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Abstract 
 

The Development of Non-Symbolic Probability Judgments 
 

by 
 

Shaun O’Grady 
 

Doctor of Philosophy in Psychology 
 

University of California, Berkeley 
 

Professor Fei Xu, Co-Chair 
 

Professor Alison Gopnik, Co-Chair 
 
 

Uncertainty plays a role in a variety of early learning processes such as numerical 
reasoning, language learning, and causal reasoning. Furthermore, adults experience probabilistic 
data in the course of numerous tasks every day. Thus, the ability to make accurate predictions 
about future events is a foundational skill which serves both child and adult. Researchers have 
studied the development of probabilistic reasoning for decades, providing data to suggest that , 
until early adolescence, children are incapable of accurately predicting future outcomes based on 
proportion. An equally long scholarly lineage has also provided evidence that adults rely on 
inaccurate heuristics and biases when reasoning about probability. If prediction is so vitally 
important to human judgment and decision making, why does the empirical literature suggest 
humans have impoverished decision making skills when reasoning about uncertainty? What 
mental representations do humans really on to calculate probability? How do these mental 
representations change with age and experience?  

 
The current dissertation seeks to answer these questions by studying simple probability 

judgments made by children and adults. The empirical evidence provided here suggests that 
children and adults draw on analog magnitude representations of number in order to enumerate 
sets of outcomes. Furthermore, although both children and adults sometimes use inaccurate 
heuristics, children rely on these heuristics less with age and adults seem to use them when they 
perceive two outcomes to be equally likely. In chapter 2, I present findings from a series of 
experiments employing a non-symbolic ratio magnitude comparison task to investigate the 
relationship between number approximation, ratio processing, and probability estimation in 
adults. Empirical results reveal that performance on a probability discrimination task improves as 
the ratio of the two proportions increases and psychophysical modeling revealed that both 
numerical and non-numerical stimulus features such as field area, size, and sparsity influence 
probability estimation. Additionally, these findings reveal that probability estimation is 
influenced by formally incorrect heuristic decision rules or strategies. Furthermore, findings 
from two follow-up experiments indicate that these strategies are not influenced by the amount 
of time participants are given to compute probability and that they persist even when participants 
are informed that the use of this strategy is not always accurate. While previous research has 
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investigated the influence of ratio processing and heuristic bias on probabilistic decision making, 
this series of experiments marks the first attempt to systematically investigate both the 
psychophysical properties of probability estimation and the factors which influence adults' use of 
heuristic decision rules in a non-symbolic probability discrimination task. Chapter 3 presents the 
findings from two experiments designed to investigate the developmental trajectory of children’s 
probability approximation abilities. These results indicate that probability judgments improve 
with age, become more accurate as the distance between two ratios increases, and that children’s 
perceived probability is influenced by the same psychophysical properties reported for adults 
(i.e. the size of the objects and the perceived numerosity of target objects). Older children’s 
performance suggested the correct use of proportions for estimating probability; but in some 
cases, children relied on heuristic shortcuts.  Together, these results suggest that children’s non-
symbolic probability judgments show a clear distance effect, and that the acuity of probability 
estimations increases with age. In chapter 4, I push this research further by investigating the 
influence of feedback on children’s use of heuristic decision rules. Results from two experiments 
reveal that children's use of heuristics can be overridden with the proper amount and type of 
feedback. Together, our findings indicate that children use heuristic decision rules to reason 
about the outcome of future events but that children can override the use of heuristics if they are 
provided with enough feedback on trials which conflict with their strategy. These results help 
shed light on the development of probabilistic reasoning and may lead to improved assessments 
of children's quantitative reasoning. 
 
 Together, the results reported in this dissertation suggest that human probabilistic 
reasoning is not as impoverished as previous research might suggest. Although children and 
adults sometimes use inaccurate heuristic decision rules to aid their decision-making, they are 
also capable of accurately calculating probability based on proportion. Furthermore, children can 
learn to reformulate their calculations of probability based on feedback and reach a more 
sophisticated understanding of the proportional nature of probability. These findings have broad 
implications for a variety of domains such as cognitive development, numerical reasoning, 
decision-making, strategy selection, and mathematics education. 
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Chapter 1 
 

Introduction 
 
1.1 Background 

Humans experience a great deal of uncertainty throughout their lives. Intuitions about 
probability and chance are generated from experiences with uncertain events and these notions 
provide humans with powerful skills for inductive inference. Formal probability is a powerful 
scientific tool that allows researchers to formally quantify what is unknown or uncertain. How 
does the untrained human mind respond to uncertainty? How do we cope with the unknown? 
These broad questions have inspired a research program exploring the quantification of 
uncertainty via non-symbolic representations of probability and the influence of heuristic 
decision rules when making decisions based on these quantitative representations. 

Probability is formally computed using symbolic notation invented by humans for 
communicating probabilistic information to other humans. Recent evidence suggests that both 
humans and non-human animals have surprisingly adept ratio processing abilities (Jacob, 
Vallentin, & Nieder, 2012; Matthews & Chesney, 2015; Matthews & Lewis, 2017). In the 
domain of probability, non-human primates can make accurate probability judgments based on 
proportion (De Petrillo & Rosati, 2019; Rakoczy et al., 2014; Tecwyn, Denison, Messer, & 
Buchsbaum, 2017) and human infants and children have a remarkably adept understanding of the 
proportional nature of probability (Denison & Xu, 2014; Falk, Yudilevich-Assouline, & Elstein, 
2012; Teglas, Girotto, Gonzalez, & Bonatti, 2007; Xu & Garcia, 2008). Together these findings 
suggest that there are alternative, non-symbolic methods for quantifying the probability of 
uncertain outcomes and these non-symbolic alternatives are available to humans before they 
have the opportunity to learn symbolic representations of probability. 

 
1.2 The mental representation of numerical information 

Humans and non-human animals are capable of forming abstract representations of 
number and researchers often refer to these remarkable numerical abilities as the 'Number Sense' 
(Dehaene, 2011). One set of numerical abilities relates to our ability to form approximate 
representations of numerical and magnitude information. These abilities have been demonstrated 
in both industrialized and non-industrialized cultures (Pica, Lemer, Izard, & Dehaene, 2004) and 
are thought to be domain general (Dehaene, 2011). One of the most common method for 
studying the number approximation abilties is through the use of the dot comparison task in 
which participants view two groups of dots each with a different color and are asked to indicate 
which group is more numerous. 

Using the dot comparison task, researchers have shown that non-symbolic forms of 
number discrimination follow Weber's law (Halberda & Feigenson, 2008; Whalen, Gallistel, & 
Gelman, 1999) thus demonstrating ratio dependence: the ability to discriminate two sets of 
objects based on number depends upon the ratio of the magnitudes of those sets. Additionally, 
non-numerical features are known to influence ANS representations (Allik, Tuulmets, & Vos, 
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1991; Durgin, 1995; Gebuis & Reynvoet, 2012; Ginsburg & Goldstein, 1987). Although 
researchers continue to debate the role of non-numerical features in number approximation (???; 
Leibovich, Katzin, Harel, & Henik, 2017; Odic & Halberda, 2015), recent evidence suggests that 
human non-symbolic number approximation abilities are best explained by models which 
integrate both numerical and non-numerical stimulus features (DeWind, Adams, Platt, & 
Brannon, 2015; Starr, DeWind, & Brannon, 2017). Researchers using this approach 
systematically vary the size, spacing, and number of dots and then recorded participants' choice 
strategies. DeWind et al. (2015) demonstrate how a participants' 'bias' for each of these features 
influenced numerical magnitude judgments. Although researchers studying numerical cognition 
know a great deal about number approximation abilities, there are surprisingly few studies 
investigating the link between number approximation and probabilistic reasoning. One of the 
major contributions of this dissertation is to fill this gap by investigating the mental 
representation of non-symbolic probability and its relation to number approximation abilities. 

 
1.2.1 Heuristic decision rules in simple probability tasks 

Formally, the probability of discrete events is represented as the proportion of target 
outcomes to all possible outcomes. The discriminability of two non-symbolic ratios is influenced 
by the distance between those ratios, often referred to as the 'distance effect' (Drucker, Rossa, & 
Brannon, 2016; Fazio, Bailey, Thompson, & Siegler, 2014; Jacob & Nieder, 2009). A proportion 
is a special type of rational number in which part whole relations are taken into account during 
computation. This simplifies the comparisons of probabilities that have different sample spaces. 
However, when adults are presented with low probability events with equal distributions (i.e. 1 
in 10 vs 10 in 100), they typically choose the group with the larger number of target events 
(Alonso & Fernández-Berrocal, 2003; Denes-Raj & Epstein, 1994; Kirkpatrick & Epstein, 1992; 
Pacini & Epstein, 1999). Heurisitic based decision making has been a topic of a great deal of 
research for several decades (Kahneman, 2011; Kahneman & Tversky, 1973; Tversky & 
Kahneman, 1983) yet very few researchers have studied the task features which influence adults' 
use of heuristics in simple probability judgments and even fewer studies have investigated the 
use the developmental origins of heuristics biases. 

According to Falk et al. (2012), children use one of four decision making strategies in the 
2AFC random draw task. Younger children tend to use 1-dimensional strategies, focusing on a 
single set of events. They either choose the group with the greater number of target events 
('greater win') or they choose the group with the smallest number of non-target events ('lowest 
loss'). Older children use strategies which can account for both sets of events. These 2-
dimensional strategies include choosing the group with the smallest difference between target 
and non-target events ('greater difference') as well as choosing the group with the highest 
proportion ('greater proportion'). Data from a sample of 6- to 12-year-old Israeli children suggest 
that children progress through these strategies as they learn more about the proportional nature of 
probability and that by age 8 they demonstrate the ability to use the 'greater proportion' strategy. 
Similar findings have also been reported in a sample of German children using a computer-based 
design (Ruggeri, Vagharchakian, & Xu, 2018). The second major contribution of this dissertation 
is to demonstrate that both children and adults sometimes rely on these heuristic decision rules in 
tasks involving both approximate and exact numerical information. 
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1.2.3 Development of numerical, proportional, and probabilistic reasoning 

This work draws on and contributes to a broad range of research on the development of 
numerical cognition including non-symbolic magnitude approximation, proportional reasoning, 
rational number processing, and probabilistic reasoning. I will use these vast literatures to frame 
the development of several experiments designed to trace the developmental trajectory of non-
symbolic probabilistic reasoning. In doing so, I hope to demonstrate the value of the empirical 
work contained in this dissertation as well as frame future research questions at the intersection 
of these domains. 

Development of number approximation. As mentioned earlier, signatures of the human 
number sense appear within the first year of life (Dehaene, Dehaene-Lambertz, & Cohen, 1998; 
V. Izard, Sann, Spelke, & Streri, 2009; Lipton & Spelke, 2003; Xu & Spelke, 2000; Xu, Spelke, 
& Goddard, 2005). Infant numerical competencies go far beyond large number discrimination. 
Researchers have shown that infants form expectations about addition and subtraction (McCrink 
& Wynn, 2004) and are even capable of discriminating ratios (McCrink & Wynn, 2007). Young 
children are also capable of performing non-symbolic division and multiplication tasks [McCrink 
and Spelke (2010); McCrink and Spelke (2016)) suggesting ANS representations influence early 
arithmetical reasoning. Given that these numerical abilities are available at such a young age and 
continue to develop throughout the life course, it is important to understand how number 
approximations are used to make sense of the uncertain and probabilistic data that the developing 
mind must process. 

Development of proportional reasoning. For decades, developmental researchers have 
believed that young children are incapable of accurately reasoning about proportional stimuli 
(Piaget & Inhelder, 1975; Tourniaire & Pulos, 1985). More recent research has shown that 
children’s proportional reasoning abilities vastly improve over the school-age years (Mix, 
Levine, & Huttenlocher, 1999; Möhring, Newcombe, & Frick, 2015; Singer-Freeman & 
Goswami, 2001; Spinillo & Bryant, 1999). Research on proportional reasoning often uses the 
proportional match to sample task in which participants are first presented with a proportional 
‘target’ stimuli and are then shown several similar stimuli from which they are asked to select the 
stimulus that matches the proportions of the target. Using this method, researchers have 
demonstrated that children often make part:part comparisons (i.e. choosing stimilus matches 
based on matching parts rather than matching the proportion) similar to the heurstic decision 
rules reported in the probabilistic reasoning literature. Furthermore, recent research investigating 
proporitonal reasoning with both discrete and continouse stimulus formats has shown that 
children are capable of making accurate proportional matches when they are presented with 
stimuli in a continuous format and they tend to show a part:part response bias when presented 
with stimuli containing discrete, countable parts (Boyer & Levine, 2012, 2015; Boyer, Levine, & 
Huttenlocher, 2008; Hurst & Cordes, 2018; Jeong, Levine, & Huttenlocher, 2007). These 
findings fit well with theories of proportional reasoning that claim children's knowledge of the 
properties of whole numbers interferes with their ability to reason proportionally (Mix et al., 
1999; Sophian, 2000; Sophian & Wood, 1997). As a parellel to the developmental literature on 
number apporximation abilities, these findings also suggest that young children demonstrate 
accurate proportional reasoning at least when they are presented with stimuli that do not prime 
them to use their knowledge of whole numbers. Proportional reasoning is also needed when 
making judgments about simple probabilities invovling binary outcomes and this literature 
suggests that young children who are capable of sophisticated number approximation and 
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proportional reasoning should be equally adept at making judgments of probability based on 
proportional stimuli. 

Development of probabilistic reasoning. Classic work investigating school-age 
children's predictions about single and sequential random draws suggests that children are 
incapable of correct proportional reasoning in tasks measuring the quantification of probability 
(Falk, Falk, & Levin, 1980; Piaget & Inhelder, 1975; Siegler, Strauss, & Levin, 1981; Yost, 
Siegel, & Andrews, 1962), as well as recent research using the methodologically superior 2AFC 
design (Falk et al., 2012). Young children often choose the group with the greatest number of 
target objects regardless of the total number of objects in tasks in which they are presented with 
groups of less than 9 objects and prompted to count (Falk et al., 2012). Furthermore, recent 
evidence suggests infants (Denison & Xu, 2014) are sensitive to proportions in a 2-alternative 
forced-choice (2AFC) random draw task. In this task, infant participants watched as an 
experimenter randomly withdrew a single lollipop from each of two groups of preferred and non-
preferred color lollipops (Denison & Xu, 2014). Infants were more likely to approach the 
lollipop drawn from the distribution with a larger proportion of preferred lollipops even when the 
total number of lollipops in both groups varied such that the group with the lower proportion 
actually contained more of the infant's preferred lollipops. Although these findings reveal 
children's errors in probability tasks involving counting and exact numerical information, very 
little research has investigated children's reasoning in non-symbolic probability approximation. 

 
1.2.4 Teaching children statistics and probability 

As mentioned previously, both children and adults show a bias toward random drawings 
from groups with a greater number of target events (Falk et al., 2012; Pacini & Epstein, 1999). In 
the fraction learning literature, this finding is often referred to as the 'whole number bias' 
(Braithwaite & Siegler, 2017; Ni & Zhou, 2005) and is thought to result from componential 
processing (Bonato, Fabbri, Umilta, & Zorzi, 2007). When learners compare symbolic fractions, 
they often simply compare the components of the fraction (i.e. they compare the just the 
numerators or just the denominators) rather than relating the size of the numerator to the size of 
the denominator in order to compute the exact numerical value. The integrated theory of 
mathematical development suggests that these types of errors result from children overextending 
whole number properties to the set of rational numbers (Siegler, 2016). Based on these findings, 
one potential explanation for the differences between Israeli (Falk et al., 2012) and German 
children (Ruggeri et al., 2018) compared to US children is education. In the United States, the 
Common Core State Standards recommends that educators introduce children to formal 
probability in the 6th grade (11 to 12 years old) and this introduction usually comes in the form 
of analyzing outcomes of coin flips, dice rolls, as well as random draw problems. 

When children enter the classroom, they have a great deal of prior beliefs and intuitions 
about a variety of domains and can draw on these beliefs and intuitions during instruction. 
Contemporary constructivist theories of cognitive development, draw on concepts from Bayesian 
probability to express developmental change as the integration of prior beliefs with new 
information (Fedyk & Xu, 2017; Gopnik, 2012; Gopnik & Wellman, 2012; Xu & Kushnir, 
2012). Furthermore, education research has shown that learners whose teachers engage with and 
expand upon children's prior knowledge stand a better chance of understanding part-whole 
relations in fraction representations of mathematical problems (Saxe, Gearhart, & Seltzer, 1999). 
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Teachers who understand their students’ knowledge state are better able to present information in 
a manner that will facilitate learning. 

What factors influence children's use of heuristics deicision rules and how does teaching 
formal probability influence intuitive probabilistic judgments? How does a child's prior 
knowledge of probability interact with the classroom enviornment to influence the learning 
process? Answering these questions is the third contribution of this dissertation. To my 
knowledge, only three studies have investigated the effect of feedback and instruction on 
children's proportional reasoning strategies using the 2AFC random draw task. Fischbein, 
Pampu, and Mânzat (1970) presented 5- to 13-year-old children with a 2AFC random draw task. 
On trials containing the same ratio of marbles, younger children systematically chose the 
distribution with the larger number of target objects. Following instruction, performance on these 
trials increased to chance levels. Importantly, Fischbein et al. (1970) did not assess children's 
choice strategies during a pre-test. When performance is at the level of chance, it is difficult to 
discern whether children learned the correct strategy or whether they were choosing randomly. 

A more comprehensive approach was taken by Offenbach, Gruen, and Caskey (1984) 
who used a computer-based method to present children with probe trials meant to determine 
which strategy children used on a 2AFC random draw task. Interleaved between these probe 
trials were feedback trials in which they were shown which response was the correct response. 
Results revealed that children’s use of the proportional strategy improved with age and that both 
positive and negative feedback did not influence the consistent use of strategies. However, since 
the feedback trials were interleaved with non-feedback probe trials, children did not receive 
feedback consistently. Furthermore, since Offenbach et al. (1984) were interested in children’s 
consistent strategy use, they did not vary the feedback trials based on the child’s strategy, 
meaning that all of the children in the study received feedback on the same set of trials regardless 
of their strategy. One potential explanation for children’s consistent strategy use is that there was 
not enough negative feedback for children using incorrect strategies. If the authors provided 
more feedback focusing on the specific trials that disconfirm the child’s strategy, more children 
may have learned to change their strategies in response to the feedback. 

In a more recent study, Falk et al. (2012) investigated whether children will change their 
choice in the 2AFC random draw task after viewing the outcome of a random draw. Their results 
revealed that children's choices were less consistent following a losing draw compared to a 
winning draw and that this difference declined with age. However, since children were only 
presented with each trial twice, the authors did not investigate whether this feedback influenced 
their overall strategy. Furthermore, none of the three studies cited above (Falk et al., 2012; 
Fischbein et al., 1970; Offenbach et al., 1984) investigated the influence of feedback on specific 
trial types in relation to the child’s prior understanding. Feedback on trials in which the correct 
choice does not conflict with a child’s strategy can inadvertently strengthen the child’s belief that 
they made a correct choice. Furthermore, the uncertainty inherent in probabilistic outcomes can 
confuse a learner. Thus, the third and final contribution of this dissertation is to demonstrate that 
children's use of heuristics decision rules is common in both approximation and exact numerical 
value tasks and that they can learn to override the use of these heuristics if they are provided with 
the proper amount and type of feedback. 
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1.3 Précis 

Although non-symbolic probability reasoning has been studied for decades, (Chapman, 
1975; Falk et al., 1980; Pacini & Epstein, 1999; Piaget & Inhelder, 1975; Siegler et al., 1981; 
Yost et al., 1962), very little is known about the representational format that humans rely on for 
computing non-symbolic probability and how these formats are learned and applied throughout 
ontogeny. How is non-symbolic probability represented in the mind and how do these 
representations change with age and education? What are the factors that influence the use of 
heuristic decision rules in probabilistic reasoning tasks and what is the most effective way to 
teach children about the proportional nature of probability? In this dissertation, I will outline how 
my collaborators and I have addressed these questions and what implications can be drawn from 
our results. I see this work making valuable contributions to the literature on numerical cognition 
and probabilistic reasoning, as well as having broader applications in education and decision 
making. 

Chapter 2 presents a series of experiments conducted with adults investigating the 
psychophysical properties of non-symbolic probability judgments. The first hypothesis of this 
work, which I test in a series of four experiments reported in chapter 2, is that people can and do 
calculate probability based on rapid approximations of the number of possible outcomes in a 
sample space. Thus, these probability judgments will share signature psychophysical features 
with the approximate number system, namely, they will show a distance effect (i.e. as two 
proportions are more distant from each other along the mental number line, they will be easier to 
discriminate), and they will be influenced by the same numerical and non-numerical stimulus 
features influencing perceived number such as size and sparsity. Drawing on Signal Detection 
theory, we compare the predictions of a psychophysical model adapted from the number 
approximation literature (DeWind et al., 2015) to the response choices of adult participants 
engaged in a 2AFC random draw task. Results revealed that human adults are capable of rapidly 
making accurate probability judgments and that these judgments follow Weber's law and are thus 
characterized by ratio dependence: the closer the proportions were in magnitude, the more 
difficult they were to discriminate. In accordance with this claim we also find that adults' 
response data on our task is well fit to a psychophysical model accounting for number, size and 
sparsity of the visual arrays. 

Previous research has shown that adults show a ratio bias effect when reasoning about the 
outcome of a single random draw when provided with exact numerical value information 
(Alonso & Fernández-Berrocal, 2003; Denes-Raj & Epstein, 1994; Kirkpatrick & Epstein, 1992; 
Pacini & Epstein, 1999). Thus, our secondary hypothesis claims that adults sometimes rely on 
this same formally incorrect decision rule when reasoning about probability approximations that 
are perceived to be closer in magnitude. Based on this hypothesis, we expect that the accuracy of 
probability judgments will decrease when the incorrect choice has a larger number of target 
objects. Importantly, we find a bias in adult judgments toward choices with a higher number of 
target events and this choice pattern increased with more difficult ratios of proportions. This 
interaction suggests that people can make correct comparisons based on the exact numerical 
value of proportions when two proportions are easy to discriminate but they seem to rely on 
simpler, often incorrect heuristics when two proportions are difficult to discriminate. In follow-
up experiments we demonstrate that 

Chapter 3 charts the developmental trajectory of non-symbolic probability judgments in 
elementary school children. In this chapter I will present data from two experiments with 6- to 
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12-year-old children using similar methods as those presented in Chapter 1. Results suggest that 
although children are capable of rapidly making accurate probability judgments, their decisions 
are biased toward choices with a larger number of target events. Importantly, this bias decreases 
with age until about 12 years in our sample of US children. This finding stands in contrast to that 
of Falk et al. (2012) who used similar methods to study probabilistic decision-making strategies 
in Israeli children. Falk et al. (2012) report that around the age of 8, children in their task were 
capable of correctly using proportion rather than the number of target events to inform their 
choices. Furthermore, Ruggeri et al. (2018) also found that German children at this age were 
capable of accurate proportional reasoning on a probability judgment task. 

We hypothesize that children in the US use their approximate number system to rapidly 
compute probability. From this hypothesis, we make three predictions: First, children's 
probabilistic discrimination abilities will demonstrate ratio dependence (i.e. as two proportions 
move further apart on the mental number line, they will become easier to discriminate). Second, 
the ability to discriminate probabilities will improve with age. Third, we predict that probability 
discrimination will be influenced by the same non-numerical features known to influence ANS 
representations. Our secondary hypothesis proposes that children's probability choices will be 
influenced by the same heuristic decision rules reported in previous research (Falk et al., 2012). 
Based on this hypothesis we predict that children's performance will be influenced by the 
number of target marbles. Interestingly, data from the current sample suggest that children are 
capable of reasoning proportionally around the age of 11 to 12 which is the same time that the 
Common Core State Standards (Best Practices, 2017) recommends US children should be formal 
introduced to probability in school. 

Chapter 4 presents more recent experimental work investigating the factors which 
influence children's use of heuristic decision rules in simple, non-symbolic probability 
judgments. Previous research has investigated the role of feedback and instruction on children's 
random draw choices (Falk et al., 2012; Fischbein et al., 1970; Offenbach et al., 1984) but this 
previous work did not attempt to track the changes in children's overall pattern of decision 
making. Using a computerized version of the methods developed by Falk et al. (2012), my 
collaborators have investigated the role of feedback on children's use of heuristic decision rules. 

We hypothesize that children rely on the same heuristic decision rules when asked to 
make probability approximations as well as when they are asked to make similar judgments 
based on exact numerical values. Furthermore, our findings indicate that children can learn to 
abandon these inaccurate heuristic strategies if they are provided with the proper amount and 
type of feedback with respect to their prior understanding of the proportional nature of 
probability. Together, these findings suggest both prior knowledge and current information from 
the learning environment interact to influence children's reliance on inaccurate heuristic decision 
rules. 
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Chapter 2 
 

Number Approximation and Heuristics 
Influence Non-symbolic Probability 
Estimation 
 
 
2.1 Introduction 

Probabilistic data are ubiquitous in human experience. For example, weather, traffic, and 
economic information yield a continuous stream of variable data, whether they are reported to us 
in a news broadcast or gleaned from our own direct experience. What mental processes are 
involved in calculating probability? Do we rely on numerical information related to rational 
number when making rapid approximations of probability? In this paper, based on the literatures 
on probabilistic reasoning and number approximation, we test three hypotheses about the 
relationship between non-symbolic probability estimation, number approximation, and decision-
making: (H1) adults can compute proportions using an analog magnitude system for 
approximating the number of items in multiple sets; (H2) similar to other types of magnitude 
approximation abilities, adults’ approximate probability estimation will demonstrate 
characteristics of ratio dependence; and (H3) adults sometimes rely on formally incorrect 
decision rules (i.e., heuristics or shortcuts) when reasoning about probability. In four 
experiments, we use a two-alternative forced-choice random draw task in which adult 
participants are presented with two different groups of red and white marbles. After a brief 
stimulus presentation time, participants are asked to choose the group which is best for drawing 
either a red or white marble depending on the participants’ assigned condition. Results from this 
series of experiments have implications for a range of disciplines in cognitive science including 
numerical cognition, probabilistic reasoning, decision making, visual perception and 
psychophysics, as well as theories of strategy use in decision making and computational models 
of strategy selection. 

 
 
2.1.1 Number approximation and numerical cognition  

We hypothesize that humans can approximate the number of target and non-target events 
in a visual scene depicting multiple sets of events, compute proportions based on these 
representations, and then use their proportional magnitude judgment abilities to make accurate 
judgments about probability (H1). Research on numerical processing has shown that both 
humans and non-human animals are capable of forming abstract representations of number. 
These remarkable abilities have been termed the ‘number sense’ (Dehaene, 1997/2011) and 
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appear within the first year of human life (de Hevia, Izard, Coubart, Spelke, & Streri, 2014; 
Lipton & Spelke, 2003; Xu & Spelke, 2000; Xu, Spelke, & Goddard, 2005). Analog 
representations of numerical magnitude consist of a set of modality-independent numerical 
abilities that allow humans and non-human animals to make rapid approximations of the 
magnitudes of sets of objects. The rapid and inexact nature of analog magnitude representations 
are thought to follow Weber’s Law (Halberda & Feigenson, 2008; Whalen, Gallistel, & Gelman, 
1999) and thus demonstrate ratio dependence: the ability to discriminate two sets of objects 
based on number depends upon the ratio of the magnitudes of those sets.  

