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Communication 

ICI 182,780 A enuates Selective Upregulation of Uterine Artery 
CBS Expression in Rat Pregnancy 
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Abstract: Endogenous hydrogen sulfide (H2S) produced by cystathionine β-synthase (CBS) and 
cystathionine-γ lyase (CSE) has emerged as a novel uterine vasodilator contributing to pregnancy-
associated increases in uterine blood flow, that which safeguard pregnancy health. Uterine artery 
(UA) H2S production is stimulated by via exogenous estrogens replacement, and is also associated 
with elevated endogenous estrogens during pregnancy through the selective upregulation of CBS, 
without altering CSE. However, how endogenous estrogens regulate uterine artery CBS expression 
in pregnancy is unknown. This study was conducted to test a hypothesis that endogenous estrogens 
selectively stimulate UA  CBS expression via specific estrogen receptors (ER). Treatment with E2β 
(0.01 to 100 nM) stimulated CBS, but not CSE mRNA in organ cultures of fresh UA rings from both 
NP and P (gestational day 20, GD20) rats, but with greater responses to all doses of E2β tested in P 
vs. NP UA. ER antagonist ICI 182,780 (ICI, 1 µM) completely a enuated E2β-stimulated CBS mRNA 
in both NP and P rat UA. Subcutaneous injection of with ICI 182, 780 (0.3 mg/rat) on of GD19 P rats 
for 24 h significantly inhibited UA CBS but not mRNA expression, consistent with reduced endo-
thelial and smooth muscle cell CBS (but not CSE) protein. ICI did not alter mesentery mesenteric 
and renal artery CBS and CSE mRNA. In addition, ICI decreased endothelial nitric oxide synthase 
mRNA in UA, but not in mesentery mesenteric and or renal arteries. Thus, pregnancy-augmented 
UA CBS/H2S production is mediated by the actions of endogenous estrogens via specific ER in preg-
nant rats. 

Keywords: Uterine uterine artery; cystathionine β-synthase; endogenous estrogens; estrogen recep-
tors; pregnancy 

1. Introduction 
During pregnancy, the organ systems throughout the mother’s body make adaptive 

changes to optimize a the uterine environment to safeguarding pregnancy health, with 
the most dramatic changes in the cardiovascular system [1,2]. Maternal vascular adapta-
tions to pregnancy result in gestation- age-dependent up to 20–50-fold increases in uterine 
blood flow (UtBF) of up to 20–50-fold, . This is mandatory for delivering maternal nutri-
ents and oxygen to the fetus and for exhausting respiratory gases and wastes from the 
fetus [3,4]. Insufficient rises in UtBF during pregnancy leads to placental ischemia/hy-
poxia, further resulting in placental under-perfusion, representing a major pathophysiol-
ogy underlying many pregnancy-specific disorders such as preeclampsia, fetal growth 
restriction (FGR), and preterm birth [5–7]. These diseases not only deteriorate maternal 
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and fetal wellbeing during pregnancy but also derail the lifelong health trajectories of the 
mother and her child [8]. 

