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ABSTRACT OF THE DISSERTATION

Deformable Image Registration with Learning

by

Yudi Sang

Doctor of Philosophy in Bioengineering

University of California, Los Angeles, 2022

Professor Dan Ruan, Chair

As a fundamental task in medical image analysis, deformable image registration (DIR) is the

process of estimating the deformation vector fields (DVFs) to images. In classic optimization-

based DIR method, DVF is solved by optimizing a cost function consisting of image dis-

similarity and DVF regularity, which typically involves time-consuming iterative processes.

Deep-learning (DL)-based DIR has been developed in recent years, which offers a much

faster alternative and the benefit from data-driven regularizing behaviors. This dissertation

aims to develop accurate and robust DIR methods and address the lingering challenges in

DL-DIR. First, we propose a DIR network that is conscious of and self-adaptive to deforma-

tion of various scales to improve accuracy. Second, we propose supervised and unsupervised

approaches to incorporate learned implicit feasibility prior into DIR. Third, we propose a do-

main adaptation method to address the potential domain shift in DIR and improve accuracy

and robustness on new data. Finally, we propose a DIR approach to synthesize continuous

4D motion from 3D image pair. Experiments with lung and cardiac images showed that

the proposed techniques yielded significant performance improvement. We demonstrate the

strength of combining physical-driven rationales and DL techniques in DIR.
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CHAPTER 1

Introduction

Physical and physiological motion presents ubiquitously in biomedicine and affects various

clinical tasks and applications. Understanding and managing motion has been a fundamental

task. Imaging is sensitive to motion. Patient motion during the acquisition can induce

artifacts and reduce image quality for diagnosis and analysis. Such motion artifacts manifest

as ghosting, blurring, geometric distortion, or decreased signal-to-noise ratio (SNR) [GKS16].

In 4D MRI, motion estimation and compensation techniques have been extensively studied

to reorder k-space segments and establish phase correspondence. These techniques typically

focuses on “reversing” the motion effect so as to generate a (series of) high-quality snapshot

image for radiology reading. On the other hand, motion itself, particularly over a relatively

larger field of view (FOV) can provide critical information as well, in tracking spatiotemporal

dose deposition in radiotherapy or tumor regression/progression. In such contexts, highly

accurate pixel-wise volumetric motion estimation is the central task and demands deformable

image registration (DIR).

More precisely, DIR is the process of estimating the deformation vector fields (DVFs)

to align two or more images. Typical applications include information fusion across various

modalities or setups, motion management, dose accumulation, and longitudinal analysis.

The goal of DIR is to achieve accurate point-to-point correspondence. Therefore, its perfor-

mance is often assessed by target registration errors (TREs) based on dense DVF, anatomical

landmarks, or segmentation contours.

DIR has been extensively used in radiation therapy, where understanding tissue place-

1



ment precisely is critical to control normal tissue toxicity and ensure tumor target coverage.

For example, symptomatic (grade ≥2) radiation pneumonitis occurs in approximately 30%

of patients irradiated for lung cancer, with fatal pneumonitis in about 2% [PST13, JYK12].

Sophisticated beam delivery methods with intensity modulation (i.e., intensity-modulated

radiation therapy and volumetric modulated arc therapy) are used to deliver clinically ef-

fective dose to the target while minimizing dose to the surrounding normal tissues. Mod-

ulated beams generate more conformal dose distribution to a target while sparing nearby

normal structures even when those normal structures are located at the concave region of

the target [MB06]. However, the conformal dose distribution is only achieved on plan-

ning image which is a snapshot of patient anatomy during a long treatment period. Inter-

and/or intra-factional anatomy changes from the planning image may deteriorate the dose

conformality in actual delivered dose distribution. The use of online imaging, such as cone-

beam computed tomography (CBCT) or integrated magnetic resonance imaging (MRI),

can detect these anatomical changes and aid in correcting or minimizing the effect of such

changes [JSW02, LRR08]. DIR between different phases in a 4D image can provide impor-

tant information on tissue motion, which help to locate target and normal structures more

accurately. In addition, this motion information can be used in function-preserving treat-

ment planning, For example, ventilation information derived from 4DCT DIR can be used

in treatment planning to avoid high dose irradiation to the highly functional subregions of

the lung.

Classic DIR usually seeks a DVF to minimize a loss function consisting of a dissimilarity

measurement between the warped moving image and the fixed image, and regularization

energies that penalize undesirable deformations [SDP13, OT14, MBS16].

v̂ = argmin
v
{D(F,M ◦ v) + R(v)}, (1.1)

where F is the fixed image, M is the moving image, v is the DVF, D is the image dis-

similarity, and R is the regularization function. The dissimilarity can be based on image

intensity, landmarks, or surface contours [SDP13]. Commonly used regularization functions
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encourage prescribed physical behaviors such as smoothness and diffeomorphism to enhance

DVF feasibility [SDP13, CDD10, UWS10, HJB10]. Classic DIR usually involves: (1) design

or choice of a suitable transformation model and initialization of the associated parameters,

(2) use of the transformation model to warp the moving image, (3) evaluation of the image

dissimilarity and the regularization function, and (4) update of the parameters in the trans-

formation model by optimizing the cost function, using a suitable optimisation algorithm.

One limitation of classic DIR method is that the iterative solving process is often too slow

for real-time applications.

Deep learning (DL) approaches have been developed for DIR recently. The registration

deep network infers DVFs directly from input image pairs with high efficiency. Training

of the network can be supervised or unsupervised. In the supervised setting, the network

learns the map between the pair of image input and the corresponding ground-truth DVF

directly [YKS17]. In the unsupervised learning methods, a spatial transformation module

is employed in the network architecture [JSZ15]. Warped image and image similarity are

computed within the training process. Therefore, unsupervised learning-based registration is

similar to the classic intensity-based method in the optimization paradigm but replaces the

iterative DVF solving process with fast inference from a trained network [BZS19, VBV19].

This dissertation contributes to the field of medical image processing by developing

physical-driven rationales which are further integrated with DL techniques. We designed

our experiments for inter-phase DIR, aiming to accurately delineate tissue motion from 4D

images, but the proposed methods generalizes to other settings. The proposed techniques

address the major challenges in DL-DIR from different aspects:

Multi-resolution hierarchical strategy is typically used in classic optimization-based im-

age registration to capture varying magnitudes of deformations while avoiding undesirable

local minima. However, without such a strategy, DIR networks are supposed to address

all deformation scales with a single reference. A rough concept of the scale is captured in

deep networks by the reception field of kernels, and it has been realized to be both desirable
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and challenging to capture convolutions of different scales simultaneously in registration net-

works. In Chapter 2, we propose a DIR network that is conscious of and self-adaptive to

deformation of various scales to improve registration performance.

A major challenge for DIR to achieve physically and physiologically sound deformation

lies in the mathematical quantification of desirable clinical properties. Despite the long

efforts in designing deformation parameterization models and regularization functions for

invertibility, volume preservation, diffeomorphism and interface discontinuity preservation,

an ideal solution remains elusive. At the center of this challenge is spatial heterogeneity.

Specifically, tissue properties including elasticity and sliding directionality, vary across the

domain of interest. Classic optimization-based DIR often allows the tuning of a few hyper-

parameters to balance the tradeoff between fidelity and the regularization property. Spatial

variation in tissue properties means the “optimal” local tradeoff should also be spatially

varying, and cannot be fully characterized with only a few hyper-parameters. Therefore, to

further improve registration performance, it is necessary to exploit additional prior knowl-

edge in the transformation domain. In Chapter 3, we propose two different approaches to

incorporate learned implicit feasibility conditions into DIR.

In classic optimization-based DIR, DVF is solved for each image pair through a time-

consuming iterative process. DL-DIR offers a much faster alternative and can benefit from

data-driven regularizing behaviors. However, it is possible that training and testing samples

differ in either image or motion characteristics or both, resulting in a generalization gap that

risks the reliability of direct inference result for each individual test case. Currently most

DL-DIR methods impose restrictions on setups, which limits wide model dissemination. Ap-

plication to new or less common modalities is challenging without sufficiently large training

cohort. In Chapter 4, we propose a domain adaptation method to address the potential

domain shift, and improve the accuracy and robustness of registration.

4D imaging provides important physiological information for diagnosis and treatment.

On the other hand, its acquisition could be challenged with artifacts due to motion or sort-
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ing/binning, time and effort bandwidth, and imaging dose considerations. A 4D synthesis

development would significantly augment the available data, addressing quality and consis-

tency issues. Furthermore, the high-quality synthesis can serve as an essential backbone to

establish a feasible physiological manifold to support online reconstruction, registration, and

downstream analysis from real-time imaging. In Chapter 5, we propose a DIR approach to

synthesize continuous 4D motion from two extreme phases.
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CHAPTER 2

Scale-Adaptive Deep Network for Deformable Image

Registration

2.1 Introduction

Despite the benefit of efficiency, it is challenging for DL-DIR methods to achieve highly

physically and physiologically feasible registration since deformations of various scales need

to be addressed by the network simultaneously. Tissue properties including elasticity and

anisotropic discontinuity or sliding, vary across scales and spatial locations. This spatial

heterogeneity in deformation scale is challenging for deep networks (CNNs), which typically

use a single kernel size with a unique reception field at each level.

One way to address this problem is to implement the multi-resolution strategy by se-

quentially optimizing multiple networks with the warped image from the previous network

passed to the subsequent network as the moving image input to progressively refine the DVF

[SCX18, VBV19, ZDC19, CGW19, WAH20]. This increases the total number of network pa-

rameters and requires a prolonged training process. In addition, the repeated resampling of

the moving image may accumulate errors and thus limit registration accuracy [WAH20].

Another way to better accommodate the scale heterogeneity is by using more sophis-

ticated network architectures. U-net was proposed for segmentation tasks and was shown

able to achieve good performance with relatively small datasets [RFB15]. Its hierarchical

structure and skip connections between the encoder and decoder allow fusion of information

across scales. The U-net structure has also been tested in registration as the backbone in
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many studies (details in Sec. 2.2.1). Inception module was proposed with GoogleNet to cap-

ture multi-scale contextual features by using kernels with multiple sizes in parallel [SLJ15].

Several versions of the inception module have been proposed in combination with factorized

convolutions and residual blocks to improve the performance and efficiency [SVI16, SIV17].

In this study, we propose a network for end-to-end DIR that is conscious of and self-

adaptive to information from various scales. Dilated inception modules (DIMs) are proposed

to accommodate the need for larger reception fields and a wide range of scales efficiently.

Scale adaptation modules (SAMs) are proposed to learn a spatial map of optimal scale based

on dilated convolution and combine shallow and deep features in a self-adaptive setting.

2.2 Related Works

2.2.1 Backbone Architectures of Registraion Networks

Pooling-based and U-net-based architectures are two types of backbone networks that are

commonly used in both supervised and unsupervised learning DIR methods. Here, we briefly

review some studies that addressed the scale problem.

The pooling-based architecture refers to the networks with shrinking feature map width.

The networks typically consist of convolution and pooling layers only, and the output DVF

size is a fraction of the input size, resulting in a lower degree of freedom. Sokooti et

al. [SVB17] proposed a supervised RegNet to predict deformation vectors from input image

patches. The network consisted of two paths of convolution and pooling layers to integrate

information from two scales. Cao et al. [CYZ18] proposed a cue-aware deep regression net-

work that operates on 3D patches. The network employed a scale-adaptive local similarity

as contextual guidance and learned from deformations generated using a sampling strategy

in both image and deformation spaces. De Vos et al. [VBV19] used a pooling-based archi-

tecture in their unsupervised method to infer B-spline control points from image patches.

They stacked multiple networks with different B-spline grid spacing and image resolution at
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each level to perform coarse-to-fine DIR.

Compared to the pooling-based approach that outputs sparse DVF interpolated by B-

spline or thin-plate spline kernels, U-net [RFB15] is a more popular choice of the backbone

network, which predicts dense DVFs with deconvolution or unpooling layers while combining

information across scales. With a U-net-based architecture, Rohé et al. [RDH17] proposed

SVF-Net to predict velocity fields by learning from segmentation-derived ground-truth de-

formations in a supervised setting. Balakrishnan et al. [BZS19] proposed VoxelMorph for

unsupervised DIR and tested with brain MRIs. They also integrated the method with a

diffeomorphic parameterization enabled by the scaling and squaring layers [DBG18]. Zhao

et al. [ZLL19] proposed VTN with a cascading scheme, an integration of an affine regis-

tration network, and an invertibility loss. They also investigated the recursive cascade of

VoxelMorph and VTN and achieved significant improvements with the progressive deforma-

tions [ZDC19]. Eppenhof et al. [ELV19] proposed a progressive learning scheme to enable

training on large and small deformations with the same supervised U-net. They progressively

expanded the network with additional layers on higher resolutions and trained the network

using lung CT images with simulated deformations. Cheng et al. [CGW19] proposed to cas-

cade a series dilated convolutions as a refinement network after coarse registration by U-net,

to obtain different sizes of receptive fields while maintaining the resolution of feature maps.

2.2.2 Dilated Inception

Dilated inception is the combination of dilated convolutions and inception module. This

design has been proposed independently by a few studies to achieve abundant receptive

field size without compromising the computational efficiency. The detail of its structure will

be introduced in Sec. 2.3.3. Some studies also investigated atrous spatial pyramid pooling

(ASPP) and other ways to combine convolutions with different dilation rate and variations

to the dilated inception design. Here, we briefly review some studies that use multi-rate

dilated convolution layers in computer vision tasks and medical image segmentation tasks.
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Shi et al. [SJZ17] proposed a deep network, which cascaded multiple dilated convolu-

tion based inception modules, for single image super-resolution. Chen et al. [CPK17] pro-

posed DeepLab for semantic image segmentation with ASPP, which probed an incoming

feature map with filters at multiple sampling rates and effective fields-of-views to capture

objects and image context at multiple scales. Li et al. [LYG19] proposed a dilated-inception

net (DIN) to extract and aggregate multi-scale features for right ventricle segmentation.

Yang et al. [YLJ19] proposed a dilated inception module to efficiently capture multi-scale

saliency-influential factors for visual saliency prediction. Wang et al. [WLT19] proposed a 3D

networks for MRI prostate segmentation with group dilated convolution to aggregates multi-

scale contextual information. They explored different ways including sequence, summation,

and concatenation, to combine convolutions with different dilation rates. Li et al. [SGK20]

introduced dilated inception into the encoder part of U-net to improve liver and tumor seg-

mentation performance. Fu et al. [FLW20b] integrated dilated inception and self-attention

gates into the unsupervised learning framework for 4DCT lung DIR and achieved comparable

performance to traditional DIR.

2.2.3 Scale Adaptation with Dilation Convolution

Scale adaptation can be achieved by varying the dilation rate or adjusting the combination

of dilated convolution kernels, and thereby the size of receptive field. This idea has been

investigated in several studies in semantic segmentation and medical image segmentation.

Zhang et al. [ZTZ17] proposed scale-adaptive convolutions to obtain flexible-size receptive

fields for scene parsing. The scale-adaptive convolutions employed implicitly learned scale

coefficient maps to scale the sizes of convolutional patches. Zhang et al. [ZZL20] proposed

ASCNet for microscopy image segmentation. A sub-network was used to adaptively learn an

appropriate dilation rate for each pixel in the image. The dilation rate was then transmitted

as a shared parameter for all convolution layers. Guo et al. [GCY20] proposed a network for

automatic melanoma segmentation with knowledge aggregation modules (KAMs) to alleviate
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the hole and shrink problems. In KAM, dilated convolutions on shallow features had adaptive

receptive fields, which were adjusted according to deep features. Jin et al. [JLZ21] proposed

CASINet for scene parsing. In the contextual scale interaction (CSI) module, they used

weighted combination of the multi-scale features from ASPP to mimic the use of adaptive

filters for each spatial position of each scale. Then the features were further fused using scale

and channel attention in the scale adaptation module.

2.3 Methods

2.3.1 The Overall Image Registration Framework

Figure 2.1: Overview of the proposed unsupervised registration framework.

As shown in figure 2.1, the proposed method consists of a registration network and a

spatial transformation module. The registration network concatenates fixed and moving

images as input and generates a DVF v, with which the moving image x is warped toward

the fixed image y. Inside the spatial transformation module, a sampling grid is created using

the input DVF. The input moving image x is sampled at these grid points to form the output

warped image x′ [JSZ15].
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The loss function is defined as the weighted sum of the intensity match discrepancy and

the regularity penalty:

L = Ls(y, x
′) + λLr(v), (2.1)

where Ls is the image similarity loss, Lr is the DVF regularization loss, and λ is a bal-

ancing hyper-parameter. In this work, we use normalized cross-correlation (NCC) as the

image similarity metric, but the method also applies to other choices such as mutual infor-

mation [VVS20].

Ls(y, x
′) = 1− NCC(y, x′) = 1−

〈
y − ȳ

∥y − ȳ∥2
,

x′ − x̄′

∥x′ − x̄′∥2

〉
. (2.2)

Bending energy penalty is used as the DVF regularization loss to penalize nonsmooth defor-

mations and therefore encourage physical feasibility [RSH99]. Its 2D version can be written

as:

Lr(v) =
1

dadb

da∑
a=1

db∑
b=1

[(
∂2v

∂a2

)2

+

(
∂2v

∂b2

)2

+ 2

(
∂2v

∂a∂b

)2
]
, (2.3)

where a and b are spatial indices of the 2D image, and da and db are the corresponding spatial

resolutions, respectively. During training, a back-propagation scheme is used to derive a DVF

solution to minimize the objective in equation 2.1.

The 2D and 3D versions of the method are with this common framework. Here in Sec. 2.3,

we mainly present the 2D version. The 3D version uses the same number of channels and

2D operations replaced by 3D counterparts.

