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EPIGRAPH

“This is OK, but I think things could be done better.
I think there is a neater way to do this.

I think things could be improved a little.”
In other words, there is continually a slight irritation

when things don’t look quite right;
and I think that dissatisfaction in present days

is a key driving force in good scientists.

Claude E. Shannon1

1Claude Shannon, “Creative Thinking,” March 20, 1952, in Claude Shannon’s Miscellaneous Writings, ed.
N. J. A. Sloane and Aaron D. Wyner (Murray Hill, NJ: Mathematical Sciences Research Center, AT&T Bell
Laboratories, 1993), 528–39.
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This dissertation illustrates how certain information-theoretic ideas and views

on learning problems can lead to new algorithms via concrete examples. The three

information-theoretic strategies taken in this dissertation are (1) to abstract out the gist

of a learning problem in the infinite-sample limit; (2) to reduce a learning problem into

a probability estimation problem and plugging-in a “good” probability; and (3) to adapt

and apply relevant results from information theory. These are applied to three topics in

machine learning, including representation learning, nearest-neighbor methods, and

universal information processing, where two problems are studied from each topic.
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Introduction

A high-level goal of this dissertation is to investigate how to design a provably

efficient machine learning algorithm based on an information-theoretic insight. Since

this research program is rather generic at this level, we motivate our perspective below,

by examining the goals of information theory and machine learning.

Since initiated by C. Shannon’s seminal work on a mathematical theory of com-

munication (Shannon, 1948), information theory has virtually underpinned almost all

modern information technologies over the last seven decades, having grown as an

independent, impactful field of engineering. Roughly put, information theory studies

how far efficient we can (fundamental limits) and how we should (coding schemes) com-

municate over a channel (a conditional distribution), or compress a source (a probability

distribution). In the course of developing important fundamental limits and practical

coding schemes, information theory has also proposed a number of interesting informa-

tion measures and genuine mathematical tools, which have been successfully applied

to various different areas such as economics, statistics, and computer science. For an

overview of the important results in information theory, we refer an interested reader

to the standard textbooks on information theory by Cover and Thomas (2006) and

El Gamal and Kim (2011). See also (Csiszár and Körner, 2011; Csiszár and Shields, 2004;

Duchi, 2019; MacKay et al., 2003; Mezard and Montanari, 2009; Polyanskiy and Wu,

2014).

Machine learning is the field of study on how to learn or learn about a probability

distribution from their samples. For example, in the standard problem setting of clas-
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sification, a learner is provided a set of training samples, where each sample is a pair

of an instance and its label, assumed to be drawn from some (unknown) underlying

distribution; the goal of a learner here is to make a guess on the label of a new test

instance as correctly as possible, under a choice of performance criterion. Depending on

the form of distributions and the task, we can define a wide range of different machine

learning problems, such as supervised learning (e.g., classification and regression),

unsupervised learning (e.g., clustering, density estimation, image generation), online

learning (e.g., bandit learning, reinforcement learning). In any case, the ultimate goal of

machine learning is to design a practical algorithm for a given learning problem that is

computationally fast, sample-efficient, and provably optimal.

Clearly, at the very heart, information theory and machine learning have probabil-

ity distributions as their central object of study in common: information theory aims to

deal with a fundamental property of a probability distribution, and machine learning

tries to infer about an unknown distribution from its samples. Hence, several con-

nections have been already established in the literature. For example, see (MacKay

et al., 2003) for a nice introduction to machine learning from an information-theoretic

perspective and see (Duchi, 2019) for the role of information theory as the source of a

variety of technical tools in modern statistics.

One natural question that arises at the interface between the two fields, which

has driven the development of this dissertation, is:

How can we use tools and lessons from information theory

to develop machine learning algorithms?

While there may exist many other alternatives that can be qualified as “infor-

mation-theoretic” strategies, we take the following, high-level strategies throughout

this dissertation:
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1. Abstract the gist of a learning problem in the infinite-sample limit. Information theo-

rists are used to contemplating in an asymptotic regime, rooted in the spirit of

Shannon’s characterization of a channel capacity. Although it might sound too

simplistic to get rid of the finiteness of samples in a learning problem, oftentimes

it suffices for providing a good, first-order principle.

2. Reduce a learning problem to a probability estimation problem and plug-in a “good”

probability. This strategy is in the spirit of universal compression (see, e.g., (Cover

and Thomas, 2006, Section 11.3)); a source compression problem can be reduced

to a probability estimation problem under the log loss, via the use of arithmetic

coding (Rissanen and Langdon, 1979). This reduction-based modular approach

often gives a simple and elegant solution to a learning problem.

3. Adapt and apply relevant ideas from information theory. After a simplification of a

learning problem at hand by the two strategies above (or possibly something else),

one may seek an analogue of the problem from information theory and adapt the

existing solution back to the learning problem.

In this dissertation, we illustrate how these information-theoretic strategies

can lead to new machine learning algorithms, via concrete examples. We study two

problems from three selected topics in machine learning, including representation learning

(Part I), nearest-neighbors methods (Part II), and universal information processing (Part III),

as summarized below. A reader can the chapters independently. We conclude each

chapter with some concluding remarks and future directions to pursue.

Part I. Representation Learning

In Part I, we study the problem of representation learning. The ultimate goal in

representation learning is to compute a succinctly good representation of given data, in

that it makes a learner easier to learn from the representation in place of the raw data, by
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preferably having a much lower dimension than the ambient dimension and having a

“good” structure.

In Chapter 1, we study the problem of cross-domain disentanglement, where the

goal is to learn a good joint representation with a certain disentanglement structure of

a pair of two high-dimensional random objects. Thinking in the infinite-sample limit

(Strategy 1) and inspired by network information theory (Strategy 3), we propose a new

definition for an optimal common representation based on the notion of Wyner’s com-

mon information (Wyner, 1975); it is the first principled attempt to define an optimality

of cross-domain disentanglement in the literature. We then propose a new generative

model framework based on the definition of the optimal structure, and present an ad-

versarial training method for various learning tasks such as joint generation, conditional

generation, and cross-domain retrieval.

In Chapter 2, we study how to efficiently compute a good representation using

kernels. While being widely used in practice due to their simplicity and decent perfor-

mance, the standard kernel-based embedding methods such as kernel PCA (Schölkopf

et al., 1998) and Laplacian eigenmaps (Belkin and Niyogi, 2003) inherently suffer a

demanding computational complexity. The computational bottleneck is at an eigende-

composition step which is crucial in the class of methods. In this work, we revisit the

existing methods, examine their optimization-problem characterizations in the infinite-

sample limit (Strategy 1), and propose a new embedding algorithm which only requires

density estimation rather than the cumbersome eigendecomposition.