Concurrently, endogenous estrogen production is significantly elevated in preg-
nancy [9] and , levels of total plasma estrogens can reach as high as ~1000-fold in 
pregnant vs. nonpregnant women [10]. Utilizing intact and ovariectomized sheep 
models, studies have shown that a marked rise in UtBF occurs as early as 15–30 min after 
a bolus subcu-taneous injection of exogenous estradiol-17 β (E2β, 1 µg/kg body weight), 
reaches reaching its maximum at 90–120 min, and decreases decreasing thereafter; 
however, but it remains elevated up to 7–10 days [11–13]. Although the importance of 
estrogens in pregnancy is well recognized [14], the mechanisms underlying estrogen-
induced uterine vasodilation remain partially understood. However, A a large body of 
evidence accumulated since the 1990′s favors a leading role of nitric oxide (NO) in the 
mechanism. This is locally produced by the uterine artery (UA) endothelium via 
upregulating the expression [15–17] and acti-vation [17,18] of endothelial NO synthase 
(eNOS). Systemic E2β administration and local inhibition of either the actions of NO 
synthase with L-NG-Nitro arginine methyl ester (L-NAME) [13,19,20], or estrogen 
receptors (ERs) with ICI 182,780 (ICI) [13], inhibit up to ~68% of estrogen-induced uterine 
vasodilation. In vivo studies have established that L-NAME and ICI partially reduce (25–
30%) UtBF from its maximum levels during preg-nancy [13]. These studies delineate the 
cause–-effect relationships among endogenous E2β,,  and de novo synthesis of NO 
through eNOS, and ERs, but while also implicate im-plicating mechanisms in addition to 
eNOS-NO to mediate uterine hemodynamics. While preclinical studies based on theories 
about regarding NO-mediated mechanisms in up-regulating uterine–-placental perfusion 
have succeeded in various animal models of preeclampsia [21], clinical trials targeting NO 
pathways thus far have thus far achieved no to li le to no success in these diseases 
[22,23], urging requiring more studies to identify other mechanisms. 

The proangiogenic vasodilator hydrogen sulfide (H2S) is endogenously produced 
mainly from L-cysteine by cystathionine -synthase (CBS) and cystathionine -lyase 
(CSE) [24,25]. We have shown that through selective upregulation of endothelial cell (EC) 
and smooth muscle cell (SMC) CBS expression [26–28], UA H2S production is stimulated 
by exogenous E2β treatment in ovariectomized sheep [26] and also positively correlates 
with endogenous estrogens in sheep [29] and women [28]. H2S stimulates pregnancy-
depend-ent relaxation of pressurized UA rings ex vivo [28,30] via activating SMC large 
conduct-ance Ca2+-activated voltage-dependent potassium channels [30], which mediate 
estrogen-induced UA dilation in pregnancy [31,32]. Thus, H2S is a novel UA dilator 
alongside NO to mediate uterine hemodynamics. 

Utilizing primary ovine UA endothelial cell (UAEC) and UASMC models, we re-
ported that E2β stimulates primary ovine UAEC and UASMC H2S production in vitro by 
stimulating specific- ER- dependent upregulation of CBS transcription, involving ERα 
and ERβ [27,33]. E2β also stimulates CSE expression in these ovine UA cell models, which 
is contrarycontrasting to in vivo conditions [26,28,29]. However, in primary human UA 
EC, E2β stimulates UAEC H2S production by stimulating specific -ER- dependent CBS 
tran-scription via directional ERα and ERβ interactions with the proximal CBS promoter 
estro-gen-responsive elements (EREs) [34], showing species-dependent ER-mediated 
mecha-nisms controlling UA CBS/H2S production in vitro. In vivo, UA CBS/H2S 
production is augmented in the two physiological states of elevated endogenous 
estrogens [35], [35]: in the proliferative/follicular phase of the ovarian cycle, and 
pregnancy in women [28] and sheep [29]. Although these studies implicate thea role of 
endogenous estrogens, how the process by which endogenous estrogens regulate UA 
CBS expression in pregnancy is currently elusive. Pregnant animals receiving ICI have 
been used to ascertain the role of en-dogenous estrogens in gene expression [36] and 
pregnancy-associated uterine vasodila-tion [13]. We tTherefore, we conducted this study 
using pregnant rats treated with ICI to test a hypothesis that endogenous estrogens 
stimulate UA CBS expression via specific ER in vivo. 
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3. Materials and Methods 
3.1. Chemicals and Antibodies 

Monoclonal antibodies against CBS and CSE were obtained from Santa Cruz Biotech-
nology (Dallas, TX, USA). Anti-CD31 antibody was obtained from R&D systems Systems 
(Minneapolis, MN, USA). Prolong Gold antifade reagent with 4, 6-diamidino-2-phenylin-
dole (DAPI), Alexa488 and Alexa568 conjugated goat anti-mouse immunoglobulin G (IgG) 
were obtained from Invitrogen (Carlsbad, CA, USA). Horseradish peroxidase-conjugated 
goat anti-mouse IgG was obtained from Cell Signaling (Beverly, MA, USA). ICI was from 
Tocris (Minneapolis, MN, USA). Bovine serum albumin (BSA) and all other chemicals, 
unless specified, were obtained from Sigma (St. Louis, MO, USA). 