2.3.2 Proposed Scale-adaptive Registration Network

The major contribution of this work is a scale-adaptive registration module. The module

uses a general U-net structure [RFB15] to take advantage of the hierarchical structure and

skip connections for effective learning of features at all scales. Scale adaptation is achieved

with the introduction of DIMs and SAMs.
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Figure 2.2: Architecture of the scale-adaptive registration network. Numbers inside the

blocks indicate number of channels.

Figure 2.2 shows the architecture of the networks. In both of the encoding and decoding

paths, most of the standard 3× 3 convolution layers in the conventional U-net are replaced

with DIMs to increase the receptive field size (details in Sec. 2.3.3).

In addition, SAMs are introduced into the skip connecting paths at the second (1/2) and

third (1/4) resolution levels to better extract shallow features using kernels with adaptive

receptive fields learned from deep features (details in Sec. 2.3.4).

All the standard 3 × 3 convolution layers use a stride of 1, zero-padding, and ReLU

activation, except the last layer, which uses linear activation. Average pooling and bilin-

ear interpolation with a scaling factor of 2 are used in the down- and up-sampling layers,

respectively.
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2.3.3 Dilated Inception Module (DIM)

Figure 2.3: Dilated inception module.

Dilated convolution, also known as atrous convolution, enlarges the receptive field by in-

serting spacing into convolutional kernel according to the dilation rate (DR) [YK15, CPK17].

A 2D dilated convolution operation can be written as:

g[a, b] =
M∑

m=1

N∑
n=1

f [a + r ·m, b + r · n] · h[m,n], (2.4)

where f is the input feature map, g is the output feature map, h is the convolutional kernel

with effective kernel size M × N , and r is the dilation rate. m and n, and a and b are

the spatial indices for the convolutional kernel and feature map, respectively. When r = 1,

the operation reduces to a standard convolution layer. Compared to standard convolution

with a large kernel size, dilated convolution is able to achieve large receptive fields without

additional network parameters. Compared to using a large (> 1) stride in a convolution

layer, dilated convolution keeps the spatial resolution and may preserve spatial information

better.

Inception blocks have been used for classification and detection tasks in computer vi-

sion and were shown to improve performance with a modest increase in computational
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cost [SLJ15]. An inception block combines convolutional operations with multiple kernels of

different sizes, and concatenate their output features to form a single output to be fed into

the next layer. The output of the inception block contains features with effective receptive

fields of different sizes.

We propose to integrate dilated convolution kernels into an inception block to combine

the benefit of computational efficiency in dilated convolution and the richness in scale of

the learned features from the inception setup. We refer to this design as a dilated inception

module (DIM). As shown in figure 2.3, three 3 × 3 dilated convolutions (i.e., M = N = 3)

with dilation rates r = 1, 2, 3 are apply to the input feature map in parallel to extract features

with different receptive fields. The convolution results are then concatenated and activated

with a ReLU function to form the output. In this work, we use 8 channels for each of the 3

kernels, resulting in an output feature map with 24 channels.

2.3.4 Scale Adaptation Module (SAM)

In conventional U-net, shallow features in the encoding path are passed to the decoding path

through skip connections. Here we proposed to further utilize the contextual information

provided by the deep features to guide the propagation of shallow features in the skip con-

nections according to local scales. We propose to use a scale adaptation module (SAM) to

integrate the features in a self-adaptive way.

As shown inside the dashed box in figure 2.4, the input feature map from the previous

resolution level in the decoding path is first up-sampled by 2 and passed through a standard

convolution layer. It is then mapped to the range of (1, 3) with tanh(·)+2 as an activation

function to form the corresponding estimate of dilation rate map (DRM). Each pixel value

in the DRM is used to assign the dilation rate of a 3 × 3 dilated convolutional kernel at

each corresponding spatial location. This convolution with spatially adaptive dilation rate

is applied to the input features from the encoding path to generate a feature map with

adaptive scale. Finally, this feature map is concatenated with the up-sampled decoding
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Figure 2.4: Scale adaptation module. “Input from decoding path” is from the lower reso-

lution level, and its path within the module is indicated by the blue arrows. “Input from

decoding path” is via the skip connection in the U-net, and its path within the module is

indicated by the red arrows.

features and the DRM to form the output of SAM. The up-sampled decoding features,

the adaptive dilated convolution, and the DRM have 24, 16, and 1 channels, respectively,

yielding an overall output feature map of 41 channels (as illustrated in figure 2.2). The

standard convolution layer for DRM generation uses kernel size of 3× 3 for the SAM at the

1/2 level and 5× 5 at the 1/4 level.

The implementation of the adaptive dilated convolution is slightly different from equa-

tion (2.4). Since the dilation rate is limited within the range of (1, 3), we first compute the

feature maps from dilated convolutions with r = 1, 2, 3, respectively. Note that the parame-
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ters for the three dilated convolutional kernels are shared because they arise from the same

standard kernel. For fractional dilation rates, linear interpolation of the three feature maps

at each spatial location is used as a surrogate:

g(r) = t1 · g(1) + t2 · g(2) + t3 · g(3), (2.5)

where t1 + t2 + t3 = 1, numbers inside the parentheses indicate dilation rates.

The concept of adaptive dilation rate has been investigated by a few studies in semantic

segmentation and medical image segmentation [ZTZ17, ZZL20, GCY20]. However, to the

best of our knowledge, this is the first study that introduces adaptive dilation rate into a

DIR network or into a 3D setup. Our approach of the adaptive dilated convolution operation

is faster and requires much less memory than the approach presented by Guo et al. [GCY20],

where the bilinear interpolation of the feature map involves a large interpolation array, whose

high dimensionality makes it computationally inefficient. The reduction in memory usage

enables the 3D implementation of our method.

2.4 Experiments and Results

The network was implemented in both 2D and 3D using TensorFlow. The proposed method

was compared against a conventional B-spline-based method in SimpleElastix [MBS16] and

three simplified versions of the registration network: U-net alone, U-net with DIM, and U-net

with SAM. The objective function was kept the same all methods. In SimpleElastix, a multi-

resolution strategy was used, with 20 optimization iterations in each of the four resolution

levels. The experiments were performed on a workstation equipped with an NVIDIA GTX

1080 Ti GPU and an Intel i7-6700HQ 3.5 GHz CPU.
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2.4.1 Experiment on Cardiac MRIs

2.4.1.1 Data

The method was tested on 2D cardiac MRI sequences obtained from Sunnybrook Cardiac

Data [RLC09], which contains 45 4D short-axis cardiac cine MR scans, each containing 20

frames that cover the cardiac cycle. The image resolution was 256×256, with 10 slices, pixel

spacing 1.25 mm, and slice thickness 8 mm. Segmentations of left ventricular cavity was

provided in the dataset at end-diastole (ED) and end-systole (ES) frames. 45 4D scans were

divided into training, validation, and testing sets, containing 30, 5, and 10 scans, respectively.

Fixed and moving image pairs were prepared by picking 2D slices from the same 4D scan,

at the same slice position but at different time points in the cardiac cycle. Down-sampled

in the temporal domain, 27,000 2D image pairs were used for training eventually. A typical

image pair is shown in figure 2.5 (a,b).

2.4.1.2 Network Training

Each registration network was trained in mini-batches of 8 image pairs for 80 epochs. The

balancing weight λ in equation 2.1 was set to 2 as a result of tuning. ADAM optimizer with

a learning rate of 10−4 was used.

2.4.1.3 Evaluation

Using the provided segmentations of left ventricular cavity, we computed the following met-

rics to evaluate the registration performance.

Dice coefficient [Dic45, YV18] between the propagated segmentation mask Mx′ and the

segmentation masks on the fixed image My:

Dice =
2|Mx′ ∩My|
|Mx′ |+ |My|

. (2.6)
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Figure 2.5: Example cardiac MRI registration result in our method. (a) Moving image.

(b) Fixed image. (c) Warped image. (d) DVF. (e) Visualization of the DRM at the 1/4

level.

Average surface distance (ASD) [YV18] between the propagated and fixed segmentation

contours:

ASD =

∑
px′∈Cx′

dist(px′ , Cy) +
∑

py∈Cy
dist(py, Cx′)

|Cx′ |+ |Cy|
, (2.7)

where px′ and py are points on the propagated contour Cx′ and the contour on the fixed

image Cy, respectively.
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2.4.1.4 Results

Figure 2.6: Learning curves showing the total loss during the training of the networks. Values

for the first two epochs are not displayed.

Figure 2.6 shows the learning curves of the networks. It can be observed that both

DIM and SAM effectively reduced the final loss value and DIM provided more significant

improvement. The self-adaptation mechanism in SAM made the networks slightly slower

to converge. At around the 40th epoch, SAMs began to surpass the counterparts without

SAM.

Figure 2.5 shows an example registration result. It can be observed that large dilation

rate values in the DRM in (e) correspond to the spatial locations with large deformation in

(d).

Table 2.1 shows the quantitative results. Wilcoxon signed-rank tests were performed to

examine the statistical significance (at significance level of 0.05, Zcrit=1.96). In terms of

dice coefficient, our method achieved the best result among all the methods tested, with

19



statistical significance. In terms of ASD, our method outperformed other networks and

was comparable to the best-performing SimpleElastix results without statistical significance.

The introduction of SAM increased the network registration time by 2 milliseconds, but the

network still offers more than 3 orders of magnitude speed-up over SimpleElastix.

Table 2.1: Results of the cardiac MRI registration experiment. Results are provided as mean

± standard deviation (Z-value from Wilcoxon signed-rank test). Z-values that indicate

statistical significance are underlined.

Dice ASD (mm) Time (s)

SimpleElastix 0.92±0.03 (2.13) 1.65±0.98 (1.89) 5.63

U-net 0.91±0.04 (4.72) 1.73±1.37 (3.11) 0.002

U-net DIM 0.93±0.02 (2.00) 1.69±1.01 (1.60) 0.002

U-net SAM 0.91±0.03 (3.56) 1.73±1.33 (2.95) 0.004

Our method 0.93±0.02 1.68±0.95 0.004

To further appreciate the performance of the SAM, we calculated histograms of the

dilation rates in the SAM at the 1/4 resolution level. A comparison was made between DRMs

for image pairs of (a) adjacent frames near ED, where deformation is small, and (b) ED and

ES frames, where deformation is large, as shown in figure 2.7. It can be observed that the

distribution of the estimated dilation rates is in agreement with the qualitative motion levels:

with the larger deformations between ED and ES taking a larger proportion of high dilation

rate. The proportion of dilation rate values larger than 2.25 P (r > 2.25) was 0.023 and

0.088 for the small and large deformations, respectively.
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Figure 2.7: Histograms showing the distributions of dilation rates in the SAM for testing

image pairs with small and large deformations. The number of pixels are the same, and the

total counts are equal for the two input settings.

2.4.2 Experiment on Synthetic Data

2.4.2.1 Data Generation

Given the absence of ground-truth DVFs in clinical images, we synthesized DVFs and images

as digital phantoms for a quantitative evaluation on dense DVFs. Data generation was

based on the same dataset as described in Sec. 2.4.1.1. As shown in figure 2.8, first we used

SimpleElastix (with the same objective function and setup) to generate DVFs between ES

and ED frames of the images. These DVFs were multiplied by a scaling factor α uniformly

distributed within the range [0.5, 1.2] for data augmentation. The scaled DVFs were taken

as ground truths and were used to generate the warped images in the forward direction with

corresponding moving images. Training, validation, and testing sets contained 4800, 800,
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Figure 2.8: Example synthetic data. (a) Moving image. (b) Fixed image in SimpleElastix.

(c) SimpleElastix DVF. (d) Scaled DVF with α = 0.6. (e) Forward generated fixed image.

and 1600 2D synthetic samples, respectively.

2.4.2.2 Network Training

Each registration network was trained in mini-batches of 8 image pairs for 500 epochs. The

balancing weight λ in equation 2.1 was set to 2. ADAM optimizer with a learning rate of

10−4 was used.
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2.4.2.3 Evaluation

Root mean squared error (RMSE) to the ground-truth DVF was calculated as a dense version

of target registration error (TREd) to indicate registration performance:

TREd =

√√√√ 1

dadb

da∑
a=1

db∑
b=1

∥v∗ab − vab∥2, (2.8)

where v∗ and v are the ground-truth and result DVFs.

2.4.2.4 Result

Paired t-tests were performed to examine the statistical significance. As shown in table 2.2,

our method achieved the lowest TRE among all the networks, with statistical significance.

Table 2.2: Results of the synthetic image registration experiment. Results are provided as

mean ± standard deviation and p-value from paired t-test.

TREd (mm) p-value

U-net 0.024±0.020 2.75×10−8

U-net DIM 0.019±0.011 9.53×10−3

U-net SAM 0.022±0.020 2.12×10−7

Our method 0.017±0.009 -

To further appreciate the performance of the SAM, we examined the DRM at the 1/4

resolution level and calculated P (r > 2.0) and P (r < 1.5) for varying magnitudes of defor-

mation introduced by varying α values. The results are shown in figure 2.9. With larger

deformation magnitude quantified by α, the proportion of small dilation rate decreased and

the proportion of large dilation rate increased.
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Figure 2.9: Statistics of the dilation rates for varying magnitudes of deformation introduced

by varying α values for data synthesis.

2.4.3 Experiment on lung 4DCT

2.4.3.1 Data

We also evaluated the 3D version of the network using two publicly available thoracic 4DCT

datasets: 4D-Lung collection from the Cancer Imaging Archive (TCIA) [HWS17] and DIR-

Lab [CCG09, CCM09]. The 4D-Lung collection consists of scans acquired during chemora-

diotherapy of 20 locally-advanced, non-small cell lung cancer patients. One scan from each

patient was used. The images were acquired on a 16-slice helical CT scanner as respiration-

correlated CTs with 10 breathing phases. The reconstructed slice thickness was 3 mm and

in-plane spacing was 0.98 to 1.17 mm. The DIR-Lab dataset consists of 10 scans acquired as

part of the radiotherapy planning process for the treatment of thoracic malignancies. The

images also have 10 breathing frames. The slice thickness was 2.5 mm and in-plane spacing

was 0.97 to 1.16 mm. Each scan contains 300 manually identified anatomical landmarks

annotated at end-exhale (EE) and end-inhale (EI) phases.
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The 4D-Lung collection was divided into training and validation sets, containing 15 and 5

scans, respectively. 1350 intra-subject 3D image pairs were used for training eventually. The

DIR-Lab dataset was used as an independent testing set to realistically reflect the predicted

performance on images acquired from different institutions and machines. All images were

resampled with slice thickness 2.5 mm and typical in-plane pixel spacing 1.16 mm and then

cropped with a 256×256×96 window that covered the lungs. Image intensities were clamped

between -1000 and 500 HU and scaled between 0 and 1.

2.4.3.2 Network Training

Each registration network was trained for 40 epochs with a batch size of 1. The balancing

weight λ in equation 2.1 was set to 0.5. ADAM optimizer with a learning rate of 10−4 was

used.

2.4.3.3 Evaluation

The 3D Euclidean distance between transformed and fixed anatomical landmarks was cal-

culated as target registration error (TREl) to indicate registration performance.

2.4.3.4 Results

Figure 2.10 shows an example registration result. Note that the 3D DVF is visualized with

its 2D projection on the coronal plane. The large (> 2.25) dilation rate values in the DRM

concentrated around the diaphragm, which was the major driving force for the respiratory

motion and had the largest motion magnitude. While the subdiaphragmatic regions also

had relatively large deformations, we observed that they did not necessarily correspond to

large dilation rate values.

As shown in table 2.3, our method achieved the best TRE among all the methods tested,

with statistical significance (under paired t-test with p < 10−6).
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Figure 2.10: Example thoracic CT registration result in our method. Three coronal slices of

a 3D volume is shown. (a) Moving image. (b) Fixed image. (c) Warped image. (d) In-plane

components of DVF. (e) Visualization of the DRM at the 1/4 level.

2.5 Discussion

In the SAMs, we used linear interpolation of pre-computed feature maps with integer dilation

rates as computationally efficient surrogates to convolutional kernels with fractional dilation

rates. A similar SAM idea has been utilized in segmentation by Guo et al. [GCY20], where

bilinear interpolation of the feature map was used and involved explicit manipulation of

a large interpolation array. Its high dimensionality requires high memory capacity and is

computationally inefficient. A 2D SAM development with 128 × 128 DRM easily drives

the explicit interpolation out of memory in our setting with 11 GB GPU memory. Our

approach of the adaptive dilated convolution operation is more memory-economical and

faster, enabling a 3D implementation on the same lower budget platform. To the best of our

knowledge, this is the first study that introduces adaptive dilation rate into a DIR network

or into a 3D setup.
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Table 2.3: Results of the lung CT registration experiment. TREs are provided as mean ±

standard deviation in millimeter.

Initial SimpleElastix U-net U-net DIM U-net SAM Our method

Case 1 3.89±2.78 1.27±1.13 1.26±0.71 1.40±0.78 1.30±0.71 1.27±0.80

Case 2 4.34±3.90 1.44±1.28 1.69±1.28 1.34±0.79 1.50±1.01 1.26±0.84

Case 3 6.94±4.05 1.77±1.37 2.25±1.56 1.73±1.11 1.93±1.27 1.55±1.14

Case 4 9.83±4.85 2.26±1.88 3.32±2.26 2.33±1.64 2.80±1.88 2.10±1.66

Case 5 7.48±5.50 2.67±2.70 2.79±2.30 2.50±1.84 2.59±1.97 2.30±1.98

Case 6 10.89±6.96 3.82±2.99 3.36±2.07 2.84±2.07 3.18±2.18 2.39±1.53

Case 7 11.03±7.42 3.69±3.15 5.02±3.51 3.40±2.64 4.22±3.01 3.08±2.48

Case 8 14.99±9.00 7.03±8.25 8.81±6.99 5.52±5.83 6.98±6.15 6.01±6.65

Case 9 7.92±3.97 2.43±1.61 3.45±2.10 2.76±1.55 3.11±1.76 2.42±1.55

Case 10 7.30±6.34 3.21±2.89 3.48±3.12 3.05±2.76 3.24±2.92 2.80±2.53

Total 8.46±6.58 2.96±3.73 3.54±3.68 2.69±2.78 3.09±3.12 2.52±2.96

Time(s) - 46.50 0.12 0.12 0.42 0.42

In the 2D experiments, DRMs at the 1/2 level almost always converged to a uniform map

of 1 (i.e., standard convolution), regardless of the kernel initialization methods, presence or

removal of the DIMs, etc. One possible explanation was that features at the 1/2 level were

close to the output layer and focused more on the demand of using local scale to provide

sufficient resolution drive for DVF refinement. Although such kernels converged to standard

convolutions did not hinder the overall network performance, we plan to further investigate

this problem and determine the optimal SAM placement.