Several non-numerical features have been found to influence analog magnitude 
representations of number. Perceived numerosity is influenced by the distance between the 
objects (Allik, Tuulmets, & Vos, 1991; Ginsburg & Goldstein, 1987) as well as the size of 
objects, size of the area occupied by the set of objects (field area), and the density of objects 
within the field area (Durgin, 1995; Gebuis & Reynvoet, 2012). Although there is still much 
debate about the role of non-numerical features in number approximation (Leibovich, Katzin, 
Harel, & Henik, 2017; Odic & Starr, 2018), recent research has integrated numerical and non-
numerical features in modeling number approximation abilities of both adults and children to 
show that numerical decisions are indeed primarily based on numerosity rather that non-
numerical features (DeWind, Adams, Platt, & Brannon, 2015; Starr, DeWind, & Brannon, 2017). 
Importantly, these results suggest that computations involving analog magnitude representations 
of number should also be influenced by the same non-numerical features.  

There is already some evidence to suggest that analog magnitude representations are 
engaged in numerical computations. Adults and preschool children can perform addition and 
subtraction based on analog representations of numerical magnitude (Barth, La Mont, Lipton, & 
Spelke, 2005; Pica, Lemer, Izard, & Dehaene, 2004). Even preverbal infants are capable of 
tracking the outcomes of approximate addition and subtraction (Chiang & Wynn, 2000; McCrink 
& Wynn, 2004), which demonstrates that these computations do not require formal schooling or 
knowledge of numerical symbols . Recent evidence has also demonstrates that both infants and 
non-human animals can accurately discriminate ratios (Drucker et al., 2016; McCrink & Wynn, 
2007). Together these findings suggest that human learners are capable of rapidly enumerating 
multiple sets of objects (Halberda, Sires, & Feigenson, 2006), discriminating approximate ratios 
(Drucker et al., 2016; McCrink & Wynn, 2007), and making accurate probability estimation 
about small, countable, sets of objects (Chapman, 1975). How do humans make accurate 
probability estimation based on approximate quantities? In order to answer this question, we 
draw on the literature exploring the psychophysics of number approximation. 

 
2.1.2 Non-symbolic probability judgments 

In formal mathematics, the probability of discrete events is computed as a proportion of 
target outcomes to all possible outcomes. Ratios formalize the relation between any two 
quantities and proportions are used to test the equality of two ratios. Proportions allow an 
observer to relate the parts (subsets of outcomes) to the whole (all possible outcomes). Previous 
research has reported that the discriminability of two non-symbolic ratios (i.e. ratios of objects 
presented without reference to symbolic representations such as fractions or decimals) is 
influenced by the distance between those ratios, often referred to as the ‘distance effect’ and this 
relationship has been demonstrated in both non-human primates (Drucker, Rossa, & Brannon, 
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2016) and humans (Alonso-Diaz, Piantadosi, Hayden, & Cantlon, 2018; O’Grady & Xu, 2019; 
Eckert, Call, Hermes, Herrmann, & Rakoczy, 2018; Fazio, Bailey, Thompson, & Siegler, 2014; 
Jacob & Nieder, 2009). Based on these findings, we predict that human probability estimation 
will be less accurate when the probabilities of two possible events are closer in magnitude (H2). 

Although probabilistic reasoning has been a productive topic of research for decades, 
researchers have only recently begun to investigate the psychophysical properties of probability 
judgments. Fazio et al. (2014) explored the relation between numerical approximation in a dot 
array comparison task and proportional reasoning in which 5th grade participants (10- to 11-
year-olds) were asked to imagine that colored dots on a computer screen were candies and that 
they were supposed to choose the dot array with the best chances of yielding a target color 
candy. Although Fazio et al. (2014) were primarily focused on the relations between symbolic 
number processing, non-symbolic number processing, and mathematics achievement, they did 
report that number sense acuity in the dot comparison task was correlated with acuity in the 
proportional reasoning task, which offers some evidence that that the two processes may draw on 
a similar mechanism. Using a similar design, O’Grady and Xu (2019) were able to chart the 
trajectory of children’s probability approximation from 6 to 12 years of age, and Ruggeri et al. 
(2018) have shown that the accuracy of children’s proportional reasoning is correlated with the 
acuity of their numerical approximation abilities. 

More recently, Eckert et al. (2018) presented chimpanzees and human adults with a 2-
alternative forced-choice probability discrimination task in which the subjects were presented 
with a random draw outcome from two distributions of peanuts and carrots. If chimpanzees can 
reason accurately about the probability of a random draw, they should choose the outcome drawn 
from the group with the highest proportion of peanuts, the chimpanzees’ typically favored snack. 
Results revealed a ‘distance effect’ similar to those found in studies with human children (Fazio 
et al., 2014; O’Grady & Xu, 2019) and adults (Jacob & Nieder, 2009; O’Grady et al., 2016; 
Alonso-Diaz et al. 2018): the accuracy of probability estimation for both chimpanzees and 
humans was influenced by the ratio of the ratios presented. Furthermore, the authors also 
manipulated the absolute number of peanuts such that on some trials, there were more peanuts in 
the group with the lower ratio of peanuts in order to investigate the influence of heuristic 
decision rules such as ‘pick the group with the most peanuts’ or ‘pick the group with the fewest 
carrots’. While the authors speculated on the role of analog magnitude representations in 
accurate probability estimation for both chimpanzees and adults, they did not measure the acuity 
of numerical approximation in their subjects nor did they investigate the influence of non-
numerical stimulus features known to influence numerosity judgments. 

 
2.1.3 Use of heuristics in simple probability judgments 

Previous work on the ability to calculate probabilities has revealed that participants 
judgments are biased in predictable ways. In one study, for example, Piaget and Inhelder (1975) 
devised the random draw task in which participants are presented with two groups of objects 
asked to choose a group from which to randomly draw a particular object. Using this task, Piaget 
& Inhelder (1975) found that children used a variety of heuristic decision rules depending on the 
context of the choice. The most common heuristic reported in this seminal work involved 
choosing the group with the largest number of target objects even if this group also had the 
smaller proportion of target objects. 
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More recent research suggests that children progress from using less complicated, formally 
incorrect heuristics in which they focus on one dimension of the problem (i.e. ‘pick the largest 
number of target marbles’ or ‘pick the smallest number of non-target marbles’) to using a more 
complicated yet still formally incorrect two-dimensional heuristics (i.e. ‘pick the numerically 
largest difference between target and non-target marbles’). Findings from this research have 
shown that by 8-10 years of age, children are capable of accurate, formally correct, proportional 
reasoning in the two-alternative forced-choice design (Falk et al., 2012; O’Grady & Xu, 2019). 
Research with adults has also indicated that adult use a similar heuristic decision rule when 
provided with more complicated decision tasks. 

When presented with the same set of proportions based on small, countable quantitates of 
marbles used to test children, adults typically perform at ceiling (Chapman, 1975). However, 
when presented with two equal distributions of low probabilities (i.e. 1 in 10 vs 10 in 100) of 
target versus non-target events, adult participants will often choose the option with the higher 
number of target events (Kirkpatrick & Epstein, 1992; Pacini & Epstein, 1999), which 
demonstrates that even adults sometimes revert to single-dimension heuristics. More recent work 
suggests that adults report feeling more confident about their probability judgments when 
presented with large compared to small distributions (Alonso-Diaz & Cantlon, 2018). This 
choice behavior persists even when participants show evidence of knowing that both 
distributions have the same probability of yielding a target outcome as well as when probabilities 
are unequal (Alonso & Fernández-Berrocal 2003; Denes-Raj & Epstein 1994). These results 
indicate that inaccurate heuristic processing pervades human probabilistic decision making. 

The current series of experiments seeks to extend the findings from previous reports by 
including a larger range of probabilities as well as including trials with objects of varying sizes in 
order to make a more accurate assessment of the role of analog magnitude representations of 
number in the probability discrimination abilities of human adults. We also seek to investigate 
factors which influence human adults’ reliance on heuristic decision rules. Based on these 
findings from the empirical literature on probabilistic reasoning (Alonso & Fernández-Berrocal 
2003; Alonso-Diaz & Cantlon, 2018; O’Grady et al. 2016), we hypothesize that adults will rely 
on formally incorrect heuristic decision rules such as ‘pick the group with the most [target color] 
marbles’ when their ability to accurately calculate probability is constrained by time and when 
the proportions are more difficult to discriminate. Thus, we expect that human probability 
estimation involving a large number of targets and non-targets presented in a short amount of 
time will be influenced by the number of target objects (H3). 

 

2.1.4 Rationale and synopsis for the current study 

In all four of the current experiments, we deployed the same 2-alternative forced-choice in 
which participants viewed images containing two groups that each contained a mix of red and 
white marbles. Participants were asked to choose the group that they believed would yield a 
target color (red or white) from a single random draw. Importantly, in each experiment we 
created trial types which are meant to distinguish between correct proportional judgments and 
heuristic biases such as ‘pick the group with the greater number of target marbles’. In 
Experiments 1 & 2 we also deployed a standard dot approximation task in order to measure the 
acuity of participants’ number approximation abilities. In Experiment 2 we altered the size and 
absolute number of target marbles in order to investigate the influence of heuristic decision rules. 
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There are two potential explanations for why participants use heuristic biases in this timed 
approximation task. The first is that the short presentation time may limit their ability to make 
the appropriate number of approximations. This possibility is tested in Experiment 3 by 
investigating the influence of presentation time on participants' use of these heuristic decision 
rules. Another potential explanation for the heuristic bias is that participants did not understand 
the proportional nature of the task. This was tested in Experiment 4 by including explicit task 
instructions to the participants meant to inform them that they should not simply choose the 
option with the greatest absolute number of marbles. 

 

2.2 Experiment 1 

In Experiment 1 we presented undergraduate students with images containing two groups of red 
and white marbles for a very brief period of time.  We then asked them to choose the group 
which they thought was best for randomly drawing a marble of their assigned color. In order to 
investigate the influence of number approximation ability on probability approximation, we also 
presented participants with a dot approximation task to assess the acuity of the number 
approximation abilities.  
 
2.2.1 Methods 

Participants. Thirty-seven female and 11 male undergraduate students (N = 48; Mean age = 
22.23; SD = 7.64) participated. Sample size was determined based on previous research (Fazio et 
al., 2014; O’Grady et al., 2016). After providing written informed consent, participants were told 
that they would be playing two computer-based games related to numerical reasoning. 
 
Material. Images containing two groups of red and white marbles separated by a blue partition 
were created using Blender 2.72, 3D animation software (http://www.blender.org/). Table 1 
provides the proportions of red and white marbles in both groups for each ratio of proportions. 
Two different types of trials were included. In the total equal trials, both groups had an equal 
number of marbles. These trials can be considered relatively easier because they only require a 
comparison of the number of marbles of the target color. Images for the target equal trials 
contained groups which had an equal number of target color marbles but different numbers of 
non-target marbles such that the proportions of marbles in the two bins matched the proportions 
of the corresponding total equal trial. Since the total area of the two groups was smaller for the 
‘correct’ choice, an additional 10 foil trials were created to reduce the chances that participants 
would learn to simply choose the smaller of the two groups of marbles. Foil trials contained an 
unequal total number of marbles in both choices like the target equal trials with a larger number 
of target marbles in the ‘correct’ choice similar to the total equal trials. 
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Table 2.1 Proportion presented in each trial of Experiment 1. 

Proportion group 1 Proportion group 2 Ratio of Proportions 
0.55 0.50 1.10 
0.70 0.60 1.17 
0.55 0.45 1.22 
0.80 0.60 1.33 
0.80 0.55 1.45 
0.60 0.40 1.50 
0.70 0.40 1.75 
0.55 0.30 1.83 
0.60 0.30 2.00 
0.70 0.30 2.33 
0.80 0.30 2.67 
0.75 0.25 3.00 
0.70 0.20 3.50 
0.80 0.20 4.00 
0.90 0.15 6.00 
0.80 0.10 8.00 
0.90 0.10 9.00 
0.50 0.05 10.00 
0.55 0.05 11.00 
0.70 0.05 14.00 

Note. Ratios of Proportions are rounded to 2 digits. See the Supplemental Material for a full table 
including the numbers of marbles used in each group for each trial type. 
 
Procedure. Participants were seated about 60 cm from a MacBook Pro laptop (OSX; Screen 
resolution 1280 x 800) and were told that they would see some images with two groups of red 
and white marbles on the screen. Experimenters informed the participants that their task was to 
collect either red or white marbles depending on the condition to which the participant was 
assigned. Next, they were told that the computer would randomly select a marble from one of the 
two groups on the screen and that they could collect marbles by telling the computer which 
group to draw a marble from. Finally, participants were told that there was always a ‘best’ choice 
and that while some of the trials will seem easy other trials may be more difficult and if they 
were uncertain about which group to choose, they should try to make their best guess. Four 
practice trials were used to provide an example of how to play the game. For each of these 
practice trials participants saw two groups of marbles, one contained all red marbles while the 
other contained all white marbles. Participants were told that the practice trials were intentionally 
easy and were only meant to familiarize them with the operation of the game. 

Images were presented using a script written in MatLab programing language with the 
psychophysics toolbox (Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997). Each 
participant was presented with 40 test trials and 10 foil trials in one of two semi-randomized 
orders. Previous research using a similar design presented images for 1320ms for 11-year-olds 
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(Fazio et al., 2014). Adults have been shown to have faster and more accurate number 
approximation abilities than children and for this reason we chose to present images in the 
current study for 750 ms. After stimulus presentation, marbles on the screen were replaced by 
two bags labeled with a blue ‘1’ or a green ‘2’. Participants made their choice by pressing one of 
two keys marked with either a blue or a green sticker corresponding to the bags. After fifteen 
trials, participants saw a brief animation and were encouraged to take a break from the game. For 
each trial the computer recorded the participant’s choice as well as reaction time. After the game 
ended and data collection was complete participants saw a screen containing 32 marbles that 
matched their target color and were told that these were the marbles that they had collected 
during the game. Figure 1 presents a visual schematic of the procedure for the 2-alternative 
forced-choice random draw task. 

After completing the probability judgment task participants were also asked to perform a 
number approximation task (Panamath.org; Halberda & Feigenson, 2008) for 10 minutes. 
Instructions for this portion of the experiment were provided based on the procedure for testing 
adults prescribed by the Panamath website. In this dot approximation task, participants are 
presented with an image containing various ratios of blue and yellow dots and are asked to 
indicate whether there are more blue dots or more yellow dots. Following Halberda, Mazzocco, 
and Feigenson (2008) a psychophysical model was used to compute each participant’s Weber 
Fraction, an index of numerical acuity. Lower Weber Fractions indicate better acuity, such that 
participants are capable of making finer discriminations between the numbers of sets of objects. 
Once the number approximation task was completed, the experimenter debriefed the participant 
and discussed the rationale for the study.  

Statistical analyses were performed using the R programming language (R Core Team, 
2008). De-identified data, methods, materials, experimental code, and manuscript preparation 
code for all four of the experiments in this manuscript can be found on the Open Science 
Framework at the following link: 
(https://osf.io/adms6/?view_only=0c28c60a5993466d894273b003b75ab1 ). 

 
Figure 2.1 Diagram of the experimental procedure used in Experiment 1. The sample image at 
the top presents a target equal  trial while the sample image at the bottom presents a total equal 
trial. 
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2.2.2 Results 

Analyses of the foil trials revealed that adults were at ceiling on these trial types indicating that 
they were not simply choosing the group that occupied less space in the image (𝑀 = 0.98, 95% 
CI [0.96, 0.99], 𝑡(47) = 65.93, 𝑝 < .001). Foil trials were not included in subsequent analyses. 
Additionally, there were no significant differences between participants who were instructed to 
collect red marbles and those who were asked to collect white marbles nor were there any 
significant differences between the two counterbalanced orders of trials, so these variables were 
dropped from subsequent analyses. 
 
General Accuracy. Overall, participants did quite well, performing significantly above chance 
on both total equal (𝑀 = 0.98, 95% CI [0.96, 0.99], 𝑡(47) = 71.99, 𝑝 < .001) and target equal 
trials (𝑀 = 0.92, 95% CI [0.90, 0.95], 𝑡(47) = 32.12, 𝑝 < .001). Figure 2 displays average 
performance by ratio of proportions and trial type. 

 
Figure 2.2 Average performance by ratio of proportions and trial type. Error bars indicate 
bootstrapped 95% confidence intervals. 
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Statistical Modeling. Generalized Linear Models with Mixed effects (GLMMs) from the lme4 
package (Bates, Maechler, Bolker, & Walker, 2015) were used to predict the binary response 
variable based on experimental, procedural and subject variables. This analysis is the preferred 
method compared to simple t-tests because regression models can assess the influence of both 
categorical and continuous variables as well as the interaction between the two on performance. 
Reaction times were analyzed via comparisons of Linear Models with Mixed effects (LMMs) 
from the same lme4 package. In both cases, participant identification numbers were entered as 
random effects in order to account for multiple comparisons resulting from two trial types for 
each ratio of proportions. Importantly, model comparisons did not reveal any effect of age, 
gender, order of trials, or the target color. 

Comparisons of GLMMs revealed that the model predicting the participant’s response 
from ratio of proportions, trial type, as well as the interaction between ratio of proportions and 
trial type was found to have the best fit to the data (𝐴𝐼𝐶89∗;;  =596.66). This model 
outperformed the null model (𝐴𝐼𝐶<=>> = 654.65; 𝜒@= 63.99; df = 3; p < .001) and the models 
predicting performance from the ratio of proportions alone (𝐴𝐼𝐶89 = 641.38; 𝜒@= 48.72; df = 2; p 
< .001), trial type alone (𝐴𝐼𝐶;; = 625.56; 𝜒@= 32.90; df = 2; p < .001), as well as the ratio of 
proportions and trial type with no interactions (𝐴𝐼𝐶89A;;  = 613.34; 𝜒@= 18.68; df = 1; p < .001). 

The interaction term of the model (𝛽C<DEFGHDIJ<  = 1.49; SE = 0.55; 95% CI [0.41, 2.57]) 
indicates that the ratio of proportions had a greater effect for target equal trials compared to total 
equal trials. Exponentiating the model coefficients for main effects revealed that incremental 
increases in the ratio of proportions (𝛽89 = 0.09; SE = 0.05; 95% CI [-0.01, 0.18) led to small 
increases in the odds of making a correct choice and total equal trials increased the odds of a 
correct choice compared to target equal trials (𝛽;;  = -1.38; SE = 0.87; 95% CI [-3.08, 0.32). 
Similar comparisons were conducted for the LMMs used to analyze reaction time data, the 
details of which can be found in the Supplemental Material. 
Correlation with number approximation acuity. Due to experimenter error, number 
approximation data from the Panamath task was only collected from 30 of the 48 participants. 
Correlational analyses revealed that Weber Fraction as measured by the Panamath task was 
significantly negatively correlated with overall performance in the probability task for this 
subsample of participants (Pearson's 𝑟 = −.38, 95% CI [−.65, −.02], 𝑡(28) = −2.15, 𝑝 =
.040). This indicates that participants with better numerical acuity (lower Weber fractions) 
performed better on the probability task.  
 
2.2.3 Discussion 

Results from Experiment 1 revealed that as the ratio of proportions increased, the two 
proportions become easier to discriminate. Furthermore, participant’s number sense acuity was 
correlated with performance on the probability judgment task (i.e. lower Weber fractions as 
measured by Panamath predicted more accurate probability estimation). Finally, participants 
performed worse on target equal trials compared to total equal trials, particularly when the ratio 
of proportions was small, suggesting that participants may have relied on a decision-making 
heuristic such as ‘pick the group with more target marbles’ or ‘pick the group with fewer non-
target marbles’.  

However, two important issues in the design of the experiment need to be resolved before 
any strong conclusions can be made. Although performance was significantly lower for target 
equal trials compared to total equal trials, it is impossible to identify whether this was due to 
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participants focusing on the number of target objects or the number of non-target objects.  
Additionally, if probability estimation relies on number approximation, then the same non-
numerical features which influence performance on number approximation tasks should also 
influence performance on the probability judgment task. Experiment 2 was undertaken in order 
to replicate the main results from Experiment 1 and to extend these findings to account for non-
numerical features that were not previously controlled for. If number approximation abilities 
support probability estimation, then perceived probability should be influenced by the same 
numerical and non-numerical features known to influence perceived numerosity. 
 
2.3  Experiment 2 

In Experiment 2, adult participants recruited online were asked to perform similar probability 
approximation and dot approximation tasks as those reported in Experiment 1. We addressed the 
limitation of Experiment 1 by incorporating three trial types meant to investigate the influence of 
the number-based heuristic, ‘pick the group with the most [target color] marbles’ as well as the 
area-based heuristic, ‘pick the group with the greatest [target color] area’. In addition we 
modified a model of number approximation from the psychophysical literature on perceived 
numerosity to account for numerical and non-numerical stimulus features in probability 
judgments.  
 
2.3.1 Psychophysical Model of number approximation extended to ratio 

Recently, DeWind et al. (2015) proposed a model to account for both numerical and non-
numerical stimulus features in data from a dot discrimination task. By systematically varying the 
size, spacing, and number of dots, and recording participants' numerosity judgments, DeWind 
and colleagues were able calculate a participant’s ‘bias’ for both the size of individual and 
collective objects as well as the sparsity of the visual array as measured by the ratio of the 
number of objects to the field area containing all of the objects of the visual array. In the current 
paper, we adapt this model to account for the ratios of the proportions of marbles presented in 
each image in order to assess the psychophysical properties of probability estimation. 

Following the methods outlined in DeWind et al. (2015), coefficients for size (𝛽MINE), 
spacing (𝛽MOGHE) and number (in this case proportion, 𝛽9FJOJFDIJ<) were generated using non-
linear regression, where the participant’s response is regressed over the log of the ratio of 
proportions of marbles, the ratio of the proportions of the sizes of the marbles and the ratio of 
proportions of the sparsity of each array of marbles. Model predictions were generated by 
entering the coefficients into the following equation, 

 

𝑝(𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝐶ℎ𝑜𝑖𝑐𝑒) = (1 − 𝛾)
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where 𝛾 is a guessing parameter, RPnum, RPsize, RPspace refer to the ratios of the proportions 
of marbles, size and spacing of marbles being approximated, 𝛽 coefficients represent the 
'decision weight' induced by the ratio of the proportions (𝛽𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛), placement of marbles 
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on the screen (𝛽𝑠𝑖𝑑𝑒), the ratio of the size of the surface area (𝛽𝑠𝑖𝑧𝑒) and the ratio of the field 
areas of the two arrays (𝛽𝑠𝑝𝑎𝑐𝑒) and 𝑒𝑟𝑓 is the mathematical error function. 

Importantly, this equation is the same as that presented in DeWind et al. (2015) with one 
notable exception. As a model of number approximation, numerical and non-numerical stimulus 
features in the original model were represented as the ratio of the stimulus features of the two 
arrays of dots. In order to model probability estimation, the variables for numerical and non-
numerical stimulus features in the current model (𝑅𝑃9FJOJFDIJ<, 𝑅𝑃MINE, and 𝑅𝑃MOGHE) are 
represented as ratios of proportions of the stimulus features. 
 
2.3.2 Methods 

Participants. Eighty adult participants were recruited online from Amazon’s Mechanical Turk 
via PsiTurk (Gureckis et al., 2016), an open source platform for online behavioral experiments. 
Participants completed an online consent form approved by the [university IRB information 
redacted for blind review]. Since we decided to collect data from an online sample we were 
concerned about dropout rate and inattention thus we doubled our target sample from 
Experiment 1. Seven participants were excluded for not passing practice trials. Practice trials in 
the probability task consisted of one bin containing all red marbles and another bin containing all 
white marbles. In order to be included in the final sample, participants had to choose the bin 
containing the color of marbles that they were instructed to collect on 3 out of the 4 practice 
trials. Ten participants failed to reach inclusion criteria during either the probability task practice 
trials, the dot approximation practice trials or both leaving a final sample of N = 70 (Mean age = 
34.18, SD = 8.83; 42 females). 
 
Materials. As with Experiment 1, images were rendered using Blender 2.72, with some key 
differences. First, the location of each marble was randomly generated for each image. Second, 
three trial types were created for each of the ratios of proportions presented in Table 2 below. 
Total equal trials consisted of groups with the same total number or marbles ranging from 10 to 
40 marbles. Number vs proportion trials presented the same proportions as total equal trials 
except that the number of target marbles in the ‘losing’ distribution was larger than the number 
of target marbles in the ‘winning’ distribution. Finally, area coefficients were applied to the size 
of the marbles in area-anticorrelated trials such that the percentage of the area of the target 
marbles (e.g., red) in the ‘losing’ distribution matched the numerical proportion of the target 
marbles to total marbles in the ‘winning’ distribution. A similar practice was used in Halberda 
and Feigenson (2008) in order to control for the effects of area in number approximation tasks. 
Eight images were created for each ratio of proportions and trial type resulting in a total of 528 
images. Images were divided equally into four conditions based on target color and the order of 
presentation of the images. Each participant was randomly assigned to one of four conditions 
(Red, order 1; Red, order 2; White, order 1; and White, order 2) and viewed 132 images. 
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Table 2.2 Proportions presented in each trial of Experiment 2. 

Proportion group 1 Proportion group 2 Ratio of Proportions 
0.55 0.50 1.10 
0.50 0.45 1.11 
0.45 0.40 1.12 
0.55 0.45 1.22 
0.80 0.60 1.33 
0.80 0.55 1.45 
0.60 0.40 1.50 
0.75 0.50 1.50 
0.95 0.55 1.73 
0.95 0.50 1.90 
0.50 0.25 2.00 
0.40 0.15 2.67 
0.60 0.20 3.00 
0.50 0.15 3.33 
0.80 0.20 4.00 
0.40 0.10 4.00 
0.75 0.15 5.00 
0.95 0.15 6.33 
0.80 0.10 8.00 
0.85 0.10 8.50 
0.90 0.10 9.00 
0.95 0.10 9.50 

Note. Ratios of Proportions are rounded to 2 digits. See the Supplemental Material for a full table 
including the numbers of marbles used in each group for each trial type. 
 
Procedure. After providing informed consent, participants were forwarded to a secure PsiTurk 
server for the experiment. Participants first viewed an instruction screen describing the 
probability judgment task. After reading through the instructions, participants were presented 
with practice trials in order to ensure that they understood the instructions. Following the 
practice trials, participants were presented with 132 semi-randomized test trials in which they 
were able to view the images for 750 ms. As with Experiment 1, test trials were semi-
randomized in order to reduce the possibility of a participant inadvertently learning an incorrect 
choice rule. After each set of 25 test trials, participants were encouraged to take a short break if 
needed. Figure 3 below provides a visual schematic of the procedure including an example of 
each trial type. 
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Figure 2.3 Diagram of the experimental procedure used in Experiment 2. The sample image at 
the top presents an area-anticorrelated trial, the sample image in the middle presents a total equal 
trial and the sample image at the bottom presents a number vs proportion trial. 

