers. XKeyword differs from

prior systems for proximity search on labeled graphs in that it assumes the exis-

tence of a schema, similar to the XML Schema standard [91], to which the graph

conforms. The schema facilitates the presentation of the results and is also used in

optimizing the performance of the system. Note that the end-user does not need

to be aware of the schema.

A keyword proximity query is a set of keywords and the results are trees

of XML fragments (called target objects) that contain all the keywords and are

ranked according to their size. Trees of smaller sizes denote higher association

between the keywords, which is generally true for reasonable schema designs. For

example, consider the keyword query “John, VCR” on the graph of Figure I.2.

The first highlighted tree (thick edges) name[John] ← person ← supplier ←
lineitem → linepart → product → descr[set of V CR and DV D] on the source

XML graph of Figure I.2 is a result of size 6. The second highlighted tree (gray

arrows) name[John] ← person ← supplier ← lineitem → linepart → part →
subpart → part → name[V CR] is a result of size 8. The first result is considered

to be a “better” one by XKeyword (as well as by all the other keyword proximity

search systems) since the shorter distance corresponds to the closer connection

between “John” and “VCR” in the first solution, where the “VCR” is the product

that “John” supplied, as opposed to being a sub-part of another part supplied by

“John”. Notice that we allow edges to be followed in either direction.

As we mentioned in Section I.C, the presentation of the results faces two

key challenges that have not been addressed by prior systems. First, the results
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need to be semantically meaningful to the user. Towards this direction, XKeyword

associates a minimal piece of information, called target object, to each node and

displays the target objects instead of the nodes in the results. In the DBLP demo

(Figure IV.2) XKeyword displays target object fields such as the paper title and

conference along with a paper.

The second challenge is to avoid overwhelming the user with a huge num-

ber of often trivial results, as is the case with DISCOVER [42] and DBXplorer [3]1.

Both of those systems present all trees that connect the keywords. In doing so they

produce a large number of trees that contain the same pieces of information many

times. For example, consider the keyword query “US, VCR” and the subgraph of

the XML graph of Figure I.2 shown in Figure I.4. This XML fragment contains

four results:

N1 : p1 ← l1 → pa3 → pa1, N2 : p1 ← l2 → pa3 → pa2,

N3 : p1 ← l2 → pa3 → pa1, N4 : p1 ← l1 → pa3 → pa2

The above results contain a form of redundancy similar to multivalued dependen-

cies [36]: we can infer N3 and N4 from N1 and N2. In that sense, N3 and N4 are

trivial, once N1 and N2 are given. Such trivial results penalize performance and

overwhelm the user. XKeyword avoids producing “duplicate” results and uses a

presentation graph that comprises the complete set of nodes participating in result

trees. At any point only a subset of the graph is shown (see Figure IV.1), as it

is formulated by various navigation actions of the user. Initially the user sees one

result tree r0. By clicking on a node of interest the graph is expanded to display

more nodes of the same type that belong to result trees that contain as many

as possible of the other nodes of r0. Towards this purpose we define a minimal

expansion concept. For example, clicking on the lineitem node of Figure IV.1 (a)

displays all lineitem nodes which are connected to the person and part in the

initial tree, as shown in Figure IV.1 (b).

Two key challenges arise on the way to providing fast response times.

1Both systems work on relational databases, but the presentation challenges are similar.
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(a)

(b)

(c)

Figure IV.1: Presentation graph (expanded nodes have single outliner)

First, the XML data has to be stored efficiently to allow the fast discovery of

connections between the elements that contain the keywords. We follow the ar-

chitecture of multiple recent XML database systems and store the XML data in a

relational database [17, 80, 33, 58, 25, 75, 9], which we tune to provide the needed

indexing and clustering. Then XKeyword builds a set of connection relations,

which precompute particular path and tree connections on the TSS graph. Con-

nection relations are similar to path indices [31] since they facilitate fast traversal

of the database, but also different because they can connect more than two objects

and they store the actual path between a set of target objects, which is needed

in the answer of the keyword query. A core problem is the choice of the set of

connection relations that are precomputed.

Second, the cost of computing the full presentation graph is very high.

Hence XKeyword uses an on-demand execution method, where the execution is

guided according to the user’s navigation. We present an algorithm that gener-

ates a minimal set of queries to the underlying database in response to the user’s

navigation.

XKeyword consists of two stages (Figure IV.5). In the preprocessing
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stage, the master index is created along with a set of connection relations. The

master index is an inverted index that stores for each keyword k a list of ele-

ments that contain k. The most suitable decomposition, i.e., representation of the

target object graph with a set of connection relations, is selected, given the perfor-

mance and space requirements. We compared different decomposition strategies

and found that in order to compute the top-1 result for each result schema, which is

needed to construct the presentation graph, the most space effective decomposition

is to create inlined fragments [9], i.e., fragments that do not contain multivalued

dependencies. On the other hand, a combination of the inlined and the mini-

mal decomposition, where a connection relation is generated for each edge of the

schema graph, is more efficient for the on-demand expansion of the presentation

graph.

In the query processing stage, XKeyword retrieves from the master in-

dex the schema nodes, whose elements contain the keywords, and exploits the

schema graph’s information (in contrast to [39, 16]) to generate a complete and

non-redundant set of connection trees (candidate networks (CN)) between them.

Each CN may produce a number of answers to the keyword query, when evaluated

on the XML graph. A presentation graph is generated for each CN, since they

correspond to the different schemata of results. The CN Generator of XKeyword

is an extension to XML databases of the CN Generator of DISCOVER [42]. We

also present ways to improve the performance of the algorithm described in [42].

The CN’s are passed to the query optimizer, which generates an execution

plan. The key challenges of the optimizer are (a) to decide which connection

relations to use to efficiently evaluate each CN and (b) to exploit the reusability

opportunities of common subexpressions among the CN’s. Both decisions, which

are shown to be NP-complete, dramatically affect the performance as we show

experimentally.

Finally, the results are presented to the user. XKeyword offers two pre-

sentation methods: displaying a presentation graph for each CN (Figure IV.2 (c)),
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(a) Query page

(b) Presentation as a list of results

(c) Displaying results using Presentation Graphs

Figure IV.2: XKeyword demo
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or displaying a full list of results (Figure IV.2 (b)), where each result is a tree that

contains every keyword exactly once. The former method offers a more compact

and non-redundant representation, while the latter favors faster response times.

In summary, we make a number of contributions in the area of keyword

proximity search:

• We present keyword proximity search semantics, extended to capture our

novel result presentation method, which prevents information overflow and

allows the user to navigate in the result.

• We present an architecture and framework that allows for choosing which

connections between objects will be precomputed. We present rules to avoid

generating any useless connection relation, i.e., connection relations that are

not efficient to evaluate any CN. We show how to bound the number of joins

needed to output a solution.

• We address the on-demand performance requirement of the presentation ap-

proach and we compare and analyze different decomposition schemes with

respect to it. We also present an algorithm that efficiently generates the

full list of results by caching partial results and avoiding to recompute the

common result portions and show experimentally that it is up to 80% faster

than the naive approach used in [42] and [3].

XKeyword has been implemented (Figure IV.2) and a demo is available at

http://www.db.ucsd.edu/XKeyword, which operates on the XML data of the DBLP

database.

IV.B Related Work

There is a number of proposals for less structured ways to query XML

database by incorporating keyword search [34, 104] or by relaxing the semantics

of the query language [49, 5]. However none of these works incorporates proximity
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search. Florescu et al. [34] propose an extension to XML query languages that

enables keyword search at the granularity of XML elements, which helps novice

users formulate queries. Another difference of this work from XKeyword is that it

requires the user to specify the elements where the keywords are.

In [39] and [16], a database is viewed as a graph with objects/tuples as

nodes and relationships as edges. Relationships are defined based on the properties

of each application. For example an edge may denote a primary to foreign key

relationship. In [39], the user query specifies two sets of objects, the Find and

the Near objects. These objects may be generated from two corresponding sets of

keywords. The system ranks the objects in Find according to their distance from

the objects in Near. An algorithm is presented that efficiently calculates these

distances by building hub indices. In [16], answers to keyword queries are provided

by searching for Steiner trees [73] that contain all keywords. Heuristics are used

to approximate the Steiner tree problem. Two drawbacks of these approaches are

that (a) they work on the graph of the data, which is huge and (b) the information

provided by the database schema is ignored. In contrast, XKeyword (a) works

on the relatively compact set of target objects connections (see Section IV.C)

and (b) exploits the properties of the schema of the database. XKeyword also

provides relatively scalable performance as the available space to store fragments

(see Section IV.E) increases.

DISCOVER [42] and DBXplorer [3] work on top of a DBMS to facilitate

keyword search in relational databases. They are middleware in the sense that

they can operate as an additional layer on top of existing DBMS’s. In contrast,

XKeyword is a system dedicated to providing efficient keyword querying of XML

databases, by using elaborate duplication and indexing techniques. XKeyword pro-

vides guarantees on the performance of the keyword queries, which is not possible

for a middleware system. DISCOVER and DBXplorer do not consider building

materialized views, which is the equivalent of redundant fragments in XKeyword.

Furthermore, XKeyword adopts an elaborate presentation method using interac-
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tive graphs of results. In contrast, DISCOVER and DBXplorer output a list of

results, including trivial ones. The inherent differences of XML from relational

data are handled in XKeyword by introducing the notion of target object.

Both DISCOVER and XKeyword exploit reusability opportunities among

the candidate networks, in contrast to DBXplorer. The candidate network genera-

tor of XKeyword is an extension of the candidate network generator of DISCOVER

to exploit the information provided by the XML schema like the disjunction nodes

and the maxoccurence of an edge.

XKeyword stores the XML data in a relational database [17, 80, 33, 58,

25, 75, 9], to allow the addition of structured querying capabilities in the future and

leverage the indexing capabilities of the DBMS’s. Some of these works [33, 58, 25]

did not assume knowledge of an XML schema. In particular, the Agora project

employed a fixed relational schema, which stores a tuple per XML element. This

approach is flexible but it is much less competitive than the other approaches,

because of the performance problems caused by the large number of joins in SQL

queries. XKeyword is different because it exploits the schema information to store

the relationships between the target object id’s of the XML data. The actual data

are stored in XML BLOB’s which are introduced in [9].