In the 3D experiments, we observed that the subdiaphragmatic regions with relatively

large deformations did not necessarily correspond to large dilation rate values, as shown in

figure 2.10. One possible reason is that local textures were missing in those tissues, especially
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after clamping the image intensity, and DVF estimation in those regions was mainly driven

by features on an even more global scale.

The DIR-Lab dataset described in Sec. 2.4.3.1 has also been used to evaluate the multi-

stage deep learning DIR presented by de Vos et al. [VBV19], reporting a landmark-based

TRE of (2.64±4.32) mm. This error was larger than our method and smaller than the three

simplified versions of our network. However, when comparing the TRE results, it should be

noted that de Vos et al. performed a leave-one-out cross-validation on the 10 images in DIR-

Lab, while in our experiment, the networks were trained on 15 images from an independent

TCIA source and were tested on DIR-Lab. Our result was based on a larger training set, but

was challenged by the image variations across datasets and more frequent motion artifacts

in the 4D-lung collection.

Our method was evaluated with three intra-subject experiments because the adaptation

of scale can be better demonstrated and appreciated with the time-resolved motions. We

expect the advantage of adaptive scale to translate to inter-subject registration, which also

need strong accommodation for deformation across various scales.

2.6 Conclusion

In this study, we have presented a deep neural network for DIR. The major contribution

of this work is the introduction and integration of DIMs and SAMs, which address the

heterogeneous scale problem with self adaptation and high efficiency in both GPU memory

utilization and computation time. The self-adaptive dilation rate is in sharp contrast to CNN

architectures using a fixed kernel size in each convolution layer, which has to be prescribed

a priori. The DIMs explicitly enlarge the effective receptive field without additional network

parameters. The SAMs process the shallow features from the encoding path through skip

connections guided by deep decoding features and allow network parameters to be updated

based on the spatial region that covers the local deformation scale. The effectiveness of
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the modules was shown in the experiments. Our method achieved better or comparable

results compared to classic hierarchical B-spline methods in SimpleElastix, where the scale

heterogeneity was addressed with a multi-resolution strategy.
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CHAPTER 3

Incorporating Feasibility Prior into Deformable Image

Registration

3.1 Introduction

The class of allowable deformations is determined by the choice of parametrization mod-

els such as piecewise affine transform, B-splines, thin-plate splines, etc. Such explicit

parametrization usually still renders highly under-determined registration problems, result-

ing in instability of solutions and local optima issues. Regularizations are therefore in-

troduced to alleviate these issues and incorporate prior knowledge into the problem for-

mulation. The regularization terms usually encourage physically or physiologically feasible

deformations, and quantitatively describe the deviation from smoothness, diffeomorphism,

etc.[SDP13, Hol07].

One major challenge in regularization design lies in the mathematical quantification of

physical and physiological properties. Despite the long efforts in designing models and

regularizers for invertibility, diffeomorphism, volume preservation and interface discontinuity

preservation [JC02, Ash07, RFR06, REF09, PHF14], an ideal solution remains elusive. At

the center of this challenge is spatial heterogeneity. Tissue properties including elasticity and

anisotropic discontinuity or sliding, vary across the domain of interest. This indicates that

spatially adaptive local orders and balancing weights are necessary for parametric models and

regularizations, respectively, which is beyond the descriptive power of existing registration

methods with a few global hyper-parameters.
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The recent development of deep learning methods provides an alternative to the conven-

tional registration framework. In the context of registration, a deep network can be trained

to infer DVFs directly from input image pairs. Training of the network can be either super-

vised [YKS17, CYZ18, SVB17, KMD17] or unsupervised [VBV17, VBV19, BZS19, FCW19,

LF18, Zha18, DBG18, WAH20, HGG18, SR20, YXR18, MAS18].

In the supervised learning methods, typically a deep neural network is trained with

ground-truth DVFs corresponding to the image pairs in the training set. Unfortunately,

true DVFs are usually inaccessible, and even manually generated flows are prone to large

errors and uncertainty. The usual approach for creating legitimate training samples is by

generating DVFs from image pairs using other registration approaches [YKS17, CYZ18], or

by simulating DVFs first and computing the warped images afterward [SVB17, KMD17].

The corresponding DVF feasibility prior depends on the quality of the “ground truth” and

couples with the registration [YKS17, CYZ18] or simulation approach [SVB17, KMD17],

and limits the overall performance. Despite the benefit of efficiency, it is difficult for these

methods to outperform state-of-the-art optimization-based approaches.

In the unsupervised learning methods, a spatial transformation module as part of the

network architecture enables the computation of warped images and image similarity in the

training process. With explicit loss functions, they are likely to have similar behaviors as

the conventional methods, but the challenge of model and regularization design remains un-

solved. In principle, unsupervised DIR is compatible with any differentiable regularizer from

the classic image-based methods. Existing investigations have been mostly generic without

much tailoring to the respiratory motion so far. DVF smoothness is typically encouraged

using the first or second order spatial gradients [VBV19, BZS19, Zha18, FCW19, LF18,

JYG20, FB20, FLW20a]. Zhang introduced inverse-consistent and anti-folding constraints

by interchanging the fixed and moving images and inverting the DVFs in the training setup

[Zha18]. Dalca et al. imposed diffeomorphic constraints into registration network using

a stationary velocity field representation defined via ordinary differential equation (ODE)
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integration in the scaling and squaring layers [DBG18]. Wei et al. further introduced a

tissue-aware Jacobian determinant regularizer to the diffeomorphic DVF after the scaling

and squaring operations to avoid folding and non-smoothness [WAH20]. Hu et al. intro-

duced adversarial deformation constraints with a discriminator network, which distinguishes

the registration-predicted displacement fields from the motion data offered by biomechanical

models [HGG18].

In this study, we propose two different approaches to impose feasibility conditions on

DIR. Both approaches are based on building implicit feasibility prior on DVF. In the first

approach, a supervised feasibility model is trained from a set of physiologically reasonable

DVFs using a convolutional auto-encoder (CAE). The CAE is used as a flexible regularizer

when training the DIR network. In the second approach, an unsupervised feasibility model

is trained from moving and fixed image pairs directly using a statistical generator network

without any pre-generated DVF sample. It is then used as a novel DVF parametrization

model when performing DIR.

3.2 Supervised Feasibility Prior Based on Convolutional Auto-

encoder

3.2.1 Method

3.2.1.1 Overview

Our method consists of two major modules developed sequentially. First, a feasibility de-

scriptor in the form of a CAE is trained in a supervised setting using a set of physically

reasonable DVFs derived from high-quality images to characterize feasible respiratory mo-

tions. Then, an unsupervised DVF estimation network is trained with potentially low-quality

images, which includes the trained CAE as a Plug-and-Play (PnP) regularizer to simulta-

neously enforce image matching and penalize DVFs that deviate from the learned implicit
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Figure 3.1: Overview of the proposed CAE-based method. Our method consists of two

steps. In the first step, DVFs derived from high-quality images are used to train a feasibility

descriptor to capture the underlying feasibility manifold. In the second step, the feasibility

descriptor is incorporated into an unsupervised DIR network to regularize the estimated

DVFs.

feasibility condition.

As shown in Fig. 3.1, the proposed method consists of a DVF estimation network, a spatial

transformer [JSZ15], and feasibility descriptor. The major contribution of this work is the

injection of the feasibility descriptor, which is trained independently beforehand and then

plugged into the DVF estimation network. Loss functions defined as the combination of the

dissimilarity between the fixed and warped images and the DVF feasibility violation provided

by the descriptor, are used to drive the network optimization, with a back-propagation

scheme.
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3.2.1.2 DVF Feasibility Descriptor

Figure 3.2: Architecture of the feasibility descriptor.

To introduce spatially variant regularization on deformation, we use a CAE to model the

DVF feasibility conditions. As shown in Fig. 3.2, the Jacobian matrix of an input DVF is

computed and represented by a nine-channel feature map. In the encoder, four alternating

layers of convolution and average-pooling are applied. Then, a fully connected layer with

256 units is used, which generates the latent representation of the DVF. The decoder path

consists of a fully connected layer and three transposed convolution layers with stride of

2. All the (de)convolution layers use zero-padding, kernel size of 3, and ReLU activation,

except the last layer, which uses linear activation.

The loss function used for the CAE training is the squared Frobenius norm of point-wise

difference between the DVF Jacobian and the CAE output:

LV = ∥∇(v)− CAE(∇(v))∥2Frob, (3.1)

where v is a DVF sample, and∇ is the Jacobian operator. Once the CAE is properly trained,

the deviation of a candidate DVF from the manifold, as described by the auto-encoding

discrepancy of its Jacobian matrix in squared Frobenius norm, provides a measure of the

physical or physiological feasibility of that DVF. With the CAE trained under supervision

with site-specific data, we expect it to consolidate spatial variant smoothness and directional-

specific characteristics, and transfer such knowledge into the subsequent DVF estimation
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network.

3.2.1.3 Unsupervised Learning for DVF Estimation

The DVF estimation network takes concatenated pairs of moving and fixed images as input,

and outputs a DVF. As shown in Fig. 3.3, the network uses a general U-net structure [RFB15]

to take advantage of the hierarchical structure and skip connections for effective learning of

features at all scales. All the 3 × 3 × 3 convolution layers use a stride of 1, zero-padding,

and ReLU activation, except the last layer, which uses tanh activation. Average pooling

and up-sampling with a scaling factor of 2 are used in the encoding and decoding paths,

respectively.

Figure 3.3: Architecture of the DVF estimation network.

The loss function for the DVF estimation network training consists of an image intensity

matching cost LD and an implicit feasibility violation penalty on DVF Jacobian LV . In this

work, we used normalized NCC as the similarity metric. The loss function can be written
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as:

L = LD + µLV = −NCC(IF , IM ◦ v) + µ∥∇(v)− CAE(∇(v))∥2Frob, (3.2)

where v(IF , IM) is the DVF ouput from the estimation network, IW = IM ◦ v is the image

warped with DVF v, and µ is a balancing weight.

3.2.2 Experiments on Lung CT and CBCT

3.2.2.1 Training of the Feasibility Descriptor

To obtain the DVF samples that represent realistic respiratory motion, we performed con-

ventional B-spline registration on a set of 10 CT images from the DIR-Lab dataset [CCG09,

CCM09]. The slice thickness was 2.5 mm and in-plane spacing was 0.97 to 1.16 mm. All

images were resampled with slice thickness 2.34 mm and in-plane pixel spacing 1.16 mm,

and then cropped to a 256× 256× 64 window that covered the lungs. Image intensities were

clamped between -1000 and 500 HU and scaled between 0 and 1.

Classic B-spline registration in SimpleElastix was used to generate DVFs between breath-

ing phases, with bending energy penalty (BP) regularized NCC objective. In order to ac-

commodate spatially variant regularization, we used various values of regularization weights

λ ranging from 0.01 to 2, so that the learned manifold could address different local trade-offs.

For each of the 10 scans, 15 moving and fixed image pairs were selected. Then, they were

augmented by 5 registrations performed with different λ for BP regularization. As a result,

750 DVFs were generated as the training set. The CAE was trained for 200 epochs with

batch size 1. ADAM optimizer with learning rate 10−4 was used.

3.2.2.2 Training of the DVF Estimation Network

The 4D-CBCT data was from the 4D-Lung collection in the Cancer Imaging Archive (TCIA)

[HWS17]. They were acquired during chemoradiotherapy of 20 locally advanced, non-small
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cell lung cancer patients. Each scan has 10 breathing phases. The reconstructed slice thick-

ness was 3 mm and in-plane spacing was 0.98 to 1.17 mm. The images were pre-processed

to the same size and pixel spacing described in Sec. 3.2.2.1. The training, validation, and

testing sets contain 10, 5, and 5 patients, respectively. In the training set, 25 scans from the

10 patients were used for data augmentation purpose.

For each scan, 15 moving and fixed image pairs were selected. The network was trained

for 150 epochs with batch size 1. The balancing weight µ in Eq. (3.2) was set to 10−6.

ADAM optimizer with learning rate 10−4 was used.

In addition, to test the method’s sensitivity to the regularization weight µ, the network

was also trained in four other settings with µ = 10−7, 10−6.5, 10−5.5, 10−5.

3.2.2.3 Benchmark Methods

The proposed method was compared against a classic B-spline method, a diffeomorphic

Demons method [VPP09], and DVF estimation networks trained without regularization, with

bending energy penalty (BP) regularization [VBV19], and with a cooperative CAE [BEK19].

Classic BP: The classic B-spline registration was based on the SimpleElastix tool-

box [MBS16]. The cost function is the weighted sum of NCC and BP, with the regularization

weight tuned for each case to optimize the performance.

Demons: The diffeomorphic Demons method was based on the Insight Toolkit (ITK) [VPP09].

250 iterations were used. Gaussian smoothing with standard deviation of 1.0 was applied on

the DVFs.

U-net and U-net BP: The proposed DVF estimation network was trained with and

without BP. The weight for BP was set to 1. Other hyperparameter settings were the same

as Sec. 3.2.2.2.

Coop CAE: The closest learning-based feasibility prior to ours is the cooperative auto-

encoder in [BEK19], where a CAE is also used as a regularizer, similar to this work. It differs
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from our proposal in that the CAE and the DIR network are trained jointly so the CAE

mainly acts as a dimensionality regularizer, and it acts on the same image inputs as the DIR

without any training on DVF set. We trained the estimation network with the initialization

phase proposed in the paper and set the regularization weight to 0.5. Other hyperparameter

settings were the same as Sec. 3.2.2.2.

3.2.2.4 Evaluation

Landmark evaluations on real CBCTs: On the five clinical 4D-CBCT from TCIA, we

manually annotated ten anatomical landmark pairs at the EE and EI phases.

The Euclidean distance between the transformed and the fixed landmarks was calculated

as TRE to measure registration performance. Paired t-tests were used to examine statistical

significance.

Landmark evaluations on simulated CBCTs: To obtain landmark annotation on

a larger scale, we simulated 4D-CBCTs from CT scans in the SPARE dataset [SGL19].

Each phase in the CBCT was simulated independently, using the corresponding 3D CT

data. The geometric setup and the number of projections were set to match the protocol

in the TCIA acquisition. FDK reconstruction algorithm was then applied using the TIGRE

toolbox [FDK84, BDH16]. As shown in Fig. 3.4, the simulated CBCT has similar image

quality to the clinical CBCT.

We applied an automatic landmark pair detection algorithm [FWT19] to the original

CTs to take advantage of its higher image quality and structural details. The locations of

the landmarks were then mapped to the simulated CBCTs. Eventually, nine scans from the

dataset were used, each with 100 landmark pairs in the EI and EE phases.

Enhancement experiment: An accurate DIR should be able to identify the motion

trajectory of each pixel, and integration along such trajectory can enhance image quality. A

simple motion-compensated image enhancement test was performed by collapsing all phases

38



of the 4D-CBCT according to the estimated DVFs to an arbitrary reference phase and taking

the average.

Figure 3.4: Example registration results. The first two rows (A) are from a real CBCT,

and the last two rows (B) are from a simulated CBCT. 3D DVFs are visualized with their

2D projection onto the coronal plane with the color indicates the deformation magnitude in

3D (unit: mm). White arrows indicate local non-smoothness. Red arrows indicate dubious

motions outside the rib cage.

In the simulated CBCT study, the enhancement is quantified with root-mean-square

error (RMSE) and structural similarity index measure (SSIM), in addition to qualitative

visualization as with clinical CBCT data.
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Figure 3.5: Example input DVF to the feasibility descriptor and its reconstructed output.

The background is the corresponding fixed image. Color indicates motion magnitude (unit:

mm). The CAE reconstruction effectively removes dubious large motion outside of rib cage

(red arrows) and preserves physiological large motion driven by diaphragm dynamics (blue

arrows).

3.2.2.5 Results

To illustrate the behavior of the CAE-based regularizer, an example input DVF to the

trained feasibility descriptor and its corresponding DVF reconstructed from the CAE-output

Jacobian are shown in Fig. 3.5. It can be observed that the reconstructed output preserved

reasonable motion boundaries but was smoother. The false deformation vectors outside

the ribcage were significantly reduced in magnitude, while the large motions close to the

diaphragm were preserved. Note that the input DVF is an intermediate result from an

incomplete training process, and that the reconstructed DVF is calculated from the output

Jacobian through integration, which is not explicitly required as a step in our method, but

is illustrated here to demonstrate the behavior and impact of the feasibility descriptor.

Fig. 3.4 shows some example registration results. The desirable local smoothness was

most appropriately reflected in the solutions from Coop CAE and our method, as seen in

(A8), (B7), and (B8). The small motions outside the rib cage were better estimated by U-net

BP, Coop CAE, and our method, whereas other methods were heavily affected by artifacts

in that region, as seen in (A4), (B3), and (B4).
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Table. 3.1 shows the quantitative TRE results. Our method achieved the best TREs

on both real and simulated data. Paired t-tests indicated that the TRE reductions in our

method were statistically significant (p < 0.01) compared to all the other methods tested.

The average registration time was 52 s for classic BP, 82 s for Demons, and 0.04 s for all

four networks.