Once the participant completed the probability judgment test trials they were informed that 
they would perform a second task which was similar to the first but different in some very 
important ways. Due to the structure of online experiments Panamath was not used as the dot 
approximation task in Experiment 2. A similar task allowing for more experimental control over 
stimuli and timing was used (Odic, 2018). After reading the instructions for the dot 
approximation task, participants were presented with two practice trials meant to ensure that they 
understood the instructions. 
 
2.3.3 Results 

General accuracy. Participants performed significantly above chance in all three trial types 
(total equal: M = 0.88, SD = 0.11; 𝑀 = 0.88, 95% CI [0.85, 0.91], 𝑡(69) = 29.26, 𝑝 < .001; 
number vs proportion: M = 0.69, SD = 0.19; 𝑀 = 0.69, 95% CI [0.64, 0.74], 𝑡(69) = 8.17, 𝑝 <
.001; area-anticorrelated: M = 0.70, SD = 0.18; 𝑀 = 0.70, 95% CI [0.66, 0.75], 𝑡(69) = 9.36, 
𝑝 < .001). 
 
Statistical models. Results of GLMM comparisons revealed that the model with the best fit to 
the data predicted the participant’s response from ratio of proportions, trial type and the 
interaction between ratio of proportions and trial type (𝐴𝐼𝐶89∗;;  =7,774.30). This model 
outperformed the null model (𝐴𝐼𝐶<=>> = 9,087.24; 𝜒@= 1,322.94; df = 5; p < .001) and the models 
predicting performance from the ratio of proportions alone (𝐴𝐼𝐶89 = 8,247.66; 𝜒@= 481.36; df = 
4; p < .001), trial type alone (𝐴𝐼𝐶;; = 8,675.46; 𝜒@= 907.16; df = 3; p < .001), as well as the 
model predicting performance from both ratio of proportions and trial type with no interactions 
(𝐴𝐼𝐶89A;;  = 7,786.80; 𝜒@= 16.50; df = 2; p = .028). 
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Inspection of model coefficients revealed that an increase in the ratio of proportions (𝛽89 = 
0.44; SE = 0.04; 95% CI [0.35, 0.52]) led to an increase in the odds of a correct choice on total 
equal trials (𝛽C<DEFHEOD  = 1.04; SE = 0.14; 95% CI [0.76, 1.33]). The odds of responding with a 
correct choice decreased for both number vs proportion trials (𝛽st9  = -1.43; SE = 0.13; 95% CI 
[-1.70, -1.17]) and area-anticorrelated trials (𝛽uu  = -1.04; SE = 0.13; 95% CI [-1.30, -0.78]) 
relative to total equal trials. The model coefficients for the interaction of ratio of proportions and 
trial type indicated that the effect of ratio of proportions was reduced for area-anticorrelated 
trials (𝛽89∗uu  = -0.13; SE = 0.05; 95% CI [-0.22, -0.03]) relative to total equal trials, but there 
was no effect of ratio of proportions on number vs proportion trials (𝛽89∗st9  = -0.01; SE = 0.05; 
95% CI [-0.11, 0.09]). Linear regression analyses of reaction time data yielded similar results 
(see supplemental material). 
Correlation with number approximation acuity. As in Experiment 1, we find that number 
sense acuity as measured by the dot approximation task was significantly correlated with overall 
performance in the probability task (Pearson's 𝑟 = −.43, 95% CI [−.60, −.22], 𝑡(68) = −3.94, 
𝑝 < .001). Figure 4 displays average performance by ratio of proportions and trial type. 

Psychophysical model of number approximation extended to ratio. Model predictions were 
generated for each trial image presented to participants by entering each participant’s model 
coefficients as well as the values for the stimulus features for each trial image into Equation 1. 
Figure 4 presents the model predictions alongside the data from Experiment 2. Importantly, 
model predictions were significantly positively correlated with response data (𝑟 = .42, 95% CI 
[.41, . 44], 𝑡(9,238) = 44.94, 𝑝 < .001). Results of t-tests revealed that all 𝛽 coefficients were 
significantly greater than 0 (𝛽𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛: 𝑀 = 1.75, 95% CI [1.26, 2.24], 𝑡(69) = 7.12, 𝑝 <
.001; 𝛽𝑠𝑖𝑧𝑒:𝑀 = 0.31, 95% CI [0.04, 0.57], 𝑡(69) = 2.32, 𝑝 = .023; 𝛽𝑠𝑝𝑎𝑐𝑒: 𝑀 = 0.14, 95% 
CI [0.02, 0.26], 𝑡(69) = 2.25, 𝑝 = .028), except for the 𝛽𝑠𝑖𝑑𝑒 coefficient (𝑀 = −0.04, 95% CI 
[−0.18, 0.11], 𝑡(69) = −0.52, 𝑝 = .606). These results provide further evidence that 
probability estimation share similar psychophysical properties as those reported for the 
approximate number sense. Furthermore, the 𝛽𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 coefficient was significantly greater 
than all other model coefficients (𝛽𝑠𝑝𝑎𝑐𝑒: 𝑀c = 1.62, 95% CI [1.07, 2.16], 𝑡(69) = 5.93, 𝑝 <
.001; 𝛽𝑠𝑖𝑧𝑒: 𝑀c = 1.44, 95% CI [0.81, 2.08], 𝑡(69) = 4.54, 𝑝 < .001; 𝛽𝑠𝑖𝑑𝑒: 𝑀c = 1.79, 
95% CI [1.26, 2.32], 𝑡(69) = 6.76, 𝑝 < .001) indicating that although participants' choices 
were influenced by non-numerical stimulus features, they relied most on the numerical 
proportions of the marbles in each group when making their decisions. 



 
 
 

22 

 
Figure 2.4 Model predictions alongside the average proportion of correct responses by ratio of 
proportions in Experiment 2. A) Total equal trials. B) Number vs proportion trials. C) Area-
anticorrelated trials. Error bars indicate bootstrapped 95% Confidence Intervals 

2.3.3 Discussion 

Experiment 2 offers a direct replication and extension of Experiment 1. As in Experiment 1 we 
found that the number of target marbles influences participants’ decisions. Furthermore, 
performance on number vs proportion trials compared to target equal trials suggests that 
participants demonstrated a bias toward groups with greater amounts of target marbles. Results 
from Experiment 2 also revealed that the area of target marbles influenced performance 
suggesting that probability estimation is affected by the same numerical and non-numerical 
stimulus features that influence perceived numerosity. Inspection of model coefficients revealed 
an interaction between ratio of proportions and area-anticorrelated trial types indicating that 
participants made fewer errors on area anticorrelated trials with greater ratios of proportions (i.e. 
greater distance between the two compared proportions). When the probabilities were more 
difficult to discriminate, participants were biased to choose the array with larger target marbles. 
This suggests that although participants were primarily choosing based on proportion, they were 
more biased by the (irrelevant) size of the marbles when the ratio was very difficult to 
discriminate. Furthermore, results of analyses of the coefficients for the psychophysical model 
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suggest that the ratio of proportions had the strongest effect on the participants' decisions, but 
that the size and spacing of the marbles also contributed to their decision. 

Together the results of Experiments 1 and 2 suggest that both number approximation and 
heuristic decision rules play a role in probability estimation based on proportions. In the context 
of previous research on probability approximation abilities of both children and adults (Eckert et 
al., 2018; Fazio et al., 2014; O’Grady & Xu, 2019, O’Grady et al. 2016), as well as the literature 
on probabilistic reasoning based on exact, countable quantities (Alonso & Fernández-Berrocal, 
2003; Denes-Raj & Epstein, 1994; Falk et al., 2012; Kirkpatrick & Epstein, 1992; Pacini & 
Epstein, 1999; Piaget & Inhelder, 1975), the current findings seem to indicate that heuristic 
decision rules such as 'pick the group with the largest number of target outcomes' are quite 
common in probability estimation based on proportion, particularly when task is difficult, in both 
adults and children. However, in Experiments 1 and 2 it is possible that the bias toward choices 
with a greater number of target marbles is the result of the brief presentation time (750ms). 
Although there is theoretically enough time to approximate the different sets of marbles 
presented in the images (Halberda et al., 2006), it is possible that the short presentation time 
caused participants to switch to a faster yet less accurate decision-making strategy. Indeed, 
researchers studying number approximation abilities have found that people make more accurate 
approximations of number when they are provided with greater presentation time (Inglis & 
Gilmore, 2013). In Experiment 3 we address this question by presenting the same images used in 
Experiment 2 during counterbalanced blocks with short (750ms) and long (1500ms) presentation 
times. 

 

2.4  Experiment 3 

In Experiment 3, we attempt to investigate the stability of the use of heuristic rules with respect 
to stimulus presentation time. Participants were recruited online to perform the same task as that 
reported in Experiment 2 except that they played the game twice. If the use of the heuristic 
decision rules ‘pick the group with the most [target color] marbles’ or ‘pick the group with the 
greatest [target color] area’ is related to the short stimulus presentation time used in Experiment 
2, then we should find an interaction between trial type and presentation time in the current 
experiment such that participants rely less on such heuristics when the presentation time is 
longer. 
 
2.4.1 Methods 

Participants. Results from Experiment 2 revealed that only 7 of 80 participants failed the 
practice trials and for this reason we returned to the sample size used in Experiment 1. Forty 
participants were recruited for an online decision-making study via Amazon's Mechanical Turk. 
We excluded the data from 7 participants because they failed to choose correctly on at least 75% 
(6/8) of the practice trials. Our final sample consisted of N = 33 English speaking participants 
(Mean Age = 35.62; SD = 10.65; 13 females). Due to a programming error, age data were not 
collected from half of the participants. 
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Material. We used the same set of images and procedure described in Experiment 2 with one 
critical difference. Each participant performed the entire task twice in two different blocks of 132 
trials. In one block, participants viewed the images for 750 ms following the procedure outlined 
in Experiment 2. In the other block, the same images were presented for 1500 ms, thus doubling 
the time that participants had to approximate the probabilities and make their decision. The order 
in which participants received the blocks was counterbalanced.  
 
2.4.2 Results 

Generalized Linear Mixed Effects Regression Analyses of performance. We used the same 
analytical methods reported in Experiment 2. Comparisons revealed that the model with the best 
fit to the data predicted the binary response variable based on ratio of proportions and trial type 
with no interaction between the two variables (𝐴𝐼𝐶89A;;  =6,248.82). This model outperformed 
the null model (𝐴𝐼𝐶s=>>  =6,918.47; 𝜒@= 675.65; df = 3; p < .001), and the models predicting 
performance from the ratio of proportions alone (𝐴𝐼𝐶89 = 6,459.80; 𝜒@= 214.98; df = 2; p < 
.001), trial type alone (𝐴𝐼𝐶;; = 6,721.24; 𝜒@= 474.42; df = 1; p < .001), as well as the model for 
the interaction between the two variables (𝐴𝐼𝐶89A;;  = 6,250.70; 𝜒@= 2.12; df = 2; p 0.35). 
Analyses of reaction time data yielded similar results (see Supplemental Material). 

Inspection of the model coefficients reveals that participants once again performed above 
chance (𝛽C<DEFHEOD  = 1.62; SE = 0.19; 95% CI [1.25, 1.99, p < .001]) and performance improved 
as the ratio of the proportions increased (𝛽89 = 0.30; SE = 0.02; 95% CI [0.27, 0.33, p < .001]). 
As with Experiment 2, analyses revealed main effects for both number vs proportion (𝛽st9  = -
1.08; SE = 0.09; 95% CI [-1.24, -0.91, p < .001]) and area anticorrelated trial types (𝛽uu  = -
1.06; SE = 0.09; 95% CI [-1.23, -0.89, p < .001]). However, the interaction between ratio of 
proportions and trial type reported in Experiments 1 & 2 was not replicated in the current 
experiment.  
Analyses of presentation time. Analyses of presentation time and block order revealed that the 
model with the best fit to the data predicted the binary response variable based on presentation 
time and block order without an interaction between presentation time and block order 
(𝐴𝐼𝐶9;Awx =6,823.35). This model outperformed then null model (𝐴𝐼𝐶s=>>  =6,918.47; 𝜒@= 
99.11; df = 2; p < .001) as well as the models predicting performance based on presentation time 
(𝐴𝐼𝐶9; =6,874.10; 𝜒@= 52.75; df = 1; p < .001) and block order (𝐴𝐼𝐶wx =6,847.08; 𝜒@= 25.73; df 
= 1; p = .00) alone. Importantly, the model predicting performance based on the interaction 
between presentation time and block order was not a significantly better fit to the data (𝐴𝐼𝐶9;∗wx 
=6,824.82; 𝜒@= 0.53; df = 1; p = .47) thus the simpler model without an interaction is preferred 
to the more complex model since it can explain the same amount of variance with fewer 
parameters. 

Compared to the intercept of the model (𝛽I<DEFHEOD = 1.37; SE = 0.17; 95% CI [1.04, 1.69) 
which represents the odds of a correct response when the short presentation time (750ms) 
occurred in the first block of trials, the longer presentation time (𝛽yz{{|}  = 0.32; SE = 0.06; 95% 
CI [0.20, 0.44) led to greater improvements in performance. Additionally, we find that 
performance was also higher for the trials in the second block compared to trials in the first block 
(𝛽w>JH~@ = 0.46; SE = 0.06; 95% CI [0.34, 0.58). This finding suggests that general familiarity 
with the task improves performance, even in the absence of explicit feedback. 
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Interaction with trial type. In order to investigate strategy use in the current task, we assessed 
whether presentation time influenced the effect of the trial type. Our results revealed that the 
model with the best fit to the data predicted the correct binary response variable based on 
presentation time and trial type (𝐴𝐼𝐶9;A;; =6,675.61). This model outpredicted the null model 
(𝐴𝐼𝐶s=>>  =6,918.47; 𝜒@= 248.85; df = 3; p < .001), as well as the models for presentation time 
alone (𝐴𝐼𝐶9; =6,874.10; 𝜒@= 202.49; df = 2; p < .001) and trial type alone (𝐴𝐼𝐶;; =6,721.24; 
𝜒@= 47.63; df = 1; p < .001). The model for main effects did not outperform the model with an 
interaction between trial type and presentation time (𝐴𝐼𝐶9;∗;;  =6,675.33; 𝜒@= 4.28; df = 2; p 
.12). Since the 𝑃𝑇 + 𝑇𝑇 model has fewer parameters than the 𝑃𝑇 ∗ 𝑇𝑇 model, it is considered 
the superior model as it predicted the same amount of variance with fewer degrees of freedom. 
These results indicate that presentation time did not influence the strategy use because 
performance improved for all three trial types rather than only improving for the number vs 
proportion trials. 

Inspection of the model coefficients (𝛽I<DEFHEOD = 2.27; SE = 0.18; 95% CI [1.93, 2.62, p < 
.001) revealed that the longer presentation time (𝛽yz{{|}  = 0.43; SE = 0.06; 95% CI [0.31, 0.55, 
p < .001) had a positive effect on performance while both number vs proportion trials (𝛽st9  = -
1.01; SE = 0.08; 95% CI [-1.17, -0.85, p < .001) and area anticorrelated trials (𝛽uu  = -1.00; SE = 
0.08; 95% CI [-1.16, -0.84, p < .001) had a negative effect on performance relative to total equal 
trials. Figure 5 presents the average accuracy by ratio of proportions and presentation time for 
total equal trials (A), number vs proportion trials (B), and area anticorrelated trials (C). 
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Figure 2.5 Proportion correct responses by ratio of proportions, presentation time, and trial type. 
Trial type is represented as color with black indicating total equal trials, red indicating number vs 
proportion trials and green indicating area-anticorrelated trials. Solid dots indicate data from the 
long stimulus presentation time while diamonds indicate data from the short presentation time. 
Error bars indicate bootstrapped 95% Confidence Intervals. 
 

2.4.3 Discussion 

In Experiment 3 we replicated the main effect reported in Experiment 2, providing even more 
evidence that the ability to discriminate probability is influenced by the perceived magnitude of 
the proportions being estimated as well as the absolute number of the target outcomes and 
relative size of the enumerated objects. Furthermore, results revealed that participants once again 
performed worse on number vs proportion trials compared to total equal trials suggesting the use 
of heuristic decision biases such as 'pick the group with the greater number of target color 
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marbles'. By manipulating the stimulus presentation time, we also investigated whether 
presentation time influences the use of heuristic strategies. Results of the GLMM comparisons 
revealed that although the longer presentation time resulted in improved accuracy, this effect did 
not interact with trial type, which  suggests that participants used the same decision strategy 
across both presentation times. 

There are two possible explanations for this heuristic in probability estimation. The first is 
that adults employ simple heuristics in a resource-rational way (Griffiths, Lieder, & Goodman, 
2015). That is, when people’s ability to compute probability is constrained by time (i.e. 750 – 
1500 ms), they fall back on simple magnitude information such as area and absolute number. 
However, an alternative explanation is that participants in our specific task believed that they 
would not encounter choices involving groups with different total amounts of marbles. In 
Experiment 4, we provided explicit instructions meant to reduce the use of this incorrect strategy. 
 

2.5  Experiment 4 

In Experiment 4 we presented online participants with the same task used in Experiment 3 except 
that before the first block of trials participants read an additional instruction screen informing 
them that there is always a correct choice and that on some trials the correct choice has more 
[target color] marbles but on other trials the correct choice has fewer [target color] marbles. If 
participants simply did not understand the purpose of the task in Experiment 3 then their 
performance should improve after viewing the instruction screen. 
 
2.5.1 Methods 

Participants. As with Experiment 3, we recruited 40 adult participants online via Amazon's 
Mechanical Turk. Data from 3 participants were excluded because they failed to choose correctly 
on at least 75% (6/8) of the practice trials. Our final sample consisted of N = 37 English speaking 
participants (Mean age = 36.01; SD = 12.02; 12 females). Due to a programming error, age data 
were not collected for the 10 participants reported in Experiment 4, and one participant declined 
to provide age data.  
 
Procedure. We used the same methods as Experiment 3 except that participants viewed an 
additional instruction screen before they performed the 1st block of trials. This additional 
instruction screen presented the following instructional hint: "There is always a correct choice in 
this game. Sometimes the correct choice has more [target color] marbles but at other times the 
correct choice has fewer [target color] marbles compared to the incorrect choice." All 40 
participants received these additional instructions before their first block thus half of the 
participants received these instructions before the block of trials with a short presentation time 
(750 ms) while the other half received the instructions before the block of trials with a long 
presentation time (1500 ms). 
 
 
 



 
 
 

28 

2.5.2 Results 

We first present the results of analyses of data from Experiment 4 in order to ensure that our 
main findings from Experiments 2 & 3 were replicated in the current sample. Next, we combine 
these data with those from Experiment 3 in order to test the effect of instruction on participants' 
choice strategy. 
 
Generalized Linear Mixed Effects Regression Analyses of performance. We used the same 
analytical methods reported in Experiments 2 and 3. Model comparisons for the predicted 
variables of interest revealed that the model with the best fit to the data predicted the binary 
response variable based on ratio or proportions, trial type, and the interaction between the two 
variables (𝐴𝐼𝐶89∗;;  =7,576.28). This model outperformed the null model (𝐴𝐼𝐶s=>> =8,421.34; 
𝜒@= 855.06; df = 5; p < .001), and the models predicting performance from the ratio of 
proportions alone (𝐴𝐼𝐶89 = 7,882.21; 𝜒@= 313.93; df = 4; p < .001), trial type alone (𝐴𝐼𝐶;; = 
8,148.73; 𝜒@= 578.45; df = 3; p < .001) as well as the combined model with trial type and ratio of 
proportions without any interactions (𝐴𝐼𝐶89A;;  = 7,589.33; 𝜒@= 17.05; df = 2; p < .001). 
Analyses of reaction time data yielded similar results (see Supplemental Material). 

Inspection of the model coefficients reveals that participants once again performed above 
chance (𝛽C<DEFHEOD  = 1.32; SE = 0.19; 95% CI [0.96, 1.68, p < .001]) and performance improved 
as the ratio of the proportions increased (𝛽89 = 0.43; SE = 0.04; 95% CI [0.34, 0.51, p < .001]). 
As with Experiment 2, analyses revealed main effects for both number vs proportion (𝛽st9  = -
0.95; SE = 0.13; 95% CI [-1.22, -0.69, p < .001]) and area anticorrelated trial types (𝛽uu  = -
0.59; SE = 0.13; 95% CI [-0.86, -0.33, p < .001]). We also found an interaction between ratio of 
proportions and trial types indicating that the effect of ratio of proportions was slightly decreased 
for both number vs proportion (𝛽89∗st9 = -0.12; SE = 0.05; 95% CI [-0.22, -0.03, p .01]) and 
area anticorrelated (𝛽89∗uu = -0.18; SE = 0.05; 95% CI [-0.28, -0.09, p < .001) trial types 
relative to total equal trials. 

 
Analyses of presentation time and block order.  Analyses revealed the same pattern reported 
in Experiment 3. The model with the best fit to the data predicted the binary response variable 
from presentation time and block order without an interaction between the two variables 
(𝐴𝐼𝐶9;Awx =8,374.78). This model outperformed the null model (𝐴𝐼𝐶s=>>  =8,421.34; 𝜒@= 50.56; 
df = 2; p < .001) as well as the models predicting performance based on presentation time (𝐴𝐼𝐶9; 
=8,385.58; 𝜒@= 12.80; df = 1; p < .001) and block order (𝐴𝐼𝐶wx =8,409.08; 𝜒@= 36.29; df = 1; p 
= .00) alone. Importantly, the model predicting performance based on the interaction between 
presentation time and block order was not a significantly better fit to the data (𝐴𝐼𝐶9;∗wx 
=8,375.99; 𝜒@= 0.79; df = 1; p = .37) as with previous reports the simpler model is preferred to 
the more complex model as it can explain the same amount of variance with fewer parameters. 

Compared to the short (750 ms) presentation time (𝛽I<DEFHEOD  = 1.41; SE = 0.14; 95% CI 
[1.13, 1.69), the longer presentation time (𝛽yz{{|}  = 0.34; SE = 0.06; 95% CI [0.23, 0.45) led to 
greater performance. Additionally, we find performance improved in the second block compared 
to the first block (𝛽w>JH~@ = 0.20; SE = 0.06; 95% CI [0.09, 0.31).  
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Interaction with trial type. In order to investigate strategy use in the current task, we assessed 
whether presentation time influenced the effect of the trial variables reported in previous studies 
and analyses. Our results revealed that the model with the best fit to the data predicted the correct 
binary response variable based on presentation time and trial type (𝐴𝐼𝐶9;A;; =8,111.32). This 
model outpredicted the null model (𝐴𝐼𝐶s=>>  =8,421.34; 𝜒@= 316.03; df = 3; p < .001), as well as 
the models for presentation time alone (𝐴𝐼𝐶9; =8,385.58; 𝜒@= 278.27; df = 2; p < .001) and trial 
type alone (𝐴𝐼𝐶;; =8,148.73; 𝜒@= 39.42; df = 1; p < .001). The model for main effects did not 
outperform the model with an interaction between trial type and presentation time (𝐴𝐼𝐶9;∗;;  
=8,114.14; 𝜒@= 1.18; df = 2; p = .56). Since the 𝑃𝑇 + 𝑇𝑇 model has fewer parameters than the 
𝑃𝑇 ∗ 𝑇𝑇 model, it is considered the superior model as it predicted the same amount of variance 
with fewer degrees of freedom. These results again indicate that presentation time did not 
influence the strategy use because performance improved equally for all three trial types in the 
longer presentation time condition compared to the shorter presentation time condition. 

Inspection of the model coefficients (𝛽I<DEFHEOD = 2.29; SE = 0.15; 95% CI [1.98, 2.59, p 
< .001) revealed that the longer presentation time (𝛽yz{{|}  = 0.36; SE = 0.06; 95% CI [0.24, 
0.47, p < .001) had a positive effect on performance while both number vs proportion trials 
(𝛽st9  = -1.15; SE = 0.08; 95% CI [-1.30, -1.00, p < .001) and area anticorrelated trials (𝛽uu  = -
0.97; SE = 0.08; 95% CI [-1.12, -0.82, p < .001) had a negative effect on performance relative to 
total equal trials. Figure 6 presents the average accuracy by ratio of proportions and presentation 
time for total equal trials (A), number vs proportion trials (B), and area anticorrelated trials (C). 

 
Interaction between trial type and instructions. We combined the data from Experiments 3 & 
4 in order to investigate the effect of instructions on performance. Results of the comparisons of 
models predicting the binary response variable from trial type, instructions, and the interaction 
between instructions and trial type revealed that the model with the best fit predicted the 
response variable from trial type alone (𝐴𝐼𝐶;; =14,865.62). This model outperformed the null 
model (𝐴𝐼𝐶s=>>  =15,336.21; 𝜒@= 316.03; df = 3; p < .001) as well as the model for instructions 
alone (𝐴𝐼𝐶C<}DF=HDIJ<} =15,338.11). Furthermore, the more complex models involving trial type 
and instructions (𝐴𝐼𝐶C<}DF=HDIJ<}A;; =14,867.53; 𝜒@= 0.10; df = 1; p = .76) and the interaction 
between the two variables (𝐴𝐼𝐶C<}DF=HDIJ<}∗;;  =14,868.22; 𝜒@= 3.41; df = 3; p = .33) did not 
outperform the simpler model. Therefore, the data suggest that task instructions did not 
significantly influence participants’ performance. Figure 6 plots the average performance for 
experiments 3 and 4 by trial type. 
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Figure 2.6 Proportion correct responses by ratio of proportions, trial type, and experiment. Trial 
type is represented as color with black indicating total equal trials, red indicating number vs 
proportion trials and green indicating area-anticorrelated trials. Solid dots indicate data from 
Experiment 3 (no instructions) while diamonds indicate data from Experiment 4 (instructions). 
Error bars indicate bootstrapped 95% Confidence Intervals. 
 
2.5.3 Discussion 

Results from Experiment 4 suggest that instructions alone could not reduce the bias toward 
choices with a larger number of target color marbles in the current task. When the combined data 
from Experiments 3 and 4 were analyzed to investigate the effect of instructions and trial type, 
model comparisons revealed that the superior model predict participant responses from trial type 
alone. Therefore, the heuristic of choosing the array with the larger number of target marbles is 
not merely a byproduct of participants’ expectations about the task. 
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2.6 General Discussion 

In four experiments we report several important findings on the mental representation of 
non-symbolic probability. A critical innovation of the current research is that we incorporated 
different trial types in order to tease apart the influence of non-numerical stimulus features and 
heuristic biases in human probability estimation. In Experiment 1 we show that adults can 
accurately make rapid probability estimations based on the proportion of discrete events. 
Furthermore, performance on this task is correlated with the acuity of the participants' number 
sense, indicating that number approximation and probabilistic discrimination rely on related 
numerical processing abilities. In Experiment 2 we replicate and extend these findings to show 
that these estimations are also influenced by the same numerical and non-numerical stimulus 
features that influence perceived numerosity, providing further evidence that the two 
approximation tasks rely on the same analog magnitude processing system. Importantly, in both 
experiments we have shown that human probability estimation is influenced by the perceived 
numerosity of target events (a formally incorrect strategy for estimating probability) rather than 
the actual proportion of target events. In Experiment 3, we show that this decision bias persists 
even when participants are given more time to make their decisions. Furthermore, in Experiment 
4 we show that this bias is also not the result of a failure to understand the task. Together, the 
results of Experiments 3 & 4 suggest that the bias towards selecting groups with a larger number 
of target elements in probability estimations may not represent an incorrect understanding of the 
proportional probability but rather represents a crucial component of the human decision-making 
process: when probabilities are easily discriminated, people can accurately rely on ratio 
processing; but, as indicated by the interaction between ratio of proportions and trial type in 
Experiments 1, 2 & 4, when the magnitude of two probabilities are close together, adults rely on 
heuristic decision rules.  