IV.C Framework and Proximity Keyword Query Seman-

tics

We use the conventional labeled graph notation to represent XML data.

The nodes of the graph correspond to XML elements and are labeled with the

tags of the corresponding elements and an optional string value. Figure I.2 shows

an example of an XML graph. An edge of the graph denotes either contain-

ment (e.g., any “person → name” edge) or an IDREF-to-ID relationship (e.g., any

“supplier → person” edge) or a cross-document XML Link [90]. We will collec-

tively refer to IDREF-to-ID and XML Link edges as reference edges and to the
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rest as containment edges.

We allow the graph to have multiple roots, i.e., multiple nodes with no

incoming containment edge, for two reasons: First, the administrator may choose

to omit the root of an XML document from the graph, since the root often provides

an artificial connection between semantically unrelated first level elements. For

example, had we included a root in Figure I.2 it would appear as persons and

parts are closely connected (two edges way) via the root; such a connection would

be artificial. A second reason for multiple roots is that we may want the graph

to capture multiple XML documents, potentially linked via cross-document XML

Links. We also assume that every node has a unique id, invented by the system

if the corresponding element has no ID attribute. Note that the graph does not

consider any notion of order among the nodes v, . . . , vn pointed by a parent node

v. In summary:

Definition 17 (XML Graph) An XML graph G is a labeled directed graph where

every node v has a unique id id(v), a label λ(v) coming from the set of element

tags T and optionally a value val(v) coming from the set of values V . Edges are

classified into containment and reference edges.

Figure I.2 illustrates an XML graph. By convention, we indicate contain-

ment edges with solid lines and reference edges with dotted lines. We omit id’s

from the figures and we include the values in brackets.

Schema Graphs We use schema graphs2 to describe the structure of the XML

graphs. Schema graphs are similar to XML Schema definitions [91] but have typed

references. We have simplified the content types captured by an XML Schema and

kept only the constructs that are useful for performance optimization.

Definition 18 (Schema Graph) A schema graph is a directed graph Gs where

every node vs is annotated with a label λ(vs) coming from the set of element tags T

and a content type type(vs) taking the value all or the value choice. Every edge
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Figure IV.3: TPC-H based schema graph

es is classified as being a containment edge or a reference edge and is annotated

with a maximum occurrence occ(es), which can be a positive number or *

and (ii) a semantic explanation string, which is a human-readable string

that describes the intuitive meaning of edges of this type.

A XML graph is said to conform to a schema graph if there is a mapping

µ that maps every node v of the XML graph into a node µ(v) of the schema graph

and the following conditions apply:

• v is a root node of the XML graph if and only if µ(v) is a root node of the

schema graph.

• λ(v) = λ(µ(v))

• if there is a containment (resp. reference) edge e from v to u in the XML

graph then there is a containment (resp. reference) edge es from µ(v) to µ(u)

in the schema graph.

• given a XML graph node v, if µ(v) has an outgoing containment (resp. refer-

ence) edge es that points to a schema graph node us and occ(es) = n, n 6= ∗
then there are at most n containment (resp. reference) edges e from v to a

node u where µ(u) = us.

• given a XML graph node v, if type(µ(v)) = choice then for all edges

e1, . . . , en from v to corresponding target nodes u1, . . . , un it is µ(u1) =

. . . µ(un).
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The data of Figure I.2 conform to the TPC-H-like schema of Figure IV.3,

where dotted lines denote reference edges and solid lines stand for containment

edges. We denote choice nodes with an arc over their outgoing edges; all other

nodes are of type all. In Figure IV.3, only “linepart” is a choice node.

Finally, we define an uncycled directed graph G(V, E) to be a directed

graph, whose equivalent undirected graph Gu(V, E ′) has no cycles. An edge (v1, v2)

is created in Gu if G has edges (v1, v2) or (v2, v1).

IV.C.1 Semantics of Keyword Queries and Presentation of Results

A keyword query is a set of keywords k1, . . . , km. The result of a keyword

query is the set of all possible Minimal Total Target Object Networks (MTTON’s).

We define MTTON’s after we have first defined minimal total node networks

(MTNN’s). A node network j of an XML graph G is an uncycled subgraph of

G, such that for each edge (n1, n2) ∈ j it is is (n1, n2) ∈ G. A total node network j

of the keywords {k1, . . . , km} is a node network, where every keyword k is contained

in at least one node n of j, i.e., ∀k ∈ {k1, . . . , km}, ∃n ∈ j : k ∈ keywords(n),

where keywords(n) is the set of keywords contained in the tag or the value of n.

A Minimal Total Node Network (MTNN) j of the keywords {k1, . . . , km} is a total

node network where no node can be removed and j still be a total node network.

The score of a MTNN j is its size in number of edges. For example the following

MTNN N0 of the keyword query “John, VCR” has size 8.

N0 : name[John] ← person ← supplier ← lineitem →
linepart → part → subpart → part → name[VCR]

Notice that in the general case, the size of the MTNN’s of a keyword query is only

data bound. Hence the user specifies the maximum size Z of an MTNN that is of

interest to him/her.

To ensure that the result of a keyword query is semantically meaningful

for the user we introduce the notion of target objects. For every node n in the XML
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graph we define (using the schema, as we will see later) a segment of the XML

graph, called target object of the node n (or simply called target object when the

node n is obvious from the context.) Intuitively, a target object of a node n is a

piece of XML data that is large enough to be meaningful and able to semantically

identify the node n while, at the same time, is as small as possible. For example,

consider the MTNN N0 above. The user would like to know which is the part

number of the VCR, which is the part p of which the VCR is a subpart, which line

item includes p, and what is the last name of John.2

The target objects provide us such information. It makes sense to output

the “partkey” of the VCR part as well as the name and “partkey” of the TV. On

the other hand it would not make sense to output all the subparts of the TV or the

orders of the person. They could be too many and of no interest in semantically

identifying the node. Hence, we define the person element with the name and

nation subelements to be a target object, and the part with the “partkey” and

name to be another target object.

Given a MTNN j with nodes v1, . . . , vn there is a corresponding MTTON

t,3 which is a tree whose nodes is a minimal set of target objects {t1, . . . , tm} such

that for every node nk ∈ j there is a tl ∈ t such that target(nk) = tl. There is an

edge from a target object ti to a target object tj if there is an edge (or as path

of dummy nodes as defined below) from a node that belongs to ti to a node that

belongs to tj. The score of a MTTON t is the score (size) of its corresponding

MTNN. The answer to a keyword query is unique.

Specification of Target Objects The target objects are defined from an ad-

ministrator using the Target Schema Segment (TSS) graph described next. A TSS

graph is an uncycled graph whose nodes are called target schema segments. The

2Due to space limitations we do not include a last name field in the figures.
3The definition does not guarantee the uniqueness of the MTTON t. The nodes of j may be split in

minimal sets of target objects in multiple ways. However, this is of limited practical importance since
in practice it is unlikely that target objects overlap with each other in ways that enable a network to be
split in multiple ways in target objects.
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TSS graph is derived from a partial mapping of the nodes of the schema graph

G. A node tS is created in GTSS for each set S = {s1, . . . , sw} of nodes of G that

are mapped to tS. Some nodes in G, which are called dummy schema nodes, are

not mapped to any node in GTSS, because they do not carry any information.

For example supplier, subpart and linepart are dummy schema nodes. An edge

(tS, tS′) is created in GTSS if the schema graph has nodes s ∈ S and s′ ∈ S ′,

that are connected directly through an edge (s, s′) or indirectly through a path

of dummy schema nodes. Typically we assign to a node tS of the TSS graph a

name that is the label of the “most representative” schema graph node s ∈ S. For

example, the TSS node corresponding to {person, name, nation} is named person

(see Figure IV.4).

Figure IV.12 illustrates the TSS graph behind our DBLP demo. Notice

the semantic explanations, with the obvious meanings, that annotate the edges.

Each edge is annotated with two semantic explanations: the first explains the

connection in the direction of the edge and the second in the reverse direction.

Similarly, the semantic explanations of the TPC-H TSS graph are shown in Fig-

ure IV.4.

Given the TSS graph, it is straightforward to define a target decomposition

of the XML graph into target objects, connected to each other. For example a

target object decomposition of the schema of Figure IV.3 and the corresponding

TSS graph are shown in Figure IV.4. The MTTON of the MTNN N0 presented

above is highlighted in Figure I.2.

IV.C.2 Presentation Graph

In its simplest result presentation method (Figure IV.2 (b)) XKeyword

spawns multiple threads, evaluating various plans for producing MTTON’s, and

outputs MTTONs as they come. The smaller MTTON’s, which are intuitively

more important to the user, are usually output first, since they require smaller

execution times. The threads fill a queue with MTTONs, which are output to the
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Figure IV.4: Target decomposition of a schema graph

user page by page as in web search engine interfaces.

The naive presentation method described above (and currently used by

the DBLP demo) provides fast response times, but may flood the user with results,

many of which are trivial. In particular, as we explained in the introduction, a

redundancy similar to the one observed in multivalued dependencies emerges often.

Displaying to the user results involving multivalued dependencies is overwhelming

and counter-intuitive. XKeyword faces the problem by providing an interactive

interface (and corresponding API) that allows navigation and hides the trivial

results, since it does not display any duplicate information as we show below.

XKeyword’s interactive interface presents the results grouped by the can-

didate networks (see Section IV.D) they conform to. Intuitively, MTTON’s that

belong to the same candidate network have the same types of target objects and

the same type of connections between them. XKeyword groups the results for

each candidate network to summarize the different connection types (schemata)

between the keywords and to simplify the visualization of the result.

XKeyword compacts the results’ representation and offers a drill-down

navigational interface to the user. In particular, a presentation graph PG(C)

(Figure IV.1) is created for each candidate network C. The presentation graph

contains all nodes that participate in some MTTON of C. A sequence of subgraphs

PG0(C), . . . , PGn(C) are active and are displayed at each point, as a result of

the user’s actions. The initial subgraph, PG0(C), is a single, arbitrarily chosen



133

MTTON m of C, as shown in Figure IV.1 (a).