Table 3.1: Target registration errors based on the anatomical landmarks. Results are pro-

vided as mean ± standard deviation in millimeter (p-value from paired t-tests).

Real CBCT Simulated CBCT

Before 6.12±4.12 7.53±4.15

Classic BP 1.74±1.66 (0.008) 2.55±2.45 (0.001)

Demons 1.98±1.75 (10−4) 2.55±2.77 (10−4)

U-net 2.45±1.87 (10−5) 2.98±3.02 (10−8)

U-net BP 1.93±1.62 (0.001) 2.51±2.41 (10−6)

Coop CAE 1.68±1.23 (0.008) 2.20±2.01 (0.007)

Our method 1.63±0.98 2.13±1.84

Fig. 3.6 shows that the model performance is robust with respect to the choice of regu-

larization weight µ, with very minor TRE variations in response to an order of magnitude

change in µ.

Fig. 3.7 and Fig. 3.8 show example image enhancement results on real and simulated

CBCTs, respectively. Classic BP and Demons still present prevalent streak artifacts after

fusion, as these algorithms are driven to register and enhance streaks in the same way as

anatomical contents. U-net BP tended to predict smooth motion in the homogeneous region,

even when artifacts exist. Since the streak artifacts were associated with the projection

angles, which usually differed in each phase, they became less pronounced after averaging

multiple phases. Coop CAE and our method imposed stronger prior for respiratory motion

and generated better results with less noise and artifacts. Because of the higher accuracy,

41



Figure 3.6: Simulated CBCT registration result from networks trained with different bal-

ancing weights µ for the feasibility violation loss. The horizontal axis is shown in log scale.

our method achieved higher visual resolution and managed to reconstruct sharper detail

structures as indicated by the red ovals in the figures.

Fig. 3.9 shows the image intensity profiles before and after enhancement. Since classic

BP achieved a decent result on this particular image shown in Fig. 3.8, its profile is displayed

for comparison. Our method had the sharpest transition and closest attenuation match.

Table. 3.2 shows the quantitative results. The RMSE and SSIM results are consistent with

the TRE evaluations using landmarks. Our method achieved the lowest RMSE compared

to all the methods tested, with statistical significance (p < 0.01). The method also achieved

the highest SSIM, but without statistical significance when compared against classic BP and

Coop CAE.
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Figure 3.7: Example motion-compensated image enhancement results on real CBCT. Class

BP, Demons still exhibit strong streak artifacts; U-net, U-net BP, Coop CAE, and our

method show smoother images but our method has the sharpest detail.

3.2.3 Experiments on Cardiac CTA and MRI

3.2.3.1 Data

CTA dataset: The CTA dataset for DVF sample generation consists of 10 4D scans, each

containing the ED and ES frames of a cardiac cycle. The scans used contrast according to
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Figure 3.8: Example motion-compensated image enhancement results on simulated CBCT.

The streak artifacts are better alleviated in the four deep learning methods. Sharper detailed

structures are reconstructed in our method.

typical clinical system, on patients who are suspected to have cardiovascular problems (seven

females, aged 74 ± 14 years). The image size was 512× 512, with number of slices ranging
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Figure 3.9: Profiles of the CBCT image before and after enhancement. The image intensity

curves are from a horizontal line segment indicated on the image. The numbers indicate the

root-mean-square errors to the ground truth for pixels on this line.

from 240 to 564, in-plane resolution ranging from 0.31 to 0.45 mm, and slice thickness ranging

from 0.30 to 0.50 mm. The images were resampled with voxel spacing 0.5 mm and cropped

with a 320× 320× 224 window that covered the entire heart.

ViewRay 0.35T MRI dataset: The 0.35T MRI scans were acquired on a ViewRay

MRIdian system with a balanced steady-state free precession (bSSFP) sequence, each con-

taining the ED and ES frames. The scans were from patients who are suspected to have

cardiovascular problems (five females, aged 55 ± 19 years) and were acquired in long-axis

view with a breath-hold and EKG gating protocol. The slice thickness ranged from 6.00

to 8.00 mm with an average slice number of 25. The in-plane pixel spacing ranged from

1.25 to 2.18 mm. Each image was resampled with voxel spacing of 1 mm and cropped to

160× 160× 112. The image intensity was cropped between 0 and 1000 and then normalized

to [0,1].

We performed multi-compartment manual segmentation of the whole heart, left and

right ventricles (LV & RV), left and right atria (LA & RA), and pulmonary artery (PA). An

example ED-ES image pair and its segmentation are shown in Fig. 3.10.
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Table 3.2: Motion-compensated CBCT enhancement results. Results are provided as mean

± standard deviation (p-value from paired t-tests).

RMSE (HU) SSIM

Original CBCT 150.2±11.85 0.982±0.004

Classic BP 115.3±7.83 (10−4) 0.991±0.003 (0.023)

Demons 117.2±8.69 (10−5) 0.987±0.003 (10−4)

U-net 123.3±8.72 (10−6) 0.988±0.002 (10−4)

U-net BP 118.5±8.11 (10−5) 0.990±0.003 (0.001)

Coop CAE 110.2±7.65 (0.003) 0.992±0.002 (0.052)

Our method 107.5±8.51 0.993±0.002

Figure 3.10: Example MRI image pair and the corresponding segmentation on an axial slice.

cMAC 3T MRI dataset: The 3T MRI scans were acquired as part of the cMAC public

dataset [TDM13]. Each scan had 30 frames. The scans were from 15 healthy volunteers

without clinical history of cardiac disease (three females, aged 28 ± 5 years) and were

acquired in short-axis view with a breath-hold and EKG gating protocol. The image size

was typically 256×256×14, with voxel size 1.25×1.25×8 mm3 . The image was resampled

to horizontal long-axis-view grid, with 1 mm voxel spacing. Then, they were cropped and

normalized to the same size as the 0.35T images.

In each scan, 12 landmarks on LV were located using the corresponding tagged MRI:
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one landmark per wall (anterior, lateral, posterior, septal) per ventricular level (basal, mid-

ventricular, apical). The landmarks were manually tracked by two observers. The average

inter-observer variability was 1.12 mm.

3.2.3.2 Training of the Feasibility Descriptor

When SimpleElastix was used to generate the DVF samples, all 10 CTA scans were reg-

istered 10 times, using different BP regularization weights, giving rise to 100 DVFs as the

training set. With the deep learning methods, all 10 scans were processed with three different

networks structures with two training settings each, giving rise to 60 DVFs as the training

set. The diffeomorphic Demons method used 250 iterations and Gaussian smoothing with

standard deviation of 0.5, 1.0 and 2.0, giving rise to 30 DVFs. An example CTA image and

its derived SimpleElastix DVF are shown in Fig. 3.11.

With the three DVF sample sets, CAE based on SimpleElastix (CAESE), CAE based on

deep learning methods (CAEDL) and CAE based on all the methods (CAEAll) were trained

independently, each with a batch size of 1 and 120,000 iterations. The ADAM optimizer

with a learning rate of 10−4 was used.

Figure 3.11: Example CTA image and DVF derived from classic B-spline registration.
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3.2.3.3 Training of the DVF Estimation Network and Assessment

0.35T images and segmentation-based performance evaluation We performed a

leave-one-out cross-validation experiment on the 0.35T scans: each time nine scans were

used for training and the remaining one for testing. The network was trained for 2000

epochs with a batch size of one. The balancing parameter µ was tuned based on the training

performance, and was set to 10−7 subsequently. The ADAM optimizer with a learning rate

of 10−4 was used. For comparison, U-nets with and without BP were tuned, trained, and

tested with the same setting. The weight for BP was tuned to be 0.1.

Evaluation metrics include the Dice similarity coefficient (DSC), Hausdorff distance (HD)

and 80% Hausdorff distance (HD80%) between the fixed mask and estimated mask propagated

from the moving instance. Wilcoxon signed-rank test was used to examine the performance

improvement.

3T images and landmark-based performance evaluation From the cMAC dataset,

15 scans were split into a set of five for refinement training and a set of ten for hold-off test

and performance evaluation. The refinement training was performed to fit the model to the

specific imaging protocol in the dataset. The pre-trained model on 0.35T images was used

for initialization and the refinement training took 20 epochs. Other hyperparameter settings

were kept the same as 3.2.3.3.

Euclidean distance between the fixed and the transformed landmarks was calculated as

TRE to measure registration performance. Paired t-test was performed to examine the

performance improvement.

3.2.3.4 Results

To illustrate the performance of the CAE-based regularizer, an example input DVF for the

CAE and its corresponding DVF reconstructed from the CAE-output Jacobian are shown

in Fig. 3.12. The output DVF was computed using the boundary conditions acquired from
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the input DVF and reconstructed from the Jacobian by integration. It can be observed

that the reconstructed output preserved the motion pattern but was smoother, as the DVF

complexity was constrained by the latent space. Note that the input DVF is an intermediate

result from an incomplete training process, and that the reconstructed DVF is calculated

from the output Jacobian by integration, which is not required as a step in our method, but

is illustrated here to demonstrate the effectiveness of using CAE as a regularizer.

Figure 3.12: Example CAE input DVF and its reconstructed output. The background is the

corresponding fixed image.

Fig. 3.13 and Fig. 3.14 show some example registration results on the ViewRay and

cMAC data, respectively. Despite some differences in local deformation magnitude, all the

three CAE-generating methods resulted in reasonable and smooth DVFs with good intensity

matching. U-net without regularization generated non-smooth and non-feasible DVF. U-net

BP regularization achieved both good intensity matching and smooth DVF, but the DVF

was not physically sound with the large tangential component of the deformation vectors

near the left ventricle, as indicated by the red circle. In comparison, the DVF generated

from our method was physically more feasible.

We have typically observed larger registration errors in the RV and RA regions, regard-

less of imaging protocol or patient diseases. The errors were mostly caused by strong image
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Figure 3.13: Example registration results on ViewRay data.

artifacts. The thin wall structures of RV and RA myocardium made the registration espe-

cially challenging. Fig. 3.15 shows an example where our method failed to estimate the RV

motion correctly. In this case, the image intensity gradient was too strong for the motion

prior to overcome, and our method behaved similarly to the BP regularization.

Table. 3.3 shows the quantitative results based on segmentation on the ViewRay data.

In terms of HD80%, CAESE achieved the best result on RV, and CAEAll achieved the best

result on LV and PA, with statistically significant improvement over U-nets with and without

BP. On LA and RA, our method was comparable to the best results without appreciable

statistical significance. The HD results were consistent with the HD80% in general, with

the three CAE methods achieving the best results on LV, RV, and PA. The error reduction

(comparing HD before and after registration) was less obvious due to the quality of the

ground truths and the sensitivity to artificial outliers. Across the metrics, our method

achieved comparable results to the best one of the two settings in B-spline registration, and

the three CAE-generating methods yielded similar accuracy.
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Figure 3.14: Example registration results on cMAC data. The red circle indicates unrealistic

motion tangential to the ventricle.

Table. 3.4 shows the quantitative results based on landmarks on the cMAC test. The

average Euclidean distance between the same tagging location annotated by the two observers

was calculated as inter-observer variability. The variabilities for the basal, midventricular,

and apical regions were 1.17, 1.05, 1.14 mm respectively. The three CAE-generating methods

resulted in similar TREs to each other, without statistical significance, indicating that our

method was robust against different DVF sample generation methods. Our method achieved

the lowest TREs in the basal and midventricular regions, and was close to the best-performing

B-spline registration in the apical region. When considering all the landmarks, our method

achieved the best TRE, significantly lower than the other methods tested.

The average registration time was 40 s for the classic B-spline registration and 0.02 s for

all the networks.
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Figure 3.15: An example case where our method failed to estimate the motion correctly due

to the strong artifact (red circle).

3.3 Unupervised Feasibility Prior Based on Statistical Generative

Model

3.3.1 Method

3.3.1.1 The Overall Image Registration Framework

As shown in Fig. 3.16, the proposed registration framework consists of a generator network

and a spatial transformation module. The generator network is trained in an unsupervised

fashion using fixed and moving image pairs to implicitly model the DVF feasible set (details in

Sec. 3.3.1.3). The trained generative model imposes constraints on deformation by generating

DVFs from low dimensional latent variables (vector). This new parametrization serves as

a more powerful alternative to the explicit parametrizations as in the conventional B-spline

model. It can encode spatially heterogeneous properties of physical or physiological motion

beyond smoothness offered by pre-defined fixed order polynomial basis.

The overall function can be written as:

x′ = F (x, z; θ̂) = FT (x, FG(z; θ̂)), (3.3)
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Table 3.3: Assessment of agreement between structure delineation between warped and fixed

images. Results are provided as mean ± standard deviation. Numbers inside the parentheses

indicate p-value results from Wilcoxon signed-rank tests when comparing to CAEAll. p-values

that indicate statistical significance (< 0.01) are underlined. Values in bold indicate the best

results.
DSC HD80% (mm) HD (mm)

———– Heart LV RV PA LA RA LV RV PA LA RA

Before 0.928±0.012 4.94±1.42 10.34±4.28 5.40±1.91 6.46±2.02 10.34±5.84 8.64±5.31 15.85±8.99 9.16±4.70 10.64±5.65 15.53±9.26

(0.83) (10−6) (10−5) (10−4) (10−3) (10−4) (10−6) (10−3) (10−3) (10−3) (10−3)

B-spline 0.1 0.922±0.022 2.37±0.90 7.41±4.72 4.84±2.50 5.39±3.08 8.56±6.05 5.20±3.31 14.41±6.27 8.43±4.30 9.81±4.59 14.75±7.30

(10−5) (0.06) (0.63) (0.18) (0.70) (0.28) (0.38) (0.45) (10−3) (0.49) (0.72)

B-spline 1 0.927±0.017 2.27±0.69 7.20±3.99 4.52±2.32 5.62±3.10 8.78±5.92 5.11±3.42 14.29±6.03 7.74±3.93 9.63±5.01 14.55±7.65

(0.95) (0.13) (0.95) (0.87) (0.75) (0.92) (0.88) (0.81) (0.31) (0.53) (0.75)

U-net 0.921±0.017 2.99±1.36 8.80±4.31 5.56±1.87 6.28±2.92 9.51±5.93 6.59±3.99 15.59±7.34 9.40±4.93 10.91±5.31 15.41±8.22

(10−6) (10−3) (0.03) (10−3) (10−3) (10−3) (10−4) (10−3) (10−4) (10−3) (10−3)

U-net BP 0.928±0.019 2.45±1.10 7.88±3.94 4.61±1.89 5.09±2.47 8.88±6.29 5.40±4.12 15.08±6.59 8.02±3.89 9.67±4.43 14.88±7.75

(0.08) (0.01) (0.14) (0.29) (0.11) (0.33) (0.01) (0.43) (0.01) (0.23) (0.49)

U-net CAESE 0.927±0.018 2.25±0.72 7.20±3.54 4.43±1.93 5.49±2.58 8.86±5.92 5.10±3.92 14.18±6.03 7.52±4.08 9.88±4.86 14.84±7.86

(0.90) (0.49) (0.72) (0.99) (0.58) (0.81) (0.87) (0.71) (0.97) (0.55) (0.73)

U-net CAEDL 0.926±0.022 2.23±0.87 7.24±4.02 4.58±2.23 5.39±2.91 8.75±6.10 5.17±3.77 14.55±6.44 7.55±4.17 9.92±4.95 14.77±7.76

(0.88) (0.37) (0.31) (0.35) (0.95) (0.90) (0.61) (0.70) (0.49) (0.55) (0.90)

U-net CAEAll 0.927±0.021 2.23±0.77 7.21±3.79 4.42±1.96 5.39±2.72 8.71±5.62 5.11±4.01 14.22±6.30 7.37±3.88 9.91±4.99 14.87±7.87

where x ∈ Rd1×d2 is the input moving image, x′ is the warped image, z ∈ Rdz is the latent

deformation variables, θ̂ is the trained network parameters, FG is the function of the generator

network, and FT is the spatial transformation.

When performing registration, gradient descent is used for optimization with respect

to the latent deformation variables z, rather than the dense DVF. Optimization is driven

by similarity between the fixed image y and the warped moving image x′, without extra

regularization. Given a moving and fixed image pair (x, y), the optimal DVF v̂ can be

achieved by:

ẑ = argmin
z

Lsim(y, x′) = argmin
z

Lsim(y, FT (x, FG(z; θ̂))), (3.4)

v̂ = FG(ẑ; θ̂). (3.5)
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Table 3.4: Target registration errors based on landmarks. Results are provided as mean ±

standard deviation in millimeter. Numbers inside the parentheses indicate p-value results

from paired t-tests when comparing to CAEAll. p-values that indicate statistical significance

(< 0.01) are underlined. Values in bold indicate the best results.

Basal Midventricular Apical All

Before 8.73±2.20 (10−22) 7.82±2.90 (10−16) 7.30±3.24 (10−16) 7.95±2.88 (10−50)

B-spline 0.1 2.41±1.24 (10−3) 2.62±1.43 (0.51) 1.78±1.18 (0.81) 2.27±1.31 (0.09)

B-spline 1 2.37±1.33 (0.08) 2.66±1.48 (0.37) 1.85±1.25 (0.17) 2.30±1.35 (10−3)

U-net 2.98±2.01 (10−4) 3.22±2.35 (10−5) 2.20±1.66 (10−4) 2.80±2.28 (10−5)

U-net BP 2.38±1.29 (0.16) 2.71±1.45 (0.03) 1.92±1.31 (0.01) 2.34±1.40 (10−3)

U-net CAESE 2.31±1.54 (0.92) 2.60±1.42 (0.67) 1.82±1.18 (0.60) 2.25±1.49 (0.90)

U-net CAEDL 2.28±1.45 (0.87) 2.62±1.48 (0.86) 1.79±1.15 (0.57) 2.23±1.46 (0.88)

U-net CAEAll 2.30±1.45 2.59±1.48 1.82±1.27 2.23±1.44

In this work, we use NCC as the image similarity metric, but the method applies to other

choices such as mutual information [VVS20].