Part II. Nearest-Neighbor Methods

One of the simplest class of nonparametric algorithms for such problems is the

class of k-nearest-neighbor (k-NN) based algorithms, which is appealing due to their

simplicity, decent performance, and rich understanding of their statistical properties.

We remark, however, two general limitations of the NN-based methods. First, while

4



the number of neighbors k needs to grow to infinity in the sample size to achieve

statistical consistency in general for such procedures, small k is highly preferred in

practice to avoid possibly demanding time complexity of large-k-NN search. Second,

k-NN based algorithms are often deemed to be inherently infeasible for large-scale data,

as they need to store and process the entire data in a single machine for NN search.

The central question in this part of dissertation is whether we can design an NN-based

algorithm that circumvents such practical issues. Towards the goal, we specifically

focus on developing and analyzing various algorithms using fixed-k-NNs.

In Chapter 3, we show how to perform minimax rate-optimal classification and

regression for any fixed k-NN search, especially even for k = 1. To derive the proposed

algorithm, we make two information-theoretic observations (Strategy 3) in the infinite-

sample limit (Strategy 1). First, the 1-NN classifier behaves as the randomized likelihood

detector which outputs a random draw from the posterior distribution, in the infinite-

sample limit (Cover and Hart, 1967). Second, by aggregating multiple random draws

from the posterior distribution instead of a single draw, the detection error can be shown

to be exponentially close in the number of draws (Bhatt et al., 2018). Consequently,

fusing the insights, we study a distributed nearest-neighbor classification method, in

which a massive dataset is split into smaller groups, each processed with a k-nearest-

neighbor classifier, and the final class label is predicted by a majority vote among these

groupwise class labels. As expected, we indeed show that the distributed algorithm

with k = 1 over a sufficiently large number of groups attains a minimax optimal error

rate up to a multiplicative logarithmic factor under some regularity conditions, for

both regression and classification problems. Roughly speaking, distributed 1-nearest-

neighbor rules withM groups has a performance comparable to standard Θ(M)-nearest-

neighbor rules. More importantly, the proposed algorithm is fully parallelizable and

thus naturally suitable for large-scale data.

In Chapter 4, we study how to estimate a single-density or double-density
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functional using fixed-k-NNs, where the functional under consideration is in the form

of the expectation of some function f of the densities at each point. We propose a new

approach to L2-consistent estimation of a general density functional using k-nearest

neighbor distances. The estimator is designed to be asymptotically unbiased, using

the convergence of the normalized volume of a k-nearest neighbor ball to a Gamma

distribution in the infinite-sample limit (Strategy 1), and naturally involves the inverse

Laplace transform of a scaled version of the function f. Some instantiations of the

proposed estimator recover existing k-NN based estimators of Shannon and Rényi

entropies and Kullback–Leibler and Rényi divergences, and discover new consistent

estimators for many other functionals such as logarithmic entropies and divergences.

We establish the L2-consistency of the proposed estimator for a broad class of densities

for general functionals, and the convergence rate in mean squared error as a function of

the sample size for smooth, bounded densities.

Part III. Universal Information Processing

Many, if not most, existing data processing algorithms are designed upon some

assumptions on unknown data generating processes and are sometimes guaranteed to

be optimal under such premises. With the ever increasing amount of more complex

and high-dimensional data, however, such assumptions neither are verifiable, nor

could accurately reflect the reality (Wasserman, 2011); i.e., “all models are wrong”, as

famously quoted. Towards building intelligent systems without potential risks from

misspecified assumptions, we are interested in developing an algorithm that provably

works well under minimal statistical requirements. In this part of dissertation, we

especially demonstrate the power of the reduction-and-plug-in approach (Strategy 2)

for the discrete sequence denoising and online learning with side information problems.

In Chapter 5, we propose a simple and scalable discrete denoising algorithm that

can be applied to a wide range of source and noise models. At the core of the proposed
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CUDE algorithm is symbol-by-symbol universal denoising used by the celebrated

DUDE algorithm (Weissman et al., 2005), whereby the optimal estimate of the source

from an unknown distribution is computed by inverting the empirical distribution of the

noisy observation sequence by a deep neural network, which naturally and implicitly

aggregates multiple contexts of similar characteristics and estimates the conditional

distribution more accurately (Strategy 2). The performance of CUDE is evaluated for

grayscale images of varying bit depths, which improves upon DUDE and its recent

neural network based extension, Neural DUDE (Moon et al., 2016).

In Chapter 6, we propose a class of parameter-free online linear optimization

algorithms that harnesses the structure of an adversarial sequence by adapting to some

side information. These algorithms combine the reduction technique of Orabona and Pál

(2016) for adapting coin betting algorithms for online linear optimization with universal

compression techniques in information theory (Strategies 2 and 3) for incorporating

sequential side information to coin betting. We study concrete examples in which the

side information has a tree structure and consists of quantized values of the previous

symbols of the adversarial sequence, including fixed-order and variable-order Markov

cases. By modifying the context-tree weighting technique of Willems et al. (1995)

(Strategy 3), we further refine the proposed algorithm to achieve the best performance

over all adaptive algorithms with tree-structured side information of a given maximum

order in a computationally efficient manner.
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Francesco Orabona and Dávid Pál. Coin betting and parameter-free online learning. In
Proc. Adv. Neural Info. Proc. Syst., volume 29. Curran Associates, Inc., 2016.

Yury Polyanskiy and Yihong Wu. Lecture notes on information theory. Lecture Notes for
MIT (6.441), UIUC (ECE 563), and Yale (STAT 664)., 2014.

Jorma Rissanen and Glen G Langdon. Arithmetic coding. IBM J. Res. Dev., 23(2):149–162,
1979.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component
analysis as a kernel eigenvalue problem. Neural Comput., 10(5):1299–1319, 1998.

Claude Elwood Shannon. A mathematical theory of communication. Bell Syst. Tech. J.,
27(3):379–423, 1948.

Larry Wasserman. Low assumptions, high dimensions. Ration., Mark. Morals, 2(11):
201–209, 2011.