3.2. Animals and Treatments 
Animal care and use procedures were in accordance with the National Institutes of 

Health guidelines (NIH Publication No. 85–23, revised 1996) with approval by the Insti-
tutional Animal Care and Use Commi ees at Shanghai Jiaotong University School of Med-
icine (A-2020-007), University of Wisconsin–-Madison (V005847-R02), and University of 
California Irvine (AUP-21-156). Twelve-week-old Sprague -Dawley pregnant [positive 
plug = gestation day (GD) 1] rats were randomly assigned to receive a subcutaneous in-
jection (n = 9/group) of ICI (Tocris Cat #104711, 0.3 mg/rat in sesame oil) or vehicle (100 
µL sesame oil) on GD19. Based on previous studies, This this ICI dosage was chosen based 
on previous studies for effectivelyto effectively testing it’s inhibitory effect on estrogen-
induced gene expression in rodents in vivo [36,37]. These animals were purchased from 
Shanghai Silaike Experiment Animal Co., Ltd. and housed in an AAALAC-certified ani-
mal facility in the Center for Laboratory Animals at the Shanghai Jiaotong University 
School of Medicine, at 21 °C ± 1 °C with humidity of 55% ± 10%, and a 12 h light/12 h dark 
cycle with food and water ad libitum. Animals were sacrificed at 24 h post-injection for 
isolatingto isolate UA, mesenteric arteries (MAs), and renal arteries (RAs). The arteries 
were snap-frozen immediately, and then stored at −80 °C until analyzed. UA segments 
were also fixed in 4% paraformaldehyde for immunohistochemical analysis. Additional 
explant culture studies were performed with UA rings from nonpregnant (NP) and preg-
nant (P) GD20 Sprague-Dawley rats at the University of Wisconsin–-Madison, exactly as 
described previously [38]. All other analyses were performed at the University of Califor-
nia Irvine. 

3.3. RNA Extraction, Reverse Transcription, and Quantitative Real-Time Polymerase Chain 
Reaction (qPCR) 

RNA extraction, reverse transcription, and qPCR were performed with gene-specific 
primers listed in Table 1, as previously described [34,39]. Relative mRNA levels were 
quantified by using the comparative CT (ΔΔCt) method, with L19 as the internal refer-
ence control. 

Table 1. Primers used for RT-qPCR. 

Gene Forward Reverse Product size 

CBS TGAGATTGTGAGGACGCCCAC TCGCACTGCTGCAGGATCTC 177 bp 
CSE AGCGATCACACCACAGACCAAG ATCAGCACCCAGAGCCAAAGG 178 bp 

eNOS TACAGAGCAGCAAATCCAC CAGGCTGCAGTCCTTTGAT 813 bp 
L19 GGACCCCAATGAAACCAACG GTGTTCTTCTAGCATCGAGC 129 bp 
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3.4. Immunofluorescence Microscopy and Image Analysis 
Paraffin-embedded rat UA sections (5 µm) were deparaffinized in xylene and rehy-