3.3.1.2 Architecture of the Statistical Generator Network

The model was implemented in both 2D and 3D. The 2D version of the generator network

is shown in Fig. 3.17. The network takes latent variables z as input and outputs a DVF.

It first applies a fully connected layer to map the latent variables to image space. Then,

two 3 × 3 deconvolution layers and two 5 × 5 deconvolution layers are applied. A residual

block [HZR16] containing two 3 × 3 convolutional layers is added between the two 5 × 5

deconvolution layers, which encourages connections between neighboring “patches”, while

preventing the training from vanishing gradients at the same time. The convolutional layers

use a stride of 1. All the deconvolution layers use a stride of 2. All the layers use zero-

padding and ReLU activation, except that the last layer uses tanh activation. After tanh,
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Figure 3.16: Overview of the proposed generator-based registration framework. The trained

generator network takes latent deformation variables z as input and outputs a DVF. Then

the spatial transformation module warps the moving image towards the fixed with this DVF.

During registration, image similarity is calculated, which drives the gradient descent with

respect to z to achieve the optimal DVF for each image pair.

the DVF is scaled to pixel unit before fed into the spatial transformation. The generator

network for 3D DVF takes a similar form, with the same numbers of channels and layers,

and (de)convolutions replaced by 3D counterparts.

3.3.1.3 Alternating Back-propagation for Generator Optimization

To learn this generative model, we employ a maximum-likelihood learning and inference al-

gorithm called alternating back-propagation [HLZ17]. Training of the model requires both
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Figure 3.17: Architecture of the generator network (2D version). Numbers above and below

the blocks indicate tensor sizes and numbers of channels, respectively.

inferential back-propagation on latent variables zi and learning back-propagation on net-

work parameter θ, to maximizing the log-likelihood on the training image pairs {(xi, yi), i =

1, ..., N}:

L(θ) =
1

N

N∑
i=1

log p(yi|xi; θ) =
1

N

N∑
i=1

log

∫
p(yi, zi|xi; θ)dzi. (3.6)

The gradient of L(θ) can be calculated according to the expectation maximization algorithm:

L′(θ) =
∂

∂θ
log p(y|x; θ) =

1

p(y|x; θ)

∂

∂θ

∫
p(y, z|x; θ)dz = E

[
∂

∂θ
p(y, z|x; θ)

]
. (3.7)

Langevin dynamics is employed to obtain an approximation to the expectation, by sampling

the posterior p(z|x, y; θ) and then computing the Monte Carlo average. The latent variables

are updated in the inferential back-propagation:

zs+1 = zs +
δ2

2

∂

∂z
log p(y, zs|x; θ) + δεs, (3.8)

where s in the superscript is the index of Langevin sampling steps, δ is the step size and

ε ∼ N(0, Idz) is a random vector. The log of the joint density can be evaluated by:

log p(y, z|x; θ) = log [p(z)p(y|z, x; θ)] = −1

2
∥z∥2 − f(y, F (x, z; θ)) + const., (3.9)
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Figure 3.18: Training of the generative model. The generator network is trained in an

unsupervised setting by alternatively updating z through the inferential back-propagation

and θ through the learning back-propagation to maximize the likelihood on the training set

{(xi, yi), i = 1, ..., N}.

where f(y, F (x, z; θ)) corresponds to L2 dissimilarity f(y, x′) = 1
2σ2 ∥y − x′∥2 when we further

assume y = F (x, z; θ) + ϵ, ϵ ∼ N(0, σ2I). Here, we adopt a slightly more robust variation

and let

f(y, x′) =
1

2σ2
(1− NCC(y, x′)), (3.10)

assuming that y follows an “exp-NCC” distribution.

Given a training sample (xi, yi), we first apply the Langevin dynamics in Eq.(3.8) to get

the corresponding latent variables zi, and then use it to compute L′(θ) in Eq.(3.7) through
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Monte Carlo approximation:

L′(θ) ≈ 1

N

N∑
i=1

∂

∂θ
log p(yi, zi|xi; θ) = − 1

N

N∑
i=1

∂

∂θ
f(yi, F (xi, zi; θ)). (3.11)

The gradient is then used for updating θ in the learning back-propagation: θt+1 = θt+ηL′(θt),

where t is the index of training iterations and η is the learning rate.

In the algorithm, we alternate between the inferential and learning back-propagations

to jointly optimize the network and the latent variables for the training set. To reduce

computational cost, warm start is used: at the beginning of each inferential loop, the latent

variables zi are initialized from the previous training iteration. Fig. 3.18 and Algorithm. 1

describe the details of the algorithm.

Algorithm 1 Alternating back-propagation
Input:

(1) Training image pairs {(xi, yi), i = 1, ..., N}

(2) Number of Langevin steps S

(3) Number of learning iterations T

Output:

(1) Learned network parameters θ

(2) Inferred latent variables for the training set {zi, i = 1, ..., N}

1: Let t← 0, initialize θ.

2: Initialize {zi, i = 1, ..., N} from Gaussian distribution.

3: while t ≤ T do

4: Inferential back-propagation: For each i, run S steps of Langevin dynamics to

sample zi from p(zi|xi, yi; θ). Starting from the current zi, each step follows Eq. (3.8).

5: Learning back-propagation: Update the network parameters θt+1 ← θt + ηL′(θt),

with learning rate η, where L′(θt) is computed according to Eq. (3.11).

6: Let t← t + 1.

7: end while
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3.3.2 Experiments on 3D Synthetic Images

3.3.2.1 Data Generation

Figure 3.19: Example registration results on synthetic images. One slice from a 3D volume

is shown. The bottom row shows DVF profiles for the location indicated by the red dashed

line.

Given the absence of ground-truth DVFs in clinical 3D images, we generated digital

phantoms for a quantitative evaluation on dense DVFs. An example synthesized image pair

(one slice from a 3D volume) is shown in Fig. 3.19 (a-c). First, we generated moving shell

objects as foregrounds in moving images. The positions and inner and outer radii of the

spherical shell were randomly selected. The intensity values inside the spheres decreased

as the distance from the spherical center increases. Small spheres with random locations

and grey values were superimposed on the foreground to simulate local textures. DVFs

were simulated to radially shrink the moving shells. The DVF magnitude increased linearly

as it moves closer to the spherical center. The maximum DVF magnitude was randomly
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selected. Fixed images were generated by applying the DVFs to the moving images. The

image resolution was 128× 128× 128. Training, validation, and testing sets used 4096, 256,

and 256 synthetic samples, respectively.

3.3.2.2 Model Training

The length of latent variables dz was reduced to 256 considering the low complexity of defor-

mation in this experiment. The parameter σ controlling the strength of NCC in Eq. (3.10)

was set to 0.002. The model was trained in mini-batches of 4 samples for 1500 epochs. The

inferential back-propagation used 10 Langevin steps with the step size δ set to 0.01. The

learning back-propagation used ADAM optimizer [KB14] with the learning rate η set to

10−4.

3.3.2.3 Evaluation

Root mean squared errors (RMSEs) to the ground-truth DVFs were calculated as a dense

version of target registration error (TREd) to indicate registration performance:

TREd =

√√√√ 1

d1d2d3

d1∑
i=1

d2∑
j=1

d3∑
k=1

∥v∗ijk − vijk∥2, (3.12)

where v∗ and v are the ground-truth and result DVFs.

3.3.2.4 Result

Fig. 3.19 shows an example result of the proposed method in comparison to SimpleElastix

(with the weight λ for bending energy carefully tuned for each specific case to achieve the

best possible trade-off) and DIRNet trained with and without using bending energy penalty

(BP) regularization [VBV19]. From the DVF magnitude profiles in Fig. 3.19 (h), it can

be observed that our method was more robust to local textures and the motion boundary

was closer to the ground truth, with motion discontinuity on the inner surface. The large
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Figure 3.20: Boxplots showing the synthetic image registration results.

(λ = 40) bending energy in SimpleElastix enlarged the area of deformation. Introducing

bending energy to the DIRNet removed the large false estimation in the interior background

region surrounded by the shell object, but compromised the definition of motion boundary.

Paired t-tests on RMSEs show that our method reduced registration error significantly, over

other methods tested, as shown in Table. 3.5 and Fig. 3.20.

Table 3.5: Results of the synthetic image registration experiment. Registration errors are

provided as mean ± standard deviation and the p-value from paired t-test against the result

in our method.

Elastix DIRNet DIRNet BP Generator

TREd (pixel) 0.73±0.14 0.39±0.09 0.42±0.13 0.37±0.10

p-value 2.89×10−70 8.65×10−18 6.92×10−26 –
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Figure 3.21: Example registration results on simulated CT images. Numbers for Elastix

registrations indicate the weight λ for bending energy. Red arrows indicate local texture in

the subdiaphragmatic region.

3.3.3 Experiments on Simulated CT

3.3.3.1 Data Generation

The simulated CT images were generated with the XCAT anthropomorphic digital phantom

[SSM10, ASS17]. First, 10 slices of a simulated CT scan were selected as moving images, with
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image resolution 256 × 320. Then using the segmentation mask of the lung, corresponding

2D DVFs were generated to simulate respiratory motion. An example simulated image

pair is shown in Fig. 3.21 (a-c). The parameters for motion magnitude and zero-motion

position were uniformly selected within a range. 130 DVFs were generated for each moving

image. These DVFs were used to generate the warped images in the forward direction. 1300

synthetic samples were divided into training, validation, and testing sets, containing 1024,

176, and 100 samples, respectively.

3.3.3.2 Model Training

The model was trained in mini-batches of 8 samples for 2500 epochs, with other hyper-

parameters same to Sec. 3.3.2.2.

In addition, to test the model’s sensitivity to the latent variables length dz, the model

was also trained with 10 dz settings ranging from 32 to 320.

3.3.3.3 Evaluation

RMSE to the ground-truth DVFs were calculated as a dense version of target registration

error (TREd). Target registration errors on anatomical landmarks (TREl) were calculated

using the landmarks at the lung and ribcage regions. Five landmarks were annotated for

each image pair in the testing set. They were identified in the moving images first, and then

their positions in the fixed images were calculated using the ground-truth DVFs.

3.3.3.4 Result

Fig. 3.21 shows an example result of the proposed method in comparison to SimpleElastix

with a wide range of regularization weights λ between 0 and 50, DIRNet, and VoxelMorph.

The single universal weight for bending energy in both SimpleElastix and DIRNet BP did

not achieve a good balance between the robustness to local textures and heterogeneity for
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different tissues. With moderate regularization (λ < 5), SimpleElastix generated DVFs that

were non-smooth and non-diffeomorphic. As more prominent regularization was applied

(λ > 10), the DVF became smoother but the image agreement was compromised severely,

resulting in significant underestimation of DVF magnitude. The discontinuity along the lung

surface made the diffeomorphic parametrization in VoxelMorph less suitable for this task,

resulting in a blurred edge and an underestimated deformation magnitude. The simulated

expansion of the lung was better characterized and the discontinuity along the lung contour

was better captured in our method. In addition, our method also showed significantly supe-

rior motion reconstruction in the subdiaphragmatic regions, while all the other competing

methods suffered from the lack of local image texture.

Table. 3.6 and Fig. 3.22 show the quantitative results. Our method outperformed the

best manually tuned SimpleElastix, DIRNet, and VoxelMorph, with paired t-tests on TREs

showing significantly lower registration errors based on both dense DVFs and landmarks.

Table 3.6: Results of the simulated CT registration experiment. Registration errors are

provided as mean ± standard deviation and the p-value from paired t-test against the result

in our method.
Elastix0 Elastix1 Elastix5 Elastix10 Elastix20 Elastix50 DIRNet DIRNet BP VoxelMorph Generator

TREd (mm) 3.85±1.57 3.44±1.44 3.14±1.27 3.04±1.19 3.10±1.23 3.15±1.30 5.15±0.91 3.48±1.09 4.39±1.53 2.56±0.56

p-value 4.71×10−18 4.32×10−12 3.35×10−8 7.35×10−7 1.02×10−7 4.72×10−8 8.24×10−71 1.69×10−24 1.43×10−29 –

TREl (mm) 2.70±3.21 2.29±2.58 1.88±1.89 1.82±1.75 1.96±1.92 2.01±1.96 2.41±3.45 2.19±3.25 3.33±3.90 0.96±1.20

p-value 2.80×10−45 1.52×10−41 1.77×10−37 4.44×10−39 1.64×10−42 2.41×10−43 2.12×10−30 2.66×10−24 1.07×10−43 –

Fig. 3.23 shows the results of the sensitivity test on dz. It can be seen that both the loss

value and the TRE were kept low for dz ≥ 160. The model required more training epochs to

fully converge with larger dz, therefore there was a slight increase of the loss and TRE when

fixing the number of epochs to 2500. Overall, the model is not sensitive to dz and does not

require a trail and tuning process once dz is roughly set based on DVF size and complexity.
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Figure 3.22: Boxplots showing the simulated CT registration results. (a) Target registration

error on dense DVFs. (b) Target registration error on anatomical landmarks.

3.3.4 Experiments on 2D Cardiac MRI

3.3.4.1 Data

The method was tested on 2D cardiac MRI sequences obtained from Sunnybrook Cardiac

Data [RLC09], which contains 45 4D short-axis cardiac cine MR scans, each containing 20

frames that cover the cardiac cycle. The image resolution was 256× 256, with pixel spacing

1.25 mm, 10 slices, and slice thickness 8 mm. Segmentations of left ventricles were provided

at end-diastole (ED) and end-systole (ES) frames. 45 4D scans were divided into training,

validation, and testing sets, containing 30, 5, and 10 3D videos respectively. Fixed and

moving image pairs were prepared by picking 2D slices from the same 4D scan, at the same

slice position but at different time points in the cardiac cycle. Down-sampled in the temporal

domain, 27,000 image pairs were used for training eventually.
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Figure 3.23: Results of the simulated CT registration with different latent variables lengths.

(a) Final training loss. (b) Target registration error.

3.3.4.2 Model Training

The parameter σ in Eq. (3.10) was set to 0.002. The model was trained in mini-batches of

8 samples for 1500 epochs. The inferential back-propagation used 10 Langevin steps with

the step size δ set to 0.003. The learning back-propagation used ADAM optimizer with the

learning rate η set to 10−5.

3.3.4.3 Evaluation

Using the provided segmentations of left ventricles, we computed the following metrics to

evaluate our method against SimpleElastix with different trade-off parameters (weight for

the bending energy λ set to 1, 5 and 25) and DIRNet (trained with and without bending

energy penalty).

Dice coefficient between the propagated and fixed segmentation masks Mx′ and My was

calculated:

Dice =
2|Mx′ ∩My|
|Mx′ |+ |My|

. (3.13)

Average surface distance (ASD) of the propagated and fixed segmentation contours was
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calculated:

ASD =

∑
a∈Cx′

dist(a, Cy) +
∑

b∈Cy
dist(b, Cx′)

|Cx′ |+ |Cy|
, (3.14)

where a and b are points on the propagated contour Cx′ and the fixed contour Cy, respectively.

Average foreground deformation magnitude (AFM), average background deformation

magnitude (ABM) and their difference were calculated, with the foreground being the left

ventricle and the background being outside of the mask:

AFM =
1

|My|
∑

(i,j)∈My

∥vij∥. (3.15)

3.3.4.4 Result

Figure 3.24: Example registration results on 2D cardiac MRI. Blue dashed arrows indicate

the non-smoothness of the DVF. Red solid arrows indicate tissue movements in the my-

ocardium region between the two chambers.

Fig. 3.24 shows a typical registration result. Upon close visual inspection, SimpleElastix

generated a reasonable globally smoothed DVF, but imposing bending energy regularization

at such level also compromised some local tissue movements as in the myocardium region

between the two chambers. DIRNet as a single inference network offered a speed gain but
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experienced non-smoothness of both the DVF and the warped image. While introducing

bending energy penalty into DIRNet effectively remedied the non-smoothness, global vs

local conflict persisted, as in the SimpleElastix model. Our method yielded DVFs that were

better localized in the real motion area and thus physiologically more feasible.

Table 3.7: Results of the 2D cardiac MRI registration experiment. Results are provided

as mean ± standard deviation (Z-value from Wilcoxon signed-rank test). Z-values that

indicate statistical significance are underlined.
Elastix1 Elastix5 Elastix25 DIRNet DIRNet BP Generator

Dice 0.90±0.03 (5.17) 0.92±0.03 (2.38) 0.92±0.03 (2.53) 0.90±0.04 (4.73) 0.91±0.03 (4.91) 0.93±0.03

ASD (mm) 2.13±1.29 (3.87) 1.65±0.98 (1.45) 1.60±0.88 (1.60) 1.81±1.47 (3.63) 1.75±1.00 (2.68) 1.61±0.89

AFM (mm) 2.91±0.96 2.71±0.81 2.30±0.67 2.96±1.29 2.62±0.94 2.74±0.67

ABM (mm) 0.94±0.30 0.48±0.26 0.36±0.18 0.95±0.44 0.37±0.27 0.40±0.20

AFM−ABM (mm) 1.97±0.68 (3.77) 2.23±0.66 (1.47) 1.94±0.61 (3.89) 2.01±0.73 (2.28) 2.25±0.60 (1.59) 2.34±0.57

Time (s) 5.63 0.005 1.72

Table. 3.7 and Fig. 3.25 shows the quantitative results. Wilcoxon signed-rank tests were

performed to examine the statistical significance (at the significance level of 0.05, Zcrit=1.96).

In terms of dice coefficient, our generative model achieved the best result among all the

methods tested, with statistical significance. In terms of ASD, our method outperformed

DIRNet and was close to the best of the SimpleElastix results. The large gap between

AFM and ABM in our method indicates that it focuses relatively large deformation in the

foreground myocardial region and is more flexible in admitting spatial heterogeneity.