An expansion PGi+1(C) of PGi(C) on a node n of type N is defined as

follows. All distinct nodes n′, of type N , of every MTTON m′ of C are displayed

and marked as expanded (Figure IV.1 (b)). Note that we have to consider the

statement “of type N” in a restricted sense: A candidate network may involve the

same schema type in more than one roles (as is the case with tuple variable aliases

in SQL.) For example, in Figure IV.1 “part” objects on the right side are VCRs

while the “part” objects to their left are the “part” that contain the VCR parts.

We consider those two classes of “part” objects to be two different types as far as

presentation graphs are concerned. In addition a minimal number of nodes of other

types are displayed, so that the expanded nodes appear as part of MTTON’s. More

formally, given a presentation graph instance PGi(C), its expansion PGi+1(C) on

a node n of type N has the following properties: (a) PGi(C) is a subgraph of

PGi+1(C), (b) for each MTTON m′ ∈ C, where the node n′ ∈ m′ is of type N ,

n′ is included in PGi+1(C), (c) for each node v ∈ PGi+1(C) there is a MTTON

z contained in PGi+1(C), such that v ∈ z, and (d) there is no instance PG′
i+1(C)

satisfying the above properties and the set of nodes of PG′
i+1(C) is subset of the

nodes of PGi+1(C).

In the implementation of XKeyword, an expansion on a node n occurs

when the user clicks on n. Notice also that if the expanded nodes are too many to

fit in the screen then only the first 10 are displayed.

On the other hand, a contraction PGi+1(C) of PGi(C) on an expanded

node n of type N is defined as follows. All nodes of type N , except for n, are

hidden (Figure IV.1 (c)). In addition a minimum number of nodes of types other

than N are hidden, while satisfying the restriction that for each node in PGi+1(C)

there is a containing MTTON in PGi+1(C) (see condition (c) below). More for-

mally, given a presentation graph instance PGi(C), its contraction PGi+1(C) on

an expanded node n of type N has the following properties: (a) PGi+1(C) is a sub-

graph of PGi(C), (b) n is the only node in PGi+1(C) of type N , (c) for each node
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v ∈ PGi+1(C) there is a MTTON z contained in PGi+1(C), such that v ∈ z, and

(d) there is no instance PG′
i+1(C) satisfying the above properties while PG′

i+1(C)

has more nodes than PGi+1(C). In the implementation of XKeyword, similar to

the expansion, a contraction on an expanded node n occurs when the user clicks

on n.

The presentation graphs model allows the user to navigate into the results

without being overwhelmed by a huge number of similar MTTON’s. Furthermore,

if he/she is looking for a particular result it is easy to discover it by focusing on

one node at a time.

The presentation of the results of a keyword query by the interactive

presentation graphs evokes the following requirements for the execution unit: First

the top MTTON of each candidate network, which is the initial presentation graph,

must be computed very quickly to provide a quick initial response time to the user.

Second the expansion of the presentation graph must be performed on demand.

This cannot be done simply by moving the cursor of some query we submit to the

underlying database. Instead, when a user clicks on a node, a new minimal set

of focused queries is sent to the database. These requirements and corresponding

solutions are addressed in Section IV.F.

IV.D Architecture

The architecture of XKeyword (Figure IV.5) consists of a load stage,

where the data are loaded to the system and all precomputations are performed,

and a query processing stage that answers keyword queries.

In the load stage, the decomposer inputs the schema graph, the TSS

graph and the XML graph and creates the following structures:

1. A master index, which stores for each keyword k a list of triplets of the form

〈TO id, node id, schema node〉 where TO id is the id of the target object

that contains the node of type schema node with id node id, which contains
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k. The node id 4 and schema node are needed when calculating the score of a

candidate network (Definition 19), since as we describe below, the generated

relations only store target object id’s.

2. A set of statistics specifying: (a) the number s(S) of nodes of type S in the

XML graph and (b) the average number c(S → S ′) of children of type S ′ for

a random node of type S.

3. BLOBs of target objects, which given an object id instantly return the whole

target object.

4. A decomposition of the TSS graph into fragments, which correspond to con-

nection relations that allow efficient retrieval of MTTON’s.

Figure IV.6 shows a valid decomposition of the TSS graph of Figure IV.4,

where the thick arrows and the closed dotted curves denote single edge and multiple

edge fragments respectively. We map each fragment into a connection relation.

For example, P → O → L (in short POL, since the arrows are unambiguously

implied by the TSS graph) is the connection relation that corresponds to the

4node id is needed to distinguish two nodes of the same type and of the same target object.
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POL P_id O_id L_id

PaPa  Pa1_id  Pa2_id
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Service_call
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Product
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Figure IV.6: TSS graph Decomposition

fragment in the dotted line. It stores the connections among the Person, Order and

Lineitem TSS’s. LPref is the connection relation that corresponds to the fragment

(indicated by the thick dotted line) containing the reference edge between Lineitem

and Person.

Query processing consists of five stages. The keyword discoverer inputs

the set of keywords and outputs for each keyword k the containing list L(k) of

〈TO id, node id, schema node〉 where the node identified by node id contains k.

The CN Generator takes from the containing lists the information about

which schema nodes contain the keyword and works on the schema graph to cal-

culate all possible candidate networks (CN’s)) (Definition 19). The CN Generator

works on the schema graph and not on the TSS graph because (a) important

schema information like the choice nodes may be lost when we create the TSS

graph and (b) the score of the MTTON’s is measured in terms of schema graph

edges.

A schema node network is an uncycled directed graph of schema nodes,

where for each edge (S1, S2) of adjacent schema nodes S1, S2 there is an edge

(S1, S2) in the schema graph. The same edge of the schema graph may appear

more than once in a schema node network. Intuitively, this corresponds to the

fact that target objects of the same type may be playing different roles in the

MTTON’s. A schema node S is free (S) if its corresponding extension has nodes

that contain keywords. Otherwise it is non-free. The non-free schema node SK is

the set of nodes of type S that contain all keywords in K.
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A node network j belongs to a schema node network N (j ∈ N) if there

is a tree isomorphism mapping h from the nodes of j to the schema nodes of N ,

such that for each node n ∈ j, n ∈ h(n).

Definition 19 (Candidate Network) Given a keyword query k1, . . . , km and a

schema graph, a schema node network C is a candidate network (CN), if there is

an instance of the XML graph that conforms to the schema graph and has a MTNN

m ∈ C.

The CN’s of size up to Z = 8 generated for the keyword query “TV,

VCR” are the following:

CN1:nameTV ← part → subpart → part → nameV CR

CN2:nameTV ← part → subpart → part → subpart → part → nameV CR

CN3:nameTV ← part → subpart → part → subpart

→ part → subpart → part → nameV CR

CN4:nameTV ← part ← linepart ← lineitem ← order

→ lineitem → linepart → part → nameV CR

CN5:nameTV ← part ← linepart ← lineitem ← order

→ lineitem → linepart → product → descrV CR

There are four more CN’s which are the dual of CN1, CN2, CN3 and

CN5 (CN4 is symmetric, so it is equivalent to its dual) when “TV” and “VCR”

are swapped. We ignore these CN’s in the analysis that follows for compactness.

The CN generator algorithm is based on the algorithm described in DIS-

COVER [42]. It has been extended to address the unique features of XML, such as

choice nodes and distinction of containment and reference edges The CN Generator

algorithm is complete (the proof is an extension of the proof of [42]), that is, all

MTNN’s of size up to Z belong to an output CN. Furthermore, the algorithm is

non-redundant, that is, for each output candidate network C there is an instance



138

of the database that contains a MTNN j ∈ C and there is no other candidate

network C ′ such that j ∈ C ′.

Recall that the connection relations store only target object id’s. Hence

we reduce the candidate networks to TSS networks, which are uncycled directed

graphs of TSS’s, where for each edge (T1, T2) between TSS’s T1, T2 there is an

edge (T1, T2) in the TSS graph. The unique TSS network that corresponds to a

candidate network is called candidate TSS network (CTSSN).

The candidate TSS networks corresponding to the candidate networks of

size up to Z = 8 are the following, where T k,S denotes a TSS T that contains

keyword k in its schema node S:

CTSSN1: PartTV,name → PartV CR,name

CTSSN2: PartTV,name → Part → PartV CR,name

CTSSN3: PartTV,name → Part → Part → PartV CR,name

CTSSN4: PartTV,name ← Lineitem ← Order → Lineitem → PartV CR,name

CTSSN5: PartTV,name ← Lineitem ← Order → Lineitem → ProductV CR,descr

The candidate TSS networks are output by the CN Generator. The Op-

timizer is an adaptation of the optimizer of [42]. It uses the schema information on

the connection relations and the available statistics to generate the best Execution

Plan that evaluates the set of candidate TSS networks.

An important feature of the optimizer is that it exploits the common

subexpression reusability opportunities among the candidate TSS networks as in

CTSSN4 and CTSSN5 below. For example, an execution plan for the above set

of candidate TSS networks is:

CTSSN1 ← PaPa(TV,part1.name),(V CR,part2.name)

CTSSN2 ← PaPa(TV,part1.name) 1Pa2 id=Pa1 id PaPa(V CR,part2.name)

CTSSN3 ← PaPa(TV,part1.name) 1Pa2 id=Pa1 id

PaPa 1Pa2 id=Pa1 id PaPa(V CR,part2.name)
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Figure IV.7: Another TSS Graph Decomposition

temp1 ← LPa refTV,part.name 1L id=L id POL 1O id=O id POL

CTSSN4 ← temp1 1L id=L id LPa refV CR,part.name

CTSSN5 ← temp1 1L id=L id LPr refV CR,product.descr

The Execution Module inputs the execution plan from the Optimizer.

If the presentation graph method is used to present the results, the Execution

Module interacts with the Presentation Module to direct the execution according

to the user’s navigation on the presentation graphs. In the case of the full list

of results presentation method, a stream of results is output. The details of the

Execution Module are described in Section IV.F.

Finally the Presentation module displays the results as described in Sec-

tion IV.C.2.

IV.E XML Decompositions

The decomposition of the TSS graph into fragments determines how the

connections of the XML graph are stored in the database, and consequently the

generated execution plan for the candidate TSS networks. We have found that the

selected decomposition can dramatically change the performance of XKeyword,

especially for top-K queries.

Example 17 Consider the keyword query “TV, VCR” and CTSSN4:
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PartTV,name ← Lineitem ← Order → Lineitem → PartV CR,name from Sec-

tion IV.D. CTSSN4 requires three joins given the decomposition of Figure IV.6.