drated. Antigen retrieval was achieved viaby boiling in 10 mM sodium citrate buffer for 
15 min. Autofluorescence was quenched using by three 15 -min washes with 300 mM gly-
cine in phosphate-buffered saline (PBS) at room temperature (RMT). After blocking non-
specific binding in 1% BSA-PBS at RMT for 30 min, the sections were incubated with 1 
µg/mL anti-CD31 in 0.5% BSA/PBS overnight at 4 °C. Following three 5 -min washes in 
PBS, the sections were incubated with Alexa568 mouse IgG (2 µg/mL) at RMT for 1 h. After 
three 20 -min washes in PBS, sections were blocked with 1% BSA/PBS and then incubated 
with 1 µg/mL of anti-CBS or anti-CSE antibodies overnight at 4 °C, followed by Alexa488 
rabbit IgG or Alexa488 mouse IgG (2 µg/mL) at RMT for 1 h. IgG was used as a negative 
control. The sections were washed and mounted with SlowFade gold antifade mount con-
taining DAPI (Invitrogen) for labelingto label the cell nuclei. The sections were examined 
under a confocal laser scanning microscope Olympus FV3000 (Olympus Corporation, To-
kyo, Japan). Images were acquired for quantifyingto quantify the levels of CBS and CSE 
proteins in EC and SMC, as previously described [26,34]. 

3.5. Statistical Analysis 
Data are presented as means ± SEM and analyzed viaby one-way analysis of variance 

(ANOVA), followed by the Bonferroni test for multiple comparisons using SigmaStat14 
(Systat Software Inc.). Student’s t-test was used to compare NP vs. P groups. p < 0.05 was 
considered statistically significant, unless indicated in the figure legends. 

2. Results 
2.1. E2β Stimulates CBS Expression via ER Mediation in Rat UA Ex Vivo 

Baseline CBS mRNA was numerically higher in P vs. NP UA, but the difference was 
not statistically significant. Treatment with E2β significantly stimulated CBS mRNA in a 
concentration-dependent manner in organ cultures of NP and P rat UA rings in vitro. 
Treatment with E2β (1 and 10 nM) for 24 h significantly stimulated CBS mRNA expression 
in both NP and P rat UAs. The stimulatory effects of E2β on CBS mRNA further increased 
with 100 nM E2β, reaching its maximum level in NP UA by 4.05 ± 0.51-fold vs. control (p 
< 0.01) and in P UA by 5.35 ± 0.54-fold vs control (p < 0.01), which were completely abro-
gated by 1 µM ICI (Figure 1A). In addition, the stimulatory effects of E2β on CBS mRNA 
in P UA were statistically greater at all tested concentrations (0.01–100 nM) of E2β than 
that in NP UA (p < 0.01). Baseline levels of CSE mRNA did not differ in NP vs. P UA. 
Treatment with E2β (0.01–10 nM) did not alter CSE mRNA in both NP and P UA, but at 
100 nM E2β also increased CSE mRNA expression with similar potency in NP and P rat 
UA, which was blocked usingby ICI (Figure 1B). 

Figure 1. Effects of estradiol-17β on CBS and CSE expression in isolated uterine arteries. Endo-
thelium-intact uterine artery (UA) rings from non-pregnant (NP) and pregnant (P, day 20) rats were 
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treated with estradiol- 17β (E2β, 0.01–100 nM) for 24 h. Total RNA was extracted for measuringto 
measure mRNAs of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) usingby quan-
titative real-time PCR (qPCR) using gene- specific primers listed in Table 1; L19 was measured as an 
internal control for quantitation. Data (means ± SEM) were summarized from 3 different rats. Bars 
with different superscripts differ significantly, p < 0.05 vs. untreated controls. * p < 0.05, ** p < 0.01, 
NP vs. P rats; ns: not significant. 

2.2. ICI Decreases UA but Not Systemic Artery CBS mRNA in Rat Pregnancy In Vivo 
In comparison to vehicle-treated P rats, systemic administration of ICI for 24 h sig-

nificantly decreased GD20 P rat UA CBS mRNA by 62 ± 6% (p < 0.01, n = 8) , without 
altering levels of other systemic mesentery artery (MA) and renal artery (RA) CBS mRNAs. 
ICI treatment also decreased UA eNOS mRNA by 51 ± 21% (p < 0.05, n = 9). ICI treatment 
did not change UA,  and MA and RA CSE mRNA, nor MA and RA eNOS mRNA in GD20 
P rats in vivo (Figure 2). 