To further test the properties of the latent space, we examined the DVFs generated from

interpolations of the latent variables z. Specifically, we first used the trained model for

registration (a) between two frames near ES with small deformation (Fig. 3.26, 1st column),

and (b) between ES and ED frames with large deformation (Fig. 3.26, 4th column). Then

linear interpolations of the latent variables and the corresponding DVFs and warped images

were generated, following the equation z = (1 − α)z0 + αz1. Results with α = 0.6, 0.8

and corresponding nearest reference image frames are shown in the 2nd and 3rd column in
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Figure 3.25: Boxplots showing the results of the 2D cardiac MRI registration evaluated with

left ventricle segmentations. (a) Dice coefficient. (b) Average surface distance. (c) Difference

between foreground and background deformation magnitude.

Fig. 3.26. It can be observed that the interpolations of z resulted in smooth transitions of

DVFs and warped images. Although the linear interpolation of z did not precisely correspond
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to the time step interpolation in the cardiac cycle, the result implied that the feasible DVF

set was effectively characterized in the latent space with constraints.

Figure 3.26: Results of the latent varibales interpolation experiment.

3.3.5 Experiments on 3D Cardiac MRI

3.3.5.1 Data

To account for realistic motions, the method was also tested on 3D cardiac MRI using the

same dataset described in Sec. 3.3.4.1. 45 4D scans were divided into training, validation,

and testing sets, containing 30, 5, and 10 3D videos respectively. Fixed and moving image

pairs were from the same 4D scan, at different time points in the cardiac cycle. 11,400 3D

image pairs were used for training.
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3.3.5.2 Model Training

The parameter σ in Eq. (3.10) was set to 0.002. The model was trained with batch size of 1

for 1200 epochs. The inferential back-propagation used 10 Langevin steps with the step size

δ set to 0.01. The learning back-propagation used ADAM optimizer with the learning rate

η set to 10−4.

3.3.5.3 Evaluation

Our method was evaluated using the left ventricle segmentations and was compared to 3D

versions of B-spline registration in SimpleElastix, DIRNet, and VoxelMorph.

3.3.5.4 Result

Figure 3.27: Learning curve showing the training loss for the 3D cardiac MRI registration.

Only the first 300 epochs are shown.

Fig. 3.27 shows the learning curve. It can be observed that there was a platform at

loss = 0.015 around the first 30 epochs. At this stage, DVF was equal to zero in every

location (zero deformation). This platform corresponded to an internal rebalancing process
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Figure 3.28: Example registration results on 3D cardiac MRI using our method. (a) Moving

image. (b) Fixed image. (c) One slice from a 3D warped image. The DVF is illustrated with

a mesh grid.

of z and θ. The zero-deformation platform existed in all the other experiments as well.

Fig. 3.28 shows a typical registration result. Table. 3.8 and Fig. 3.29 shows the quantita-

tive results. Wilcoxon signed-rank tests were performed to examine the statistical significance

(at the significance level of 0.05, Wcrit = 47). The dice coefficient and ASD comparisons are

generally consistent with the 2D experiment. Both VoxelMorph and our method outper-

formed DIRNet (with and without BP). Our method achieved a better registration result

than VoxelMorph in Dice with statistical significance and in ASD without statistical signif-

icance.

Table 3.8: Results of the 3D cardiac MRI registration experiment. Results are provided

as mean ± standard deviation (W -value from Wilcoxon signed-rank test). W -values that

indicate statistical significance are underlined.
Elastix30 Elastix65 Elastix100 DIRNet DIRNet BP VoxelMorph Generator

Dice 0.90±0.02 (49) 0.92±0.02 (44) 0.91±0.02 (47) 0.91±0.02 (52) 0.91±0.02 (52) 0.92±0.03 (49) 0.93±0.03

ASD (mm) 2.01±1.04 (52) 1.33±0.65 (21) 1.25±0.63 (15) 1.85±1.20 (50) 1.35±0.63 (20) 1.34±1.05 (32) 1.31±0.71

AFM (mm) 3.20±1.17 3.22±0.97 2.62±0.74 3.46±1.29 3.37±1.08 3.18±0.97 2.85±0.85

ABM (mm) 2.60±0.81 2.53±0.76 2.18±0.89 2.56±1.16 2.67±0.91 2.67±0.80 2.08±0.91

AFM−ABM (mm) 0.60±0.22 (51) 0.69±0.17 (46) 0.44±0.18 (53) 0.90±0.41 (10) 0.70±0.20 (41) 0.51±0.23 (51) 0.77±0.34

Time (s) 24.70 0.049 0.065 12.78
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Figure 3.29: Boxplots showing the results of the 3D cardiac MRI registration evaluated with

left ventricle segmentations. (a) Dice coefficient. (b) Average surface distance. (c) Difference

between foreground and background deformation magnitude.

3.4 Discussion

In establishing performance benchmark with the classic BP regularized Elastic approach, we

extensively traversed hyperparameter values and chose the one corresponding to the minimal
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TRE from the test truth. Strictly speaking, this Oracle scheme of parameter setting provides

a performance upper bound for the classic BP approach: even if the cost of running registra-

tion instances corresponding to different regularization weights can be accommodated, the

absence of a ground-truth solution makes such choice infeasible in practice. The performance

on the various learning-based methods reflects realistic behaviors.

In the proposed supervised approach, the DVF training samples were generated on high-

quality images using a classic B-spline method in SimpleElastix with various values of reg-

istration weights. While the dataset contains sorting artifacts and the registration module

is not ideal, we have observed that the use of various trade-off values and the CAE scheme

for establishing feasibility descriptor is robust against moderate noise in the training DVF

samples. The proposed CAE-based feasibility prior model is spatially variant and driven

by the training DVFs, which enables it to better accommodate site-specific heterogeneous

tissue properties and motion patterns than other “prescription-type” priors. We have also

demonstrated the solution stability of the overall unsupervised registration network upon in-

corporating the CAE prior, alluding to the feasibility for direct use without further tuning.

Furthermore, the proposed prior can be combined or incorporated into most registration net-

works, with any choice of image dissimilarity loss and network architecture (e.g. networks

with inverse-consistency [Zha18], diffeomorphism [DBG19]), or discriminating adversarial

block based on biomechanical modeling [ZHW19]. In the experiments on lung images, scans

from patients with thoracic malignancies are used for both the feasibility descriptor and reg-

istration network training. In the cardiac experiment, the feasibility descriptor was trained

on patients with cardiovascular deceases, while the registration was tested on both healthy

and pathological cases. The current study diversified the DVF training set by varying the

hyper-parameters in classic registration. To build a reliable prior and ensure the method’s

stability in clinical applications, the DVF training set should be large and diverse enough to

provide proper coverage of representative patient and possible abnormalities.

While the supervised approach uses a DVF set acquired with another registration engine
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to train the feasibility prior, it differs from supervised learning-based registration in that

the training does not have to be consistent with the inference setup of image input, nor

does it involve any image synthesis. In fact, the decoupled prior generation and registration

network training is a major distinctive feature of our development, so that the feasibility

prior can take advantage of high-quality CT for the lung cases studied here. And for that

matter, the feasibility descriptor can be developed with any other image modality that could

offer benefit in any of the resolution, signal strength, consistency, or contrast aspects. This

decoupling not only allows the development of prior to be dependent on another data set

and modality, but also permits the prior to be based on DVFs generated with a much wider

range of options, in contrast to the cooperative prior [BEK19]. Offline CT registration can

afford to be performed with more sophisticated methods at a higher time cost, even with

manual interaction or ROI/contour/landmark guidance when needed, to ensure the quality

of feasibility prior. Therefore, the proposed approach in developing and using the feasibility

prior enjoys the benefit from both data quality and registration quality aspects. Compared

with the adversarial network discriminating between predicted DVFs and biomechanical

model-based motions [HGG18], the proposed network is more stable and simpler in the

training setup. Once properly trained, the feasibility prior can be used as a PnP module for

the re-training of the unsupervised DVF estimation network as it migrates to new imaging

platforms, transferring the advantages of prior-generating quality and fine-tuned methods

into the inference imaging modality. This flexibility further allows the end-users to choose

either utilizing an existing feasibility descriptor with applicable site or customizing the prior

training with their best available dataset and registration resource.

In the unsupervised approach, the heterogeneous feasibility prior is achieved by con-

straints on the latent variables, rather than the DVF itself. This allows the model to reallo-

cate the “budget” of constraint through the unsupervised training process, with the generator

network serving as a mapping between the feasible z set and feasible DVF set. The learned

implicit parametrization is flexible in admitting spatial heterogeneity. Compared to the su-
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pervised method, its training does not depends on any DVF generation approach and is

therefore unbiased when high-quality images are available for training.

The latent variables length sensitivity test has demonstrated that the model performance

is stable and robust to small-to-medium variations in dz, and that the training does not

require subjective selection among multiple solutions as in conventional methods. However,

it should be noted that using too large dz may require a longer training process and also

increase the chance of local minimum due to over-fitting.

The current study focus on inter-phase DIR of a 4D image, where DVFs reflect tissue

motion and the feasibility priors describe a manifold of possible motions. The proposed

methods generalize to other settings. For example, when performing registration on 3D

images across the timeline of radiation therapy, a feasibility prior can be trained in the same

setting to model longitudinal change and characteristics of anatomy during the course of of

radiation therapy.

3.5 Conclusion

We have developed two learning-based methods for DIR. In the supervised method, a PnP

feasible motion prior is developed from high-quality images, and then incorporated as a

regularizer to train an unsupervised DIR network. In the unsupervised method, novel de-

formation parametrization in the form of a generator network is developed to learn implicit

feasibility conditions on DVF from paired images using the alternating back-propagation

algorithm. During registration, the latent variables are optimized, eliminating the need for

regularization and tuning. The methods managed to model DVF feasibility conditions ef-

fectively, which is one of the major challenges in DIR due to the heterogeneous tissue and

motion properties. Both methods have yielded promising results with high accuracy and

efficiency. The two methods can complement each other, and their application depends on

whether a reliable feasible DVF sample generation method is available in the specific task.

76



CHAPTER 4

Individualized Test-time Adaptation in Deformable

Image Registration

4.1 Introduction

DL approach faces a particular challenge in generalization. In the context of DIR, the gen-

eralization challenge manifests in various aspects. It may risk generating inferior results

when the testing data deviates from the training probability distribution, in either image

characteristics or motion patterns or both. Here, we refer to the input-space image charac-

teristics variations as domain shift, and the output-space DVF characteristics variations

as generalization gap.

Currently, most existing studies circumvent the generalization challenge by using im-

age datasets acquired on the same scanner with the same imaging protocol and then di-

viding them into training and testing subsets to ensure the consistency of image charac-

teristics. Typically, further care is also taken in the division to intentionally match the

training and testing cohort distribution with respect to demographic, disease grading, or

histopathology etc. However, in real-world scenarios, the testing samples may be acquired

with scanners parameters, imaging protocols, contrast agent, and preprocessing standards

that are either (1) significantly different than the data cohort used for training and es-

tablishing the deep network model or (2) different between different cases at testing, or

(3) both. In addition, individuals may have large differences in physiological and patho-

logical presentations, particularly in applications where we aim to diagnose or treat ab-
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normalities. It is typically challenging to cover all variations within the training dataset.

Although data augmentation techniques can be used to generate training samples in large

quantity [EP18, ZWY20, SPC18, HBG21], it is difficult to achieve a good balance between

(1) generating feasible and realistic images and DVFs and avoiding aggressive augmentation

to introduce artificial samples and (2) generating a rich set of samples to cover sufficient

variability. The application of DL methods on new or less common modalities/protocols is

also challenging without a sufficiently large training cohort [WL16].

The robustness of DL methods is an important factor that challenges their practical use

in clinical routines. Most DL methods are trained to optimize the average performance on

a certain cohort. However, ensuring that the network has good performance on each single

test sample, in other words, increasing the performance lower bound, has been a widely

unaddressed problem. In clinical applications, the failure of DL methods on individual cases

may cause severe consequences, despite the average performance. A training scheme that

aims at improving individualized performance or worst-case guarantee is in demand [VQL20].

In this study, we propose a domain adaptation method in DL-DIR to address the poten-

tial domain mismatch between training and testing images, and improve the accuracy and

robustness of registration. Specifically, we propose a test-time refinement training scheme

to adapt a DIR network to individual test image characteristics and motion details.

4.2 Related Works

4.2.1 Generalization Gap – Output-space DVF Variations

Generalization gap is usually defined as the difference between a model’s performance on

training data and its performance on unseen data. Understanding and reducing the gener-

alization gap have a great practical significance and have been studied extensively.

In classification, detection tasks, generalization robustness is mainly challenged by label
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class imbalance. Specifically, neural networks tend not to effectively model underrepresented

classes, which can affect its fairness towards testing samples that are underrepresented in the

training set. In these tasks, the model’s performance is usually examined on a cohort basis, by

calculating average performance metrics across all classes. Many training schemes have been

proposed to address the class imbalance problem. The training dataset can be rebalanced

by discounting samples in the majority classes, replicating samples in the minority classes,

or simulating synthetic samples for the minority classes for augmentation [HG09, HLL16,

CBH02]. Other studies modify the loss function and re-weight training samples with the

inverse label frequency [Jap00].

The class imbalance problem generalizes to the out-of-distribution DVFs in DIR. The

characteristics of the DVF can differ significantly across different individuals, and it is dif-

ficult for the training cohort to properly cover all sexes, ages, and possible abnormalities.

Furthermore, even if a large and diverse training cohort can be obtained, individual-level

anatomical and functional variations still challenge the registration accuracy in relatively

underrepresented cases.

DIR performance should be quantified not only on a cohort basis, but also on an individ-

ual basis, by calculating the target registration error. In addition to the average performance

on the testing cohort, it is arguably even more important to improve the DIR performance

lower bound with respect to individual-specific cases, especially in applications where we aim

to diagnose or treat abnormalities. While the cohort-level robustness can be addressed using

similar rebalancing approaches as in the classification tasks, the individual-level robustness

in DIR has rarely been studied.

4.2.2 Domain Shift – Input-space Image Variations

Domain shift is a universal challenge that may comprise performance in almost all deep

learning image processing tasks. In the context of DL-DIR, domain shift refers to the image

appearance and characteristic differences between the domain of training samples and the
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domain of testing samples – variations in image intensity statistics and contrasts between

different tissue types. Such difference can occur as a result of applying a trained network to

images in a different modality, acquired with a different imaging protocol or parameters, or

from a different scanning platform with software or hardware [MNJ20, PKH20]. Since neural

networks make predictions based on the learned input-output mapping, such variations in

image characteristics at test time can significantly degrade the network performance.

Different training schemes have been proposed to address the domain shift problem. The

most direct approach to encourage domain invariance is to incorporate the possible variations

in the training set. When training samples for new or less common modalities/protocols are

difficult to obtain, simulation can be used for data augmentation [ZWY20, SPC18, JHG19,

HBG21]. Another approach is to utilize domain-invariant features that can be obtained

from a separate pre-training step using autoencoders that reconstruct images from various

domains [GKZ15]. It is also possible to enforce feature similarity across all domains during

the training process using a regularization loss to enforce such consistency [MPA17].

A common disadvantage of these methods is that they usually require samples from the

two domains to be both present in the training process. However, in real-world scenarios,

samples in the transferred domain can be difficult to obtain or even unknown when training

the network. Therefore, a test-time adaptation process that is separate from the training is

preferred.

4.2.3 Test-time Adaptation

Test-time adaptation can potentially address both the generalization gap in output space and

the domain shift in input space at the same time. In addition, the adaptation can be further

individualized to improve the targeted performance on each testing image pair or sequence.

While there is relatively limited amount of investigations on the generalization and adapta-

tion issue on DIR, investigation efforts have been made on segmentation and reconstruction

in recent years. A pre-trained network can be adapted to each test case in a refinement
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training process formulated in an unsupervised setting. Approaches with the general test-

time adaptation rationale has been explored recently in segmentation, reconstruction, and

classification works, generating promising results.

Karani et al. [KEC21] designed a segmentation network as a concatenation of two sub-

networks: a shallow image normalization network, followed by a deep network that segments

the normalized image. The two sub-networks are trained jointly in a supervised setting.

At test-time, the normalization network is adapted to each testing image, guided by the

auto-encoding discrepancy of the segmentation provided by a pre-trained denoising autoen-

coder (DAE) that predicts clean labels from artificially corrupted segmentations. Zhang et

al. [ZLZ20] proposed to fine-tune a supervised pre-trained reconstruction network for each

testing case by minimizing an unsupervised fidelity loss function defined according to a for-

ward physical model of the imaging system and data noise property. Wu et al. [WKL21]

proposed a reconstruction algorithm where a Noise2Noise network is employed as image

prior. The network is fine-tuned along with each image during the iterative reconstruction

with an alternating optimization strategy. Sun et al. [SWL20] proposed to adapt part of

an image classification network according to a self-supervised loss defined on the given test

image. Specifically, they used the task of predicting a four-way image rotation angle as an

auxiliary task and utilized its self-supervised loss to adapt the network. All these methods

rely on an unsupervised loss to guide the adaptation process, by modeling the feasibility of

the prediction or from an auxiliary task.

DIR can be formulated as an unsupervised task, making it natural to utilize the self-

supervised image dissimilarity loss for individualized network fine-tuning. However, domain

adapting in DIR has rarely been studied. Zhu et al. [ZHX21] proposed to further optimize a

trained DIR network based on both training set and testing image pairs to reduce the gener-

alization gap with multiple experiments. However, with training and testing images drawn

from the same datasets, the domain shift aspect is not sufficiently addressed or validated.
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4.3 Method

Figure 4.1: Overview of the proposed method. The feasibility descriptor is pre-trained and

used as a regularizer during the subsequent registration network training. The registration

network is initially trained on a set of image pairs, and then refined and adapted to individual

image pair in another domain at test time.
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4.3.1 Baseline Registration Network

The current development extends from the unsupervised DIR network with spatially variant,

modality-agnostic DVF feasibility prior [SCM21], as shown in Fig. 4.1 (step 1 and 2). The

feasibility descriptor and the registration network are developed sequentially. In the form of

a CAE, the feasibility descriptor encodes Jacobian properties of training DVFs with an L2

objective:

LCAE =
1

N

N∑
i=1

∥∇(vi)− CAE(∇(vi))∥2Frob, (4.1)

where vi is a DVF training sample, N is the number of samples, and ∇ is the Jacobian op-

erator. Once the CAE is properly trained, the deviation of a candidate DVF from feasibility

is described by the auto-encoding discrepancy. After training, the feasibility descriptor is

fixed and plugged into the registration network as a regularizer.