While previous research has provided evidence of the role of analog magnitude processing 
in probability estimation (Eckert et al., 2018; O’Grady & Xu, 2019), and revealed a correlation 
between number approximation acuity and proportional reasoning in children (Fazio et al. 2014; 
Ruggeri et al. 2018), the current series of experiments marks the first systematic attempt to 
uncover the potential links between the analog representations of numerical magnitude and 
adult’s ability to approximate probabilities. This is important because adults have a more 
sophisticated understanding of the proportional nature of probability as well as more precise 
mental representations of numerical magnitude. We found that participants with better number 
approximation abilities were also more successful at judging non-symbolic proportions. 
Although this finding is correlational, we also find that the same non-numerical stimulus features 
influencing perceived numerosity also influence perceived probability. In addition, we found that 
non-numerical features known to influence perceived numerosity, namely object size and 
spacing, also influence judgements about probability. Analyses of model coefficients from the 
psychophysical model indicated that although participants relied mostly on proportion to make 
their decisions, the model coefficients for size and spacing were significantly greater than 0 
suggesting that these features influenced perceived probability. Together, these findings suggest 
that more precise representations of number can improve the precision of probability 
approximations. 
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Our results also shed light on the ubiquitous nature of heuristic decision rules in human 
probability judgments. In all four experiments we find that although participants’ responses are 
for the most part accurate, they are sometimes influenced by simple heuristics which allow for 
more rapid yet less accurate decision-making. The use of heuristics and biases in human 
decision-making is pervasive and the literature on this topic is vast. While a great deal of classic 
research has focused on the use of heuristics when reasoning about conditional probability 
(Kahneman & Tversky, 1972;  Tvesrky & Kahneman, 1973; Tversky & Kahneman, 1974) more 
recent work has shown that adults also use heuristic decision rules when presented with simple 
probability judgments (Alonso & Fernández-Berrocal, 2003; Denes-Raj & Epstein, 1994; 
Kirkpatrick & Epstein, 1992; Pacini & Epstein, 1999; O’Grady et al. 2016). Developmental 
research suggests that by the time children are 8 years old, they begin to understand the 
proportional nature of simple probability judgments involving small, countable sets of objects 
and by the time they are 10 years old the majority of children no longer use heuristic decision 
rules.(Falk et al. 2012).  Furthermore, when adults are presented with the same simplified 
probability problems involving small numbers of countable sets they do not demonstrate a 
heuristic bias (Chapman, 1975). Importantly, much of the research reporting adults’ use of 
heuristic decision rules involved tasks in which adult participants were not provided with exact 
numerical information (Alonso-Diaz, Piantadosi, Hayden, & Cantlon, 2018; Eckert et al., 2018; 
Fazio et al., 2014; O’Grady et al. 2016) or used probabilities that were difficult to discriminate 
because they were close together or equal in magnitude (Alonso & Fernández-Berrocal, 2003; 
Denes-Raj & Epstein, 1994; Kirkpatrick & Epstein, 1992; Pacini & Epstein, 1999) suggesting 
that adults are capable of accurate probability judgments when they have complete access to 
numerical information. In the current series of studies we report results which converge with 
these previous findings: when probabilities are difficult to discriminate, people use a heuristic 
strategy by choosing the group with the greatest number of target marbles.  

Why are adults capable of making accurate probability judgments when presented with 
simple computations yet they show heuristic biases when presented with large groups of marbles 
presented for a short amount of time? New theoretical approaches to cognitive modeling have 
called for resource-rational analyses of human cognition (Griffiths, Lieder, & Goodman, 2015; 
Lieder & Griffiths, 2019). From this perspective, non-optimal decision making results from the 
rational use of their limited cognitive resources given environmental constraints. Simply put, 
when people are presented with a difficult task with several possible solutions, they select a 
strategy that is reasonably accurate given their finite cognitive resources (Lieder & Griffiths, 
2019).  In accordance with this perspective, recent research on strategy selection suggests that 
children and adults are keenly aware of time-accuracy tradeoffs in problem-solving tasks and 
will switch strategies in accordance with rational principles regarding available cognitive 
resources (Lieder & Griffiths, 2017). With respect to the current series of experiments, a 
resource-rational approach would argue that adults understand the proportional nature of 
probability but when their ability to compute probability is constrained by time (i.e. 750 – 1500 
ms), and limited cognitive resources (i.e. inexact, analog magnitude representations of number) 
they fall back on simple magnitude information such as area and absolute number. 
 Although our results offer novel insights into the human decision-making process with 
regards to perceived probability, there are several limitations of the current experimental design. 
First, the current series of experiments involved purely non-symbolic forms of probability yet 
much of the probabilities humans routinely engage with involve a mix of both symbolic and non-
symbolic formats. Recent research has shown that non-symbolic rational number processing 
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abilities predicts performance on symbolic mathematics measures (Matthews, Lewis & Hubbard, 
2016). Although previous research has investigated rational number processing involving a mix 
of both symbolic fractions and non-symbolic ratios (Matthews & Chesney, 2015), we are not 
aware of any experiments that have incorporated symbolic and non-symbolic representations of 
probability. In order to enhance the ecological validity of the current series of experiments, 
future work may present participants with a combination of both symbolic and non-symbolic 
representations of probability. Such a manipulation may also shed further light on the role of 
number approximation in probability estimation: Do people give more weight to symbolic 
representations of number probability as opposed to approximate representations when 
computing probabilities? Second, the current series of studies required participants to make a 
decision based on a single random draw based on proportion, yet a great deal of probabilistic 
data encountered in the real world involved sequential probabilities. Future work will investigate 
the psychophysical properties of decisions made during both sequential and single event 
probabilities. A third potential limitation of the current study design relates to learning in 
probabilistic contexts. Although some developmental research has studied the influence of 
feedback on children’s choices in 2-alternative forced-choice random draw tasks, we are not 
aware of any studies investigating the role of feedback on adults’ use of heuristic decision rules 
in these tasks. What influence does feedback have on adults’ decisions and can they be trained to 
use more accurate strategies in probabilistic reasoning tasks? 

Results of the current series of experiments converge with previous research demonstrating 
the ratio dependence of probability estimation based proportions (Eckert et al., 2018; Fazio et al., 
2014; Alonso-Diaz, Piantadosi, Hayden, & Cantlon, 2018; O’Grady & Xu, 2019). We extend 
these findings by providing evidence that human adults utilize number approximation and 
heuristic decision rules when making decisions based on probability. Future work will 
investigate a larger range of stimulus presentations times as well as the factors that influence the 
relative weighting of numerical magnitude information and heuristics in order to shed further 
light on human decision-making in probabilistic contexts.  

 

2.7 Appendix 

2.7.1 Additional information for Experiment 1 

This section contains additional information about the methods and results reported in 
Experiment 1. 
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Table 2.A1 Full description of the contents of each image used in Experiment 2.1 

 
 

 

Correct Choice Incorrect Choice

Trial Type

Number of 
target 
marbles

Number of 
Non-target 
marbles

Total 
number of 
marbles Probability

Number of 
target 
marbles

Number of 
Non-target 
marbles

Total 
number of 
marbles Probability

Ration of 
proportions

Total equal 55 45 100 0.55 50 50 100 0.5 1.1
Target equal 50 40 90 0.5556 49 49 98 0.5 1.111
Target equal 59 25 84 0.7024 59 39 98 0.602 1.167
Total equal 70 30 100 0.7 60 40 100 0.6 1.167
Foil 70 30 100 0.7 42 28 70 0.6 1.167
Total equal 55 45 100 0.55 45 55 100 0.45 1.222
Target equal 45 37 81 0.5556 45 54 99 0.455 1.221
Target equal 55 14 69 0.7971 55 37 92 0.598 1.333
Total equal 80 20 100 0.8 60 40 100 0.6 1.333
Foil 80 20 100 0.8 27 18 45 0.6 1.333
Foil 75 25 100 0.75 28 22 50 0.56 1.339
Target equal 53 13 66 0.803 53 43 96 0.552 1.455
Total equal 80 20 100 0.8 55 45 100 0.55 1.455
Total equal 60 40 100 0.6 40 60 100 0.4 1.5
Target equal 40 26 66 0.6061 40 59 99 0.404 1.5
Foil 55 44 99 0.5556 19 35 54 0.352 1.578
Target equal 20 8 28 0.7143 20 28 48 0.417 1.713
Target equal 39 17 56 0.6964 39 59 98 0.398 1.75
Total equal 70 30 100 0.7 40 60 100 0.4 1.75
Total equal 55 45 100 0.55 30 70 100 0.3 1.833
Target equal 30 24 54 0.5556 30 69 99 0.303 1.834
Foil 69 29 98 0.7041 15 27 42 0.357 1.972
Target equal 30 20 50 0.6 30 70 100 0.3 2
Total equal 60 40 100 0.6 30 70 100 0.3 2
Total equal 70 30 100 0.7 30 70 100 0.3 2.333
Target equal 30 12 42 0.7143 29 69 98 0.296 2.413
Total equal 80 20 100 0.8 30 70 100 0.3 2.667
Target equal 29 7 36 0.8056 29 67 96 0.302 2.668
Target equal 24 8 32 0.75 24 72 96 0.25 3
Total equal 75 25 100 0.75 25 75 100 0.25 3
Foil 72 24 96 0.75 7 21 28 0.25 3
Total equal 70 30 100 0.7 20 80 100 0.2 3.5
Target equal 20 5 25 0.8 20 80 100 0.2 4
Total equal 80 20 100 0.8 20 80 100 0.2 4
Foil 80 20 100 0.8 4 16 20 0.2 4
Foil 77 19 96 0.8021 2 10 12 0.167 4.803
Foil 50 50 100 0.5 1 9 10 0.1 5
Foil 69 29 98 0.7041 1 7 8 0.125 5.633
Total equal 90 10 100 0.9 15 85 100 0.15 6
Target equal 15 2 15 1 14 76 90 0.156 6.41
Total equal 80 20 100 0.8 10 90 100 0.1 8
Target equal 10 2 12 0.8333 10 86 96 0.104 8.013
Target equal 9 1 10 0.9 9 81 90 0.1 9
Total equal 90 10 100 0.9 10 90 100 0.1 9
Target equal 5 5 10 0.5 5 95 100 0.05 10
Total equal 50 50 100 0.5 5 95 100 0.05 10
Total equal 55 45 100 0.55 5 95 100 0.05 11
Target equal 5 4 9 0.5556 5 94 99 0.051 10.894
Total equal 70 30 100 0.7 5 95 100 0.05 14
Target equal 5 2 7 0.7143 5 93 98 0.051 14.006
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Reaction time analyses for Experiment 1. Comparisons of linear models for reaction time 
revealed that the model predicting reaction time from ratio of proportions, trial type and the 
interaction of ratio of proportions and trial type (𝐴𝐼𝐶C<DEFGHDIJ<  =23,494.57) outperformed the 
null model (𝐴𝐼𝐶s=>> =23,583.81; 𝜒@= 95.25; df = 3; p < .001), the models predicting reaction 
time from ratio of proportions alone (𝐴𝐼𝐶89 =23,585.22; 𝜒@= 94.65; df = 2; p < .001) and trial 
type alone (𝐴𝐼𝐶;; =23,501.19; 𝜒@= 10.63; df = 2; p < .001) as well as the model predicting 
reaction time from ratios of proportions and trial type without an interaction (𝐴𝐼𝐶89A;;  
=23,503.04; 𝜒@= 10.47; df = 1; p < .01). 

Inspection of the model coefficients (𝛽C<DEFHEOD  = 537.26; SE = 36.08; 95% CI [466.54, 
607.97]). revealed that increasing ratio of proportions led to small increases in reaction time for 
target equal trials (𝛽89 = 13.31; SE = 4.48; 95% CI [4.52, 22.10]) and a decrease for total equal 
trials (𝛽89∗;;  = -8.84; SE = 2.73; 95% CI [-14.19, -3.49]]). Holding ratio of proportions constant, 
total equal trials (𝛽;;  = -54.52; SE = 14.93; 95% CI [-83.77, -25.26]) showed lower reaction 
times compared to target equal trials. 

 
2.7.2 Additional information for Experiment 2 

The following sections provide additional information about the methods and results reported for 
Experiment 2. 
 
Table 2.A2 Full description of the contents of each image used in Experiment 2.2
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Correct Choice Incorrect Choice

Trial Type

Number of 
target 
marbles

Number of 
Non-target 
marbles

Total 
number of 
marbles Probability

Number of 
target 
marbles

Number of 
Non-target 
marbles

Total 
number of 
marbles Probability

Ration of 
proportions

Area anti-correlated 11 9 20 0.55 10 10 20 0.5 1.1
Number vs proportion 11 9 20 0.55 19 19 38 0.5 1.1
Total equal 11 9 20 0.55 10 10 20 0.5 1.1
Area anti-correlated 10 10 20 0.5 9 11 20 0.45 1.11
Number vs proportion 10 10 20 0.5 18 22 40 0.45 1.11
Total equal 10 10 20 0.5 9 11 20 0.45 1.11
Area anti-correlated 18 22 40 0.45 16 24 40 0.4 1.13
Number vs proportion 18 22 40 0.45 24 36 60 0.4 1.13
Total equal 18 22 40 0.45 16 24 40 0.4 1.13
Area anti-correlated 11 9 20 0.55 9 11 20 0.45 1.22
Number vs proportion 11 9 20 0.55 18 22 40 0.45 1.22
Total equal 11 9 20 0.55 9 11 20 0.45 1.22
Area anti-correlated 12 3 15 0.8 9 6 15 0.6 1.33
Number vs proportion 12 3 15 0.8 18 12 30 0.6 1.33
Total equal 12 3 15 0.8 9 6 15 0.6 1.33
Area anti-correlated 16 4 20 0.8 11 9 20 0.55 1.45
Number vs proportion 16 4 20 0.8 22 18 40 0.55 1.45
Total equal 16 4 20 0.8 11 9 20 0.55 1.45
Area anti-correlated 12 8 20 0.6 8 12 20 0.4 1.5
Number vs proportion 12 8 20 0.6 18 27 45 0.4 1.5
Total equal 12 8 20 0.6 8 12 20 0.4 1.5
Area anti-correlated 12 4 16 0.75 8 8 16 0.5 1.5
Number vs proportion 12 4 16 0.75 20 20 40 0.5 1.5
Total equal 12 4 16 0.75 8 8 16 0.5 1.5
Area anti-correlated 19 1 20 0.95 11 9 20 0.55 1.73
Number vs proportion 19 1 20 0.95 11 9 20 0.55 1.73
Total equal 20 1 21 0.95 33 27 60 0.55 1.73
Area anti-correlated 19 1 20 0.95 10 10 20 0.5 1.9
Number vs proportion 19 1 20 0.95 27 27 54 0.5 1.9
Total equal 19 1 20 0.95 10 10 20 0.5 1.9
Area anti-correlated 10 10 20 0.5 5 15 20 0.25 2
Number vs proportion 10 10 20 0.5 18 54 72 0.25 2
Total equal 10 10 20 0.5 5 15 20 0.25 2
Area anti-correlated 8 12 20 0.4 3 17 20 0.15 2.67
Number vs proportion 8 12 20 0.4 15 85 100 0.15 2.67
Total equal 8 12 20 0.4 3 17 20 0.15 2.67
Area anti-correlated 12 8 20 0.6 4 16 20 0.2 3
Number vs proportion 12 8 20 0.6 17 68 85 0.2 3
Total equal 12 8 20 0.6 4 16 20 0.2 3
Area anti-correlated 10 10 20 0.5 3 17 20 0.15 3.33
Number vs proportion 10 10 20 0.5 15 85 100 0.15 3.33
Total equal 10 10 20 0.5 3 17 20 0.15 3.33
Area anti-correlated 12 3 15 0.8 3 12 15 0.2 4
Number vs proportion 12 3 15 0.8 17 68 85 0.2 4
Total equal 12 3 15 0.8 3 12 15 0.2 4
Area anti-correlated 4 6 10 0.4 1 9 10 0.1 4
Number vs proportion 4 6 10 0.4 9 81 90 0.1 4
Total equal 4 6 10 0.4 1 9 10 0.1 4
Area anti-correlated 15 5 20 0.75 3 17 20 0.15 5
Number vs proportion 6 2 8 0.75 12 68 80 0.15 5
Total equal 15 5 20 0.75 3 17 20 0.15 5
Area anti-correlated 19 1 20 0.95 24 135 159 0.15 6.33
Number vs proportion 19 1 20 0.95 3 17 20 0.15 6.33
Total equal 19 1 20 0.95 3 17 20 0.15 6.33
Area anti-correlated 8 2 10 0.8 1 9 10 0.1 8
Number vs proportion 4 1 5 0.8 9 81 90 0.1 8
Total equal 16 4 20 0.8 2 18 20 0.1 8
Area anti-correlated 11 2 13 0.85 16 144 160 0.1 8.5
Number vs proportion 17 3 20 0.85 2 18 20 0.1 8.5
Total equal 17 3 20 0.85 2 18 20 0.1 8.5
Area anti-correlated 9 1 10 0.9 1 9 10 0.1 9
Number vs proportion 9 1 10 0.9 14 126 140 0.1 9
Total equal 18 2 20 0.9 2 18 20 0.1 9
Area anti-correlated 18 1 19 0.95 20 180 200 0.1 9.5
Number vs proportion 19 1 20 0.95 2 18 20 0.1 9.5
Total equal 19 1 20 0.95 2 18 20 0.1 9.5
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Reaction time analyses for Experiment 2. Results of model comparisons for reaction time data 
revealed that the model predicting reaction time from ratio of proportions and trial type without 
the interaction of ratio of proportions and trial type (𝐴𝐼𝐶89A;;  =134,992.82) outperformed the 
null model (𝐴𝐼𝐶s=>> =135,129.10; 𝜒@= 142.28; df = 3; p < .001), the models predicting reaction 
time from ratio of proportions alone (𝐴𝐼𝐶89 =135,054.27; 𝜒@= 65.46; df = 2; p < .001) and trial 
type alone (𝐴𝐼𝐶;; =135,068.97; 𝜒@= 78.16; df = 1; p < .001). The model for main effects did not 
differ significantly from the model with interactions (𝐴𝐼𝐶89∗;;  =135,014.84; 𝜒@= 0; df = 2; p = 
1) which indicates that it is the preferred model as it explains the same amount of variance with 
fewer parameters. 

Inspection of the model coefficients (𝛽C<DEFHEOD  = 424.74; SE = 28.38; 95% CI [369.11, 
480.38]) revealed that an increase in ratio of proportions led to small decreases in reaction time 
(𝛽89 = -6.89; SE = 0.78; 95% CI [-8.41, -5.36]) and that participants were about 40 ms slower on 
both number vs proportion trials (𝛽st9  = 37.26; SE = 5.29; 95% CI [26.89, 47.62]) and area-
anticorrelated trials (𝛽uu  = 37.04; SE = 5.30; 95% CI [26.64, 47.43]) compared to total equal 
trials. 
 
2.7.3 Additional information for Experiment 3 

The following sections provide additional information about the methods and results reported for 
Experiment 3. 

 
Reaction time analyses for Experiment 3. As with Experiments 1 & 2 model comparisons for 
reaction time data revealed that the model predicting reaction time from ratio of proportions and 
trial type without the interaction of ratio of proportions and trial type (𝐴𝐼𝐶89A;;  =107,489.09) 
outperformed the null model (𝐴𝐼𝐶s=>>  =107,514.19; 𝜒@= 31.10; df = 3; p < .001), the models 
predicting reaction time from ratio of proportions alone (𝐴𝐼𝐶89 =107,495.57; 𝜒@= 10.48; df = 2; 
p < .001) and trial type alone (𝐴𝐼𝐶;; =107,507.78; 𝜒@= 20.68; df = 1; p < .001). The model for 
main effects did not differ significantly from the model with interactions (𝐴𝐼𝐶89∗;;  
=107,491.10; 𝜒@= 1.99; df = 2; p = 0.37). 

Inspection of the model coefficients (𝛽C<DEFHEOD  = 442.15; SE = 34.83; 95% CI [373.87, 
510.43]) revealed that an increase in ratio of proportions led to small decreases in reaction time 
(𝛽89 = -3.88; SE = 0.85; 95% CI [-5.56, -2.21]) and that participants were about 15 ms slower on 
both number vs proportion trials (𝛽st9  = 14.16; SE = 5.78; 95% CI [2.83, 25.50]) and area-
anticorrelated trials (𝛽uu  = 17.84; SE = 5.83; 95% CI [6.40, 29.27]) compared to total equal 
trials. 
 
2.7.4 Additional information for Experiment 4 

The following sections provide additional information about the methods and results reported for 
Experiment 4. 
 
Reaction time analyses for Experiment 4. Model comparisons for reaction time data in 
Experiment 4 revealed that the model predicting reaction time from ratio of proportions and trial 
type without the interaction of ratio of proportions and trial type (𝐴𝐼𝐶89A;;  =120,554.12) 
outperformed the null model (𝐴𝐼𝐶s=>>  =120,617.45; 𝜒@= 69.32; df = 3; p < .001), the models 
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predicting reaction time from ratio of proportions alone (𝐴𝐼𝐶89 =120,561.67; 𝜒@= 11.55; df = 2; 
p < .001) and trial type alone (𝐴𝐼𝐶;; =120,610.10; 𝜒@= 57.97; df = 1; p < .001). The model for 
main effects did not differ significantly from the model with interactions (𝐴𝐼𝐶89∗;;  
=120,554.09; 𝜒@= 4.03; df = 2; p = 0.13) which indicates that it is the preferred model as it 
explains the same amount of variance with fewer parameters. 

Inspection of the model coefficients (𝛽C<DEFHEOD  = 406.89; SE = 22.88; 95% CI [362.06, 
451.73]) revealed that an increase in ratio of proportions led to small decreases in reaction time 
(𝛽89 = -5.23; SE = 0.69; 95% CI [-6.57, -3.89]) and that participants were about 8 ms slower on 
number vs proportion trials (𝛽st9  = 8.05; SE = 4.68; 95% CI [-1.12, 17.21]) and 16 ms slower 
on area-anticorrelated trials (𝛽uu  = 15.95; SE = 4.69; 95% CI [6.75, 25.15]) compared to total 
equal trials.  
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Chapter 3 
 

The Development of Non-symbolic 
Probability Judgments in Children 
 
 
3.1 Introduction 

Children experience a great deal of probabilistic data in everyday life, and both 
developmental psychologists and educators have found probabilistic reasoning to be a fertile 
domain for understanding the development of numerical cognition. Throughout development, 
children encounter a wealth of numerical and non-numerical data and must integrate these data to 
make rapid judgments, often based on limited information. Understanding how children leverage 
their intuitive understanding of number and probability to make decisions in a complex world 
can provide insights that are relevant to a broad range of fields from perception and decision 
making to formal mathematics education.  

Probabilistic reasoning refers to a broad range of abilities related to uncertainty such as 
understanding randomness, appropriately analyzing sample spaces, reasoning about correlation, 
and formally quantifying probability (see Bryant and Nunes, 2012, for a thorough and insightful 
discussion). This is a broad literature with numerous unanswered research questions. In this 
paper, we focus primarily on children's estimation of the probability of discrete events and we 
aim to chart the developmental trajectory of these abilities. We begin by briefly reviewing the 
relevant literatures on the development of probabilistic and proportional reasoning abilities as 
well as the approximate number system. We then present the results of two experiments designed 
to investigate the influence of numerical and non-numerical stimulus features on children’s 
probability judgments and to track the development of the ability to reason about probability 
based on proportion.  

For discrete outcomes, probability is computed as a proportion of target outcomes to all 
possible outcomes. While a ratio formally describes a relation between two quantities, a 
proportion is used to assess the equality of two ratios. Although both proportions and ratios can 
be used to compare probabilities of binary outcomes, comparing ratios can be difficult when the 
total number of possible outcomes differs between two options. For example, imagine a child is 
presented with two groups of red and white marbles and asked to choose the group that is most 
likely to yield a red marble from a single random draw. Imagine further that one group has 13 
red marbles and 7 white marbles while the second group has 15 red marbles and 9 white marbles.  
Representing these choices as ratios provides the observer with part:part comparisons, (13:7) and 
(15:9). While adults may be adept at computing odds based on ratios, children have difficulty 
performing these computations and often make their choice based on the group with the larger 
number of target items (in this case, red marbles) rather than on the proportion of red marbles to 
total marbles. Proportions facilitate this comparison by formalizing the relation between the parts 
(subsets of outcomes) and the whole (all possible outcomes). In our example, the two proportions 
would be 13/20 (0.65) and 15/24 (0.625). The first group has a slightly higher chance of yielding 
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a red marble on a single random draw.  Thus, the ability to compute proportions can help 
children accurately judge the equivalence of two probabilities. 

For decades, many studies have used the 2-alternative forced-choice (2AFC) random 
draw task to investigate children’s predictions about single and sequential random draws (Falk, 
Falk, & Levin, 1980; Falk, Yudilevich-Assouline, & Elstein, 2012; Piaget & Inhelder, 1975; 
Siegler, Strauss, & Levin, 1981; Yost, Siegel, & Andrews, 1962). In this task, children are 
typically presented with two groups of multiple objects and asked to select the group with the 
best chance of getting a preferred object. Recently, Falk et al.(2012) conducted a comprehensive 
study of probabilistic decision making strategies using the 2AFC random draw task with 6- to 
12-year-old children. Findings from this study revealed that young children often choose the 
group with the greatest number of target objects regardless of the total number of objects until 
around 8 years of age when children begin to attend to the whole set of possible outcomes rather 
than simply the number of target outcomes. These findings indicate that younger children have 
difficulty reasoning about probability based on proportion: instead of relating a part (a subset of 
outcomes) to the whole (all possible outcomes) for each choice and choosing the group with the 
larger proportion of target outcomes, children merely compare the number of target outcomes in 
each choice and choose the group with more target outcomes.  