T. Weissman, E. Ordentlich, G. Seroussi, S. Verdu, and M. J. Weinberger. Universal
discrete denoising: known channel. IEEE Trans. Inf. Theory, 51(1):5–28, Jan 2005. ISSN
0018-9448. doi: 10.1109/TIT.2004.839518. URL http://ieeexplore.ieee.org/stampPDF/
getPDF.jsp?arnumber=1377489{&}isnumber=30067.

Frans MJ Willems, Yuri M Shtarkov, and Tjalling J Tjalkens. The context-tree weighting
method: Basic properties. IEEE Trans. Inf. Theory, 41(3):653–664, 1995.

Aaron Wyner. The common information of two dependent random variables. IEEE
Trans. Inf. Theory, 21(2):163–179, 1975.

9

http://ieeexplore.ieee.org/stampPDF/getPDF.jsp?arnumber=1377489{&}isnumber=30067
http://ieeexplore.ieee.org/stampPDF/getPDF.jsp?arnumber=1377489{&}isnumber=30067


Part I

Representation Learning
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Chapter 1

Learning with Succinct Common Repre-
sentation

1.1 Introduction

Over the last decade, we have witnessed an uncountable number of successes

of deep learning, which are mostly attributed to its power of learning a good, low-

dimensional representation of data (Bengio et al., 2013). The importance of representa-

tion learning has become more significant than ever in the last few years, as represented

by a recent paradigm shift towards a task-agnostic learning framework (Bommasani

et al., 2021) and the emerging successes in self-supervised learning (Chen et al., 2020).

Despite the practical breakthroughs, however, answers to the fundamental questions

like “what is a good representation?” and “how can we find such a representation?” are

still unsatisfactory.

In this context, we study how to learn a good joint representation of a pair

of random vectors (X,Y) with complex dependence from data, with the following

structure: we wish to learn a structured representation (Z,U,V) of (X,Y) such that

(Z,U) and (Z,V) capture the information of X and Y, respectively. Here, Z captures the

commonality of (X,Y), which we thus call a common representation of (X,Y); U and V,

which we call local representations, correspond to the remaining information on X and Y,

respectively. See Fig. 1.1 for a Venn-diagram schematic of the structured representation.
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This problem is often referred to as the cross-domain disentanglement problem (Gonzalez-

Garcia et al., 2018) in the machine learning literature and has numerous applications

including joint and conditional generative tasks (also known as domain transfer or

image-to-image translation) and cross-domain retrieval tasks (Gonzalez-Garcia et al.,

2018; Huang et al., 2018; Lee et al., 2018; Liu et al., 2018; Press et al., 2019; Yu et al., 2019;

Zhu et al., 2017).
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Figure 1.1. A Venn-diagram schematic for cross-domain disentanglement.

The main difficulty in learning such joint distributions with disentangled repre-

sentations is that there have been no proper criterion for cross-domain disentanglement

that defines an optimal common representation. Indeed, existing approaches which are

mostly from the deep learning literature focus on developing a network architecture

and/or a set of ad-hoc loss functions that promote the degree of disentanglement,

not defining an optimal common representation of a joint distribution. Even a few

existing information-theoretic proposals on learning a good bottleneck representation

such as the famous information bottleneck principle (Tishby et al., 1999) and a recent

proposal (Hwang et al., 2020) based on interactive information (McGill, 1954) do not

define what an optimal representation is and what they aim to look for.

Observe that there are two bad extremes for the common representation. On

one hand, we can use raw data as the common representation Z = X or Z = Y, which

contain maximal information of the pair, but may not be helpful from the view of a

user who wishes to perform a downstream task based on it, as there exists a large
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degree of redundancy. On the other hand, one may choose a common representation Z

as a constant; albeit being the simplest, it discards essential information about the pair

and is thus not useful representation. Hence, it is natural to assume that an optimal

representation must lie somewhere in between, i.e., capturing the most succinct possible

representation, as well as maintaining all the commonality of the pair.

In this paper, as a first proposal to the missing definition of an optimal common

representation, we propose a new representation learning principle inspired by network

information theory. To motivate our perspective, consider the following game between

Alice (“encoder”) and Bob (“decoder”) that captures the problem setting of conditional

generation. Given an image of a child’s photo X, Alice is asked to encode X and send its

description Z to Bob who draws a portrait Y of how the child will grow up based on

it. In this game, Bob wishes to draw nice adulthood portraits, as various as possible,

given a child’s photo. In this cooperative game, Alice needs to help Bob in the process

by providing a good description Z of the child’s photo X. Intuitively, seeking the most

succinct description Z that contains information common in X and Y may be beneficial in

their guessing processes, since Alice need not describe any extra information beyond

that is contained in X and Bob need not filter out any redundant information from Z.

P. Cuff (2013) formulated this game of conditional generation as the channel

synthesis problem in network information theory depicted in Fig. 1.2. Given a joint

distribution qdata(x,y) = qdata(x)qdata(y|x), Alice and Bob want to generate Y according

to qdata(y|x) based on a sample from qdata(x). In this problem, Alice wishes to find the

most succinct description Z of X (a child’s photo) such that Y (her adulthood portrait)

can be simulated by Bob according to the desired distribution using this description and

local randomness V (new features to draw a portrait of adults that are not contained

in photos of children). The minimum description rate for such conditional generation

is characterized by Wyner’s common information (CI) (El Gamal and Kim, 2011; Wyner,

1975), which is denoted by J(X;Y) and defined as the optimal value of the following
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optimization problem, which we will call Wyner’s optimization problem hereafter:

minimize I(X,Y;Z)

subject to (X,Y,Z) ∼ qdata(x,y)qϕ(z|x,y)

X↔ Z↔ Y

variables qϕ(z|x,y).

(1.1)

Here, I(X,Y;Z) is the mutual information between (X,Y) and Z, and X ↔ Z ↔ Y

denotes that X,Z,Y form a Markov chain, i.e., X is independent of Y given Z (Cover

and Thomas, 2006).

Notably, the same quantity J(X;Y) arises as the fundamental limit of the dis-

tributed simulation of correlated sources studied originally by A. Wyner (1975) in which

two distributed agents wish to simulate a target distribution qdata(x,y) based on the

least possible amount of shared common randomness; see Fig. 1.2 (c,d). As the channel

synthesis problem can be viewed as an information-theoretic counterpart of conditional

generation, the distributed simulation corresponds to joint generation.

Thus motivated from these observations, in this paper, we suggest to define

an optimal common representation of a given joint distribution q(x,y) as the optimal

solution of Wyner’s optimization problem (1.1), and use the probabilistic model with a

succinct common representation for both joint and conditional generation tasks.