The registration network has a U-net structure and was trained to minimize a loss con-

sisting of a matching cost LD, where in this specific setting, we specialized to the form of

NCC, and a feasibility violation penalty LV . The loss function can be written as:

Ltrain = LD + µLV =
1

P

P∑
i=1

{
−NCC(Fi,Mi ◦ vi) + µ∥∇(vi)− CAE(∇(vi))∥2Frob

}
,

where P is the number of samples, (Fi,Mi) is a fixed and moving image pair, vi = UNet(Fi,Mi; θ)

is the DVF estimated by the registration network parameterized by θ, and µ is a balancing

parameter.

4.3.2 Test-time Adaptation

In contrast to most existing DL-DIR methods where the DVF is inferred directly by applying

the trained network to the testing inputs [BZS19, VBV19], we propose an individualized test-

time adaptation scheme to mitigate the potential risk of sub-optimal or biased DVF estimate

when the test sample deviate from training distribution, in terms of image characteristics

and motion patterns.
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Specifically, to inform the DIR network of test sample characteristics, we introduce a

test-time refinement process to further evolve the network with respect to an individualized

loss by taking advantage of the unsupervised framework and treating the typical DL-stage

as prior transfer. At test time, the image pair is used to train the registration network until

convergence with respect to a new test-time loss. The feasibility descriptor remains fixed

during the adaptation process to guarantee stability.

Ltest = −NCC(Ft,Mt ◦ vt) + µ∥∇(vt)− CAE(∇(vt))∥2Frob,

where (Fi,Mi) is the test image pair, vt = UNet(Ft,Mt; θ), and the network parameter θ is

initialized from the cohort training stage and further optimized.

4.4 Experiments and Results

Table 4.1: Experimental setup.

Site Prior generation Initial training Test sample

Cross-protocol Lung CT CBCT Simulated CBCT

Cross-platform Heart CTA 0.35T MRI 1.5T MRI

Cross-modality Lung CT CBCT MRI

The method was tested in three experiments that correspond to cross-protocol, cross-

platform, and cross-modality scenarios, respectively, as indicated in Table.4.1. Its perfor-

mance was compared against a classic B-spline method in SimpleElastix [MBS16] and a

benchmark registration network inference without test-time adaption. The classic B-spline

registration was driven by weighted sum of NCC and bending energy penalty (BP), with the

weight for BP manually tuned for each case. ADAM optimizer with learning rate 10−4 was

used for network training throughout all experiments.

To derive realistic DVF samples for feasibility descriptor training, the classic B-spline

registration was performed on high-quality images in each experiment. In order to accom-
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modate spatially variant regularization, various values of regularization weights λ was used,

so that the learned manifold could address different local trade-offs.

4.4.1 Cross-protocol Adaptation on Lung CBCT

4.4.1.1 Data and Network Training

Feasibility descriptor training: Classic B-spline registration on a set of 10 CT images

from the DIR-Lab dataset [CCG09, CCM09]. The slice thickness was 2.5 mm and in-plane

spacing was 0.97 to 1.16 mm. All images were resampled with slice thickness 2.34 mm and

in-plane pixel spacing 1.16 mm, and then cropped to a 256× 256× 64 window that covered

the lungs. Image intensities were clamped between -1000 and 500 HU and scaled between 0

and 1.

The BP weights λ was set between 0.01 to 2. For each of the 10 scans, 15 moving and

fixed image pairs were selected. Then, they were augmented by 5 registrations performed

with different λ. As a result, 750 DVFs were generated as the training set. The CAE was

trained for 200 epochs with batch size 1.

Registration network training: The 4D-CBCT data was from the 4D-Lung collection

in the Cancer Imaging Archive (TCIA) [HWS17]. They were acquired during chemoradio-

therapy of 20 locally advanced, non-small cell lung cancer patients. Each scan has 10 breath-

ing phases. The reconstructed slice thickness was 3 mm and in-plane spacing was 0.98 to

1.17 mm. The images were pre-processed to the same size and pixel spacing as the CTs. 25

scans were used for training. For each scan, 15 moving and fixed image pairs were selected.

The network was trained for 150 epochs with batch size 1. The balancing parameter µ in

Eq. (4.2) was tuned based on the training performance, and was set to 10−6 subsequently.

Test-time adaptation: The cross-protocol adaption was tested on a set of 4D-CBCT

scans simulated from CT scans in the SPARE dataset [SGL19]. Each phase in the CBCT

was simulated independently, using the corresponding 3D CT data. The geometry and
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the number of projections were set according to a typical clinical setup and is different

from the TCIA data. FDK reconstruction algorithm was then applied using the TIGRE

toolbox [FDK84, BDH16]. Eventually, nine scans from the dataset were used. At test time,

the network was trained with the individual CBCT scans for 200 epochs.

4.4.1.2 Evaluation

We applied an automatic landmark pair detection algorithm [FWT19] to the original CTs

in the SPARE dataset to take advantage of its higher image quality and structural details.

The locations of the landmarks were then mapped to the simulated CBCTs. Each scan

had 100 landmark pairs in the EI and EE phases. TRE defined by the Euclidean distance

between the transformed and the fixed landmarks was calculated as to measure registration

performance.

An accurate DIR should be able to identify the motion trajectory of each pixel, and

integration along such trajectory can enhance image quality. A simple motion-compensated

image enhancement test was performed by collapsing all phases of the 4D-CBCT according

to the estimated DVFs to an arbitrary reference phase and taking the average. The en-

hancement is quantified with RMSE and structural similarity index measure (SSIM) to the

ground-truth CT. Paired t-tests were used to examine statistical significance.

4.4.1.3 Result

To illustrate the behavior of the test-time adaptation, the loss curves showing the transition

between the train and adaptation stages are shown in Fig. 4.2. A large generalization gap

between the training cohort and the test sample can be observed in the training stage. The

individualized adaptation successfully fitted the model to the test sample and reduced the

test-time loss.

As shown in Fig. 4.3, all three methods generated relatively smooth DVFs. However,

86



Figure 4.2: Loss curves for the cross-protocol adaptation on lung CBCT.

classic B-spline and the network without adaptation were affected by the noise and artifacts

in the lung regions and underestimated the motion in homogeneous regions. The test-time

adaptation preserved the overall motion and resulted in a smoother DVF.

As shown in Fig. 4.4, in the CBCT enhancement experiment, the streak artifacts were

less pronounced in the fusion results from the network with and without adaptation, as

indicated by the red boxes. Because of the higher spatial accuracy, the test-time adaptation

achieved higher visual resolution and managed to reconstruct sharper detail structures, as

indicated by the red ovals.

Table. 4.2 shows the quantitative results. Our method achieved the best TRE, RMSE,

and SSIM, with statistically significant (p < 0.01) improvement over the other two methods.

The average registration time was 52, 0.04, and 21 s for classic B-spline, network without

adaption, and network with adaption, respectively.
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Figure 4.3: Example registration results on simulated lung CBCT.

Table 4.2: Quantitative results on simulated lung CBCT. Results are provided as mean ±

standard deviation (p-value from paired t-tests).

TRE (mm) RMSE (HU) SSIM

Before 7.53±4.15 150.2±11.85 0.982±0.004

Classic B-spline 2.55±2.45 (10−3) 115.3±7.83 (10−7) 0.991±0.003 (10−3)

Without adaptation 2.13±1.84 (0.005) 107.5±8.51 (10−3) 0.993±0.002 (0.002)

Our method 2.11±1.61 102.1±7.96 0.994±0.002

4.4.2 Cross-platform Adaptation on Cardiac MRI

4.4.2.1 Data and Network Training

Feasibility descriptor training: The CTA dataset for DVF sample generation consists

of 10 4D scans, each containing the ED and ES frames of a cardiac cycle. The scans used

contrast according to typical clinical system, on patients who are suspected to have cardio-

vascular problems. The image size were 512 × 512, with number of slices ranging from 240

to 564, in-plane resolution ranging from 0.31 to 0.45 mm, and slice thickness ranging from

0.30 to 0.50 mm. The images were resampled with voxel spacing 0.5 mm and cropped with
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Figure 4.4: Example motion-compensated image enhancement results on simulated CBCT.

The streak artifacts are better alleviated in the network results. Sharper detailed structures

are reconstructed after adaptation.

a 320× 320× 224 window that covered the entire heart.

The BP weights λ was set between 0.01 to 2. All 10 scans were registered 10 times, using

different BP regularization weights, giving rise to 100 DVFs as the training set. The network

was trained with batch size of 1 and 1200 epochs.

Registration network training: The registration network was trained on nine 0.35T

MRI scans acquired on a ViewRay MRIdian system from healthy volunteers, with a breath-

hold and EKG gating protocol, each consisting of ED and ES frames from balanced steady-

state free precession (bSSFP) sequence. The slice thickness ranged from 6.00 to 8.00 mm

with an average slice number of 25. The in-plane pixel spacing ranged from 1.25 to 2.18 mm.

Each image was resampled with voxel spacing of 1 mm and cropped to 160×160×112. The

image intensity was cropped between 0 and 1000 and then normalized to [0,1].

The network was trained for 2000 epochs with a batch size of 1. The balancing parameter

µ was tuned based on the training performance, and was set to 10−7 subsequently.
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Test-time adaptation: The cross-platform adaption was tested on 15 1.5T MRIs in the

cMAC public dataset [TDM13]. The scans were in short-axis view and each had 30 frames.

The image size was typically 256× 256× 14, with voxel size 1.25× 1.25× 8 mm. The image

was resampled to horizontal long-axis-view grid, with 1 mm voxel spacing. Then, they were

cropped and normalized to the same size as the 0.35T images. At test time, the network

was trained with the individual scans for 2000 epochs.

4.4.2.2 Evaluation

In each 1.5T MRI scan in the cMAC dataset, 12 landmarks on left ventricle were located using

the corresponding tagged MRI: one landmark per wall (anterior, lateral, posterior, septal)

per ventricular level (basal, midventricular, apical). The landmarks were manually tracked

by two observers. The median of the inter-observer variability was 0.84mm. Euclidean

distance between the fixed and the transformed landmarks was TRE to measure registration

performance. Paired t-test was performed to examine the performance improvement.

4.4.2.3 Result

The loss curves showing the transition between the train and adaptation stages are shown

in Fig. 4.5.

As shown in Fig. 4.6, the classic method generated an overly smoothed DVF, with un-

satisfactory shape and intensity matching. The test-time adaptation successfully refined the

local motion field and made it physically more feasible.

Fig. 4.7 shows an example where our method failed to estimate the left ventricle motion

correctly. In this instance, the image intensity gradient was too strong for the motion prior

to overcome, and the adaptation process did not reduce the DVF feasibility loss significantly.

As shown in Table. 4.3, our method significantly reduced the TREs compared to the

network without adaption, and achieved comparable result to the carefully tuned classic
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Figure 4.5: Loss curves for the cross-platform adaptation on cardiac MRI.

method.

4.4.3 Cross-modality Adaption on Lung MRI

4.4.3.1 Data and Network Training

Feasibility descriptor and registration network: In this experiment, the pre-trained networks

were kept the same as 4.4.1.1. I.e., the feasibility descriptor was trained on CTs and the

registration network was trained on CBCTs.

Test-time adaptation: The cross-modality adaptation was performed on a lung 4D MRI

scan for 300 epochs. The scan had 8 phases. The image size was 264× 384× 112, with voxel

size 1.22 × 1.22 × 1.80 mm. It was pre-processed to the same size and pixel spacing as the

CTs in Sec.4.4.1.1.
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Figure 4.6: Example registration results on cardiac MRI.

Figure 4.7: An example registration result on cardiac MRI where our method failed to correct

the DVF.

4.4.3.2 Evaluation

We annotated 20 anatomical landmark pairs at EI and EE phases. The Euclidean dis-

tance between the transformed and the fixed landmarks was calculated as TRE to measure

registration performance. Paired t-tests were used to examine statistical significance.
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Table 4.3: Target registration errors based on landmarks on cardiac MRI. Results are pro-

vided as mean ± standard deviation in millimeter. Values inside the parentheses indicate

p-value results from paired t-tests when comparing to our method. p-values that indicate

statistical significance (< 0.01) are underlined.

Basal Midventricular Apical All

Before 8.73±2.20 (10−25) 7.82±2.90 (10−15) 7.30±3.24 (10−20) 7.95±2.88 (10−52)

Classic B-spline 2.41±1.24 (10−3) 2.62±1.43 (0.71) 1.78±1.18 (0.53) 2.27±1.31 (0.05)

Without Adaptation 2.78±1.82 (10−5) 3.82±2.57 (10−6) 2.30±1.66 (10−4) 2.96±2.44 (10−6)

Our method 2.26±1.41 2.61±1.58 1.71±1.36 2.19±1.54

4.4.3.3 Result

The loss curves showing the transition between the train and adaptation stages are shown

in Fig. 4.8.

As shown in Fig. 4.9, due to the strong noise and artifacts, the classic method was mainly

driven by the high-intensity gradient near the diaphragm region and failed to correctly

estimate the motion within the lungs. Network without adaptation heavily underestimated

the motion magnitude. The test-time adaptation generated a much more reasonable result

with good intensity matching and feasible DVF.

Table 4.4: Target registration errors based on the landmarks on lung MRI. Results are

provided as mean ± standard deviation (p-value from paired t-tests).

TRE (mm)

Before 7.24±5.11

Classic B-spline 2.97±2.11 (10−3)

Without adaption 3.04±2.38 (10−5)

Our method 2.00±1.63

As shown in Table. 4.4, our method achieved the best TRE among the three, with
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Figure 4.8: Loss curves for the cross-modality adaptation on lung MRI.

statistical significance (p < 0.01).

4.5 Discussion

The proposed test-time adaptation provides a logical synergy between the DL-based method

and the classic optimization-based method: it combines the benefit of data-driven regular-

ization and rich representation in the deep network modeling and general training process,

and the focus on individual testing inputs from the adaptation stage, similar to the classic

method.

While test-time adaptation yielded significant improvement in individualized registration

results in all variations tested, its impact is related to the level or severity of domain shift.

For moderate domain shift due to difference in imaging protocol and/or scanner setup,

the cost functions for initial training and testing are consistent and the discrepancy can

be largely considered as a consequence of the out-of-distribution behavior with the single

sample, and sufficient adaptation can bring the test-time cost down to the level of training
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Figure 4.9: Example registration results on lung MRI.

cost at convergence. On the other hand, for more significant domain shift, due to platform

or modality differences, as in the case of drastic MRI field strength change or CBCT vs

MRI, the fidelity terms in the objective function are effectively measuring quite different

quantities with their numerical values associated with different interpretations and possibly

scales. In those cases, it is reasonable to expect that the test-time cost and training cost

will improve and deteriorate during adaptation respectively. In addition, the convergence

pattern and values during adaptation are expected to differ from the training stage as the

network parameters are evolved with respect to a different objective.

While the test-time objective-based adaptation tailors the DIR network to the testing

scenario, it is always important to harvest the strength of a good prior to regulate the

objective and network model. From the perspective of addressing the probable discrepancy

in noise and signal statistics between what the network was initially trained on and applied

to, a stable prior compatible to both domains is desirable. In this study, we used a CAE-

based motion feasibility descriptor with well-demonstrated behavior and strength [SCM21].

It meets the domain-invariant need, and is essential for driving the network update and

imposing feasibility constraints during the test-time adaptation. The proposed adaptation

scheme is also compatible with other prior generating schemes such as the adversarial training
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or biomechanical models [HGG18].

We may expand the rationale of adaptation and individualization to a hierarchical scheme

to facilitate clinical workflow. For example, a mature DIR network may be initially trained

on the abundant 4D CBCT and adapted a patient’s MRI images similar to Sec. 4.4.3. Then

for longitudinal studies, a per-day adaptation can be further executed to boost the DIR

performance for a specific testing session.

A limitation of the proposed test-time adaptation is the higher computation time com-

pared to a typical evaluation-only DL inference module. As discussed previously, the burden

of adaptation depends on various factors including the dissimilarity of the test sample to the

training cohort and the level of domain shift. When neither of these is too large, semi-real-

time execution is still possible, which suffices for a large portion of medical registration tasks.

We are actively working on investigating a secondary DL approach to treat the adaptation

as a different task and/or correction scheme to expedite the current approach.

4.6 Conclusion

We have proposed a test-time adaptation scheme to address the generalization gap between

training and testing data and improve registration performance, by fitting the deep regis-

tration network to individual testing data. Extensive experiments showed that the test-time

adaptation yielded significantly improved registration. We have demonstrated the potential

to apply trained registration network to unseen data acquired on a different protocol or

scanner, with a different imaging platform, or even modality.
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CHAPTER 5

Continuous 4D Respiratory Motion Synthesis using a

Conditional Registration Network

5.1 Introduction

Respiratory motion resolution is important in thoracic and abdominal imaging. 4DCT is a

useful approach to characterize phase-resolved volumetric images. However, 4D data is typ-

ically acquired by assembling projections from multiple breathing cycles and sorting them

according to pre-defined respiratory phases. Artifacts can occur if data segments were un-

balanced, caused by device-dependent limitations of gantry rotation and the variability of

the patient’s respiratory pattern. Furthermore, 4DCT scan is more demanding in scanning

time and is associated with higher radiation dose to the imaging subject, which can increase

up to an order of magnitude [KSS04]. These factors together give rise to relatively sparse

high-quality 4DCT data.