Consider the TSS graph decomposition of Figure IV.7, which includes an OLPa

fragment. With this decomposition, CTSSN4 can be evaluated with a single join

OLP TV,part.name 1 OLP V CR,part.name.

Often we need to build unfolded fragments that contain the same TSS

more than once, to store the same edge of the TSS graph more than once, as shown

in the example below.

Example 18 Consider the network CTSSN2:

PartTV,name → Part → PartV CR,name of Section IV.D. This network connects

three Part nodes by following the Part → Part edge twice. Under any non-

unfolded decomposition this network cannot be executed without a join. However,

the first unfolded TSS graph of Figure IV.8, which “unrolls” the PartPart cycle,

allows the creation of the Part → Part → Part fragment, which can evaluate

CTSSN2 without a join.

Similarly, CTSSN4 can be evaluated without a join, if we create the

Part ← Lineitem ← Order → Lineitem → Part fragment on the second unfolded

TSS graph of Figure IV.8, where the Order → Lineitem edge has been “split”, i.e.,

the Order TSS has two children Lineitem TSS’s. Notice that not all edges of the

unfolded TSS graphs have to be in the decomposition. For example in the second

unfolded TSS graph of Figure IV.8, the second Lineitem → Person edge is not in
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a fragment, since there is a fragment for the first Lineitem → Person edge.

Definition 20 (Walk Set, Unfolded TSS Graph) A walk set of a TSS graph

G, denoted WS(G), is the set of all possible walks in G. A graph Gu is an unfolded

TSS graph of the TSS graph G if WS(Gu) = WS(G).

Definition 21 (TSS Graph Decomposition) A decomposition of a TSS graph

G = 〈N,E〉 is a set of fragments F1, . . . , Fn, where for each fragment F 〈N,E〉
there is an unfolded TSS graph Gu = 〈Nu, Eu〉 of G, such that F is a subgraph of

Gu. Every edge of G has to be present in at least one fragment.

Lemma 4 Any candidate TSS network can be evaluated given a TSS graph de-

composition with the properties of Definition 21.

The size of a fragment is the number of edges of the TSS graph that it

includes. Note that a TSS graph decomposition is not necessarily a partition of

the TSS graph – a TSS may be included in multiple fragments (Figure IV.7).

Each fragment F = 〈N, E〉 corresponds to a connection relation R, where

each attribute corresponds to a TSS and is of type ID5. A tuple is added to R for

each subgraph of type F in the target object graph, which is the representation of

the XML graph in terms of target objects, that is, each node of the target object

graph is a target object. Connection relations are a generalization of path indexes

[31].

IV.E.1 Decomposition Tradeoffs

There is a tradeoff between the number of fragments that we build and

the performance of the keyword queries, as we shown in Section IV.G. Assume

that we consider solutions to the keyword queries which contain up to M +1 target

objects. That is, the maximum size of a candidate TSS network is M . The one

extreme is to create the minimal decomposition, where a fragment is built for each

5In RDBMS’s we use the “integer” type to represent the “ID” datatype.
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edge of the TSS graph. Then, each candidate TSS network C requires S − 1 joins

to be evaluated, where S is the size of C. We have found that the minimal is

the most efficient decomposition for the on-demand expansion of a presentation

graph, because the execution algorithm first tries to connect the new target objects

to the adjacent nodes in the presentation graph, and gradually tries further nodes

(Figure IV.11).

The other extreme is the maximal decomposition, where a fragment F is

built for every possible candidate TSS network C. F is created by replacing the

non-free TSS’s of C with free TSS’s. Then C is evaluated with zero joins. Clearly,

the maximal decomposition is not feasible in practice due to the huge amount of

space required.

Notice that M can be calculated by the maximum size Z of the MTNN’s of

the keyword query. In particular, the size S of a candidate TSS network C is bound

by the size S ′ of the corresponding candidate network C ′ with the size association

function f , which depends on the schema graph, the number of keywords and the

TSS graph. It is S ≤ f(S ′). Hence

M = f(Z) (IV.1)

For the schema graph of Figure IV.3, two keywords and the TSS graph of Fig-

ure IV.4, it is f(S ′) = 2 · S ′ + 2.

The clustering and indexing of the connection relations are critical be-

cause they determine the performance of the joins. In the maximal decomposition,

a multi-attribute index is created for every valid (i.e., the keywords can be on

these attributes) combination of attributes of every connection relation. In all

non-maximal decompositions, we found (Section IV.G) that the performance is

dramatically improved when a connection relation R is clustered on the direction

that R is used. For example, consider the execution plan of Section IV.D. If the

evaluation of CTSSN3 ← PaPa(TV,part1.name) 1Pa2 id=Pa1 id PaPa 1Pa2 id=Pa1 id

PaPa(V CR,part2.name) starts from the left end, then all three PaPa connection re-

lations should be clustered from left to right. If creating all clusterings for each
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fragment is too expensive with respect to space, then single attribute indices are

created on every attribute of the connection relations, since we found that multi-

attribute indices are not used by the DBMS optimizer to evaluate join sequences.

The number of joins to evaluate the query q corresponding to a candidate

TSS network is critical, because of the nature of q, which always starts from “small”

connection relations. Also, the connection relations only store ID’s and have every

single attribute index, which makes the joins index lookups. The significance of

the number of joins was verified experimentally (Section IV.G). Hence, we specify

for each decomposition an upper bound B to the number of joins to evaluate any

candidate TSS network of size up to M . For example B = 0 and B = M − 1 for

the maximal and minimal decompositions respectively.

Given B, we generally prefer to build fragments of small sizes to limit

the space of storing them. Theorem 1 proves that we can bound the size of the

fragments of the decomposition.

Theorem 1 There is always a decomposition D, whose fragments’ maximum size

is L = d M
B+1

e and any candidate TSS network of size up to M is evaluated with at

most B joins.

Proof: Assume that D is the decomposition that contains exactly all possible

fragments of size L. We show how to evaluate a candidate TSS network C of size

M (if the size is smaller than M it is an easier case) using D. First we partition the

edges of C into connected sets of size L. Notice that the last set s may have size

smaller than L. The number of sets is dM/Le = B +1. Each such set corresponds

to a fragment in D. For the last set s we pick a fragment that contains s. Hence

we have to join B + 1 fragments, which needs B joins.

Depending on the TSS graph, we may need to build all possible fragments

of size L to satisfy the constraint B on the number of joins. Theorem 2 shows such

a class of TSS graphs. 2

Theorem 2 If all edges of the TSS graph are star (“*”) edges and ∃L ∈ N, such
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that M = L · (B + 1), then the decomposition D must contain all fragments of size

L to satisfy the constraint B on the number of joins.

Proof sketch: Assume that a fragment F of size L is not in D. We show that

there is a candidate TSS network C that cannot be evaluated with B joins. C is

constructed as follows: If r is the root of F then, we replicate F B + 1 times and

make their root common. Then C needs more than B joins if F is not available.

♦
Often it is not efficient to build all fragments of size L, because a fragment

may take up too much space despite its small size (in number of edges). This

happens when the corresponding connection relation of a fragment has a non-trivial

multivalued dependency (MVD), as the PaLOLPa fragment in Figure IV.8, which

has the MVD O id →→ L1 id, Pa1 id. We say that a fragment has an MVD when

its corresponding connection relation has an MVD.

Theorem 3 A fragment F has a non-trivial MVD iff F contains a path

p = (e1, . . . , en) and ∃ei ∈ {e1, . . . , en},∃ej ∈ {e1, . . . , en}, i < j, and

• ei ∈ { ∗←−,
ref−−→,

∗→
ref

,
∗←

ref
} and

• ej ∈ { ∗−→,
ref←−−,

∗→
ref

,
∗←

ref
} and

• 6 ∃l, i < l < j − 1, el ∈ {→} ∧ el+1 ∈ {←}

Proof sketch: Assume that R is the corresponding connection relation of F . First

we prove that if F contains p, then F has an MVD. We assume that V is the set

of nodes of F . We can assume that there is no star edge e ∈ {ei+1, . . . , ej−1}. If

there were, we would consider the path p′ = {ei, . . . , e} or p′ = {e, . . . , ej} if e is
∗−→ or

∗←− respectively. For the same reason we assume that there are no ref edges

in {ei+1, . . . , ej−1}. Assume that ei = (vi, v
′
i) and ej = (vj, v

′
j). By the hypothesis

no l exists, so there is a one-to-one relationship between v′i and vj. Also, by the

hypothesis it is obvious that one-to-many relatioships exist between v′i and vi, and
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vj and v′j. Hence, R has the MVD v′i →→ vi ∪ VL, where VL is the set of nodes of

p on the left of vi.

The inverse specifies that if R has an MVD then the conditions of the

theorem hold. Assume that the MVD is vm →→ Vm, where vm ∈ V and Vm ⊆ V .

If the MVD is non-trivial there must be a one-to-many relationship from vm to an

attribute vi ∈ Vm and from vm to an attribute v′l ∈ (V −Vm−vm). If the hypothesis

about l did not hold, then F would be empty since R=πVm∪vmR 1vm=vm πV−VmR,

by the definition of an MVD. ♦
We classify TSS graph fragments and decompositions based on the storage

redundancy in the corresponding connection relations. Connection relations that

correspond to a single edge in the TSS graph, by definition are always in 4NF. Some

wider connection relations, for example the OLPa relation of Figure IV.7 can be

in 4NF, however most of them will not be in 4NF. Non-MVD, no-4NF connection

relations, are called inlined connection relations. A fragment is 4NF, inlined, or

MVD, if the resulting connection relation is 4NF, inlined, or MVD respectively.

There are two classes of fragments that should never be built because no

candidate TSS network can efficiently use them. We call such fragments useless:

1. If a fragment F contains a choice TSS T and more than one children of T ,

then F is useless, since the children of T can never be connected through T .

For example, the fragment PaLPr is useless since Lineitem is a choice TSS.

2. A fragment that contains the construct T1
l1−→ T

l2←− T2 is useless, if l1 6= ref

and l2 6= ref , because T1 and T2 are never connected through T . For example,

the fragment L1PrL2 is useless since two Lineitem target objects cannot

connect through a Part target object.

We ignore useless fragments in the decomposition algorithm presented below.