Towards its application in generative modeling, in Section 1.2, we first propose

a probabilistic model that finds a common representation, based on the single-letter

characterizations of the distributed simulation and channel synthesis problems; see

Fig. 1.2(b),(d). Note that the resulting probabilistic models, which we call the variational

Wyner model as a whole, follow the Markov chain X ↔ Z ↔ Y, which also appear

in Wyner’s optimization problem (1.1) as a constraint. Here, the mutual information

I(X,Y;Z) emerges as a measure of the complexity of the common representation Z
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(a) Channel synthesis (b) Single-letter characterization of (a)

(c) Distributed simulation (d) Single-letter characterization of (c)

Figure 1.2. Schematics for channel synthesis from X to Y (a,b), and distributed simu-
lation of (X,Y) (c,d). (a,c) and (b,d) correspond to the operational definition and the
single-letter characterization of each problem, respectively. The local randomness U
and V make the decoders stochastic.

characterized by q(z|x,y); see Remark 1.2.4.

Now in the learning setting, where we only have access to the joint distribution

q(x,y) via its samples, we propose to train the probabilistic model based on Wyner’s

optimization problem (1.1). We will first derive from (1.1) a set of distribution matching

losses and CI regularization losses as the main objectives. To learn with samples more

effectively, we further propose auxiliary objectives such as reconstruction losses and

latent matching losses. See Section 1.3.

In Section 1.4, we discuss how to train the variational Wyner model based on

the proposed training objective. As an effective training trick, we specifically adopt an

approximate training method using an variational density ratio estimation technique (Pu

et al., 2017). With this training trick, after all, the proposed generative model can be

viewed as an adversarially learned bimodal autoencoder.

Section 1.5 discusses related work on Wyner’s CI from the information theory

literature, existing information-theoretic approaches such as (Tishby et al., 1999) and

(Hwang et al., 2020), and other bimodal generative models and cross-domain disentan-
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glement approaches.

In Section 1.6, we justify this framework (the model, the training objectives, and

the training method as a whole) by empirically showing that learning with its deep

generative model manifestation can indeed improve an empirical quality in generative

tasks and various downstream tasks for synthetic and real-world dataset, demonstrating

that the amount of CI captured in Z can be controlled to improve the quality of the

model. We defer the details of training schemes and network architectures to Appendix.

1.2 Probabilistic Models

In this section, we define all probabilistic model components for joint and con-

ditional sampling tasks based on the Markov chain X↔ Z↔ Y and the single-letter

characterizations in Fig. 1.2 (b,d).

1.2.1 Joint Model

As a generative model for modeling the joint distribution qdata(x,y), we consider

the latent variable model pθ(z)pθ(x|z)pθ(y|z). Here, Z ∼ pθ(z) signifies the common

randomness fed into the probabilistic decoders pθ(x|z) and pθ(y|z). We parameterize

the probabilistic decoders pθ(x|z) and pθ(y|z) by (deterministic) functions xθ(z,u) and

yθ(z,v) with independent local randomness U ∼ pθ(u) and V ∼ pθ(v), as depicted

in the single letter characterization of distributed simulation (Fig. 1.2 (d)). With a

slight abuse of notation, we use xθ(z,u) for a shorthand for the degenerate distribution

δ(x− xθ(z,u)).

1.2.2 Conditional Models

To model the conditional distribution qdata(y|x), we consider the bottleneck

conditional model qθ(z|x)pθ(y|z) that follows X↔ Z↔ Y; note that the decoder pθ(y|z)

is shared by the joint model. The other direction for modeling qdata(x|y) is symmetric
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and thus omitted.

1.2.3 Variational Encoders

In addition to the base components introduced so far from which we can draw

joint and conditional samples, we introduce three additional encoders:

• A joint encoder qϕ(z|x,y): it plays a key role of an anchor during training, tying

the joint and conditional models.

• Local encoders qϕ(u|z,x), qϕ(v|z,y): these can be viewed as style extractors for each

modality x and y: if we learn a succinct common representation qϕ(z|x,y) (e.g., a

shared concept) from (x,y), then qϕ(u|z,x) captures the remaining randomness U

of X (e.g., texture and style).

We will call these encoders variational due to a technical reason to be justified when

training objectives are introduced below in Section 1.3.1.These encoders can be used in

training by allowing us to enforce the reconstruction consistency of the model as shown

in the next section, as well as in several inference tasks such as domain translation; see

Remark 1.2.2.

1.2.4 Variational Wyner Model

We call the entire model with all the components introduced above, i.e., in

Sections 1.2.1–1.2.3, as the (bimodal) variational Wyner model. We remark that in this

general framework we may learn multiple models sharing common components, or

learn a single model without training the others, depending on the task at hand. For

example, if one is interested in captioning an image, we may only require learning a

conditional model from image to caption, without learning the joint distribution and

the conditional distribution of image given caption. For the cross-domain retrieval task

(see Remark 1.2.3 and Section 1.6.3), we require to learn both conditional models. When
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multiple models are trained simultaneously, common components such as the joint

encoder qϕ(z|x,y) and local encoders qϕ(u|z,x), qϕ(v|z,y) are shared.

Remark 1.2.1 (Conditional independence structure). The components of the varia-

tional Wyner model may naturally arise considering the cross-domain disentangle-

ment problem, and indeed similar models have been studied in the literature; see

e.g., (Gonzalez-Garcia et al., 2018; Hwang et al., 2020; Wang et al., 2016). The key

structural difference of our model compared to existing ones is the conditioning with

the common representation Z in the local encoders qϕ(u|z,x), qϕ(v|z,y), which are de-

signed to satisfy the conditional independence structure implied by the joint model

pθ(z)pθ(u)pθ(v)xθ(z,u)yθ(z,v), i.e.,

qϕ(z,u,v|x,y) = qϕ(z|x,y)qϕ(u|z,x)qϕ(v|z,y),

(see Proposition 1.B.1 in Appendix), while the existing models ignore the conditioning

with z, that is, use variational encoders of the form q(u|x) and/or q(v|y) (Gonzalez-

Garcia et al., 2018; Hwang et al., 2020; Wang et al., 2016). In experiments, we empirically

validate that this conditioning with Z indeed helps learn disentangled representations;

see the cross-domain retrieval task experiment in Section 1.6.