Much like the research on probabilistic reasoning, research on proportional reasoning has 
also shown that children’s ability to reason about proportion greatly improves over the school-
age years (Spinillo & Bryant, 1999; Mix, Levine & Huttenlocher 1999; Mohring, Newcombe, 
Levine, & Fricke, 2015; Singer-Freeman & Goswami, 2001).  Many of these studies have 
deployed the proportional match to sample task in which a child is first presented with a 
proportional ‘target’ stimuli then presented with several similar proportions from which they 
should select the item that matches the proportions of the target stimulus. These methods often 
compare children’s choices when they are presented with proportions in a discrete format (i.e. 
discrete units of juice and water) to their choices when presented with the same proportions in a 
continuous format (i.e. portions of juice and water that do not have discrete units).  Using this 
method, researchers have reported a common error in which children choose the item based on 
matching parts rather than matching proportions (Boyer et al., 2008; Boyer & Levine, 2012;). 
This error is similar to the types of incorrect choices made by children in probabilistic reasoning 
studies discussed earlier (Piaget & Inhelder, 1975; Falk et al. 2012). In the proportional 
reasoning literature, research has shown that these errors are most often observed when children 
are presented with stimuli containing discrete, countable parts (Boyer et al., 2008; Boyer & 
Levine, 2012; Boyer & Levine, 2015; Boyer, Levine & Huttenlocher, 2008; Hurst & Cordes, 
2018; Jeong, Levine, & Huttenlocher, 2007). These findings suggest that young children’s 
proportional judgments are influenced by their knowledge of whole numbers (Mix, Levine, & 
Huttenlocher, 1999; Sohpian & Wood, 1997; Sophian, 2000). Based on the findings from the 
proportional reasoning literature, children can make accurate proportional matches when 
presented with proportions in a continuous format but they show a bias toward comparisons of 
parts when they are presented with proportions in a discrete format. In the current paper we seek 
to chart the developmental trajectory of the ability to compute the probability of discrete events 
based on proportion.  

Humans have remarkable abilities for reasoning about numerical magnitude (Feigenson, 
Dehaene, and Spelke, 2004; Dehaene, 1997 / 2011). Our ability to rapidly form accurate 
approximations of numerical magnitude is often referred to as the approximate number system 
(ANS) and can be observed within the first year of life (Dehaene et al., 1998; Izard, Sann, 
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Spelke, & Streri, 2009; Lipton & Spelke, 2003; Wood & Spelke, 2003; Xu & Spelke, 2000; Xu 
2003; Xu, Spelke, & Goddard, 2005). In addition to number discrimination, infants form 
expectations about approximate addition and subtraction (Chiang & Wynn, 2000; McCrink & 
Wynn, 2004) and can even discriminate ratios (McCrink & Wynn, 2007). Furthermore, young 
children's performance in non-symbolic multiplication and division tasks (McCrink & Spelke, 
2010, 2016) suggests that ANS representations play a role in arithmetical reasoning even when 
children have not been formally trained to use algorithms for symbolic multiplication and 
division. 

Decades of research on numerical processing has shown that both humans and non-
human animals are capable of forming abstract representations of number (Dehaene, Dehaene-
Lambertz, & Cohen, 1998; Moyer & Landauer, 1967; Pica, Lemer, Izard, & Dehaene, 2004; 
Whalen, Gallistel, & Gelman, 1999). The rapid and inexact nature of ANS representations 
follows Weber’s Law (Halberda & Feigenson, 2008; Pica et al., 2004; Whalen et al., 1999) and 
thus demonstrates ratio dependence: the ability to discriminate two sets of objects based on 
number depends upon the ratio of the magnitudes of those sets. As a result, an observer’s ability 
to discriminate sets of objects based on numerical magnitude depends on the distance between 
the two numbers along a mental number line.  

The acuity of an individual’s ANS representations can be measured using a 
psychophysical design in which sets of colored dots (i.e. yellow dots vs blue dots) are presented 
to an observer who is asked to identify the set that contains the largest number of dots. 
Importantly, experimenters using this method manipulate the ratios of the two sets of dots and 
the ‘distance effect’ is observed when smaller ratios are more difficult to discriminate than larger 
ratios.  
 The goal of the current series of experiments is to chart the developmental trajectory of 
probabilistic reasoning by measuring the acuity of children’s ability to discriminate probabilities 
based on proportions. We investigate the possibility that children’s judgments about probability 
based on proportion will demonstrate ratio dependence similar to results reported in the ANS 
literature as well as whether their probability judgments are influenced by the same erroneous, 
part:part reasoning reported in the proportional reasoning literature. 

In adults, ANS acuity is correlated with performance on approximate probability 
judgment tasks (O’Grady, Starr, Griffiths, & Xu, submitted). Researchers have reported distance 
effects in ratio magnitude comparison tasks framed as probability judgments for 12-year-old 
children using methods adapted from the psychophysics of number perception (Fazio, Bailey, 
Thompson, & Siegler, 2014) and developmental researchers have also reported distance effects 
in younger children using a sequential probability task (Boyer, 2007). The current study marks 
the first attempt to trace the developmental trajectory of children’s probability approximation 
abilities. 

Previous research on children’s probabilistic reasoning has employed tasks in which 
children are presented with small number of countable sets of objects which may have primed 
them to focus on the absolute number of target objects rather than the relative frequency of target 
objects (e.g., Falk et al. 2012). Based on the findings from the proportional reasoning literature 
we hypothesize that young children are capable of making rapid and accurate approximations of 
probability based on proportions. From this hypothesis, we make three predictions: First, 
children's probabilistic discrimination abilities will demonstrate ratio dependence (i.e. as two 
proportions move further apart on the mental number line, they will become easier to 
discriminate; also known as the distance effect). Second, the ability to discriminate probabilities 
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will improve with age since both proportional reasoning and number approximation acuity 
improves with age. Third, based on previous research on probability judgments and proportional 
reasoning, we predict that probability discrimination will be influenced by the same non-
numerical features known to influence perceived numerosity (e.g., size of the objects). 
Furthermore, we investigate whether children's non-symbolic probability estimates will be 
influenced by the same heuristic decision rules reported in previous research that required 
counting (Falk et al., 2012); that is, whether children sometimes use only the number of target 
objects when estimating probability as opposed to the correct proportion strategy.  

  
3.2 Experiment 1  

3.2.1 Methods 

Participants. Sixty 6- to 7-year-old children were recruited from local public schools and 
museums in the San Francisco Bay area. According to the National Center for Educational 
Statistics, (NCES, 2018), the schools in which we conducted the current series of experiments 
serve children from a range of racial and ethnic backgrounds (School A: 14% Asian, 5% Black, 
11% Latinx, 1% Native Hawaiian, 57% White & 12% Mixed race/ethnicity; School B: 28% 
Asian, 8% Black, 16% Latinx, 38% White & 10% Mixed race/ethnicity). Although we did not 
collect data on socioeconomic status, we conduct our experiments at local museums on free 
admission days in order to recruit families from a range of socioeconomic backgrounds. 
According to data from the United States Census Bureau, the median incomes of the three 
communities in which data were collected are $70,393 per year, $92,670 per year, and $140,640 
per year (U.S. Census Bureau, 2018) indicating that children in the current sample came from 
middle to upper-middle class households. 

A total of twelve children (10 six-year-olds and 2-seven-year-olds) were excluded 
because they did not pass practice trials meant to ensure that participants understood the task. 
The remaining sample of participants consisted of 24 six-year-olds (N = 24; Mean age = 6.28; 
SD =0.30; 19 female) and 24 seven-year-olds (N = 24; Mean age = 7.62; SD =0.36; 20 female). 
Target sample size (N=48) was determined based on previous research with similar tasks (Fazio 
et al., 2014; Halberda et al. 2008) as well as the additional constraint of ensuring that only 
children who passed practice trials were included in the final sample. Since Halberda et al. 
(2008) investigated age related differences in a simple dot approximation task with 16 children in 
each of five age groups and Fazio et al. (2014) collected data for a sample of 53 twelve-year-olds 
in a ratio comparison task but did not seek to investigate age related differences, we decided to 
split the difference and test two age groups with 24 children each. 
 
Material. The images for the task were rendered using Blender 2.72, 3D animation software 
(http://www.blender.org/). Each image contained two groups of red and white marbles divided 
by a black partition. Since the goal of this experiment was to investigated the psychophysical 
properties of probability judgments, we created images with a wide range of proportions. The 
ratio of the proportions presented in each image ranged from 1.1 (55% vs. 50%) and 14 (70% vs. 
5%). Table 1 contains the ratios of the proportions used in Experiment 1. For each ratio of 
proportion, two trial types were created. The total equal trials contained the same total number of 
marbles on each side of the partition, while the target equal trials contained the same number of 
target color marbles on each side with the ‘losing’ group containing more non-target marbles. In 
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total, there were 100 marbles in each group in the total equal trials while target equal trials 
contained one group with 100 marbles matching the ‘losing’ proportion and another group 
containing an equal number of target color marbles and enough non-target color marbles to 
match the ‘winning’ proportion. Importantly, the difference in the total amount of marbles 
created a large contrast between the field areas of the ‘winning’ and ‘losing’ groups. In order to 
reduce the chances that this contrast could cue participants to choose the group with the smallest 
field area we also created an additional set of ‘foil’ trials in which the ‘winning’ group contained 
more marbles and thus a larger field area than the ‘losing’ group. Figure 1 contains a visual 
schematic of the procedure with an example of each trial types as well as an example foil trial 
image. 

 
Table 3.1 Proportion presented in each trial of Experiment 1. 

Proportion group 1 Proportion group 2 Ratio of Proportions 
0.55 0.50 1.10 
0.70 0.60 1.17 
0.55 0.45 1.22 
0.80 0.60 1.33 
0.80 0.55 1.45 
0.60 0.40 1.50 
0.70 0.40 1.75 
0.55 0.30 1.83 
0.60 0.30 2.00 
0.70 0.30 2.33 
0.80 0.30 2.67 
0.75 0.25 3.00 
0.70 0.20 3.50 
0.80 0.20 4.00 
0.90 0.15 6.00 
0.80 0.10 8.00 
0.90 0.10 9.00 
0.50 0.05 10.00 
0.55 0.05 11.00 
0.70 0.05 14.00 

Note. Ratios of Proportions are rounded to 2 decimal points. 
 
 
Procedure. After their parents signed a written consent form approved by the University of 
California Berkeley Committee for the Protection of Human Subjects (CPHS) children were 
asked to provide verbal assent to participate in the study. Children were then seated in front of a 
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MacBook Pro laptop (OSX; Screen resolution 1280 x 800) and were told that they were going to 
play a game in which they would help Big Bird collect marbles. Half of the children were 
instructed to collect red marbles and the other half were asked to collect white marbles. 

An experimenter explained that Big Bird could not see the contents of the bags of 
marbles and that he would take a single marble randomly from the bag that the child chooses. 
The child was then reminded that Big Bird preferred either red or white marbles and that they 
should choose the group which was best for getting a marble of that color. The experimenter then 
told the children that one choice was always better than the other and that some of the trials 
might seem easy while others may be more difficult. Furthermore, if they were uncertain about 
which group to choose, they should try to make their best guess. In order to reduce the influence 
of age related differences in formal understanding of the words ‘probability’ and ‘proportion’, 
the experimenter never explicitly mentioned the words ‘probability’ or ‘proportion’ during the 
instructions. Children were then presented with four practice trials with two groups of marbles, 
one containing all red marbles while the other contained all white marbles. Participants were told 
that the practice trials were intentionally easy and were meant to teach them how the game 
worked. 

Each participant was presented with 40 test trials and 10 foil trials in one of two semi-
randomized orders using the psychophysics toolbox (Brainard, 1997,Pelli (1997); Kleiner, 
Brainard, & Pelli, 2007) written for the MatLab programing language. Since previous research 
using a similar design presented images with fewer objects for 1320ms (Fazio et al., 2014) we 
decided to present the images for 1500ms to allow our younger participants more time. 
Following stimulus presentation, participants saw a screen containing the Big Bird character 
flanked by two bags labeled with a blue ‘1’ and a green ‘2’. Participants were instructed to press 
a key marked by a sticker matching the color of the number on the bag they wanted Big Bird to 
draw a marble from. Intermission videos in the form of a 30 second animation were used to give 
children a break during the game and were presented after the 15th, 30th, and 40th trials. 
Importantly, children did not receive feedback on their choices until the end of the game at 
which point every child saw the same screen containing 40 white or red marbles and was told 
‘Wow, you did really good! Look how many red/white marbles you got!’. The computer 
collected both reaction time and participant choice for each trial. Once the participant completed 
the last trial, they saw a screen containing 40 marbles that matched their target color and were 
told that these were the marbles that they had collected during the game. A visual schematic of 
the procedure is presented in Figure 3.1. 
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Figure 3.1 A visual schematic of the experimental procedure used in experiment 1. The sample 
image at the top presents a total equal trial, the third image from the top presents a sample target 
equal trial, and the image at the very bottom of the figure presents a sample of the foil trials used 
to prevent participants from learning to choose the group with the smaller amount of marbles. 

3.2.2 Results 

Using the binomial exact test we find that performance on foil trials was above chance for 
both 6-year-olds (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.79, 95% CI [0.73, 0.84], 𝑝 < .001) and 7-year-
olds (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.97, 95% CI [0.94, 0.99], 𝑝 < .001) suggesting that children 
did not learn to merely select the smallest group when presented with groups of different sizes. 
Foil trials were excluded from the remainder of analyses. 
 
Reaction time. Reaction time data were cleaned for outliers by excluding reaction times which 
were either greater or less than 3 Median Absolute Deviations (MADs) from each participant’s 
median reaction time. Since the median is relatively insensitive to the effects of outliers 
compared to the mean, this method is thought to be a superior method for identifying outlying 
reaction time data (Leys, Ley, Klein, Bernard, & Licata, 2013). Use of this procedure resulted in 
the exclusion of 198 of the 1920 total trials (10.31%). In order to report the most accurate 
representations of the data, all of analyses reported in this paper were conducted on the dataset in 
which trials in which outlying reaction time were excluded. Exclusion of these data do not 
change the results for any of the following analyses including general accuracy and statistical 
modeling. Results of the same analyses conducted on the complete dataset are reported in the 
Online Supporting Information. Comparisons of performance for all included trials revealed that 
the reaction time for both age groups was significantly faster on the total equal trials (6-year-
olds: M = 1,121.67 ms, SD = 923.22 ms; 7-year-olds: M =642.57 ms, SD = 508.97) compared to 
the target equal trials (6-year-olds: M = 1,366.98ms, SD = 1,163.47; 𝛥𝑀 = 245.31, 95% CI 

1500 ms

1500 msResponse data collected

Response data collected

Example of 1 complete trial
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[−386.98, −103.63], 𝑡(781.47) = −3.40, 𝑝 = .001; 7-year-olds: M = 758.51 ms, SD = 
547.90; 𝛥𝑀 = 115.94, 95% CI [−186.55, −45.33], 𝑡(852.71) = −3.22, 𝑝 = .001).  
 
General accuracy. Children in both age groups performed significantly above chance on both 
total equal (6-year-olds: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.78, 95% CI [0.74, 0.82], 𝑝 < .001; 7-
year-olds: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.91, 95% CI [0.88, 0.93], 𝑝 < .001; binomial exact test) 
and target equal trial types (6-year-olds: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.67, 95% CI [0.62, 0.71], 
𝑝 < .001; 7-year-olds: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.85, 95% CI [0.82, 0.89], 𝑝 < .001; 
binomial exact test). Figure 2 presents the average performance by ratio of proportions and trial 
type for both age groups. 

 
Figure 3.2 Average performance by ratio of proportions and trial type for both 6-year-olds (A) 
and 7-year-olds (B). Error bars indicate bootstrapped 95% confidence intervals. 

Statistical modeling. Generalized Linear Models with Mixed effects (GLMMs) predicted the 
participant’s binary response variable from age, trial type, and ratio of proportions while 
controlling for the random effects of participant identification number. Preliminary analyses 
revealed no effects of gender, color of target marble, and order of presentation. For both nested 
and non-nested models, we use Akaike Information Criterion (AIC) as a method of model 
selection. AICs are presented alongside the results of chi-square tests of model fit for nested 
models. 
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Comparisons of GLMMs revealed that the model with the best fit to the data predicted 
the participant’s response based on trial type, participant age group and the ratio of proportions 
with no interactions (𝐴𝐼𝐶;;Au�A89 =1,459.66). This model outperformed the null model 
(𝐴𝐼𝐶s=>>  =1,491.36; 𝜒@= 37.69; df = 3; p < .001), the models for trial type (𝐴𝐼𝐶;; =1,472.13; 
𝜒@= 16.47; df = 2; p < .001) and ratio of proportions (𝐴𝐼𝐶89 =1,486.34; 𝜒@= 30.67; df = 2; p < 
.001), as well as the models based on trial type and age group (𝐴𝐼𝐶;;Au� =1,463.98; 𝜒@= 6.31; 
df = 1; p = .01) and the interaction of trial type and age group (𝐴𝐼𝐶;;∗u�  =1,465.86). 
Furthermore, the models which accounted for the interaction between age and ratio of 
proportions (𝐴𝐼𝐶;;Au�∗89  =1,461.12; 𝜒@= 0.55; df = 1; p = .46), trial type and ratio of 
proportions (𝐴𝐼𝐶;;∗u�A89  =1,461.37; 𝜒@= 0.29; df = 1; p = .59) and the three-way interaction 
between trial type, age, and ratio of proportions (𝐴𝐼𝐶;;∗u�∗89 =1,466.07; 𝜒@= 1.59; df = 4; p = 
.81) were not significantly different from the model without interactions. Importantly, these 
models have a greater number of parameters yet they yield relatively inconsequential 
improvements in model fits. In this case, the simpler model is preferred because it explains the 
same amount of variance with fewer parameters.  

The preferred model predicts the participant’s binary response based on trial type, age 
group and the ratio of proportions of the presented image (𝛽C<DEFHEOD  = 0.75; SE = 0.26; 95% CI 
[0.24, 1.26]). Inspection of the exponentiated model coefficients revealed that total equal trials 
led to an 85% increase in the odds of obtaining a correct answer (𝛽;;  = 0.62; SE = 0.14; 95% CI 
[0.35, 0.89]). The main effect of age indicated that 7-year-olds performed better than 6-year-olds 
with the odds of a correct response increasing by a factor of 3.25 for 7-year-olds compared to 6-
year-olds (𝛽u�  = 1.18; SE = 0.35; 95% CI [0.49, 1.87]). Lastly, we report a main effect of the 
ratio of proportions with a unit increase in ratio of proportions leading to a 5% increase in the 
odds of a correct response (𝛽89 = 0.05; SE = 0.02; 95% CI [0.01, 0.09]). Analyses of reaction 
times yielded similar results details of which can be viewed in the Online Supporting 
Information. 

 
3.2.3 Discussion 

In Experiment 1, our results showed that 6- and 7-year-old children’s non-symbolic 
probability judgments were predicted by the ratio of proportions (i.e., the distance effect). As the 
ratio of proportions of the two distributions becomes larger, performance improved. These 
findings are consistent with similar studies with adults (O’Grady, Griffiths, & Xu, 2016; 
O’Grady et al., submitted) and older children (Fazio et al., 2014).  Falk et al. (2012) report that 
children’s probabilistic judgments gradually improve with age and that by the age of 8 children 
are capable of using the correct proportional strategy. Results from Experiment 1 support these 
findings. While 7-year-old children performed better than 6-year-old children, both age groups 
performed worse on target equal trials compared to total equal trials, indicating that on some 
trials children may have focused on either the number of target objects or the number of non-
target objects without relating the two quantities. 

Although the results from Experiment 1 provide novel insight into how young children 
approximate and reason about binary probabilities, three important design features limit the 
strength of our findings. First, the images in Experiment 1 consisted of marbles neatly arranged 
into orderly rows and columns which may have helped some children more accurately 
approximate the number of marbles in each group. Second, the use of target equal trials makes it 
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difficult to assess whether participants were focusing on the number of target objects or the 
number of non-target objects. Lastly, all of the marbles in Experiment 1 were the same size yet 
much of the research using dot approximation tasks has indicated that number approximation is 
influenced by non-numerical stimulus features such as size and sparsity (Allik, Tuulmets, & Vos, 
1991; DeWind, Adams, Platt, & Brannon, 2015; Starr, DeWind, & Brannon, 2017). In order to 
address these concerns, we designed new stimuli consisting of (1) smaller numbers of marbles 
randomly positioned on the screen, (2) trials in which the group with a larger proportion of target 
color marbles contained fewer marbles of the target color than the group with the smaller 
proportion of target color marbles (3) trials in which the target marbles in the ‘losing’ 
distributions were larger than the target marbles in the ‘winning’ distribution. Since we expected 
each of these changes to increase the difficulty of the task and performance of the 6-year-olds in 
Experiment 1 was already relatively low, we decided to test older children for Experiment 2. 
 
3.3 Experiment 2 

3.3.1 Methods 

Participants. One hundred and forty-two children between the ages of 7 and 12 were recruited 
from local schools and children's museums from the San Francisco Bay area. Twelve of these 
children were excluded from our analyses: eight children were excluded due to experimenter 
error, three children did not pass the practice trials, and one child’s parent interfered in the study 
by coaching their child to choose the group with a larger proportion of target marbles. As with 
Experiment 1 our target sample size was determined based on previous research (Fazio et al., 
2014). However, since our target age range was much larger (7- to 12-year-olds), data collection 
continued according to a stopping rule requiring a minimum of 40 participants in each of three 
age groups (7- to 8-year-olds, 9- to 10-year-olds, and 11- to 12-year-olds). The final sample 
consisted of forty 7- and 8-year-olds (N = 40; Mean age = 7.96; SD = 0.53; 24 female), fifty 9- 
and 10-year-olds (N = 50; Mean age = 10.04; SD = 0.50; 20 female), and forty 11- and 12-year-
olds (40; Mean age = 11.75; SD = 0.64; 18 female). Data collection was conducted in the same 
schools and communities reported in Experiment 1. 
Material. As mentioned above, the orderly arrangement of marbles in Experiment 1 may have 
helped children approximate the number of marbles in each group. In order to prevent this, the 
location of each marble was randomly generated for each image using Blender 2.72. Due to the 
ceiling levels of performance for high ratios of proportions in Experiment 1 we decided to 
include more trials with lower ratios of proportions, ranging from 1.1 (55% vs. 50%) to 9.5 (95% 
vs. 10%). We also decided to include ratios of two proportions that were both below chance (i.e. 
40% to 15%). Table 2 presents the proportions of marbles in each group alongside the ratios of 
proportions used in Experiment 2. For each ratio of proportions, three trial types were created: 
total equal trials in which each distribution had the same total number of marbles; area-
anticorrelated trials in which the sizes of the marbles were manipulated such that the total area 
covered by the target marbles in the ‘losing’ group was  larger than the total area covered by the 
target marbles in the ‘winning’ group. Importantly, area-anticorrelated trials included groups of 
marbles with an equal total amount of marbles similar to total equal trials. Finally, number vs. 
proportion trials in which the distribution with the lower proportion of target marbles contained a 
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larger number of target marbles. A total of 264 Images were rendered and then divided equally 
into four conditions based on target color and the order of presentation of the images. Each 
participant viewed 66 images presented in one of four conditions (Red, order 1; Red, order 2; 
White, order 1; and White, order 2). Importantly, the order of the images was pseudorandomized 
such that there were no more than 3 consecutive trials in which the 'correct' choice was on the 
same side of the screen. 

 
Table 3.2 Proportions presented in each trial of Experiment 2. 

Proportion group 1 Proportion group 2 Ratio of Proportions 
0.55 0.50 1.10 
0.50 0.45 1.11 
0.45 0.40 1.12 
0.55 0.45 1.22 
0.80 0.60 1.33 
0.80 0.55 1.45 
0.75 0.50 1.50 
0.60 0.40 1.50 
0.95 0.55 1.73 
0.95 0.50 1.90 
0.50 0.25 2.00 
0.40 0.15 2.67 
0.60 0.20 3.00 
0.50 0.15 3.33 
0.80 0.20 4.00 
0.40 0.10 4.00 
0.75 0.15 5.00 
0.95 0.15 6.33 
0.80 0.10 8.00 
0.85 0.10 8.50 
0.90 0.10 9.00 
0.95 0.10 9.50 

Note. Ratios of Proportions are rounded to 2 decimal points. 
 
Procedure. After parental guardians provided written consent for their children to participate in 
the study, children were asked to provide verbal assent and were then seated in front of a 
MacBook Pro laptop (OSX; Screen resolution 1280 x 800). Participants were told that they were 
going to play a game in which they would collect red or white marbles depending on the 
condition to which they were assigned. Children were shown two boxes and told that they would 
see two groups of marbles on two trays on the screen. The group of marbles on the left side of 
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the screen were poured into the box on the left and the group on the right side of the screen were 
poured into the box on the right side of the screen. The boxes would then be shaken up so that 
they could not infer the positions of the marbles based on their locations on the viewing trays. 
They were then asked to select the box that they thought was best for collecting their target color 
marble. After the instructions phase participants played 4 practice trials in order to ensure that 
they understood the game. Once the practice trials were complete, participants were presented 
with 66 semi-randomized test trials in which they were able to view the images for 1500 ms 
before making their selection. As with Experiment 1 short intermission videos were played after 
the 15th, 30th, and 45th trials, children were not given any feedback about their decisions, and 
the experimenter never mentioned the words ‘probability’ or ‘proportion’. Figure 3 provides a 
visual schematic of the procedure. 
 

 
Figure 3.3 Diagram of the experimental procedure used in Experiment 2. The sample image at 
the top presents an area anti-correlated trial, the sample image in the middle presents a total 
equal trial and the sample image at the bottom presents a number vs. proportion trial. 

3.3.2 Results 

Reaction time. The same procedure employed in Experiment 1 for cleaning outlying reaction 
time resulted in the exclusion of 1383 out of 8580 trials (16.12%). As with Experiment 1, 
exclusion of trials with outlying reaction time does not change the reported results. A report of 
the results of the same analyses for the complete dataset for Experiment 2 are included in the 
Online Supporting Information. Of the included trials, reaction times were significantly lower on 
total equal trials (M = 815.29 ms, SD = 466.83) and number vs. proportion trials (M = 819.06 
ms, SD = 441.59) compared to area-anticorrelated trials (M = 888.15 ms, SD = 480.37; total 
equal: 𝛥𝑀 = 72.86, 95% CI [−99.77, −45.95], 𝑡(4,758.99) = −5.31, 𝑝 < .001; number vs. 
proportion: 𝛥𝑀 = 69.09, 95% CI [−95.08, −43.11], 𝑡(4,805.06) = −5.21, 𝑝 < .001). The 
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difference between total equal trials and number vs. proportion trials did not reach significance 
(𝛥𝑀 = 3.77, 95% CI [−29.55, 22.00], 𝑡(4,741.64) = −0.29, 𝑝 = .774). 
 