On the other hand, 4D information is critical to appreciate patient-specific dynamics,

establish motion manifold, appreciate variations, and as important backbones to support

important online effort such as real-time reconstruction [SZX19, MHS13].

Therefore, it is desirable to synthesize 4DCT from a protocol with a shorter time and

lower dose demand. The requirement for such synthesis would be dependent on the end

application, but should include agreement to high-quality 4DCT when available, nimbleness

in phase definition, and efficiency. Recently, an effort has been made to utilize the pix2pix

infrastructure to synthesize a prescribed set of phases [JV19].
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In this study, we take a different perspective and approach the 4D problem from a dy-

namic imaging perspective. Realizing the intrinsic connections between various phase states

in respiratory dynamics, we set out to model a spatiotemporally continuous deformation

tensor manifold. A time/phase-specific snapshot of this manifold corresponds to a typical

DVF from a reference coordinate. We consider a setup where the input is a pair of extreme

respiratory states, i.e., EE and EI, and the output is the DVF (and correspondingly the

volumetric image) for an arbitrary phase controlled by an input scalar parameter.

5.2 Method

5.2.1 4D Motion Synthesis

Fig. 5.1 shows the proposed method consisting of a conditional registration network and

a spatial transformation module. The conditional registration network takes a conditional

Figure 5.1: Overview of the proposed motion synthesis method. The conditional registration

network takes the two extreme phases of a scan as input and outputs a DVF that correspond

to the phase determined by the conditional variable t. The spatial transformer warps the

end-exhale image with the DVF. Image dissimilarity to the phase-specific ground truth and

DVF regularity are used to drive the network update.
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variable t and concatenated EE-EI image pair (I0, I1) as input, and generates a DVF vt, with

which the EE image I0 is warped toward an image It that corresponds to a certain phase

denoted by t. Inside the spatial transformation module, a sampling grid is created using the

DVF. The input moving image I0 is sampled at these grid points to form the warped image

Ît = I0 ◦ vt [JSZ15, VBV19].

The loss function is defined as the weighted sum of an intensity match discrepancy and

a regularity penalty:

L = Ls(It, I0 ◦ vt) + λLr(vt)

= Ls(It, I0 ◦ f(I0, I1, t; θ)) + λLr(f(I0, I1, t; θ)),
(5.1)

where Ls is the image similarity loss, Lr is the DVF regularization loss, f is the function

of the conditional registration network, θ is the network parameters, and λ is a balancing

hyper-parameter. In this work, NCC is used as the image similarity metric Ls, and BP is

used as the DVF regularization loss Lr to penalize non-smooth deformations and encourage

physical feasibility [RSH99].

Upon review, a set of high-quality 4DCT scans are used as training samples. The condi-

tional variable t is defined within the range [0,1], with t = 0 and t = 1 denoting the EE and

EI phases, respectively. When t = 0, the network is supposed to output zero motion field,

and when t = 1, it reduces to a conventional registration problem, with I0 and I1 being the

moving and fixed images, respectively. A back-propagation scheme is used to derive the DVF

solution to minimize the objective in Eq. (5.1) and update the network parameters θ. At

test time, the trained network takes paired EE and EI images as input, and generates DVF

and the corresponding image for any arbitrary phase by varying the conditional variable t.

5.2.2 Network Architecture

The proposed conditional registration network takes concatenated EE and EI images as

input, and outputs a DVF conditioned on t. As shown in Fig. 5.2, the network uses a
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Figure 5.2: Architecture of the conditional registration network. Conditional residual blocks

are used to replace the convolutions in the U-net encoding path and take a scalar parameter

t as conditional variable input.

general U-net structure [RFB15] to take advantage of the hierarchical structure and skip

connections for effective learning of features at all scales.

In order to condition the network model on the continuous breathing phase, we replace

most of the convolution layer in the encoding path with a novel conditional residual block

(CRB). As shown in Fig. 5.3, the CRB uses a fully-connected subnetwork to map the condi-

tional variable t to two hidden variables a and b, which are then multiplied and added to the

feature map within the residual block respectively to convey phase information [HZR16].

The fully-connected subnetwork has two layers, with 32 and 16 units, respectively, and

uses ReLU activation. All the 3× 3× 3 convolution layers use strides of one, zero-padding,

and ReLU activation, except the last layer, which uses linear activation. Average pooling
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Figure 5.3: Architecture of the proposed conditional residual block. t is the input conditional

variable. a and b are two scalar variables generated from the fully-connected subnetwork.

and up-sampling with a scaling factor of two are used in the encoding and decoding paths,

respectively.

5.2.3 Calibration

In our training setup, the conditional variable has a direct correspondence with the phase

in 4DCT. However, the regularization from the bending energy biases the network towards

a slight under-estimation of the motion magnitude, resulting in a phase offset. To address

this bias, we introduce a simple yet effective calibration to post-process the conditional

registration network.

Specifically, an offset value t0 is added to the conditional variable t before being fed into

the network for inference.

v′t = f(I0, I1, t
′; θ) = f(I0, I1, t + t0; θ). (5.2)

The offset value is determined by back-searching for the optimal t′ value that minimizes

the MSE of image intensity on the training data (details in Sec. 5.3.6), and is fixed once

the network training is complete. The linear relationship between t and the phase number

persists.
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5.3 Experiments and Results

5.3.1 Data

4DCT data from the 4D-Lung collection in the Cancer Imaging Archive (TCIA) [HWS17] was

used in our experiment. They were acquired using a 16-slice helical CT scanner (Brilliance

Big Bore, Philips Medical Systems) during the chemoradiotherapy of 20 locally advanced,

non-small cell lung cancer patients. Each scan had 10 breathing phases, with 3 mm slice

thickness. The in-plane resolution was 0.9766 mm for a grid size of 512× 512.

All images were resampled to slice thickness 2.5 mm and in-plane pixel spacing 1.16 mm,

and then cropped to a 256× 256× 96 window that covered the lungs. Image intensities were

clamped to a [−1000, 500] HU window and normalized to a [0, 1] range.

In this experiment, we focused on the inhalation dynamics and used six of the ten phases

(0.0% to 50.0%) in training, with 0.0% being the EI phase (I1) and 50.0% being the EE

phase (I0).

We used a cross-validation scheme and divided the 20 scans into four groups, each con-

taining five scans. In the experiment, three of the groups were used as the training set and

the remaining one was used for testing.

5.3.2 Implementation

The phase index t was assigned 0, 0.2, 0.4, 0.6, 0.8, 1.0, respectively, for the six-phase setup.

The network was trained for 200 epochs with batch size 1. The balancing parameter λ = 0.3

was used for bending energy regularization. ADAM optimizer with learning rate 10−4 was

used. The calibration offset value t0 was estimated and set to 0.10.
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5.3.3 Calibration Test

While a bias of phase correspondence is expected due to regularization, it is important to

appreciate its severity and assess the impact or efficacy of the proposed calibration module.

To this end, we performed two sets of tests to characterize the upper and lower bound

performance. The performance lower bound is established by executing the conditional

registration network in the absence of the calibration module. This will quantify the impact

of phase bias and also serves the role of ablation analysis for the calibration module. The

performance upper bound is obtained by an Oracle study: for each phase in the test, we

exhaustively searched for the t value that yielded the lowest MSE in image intensity. Note

that this process is not only time-consuming but also reflects an impractical idealization,

because ground truths for intermediate phases are unavailable during real inference.

5.3.4 Benchmark Methods

The proposed method was compared against two alternative benchmark approaches. Both

methods were utilized on well-established pair-wise registration and used a linear scaling

scheme to generate intermediate DVFs and the corresponding images. Comparison against

these methods was expected to signify the impact of the proposed conditioning.

SE-Linear: Given an EE-EI image pair, a simple approach to synthesize motion field

for any intermediate phase is to scale the EE-EI DVF. Specifically, classic B-spline method

was used to generate the EE-EI DVF. Then, the DVF was multiplied by scaling factor

α = 0.2, 0.4, 0.6, 0.8 to obtain the intermediate phases. The classic B-spline registration was

generated using the SimpleElastix toolbox [MBS16]. The same cost function as the unsu-

pervised objective was used, and a multi-resolution strategy was adopted for optimization,

with 30 optimization iterations in each of the four resolution levels.

DL-Linear: Similar to SE-Linear, we used the EE-EI DVF generated by the proposed

conditional registration network, and applied linear scaling to obtain DVF for a target phase
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and generated the corresponding image.

5.3.5 Evaluation

Without direct access to ground-truth 4D motion fields, the synthesis results are evaluated

by image intensity. We quantified the performance with RMSE and SSIM to the known

intermediate phase images in testing 4DCTs. Paired t-test was used to examine the statistical

significance. Visualization was also generated to help appreciate and assess physiological

feasibility qualitatively.

5.3.6 Results

5.3.6.1 Calibration Evaluation

Figure 5.4: Example back-search results. The optimal t value has deviated from the ”ideal”

line, and the shift appears to be global.

104



As a part of the calibration process, for each phase of each data sample, we searched

for the optimal t value to minimize the image intensity difference measured by MSE. Three

example back-searching results are shown in Fig. 5.4. It can be observed that the optimal

t value had deviated from the ”ideal” line, but the linear relationship still persisted. The

shift appeared to be global and applied for samples in either training and testing sets. The

calibration process in Sec. 5.2.3 accommodated this shift. The offset value t0 was set to be

the mean deviation from the ideal line for all samples in the training set and was 0.10 in this

experiment.

Table. 5.1 reports the impacts of phase bias and its correction. As expected, the ora-

cle scheme based on exhaustive search yields the smallest RMSE and highest SSIM. Our

proposed calibration achieved a similar SSIM to the Oracle correction, without statistically

significant difference. Although the RMSE was statistically different from the Oracle correc-

tion, equivalence tests indicated that they were statistically equivalent (p < 0.05), in terms

of either RMSE or SSIM.

Table 5.1: Impact of the calibration module. Results are provided as mean ± standard

deviation (p-value from paired t-tests when comparing the method against ours).

RMSE (HU) SSIM

No Calibration 110.8±39.9 (10−5) 0.899±0.066 (10−5)

Oracle 68.8±31.8 (10−3) 0.927±0.040 (0.031)

Our Calibration 72.6±34.1 0.925±0.046

5.3.6.2 Efficacy of Conditioning

Table. 5.2 shows the quantitative results for model comparison between direct DVF scaling vs

the proposed conditioning. Compared to the two benchmark methods, our method achieved

much better results in terms of both RMSE and SSIM, with statistical significance. The

average run time for generating a 10-phased 4D motion field and image was 2.85 s.
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Table 5.2: Quantitative results on image synthesis. Results are provided as mean ± standard

deviation (p-value from paired t-tests).

RMSE (HU) SSIM

SE-Linear 125.3±56.83 (10−6) 0.866±0.068 (10−5)

DL-Linear 138.6±59.72 (10−6) 0.859±0.079 (10−4)

Proposed Conditional DL 72.6±34.1 0.925±0.046

A qualitative comparison is shown in Fig. 5.5. As indicated by the red arrows, when

synthesizing the phase at 30%, SE-Linear and DL-Linear severely underestimated the motion

in the anterior and superior parts of the lungs. In addition, as indicated by the blue arrows,

SE-Linear was strongly affected by the local artifacts and resulted in non-smooth DVFs. In

comparison, the image generated by the proposed conditional DL method was closer to the

ground truth. It correctly estimated the motion magnitude on both local and global levels,

and was spatially smooth.

5.3.6.3 Qualitative Visualization for Arbitrary Continuous Phases

An example synthesis is shown in Fig. 5.6. Our method generated realistic DVFs that were

spatiotemporally smooth. The method was able to synthesis any intermediate breathing

phases, even for t values not included in the training setup (e.g., t = 0.3).

To further demonstrate the behavior of the proposed model, we calculated the motion

magnitude at the lower lobe region, along the three imaging axes at different t values, and The

relative motion magnitude change calculated by dividing the magnitude with the directional

maximum that correspond to EI and is shown in Fig. 5.7. Our model was able to capture

the temporally non-linearity of the respiratory motion.
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Figure 5.5: Example synthesis results for phase 30%, using the benchmark methods and the

proposed approach. Red arrows indicate severe underestimation of motion magnitude. Blue

arrows indicate significant local non-smoothness.

5.4 Discussion

In this study, we used the weighted sum of NCC and bending energy penalty as the loss

function for the network training. The proposed paradigm is compatible with any differ-

entiable similarity metric and regularizer. We have shown that the proposed calibration

module, albeit simple, can correct for regularization-induced phase bias effectively.

In contrast to an existing 4DCT synthesis method [JV19] where parallel image-to-image

translation networks to map a static CT to multiple predetermined breathing phases, our
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Figure 5.6: Example synthesis results. The numbers indicate the t values.

method chooses to centralize on DVF modeling and then translates it to image generation.

In doing so, it manages to capture the coupling across different phases and incorporates

temporal consistency naturally. By modeling the underlying 4D motion with a continuous
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Figure 5.7: Curves showing the change of relative motion magnitude along different axes.

The average within a region located at the lower lobes was used, and the magnitude was

normalized with respect to directional maximum for display. The normalization factors were

4.1, 6.8, and 2.9 mm for the AP, SI, LR respectively.

conditional variable, our model can generate arbitrary intermediate phases on the fly, without

the restriction of pre-set phase banks. Finally, with the synthesis anchored at extreme stage

pairs, patient-specific motion information, including but not limited to respiratory volume,

is incorporated better. This study also evaluated the synthesis comprehensively based on

the complete intensity profile, beyond surrogate metrics such as lung volume in [JV19].

One limitation of the current synthesis is its suboptimal performance in intensity-homogeneous

regions outside the lungs due to the lack of local structural contrast. In future work, we plan

to incorporate respiratory motion-specific feasibility priors from either registration or biome-

chanical models [SR21, HGG18]. We expect such prior to perform better than prescribed

universal bending energy to help yield more realistic motion synthesis. Alleviated bias from
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better prior may also help to make the conditional variable more congruent with the phase

number, eliminating the need for explicit calibration.

5.5 Conclusion

We have presented a novel paradigm to synthesize continuous 4D respiratory motion from

EI and EE image pairs. Our method trains a conditional image registration network with

4DCT data. By varying the conditional variable, the network can generate DVF for an arbi-

trary intermediate breathing phase. Experiments have demonstrated the method’s ability to

precisely control the breathing phase, and generate spatiotemporally smooth realistic DVFs.

This method can be applied in common clinical practice to support 4DCT synthesis, online

reconstruction, and other downstream tasks.
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CHAPTER 6

Summary

In this dissertation, we have developed modules and methods for deformable image reg-

istration by combining physical-driven rationales with advanced learning techniques. Our

methods effectively addressed several major challenges in DL-DIR, leading to improved reg-

istration efficiency, accuracy, and robustness.

In Chapter 2, we have proposed a DIR network that is conscious of and self-adaptive

to deformation of various scales to improve registration performance. The introduction and

integration of dilated inception modules and scale adaptation modules address the hetero-

geneous scale problem with self-adaptation and high efficiency. The method serves as an

efficacious alternative to the time-consuming multi-resolution strategy.

In Chapter 3, we have proposed two different approaches to incorporate learned implicit

feasibility conditions into DIR. In the supervised method, a Plug-and-Play feasible motion

prior is developed from high-quality images, and then incorporated as a regularizer to train an

unsupervised DIR network. In the unsupervised method, novel deformation parametrization

in the form of a generator network is developed to learn implicit feasibility conditions on

DVF from paired images using the alternating back-propagation algorithm. Both methods

managed to model feasibility conditions without external regularization and led to physically

and physiologically more reasonable DVFs.

In Chapter 4, we have made investigations to address the potential domain shift and to

improve the accuracy and robustness of registration. A test-time adaptation scheme is used

to fit trained DIR networks to individual testing data. The method yielded significantly
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improved registration on unseen data in cross-protocol, cross-platform, and cross-modality

scenarios.

In Chapter 5, we have proposed a DIR approach to synthesize continuous 4D motion

from image pairs at two phases. The method trains a conditional image registration network

with 4DCT data. By varying the conditional variable, the network can generate DVF for

an arbitrary intermediate breathing phase. This novel paradigm can be applied to augment

the available data or serve as a backbone to support online reconstruction and downstream

analysis from real-time imaging.

Each of these developments not only bridges the current gap of existing methods to

clinical needs, but also alludes to further investigation directions.

From the technical perspective, the current supervised CAE based prior was trained

with DVFs derived from numerical registration on high-quality images. While this approach

is robust enough to generate physiologically reasonable breathing motion fields from lung

CTs, it is more challenging to generate DVFs that faithfully represent cardiac motions. It

is worthwhile to complement this effort with alternatives, such as dynamic anthropomor-

phic phantoms or biomechanical models, to overcome the limitations of image quality and

registration algorithms.

The feasibility conditions on DVF learned from the unsupervised generator network can

be furthered by (1) going from paired setting to extended 4D temporal domain as well; and

(2) using a dual generator network to disentangle the anatomy and deformation information

from a collection of multiple-subject multiple-instance images.

It is also expected that combining registration with other image processing tasks may

be beneficial in enhancing the connection to downstream clinical endpoints and complement

the information extraction during the learning process. While preliminary assessment has

been performed in Section 3.2.2 for motion-compensated image enhancement, integration of

the DIR to reconstruction is a natural next step. We also plan to develop a registration-
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segmentation multi-task network to improve the network’s natural attention to important

singularities or critical structures.

From the application perspective, our current experiments mainly focused on inter-phase

DIR of 4D heart and lung images, where the estimated DVF represents intra-subject cardiac

or respiratory motions. The methods proposed in Chapters 2-4 can be applied to other sce-

narios such as inter-subject, inter-modality, or longitudinal DIR where tissue correspondence

needs to be established.
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