Remark 1.2.2 (Sampling with style control). Once the Wyner model is properly trained

to fit q(x,y), joint or conditional sampling can be done to simulate sample generation

from q(x,y) or q(y|x) in a straightforward manner as depicted in Fig. 1.3(a,c). The

variational encoders qϕ(u|z,x), qϕ(v|z,y) can be used as a local representation extractor

in sampling tasks with style control, such as joint stochastic reconstruction (Fig. 1.3(b)) or

conditional sampling with style control (Fig. 1.3(d)); here, we elaborate the latter use

case. Suppose that (X,Y) is a pair of correlated images generated from the common

concept but from different domains. Similar to conditional sampling (Fig. 1.3(c)), we first

draw Zj from qϕ(z|xj). Given an image y0, we then extract the style information V0,j
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from qϕ(v|Zj,y0) (Fig. 1.3(d)). Finally, we generate Y0,j from an image xj while replacing

the randomly drawn local representation V ∼ pθ(v) with the previously extracted style

V0,j , thereby the generated images Y0,j is of the same style as the reference image y0. In

a similar manner, we can also perform joint sampling with a fixed style given a style

reference data pair (x0,y0), by mixing a randomly drawn common representation Z

from the prior pθ(z) with the extracted style variables (u0,v0).

Remark 1.2.3 (Cross-domain retrieval). Beyond the joint and conditional generation

tasks, there is another closely related task which is called the cross-domain retrieval

(Gonzalez-Garcia et al., 2018; Hwang et al., 2020). In this task, we are given a reference

set {yi}. For a query xo, instead of aiming to draw a fresh sample y from q(y|xo), we

wish to retrieve relevant y’s from {yi}. We can solve the retrieval task using a trained

variational Wyner model over the common representation space, similar to (Gonzalez-

Garcia et al., 2018; Hwang et al., 2020). That is, we first find and keep the common

representations {zi} of reference points {yi} using the model encoder qθ(z|y). Then,

given a query xo, we find the common representation zo ∼ qθ(z|xo) to retrieve the K-

nearest neighbors of zo from {zi}with respect to, say, the cosine similarity. We remark

that for this task, we only require to learn the conditional models of both directions. See

Section 1.6.3 for our experimental results.

(c) Conditional sampling(a) Joint sampling (b) Joint stochastic 
reconstruction

(d) Conditional sampling 
with style control

V0,j

Figure 1.3. Schematics for selected sampling tasks. Double-line arrows are used to
emphasize the deterministic mappings.
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1.2.5 Induced Distributions

The variational Wyner model defines four different distributions over the ex-

tended set of variables (x,y, z,u,v). We explicitly write down the distributions below,

as we will match the pairs of distributions to train the generative models of our interest

in the next section.

The first one is the variational distribution, which is defined by the underlying

data distribution and the variational encoders:

qxy→(x,y, z,u,v) := qdata(x,y)qϕ(z|x,y)qϕ(u|z,x)qϕ(v|z,y). (1.2)

The other three distributions are the model distributions, which correspond to the joint

and conditional generative models. The joint model induces

p→xy(x,y, z,u,v) := pθ(z)pθ(u)pθ(v)xθ(z,u)yθ(z,v), (1.3)

and the conditional model that maps x to y induces

px→y(x,y, z,u,v) := qdata(x)qθ(z|x)qϕ(u|z,x)pθ(v)yθ(z,v). (1.4)

Symmetrically, the other direction from y to x induces

py→x(x,y, z,u,v) := qdata(y)qθ(z|y)qϕ(v|z,y)pθ(u)xθ(z,u). (1.5)

Hereafter, for each model pmodel ∈ {p→xy, px→y, py→x} and a subset of variables

w ⊆ {x,y, z,u,v}, we use pmodel(w) to denote the induced distributions over w. For

example, for w = {x,y, z}, the induced distribution is

pmodel(x,y, z) :=

∫
pmodel(x,y, z,u,v) du dv.
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We remark that while the variational distribution qxy→ is always consistent

with the data distribution but may fail to satisfy X − Z −Y, the model distributions

p→xy, px→y, py→x may not be consistent with qdata(x,y) but always follow the Markov

chain.

Remark 1.2.4 (Common information). In (1.1), we call the mutual information term

Ixy→(X,Y;Z) induced by the variational distribution qxy→(x,y, z), i.e.,

Ixy→(X,Y;Z) := Eqdata(x,y)[DKL(qϕ(z|x,y) ∥ qxy→(z))],

the variational CI. Here, DKL(p ∥ q) denotes the Kullback–Leibler (KL) divergence be-

tween two distributions p and q. Now, for each model distribution pmodel ∈ {p→xy, px→y,

py→x}, which is designed to follow X − Z − Y above, we call the the corresponding

mutual information between (X,Y) and Z

Imodel := Imodel(X,Y;Z)

:= DKL(pmodel(x,y, z) ∥ pmodel(x,y)pmodel(z)) (1.6)

the model CI under pmodel.

1.3 Training Objectives

In this section, we describe a set of training objectives for effectively training the

proposed variational Wyner model.

1.3.1 Main Objectives

Recall Wyner’s optimization problem from the introduction:

minimize Ixy→(X,Y;Z)

subject to X↔ Z↔ Y,

(1.7)
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where the variable is the joint encoder qϕ(z|x,y). Hence, this optimization problem

seeks a joint encoder qϕ(z|x,y) that captures the minimal common information under

the Markovity constraint.

For each model distribution pmodel ∈ {p→xy, px→y, py→x}, our main learning princi-

ple is to train it by seeking a succinct common representation characterized by Wyner’s

optimization problem, and we reformulate the optimization problem (1.7) for each

model. First, since each model distribution pmodel(x,y, z) follows the Markov chain

X↔ Z↔ Y, we replace the Markovity constraint with the following model consistency

pmodel(x,y, z) ≡ qdata(x,y)qϕ(z|x,y),

i.e., the model pmodel is consistent with the target data distribution qdata(x,y) and the

variational distribution qϕ(z|x,y). Under this model consistency, we can further replace

the variational CI Ixy→(X,Y;Z) with the model CI Imodel(X,Y;Z), which is defined in

(1.6). Hence, for each model pmodel, we obtain

minimize Imodel(X,Y;Z)

subject to pmodel(x,y, z) ≡ qdata(x,y, z).