General accuracy. Results of the binomial exact tests comparing performance against chance 
revealed that children in all three age groups performed significantly above chance on both total 
equal trials (8-year-olds: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.78, 95% CI [0.75, 0.81], 𝑝 < .001; 10-
year-olds: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.87, 95% CI [0.85, 0.89], 𝑝 < .001; 12-year-olds: 
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.91, 95% CI [0.88, 0.93], 𝑝 < .001) and area-anticorrelated trials 
(8-year-olds: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.60, 95% CI [0.57, 0.64], 𝑝 < .001; 10-year-olds: 
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓𝑠	𝑢𝑐𝑐𝑒𝑠𝑠 = 0.69, 95% CI [0.66, 0.72], 𝑝 < .001; 12-year-olds: 
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.61, 95% CI [0.57, 0.64], 𝑝 < .001). Finally, 12-year-old and 10 -
year-old children performed significantly better than chance on number vs. proportion trials (10-
year-olds: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.55, 95% CI [0.52, 0.58], 𝑝 = .003;	12-year-olds: 
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.61, 95% CI [0.57, 0.64], 𝑝 < .001) while 8-year-olds’ 
performance was not significantly different from chance on number vs. proportion trials (8-year-
olds: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 0.46, 95% CI [0.43, 0.50], 𝑝 = .056). Figure 4 presents the 
proportion of correct responses by ratio of proportions, trial type, and age group. 
 
Statistical modeling. As with Experiment 1, we compared Generalized Linear Models with 
Mixed effects (GLMM) and used Akaike Information Criterion (AIC) as our method for model 
selection for non-nested models and chi-square tests for nested models. Results of the model 
comparisons revealed that the model predicting performance from the 3-way interaction between 
trial type, ratio of proportions, and age group (𝐴𝐼𝐶�=>>�JcE>  =7,412.06) outperformed all other 
models including the null model (𝐴𝐼𝐶s=>> =8,503.15; 𝜒@= 1,125.10; df = 17; p < .001), the 
models for trial type (𝐴𝐼𝐶;; =7,887.38; 𝜒@= 505.32; df = 15; p < .001), ratio of proportions 
(𝐴𝐼𝐶89 =8,147.82; 𝜒@= 767.76; df = 16; p < .001) as well as more complex models based on trial 
type and age group (𝐴𝐼𝐶;;Au�  =7,864.39; 𝜒@= 478.33; df = 13; p < .001), trial type and ratio of 
proportions (𝐴𝐼𝐶;;A89 =7,488.82; 𝜒@= 104.77; df = 14; p < .001), the interaction of trial type 
and ratio of proportions (𝐴𝐼𝐶;;∗89Au�  =7,444.83; 𝜒@= 80.47; df = 12; p < .001) and the 
interaction of trial type and age group (𝐴𝐼𝐶;;∗u�A89 =7,444.83; 𝜒@= 68.53; df = 8; p < .001). 
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Figure 3.4 Average performance by the log of ratio of proportions and trial type. A) 8-year-olds. 
B) 10-year-olds. C) 12-year-olds. Error bars indicate bootstrapped 95% Confidence Intervals. 

 

Coefficients in logistic regression indicate the change in log-odds of a correct response 
based on changes in experimental and subject variables. It is easiest to express these changes by 
exponentiating the coefficients to reveal the change in odds and to relate these changes to the 
baseline group: 8-year-olds' responses to total equal images (𝛽C<DEFHEOD  = 0.88). Exponentiated 
model coefficients for main effects of trial type revealed Number vs. proportion trials led to an 
82% reduction in the odds of a correct response (𝛽st9  = -1.73) while area anticorrelated trials 
only lead to a 52% decrease in the odds (𝛽uu  = -0.75). Main effects of age indicated that 
performance improved with each age group (𝛽u�Ey{ = 0.25; 𝛽u�Ey@ = 0.21). Since the ratio of 
proportions is a continuous variable, the associated coefficient revealed that a single incremental 
change in ratio of proportions led to a 15% increase in the odds of a correct response (𝛽89 = 
0.14). The only interaction term to reach significance indicated that the effect of ratio of 
proportions increased for 12-year-olds compared to the younger children (𝛽u�Ey@�89  = 0.14). 
The full set of fixed effect model coefficients are presented in Table 4 in the Online Supporting 
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Information. Analyses of reaction time data from Experiment 2 revealed a similar pattern of 
results, the details of which are available in the Online Supporting Information. 

 
3.3.3 Discussion 

Experiment 2 replicated the main results of Experiment 1 and extended these findings by 
including three trial types (i.e., total equal, number vs. proportion, and area-anticorrelated) and 
three age groups. As in Experiment 1, we found that the performance of children of all three age 
groups was strongly influenced by the ratio of proportions, converging with results from adults 
using a very similar methodology (O’Grady, Griffiths, & Xu, submitted) and those of Fazio et al. 
(2014) with 12-year-old children. By including area-anticorrelated trials, our results revealed that 
children relied on both numerical and non-numerical stimulus features; that is, children made 
more errors when the total area of the target marbles was larger in one distribution even when the 
proportion of target marbles was smaller in that distribution. The model coefficient for area 
anticorrelated trials suggests that children of all ages were influenced by this manipulation, 
indicating that non-numerical stimulus features influence probability judgments. By including 
number vs. proportion trials, our results revealed that children up to 10 often used a formally 
incorrect strategy in estimating proportions and probability; that is, they used the number of 
target marbles in a distribution as a proxy for estimating the proportion of target marbles. The 
only age group that performed above chance level on these trials was the oldest (12-year-olds), 
and their accuracy was far from perfect (only 60%). 

 
3.4 General Discussion 

In two experiments, we provide evidence that 6- to 12-year-old children can make rapid 
and accurate approximations of probability based on proportions. Our findings are consistent 
with the results of other ratio comparison tasks with adults (O’Grady et al., submitted), 12-year-
old children (Fazio et al., 2014) and non-human primates (Drucker, Rossa, & Brannon, 2016). 
More importantly, our results shed new light on the development of proportional and 
probabilistic reasoning. In Experiment 1 we report data demonstrating that 6- and 7-year-olds' 
non-symbolic probability judgments are characterized by ratio dependence and that the acuity of 
these representations improves with age. Experiment 2 replicated these findings and also 
revealed that non-symbolic probability judgments are influenced by the same numerical and non-
numerical stimulus features which influence perceived numerosity such as the size of dots in a 
dot discrimination task. Data from both experiments also suggests that children produced similar 
errors in our non-symbolic probability estimation task compared previous research using the 
2AFC random draw task (Falk et al. 2012) as well as studies on children’s proportional reasoning 
(Boyer, Levine & Huttenlocher, 2008; Hurst & Cordes, 2018). More specifically, children’s 
performance was influenced by the number of target marbles as evidenced by their decreased 
performance on number vs proportion trials relative to total equal trials.  

These findings make three important contributions to the literature on probabilistic 
reasoning, proportional reasoning, and quantitative development in general. First, we provide 
evidence that children’s probability judgments are characterized by ratio dependence and even 
young children can make accurate judgments about the likelihood of future events based on 
proportions. Second, our current experiments represent the first attempt to systematically 
investigate the mental representation and psychophysical properties of non-symbolic probability 
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in the developing human mind. We provide evidence that school-age children’s probability 
estimation is influenced by the size of the objects being approximated.  Third, previous research 
has not charted the developmental trajectory of the mental representation of non-symbolic 
probability.  We provide the first evidence that between 6 and 12, children’s ability to estimate 
probability improves with age, and they gradually adopt the correct proportion strategy although 
they continue to make errors by sometimes employing heuristic decision rules.   

The results of the current experiments provide new insights on the role of proportional 
reasoning in children's probability judgments; they also raise important questions for future 
research.  In the current studies, 9- to 12-year-old children performed above chance in the 
number vs. proportion trials, whereas the 8-year-olds did not.  In contrast, there is some evidence 
suggesting that both infants and non-human primates can use ratio of proportions in estimating 
probability (Denison & Xu, 2014, Rakoczy et al. 2014). In one study, infant participants 
observed an experimenter randomly draw a single lollipop from each of two groups of preferred 
and non-preferred color lollipops (Denison & Xu, 2014). Infants were more likely to approach 
the lollipop drawn from the distribution with a larger proportion of preferred lollipops even when 
the total number of lollipops in both groups varied such that the group with the lower proportion 
actually contained more of the infant's preferred lollipops. It may be the case that ANS acuity 
improves with age, and the current studies used ratios of proportions that were more difficult 
than that of Denison and Xu (2014).  However, in Experiment 2 of Denison and Xu (2014), 
infants performed above chance when presented a ratio of proportions of 4 (80% target objects in 
one distribution vs. 20% target objects in the other distribution).  The current studies included the 
same ratio of proportions yet it is not until about 9 that children succeeded on the number vs. 
proportion trials. One possible explanation for this is that older children’s poor performance on 
these trials may be due to the 'whole number bias' reported in the education literature on rational 
number learning (Ni & Zhou, 2005). In the fraction learning literature, the ‘whole number bias’ 
is observed most often when children choose the larger of two fractions based on the magnitude 
of the components of the fractions (i.e. by choosing the fraction with the larger numerator or 
denominator) rather than selecting the larger fraction based on the relation between numerator 
and denominator. The literature on probability reasoning has investigated this same response bias 
in the context of probability predictions beginning with the seminal work of Piaget & Inhelder 
(1975) and recent work (Falk et al. 2012) has indicated that this type of response bias constitutes 
a strategy that younger children use in 2AFC probability judgment tasks. 

The integrated theory of numerical development (Siegler, 2016; Siegler, Thompson, & 
Schneider, 2011) posits that children come to understand rational numbers through analogy to 
whole numbers and evidence from studies on proportional reasoning suggests that children 
overextend their knowledge of whole numbers when reasoning about proportions presented as 
discretized units rather than continuous quantities (Boyer, Levine, & Huttenlocher, 2008; Mix, 
Huttenlocher, & Levine, 2002). It is possible that an overreliance on whole number knowledge 
led to younger children's incorrect choices on number vs. proportion trials. To explore this 
possibility, we are currently developing a modified version of our probability discrimination task 
for use with much younger, preschool-age children and toddlers. The prediction is that much 
younger children may succeed in using proportions to estimate probability (consistent with the 
findings with infants) whereas older, school-age children may adopt the whole number strategy. 
Indeed, preliminary evidence (O’Grady & Xu, 2018) has shown that school age children 
demonstrate a whole number bias when making probability judgment tasks involving both exact 
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and approximate quantities but this bias can be overridden if the child is provided with enough 
feedback. 

Our experiments also raise new questions about the role of magnitude processing in 
proportional reasoning and probabilistic estimation. The current body of literature suggests two 
possibilities. One is that the Approximate Number System serves as a building block for 
computing probabilities. According to this account, children first approximate the number of 
marbles of each type within each group and then use these approximate representations to 
compute the probabilities. Specifically, probabilities are computed as follows: (number of target 
objects) / (number of target objects + number of non-target objects). A second possibility 
suggests that children bypass discrete number approximations altogether and simply approximate 
ratios using a Ratio Processing System (RPS). Recent research has provided a wealth of evidence 
to suggest that ratio processing is fundamental to human numerical cognition (Matthews & 
Chesney, 2015; Matthews & Lewis, 2017), and thus constitutes a basic building block for 
learning symbolic fractions (Matthews, Lewis, & Hubbard, 2015). While we agree that ratio 
processing is foundational for mathematics learning, it is unclear whether the RPS and the ANS 
are two separable systems. Indeed researchers studying early numerical development have 
recently argued that there exists a general magnitude processing system in the brain, that 
includes estimations of number (integers, proportions, and probability), duration, and spatial 
extent  (Mix, Levine, & Newcombe, 2016; Lourenco, 2016). Thus, we tend to favor the former 
claim that children draw on ANS representations for three reasons. First, it is unclear at the 
moment whether the RPS exists independently of the ANS. Second, in order to calculate the 
probability of a discrete event, decision-makers must represent discrete outcomes. It is possible 
that the RPS may be able to compute proportions of discrete elements and this is exactly the type 
of argument that would support the notion that RPS and ANS are two elements of a more 
generalized magnitude processing system. Indeed, Jacob, Valentin, & Nieder (2012) have 
suggested that the ANS may provide one source of input for the RPS. Third, children’s 
performance on number vs proportion trials in our experiment suggests that number 
approximations may play an important role in their probability judgments. This claim is clearly 
speculative based on the current series of studies, but it provides an important avenue for future 
research and the domain of probabilistic reasoning offers an interesting way to study the 
relationship between the ANS and RPS. 

Lastly, the current studies are also limited in the types of probabilistic reasoning they 
address. Based on the findings in the proportional reasoning literature (Boyer et al., 2008), a 
natural extension of the current work is to investigate whether children rely on the same heuristic 
decision rules we find for discrete probability (i.e. marbles drawn from a container) when 
making judgments about continuous probability (i.e. spinner tasks). Furthermore, the current set 
of experiments focus exclusively on simultaneously presented visual information, thus the role of 
number and ratio approximation in judgments about sequentially presented probability problems, 
similar to the methods reported in Boyer (2007), cannot be addressed by the current findings. 
Future work will investigate whether children and adults rely on ratio processing and integer 
approximation when tracking and computing the probability of sequentially presented stimuli.  

These findings indicate that children can make rapid estimations about the probability of 
discrete outcomes. Furthermore, we have shown that these representations share some common 
features with perceptual systems for processing numerical magnitude. By linking the 
developmental literatures on the approximate number system and probabilistic reasoning we 
have demonstrated children’s intuitive ability to estimate probability is surprisingly accurate. 
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While our results are perhaps most relevant to researchers and educators studying the 
development of numerical cognition and quantitative development, they may also inform 
research from a variety of subfields in developmental psychology, such as the development of 
decision-making strategies and scientific reasoning.  

All methods, analyses, and de-identified data are available on the Open Science 
Framework (https://osf.io/48sgv/). 
 
3.5 Appendix 

3.5.1 Additional information for Experiment 1 

Reaction time analyses for Experiment 1. Reaction time data in Experiments 1 and 2 were 
analyzed using comparisons of Linear regression Models with Mixed effects (LMMs). This 
analytical method is mathematically equivalent to a repeated measures anova and entering 
participant identification number as a random effect allows us to account for repeated measures. 
As with accuracy, model comparisons did not reveal any effect of gender or the order of trial 
presentation. However, a model predicting performance based on the color of the target marbles 
(𝐴𝐼𝐶�J>JF  =27,286.84) outperformed the null model (𝐴𝐼𝐶s=>>  =27,288.98; 𝜒@= 4.14; df = 1; p < 
.04). Analyses of the model coefficients (𝛽C<DEFHEOD  = 774.09; SE = 124.75; 95% CI [529.59, 
1,018.59]) revealed that on average, participants were slower when the color of the target marble 
was white compared to when target color was red (𝛽�J>JF  = 352.64; SE = 124.75; 95% CI [20.32, 
684.95]). It is possible the contrast between the red marbles and the gray background color was a 
contributing factor to this effect. However, since the current experiment was not designed to 
assess the influence of color on number approximation, it is difficult to make any strong 
conclusions about the effect of target marble color. 

Comparisons of LMMs for reaction time data revealed that the model predicting reaction 
time from trial type, age group, ratio of proportions and the interaction between trial type and age 
group was best fit to the data (𝐴𝐼𝐶;;�u�A89  =27,173.51). This model outperformed the null 
model (𝐴𝐼𝐶s=>>  =27,288.98; 𝜒@= 63.51; df = 4; p < .001) as well as the models for trial type 
(𝐴𝐼𝐶;; =27,257.27; 𝜒@= 29.80; df = 3; p < .001), age group (𝐴𝐼𝐶u�  =27,279.89; 𝜒@= 52.42; df = 
3; p < .001), and ratio of proportions (𝐴𝐼𝐶89 =27,279.11; 𝜒@= 51.64; df = 3; p < .001). 
Furthermore, this model outperformed the model predicting reaction time from trial type, age 
group, ratio of proportions and the interaction between age group and ratio of proportions 
(𝐴𝐼𝐶;;Au��89  =27,173.51) as well as the model based on all three variables without any 
interactions (𝐴𝐼𝐶;;Au�A89 =27,236.15; 𝜒@= 4.68; df = 1; p < .03). Importantly, the full model 
which can account for interactions between the three factors was not a better fit to the data even 
though it had more parameters (𝐴𝐼𝐶�=>>�JcE>  =27,237.89; 𝜒@= 4.41; df = 0; p < .00). Model 
coefficients along with standard error are presented in table 1 below. 
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Table 3.A1 Coefficients for fixed effects of best fit model for reaction time data from 
Experiment 3.1 

 
Est. 
Coefficient SE L 95% CI U 95% CI 

Intercept 1,306.52 116.81 1,077.57 1,535.47 
Target equal -247.99 42.90 -332.07 -163.90 
Age 7 -624.12 163.36 -944.31 -303.93 
RP 15.72 4.21 7.47 23.97 
Target equal X Age 
7 

130.69 60.44 12.23 249.15 

Note. All values are rounded to the second decimal. 
 
Analyses for the complete data set in Experiment 1. In this section we report the results of the 
regression analyses without excluding trials based on outlying reaction times. 
 
General accuracy. Performance on foil trials was above chance for both 6-year-olds (𝑀 = 0.79, 
95% CI [0.69, 0.88], 𝑡(23) = 6.25, 𝑝 < .001) and 7-year-olds (𝑀 = 0.97, 95% CI [0.91, 
1.03], 𝑡(23) = 15.94, 𝑝 < .001) suggesting that children did not learn to merely select the 
smallest group when presented with groups of different sizes. Foil trials were excluded from the 
remainder of analyses. Children in both age groups performed significantly above chance on 
both total equal (6-year-olds: 𝑀 = 0.76, 95% CI [0.68, 0.85], 𝑡(23) = 6.42, 𝑝 < .001; 7-year-
olds: 𝑀 = 0.91, 95% CI [0.86, 0.96], 𝑡(23) = 17.87, 𝑝 < .001) and target equal trial types (6-
year-olds: 𝑀 = 0.66, 95% CI [0.58, 0.74], 𝑡(23) = 4.09, 𝑝 < .001; 7-year-olds: 𝑀 = 0.84, 
95% CI [0.78, 0.90], 𝑡(23) = 11.31, 𝑝 < .001).  
 
Statistical modeling. Comparisons of GLMMs revealed that the model with the best fit to the 
data predicted the participant’s response based on trial type, participant age group and the ratio 
of proportions with no interactions (𝐴𝐼𝐶;;Au�A89 =1,725.08). This model outperformed the null 
model (𝐴𝐼𝐶s=>>  =1,768.71; 𝜒@= 49.63; df = 3; p < .001), the models for trial type (𝐴𝐼𝐶;; 
=1,743.38; 𝜒@= 22.30; df = 2; p < .001) and ratio of proportions (𝐴𝐼𝐶89 =1,762.39; 𝜒@= 41.31; df 
= 2; p < .001), as well as the models based on trial type and age group (𝐴𝐼𝐶;;Au�  =1,731.55; 
𝜒@= 8.47; df = 1; p = .00) and the interaction of trial type and age group (𝐴𝐼𝐶;;∗u�  =1,733.36). 
Furthermore, the models which accounted for the interaction between age and ratio of 
proportions (𝐴𝐼𝐶;;Au�∗89  =1,726.61; 𝜒@= 0.47; df = 1; p = .49), trial type and ratio of 
proportions (𝐴𝐼𝐶;;∗u�A89  =1,726.53; 𝜒@= 0.55; df = 1; p = .46) and the three-way interaction 
between trial type, age, and ratio of proportions (𝐴𝐼𝐶;;∗u�∗89 =1,731.73; 𝜒@= 1.35; df = 4; p = 
.85) were not significantly different from the model without interactions. Importantly, these 
models have a greater number of parameters yet they yield relatively inconsequential 
improvements in model fits. In this case, the simpler model is preferred because it explains the 
same amount of variance with fewer parameters. The preferred model predicts the participant’s 
binary response based on trial type, age group and the ratio of proportions of the presented image 
(𝛽C<DEFHEOD  = 0.55; SE = 0.22; 95% CI [0.12, 0.98]). Inspection of the exponentiated model 
coefficients revealed that total equal trials led to an 85% increase in the odds of obtaining a 
correct answer (𝛽;;  = 0.65; SE = 0.12; 95% CI [0.41, 0.90]). The main effect of age indicated 
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that 7-year-olds performed better than 6-year-olds with the odds of a correct response increasing 
by a factor of 3.25 for 7-year-olds compared to 6-year-olds (𝛽u�  = 1.16; SE = 0.29; 95% CI 
[0.58, 1.73]). Lastly, we report a main effect of the ratio of proportions with a unit increase in 
ratio of proportions leading to a 5% increase in the odds of a correct response (𝛽89 = 0.05; SE = 
0.02; 95% CI [0.02, 0.08]). 
 
3.5.2 Additional information for Experiment 2 

Reaction time analyses for Experiment 2. Comparisons of LMMs for reaction time data in 
Experiment 2 revealed that the full model predicting reaction time from trial type, ratio of 
proportions, and age as well as all interactions had the best fit to the data. Table 2 presents the 
results of the model comparisons and table 3 presents the model coefficients 
 
Table 3.A2 Model comparisons for the data from Experiment 3.2 

 Model AIC df Chi-squared 
P-
value 

AIC Full Model 105797.617886164 17   
AIC Null Model 105916.74340409 17 153.125517926004 < .001 
AIC Trial Type (TT) 105858.218836892 15 90.6009507276904 < .001 
AIC Age Group (AG) 105897.720538889 15 130.10265272473 < .001 
AIC Ratio of Proportions 

(RP) 
105888.678789496 16 123.060903331818 < .001 

AIC TT+AG+RP 105811.415410916 8 33.5852298987011 < .001 
AIC TTRPintAG 105815.294960352 10 37.6770741874352 < .001 
AIC TTAGintRP 105815.203116063 8 33.5852298987011 < .001 

Note. All values are rounded to the second decimal. 
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Table 3.A3 Coefficients for fixed effects of the full model for data from Experiment 3.2 

 
Est. 
Coefficient SE 

L 95% 
CI 

U 95% 
CI 

Intercept 898.92 46.50 807.78 990.07 
Number vs Proportion 
(NvP) 

14.96 31.19 -46.17 76.09 

Area Anti-correlated (AA) 58.95 31.16 -2.13 120.04 
Age 10 -162.79 62.05 -284.40 -41.18 
Age 12 -206.00 65.34 -334.07 -77.94 
Ratio of Proportions (RP) 19.97 4.97 10.23 29.71 
NP X Age 10 -19.92 41.72 -101.69 61.86 
AA X Age 10 6.41 41.76 -75.45 88.27 
NvP X Age 12 -18.07 43.70 -103.73 67.60 
AA X Age 12 25.06 43.90 -60.98 111.10 
NP X RP -6.50 6.92 -20.06 7.07 
AA X RP 7.85 6.96 -5.79 21.50 
Age 10 X RP -12.85 6.58 -25.75 0.05 
Age 12 X RP -22.09 6.98 -35.77 -8.42 
NvP X Age 10 X RP 5.25 9.24 -12.86 23.35 
AA X Age 10 X RP -10.86 9.27 -29.02 7.31 
NvP X Age 12 X RP 14.41 9.75 -4.70 33.51 
AA X Age 12 X RP -8.06 9.78 -27.22 11.10 

Note. All values are rounded to the second decimal. 
 
Table 3.A4 Coefficients for fixed effects of the full model for accuracy data of Experiment 3.2 

 Est. Coefficient SE L 95% CI U 95% CI Wald Z p value 
Intercept 0.88 0.19 0.51 1.25 4.70 < .001 
Number vs. Proportion (NvP) -1.73 0.20 -2.12 -1.33 -8.63 < .001 
Area Anti-correlated (AA) -0.75 0.20 -1.14 -0.37 -3.81 < .001 
Age 10 0.25 0.27 -0.28 0.79 0.92 .36 
Age 12 0.21 0.35 -0.48 0.90 0.58 .56 
Ratio of Proportions (RP) 0.14 0.04 0.06 0.22 3.62 < .001 
NP X Age 10 -0.30 0.29 -0.87 0.28 -1.01 .31 
AA X Age 10 -0.02 0.29 -0.58 0.55 -0.06 .96 
NvP X Age 12 0.02 0.37 -0.70 0.74 0.06 .95 
AA X Age 12 0.33 0.37 -0.40 1.06 0.89 .37 
NP X RP 0.04 0.05 -0.05 0.14 0.89 .37 
AA X RP -0.05 0.05 -0.15 0.04 -1.07 .28 
Age 10 X RP 0.18 0.07 0.04 0.32 2.57 .01 
Age 12 X RP 0.45 0.14 0.18 0.72 3.26 < .001 
NvP X Age 10 X RP -0.04 0.08 -0.20 0.13 -0.43 .67 
AA X Age 10 X RP -0.11 0.08 -0.27 0.05 -1.33 .18 
NvP X Age 12 X RP -0.29 0.15 -0.58 0.00 -1.98 .05 
AA X Age 12 X RP -0.28 0.15 -0.57 0.01 -1.88 .06 

Note. All values are rounded to the second decimal. 
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Analyses for the complete data set in Experiment 2 
In this section we report the results of the regression analyses without excluding trials based on 
outlying reaction times. 
 
General accuracy 
Children in all three age groups performed significantly above chance on total equal trials (8-
year-olds: 𝑀 = 0.78, 95% CI [0.72, 0.83], 𝑡(39) = 10.06, 𝑝 < .001; 10-year-olds: 𝑀 = 0.86, 
95% CI [0.82, 0.90], 𝑡(49) = 19.70, 𝑝 < .001; 12-year-olds: 𝑀 = 0.90, 95% CI [0.88, 0.93], 
𝑡(39) = 31.69, 𝑝 < .001). Interestingly, 10 and 12 year olds performed significantly above 
chance on area-anticorrelated trials (10-year-olds: 𝑀 = 0.68, 95% CI [0.60, 0.75], 𝑡(49) =
4.61, 𝑝 < .001; 12-year-olds:𝑀 = 0.78, 95% CI [0.73, 0.84], 𝑡(39) = 10.07, 𝑝 < .001) while 
8-year-olds’ performance did not differ from chance for area-anticorrelated trials (8-year-olds: 
𝑀 = 0.58, 95% CI [0.49, 0.66], 𝑡(39) = 1.84, 𝑝 = .074). Finally, 12-year-old children 
performed significantly better than chance on number vs. proportion trials (12-year-olds: 𝑀 =
0.60, 95% CI [0.51, 0.70], 𝑡(39) = 2.24, 𝑝 = .031) while the two younger age groups 
demonstrated performance at chance levels (8-year-olds: 𝑀 = 0.48, 95% CI [0.40, 0.56], 
𝑡(39) = −0.61, 𝑝 = .545; 10-year-olds: 𝑀 = 0.54, 95% CI [0.47, 0.62], 𝑡(49) = 1.26, 𝑝 =
.212). 
 
Statistical modeling 
Results of the model comparisons for the full set of data revealed that the model predicting 
performance from the 3-way interaction between trial type, ratio of proportions, and age group 
(𝐴𝐼𝐶�=>>�JcE>  =8,951.83) outperformed all other models including the null model (𝐴𝐼𝐶s=>>  
=10,190.73; 𝜒@= 1,272.90; df = 17; p < .001), the models for trial type (𝐴𝐼𝐶;; =9,474.77; 𝜒@= 
552.94; df = 15; p < .001), ratio of proportions (𝐴𝐼𝐶89 =9,786.64; 𝜒@= 866.81; df = 16; p < .001) 
as well as more complex models based on trial type and age group (𝐴𝐼𝐶;;Au�  =9,451.71; 𝜒@= 
525.88; df = 13; p < .001), trial type and ratio of proportions (𝐴𝐼𝐶;;A89 =9,032.36; 𝜒@= 108.53; 
df = 14; p < .001), the interaction of trial type and ratio of proportions (𝐴𝐼𝐶;;∗89Au�  =8,988.75; 
𝜒@= 84.00; df = 12; p < .001) and the interaction of trial type and age group (𝐴𝐼𝐶;;∗u�A89 
=8,988.75; 𝜒@= 66.46; df = 8; p < .001). 