Decomposition Algorithm. XKeyword uses two different decompositions. First,

an inlined, non-MVD decomposition generated by the algorithm of Figure IV.10 is

built, where B is the maximum number of joins and M is the maximum candidate
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Figure IV.9: Replacing an MVD with a non-MVD fragment

TSS network size. This decomposition is used to efficiently generate the top-K

results (MTTON’s) in the web search engine-like presentation, and the top-1 MT-

TON of each CN C which corresponds to the initial instance of the presentation

graph of C. Second, the minimal decomposition is built, which is used along with

the inlined, non-MVD decomposition in the on-demand expansion of the presen-

tation graphs.

The algorithm in Figure IV.10:

• satisfies the B constraint on the number of joins

• avoids building MVD fragments if possible

• builds non-MVD fragments of size larger than L = d M
B+1

e if they can elimi-

nate MVD fragments of size L

We say that a candidate TSS network C is covered by a decomposition D when

C can be evaluated with at most B joins.

Given M = 4 and B = 1, Figure IV.9 shows how the candidate TSS

network S ← P → O → L → Pr is covered if we build the non-MVD fragment

POLPr of size L + 1 instead of the MVD fragment SPO of size L.

IV.F Execution

The execution module of XKeyword aims at providing fast response time

to keyword queries. Depending on the presentation method selected (see Sec-
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Decomposition Algorithm(B,M){
Add to the decomposition D the non-MVD fragments of size ≤ L;

Create a list Q of all candidate TSS networks

of size up to M not covered by D;

Add all possible non-MVD fragments of size

greater than L, that help in covering at

least one candidate TSS network C ∈ Q and remove C from Q;

Add the minimum number of MVD fragments of size up to L

to cover all candidate TSS networks in Q;

}

Figure IV.10: Decomposition Algorithm

tion IV.C.1), we follow a different execution approach.

Web search engine-like presentation In the case of the web search engine-

like presentation of the MTTON’s (Figure IV.2 (b)), we use the inlined, non-mvd

decomposition (Figure IV.10) to speedup the execution of the top-K keyword

query. If the CN’s6 were evaluated sequentially, and the first one did not produce

any results, then the time to get the first result would be too long. We solve this

problem be using a thread pool. A thread is assigned to each CN starting from

the smaller ones, which need less execution time and also produce higher ranked

results. A thread is returned to the pool when either the corresponding CN’s

evaluation completed, or a total of K results have been generated by all threads,

in which case the execution ends.

The evaluation of a single CN C of the keyword query k1, . . . , km is chal-

lenging for two reasons. First, since we look for K results, sending a SQL statement

for C is inefficient, because the DBMS’s do not currently efficiently support top-K

queries. XKeyword uses nested loops join, where the nesting of the loops is de-

terminded by a depth first traversal of C that first finds a connection between k1

6For simplicity, in this section we use the term CN for both a CN and its corresponding candidate
TSS network.
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and k2, then to k3, etc. The execution is terminated after K results are produced.

For example, consider CTSSN2 : partTV,name → part → partV CR,name of Sec-

tion IV.D. The outermost loop will iterate over the TSS partV CR,name7, the second

loop over part and the innermost over partTV,name.

The second challenge is that the naive nested loops join algorithm has a

serious inefficiency, because it may send the same queries multiple times. In the

above example, consider the case where two target objects t1, t2 in partV CR,name

connect to the same target object in the part TSS. Then, when evaluating CTSSN2

for t2, the innermost loop (over partTV,name) should not be executed since it will

produce the same results as before. Notice that this optimization would not be

possible if we had put partTV,name as the outermost loop, because part → part is

a containment and not a reference edge, so no two target objects in partTV,name

could connect to the same target objects in the part TSS. The speedup of the

optimized execution algorithm over the naive one is experimentally evaluated in

Section IV.G.

In the optimized execution algorithm, there is a tradeoff between storing

the past results to avoid repeating a query and keeping no past results but sending

more queries. XKeyword uses a fixed size cache for each keyword query to store

past results and if the cache gets full, the queries are re-send to the DBMS.

Presentation Graphs In the case of the on-demand execution based on the

presentation graphs’ navigation we need to modify the optimized algorithm, be-

cause we do not need the complete MTTONs, but only to find the set of expanded

nodes that the user requested and their minimal connections to the presentation

graph. In the above example, if the user clicks on the partTV,name TSS, then for

each expanded node n in partTV,name, we need to find a single connection to the

part TSS and we ignore additional connections. In particular, we first check if n

is connected to a node of part already in the presentation graph PG(CTSSN2),

7In the next paragraph we explain why VCR was selected as k1.
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Expansion Algorithm(PG(C),n){
PG(C): current instance of presentation graph

n: node to be expanded. n is of type N

Let S be the set of target objects of type N ;

for each node u in S do

l := 1;

while u not connected to all keywords and l ≤ size(C) do

Check if u is connected to all keywords through PG(C)

with l extra edges;

l++;

If no connection was found ignore u;

else add u with its connection edges to PG(C);

}

Figure IV.11: On-demand expansion algorithm

because we need to expand the PG(CTSSN2) in a minimal way. If such a con-

nection is not possible, we search for a connection to a fresh node of the part TSS.

The on-demand expansion algorithm is shown in Figure IV.11.

Initially, the XKeyword decomposition (Figure IV.10) is used to efficiently

retrieve the top result of each CN. Then we use a combination of the minimal

and the inlined, non-MVD decomposition to find the minimal connection of the

expanded nodes to the presentation graph, as we explain in Section IV.G.

IV.G Experiments

To evaluate the performance of XKeyword we performed a set of exper-

iments. First, we measure the performance of the keyword queries for various

decompositions of the XML schema, for top-K and full results. Then we evaluate

the performance of the optimized execution algorithm for the search engine-like

presentation method described in Section IV.F. Finally the performance of the

on-demand expansion algorithm is evaluated.



150

Conference

Year

Paper

* 
 in

 y
e

a
r,



o
f 

co
n

fe
re

n
ce



* contains paper,in issue

TARGET DECOMPOSITION TSS GRAPH

conference

year

paper

*
*

title pages

name

confyear

URL

author

name

*

Author

  
  

* 
 by

 a
u

th
o

r,


o
f 

p
a

p
e

r

*

*

cites,
is cited by

Figure IV.12: Target decomposition of DBLP

We use the DBLP XML database with the schema shown in Figure IV.12.

The citations of many papers are not contained in the DBLP database, so we

randomly added a set of citations to each such paper, such that the average number

of citations of each paper is 20. We use Oracle 9i, running on a Xeon 2.2GHz PC

with 1GB of RAM. XKeyword has been implemented in Java and connects to

the underlying DBMS through JDBC. The master index is implemented using

the full-text Oracle 9i interMedia Text extension. Clustering is performed using

index-organized tables.

Decompositions We assume that the maximum candidate networks’ size is Z =

8 and focus on the case of two keywords. Notice that we select a big Z value to

show the importance of the selected decomposition. The absolute times are an

order of magnitude smaller when we reduce Z by one. For the TSS graph of

Figure IV.12, the maximum size of the CTSSN’s is M = f(8) = 8 − 2 = 6. We

require that the maximum number of joins is B = 2, hence from Theorem 1 it is

L = 2. We compare five different decompositions:

1. The XKeyword decomposition created by the algorithm of Figure IV.10.

2. The Complete decomposition, which consists of all fragments of size L.

3. The MinClust decomposition, which is the minimal decomposition with all

possible clusterings for each fragment.

4. The MinNClustIndx decomposition, which is the minimal decomposition
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Figure IV.13: Execution times

with single attribute indices on every attribute of the ID relations.

5. The MinNClustNIndx decomposition, which is the minimal decomposition

with no indices or clustering.

We compare the average performance of these decompositions to out-

put the top-K results for each candidate network. The results are shown in Fig-

ure IV.13 (a). Notice that the Complete decomposition is slower than MinClust

although it requires a smaller number of joins, because of the huge size of the frag-

ments that correspond to relations with multi-valued dependencies and the more

efficient caching performed in the MinClust decomposition. Also notice that the

non-clustered decompositions (the results for MinNClustNIndx are not shown,

because they are worse by an order of magnitude) perform poorly for the top-K

results.

Figure IV.13 (b) shows the average execution times to output all the

results for each candidate network. Notice that the MinNClustNIndx is the

fastest, since the full table scan and the hash join is the fastest way to perform a

join when the size of the relations is small relatively to the main memory and the

disk transfer rate of the system, which is the case here, since all relations of the

minimal decomposition have just two id (integer) attributes.
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IV.H Conclusions and Future Work

XKeyword is a system that offers keyword proximity search on XML

databases that conform to an XML schema. The XML elements are grouped

into target objects, whose connections are stored in connection relations. Redun-

dant connection relations are used to improve the performance of top-K keyword

queries. XKeyword presents the results as interactive presentation graphs, which

summarize the results per candidate network. The execution of the queries is

optimized to offer fast response times.

In the future, we plan to look into different semantics for keyword queries

on structured and semi-structured databases, going beyond the distance between

keywords. We also work on integrating the master index tighter into the execution

engine of XKeyword and on improving the response time of the system.



Chapter V

Design of a Semi-Structured

Search System (S4)

V.A Introduction

In this section we outline a Semi-Structured Search System (S4), designed

to bridge the gap between traditional database and information retrieval systems.

The goal is to enable a non-expert user to ask ad-hoc, information discovery queries

with a minimal knowledge of the dataset and its schema.

Traditionally, users are protected from databases by the application layer,

which translates user inputs into a query language. However, with the emergence

of XML and the Internet, large datasets are becoming available either “As Is” or

with very simple web-based applications which do not satisfy users’ information

needs. A good example of the latter is the DBLP [24] dataset, which can be queried

on-line to obtain lists of papers for a specific author, conference, or a journal issue.

However, this interface does not support many other search features common for

the bibliography information, such as subject search, date range predicates, or

authority ranking.

Example 19 Consider a junior Ph.D. student trying to put together a reading list

of recent papers, that are not cited in his textbooks yet. He is interested in the most

153
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authoritative papers on XML databases published after the year 2000. This query

is very difficult to answer using the DBLP site, even though the underlying dataset

contains all the necessary information.