(1.8)

The model consistency can be imposed by introducing a distribution matching

term

Dxyz
model := D(pmodel(x,y, z), qdata(x,y, z))

and constraining it to be 0 for a choice of positive definite divergence function D(p, q)

such as f -divergences, Wasserstein distance, or maximum mean discrepancy (Zhao

et al., 2018). Note that each choice of D(p, q) requires different training methods and
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training procedures. In this paper, we specifically choose the symmetric KL divergence

Dsym(p(s), q(s)) := DKL(p(s) ∥ q(s)) +DKL(q(s) ∥ p(s))

which is also known as the Jeffreys divergence (Jeffreys, 1998). Pu et al. (2017) originally

suggested its use in generative modeling as an alternative of the one-sided (reverse)

KL diveregence DKL(q ∥ p) of VAEs, since it can encourage mode-seeking and mass-

covering simultaneously. Unlike the typical VAE training, however, the symmetric KL

divergence necessitates an additional trick to deal with intractable density ratios. We

illustrate an approximate training method in Section 1.4.

Therefore, Wyner’s optimization problem (1.8) for each model can be written as

minimize Imodel(X,Y;Z)

subject to Dxyz
model = 0.

(1.9)

We now show that this can be further relaxed as

minimize Dxyzuv
model + λCImodelImodel(X,Y;Z), (1.10)

where

Dxyzuv
model := Dsym(qxy→(x,y, z,u,v), pmodel(x,y, z,u,v)) (1.11)

is the divergence between the variational distribution and the model distribution over

(x,y, z,u,v) and λCImodel > 0 is a hyperparameter that trades off matching distributions

and seeking succinct representation.

We first relax the equality constraint Dxyz
model = 0 with an inequality constraint

Dxyz
model ≤ ϵ for some ϵ > 0 and as in Zhao et al. (2018) to convert the problem (1.9) into
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an unconstrained Lagrangian form

minimize Dxyz
model + λCImodelImodel(X,Y;Z), (1.12)

where the reciprocal of a Lagrange multiplier λCImodel > 0 controls the model CI of

pmodel(x,y, z). We then introduce an additional variational relaxation step to train the

style extractors qϕ(u|z,x) and qϕ(v|z,y). That is, by the monotonicity of f -divergences

(see Proposition 1.B.2 in Appendix), we have

Dxyz
model := Dsym(qdata(x,y, z), pmodel(x,y, z))

≤ Dsym(qxy→(x,y, z,u,v), pmodel(x,y, z,u,v))

=: Dxyzuv
model, (1.13)

where the equality holds if and only if the composite variational encoders

qxy→(z,u,v|x,y) = qϕ(z|x,y)qϕ(u|z,x)qϕ(v|z,y)

match to the model posterior pmodel(z,u,v|x,y). After all, we obtain (1.10) as the final

relaxed optimization problem for each model distribution pmodel ∈ {p→xy, px→y, py→x}.

Remark 1.3.1 (On the variational common information). An acute reader may suggest

to simply control the CI regularization by a single term Ixy→(X,Y;Z), the variational

CI. Indeed, given that qϕ(z|x,y) is succinctly learned based on (1.7), one could expect

that the rest of the model components would be encouraged to be consistent with

the succinctly learned qϕ(z|x,y), via the distribution matching term Dxyzuv
model (1.13). We

empirically found, however, that Ixy→(X,Y;Z) as a regularization term is not sufficiently

effective to control the model CI’s and leads to unstable training, compared to directly

using the model CI Imodel(X,Y;Z) for regularization. Intuitively, this phenomenon may
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be attributed to imperfect distribution matching, which is enforced by minimizingDxyzuv
model

in our framework, due to a lack of samples, a limited expressivity of the parametric

models, an imperfect training, or their combinations.

1.3.2 Auxiliary Objectives

Note that learning a succinct common representation becomes meaningful only

when a good degree of consistency between the models and data can be assured. In

principle, solving the optimization problem (1.10) may suffice for training the target

generative models with a succinct common representation. Since, however, such non-

convex optimization problems are hard to solve in general, distribution matching may

not take place to begin with. Hence, in this section, we additionally introduce a set of

auxiliary objectives that can considerably improve the degree of distribution matching.

Reconstruction Losses

With the variational encoders, we can further guide the training by imposing

certain reconstruction consistency in the model, so that the optimization of the encoders

and decoders is over a restricted function space that conforms to the consistency. Note

that the model trained with the reconstruction loss terms below can be viewed as a form

of autoencoders.

For the joint model p→xy, similar to the reconstruction in autoencoders, it is

natural to desire that the decoders xθ(z,u),yθ(z,v) map the inferred representations

(zo,uo,vo) ∼ qxy→(z,u,v|xo,yo) for a given pair (xo,yo) back to (xo,yo); hence, we aim

to minimize the joint data reconstruction losses defined as

Rxy→x := Eqxy→(x,y,z,u,v)pθ(x̂|z,u)[dx(x, x̂)] (1.14)

and the symmetrically defined Rxy→y for some dissimilarity functions dx(x, x̂) and

dy(y, ŷ).
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For the conditional model px→y, we consider the following consistency on the data

space. Given a data pair (xo,yo), we first draw a common representation zo ∼ qϕ(z|x)

only from xo and find a local representation of yo conditioned on zo, i.e., vo ∼ qϕ(v|zo,yo).

Then, we expect the decoder yθ(z,v) to reconstruct yo from the representation (zo,vo),

which leads to the definition of the conditional reconstruction loss

Rx→y := Eqdata(x,y)qθ(z|x)qϕ(v|z,y)pθ(ŷ|z,v)[dy(y, ŷ)] (1.15)

from x to y; the other directionRy→x is symmetric.

When Learning Joint and Conditional Models Simultaneously: Common Latent
Space Matching Losses

When we wish to train a single model that can perform every direction of

inference (i.e., joint and both ways of conditional generation), it is important to enforce

the induced aggregated posteriors of the model encoders qθ(z|x) and qθ(z|y) in the

conditional models to be consistent with the prior distribution pθ(z), so that they can

share the common latent space over z. That is, we wish to match the aggregated

posterior pmodel(z) to the prior pθ(z) for pmodel ∈ {px→y, py→x}. Since it is only enforced

indirectly by the distribution matching losses Dxyzuv
model, we further introduce the latent

matching objectives

Mmodel := Dsym(pmodel(z), pθ(z)). (1.16)

We remark that this consistency is also enforced by minimizing the distribution match-

ing objective Dxyzuv
model. More precisely, by the monotonicity of f -divergences (Proposi-

tion 1.B.2), we haveMmodel ≤ Dxyzuv
model. Hence, additionally introducing the termMmodel

should be understood as further encouraging the consistency between the model aggre-

gated posterior pmodel(z) and the prior, so that it improves the quality of downstream
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tasks. We empirically found this objective especially helpful when learning with a

paired data from two different domains such as an image-caption dataset, where the

hardness of learning the target modalities is imbalanced.