Figure 2. Effects of ICI 182, 760 on uterine and systemic (mesenteric and renal) artery CBS, CSE, and 
eNOS mRNA expression in pregnant rats in vivo. Time -pregnant rats on gestation day 19 were 
treated with either sesame oil alone (Ctl) or with a specific estrogen receptor (ER) antagonist ICI 
182, 780 (ICI, 0.3 mg/rat). Rats (n = 8) were sacrificed at 24 h after injection. Uterine (UA), mesenteric 
(MA), and renal (RA) arteries were collected for analyzingto analyze mRNAs of cystathionine β-
synthase (CBS), cystathionine γ-lyase (CSE), and endothelial nitric oxide synthase (eNOS) viaby 
qPCR with gene-specific primers listed in Table 1; L19 mRNA was measured as an internal control 
for quantitation. Data (means ± SEM) were summarized from artery samples of 5 different 
rats/group. * p < 0.05, ** p < 0.01 vs. vehicle (Ctl) treated controls. 

2.3. ICI Decreases Rat UA Endothelial and SM CBS Protein 
CBS and CSE proteins were immunolocalized in both EC and SMC of GD20 P rat 

UAs. Following systemic ICI treatment for 24 h, levels of CBS protein were significantly 
reduced by 24 ± 4% (p < 0.05, n = 3) in EC and 55 ± 3% (p < 0.05, n = 3) in SMC in the animals. 
However, UA EC and SMC CSE protein was were not significantly altered by theby ICI 
treatment in GD20 P rats (Figure 3). 
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Figure 3. Effects of ICI 182, 760 on uterine artery CBS and CSE protein expression in pregnant 
rats in vivo. Uterine arteries (UAs) were collected from pregnant (gestation day 20) rats at 24 h 
treatment with vehicle (Ctl) or ICI 182, 780 (ICI, 0.3 mg/rat). Paraffin-embedded UA sections (5 µM) 
were subjected to immunofluorescence labeling of cystathionine β-synthase (CBS) and cystathionine 
γ-lyase (CSE) proteins usingby specific CBS or CSE antibodies, with CD31 antibody for co-labeling 
endothelial cells (ECs) distinct from smooth muscle cells (SMCs). After incubation with correspond-
ing fluorescently labeled secondary antibodies, sections were mounted with DAPI to label nuclei 
and examined under confocal microscopy. IgG was used as negative control (insert). Images were 
taken to determine CBS and CSE proteins (relative green fluorescence intensity; RFI) using Image J 
and summarized as fold changes relative to untreated smooth muscles. Data (means ± SEM) were 
summarized from UA sections from three different rats. * and #, p < 0.05 vs. vehicle (Ctl) treated. 
Scale bar = 100 µm. 

4. Discussion 
The vasodilatory effect of estrogens was initially described in a classical study by

Markee (1932), which showed that  that treatment with crude estrogen extracts results in 
the vasodilatation (hyperemia) of uterine endometrial tissue transplanted to the anterior 
chamber of the eye [40]. In early studies using ovariectomized nonpregnant sheep models, 
exogenous E2β either administrated either locally inat the uterine artery with a low dose 
(3 µg) or a higher systemic dose (1 µg/ kg body weight) dose of exogenous E2β will result 
in a maximal and remarkably predictable pa ern of increase in UtBF; the response begins 
to rise around 20–30 min, then gradually increases and reaches its maximum value up to 
10-fold baseline at 90–120 min, thereafter decreases decreasing but remaining to be ele-
vated up to 7–10 days [11,12,41–45]. Exogenous estrogens also stimulate vasodilation in 
various systemic arteries, but with maximum response in the uterus [45,46]. The direct 
estrogenic uterine vasodilatory effect is of significance in perinatal medicine because: (1) 
endogenous estrogen levels increase throughout human pregnancy [10], [10]; (2) UtBF in-
creases up to 20–50-fold in human pregnancy, which is the lifeline of fetal development 
and survival as it arguably provides arguably the only nutrients/oxygen sources for fe-
tal/placental development [3,4], [3,4]; (3) estrogen production is reduced in pregnant 
women who develop preeclampsia [47]; and (4) aberrant estrogen metabolism due to cat-
echol-O-methyltransferase deficiency results in preeclampsia-like symptoms in mice [48]. 