If the DBLP application turns out to be inadequate, a user can download

the full dataset as a single XML file, store it in an XML database and use a query

language such as XPath or XQuery. However, in this case the user has to under-

stand the dataset’s structure (i.e. element names and roles) and be familiar with

a query language. Finally, XQuery-like languages are not suited for information

retrieval type requests that are likely to arise in this scenario. A number of works

propose to extend XQuery syntax [102, 35, 33] or modify its semantics [49, 5] to

allow less restrictive queries. However, none of these proposals completely solve

the problem. We discuss them in detail in Section V.E.

Since the structured query systems are inadequate, the user has to turn to

unstructured information retrieval tools, which are based on text search. However,

these systems are unable to query numeric data and the structure of XML datasets.

Without numeric data, the student in Example 19 would not be able to express

the [year > 2000] predicate of the query. Thus, he would have to sift through

pages of results filled with older papers which tend to accumulate citations (and

rank) over years. Text search also ignores the wealth of structural information in

XML data that can be used to evaluate the query and rank the results.

V.A.1 S4 Approach

S4 is designed to use a “semi-structured” approach, which combines both

structured and unstructured elements, to query XML datasets at the abstract level

of entities and relationships. This conceptual model is much more intuitive to the

user than a particular schema that implements the concept. For example, it is

likely that a casual search user will know that a bibliography database contains

“paper” and “person” entities with “citation” and “authorship” relationships be-
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Figure V.1: A sample S4 graphical query interface

tween them1. It is less likely that this user will know the organization of the

bibliography. For example, papers maybe grouped by author, or authors may be

grouped by paper. Conference elements may contain papers, or papers may con-

tain references to conference elements. It is even less likely that this user will know

that citations are implemented using IDREFs, XPointers, or some data attributes

that need to be joined by the query, as is the case in DBLP. The use of graph data

model with nodes and edges labeled by entity and relationship names, respectively,

provides the flexibility and abstraction needed by search applications.

The S4 features efficient processing of tree pattern queries. A node of the

query tree can be labeled with an entity name, a wildcard, a keyword, or a local

predicate, i.e., a predicate on the attributes of a single entity. Edges of the pattern

are labeled with relationship names or wildcards. To simplify the presentation,

we introduce a textual query language, S4QL, that can easily be translated to

1The S4 users do not need to know the exact entity and relationship names, even though they can
pose more precise queries if they do.
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our tree pattern formalism. The syntax of S4QL can be extended and modified

in the future, as long as basic underlying semantics remain the same. In fact, it

is possible to completely forgo a textual query language, by providing a model-

aware graphical query interface which assists the user in formulating the queries

(Figure V.1).

The results of the search are fragments of the XML dataset that satisfy

the query conditions. The fragments are ordered by their query-specific rank,

computed by a PageRank-like algorithm [7], which runs on a graph of entity and

relationship instances.

For example, consider the query of Figure V.1. The first two predicates

of the query instruct the system to find papers related to “XML” that were pub-

lished after the year 2000. Suppose the user is aware that there are two XML

“communities”. One with roots in semi-structured data that views XML as data,

and another related to SGML that views XML as documents. If the user is only

interested in papers that came out of the first community, she may restrict the

query by using the last two lines, which would restrict paper’s authors to those

that are not related to SGML.

V.B Data Model

For semistructured search we use the labeled graph data and schema mod-

els defined in Section IV.C. We model XML Schemas as directed labeled graphs,

where nodes are labeled with entity names and edges are labeled with relationships.

Each relationship is represented with two edges going in opposite directions, with

possibly different labels. E.g. Person and Paper entities are connected with edges

“Author Of” and “By”; as in, “a person is the author of the paper” and “a paper

by the person”. For example, a mapping of a DBLP-like XML schema into entities

and relationships is shown in Figure V.2.

Notice that the mapping does not have to be one-to-one. For example,
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Figure V.2: An example of XML schema to S4 schema graph mapping.

conference year information appears in both forum and paper entities. Further-

more, the paper author information appears both as an authors attribute, which

contains a string with all authors names, and a paper-person relationship, which

provides additional information about authors, such as their affiliation and contact

information. The relationship also serves as a link to other papers written by the

same author, which may be important for some queries.

We model XML data containing intra- and inter-document links, such as

IDREF’s and XPointer’s, as a labeled directed graph D. The data graph is reduced

to a target objects graph (TOG) by mapping D into target objects that conform to

schema entities. All data graph nodes that participate in a target object’s mapping

become attributes of that target object.

Target Objects (defined in Section IV.C.1) are atomic units of informa-

tion in the system and have to be small enough to be presented to the user and

large enough to be meaningful. These units are similar to Business Object [82] in

database applications or Universal Business Objects [44] in the data integration

industry. Target objects, may or may not correspond to physical XML files in

semistructured data representation.

Definition 22 (Target Object Graph) A TOG is a labeled directed graph where
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every node v has a unique id id(v), a label λ(v) coming from the set of entity names

E and zero or more attributes. Each attribute a has a name name(a) coming from

the set of attribute names A, and a value val(v) coming from the set of values V .

A node cannot have two attributes with the same name. Each edge e of TOG has

a label r(e) coming from the set of relationship names R.

We require every relationship to have an inverse. Thus any two nodes

TO1, TO2 ∈ TOG are connected by either zero or two relationship edges going

in the opposite directions. TO1 and TO2 are connected if there is a data edge

e = (n1, n2) ∈ D, such that (n1 ∈ TO1 and n2 ∈ TO2), or (n1 ∈ TO1 and

n2 ∈ TO2). The labels on relationship edges are obtained from the schema graph

based on the entity names of TO1 and TO2, and the direction of e.

V.C Querying S4

We will consider querying semistructured data using tree patterns with

keywords and local predicates. This formalism is powerful enough to express both

the usual Select-Project-Join queries and keyword queries. In the future it could

be used as a basis for a more powerful query language, just as the tree pattern

based XPath became the navigation language of the XQuery [101].

Definition 23 (Query Syntax) A query is a tuple 〈P,C〉, where P is called pat-

tern tree and C is called condition expression.

P is a labeled tree that consists of two types of nodes:

• Entity nodes, whose labels come from the entity name set E or a wildcard

label “*”. Each entity node n may also be labeled with a variable V ar(n).

• Union nodes. The same set of variables must occur in all children sub-

trees of a Union node. Two nodes cannot be labeled with the same

variable, unless their lowest common ancestor is a Union node.
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Edges that lead to entity nodes are labeled with relationship names from R or

wildcards “child” or “descendant”.

C is a logical expression involving logical predicates, logical connectives, constants,

variables that occur in P , and function calls.

The set of supported functions is implementation-dependant, except for

the following functions that have to be supported:

• String containment function contains(V ar,Keyword) returns true if the

value of some attribute of an object bound to variable V ar contains the

Keyword.

• Function near(V ar,Keyword) returns two values: a relevance score of an

object bound to the variable V ar with respect to the Keyword, and a boolean

flag that shows whether or not the object is relevant. For example, the

boolean result may signify that the object’s relevance score is higher than a

certain “noise” level.

• Attribute access function attribute(V ar,Name) returns the value of the

Name attribute of an object bound to variable V ar. If such attribute does

not exist, the function returns null2.

V.C.1 S4QL Semantics

The S4QL query semantics are based on first matching the pattern tree

with the TOG to obtain bindings and then filtering the bindings by applying the

condition expression to each one. The result of the query is a list of target objects

that are bound to the root node of the pattern tree. The result list is ordered by

a system-specific ranking function, which computes relevance score of each target

object with respect to the query.

We do not propose any particular ranking function, but provide a frame-

work where different functions can be plugged in. The ranking function takes as
2We treat null values in the usual way - any logical predicate with a null argument returns false.
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its input a set of resulting target objects and their “supporting” data. For each

object, the ranking function takes a set of binding trees that produced this objects,

i.e. that have this object as a root, and the scores produced by the near() functions

of the query for each binding. The ranking function will calculate the rank of each

result object based on its structure and values of the bindings that “support” this

object. One way to calculate the ranks can be based on the ObjectRank system

[7]. In Section VI.B.1 we discuss challenges that arise when multiple ObjectRank

need to be combined into the final object ranking.

The semantics of the pattern tree are defined in three steps. First, we

rewrite “descendant” wildcards into union expressions using schema information

and a system parameter maxDepth, which limits the depth of recursion. We

define “descendant” relation as a limited-depth transitive closure of “child”. Thus

descendant :: x is replaced with a union of maxDepth different paths:

child :: x
⋃

child :: ∗/child :: x
⋃

. . .
⋃

child :: ∗/ . . . /child :: ∗/child :: x

Once again, the actual length of the result path that matched a “descen-

dant” edge should be used by the ranking algorithm of the system. The maxDepth

cut-off is only used to disqualify paths that are too long to have any semantic

meaning. Otherwise, in a connected graph any node will be a descendant of any

other.

In the second step, we remove Union nodes and wildcards and produce

a forest of conjunctive pattern trees, by traversing the pattern tree bottom-up

and replacing each Union node non-deterministically by one of its children. This

process is similar to producing a disjunctive normal form of a logical expression.

In the same traversal we also non-deterministically replace each entity wildcard

“*” with any entity label from E, and each relationship wildcard “child” with any

label from R. The set of bindings produced by the pattern tree is defined as a

union of the sets of bindings produced by each of the conjunctive pattern trees.

Formally, let P be a pattern tree of a query and g be the TOG. Let

V ar(P ) be the set of variables in P . Let P1...Pl be a set of all conjunctive pattern
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Figure V.3: An example of S4 query semantics.

trees of P . Note that V ar(P ) = V ar(Pi),∀i ∈ [1, l]. A variable binding β̂ maps

each variable of V ar(P ) to a node of g. The set of variable bindings is computed

based on the set of pattern tree bindings. A pattern tree binding β maps each node

n of some conjunctive pattern tree Pi to a node of g. The pattern tree binding is

valid if β(root(Pi)) = r, where r is some node in g, and recursively, traversing P

depth-first left-to-right, for each child pj of a node p ∈ Pi, assuming p is mapped to

x ∈ g, there exists a child xj of x such that β(pj)) = xj and label(pj) = label(xj).

The set of variable bindings consists of all bindings β̂ = [V1 7→ x1, . . . , Vn 7→
xn] such that there is a pattern tree binding β = [c1 7→ x1, . . . , pn 7→ xn, . . .], such

that V1 = V ar(p1), . . . , Vn = V ar(pn).