Coefficients of the model for the full set of data were of a similar magnitude and 
direction to the corresponding model based on the data when excluding trials with outlying 
reaction times (𝛽C<DEFHEOD  = 0.89, 𝛽st9  = -1.61, 𝛽uu  = -0.89,	𝛽u�Ey{ = 0.18; 𝛽u�Ey@ = 0.29,	𝛽89 = 
0.14, 𝛽u�Ey@�89  = 0.14). The full set of model coefficients for the complete data set are reported 
in Table 5. 
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Table 3.A5 Coefficients for fixed effects of the full model for the complete dataset from 
Experiment 3.2 

 
Est. 
Coefficient SE 

L 95% 
CI 

U 95% 
CI 

Wald 
Z 

p 
value 

Intercept 0.89 0.17 0.55 1.23 5.13 < .001 
Number vs. Proportion 
(NvP) 

-1.61 0.18 -1.96 -1.25 -8.89 < .001 

Area Anti-correlated (AA) -0.89 0.18 -1.24 -0.54 -4.97 < .001 
Age 10 0.18 0.25 -0.32 0.67 0.70 .49 
Age 12 0.29 0.30 -0.30 0.88 0.96 .33 
Ratio of Proportions (RP) 0.14 0.03 0.07 0.21 4.10 < .001 
NP X Age 10 -0.32 0.26 -0.84 0.19 -1.23 .22 
AA X Age 10 0.11 0.26 -0.40 0.62 0.43 .67 
NvP X Age 12 -0.09 0.31 -0.70 0.52 -0.29 .78 
AA X Age 12 0.39 0.32 -0.23 1.01 1.23 .22 
NP X RP 0.03 0.04 -0.06 0.11 0.67 .50 
AA X RP -0.05 0.04 -0.13 0.04 -1.07 .29 
Age 10 X RP 0.18 0.06 0.06 0.30 2.85 < .001 
Age 12 X RP 0.34 0.10 0.14 0.54 3.39 < .001 
NvP X Age 10 X RP -0.04 0.07 -0.18 0.11 -0.50 .62 
AA X Age 10 X RP -0.12 0.07 -0.26 0.02 -1.63 .10 
NvP X Age 12 X RP -0.21 0.11 -0.42 0.00 -1.95 .05 
AA X Age 12 X RP -0.20 0.11 -0.42 0.02 -1.78 .07 

Note. All values are rounded to the second decimal. 
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Chapter 4 
 

Strategy-specific Feedback Influences 
Children’s Use of Heuristics In 
Probability Judgment Tasks. 
 
 
4.1 Introduction 

The uncertain nature of chance and probability underlies nearly every instance of human 
decision making. Whether we are deciding which career paths to pursue or what to wear to work 
in the morning, our decisions are informed by considering probabilistic data (i.e. job placement 
rates or weather forecasts) as well as our understanding of formal probability. For decades 
researchers have claimed that humans are impoverished reasoners of chance, presenting data that 
suggest even educated adults make poor choices based on probabilistic data (Kahneman, 2011; 
Kahneman & Tversky, 1973; Tversky & Kahneman, 1983).  However, a wealth of recent 
evidence suggests that infants (Denison & Xu, 2014), apes (Rakoczy et al., 2014), capuchin 
monkeys (Tecwyn, Denison, Messer, & Buchsbaum, 2017), and rhesus macaques (De Petrillo & 
Rosati, 2019) are capable of intuitive probabilistic reasoning, suggesting that the human ability 
to accurately reason about uncertainty develops early in ontogeny and phylogeny (see Denison & 
Xu, in press, for a review). What factors influence children’s use of heuristics in probabilistic 
decision making tasks and what are the most effective methods for teaching children to reason 
proportionally? 

In the present paper we intend to investigate the effect of strategy-specific feedback on 
children's use of heuristics when reasoning about the outcome of a future event. The US 
Common Core State Standards recommend introducing children to the formal principles of 
probability theory in school around the age of 12 (Best Practices, 2017), yet research in 
developmental psychology suggests that young children and even infants demonstrate accurate 
intuitions about uncertain outcomes (Denison & Xu, 2014; Falk, Yudilevich-Assouline, & 
Elstein, 2012; O’Grady & Xu, 2018; Teglas, Girotto, Gonzalez, & Bonatti, 2007; Xu & Garcia, 
2008). While many previous studies have sought to observe and explain the features and contexts 
which influence children's decision making, the current series of studies expands on this work to 
identify methods for improving these decision-making abilities by reducing children's reliance on 
inaccurate heuristic decision rules. 
4.1.1 Development of probabilistic reasoning 

Researchers have studied children's probabilistic reasoning for decades using a simple, 2-
alternative forced-choice (2AFC) random draw task in which children are asked to choose 
between two groups of marbles containing varying amounts of different color marbles with the 
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goal of drawing a single marble of a target color. Piaget and Inhelder (1975) first developed the 
random draw task to assess children's ability to use quantity information when making 
probability judgments. Decades of research on the topic have led to methodological and 
procedural refinements (Chapman, 1975; Falk, Falk, & Levin, 1980; Falk et al., 2012; Fischbein, 
Pampu, & Mânzat, 1970; Hoemann & Ross, 1971; Yost, Siegel, & Andrews, 1962). Recently, 
Falk et al. (2012) devised a strategy assessment task involving 24 trials of the random draw task 
in order to study children's use of heuristic decision rules. 

Falk et al. (2012) identified the four most common strategies that children use in the 
random draw task and their data suggest that children transition through the four strategies as 
they learn more about the proportional nature of probability. According to this account, most 
children begin by focusing on one-dimension of the problem such as the amount of target or non-
target events. Children who use these one-dimensional strategies make their decisions by 
choosing either the group with a greater number of target outcomes ('more favorable’) or the 
group with fewer non-target outcomes (‘less unfavorable’). As their learning progresses, they 
begin to integrate the two-dimensions into more complex decision rules which Falk et al. (2012) 
label as two-dimensional strategies such as choosing the group with the greater difference 
between target and non-target marbles (‘greater difference’) as well as the correct proportional 
strategy ('greater proportion', i.e., number of winning beads out of the total of winning and losing 
beads). Results from this study indicate that the use of the 'greater proportion' strategy increases 
with age from 4 to 11 and that about half of the children begin to reliably use the correct 
proportional strategy by 8 years of age. 

 
4.1.2 Research on statistics education 

Although educators and curriculum development professionals from around the world 
have called for the advancement of probability literacy in mathematics education, very little 
attention has been paid to identifying the most effective practices for teaching children about 
chance (Batanero, Chernoff, Engel, Lee, & Sánchez, 2016). A common them in several reviews 
of the probabilistic reasoning and mathematics education literatures is a call for educators 
leverage a student’s intuitive understanding of probability to enhance the learning of formal 
principles (Batanero et al., 2016; Bryant & Nunes, 2012; English & Watson, 2016; Sharma, 
2015). How do children develop these intuitive notions about the outcome of future events and 
how can educators and researchers craft the learning environment in such a way as to loosen 
children's reliance on inaccurate heuristics and scaffold them toward a more accurate 
understanding? 

In an important review of the literature on statistical education, Garfield and Ahlgren 
(1988) report that school-age children have difficulty formulating an intuitive understanding of 
the basics of probability and statistics for several reasons. In their discussion of the factors, 
Garfield and Ahlgren (1988) point to students' difficulty with rational number and proportions, 
the conflict between formal probability concepts and students' real-world experience, as well as 
students' aversion to statistics and probability resulting from learning these concepts at a very 
abstract and formal level. Although there is still a great deal of research needed on all three of 
these issues, previous intervention research has addressed several of these concerns. 

Previous intervention research has attempted to teach children appropriate strategies for 
both calculating and reasoning about probability. Fischbein and Gazit (1984) investigated the 
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influence of computational and conceptual lessons on 10- to 13-year-olds' ability to reason about 
the results of rolling two dice. Children in the intervention group received 12 lessons on formal 
probability concepts as well as the use of computational strategies for solving probability 
problems while children in a control group received their usual mathematics lessons. Results 
revealed that although the intervention group outperformed the control group on computational 
questions (i.e. questions that can be solved by applying a specific algorithm), the two groups of 
students did not differ in performance on conceptual questions (i.e. questions in which children 
needed to generalize a concept to a novel context). Although Fischbein and Gazit (1984) report 
the use of a successful intervention, children in the experimental group may have simply learned 
the computational algorithms needed for solving specific problems without improving their 
conceptual understand of probability. 

Castro (1998) used a didactic approach to teach young high-school students (14-15 year 
olds) the formal properties of probability. In using this method, teachers in the experimental 
group were encouraged to probe children’s intuitive understanding of probability by posing 
probability problems and then asking children to explain their own solutions. Students then 
carried out random experiments to test these ideas and their teachers provided formal 
explanations for experimental results. Next the students worked with teachers to apply the newly 
learned concepts to novel contexts and discuss how they might revise their initial ideas based on 
the results gained throughout the entire learning process. Children in the control group simply 
received the standard lessons on probability from their mathematics curriculum.  Results 
revealed that students in the experimental group outperformed students in the control group on 
both probability reasoning and probability calculation post-tests. Importantly, Castro (1998) 
found that students in the experimental group improved their performance from pre-test scores 
on both conceptual (i.e. problems requiring the generalization of probability concepts) and 
computational post-tests (i.e. problems requiring a specific algorithm to compute an answer). 
Although these findings are exciting, it is important to note that this study included older teens 
who have already gained a great deal of experience with formal probability concepts. Thus, it is 
difficult to confirm whether the conceptual change resulted from the specific teaching method or 
the interaction of instruction and prior knowledge. 

In a more recent study, Nunes, Bryant, Evans, Gottardis, and Terlektsi (2014) 
investigated the influence of additional instruction on 10-year-old children's understanding the 
role of sample space in calculating probability. In the ‘sample space’ intervention condition, 
students received seven, 50-minute lessons in which they learned how to classify sets of 
outcomes and quantify probabilities based on ratios. In a ‘problem solving’ control condition 
children received lessons on mathematical problem solving meant to control for the additional 
cognitive demands face by the children in the ‘sample space’ condition without providing 
information related to the concept of sample space.  For example, children in both the ‘sample 
space’ and ‘problem solving’ conditions were taught how to use tree diagrams but children in the 
‘sample space’ condition used this method to solve problems related to the sample space while 
children in the ‘problem solving’ condition were given problems not related to the concept of 
sample space. Finally, children in a second a control condition received their regularly scheduled 
lessons from their teachers. Children in all three conditions were given a pre-test at the start of 
the study, as well as several post-tests during and after completion of the teaching phase of the 
study in order to measure progress on specific lessons and concepts. Results revealed that the 
‘sample space’ intervention group outperformed both control groups on all post-test measures 
including a delayed post-test presented 2 months after the completion of the experimental 
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lessons. These findings indicate that when children are provided with lessons in which problem 
solving solutions are applied to specific probability concepts, they perform better than children 
who receive traditional mathematics instruction as well as children are taught how to use the 
same methods to solve mathematics problems more generally.   
4.1.3 Prior knowledge and instructional context 

Socio-cultural approaches to cognitive development and education argue that teachers 
and their students can form different assumptions about communicative exchanges which can be 
problematic during instruction if both teacher and learner believe the same mathematical 
function (i.e. calculating probability) is supported by different forms (i.e. absolute number, ratio, 
or proportion). Mathematics educators have long understood the power of identifying and 
leveraging a student’s intuitions and prior conceptual knowledge in scaffolding the learner to a 
more thorough understanding of mathematical concepts. As an example, Saxe, Gearhart, and 
Seltzer (1999) investigated the interaction between children’s prior knowledge of fractions and 
the practices their teachers employed in the mathematics classroom. Children were assessed as 
either having or not having a rudimentary part-whole understanding of fractions while their 
teachers were rated on a scale representing the degree to which their teaching methods aligned 
with reform standards. Importantly, the researchers characterized, 'high alignment' as the degree 
to which a teacher engages with a student's existing mathematical knowledge as well as their 
engagement of conceptual issues during problem solving tasks. Conversely, classrooms that 
focus either on self-discovery or procedural memorization were considered low in alignment 
with reform policies. Findings indicated that high classroom alignment predicted improved 
performance on a post-test and this effect was greater for children without a rudimentary part-
whole understanding of fractions. With low levels of alignment to reform principles, students 
without a rudimentary understanding likely relied on their prior conceptual understanding of 
integers. However, with supportive classroom environments in which teachers seek to identify 
and build upon a student's prior conceptual understanding, children are in a better position to 
construct a thorough and accurate understanding. These findings indicate that the instructional 
context as well as a learner's prior conceptual understanding interact to influence learning 
outcomes. Teachers who are capable of identifying a child's prior conceptual knowledge of 
fractions can construct learning environments that either confirm accurate conceptualization or 
scaffold learners toward a more thorough understanding. 

 
4.1.4 Rationale  

While it is clear that children's strategy use improves with age and education it is unclear 
how this learning process unfolds. In the current series of studies, we investigate whether 
children's use of heuristic decision rules is influenced by feedback. In Experiment 1, we 
investigate the influence of feedback on children's strategy use by first assessing children's 
strategies and then presenting them with a series of 2AFC random draw task trials during which 
children are given feedback. Finally, we present test trials designed to investigate whether 
children changed their strategy. Based on previous research (Falk et al., 2012), we hypothesize 
that young children are capable of learning to use the correct strategy but only when provided 
with examples that do not fit their incorrect understanding (i.e. children must receive feedback 
on trials which conflict with their strategy in order to learn the proportional nature of simple 
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probability). We predict that children can learn to make correct choices in the 2AFC random 
draw task if they are presented with trials that conflict with their strategy. 

 
4.2 Experiment 1 

4.2.1 Methods 

Participants. Fifty-seven children between the ages of 6 and 11 were recruited from museums, 
schools, and homes in the San Francisco Bay area. Data from ten children were excluded from 
this sample: One child decided to stop the game early, three children were coached by their 
parents, and four children were excluded due to equipment malfunction or experimenter error. 
An additional two children were excluded because their average reaction time on the assessment 
phase was lower than 3 seconds and thus did not have enough time to count the marbles as 
instructed. Our final sample consisted of N = 47 children (5 6-year-olds, Mean age = 6.52, SD = 
0.13; 5 7-year-olds, Mean age = 7.50, SD = 0.29; 7 8-year-olds, Mean age = 8.53, SD = 0.25; 17 
9-year-olds, Mean age = 9.50, SD = 0.32; 9 10-year-olds, Mean age = 10.50, SD = 0.29;4 11-
year-olds, Mean age = 11.64, SD = 0.34). 
 
Material. Images depicting two gumball machines and two groups of green and purple marbles 
were rendered using Blender (Version 2.78) 3D animation software. Following Falk et al. 
(2012), each trial image was internally labeled with the trial type designators 'GGGG', 'GGGS', 
'SSSG', and 'SSSS' with each letter representing the dimension of comparison and the letter itself 
relating the correct choice (higher probability of yielding the child's favored color marble) to the 
incorrect choice (lower probability of yielding the child's favored color). For each target color 
(i.e. green or purple), two sets of 24 images were created using the same distributions used by 
Falk et al. (2012) for a total of 96 images. 

Figure 1 presents an example image for each trial type. Note that the correct choice in the 
figure on the top left (labeled 'GGGG') has a greater amount of favored marbles (1st G), a greater 
amount of non-favored marbles (2nd G), a greater total of favored and non-favored marbles (3rd 
G) and a greater difference between favored and non-favored marbles (4th G). In contrast, the 
correct choice for the image on the top right (labeled 'SSSS') has a smaller amount of marbles in 
each of these categories compared to the incorrect choice. Children using a strict 'more favorable' 
strategy would make a correct choice on all 12 'GGGG' and 'GGGS' trials but would choose 
incorrectly on all 12 'SSSS' and 'SSSG' trials. A child using a strict 'less unfavorable' strategy 
would make a correct choice on all 12 'SSSS' and 'SSSG' trials but would choose incorrectly on 
all 12 'GGGG' and 'GGGS' trials. Children using a strict, 'greater difference' would make a 
correct choice on all 12 'GGGG' and 'SSSG' trials but would choose incorrectly on all 12 'SSSS' 
and 'GGGS' trials. Finally, a child using the formally correct proportional strategy would choose 
correctly on all 24 trials. 
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Figure 4.1 Example images for each of the 4 trial types used in Experiment 2. In all 4 images, 
the correct choice for obtaining a purple marble is located on the right side of the image 

Procedure. Experiment 2 consisted of three phases. First, children performed the 'exact-
numerical-value- probability task' in the assessment phase in order to identify the child's 
strategy. The Matlab program recorded the participant's choices and determined the participant's 
strategy score. Children using the 'more favorable' strategy were coded as '1', 'less unfavorable' 
strategy was coded as '2', 'greater difference' strategy was coded as '3' and the correct 
proportional strategy was coded as '4'. 

In the conflict phase, children were semi-randomly assigned to one of two conditions in 
which they were given feedback about their choices. For each group of strategy users, children 
were assigned evenly and pseudo-randomly into 'high conflict' or 'low conflict' conditions 
consisting of 12 trials. We chose this method to ensure that there were an equal number of 
children using each strategy in both high and low conflict conditions. Children were told that in 
this part of the game they will get to see what color marble they get by looking in the tray of the 
gumball machine that they chose. Since there was no effect of target color in either task of 
Experiment 1 we decided that all participants would be asked to collect green marbles. 
Importantly, feedback was given deterministically, meaning that if the child made the 
mathematically correct choice, they receive a green marble and if they chose incorrectly they 
received a purple marble. The set of 12 conflict trials were matched to the strategies children 
used such that if the child used their strategy on every trial they would receive 12 purple marbles 
(instead of the 12 green marbles they were trying to get) and thus children in this condition 
experience higher conflict between the predictions of their strategy and the actual outcomes. In 
contrast, children in the low conflict condition as well as children who used the correct 
proportional strategy during the assessment phase were given 12 trials randomly selected from 
the set of 24 trials. Due to the random trial presentation, some trials in the low conflict condition 
will conflict with their strategy and provide negative feedback while other trials are in agreement 
with their strategy and provided positive feedback. The high conflict condition represents a 
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guided learning scenario in which the teacher (in this case the Matlab program) knows the child's 
level of understanding and provides the type of examples necessary for the child to overcome 
their errors. In contrast, the low conflict condition provides a baseline since the feedback trials 
were chosen randomly. 

Finally, during the test phase, the children were asked to play 4 more trials in which they 
can win prizes depending on how many green marbles they get. Before the beginning of the test 
phase, children are reminded that they should count the number of marbles in all of the groups 
and that they can take as long as they need to make a decision. Children's responses were 
recorded and all participants received 2 prizes to thank them for participating regardless of the 
number of green marbles they collected. In this preliminary task we decided to present children 
with 4 test trials rather than the full set of trials used in the assessment phase in order to keep the 
overall time for the experiment below 20 minutes in length. 

 
4.2.2 Results 

Results from the assessment phase indicated that the majority of children in Experiment 
1 utilized one-dimensional strategies. 27 children (57.45%) used the 'more favorable' strategy, 5 
children (10.64%) used the 'less unfavorable' strategy, 8 children (17.02%) used the 'greater 
difference' strategy, and 7 children (14.89%) used the correct proportional strategy. Figure 2 
presents the proportion of children using each strategy. 

In order to compare children in high and low conflict conditions we calculated the 
average number of correct responses for each child in both the assessment phase and test phase. 
Importantly, children who used the correct proportional strategy were not included in the 
analyses of the conflict and test phases because they could not be assigned to a high conflict 
condition. For the assessment phase, children in the high conflict condition were not 
significantly different from those in the low conflict condition (𝛥𝑀 = 0.03, 95% CI [−0.13, 
0.07], 𝑡(35.50) = −0.62, 𝑝 = .537). However, during the test phase, children in the high 
conflict condition (74% correct) performed significantly better than children in the low conflict 
condition (32% correct; 𝛥𝑀 = −0.42, 95% CI [0.26, 0.58], 𝑡(36.63) = 5.29, 𝑝 < .001). Figure 
3 presents the average performance of children in both conflict conditions. 

 
Figure 4.2 Proportion of children using each strategy by age group. 
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Figure 4.3 Average test trial performance by condition. 

4.2.3 Discussion 

Results from the conflict and test phases indicated that children were able to switch 
strategies after being provided with enough negative feedback using trials which conflicted with 
their strategy suggesting that younger children are capable of using the correct proportional 
strategy if they are provided with enough evidence that their original strategy is not working. 

However, the test phase in Experiment 1 cannot determine whether children actually 
adopted a different strategy or simply learned to 'choose the opposite' of their inaccurate strategy. 
For this reason, we designed Experiment 2 with two important innovations. First, we included a 
full post-test phase consisting of the same 24 trials included in the assessment phase in order to 
compare patterns of performance across the various trial types. Second, we asked children to 
provide verbal reports of their strategy use after each phase of the experiment. If children are 
simply learning to 'pick the opposite', they will have an opposite response pattern in their post-
test data which should be confirmed by verbal reports of using the 'pick the opposite' strategy. 

 
4.3 Experiment 2  

4.3.1 Methods 

Participants. The current experiment was pre-registered 
(http://aspredicted.org/blind.php?x=mp6gc9) with a target sample of 80 children between the 
ages of 7 and 10 (20 children in each age group: 7-year-olds, 8-year-olds, 9-year-olds, and 10-
year-olds), which was determined based on previous research using a similar task (Falk et al., 
2012). Data collection continued from June 2018 to June 2019 in order to prevent overlapping 
between the two age groups. For example, 7-year-olds recruited at the beginning of the study 
would have aged into the 8-year-old group by the conclusion of the study. For this reason, we 
had to stop data collection at N = 72 children (20 7-year-olds, Mean age = 7.43, SD = 0.26; 19 8-
year-olds, Mean age = 8.19, SD = 0.27; 17 9-year-olds, Mean age = 9.13, SD = 0.25; and 16 10-
year-olds, Mean age = 10.11, SD = 0.34). All 72 children participated in the first session and 
eight children declined to participate in the follow-up session 1 week later (2 7-year-olds, 3 8-
year-olds, 2 9-year-olds, and 1 10-year-old). 
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Material. We used the same procedure for creating images as reported in Experiment 1. 

 
Figure 4.4 Two screen shots of a game in progress during the assessment phase. A) Example of 
a counting prompt. B) Example of a choice prompt. 

Procedure. Children were seated approximately 60 cm away from a MacBook Pro laptop (OSX; 
Screen resolution 1280 x 800) and told they would play a game in which they would try to 
collect green or purple marbles from one of two different gumball machines. The task consisted 
of a self-paced game automated using the psychophysics toolbox written for the MatLab 
programming language (Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997). In order 
to maintain an average testing time of 20 minutes to prevent fatigue, the experiment was split 
into 2 testing sessions spaced 1 week apart. Children completed the assessment phase during 
session 1 and then completed the conflict phase and post-test phase during session 2. 

Assessment Phase. During the first testing session, the experimenter explained the task 
and children were prompted to choose their favorite of the two colors, either purple or green. For 
each of the 24 images, the computer presented the image at random along with 4 counting 
prompts, one for each group of marbles (i.e. "How many (green/purple) marbles are on this side 
(left/right)?"). The child responded by pressing the appropriate number key on the keyboard. An 
error message was presented if the child chose the wrong number and the game did not progress 
until the child pressed the correct number key. Counting prompts for each color and side were 
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randomized for each image. Once children completed the counting prompts, they were prompted 
with the question "Which would you pick to get a (green/purple) marble?". Importantly, the 
position of the marbles on the screen were randomized to prevent children from choosing based 
on the positions of their favorite color marble. However, in order to ensure that children did not 
rely on the placement of the marbles on the screen they were told to "Pretend that the marbles 
will go into the machines and that the machines will be shaken up so you don't know what's 
going to come out next." After completing all 24 trials, children were asked to provide a verbal 
report of the strategy. To generate these verbal reports, the experimenter asked, 'Can you tell me 
what helped you make your choices in this game?'. If the children replied 'I don't know' or 
provided an irrelevant answer (i.e. 'I like the purple ones') the experimenter then provided 
appropriate follow-up questions such as 'Some kids who have played this game say that they 
look at the two groups and pick whichever has more [purple] because they like those, but other 
kids say that they pick the one that has the least [green] because that's the one they don't want. 
Did you think about these things or did you pick based on something else?'. 

Following the methods outlined by Falk et al. (2012), the MatLab program discerned 
which strategy the child used based on their performance on each of the four trial types. After 
children completed the assessment phase, the MatLab program calculated point scores for each 
strategy based on the choices that the child made. Whichever strategy had the highest point score 
was deemed to be that child's strategy. Point scores could range from 0 to 24 with 0 indicating no 
strategy-consistent responses and 24 indicating perfect strategy use. Participants using the 'more 
favorable' strategy provided about 21 (M = 21.79; SD = 3.15) out of 24 strategy-consistent 
responses, while those using the 'less unfavorable' strategy provided 16 (M = 15.71; SD = 1.80) 
out of 24 strategy-consistent responses, participants using the 'greater difference' strategy 
provided 20 (M = 20.40; SD = 20.40) out of 24 strategy-consistent responses, and participants 
using the 'greater proportion' strategy provided 19 (M = 20.31; SD = 20.31) out of 24 strategy-
consistent responses. 

Conflict Phase. Children were semi-randomly assigned to one of two different 
conditions ensuring that an equal number of children using each strategy were assigned to both 
conditions. In the half-conflict condition, children viewed all 24 trials, 12 of which conflicted 
with the child's strategy and 12 of which did not conflict. Children in the high-conflict condition 
viewed 24 trials that conflicted with their strategy. 

In the 'high conflict' condition, feedback trials were assigned as follows. Children 
designated as using the 'more favorable' strategy viewed 12 'SSSS' trials and 12 'SSSG' trials. 
Children using the 'less favorable' strategy viewed 12 'GGGG' trials and 12 'GGGS' trials. A 
child using the 'greater difference' strategy viewed 12 'SSSS' trials and 12 'GGGS' trials while 
children using the proportional strategy were simply assigned to the half-conflict condition as 
none of the trials conflicted with their strategy. In all conditions and for all trials, children 
received feedback in the form of either a favored or unfavored color marble returned in the 
dispenser of the machine they chose. Importantly, all feedback was provided deterministically, 
meaning that if a child chose strictly according to their non-proportional strategy in the high-
conflict condition, they would receive 24 unfavored marbles and a child in the half-conflict 
condition would receive 12 favored and 12 unfavored marbles. Children in the half-conflict 
condition received a mix of confirmatory and dis-confirmatory feedback with respect to their 
strategy while children in the high-conflict condition received only dis-confirmatory feedback. 