When Learning Both Conditional Models Simultaneously: Cross Matching Loss
and Marginal Reconstruction Losses

In some applications such as the cross-domain retrieval task (Remark 1.2.3), we

are only interested in learning conditional models of both directions such that they

share the same common latent space, without learning the joint distribution. In this

case, we find that matching the two conditional distributions, i.e., minimizing

Dxyzuv
x↔y := Dsym(px→y(x,y, z,u,v), py→x(x,y, z,u,v)), (1.17)

can improve the quality of representation.

Another auxiliary term we find helpful in this scenario is the marginal reconstruc-

tion losses

Ry→y := Eqdata(y)qθ(z|y)qϕ(v|z,y)pθ(ŷ|z,v)[dy(y, ŷ)] (1.18)

and the symmetrically definedRx→x, which naturally arise when matching two condi-

tional models px→y and py→x.

1.3.3 The Final Objective

All the losses introduced so far are summarized in Table 1.1. In experiments,

we optimized a weighted combination of those objectives, and tune the weights as

hyperparameters based on the hardness of learning the corresponding modalities.
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1.4 Training Method

As alluded to earlier, we assume implicit generative models with deterministic

decoders, the densities of the model distributions are not computable. Hence, minimiz-

ing the objective functions introduced above requires a GAN-like adversarial technique.

In particular, we adopt a technique proposed by Pu et al. (2017), which we call the

variational density ratio estimation. After all, the proposed training scheme can be viewed

as an adversarial learning method of the variational Wyner model. We also illustrate

some tricks that were empirically effective for training in our experiments.

1.4.1 Training with Variational Density Ratio Estimation

Note that all the objective terms proposed above are in the form of either

Dsym(p(s), q(s)) for distribution matching and DKL(p(s) ∥ q(s)) for mutual information,

except the reconstruction losses. To training with these divergence terms, we approxi-

mate the divergence terms by estimating the density ratio p(s)/q(s) via an adversarial

technique based on a variational characterization of the Jensen–Shannon divergence;

namely, we use the optimal solution r(s) of the following maximization problem

DJS(p(s), q(s)) =max
r(s)

ψJS(r(s); p(s), q(s)), (1.19)

where we define

ψJS(r(s); p(s), q(s)) :=Ep(s)[log σ(log r(s))] + Eq(s)[log σ(− log r(s))], (1.20)

to estimate the density ratio p(s)/q(s), since the maximum of (1.19) is attained if and only

if r∗(s) ≡ p(s)/q(s). Here, σ(x) = 1/(1 + e−x) denotes the sigmoid function. Note that

this is equivalent to the discriminator objective of the original generative adversarial

networks (GANs) (Goodfellow et al., 2014), where D(s) := σ(log r(s)) ∈ [0, 1] is called
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the discriminator; in this work we view r(s) = exp(σ−1(D(s))) ∈ (0,∞) as a density

ratio estimator but also call a discriminator, slightly abusing the terminology. While, in

principle, the variational characterization of any f -divergence by Nguyen et al. (2010)

may be used to train a density estimator in a similar spirit of f -GANs (Nowozin et al.,

2016), we empirically observed that other choices of f -divergences such as one-sided

KL divergences and χ2-divergences result in unstable training (data not shown).

As in a standard GAN training procedure, we alternate between training the

variational Wyner model components and training the discriminators batch-by-batch,

freezing one while training the other. When training the variational Wyner model,

we freeze the density ratio estimators and estimate Dsym(p(s), q(s)) by plugging in the

approximate ratio r(s) assuming that r(s) ≈ p(s)/q(s), i.e.,

Dsym(p(s), q(s)) ≈ Ep(s)[log r(s)]− Eq(s)[log r(s)].

Hence, for each distribution matching objective

Dxyzuv
key for key ∈ {→ xy, x→ y, y→ x, x↔ y},

we introduce a corresponding density ratio estimator rkey(x,y, z,u,v) and optimize it

by the discriminator objective D̃xyzuv
key , where, e.g.,

D̃xyzuv
→xy := ψJS(r→xy; qxy→, p→xy). (1.21)

For a latent matching objectiveMmodel, we train a discriminator rlatentmodel(z) by maximizing

M̃model :=ψJS(r
latent
model(z); pmodel(z), pθ(z)), (1.22)

for each model ∈ {x→ y, y→ x}. The mutual information Imodel(X,Y;Z) term can be

30



handled by the same technique, i.e., training a discriminator rCImodel(x,y, z) by maximiz-

ing

Ĩmodel := ψJS(r
CI
model; pmodel(x,y, z), pmodel(x,y)pmodel(z)), (1.23)

so that rCImodel(x,y, z) ≈ pmodel(x,y, z))/pmodel(x,y)pmodel(z), and approximate the mutual

information by the same plug-in approach:

Imodel(X,Y;Z) = Epmodel(x,y,z)

[
log

pmodel(x,y, z)

pmodel(x,y)pmodel(z)

]

≈ Epmodel(x,y,z)[log r
CI
model(x,y, z)].

In the minibatch training of density ratio estimators for CI estimation, in order to

to sample from a product distribution pmodel(x,y)pmodel(z), we first draw (x,y, z) ∼

pmodel(x,y, z) from the joint distribution and then simply permute z over the batch

dimension as a proxy to independent sampling.

1.4.2 The Final Discriminator Objective

In experiments, to train the discriminators, we simply added the corresponding

objective terms without additional weights.

1.4.3 Additional Tricks for Training

To make the training scheme more computationally efficient and stable, we made

several important design choices, including (1) a shared joint data feature map among

discriminators, (2) deterministic parameterization of encoders, and (3) the instance

noise trick (Sønderby et al., 2017).
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Shared Feature Map in Discriminators

In principle, for each pair of distributions whose density ratio is required to be

estimated, we need a density ratio estimator rmodel(x,y, z,u,v) for distribution matching

or rCImodel(x,y, z) for CI regularization or rlatentmodel(z) for latent matching. To reduce the size

of the discriminator network, in our implementation we use a single joint feature

map f(x,y) which maps the pair (x,y) to a feature vector, and every density ratio

estimator that takes (x,y) as an argument is of the form either rmodel(f(x,y), z,u,v) or

rCImodel(f(x,y), z).