The condition expression C is evaluated using the binding values and if

it evaluates to true, the variable binding is qualified.

Once a set of qualified bindings is identified, the result set is constructed

by removing duplicates from the set of all pattern root node bindings β(root(Pi)).

Example 20 Consider a user trying to find papers on XML that where published

in the Sigmod conference that took place in Paris. The user may have some infor-

mation about the schema of the dataset, but not know all the details. Suppose the

user knows that the objects that he is looking for are called “paper”, but does not

know what objects contain the conference information. This user’s query is shown

in Figure V.3. This query asks for papers that are relevant to the term “XML”
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and somehow closely connected to any object that contains the words “Sigmod” and

“Paris” in it.

The figure also shows the query transformations we used to define the

semantics of the S4QL. First, the “descendant” edge is replaced with a union

of three paths, assuming that maxDepth is three. Second, a set of conjunctive

patterns is produced. The figure shows three patterns, out of many possible. The

first pattern will return results that the user expects, and the second one will find no

results, assuming that no paper target object has the words “Sigmod” and “Paris”

in it. However, the last pattern may find some results that the user did not expect

to see. Namely, it will find XML papers that cite some papers published in Paris

Sigmod.

The problem of finding extra results, which were not wanted by the user,

is inherent in unstructured and semi-structured search process. That’s why any

semi-structured query requires a ranking mechanism to identify “better” results

and present them to the user first. Also in a search system the user is likely to

examine the results individually and identify the unwanted false positives. In the

process, the user will learn new information about the structure of the dataset

and the results, which will allow him to narrow down the search to eliminate false

positives. In the above example, the user just needs to realize that all needed

conference information is stored in the forum objects which are directly connected

to paper objects. Thus, in the query of Figure V.3, the “descendant” edge label

can be replaced with the “child” to produce the desired result.

Notice that we only use conversion to conjunctive pattern trees to define

the semantics of S4QL queries. We do not propose that the S4 query processing

algorithm actually follows the same process.

V.C.2 S4QL Semantics Compared to XCacheDB QL

S4QL semantics are very similar to semantics of the XCacheDB query

language, described in Section II.E. However, S4QL has the following differences:
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• Edges that lead to element nodes are labeled with relationship names. Edges

that lead to union nodes do not have labels.

• Element nodes may be labeled with “*” wildcard instead of a tag. Edges

that lead to element nodes may be labeled with one of two kinds of wildcard

- “child” or “descendant”.

• The result tree is trivial. The query returns target objects that bind to the

root of the pattern tree.

• Condition expressions can contain keyword search functions.

The first change is due to a data model extension to include edge labels.

In XCacheDB data model only data nodes had labels, but in S4 data graphs both

nodes (entities) and edges (relationships) are labeled.

Wildcards do not change the expressive power of the language, since we

assume existence of schema, allow unions, and limit the recursion depth. However,

a translation that eliminates wildcards can exponentially increase the query size.

The key to efficient (polynomial time) query execution, is processing wildcards as

a whole, without rewriting them into unions. As we mention in Section VI.B, in

some cases polynomial time query execution can be guaranteed, and in other cases

a best-effort algorithm is needed.

The third change to the XCacheDB query language is due to the nature of

S4QL queries, which are designed for information discovery. S4 does not construct

results and only extracts individual target objects that match the root of the

pattern. One possible direction for future work is to introduce result construction

and aggregation into S4.

The last item on the list is a clarification rather than an extension.

XCacheDB does not have any restrictions on the type of condition expressions

it can support. To simplify presentation we’ll limit the list of functions and op-

erators to =, 6=, <,≤, >,≥, and required S4QL functions contains(), near(), and

attribute().
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V.D S4 System Architecture

The proposed architecture of the S4 is based on the XCacheDB system,

which, in turn, is built on top of a commercial RDBMS. XML files that contain

target objects and links between them, are shredded into tables for efficient query

processing. Copies of target objects are also stored in text format which facilitates

quick output.

Using the decomposition of an XML Schema into entities, an S4 query

can be rewritten to eliminate wildcards and translated into a XCacheDB plan

exactly as described in Section II.E. Keyword conditions are processed using an

external text index which outputs object IDs of the qualifying target objects into

temporary tables (one table is created per keyword), which in turn participate in

XCacheDB plan.

While feasible, this approach may perform poorly due to the large size

of the rewritten query. If each wildcard rewrites into a union of n paths, a query

with k wildcards rewrites into a union of up to nk queries.

We have observed that various rewritten queries, by construction, tend

to reuse and re-execute the group of same paths. For example, a query fragment

paper//paper3, may appear in many bibliography queries. However, each time it

will be translated into the same union of simple paths:

paper/author/paper
⋃

paper/cites :: paper/

(cites :: paper
⋃

cited by :: paper)
⋃

(paper/

cited by :: paper/(cites :: paper
⋃

cited by :: paper))

To avoid re-evaluation of popular query fragments and speed-up query

processing, we suggest using tried and true technique of rewriting queries using

materialized views. The XCacheDB lends itself naturally to the use of materialized

views. In Section II.E we showed how the XCacheDB constructs a query plan given

a query and a schema decomposition. In presence of the materialized views, the

3From here on, we’ll use an XPath-like textual notation for the S4QL queries and tree pattern
fragments.
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same algorithm works without any changes. However, the decomposition is picked

dynamically from a set of materialized views that we have identified as eligible for

a given query.

We decide whether a materialized view is eligible to answer (a subset of)

a query, by establishing containment between tree patterns.

Example 21 Consider the following query, which looks for papers related to “XML”,

with authors related to “IBM” Q = paper[// ∗ [contains ′XML′]and author// ∗
[contains ′IBM ′]] and a materialized view V = ∗//∗, which stores pairs of nodes

that bind to the first and second “*” wildcard, respectively. We discuss view defi-

nitions in Section V.D.2.

To execute the query, keywords “XML” and “IBM” are looked up in the

index, producing two temporary tables TXML and TIBM . Each of the tables has one

column with a list of object IDs of target objects containing the keywords.

Given the TOG schema, Q can be translated into a rather large union of

wildcard-free queries, which can be executed directly. However, the presence of the

view V can significantly improve query performance.

To take advantage of V , we first identify subsets of the query that are

contained in V . There are two such subsets: Q1 = paper//∗ and Q2 = author//∗.
Thus, the query can be answered by executing the following query, which joins a

PA “paper-author” table with two copies of V that cover Q1 and Q2 respectively.

SELECT V1.s

FROM V as V1, V as V2, PA, TXML, TIBM

WHERE V1.s = PA.p AND V2.s = PA.a

AND V1.t = TXML.id AND V2.t = TIBM.id

V.D.1 Execution Module

Query execution proceeds in two stages. First, text index is used for

each keyword predicate in the query to find all objects that satisfy the predicate.

The IDs of the resulting objects are stored in temporary tables – a table for each
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keyword. Second, a single SQL query is executed over the temporary keyword

tables and the XCacheDB relational storage to find IDs of the objects that satisfy

the S4 query. Result objects’ bodies are retrieved from the XCacheDB object

storage and presented to the user.

Just as in XKeyword system, we use off-the-shelf Oracle Inter-Media text

index. The drawback of the index is that it works only on individual database

columns. Thus, every text index request would have to be translated into a separate

Inter-Media query for each text column of each table in the system. To avoid the

escalating number of text index requests, we modify the underlying XCacheDB

system to store “output” copies of objects in text form instead of the XCacheDB

binary encoding. These textual copies of all S4 objects stored in a single column

can all be covered by a single Inter-Media index. However, this change increases

storage requirements for XCacheDB (typically by 5% to 20%, and theoretically up

to 50%) and correspondingly increases time to read and output results. A better

solution would be to modify the text index to work on XCacheDB binary format.

However, it requires access to a source code of Inter-Media or any other comparable

tool.

Once object IDs returned by the keyword searches are inserted into tem-

porary tables, and it is known what types of objects match keyword predicates,

the SQL query is produced as follows.

First, the query is restricted using schema information and types of ob-

jects that match keyword predicates.

The SQL query to the XCacheDB relational storage is constructed by

joining together all temporary keyword tables, entity tables for entities that have

local predicates and relationship tables for connecting keyword and entity tables.

More specifically, given a query DAG, we create the “FROM” clause of the query

by adding a relationship table (a.k.a edge table) for each edge of the query, an

entity table for each node of the query that has a local predicate, and a keyword

table for each node of the query that has a keyword predicate. The last two kinds
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Figure V.4: S4 view definition containing union and it’s use.

of tables are also called node tables. The “WHERE” clause is constructed from

join predicates on ID attributes for each pair of connecting edges, as well as for

each pair of node and edge tables, where the node is one of the ends of the edge.

V.D.2 S4 Materialized Views

S4 will rely heavily on materialized views to improve performance of the

query execution module. These views are defined using S4QL with a single restric-

tion that condition expressions are not allowed in view definitions. Technically, our

view matching framework can support views defined with predicates, even the ones

containing keywords. However, it is unlikely that a user would be able to exactly

predict the predicates of the future queries and materialize the appropriate views.

Using keyword predicates to define the views is even less practical, since a sepa-

rate view has to be stored for each keyword predicate. Text indexing can facilitate

keyword searches just as efficiently and at a fraction of the storage cost.

Semantics of the S4 views differ significantly from S4QL queries. Instead

of single objects returned by the query, an S4 view stores values and IDs of all target

objects that match any node of the expanded view definition. Thus, a view stores
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all bindings of the query to the target object graph, as defined in Section V.C.1. In

other words, S4 views are a natural extension of XCacheDB inlined fragments with

unions. Indeed, we have observed in XCacheDB that inlined fragments perform

well with predicated queries. XKeyword demonstrated usefulness of union tables

for keyword searches. It is only natural to combine these features for S4 queries

which mix keywords and structured predicates. We illustrate this extension of

XCacheDB fragments with the following example.

Example 22 Figure V.4(a) shows an example of a union-inlined fragment rooted

at “LineItem” node, which the XCacheDB translates into a single LI table. This

fragment covers a disjunction, since a “LineItem” can contain one of two kinds of

“LinePart” – either a simple “Product” object or a tree of “Part” objects. Note

that a single fragment cannot cover the cycle in the graph. Thus, a separate table

Subpart Part is created for the edge uncovered by the LI fragment.