The mechanisms underlying estrogen-induced uterine vasodilation have been a long-
lasting hot point of research,  topic because this research not only comprehends deline-
ates the uterine hemodynamics important for maternal and fetal health [5–7] but also pro-
vides knowledge relevant to unfold solving the puzzle of the cardiovascular protective 
effects of estrogens [49]. Early pharmacological studies have shown that de novo protein 
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synthesis is required for estrogen-induced uterine vasodilation. This is because the unilat-
eral infusion of cycloheximide significantly inhibits E2β-induced UtBF elevation during 
the 90 -min infusion, while the contralateral E2β-induced UtBF is unaffected. T and this 
inhibition lasts for more than 30 min after the removal of the cycloheximide infusion [42]. 
In addition, various estrogens, including E2β, estrone, estriol, Premarin, raloxifene, and 
extremely high doses of the anti-estrogen trans-clomiphene [11,12,41–45,50,51], all can all-
can stimulate UtBF with a similar pa ern and efficacy, suggesting an involvement of spe-
cific ER-mediated mechanisms. This idea was indirectly supported by a study in which 
Lineweaver–-Burk plots were developed using the reciprocal of UtBF responses versus 
vs. the dose of E2β and catechol estrogens; . because Given that the y-axis intercepts of the 
two estrogens were the same, it was suggested that these estrogens bind to the same re-
ceptors, but have different affinities and thus vasodilatory potency, as evidenced by the 
differences in the x-axis intercepts [52]. 

UtBF fluctuates regularly during the estrous cycle in animals, with a substantial in-
crease followed by a decrease during the periovulatory period [53,54]. The follicular phase 
is a time when E2β is produced by the developing follicles, and UtBF reaches maximum 
levels and while progesterone (P4) is virtually undetectable [54]. During pregnancy, UtBF 
is elevated when levels of both E2β and P4 are high [55,56]. Similar uterine hemodynamics 
occur in the menstrual cycle [57] and pregnancy [4] in women, with comparable changing 
pa erns of E2/P4 levels. Because P4 by itselfalone does not stimulate UtBF [58], the follic-
ular phase and pregnancy are viewed as two physiological states of elevated endogenous 
estrogens that upregulate UtBF [59]. Uterine artery endothelium and vascular smooth 
muscle express both ERα and ERβ, which are regulated by endogenous (follicular and 
pregnancy) and exogenous estrogens, suggesting that the uterine arteryUA is a target site 
for fluctuating estrogen levels [38,60,61]. 

Two types of anti-estrogens have been used to dissect ER-mediated mechanisms, . 
This including includes type I anti-estrogens that are called selective estrogen receptor 
modulators (SERMSSERMs), which are analogs of tamoxifen, and type II anti-estrogens 
that are pure anti-estrogens such as ICI 164,384 and ICI 182,780 [62]. SERMS SERMs are 
non-steroidal compounds that bind both ERα and ERβ, and produce weak estrogen ago-
nist effects in certain tissues, while producing estrogen antagonist effects in others [63]. 
ICI 182,780 is a selective steroidal estrogen antagonist that blocks estrogen action by com-
peting for binding ERs in estrogen-responsive tissues [64]. Zoma et al. (2001) first showed 
that ICI 182,780 completely blocked elevated UtBF response to exogenous tibolone (a hor-
mone-replacement therapy in postmenopausal women) in nonpregnant ovariectomized 
sheep [65]. Magness et al. (2005) demonstrated in follow-up studies that ICI 182,780 inhib-
its ~65% of the maximum levels of E2β-induced UtBF in nonpregnant ovariectomized 
ewes; it also effectively inhibits baseline UtBF responses in the physiological states of ele-
vated endogenous estrogens, follicular phase of the estrus cycle, and pregnancy in sheep 
[13]. These studies established that estrogen-induced uterine vasodilation is mediated by 
specific ERs. 