Post-test Phase. After completing the conflict phase, each child received the same 24 
trials they viewed in the assessment phase one week prior in a randomized order. Importantly, 
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the post-test phase is an immediate post-test because it occurred directly following the conflict 
phase. After completing the post-test phase the experimenter prompted the child to provide a 
verbal report of their strategy similar to that provided after the assessment phase. In addition, the 
experimenter asked a follow-up question, 'Did you change your strategy based on the color of 
marbles you received during the first part of today's game (conflict phase)?'. 

 
Analysis and coding. Children's verbal reports of their strategy use in the assessment phase 
were coded by a research assistant who was blind to the study hypothesis and conditions. The 
same research assistant also coded children's responses to the strategy change follow-up question 
posed after completion of the post-test phase. 

The results of each phase of the experiment are reported separately below along with a 
brief discussion section. For all three phases, analyses consisted of comparisons of Generalized 
Linear Regression Models with Mixed effects (GLMMs) using the lme4 package written for the 
R statistical programming language (Bates, Maechler, Bolker, & Walker, 2015). All models 
predicted the binary response variable while holding participant ID as a random effect. Nested 
models were compared using Chi Squared tests for model fits while non-nested models were 
compared using the Akaike Information Criterion (AIC), a measure of model fit in which models 
with smaller AICs are preferred over models with higher AICs. For all three phases of the 
experiment, modeling results revealed no influence of participant gender, favored color, on 
performance. Model coefficients for GLMMs are reported as log-odds, that is, the log of the odds 
ratio of correct to incorrect responses. 

 
4.3.2 Results 

Assessment Phase Results. In order to investigate the degree to which children explicitly use a 
specific strategy in the current task we calculated inter-rater reliability between the children's 
strategies as derived by the computer based on their performance across the four trial types and 
the strategies inferred by the independent coding of children's verbal responses after the 
assessment phase. Results revealed moderate agreement between the independent coder and the 
children's strategies (Cohen's 𝜅 = 0.56, p < .001). Interestingly, Cohen's 𝜅 values were higher for 
children who used the simple, one-dimensional 'more favorable' and 'less unfavorable' strategies 
(Cohen's 𝜅 = 0.70, p < .001) likely reflecting the difficulty children have when verbally 
expressing more complex two dimensional strategies such as 'greater difference' and 'greater 
proportion'. 

Comparisons of GLMMs revealed that the model with the best fit to the assessment phase 
data was the model predicting performance from strategy alone (𝐴𝐼𝐶MDFGDE��  =2,226.25). This 
model outperformed the null model (𝐴𝐼𝐶<=>> = 2,311.07; 𝜒@= 90.82; df = 3; p < .001), as well as 
the model predicting performance from age (𝐴𝐼𝐶u�E  =2,303.64). More complex models 
predicting performance from age and strategy (𝐴𝐼𝐶MDFGDAu�E  = 2,225.88; 𝜒@= 2.37; df = 1; p = 
.12) and the interaction of age and strategy (𝐴𝐼𝐶MDFGD∗u�E  = 2,227.81; 𝜒@= 6.44; df = 4; p = .17) 
did not perform better than the model for strategy alone. Thus, the simpler model is preferred 
since it can predict the same amount of variance with fewer model parameters. There was no 
effect of trial number indicating that children's performance did not improve with time during the 
assessment phase. 
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Inspection of model coefficients reveals that the log-odds of a correct response increased 
for children using the 'greater difference' (𝛽���� = 0.38; SE = 0.15; 95% CI [0.09, 0.67]), and 
'less unfavorable' strategies (𝛽�� = 0.18; SE = 0.17; 95% CI [-0.15, 0.51]), as well as those using 
formally correct proportional strategy (𝛽��/�A� = 1.65; SE = 0.17; 95% CI [1.31, 1.98]) 
compared to children using the 'more favorable' (𝛽��(C<DEFHEOD) = 4.003�y�; SE = 0.06; 95% CI 
[-0.06, 0.18]). However, only the coefficients for 'greater difference' and 'greater proportion' 
strategies reached statistical significance (Wald test: 'greater difference': p < .01; 'greater 
proportion': p < .001). Figure 2 presents the proportions of children using each strategy by age. 
Note that the two younger age groups (7-year-olds and 8-year-olds) are predominantly relying on 
the 'more favorable' strategy whereas children in the two older age groups (9-year-olds and 10-
year-olds) have a more equal spread across the four different strategies. 

 

 
Figure 4.5 Proportion of children using each strategy by age group. Strategies are designated as 
follows: '> F': 'more favorable'; '< U': less unfavorable'; '> F-U': 'greater difference'; '> F/F+U': 
'greater proportion'. 

Assessment Phase Discussion. Results of the current study converge with those of previous 
reports indicating that children's use of the correct proportional strategy improves with age (Falk 
et al., 2012; O’Grady & Xu, 2019). Importantly, results of the GLMM comparisons revealed an 
effect of strategy on performance indicating that children who attended to the number of both 
favorable and unfavorable marbles in each choice performed better than children who made their 
choices based on one single dimension (i.e. choosing based solely on the number of favorable or 
unfavorable marbles). 
 
Conflict Phase Results. Thirteen children were found to be using the formally correct 
proportional strategy during the assessment phase the previous week. Since there are no trials 
that conflict with this strategy, data from these children were excluded from the conflict phase 
analyses. In addition, the 8 children who did not return for session 2 did not contribute data to 
either the conflict or post-test phases resulting in a sample size of N = 51. Comparisons of 
GLMMs for this subsample revealed that the model with the best fit to the data predicted 
performance from the conflict condition and the trial number as well as the interaction between 
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the two variables (𝐴𝐼𝐶�J<cIDIJ<∗;FIG>  =1,504.84). This model outperformed the null model 
(𝐴𝐼𝐶<=>> = 2,311.07; 𝜒@= 38.75; df = 3; p < .001) as well as the simpler models predicting 
performance from conflict condition (𝐴𝐼𝐶�J<cIDIJ< = 1,532.28; 𝜒@= 31.44; df = 2; p < .001) and 
trial number alone (𝐴𝐼𝐶;FIG>  = 1,528.74; 𝜒@= 27.91; df = 2; p < .001) and the more complex 
model accounting for both the conflict condition and trial number without an interaction 
(𝐴𝐼𝐶�J<cIDIJ<A;FIG>  = 1,523.45; 𝜒@= 20.61; df = 1; p < .001). There were no significant effects of 
the three non-proportional strategies, nor was there an interaction between conflict condition. 

Inspection of the model coefficients revealed that the log-odds of a correct response 
decreased for children in the high-conflict condition (𝛽�I����J<�>IHD = -0.30; SE = 0.35; 95% CI 
[-0.98, 0.38]) compared to children in the half-conflict condition (𝛽�G>���J<�>IHD = 0.31; SE = 
0.24; 95% CI [-0.16, 0.79]), which is not surprising considering that all of the trials in the high-
conflict condition conflicted with the children's strategies whereas only 12 of the 24 trials in the 
half-conflict condition conflicted with the children's strategies. While the model coefficient for 
trial number was slightly negative (𝛽;FIG>  = -0.01; SE = 0.01; 95% CI [-0.03, 0.02]) indicating a 
decrease in the log-odds of a correct response, the interaction between trial number and condition 
revealed that in the high-conflict condition, trial number had a positive effect on the log-odds 
(𝛽;FIG>∗�I����J<�>IHD  = 0.09; SE = 0.02; 95% CI [0.05, 0.12]). The interaction between trial order 
and the high-conflict condition was the only model coefficient to reach statistical significance 
(Wald test: p < .001) indicating that performance improved over time in the high-conflict 
condition suggesting that children in this condition may have learned from feedback on earlier 
trials. 

 
Conflict Phase Discussion. Results revealed that both conflict condition and trial order had an 
effect on performance. Importantly, the interaction between conflict condition and trial number 
produced the greatest positive effect on performance while the coefficient for the high-conflict 
condition alone had a negative effect on performance. This set of results suggests that children in 
the high-conflict condition began by choosing according to their strategy but then switched to 
another strategy after several trials in which they received negative feedback. 
 
Post-Test Phase Results. Of the 13 children who used the correct proportional strategy during 
the assessment phase only one child (a 10-year-old) did not continue to use the correct 
proportional strategy. Interestingly, this child used the 'more favorable' strategy and reported that 
they switched to a simpler strategy because "the game was boring and I wanted to finish it faster" 
suggesting that this child understood the time-accuracy tradeoff among the various potential 
strategies. Table 1 presents the number of children using each strategy in the post-test phase 
('Post-test' column) based on the child's assessment phase strategy ('Assessment' column) and 
condition ('half-conflict' and 'high-conflict' columns). 

Comparisons of GLMMs revealed that the model with the best fit to the data predicted 
post-test phase performance based on the interaction between conflict condition and assessment 
phase strategy (𝐴𝐼𝐶�J<cIDIJ<∗MDFGDE��  =1,613.06). This model outperformed the null model 
(𝐴𝐼𝐶<=>> = 2,311.07; 𝜒@= 24.82; df = 5; p < .001), the models for conflict condition alone 
(𝐴𝐼𝐶�J<cIDIJ<  = 1,623.55; 𝜒@= 18.49; df = 4; p < .001) and assessment phase strategy alone 
(𝐴𝐼𝐶MDFGDE��  = 1,623.70; 𝜒@= 16.64; df = 3; p = .00) as well as the model for conflict condition 
and assessment phase without any interactions (𝐴𝐼𝐶�J<cIDIJ<AMDFGDE��  = 1,617.89; 𝜒@= 8.84; df = 
2; p = .01). 
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Inspection of model coefficients revealed that the only model coefficient to reach 
statistical significance was the interaction between 'greater difference' strategy and the high-
conflict condition which increased the log-odds of a correct response (𝛽������∗�I����J<�>IHD = 
1.32; SE = 0.45; 95% CI [0.45, 2.20]; Wald test: p < 0.01) compared to the children using the 
'more favorable' strategy in the half-conflict condition (𝛽C<DEFHEOD  = -0.02; SE = 0.26; 95% CI [-
0.53, 0.49]). All remaining coefficients did not reach statistical significance. Figure 3 presents 
the proportion of correct responses by conflict condition and assessment phase strategy. 
 
Verbal report data. Analyses of children’s' verbal reports of strategy change after the post-test 
phase revealed that 4 of the 29 children who changed strategies (~13.8%) reported using a 'pick 
the opposite' strategy. For example, when asked 'Did you ever change strategies as a result of the 
marbles that you received during the first part of today's game?' one child whose target color was 
green marbles said, "...if you pick the one with the greatest number of green marbles, it will 
probably give you a purple". Another 4 out of 29 (~13.8%) children claimed to have used the 
same strategy throughout the study even though the computer recorded these children as using a 
different strategy during the post-test phase. Finally, the verbal reports of most of the remaining 
children recorded as changing strategies indicated that they believed they used the correct 
proportional strategy (11 out of 29 or ~37.9%), while only 2 out of 29 (~6.9%) children reported 
using the 'more favorable' strategy, 3 out of 29 (10.3%) children reported using the 'greater 
difference' strategy during the post-test, and 4 out of 29 (~13.8%) children reported using the 
'less unfavorable' strategy. One child recorded as changing strategies indicated that they did not 
know if they changed strategies. 
 
Post-Test Phase Discussion. The interaction between conflict condition and assessment phase 
strategy indicates that children using the 'greater difference' strategy benefited more from the 
high-conflict condition compared to children using the other 2 strategies ('more favorable' and 
'less unfavorable'). Although these findings are promising, there were only three children using 
the 'greater difference' and three children using the 'less unfavorable' assigned to the high-
conflict condition thus more data will be needed to make any firm conclusions. However, it is 
interesting to view the differences between the 'half-conflict' and high-conflict conditions for 
children using the 'more favorable' strategy. Note from Table 1 that only 3 of the 15 children 
using this strategy in the high-conflict condition (20%) continued using their strategy after the 
feedback condition while 9 of the 13 assigned to the half-conflict condition (69.2%) continued to 
use the strategy. 
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Figure 4.6 Proportion of correct responses in the post-test phase by conflict condition and 
assessment phase strategy. Error bars indicate standard deviation. 

4.4 General Discussion 

In Experiments 1 and 2 we find that children in the high conflict conditions were more 
likely to change their decision making strategy when they are provided with consistent feedback 
indicating that their heuristic decision rule is inaccurate.  These findings indicate that children 
can override their reliance on inaccurate heuristic decision rules if they are given enough 
strategy-specific feedback. Importantly, children in all conditions across both experiments 
received negative feedback on their incorrect strategy, however, since children in the low 
conflict condition of Experiment 1 and half conflict of Experiment 2 receive a mix of conflicting 
and non-conflicting trails they receive both positive and negative feedback. While more work is 
needed to uncover the influence of this mixed feedback it is interesting to note that even Piaget 
credited children at this age with the understanding of the uncertain nature of chance (Piaget & 
Inhelder, 1955).  Our data suggest that this prior understanding of uncertainty interferes with 
children’s ability to learn from negative feedback in the low and half conflict conditions. Simply 
put, children in these conditions just shrug off the fact that their strategy did not yield the target 
outcome as mere chance and they see the fact that the receive at least some of their favorite 
marbles as confirmation of this notion. Future work should address this potential interpretation 
by assessing children’s knowledge of uncertain outcomes before providing feedback. 

Children do not enter the classroom as a blank slate, rather they carry with them their 
intuitions and prior knowledge derived from their experience. Modern constructivist theories use 
the language of Bayesian probability to express developmental change as the integration of prior 
beliefs and new data (Fedyk & Xu, 2018; Gopnik & Wellman, 2012; Xu, in press). One of the 
most important responsibilities of a teacher is to identify a learner current knowledge state in 
order to design effective instruction. This approach is critical when teaching probability because 
the inherent uncertainty adds noise to the learning signal. In Experiments 1 and 2 we demonstrate 
that children abandon their probabilistic decision making strategy when given examples that 
conflict with their prior beliefs (high conflict condition) but they tend to stick with their 
inaccurate strategies when provided with a mix of both confirming and disconfirming examples 
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(low conflict). These results indicate that a learner's prior conceptualization of probability 
influences how they respond to feedback. 

While exciting and illuminating, the current series of experiments has some important 
limitations. First, since Experiment 2 employed an immediate post-test, it is unclear whether 
children's responses reflect bona fide conceptual change or a merely temporary shift of attention 
to different stimlulus features. Follow-up research involving a delayed post-test will be needed to 
ensure that children fully incorporated their new understanding of probabilty rather than 
temporarily shifting their decision-making strategy. 

Another important limitation was partially addressed by the full post-test and verbal 
reports recorded in Experiment 2: do children really switch strategies or just learn to 'pick the 
opposite'?. Although the post-test assessment employed in Experiment 1 could not adequately 
identify which strategy children were switching to, the improved post-test assessment and 
qualitative data from children’s' verbal reports in Experiment 2 indicated that children 
understood that their initial strategy was incorrect and that they needed to formulate a different 
decision rule. While the post-test and verbal reports in Experiment 2 were meant to address this 
concern, the quality of children's verbal reports may not give a full and clear picture of the extent 
to which conceptual change has occurred. Future studies will involve a longitudinal design in 
which children and families are invited back into the lab and provided with feedback on their 
post-test strategy. If children are merely using a 'pick the opposite' strategy, then an additional 
round of feedback would cause them to revert back to their original strategy. However, if 
children are truly engaging in conceptual change, these children should begin to use more 
complex, two dimensional strategies such as 'greater difference' and 'greater proportion'. 
Interestingly, these findings would also give weight to Falk et al. (2012)'s claim that children 
traverse the four strategies ('greater favorable', 'less unfavorable', 'greater difference', and 'greater 
proportion') as they learn to attend to more complicated features. 

One interesting question this work leaves open for future research is the performance gap 
between infants and young school-age children. As mentioned previously, infants (Xu & Garcia, 
2008) and toddlers (Denison & Xu, 2014) appear to be equipped with an intuitive sense of the 
proportional nature of probability. Denison and Xu (2014) presented 12-month-old infants with a 
simplified version of the 2AFC random draw task involving two groups of pink and black 
lollipops. An experimenter randomly selected a lollipop from each group and then placed them 
in opaque containers. The infant was then allowed to crawl toward the container of their choice 
to retrieve their prize. Using this task, Denison and Xu (2014) showed that infants crawl toward 
the group with the greater proportion of favored objects (i.e. for most infants, the pink lollipops) 
even when presented with a choice between a smaller proportion with a greater absolute number 
of pink lollipops and a larger proportion with fewer pink lollipops. There are several reasons why 
infants may demonstrate an intuitive understanding of the proportional nature of probability but 
older, school-age children rely on heuristic decision rules. One possibility is that infants may 
have an implicit understanding of probability (see similar claims for the development of theory 
of mind and object cognition, e.g., Carey, 2009, for a review), and older children’s more mature 
understanding is either quite distinct from the infants’ or may be the result of reconstructing 
these earlier concepts.  Either of these developmental processes may follow an extended 
trajectory and require genuine conceptual change. Future work will hopefully uncover the origin 
of the heuristic bias in children by investigating the critical transition from early toddler hood to 
the school-age years. 
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Children and adults use their knowledge of probability to inform their decision several 
times a day. While previous research has claimed to show that both children (Piaget & Inhelder, 
1975) and adults (Kahneman, 2011; Kahneman & Tversky, 1973; Tversky & Kahneman, 1983) 
are impoverished decision-makers, more recent evidence suggests that probabilistic reasoning is 
part and parcel of primate existence (De Petrillo & Rosati, 2019; Denison & Xu, 2014; Rakoczy 
et al., 2014; Tecwyn et al., 2017). In the current study, we hope to have demonstrated that 
although children often rely on inaccurate heuristics when reasoning about the probability of 
future events, their ability to flexibly adapt in response to feedback can help to override these 
fast yet inaccurate strategies. 
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Chapter 5 
 

Conclusion 
 

5.1 Conclusions and Implications of Empirical Work 

Probabilistic data are ubiquitous in human experience and probabilistic reasoning is a 
powerful tool for sorting through this variability. How do we represent probability and how do 
these representations influence our decision making? What is the developmental trajectory of 
probabilistic reasoning in humans and how do different educational contexts influence children's 
understanding of the proportional nature of probability? In my dissertation, I have provided 
evidence to suggest that rapid, non-symbolic probability judgments are surprisingly accurate and 
rely on approximate representations of number (Chapter 2), the acuity of this ability improves 
with age but is influenced by incorrect heuristic decision rules (Chapter 3), and these incorrect 
heuristic decision strategies can be overcome with the proper amount and type of feedback 
(Chapter 4). 

 
5.1.1 The Psychophysical properties of non-symbolic probability judgments.  

In Chapter 2 my collaborators and I developed a 2-alternative forced choice (2AFC) ratio 
comparison task framed as a probabilistic decision-making experiment. In 4 experiments, we 
presented undergraduate students at UC Berkeley (Experiment 2.1) and adults recruited online 
through Amazon's Mechanical Turk (Experiments 2.2, 2.3, and 2.4) with a 2AFC task in which 
they were instructed to pick one of two binary distributions of colored marbles based on the 
likelihood of drawing a single marble of a particular color. 

Data from Experiment 2.1 indicated that while adult participants demonstrated near 
ceiling performance on most of the ratios of proportions presented (least difficult: 70% vs 10%; 
most difficult: 50% vs 55%), they also demonstrated a bias toward choices with larger numbers 
of target marbles. When participants were presented with trials in which the bin with the smaller 
proportion of marbles contained a larger absolute number of target marbles compared to the bin 
with the higher proportion they sometimes chose the lower proportion containing more target 
marbles. These results indicate that non-symbolic probability judgments are characterized by 
ratio dependence and are biased toward groups with greater numbers of target events. 

Results from Experiment 2.2 replicated these findings and extended the research to 
account for both numerical and non-numerical stimulus features. Our data suggest that while 
people can make accurate, rapid judgments about the probability of future events based on 
proportions, their decisions are often biased toward groups with a larger number of target 
marbles and groups with larger marbles (i.e. more surface area). Furthermore, when compared to 
predictions made by a psychophysical model adapted from DeWind et al. (2015) to account for 
numerical and non-numerical stimulus features in probability judgments, our data suggest that 
participants compute proportions using approximate number system representations. 

In these findings were further replicated and extended in Experiments 2.3 and 2.4. In both 
experiments I demonstrate that the use of hueristic decision rules by adult decision makers is not 
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the result of the brief presentation time used in Experiments 2.1 and 2.2. Furthermore, in 
experiment 2.4, I demonstrate that adult reasoners continue to show a bias on number vs 
proportion trials even when they are given explicit instructions indicating that this bias is 
inaccuarate. Together, these findings suggest that while human probabilistic reasoning is quite 
sophisticated, even educated adults tend to rely on inaccurate heuristics in the face of uncertain 
data. 
 
5.1.2 The Developmental trajectory of non-symbolic probability judgments 

In Chapter 3 I used the same probability tasks deployed with adults in Chapter 2 to 
demonstrate that school-age children's probability judgments improve with age, are characterized 
by ratio dependence, share some signature features of the approximate number system, and are 
biased toward distributions with a greater number of target events. In Experiment 3.1 we 
manipulate the ratio of the proportions of the compared distributions as well as whether the 
sample spaces were equal ('total equal' trials) or unequal ('target equal' trials). In Experiment 3.2 
we modify this method in order to account for the equality of the sample spaces ('total equal' 
trials), the number of target events ('number vs proportion' trials), as well as the area of the 
individual marbles ('area anticorrelated' trials). 

Data from Experiment 3.1 suggest that children's probability judgments are characterized 
by ratio dependence. While 7-year-old children performed better than 6-year-old children, both 
age groups showed a bias toward choices with a larger number of target events. Results of 
Experiment 3.2 replicated the main results of Experiment 1 and extended these findings by 
revealing that children's judgments are influenced by the surface area of the marbles as well as 
by the number of target events. Regression analyses revealed main effects for age group, trial 
type, and ratio of proportions as well as interactions between the three variables. Together these 
results indicate that 8-year-old children are capable of rapidly computing probabilities based on 
proportions and that the acuity of this rapid approximation improves with age. Furthermore, 
based on data from the number vs proportion trials, we also find that children’s simple 
probability judgments, much like the adults reported in Chapter 1, are influenced by the number 
of target marbles indicating that children sometimes rely on incorrect judgmental heuristics. 

 
5.1.3 Feedback influences children's use of heuristic decision rules 

Although it seems reasonable to assume that education influenced children's decision-
making strategies in Experiments 3.1 and 3.2, simple procedural factors such as presentation 
time could also explain our results. For example, children were presented with large numbers of 
marbles for very short periods of time in the approximation task. It is possible that they simply 
did not have enough time to approximate all of the quantities needed to compute proportion and 
therefore fell back on a judgmental heuristic in order to make up for the short presentation time. 
For this reason, my collaborators and I designed a computer-based version of Falk et al. (2012)'s 
assessment method in order to investigate the influence of procedural and pedagogical factors on 
children's probabilistic decision making. Importantly, all of the trials included groups of marbles 
that were easily enumerated by young children and trial images were presented in a self-paced, 
randomized order. 

Findings from Experiments 4.2 and 4.3 suggest that children abandon their probabilistic 
decision-making strategy when provided with examples that disconfirm their prior beliefs about 
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probability but not when given a mixed set of confirming and disconfirming examples. Results 
from the assessment phase indicated that the majority of children in Experiments 4.1 and 4.2 
utilized one-dimensional strategies. During the assessment phase, children in the high conflict 
conditions of both experiments were not significantly different from those in the low conflict 
conditions. However, during the test phase of Experiment 4.1, children in the high conflict 
condition (74% correct) performed significantly better than children in the low conflict condition 
(32% correct) and children in the same condition from Experiment 4.2 were shown to be more 
likely to change their decision-making strategy than children in the low conflict condition. 

 
5.1.4 Implications for theories of cognitive development 

In chapters 2 and 3, I have provided evidence that intuitive representations of probability 
can be computed rapidly and that the ability to compute probability in this way improves with 
age. In chapter 4 I have demonstrated that children can reconstruct their understanding of the 
proportional nature of probability from the proper amount and type of feedback. I see this work 
as supporting Rational Constructivist theories of cognitive development in two ways. First, 
Rational Constructivism proposes that humans begin life with a suite of protoconceptual 
primitives which they can combine and recombine to form ever more complex representations 
and knowledge (Fedyk & Xu, 2018; Xu, in press). Signature features of the 'number sense' have 
been observed in human infancy (Feigenson, Dehaene, & Spelke, 2004; Hevia, Izard, Coubart, 
Spelke, & Streri, 2014; Lipton & Spelke, 2003; Xu & Spelke, 2000; Xu et al., 2005) suggesting 
that numerical processing is a fundamental component of the human mind. Intuitive probabilistic 
reasoning appears to be built out of these representations and provides an interesting domain of 
research on interactions between culture and cognitive development. 

Second, Rational Constructivism posits that learners integrate their prior knowledge with 
new information in a rational way and thus rely on probabilistic cues and statistical inference to 
do so. Evidence to support this comes from the set of experiments reported in Chapter 4. When 
children are presented with trials that are randomly sampled from the whole group of 24 trials 
(low conflict condition), they receive some negative and some positive evidence. The evidence 
in support of their prior knowledge is mixed and so they stick with their prior intuitions. 
However, in the 'high conflict' condition, children are provided with negative evidence in conflict 
with their strategy and positive evidence in favor of their strategy. Since the evidence is no 
longer mixed, they can more easily override their prior beliefs and come to a more complete 
understanding of the proportional nature of probability. Interestingly, these results also open up 
new questions for future research.  For example, if infants already have some intuitive 
understanding of the proportional nature of probability, why is it so hard to teach formal 
probability in schools? And how does the understanding of mere chance interact with feedback, 
that is, learners may ignore feedback because they may obtain an unpredicted outcome due to 
‘mere chance’ and when do they begin to see that perhaps it is not ‘mere chance’?  

 
5.2 Concluding remarks 

It is important to note that this work is the hopeful beginning of a broader research 
program investigating the role of mental representation in the development of children’s 
understanding of probability. Although I see this work culminating in an effort to understand the 
learning processes involved in understanding the proportional nature of probability, I recognize 
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that further research is needed in order to demonstrate bonafide learning. One pressing issue will 
be to identify the extent to which children’s strategy learning in the random draw task transfers 
to other forms of non-symbolic and symbolic probability judgments. Does conflicting feedback 
on a discrete probability judgment task result in strategy change for a continuous probability 
task? It seems reasonable to assume that the learning we have uncovered in Chapter 4 may have 
narrow transfer to other forms of discrete and continuous non-symbolic probability judgments. 
However, it is likely that broader transfer to symbolic probability problems will require direct 
instruction (Koedinger, Booth, & Klahr, 2013). For this reason, future work will focus on 
identifying the right combination of discovery learning (i.e. sampling from a distribution) and 
direct instruction (i.e. formal explanation of proportional relations). This data will hopefully 
inform future training studies involving both symbolic and non-symbolic probabilistic reasoning. 
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