Figure V.4(b) shows an S4QL query that looks for a line item that was

shipped on a certain date and connects to a product or part object with the word

“VCR” in it. Given the above union-inlined fragment, this query can be answered

by a single SQL query that does not include any table joins.

V.E Related Work

There are a number of proposals for less structured ways to query XML

database by incorporating keyword search [34, 104] or by relaxing the semantics

of the query language [49, 5]. However, none of these works incorporate proximity

search. Florescu et al. [34] propose an extension to XML query languages that

enables keyword search at the granularity of XML elements, which helps novice

users formulate queries. Another difference of this work from our work is that it

requires the user to specify the elements where the keywords are.

In [39] and [16], a database is viewed as a graph with objects/tuples as

nodes and relationships as edges. Relationships are defined based on the properties
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of each application. For example an edge may denote a primary to foreign key

relationship. In [39], the user query specifies two sets of objects, the Find and

the Near objects. These objects may be generated from two corresponding sets of

keywords. The system ranks the objects in Find according to their distance from

the objects in Near. An algorithm is presented that efficiently calculates these

distances by building hub indices. In [16], answers to keyword queries are provided

by searching for Steiner trees [73] that contain all keywords. Heuristics are used

to approximate the Steiner tree problem. Two drawbacks of these approaches are

that (a) they work on the graph of the data, which is huge and (b) the information

provided by the database schema if available is ignored. In contrast, we provide

smart indexing techniques that allow the quick navigation of the XML graph/tree.

DISCOVER [42] and DBXplorer [3] work on top of a DBMS to facilitate

keyword search in relational databases. They are middleware in the sense that

they can operate as an additional layer on top of existing DBMS’s. In contrast,

the system we present is dedicated to providing efficient keyword querying of XML

databases, by using elaborate duplication and indexing techniques. Furthermore,

we adopt an elaborate presentation method using interactive graphs of results. In

contrast, DISCOVER and DBXplorer output a list of results, including trivial ones.

Finally we handle the inherent differences of XML from relational by introducing

the notion of target object.



Chapter VI

Conclusions and Future Work

In this text we have addressed management of XML data. We have

identified addressed a novel schema validation problem, which is characteristic of

the tree-structured data. We presented two incremental validation algorithms.

First, a complete algorithm, which requires an index-like structure and operates in

logarithmic time. Second, an even more efficient algorithm that does not require

additional structures and works for a significant subset of real-life schemas.

We have examined a full specter of options for querying XML data. From

structured querying of XCacheDB (Chapter II) appropriate when the database

schema is fully known to the user, to the keyword proximity search of XKey-

word(Chapter IV) – the only option when the schema is completely unknown.

We proposed a Semi-Structured Search System (S4), a middle of the road ap-

proach, useful in information discovery when users have incomplete knowledge of

the schemas. We have observed that the same technique of using relational tables

to store pre-computed pieces of query answers, works well to improve performance

of all these systems. Inlined for XCacheDB, id’s for XKeyword, and their combi-

nation for S4

170
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VI.A Future Work in Update Validation

The incremental validation algorithms we exhibited are significant im-

provements over brute-force validation from scratch. However, several issues on

update validation need further investigation:

Lower bounds To understand how close our algorithms are from optimal, it

would be of interest to exhibit lower bounds on incremental maintenance of strings,

DTDs, and specialized DTDs. There are known results that yield lower bounds

for validation from scratch: acceptance of a tree by a tree automaton is complete

for uniform NC1 under dlogtime reductions [57]. However, this does not seem to

yield any non-trivial lower bound on the incremental validation problem. We are

not aware of any work providing such lower bounds applicable to our framework.

Optimizing over multiple updates For a sequence of m updates, our incre-

mental validation algorithm modifies the auxiliary structure one update at a time,

then checks validity of the final updated tree. Clearly, it is sometimes more efficient

to consider groups of updates at a time. For example, this may avoid perform-

ing unnecessary intermediate line rearrangements in the incremental algorithm for

specialized DTDs. Also, if the number of updates is large compared to the size of

the resulting tree, it may be more efficient to re-validate from scratch.

More complex updates on trees We only considered here elementary updates

affecting one node at a time. Some scenarios, such as XML editors, require more

complex updates arising from manipulation of entire subtrees (deletion, insertion,

cut-and-paste, etc). Our approach can still be applied by reducing each of these

updates to a sequence of elementary updates. However, in this case it may be more

efficient to consider updates of coarser granularity.

Update Languages It is expected that XQuery will soon be augmented with

an update language [81, 83]. Systems supporting complex update languages can
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naturally use our work: first compute the set of updates of particular nodes and

then apply the incremental validation techniques described in this paper. However,

this approach may miss the extra optimization opportunities presented by the fact

that the set of updates has been developed by a single update statement. Realizing

those opportunities requires analysis of the update statement.

VI.B Future Work in S4

The problem of rewriting using materialized views for the S4QL queries

contains a number of challenging open problems:

1. Deciding view containment.

2. Integrating view containment and query rewriting.

3. Query plan selection.

4. Materialized view selection.

5. Ranking of the results.

The first open problem refers to proving that all query results are con-

tained in a materialized view, and thus, that the view can be used to answer the

query. The view containment problem for S4QL is equivalent to that of boolean

tree patterns with “*”, “//”, branching and disjunction. This problem has been

shown to be coNP-hard in [60]. The same containment problem was shown to be

undecidable in presence of negation or DTD schema constraints in [65].

We recently addressed the containment problem for a subset of XPath

which is very similar to S4QL ([8]). In that work we show that an incomplete,

but sound and efficient algorithm based on tree mappings, can be used to detect

tree containment in a vast majority of cases. The tree containment algorithm of

[8] handles tree patterns with disjunctions and predicates, and thus, can be used

to solve the first open problem, albeit incompletely.
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The second problem can be addressed in the similar fashion. The basic

view matching algorithm described in [8], determines which views can potentially

be used to answer the query. However, it has one major shortcoming. It does not

take advantage of schema information to expand the query, thus, it may miss many

useful view matches. For example, consider the schema graph of Figure V.4(a).

Assume that following two views exist, instead of a single union-inlined material-

ized view: V1 = LineItem/Part and V2 = LineItem/Product. None of the views

can be used to answer the query of Figure V.4) by itself:

LineItem[ShipDate = Jan1, 2000 and ∗ [V CR]]

Even the disjunction of V1 and V2 cannot be useful, unless we can prove (using

schema information) that the ∗ wildcard in the query can refer only to a “Part”

or a “Product” object.

Recall, that the execution module uses schema information to expand the

query, by rewriting it to eliminate the wildcards. One approach is to run matching

on the expanded query. The same matching algorithm, when applied to expanded

query, will produce maximal set of matches. However, the cost of matching will

be prohibitively high, since the size of expanded query may be exponential in the

size of the original. Notice that it is not necessary tho expand the view definition.

The expansion only makes the expression more restrictive, thus, by definition, if

an expanded view definition has matched the query, so will the original one.

To solve the performance problem and to find as many usable views as

possible, we need to interleave view matching with schema-based expansion. One

possible algorithm proceeds as follows.

First, all view definitions are matched against each node of a query, pro-

ducing a set of tree mappings. If the query does not contain any wildcards, or if

each query wildcard is covered by some mapping, we are done. However, if some

wildcards remain un-covered, we expand each of these wildcards into union query

fragment. For each wildcard, we run the matching algorithm with this wildcard

expanded, and the rest remaining intact. If some of the wildcards still remain
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uncovered, we expand and try matching for all pairs of wildcards; then all triplets

and so on. We proceed in this fashion until all wildcards are eliminated, or we

exceed pre-set optimization budget, which specifies how many times we can run

the matching algorithm. The budget is needed to prevent a very unlikely, but

theoretically possible case where an exponential number (in the size of the query)

of iterations will be needed to match all wildcards.

The third open problem has to do with constructing an SQL query given

a set of matching materialized views. Once all possible tree mappings are available,

S4 constructs an SQL query that utilizes a subset of the eligible materialized views.

The SQL query construction algorithm is identical to that of XCacheDB, since the

materialized view are just schema fragments. The addition of union fragments

does not change query processing in any way.

One new challenge that does arise in this setting is picking a subset of

eligible views to use during SQL query construction. XCacheDB assumes a sin-

gle schema decomposition during query translation, whereas S4 may have over-

lapping view mappings, which is equivalent to a set of available decompositions.

Incidentally, the very same problem was encountered in the XKeyword project

(Section IV.E), where heuristics were used to identify the best set of tables to use.

The same heuristics could be extended to be used in S4. However, we feel that a

carefully designed cost-based optimizer would be the best solution is this case.

Materialized view selection is an important problem that goes hand in

hand with query processing using materialized views. Once we know how to take

advantage of materialized views, the question arises as to which views should be

constructed in the system to optimize performance of a given workload. The usual

cost-based approach of commercial index advisors [105, 4] seems to be applicable

to S4. This approach requires a cost model that can estimate the query processing

time. Given a cost model, the work load cost can be estimated with a number of

potential materialized view sets. Usually, heuristics are used to prune the search

space and to arrive at a near-optimal result in a reasonable amount of time.
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VI.B.1 Ranking the Results

The S4 is an information retrieval system, in a sense that the queries

may be imprecise, and some results may be more relevant than others. Thus, the

system has to rank the results to make sure that the more interesting ones are

output first. For example, “Paper[near XML]” will return a very large number

of results, but the user is interested in the most influential papers, which are

frequently cited and whose authors are highly ranked as well. This problem can

be addressed by a PageRank-like ranking algorithm based on transfer of authority

along the relationship edges of the TOG graph.

The PageRank algorithm [18] has proven to be very successful in searching

the web. Recently the XRANK [40] suggested using similar ranking algorithm for

XML fragments. Our ObjectRank system [7] extends this work to provide query

specific ranking of objects in graph databases. To obtain these query specific

rankings the ObjectRank performs a random walk computation for every keyword,

using the target objects that contain the keyword as the staring points of the walk.

Our user studies (see [7]) demonstrated the effectiveness of the Objec-

tRank in supporting individual “near” operators. However, more work is required

to investigate combining these scores and possibly other information about the S4

query bindings into the overall ranking of S4 result objects.
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