Since the early 1990s, A a large body of evidence since the early 1990′s has further 
shown enhanced NO production locally by UA endothelium as the leading mechanism to 
mediate estrogen-induced uterine vasodilation [13,19,20]. Enhanced UA NO production 
is mediated by the increased expression [15–17] and activation [17,18] of eNOS, which that 
is mainly present in the endothelium. UA endothelial and smooth muscle cells express 
both ERα and ERβ [38,60,61]. Endothelial eNOS expression upon via estrogen stimulation 
is mediated by ERα interaction with the proximal eNOS promoter EREs [66]. Co-
verselyConversely,, whereas eNOS activation byby estrogens likely involves its release 
from caveolar domains on the plasma membrane [67] and ser1177 phosphorylation by ex-
tracellular signal-activated kinases, and protein kinase B/Akt via nongenomic pathways 
mediated by ERα localized on the plasma membrane caveolae [18,68,69]. 
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Nonetheless, blockade of the NO pathway by L-NAME inhibits ~68% E2β-induced 
and ~26% baseline pregnancy-associated UtBF responses in sheep, which are similar to 
those inhibited by ICI 182,780 [13], [13]. This suggests thatsuggesting other mechanisms 
exist alongside NO exist to mediate uterine hemodynamics regulation. To this end, our 
recent studies have shown that enhanced UA production of H2S, the third member of the 
gasotransmi er family [70], seems to serve this role [28,30]. We reported that estrogen 
replacement treatment in ovariectomized nonpregnant sheep stimulates UA H2S produc-
tion by selectively upregulating EC and SM CBS (but not CSE) expression [26]. In that 
study, we have also shown that exogenous E2β stimulates mesentery artery EC and SM 
CBS (but not CSE) expression and H2S production, without altering carotid artery EC and 
SM CBS expression and H2S production [26], showing vascular bed-specific effects of ex-
ogenous E2β on H2S biosynthesis in vivo. In follow-up studies, we have reported that UA 
H2S production is augmented in the follicular phase sheep, and proliferative phase 
women, and ovine and human pregnancy [28,29], in association with elevated endoge-
nous estrogens [10,55,56]. In addition, our mechanistic studies using primary EC and SMC 
culture models have further demonstrated that estrogen-stimulation of UA H2S biosyn-
thesis is mediated by specific ER-mediated upregulation of CBS transcription involving 
direct interactions of ERα/β with the proximal CBS promoter EREs [27,33,34]. 

In an organ culture model of freshly prepared P vs. NP rat UA rings in vitro, we have 
previously shown that E2β stimulates pregnancy-dependent type 2 II angiotensin recep-
tor (AT2R) expression associated with elevated endogenous estrogens in pregnant rats 
[38]. With this model, we show here that E2β stimulates UA CBS mRNA expression, but 
with different potency in P vs. NP rat UA rings in vitro. As li le as 0.01 nM E2β is effective 
in stimulating CBS mRNA in P vs. NP UA, and this pregnancy-dependent CBS mRNA 
upregulation is consistent in all E2β concentrations (0.01 to 100 nM) tested. E2β stimulates 
CBS mRNA in NP UA rings in vitro, but the effective concentrations are at 1–100 nM, 
which are higher than that in P UA. ICI blocks E2β (100 nM)-stimulated CBS expression 
in both NP and P UAs. At 100 nM, E2β also stimulated CSE mRNA, but this stimulation 
is not pregnancy- dependent. The findings differ from these those in our in vivo studies 
showing UA CBS but not CSE upregulation viaby E2β replacement treatment and in preg-
nancy in vivo [26,28,29], [26,28,29]. However, the findings but agreeagree with our previ-
ous studies using ovine UAEC and UASMC models in in vitro [27,33]. In addition, base-
line CBS expression is only numerically higher but does not reach statistical significance 
in rat P vs. NP UA, contrasting our previous studies in sheep [29] and women [28]. The 
cause of these discrepancies is unclear but likely originated from in vitro culture condi-
tions and species- related effects. Nonetheless, our current study provides further evi-
dence that exogenous E2β selectively stimulates CBS expression in rats, andrats and is 
mediated by specific ER-mediateds in rats. Of note, 0.01-1 nM E2β are in the physiological 
range while 10-100 nM E2β are supraphysiological concentrations in women; however, 
for in vitro mechanistic studies, these concentrations may reflect the effects of total estro-
gens seen in pregnant women conceived after ovarian stimulation and in vitro fertilization 
[10]. 

Pregnant animals receiving ICI 182,780 have been previously used to address the role 
of ERs in endogenous [13] and exogenous [65] estrogen-induced uterine vasodilation and 
expression of uterine myometrial genes, including inducible NOS by endogenous estro-
gens [36]. Because the role of ERs in UA and systemic artery CBS/CSE expression by en-
dogenous estrogens has never been tested, we therefore used pregnant rats receiving ICI 
182,780 as a model to determine if systemic administration of ICI 182,780 (0.3 mg/rat sub-
cutaneous injection) would affect UA and systemic (mesenteric and renal arteries) CBS 
and CSE expression in vivo. ICI treatment for 24 h significantly inhibits UA but not sys-
temic MA and RA artery CBS without altering CSE mRNA levels in GD19 pregnant rats 
in vivo. In addition, immunohistochemical analyses have also shown that ICI treatment 
significantly reduces UA EC and SM CBS, but not CSE protein in UA in pregnant rats in 
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vivo. In addition, ICI reduces UA but not MA and RA artery eNOS mRNA levels in preg-
nant rats. As is Consistent consistent with numerous previous studies showing UA endo-
thelial eNOS upregulation by estrogens and pregnancy [15–17,71,72], simultaneous inhi-
bition of CBS and eNOS expression ICI treatment in pregnant rats suggests that the 
CBS/H2S system, alongside eNOS/NO, plays a role in mediating estrogen-induced uterine 
vasodilation in pregnancy.  

Estrogens signal via both genomic and nongenomic pathways [73]. The former is me-
diated by ligated ERs (ERα and ERβ) that functions as transcription factors to interact with 
promoter EREs to initiate target gene expression. ICI 182,780 was initially developed as a 
pure anti-estrogens, with a high affinity to ERα and Erβ , so that it blocks estrogen actions 
by competing for binding ERs in estrogen-responsive tissues [64]. Estrogens can also ini-
tiate rapid cellular responses via nongenomic pathways by interacting with membrane 
ERα and G protein-coupled receptor 30/G protein-coupled estrogen receptor 1 
(GPR30/GPER1) [73]. Rat UA GPER1 expression increases during gestation, and it’s acti-
vation can leads to UA vasodilation involving the activation of the NO- cGMP pathway 
[74], and in a Ca2+ and extracellular-signal activated kinases (ERK1/2)- dependent manner 
[75]. Pregnant animals receiving ICI has have been widely used to address nuclear ER-
mediated mechanisms, . However, this model is limited as itbut with a limitation as the 
model cannot exclude the role of GPR30-mediated estrogen signaling since ICI 182,780 is 
a high- affinity GPER1 agonist [76]. 

In summary, in keeping with our previous studies showing augmented UA H2S via 
selective UA EC and SM CBS expression in by estrogen replacement treatment [26] and 
endogenous estrogens in ovine [29] and human pregnancy [28], [28],; our current study 
demonstratess, — for the first time , —that elevated endogenous estrogens stimulate UA 
EC and SM CBS expression with vascular bed-specific effects via an ER-dependent mech-
anism, further adding new evidence for an the emerging role of enhanced UA H2S pro-
duction of H2S as a new UA vasodilator to comprehend uterine hemodynamics regulation. 
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