Deterministic Encoders

Following the standard practice, we approximate the proposed objectives in

Table 1.1 which are expectations over model distributions by a Monte Carlo approxi-

mation and plug-in it to a gradient-based optimization algorithm. Note, however, that

sampling distributions and taking gradients with respect to a parameter of the sampling

distribution may cause biased gradient estimates, since, in general,

∇θEpθ(s)[fθ(s)] ̸= Epθ(s)[∇θfθ(s)].

A possible detour is to deploy diagonal Gaussian encoders used in VAEs to invoke the

reparametrization trick (Kingma and Welling, 2014). In this work, even simpler, we

parameterize all the encoders (i.e., variational encoders qϕ(z|x,y), qϕ(u|z,x), qϕ(v|z,y)

and model encoders qθ(z|x), qθ(z|y)) by deterministic mappings, which can be viewed as

the limiting version of the reparameterization trick with vanishing variances.

Instance Noise Trick

Since our encoders and decoders are all deterministic, they define degenerate

model distributions, on which the divergences and mutual information terms may not

32



be properly defined due to disjoint support of paired distributions. This is a well-known

issue of implicit generative models, and we adopt the well-known instance noise trick

of Sønderby et al. (2017) from the GAN literature. Namely, we add small Gaussian

noise to all inputs of the discriminators (density estimators), which is equivalent to

replacing any distribution p(x,y, z,u,v) of our consideration with that convolved with

a Gaussian kernel. We empirically observed that this trick is effective, but a proper

tuning of the level of Gaussian noise is crucial in stabilizing the training procedure

while not blurring out the distributions of our interest.

1.5 Related Work

1.5.1 On Wyner’s CI and Related Measures

Wyner’s CI was first studied by Wyner (1975) to investigate the problem of

distributed simulation of two discrete random sources and distributed compression

in the so-called Gray–Wyner network (Gray and Wyner, 1974). Witsenhausen (1976)

established a lower bound on this quantity and studied its computability. Cuff (2013)

established the role of Wyner’s CI in its conditional counterpart, i.e., the channel

synthesis problem. Later, Xu et al. (2016) studied the quantity for a pair of continuous

random variables, and provided its operational justification in the distributed lossy

compression setting.

Recently, Wyner’s common information has received a lot of attention in the

information theory literature, especially in the context of its application for extracting

correlation between dependent variables. A recent line of theoretical work includes a

local characterization of Wyner’s CI (Huang et al., 2020) and an alternative, Wyner’s-CI-

based procedure for canonical correlation analysis (Sula and Gastpar, 2021).

There exist several other related dependence measures for a pair of random

variables (X, Y ) in information theory. The mutual information I(X;Y ) has significant

33



roles and concrete operational meanings in information theory and statistics, including

source and channel coding problems and hypothesis testing problems; see, e.g., (Cover

and Thomas, 2006). We remark, however, that Wyner’s common information J(X;Y ) is

in general different from the more famous quantity of mutual information I(X;Y ). It is

easy to prove that 0 ≤ I(X;Y ) ≤ J(X;Y ). In general, the inequalities can be strict, but

when X and Y are independent, I(X;Y ) = J(X;Y ) = 0.

The Gác–Körner–Witsenhausen common informationK(X;Y ) (Gács and Körner,

1973) is defined to be the maximum number of common bits per symbol that can be

independently extracted from X and Y . While it has several applications in secret key

generation, it is known that the notion is rather restrictive in the sense that K(X;Y )

becomes positive only for limited cases (Gács and Körner, 1973; Witsenhausen, 1975).

Moreover, this quantity can be defined only for discrete random variables.

The Hirschfeld–Gebelein–Rényi (HGR) maximal correlation (Gebelein, 1941;

Hirschfeld, 1935; Rényi, 1959) is a nonlinear generalization of Pearson correlation

coefficient. The HGR maximal correlation is originally defined for a pair of scalar

random variables, but it was generalized to quantify a measure of dependence between

high-dimensional random vectors; see (Michaeli et al., 2016). There also exists a line

of work on the maximal correlation and its applications in machine learning from an

information-theoretic view; see a recent paper by Huang et al. (2019) for an overview

on the recent theoretical breakthroughs.

For a more broad treatment on this subject, we refer an interested reader to a

recent monograph by Yu et al. (2022).

1.5.2 Existing Information-Theoretic Approaches

In this section, we provide an in-depth discussion on two information theoretic

approaches (Hwang et al., 2020; Tishby et al., 1999), elaborating the philosophical

differences compared to our approach.
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Information Bottleneck Principle

The information bottleneck (IB) principle (or method) (Tishby et al., 1999) is a

widely known information theoretic approach in representation learning. This approach

is usually considered for discriminative tasks, i.e., when the target variable Y is a function

of X and/or even discrete. Motivated by lossy compression, the IB principle proposes

to find a compressed representation Z from the input variable X (i.e., qθ(z|x)) while

maximizing the relevance of Z in predicting the target variable Y as the minimizer of the

optimization problem

minimize
qθ(z|x)

I(X;Z)− βI(Y;Z),

where (X,Y,Z) ∼ qdata(x,y)qθ(z|x) and β > 0.

Indeed, the IB principle and the proposed framework are suitable to discrimi-

native tasks and generative tasks, respectively, while they fail to define a good repre-

sentation structure in the other respective cases. First, consider a discriminative task

such as classification, where typically there is a near functional relationship Y ≈ f(X)

between X and Y. The proposed framework principle does not posit an interesting

structure in this case, since the trivial choice Z = Y makes X and Y independent and

achieves the minimum I(X,Y;Z) = H(Y), whereas the IB principle defines a series

of representations of different levels of compression controlled by β. Secondly, for

a generative task where the pair (X,Y) has many-to-many relationship, guessing Y

based on Z as a representation of X, the symmetric Markov assumption X↔ Z↔ Y of

our approach is more appropriate than Z↔ X↔ Y of IB; crucially, under the Markov

chain Z ↔ X ↔ Y, Y is not conditionally independent of X given Z in general. We

summarize the differences in Table 1.2.

In Appendix 1.A, we discuss a connection from the notion of minimal sufficient

statistics (Lehmann and Scheffé, 1950) to Wyner’s optimization problem and the IB

principle.
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Table 1.2. The variational Wyner model vs. the IB principle (Tishby et al., 1999).

The variational Wyner model The IB principle

Motivating problem
channel synthesis,

distributed simulation
lossy compression,

minimal sufficient statistics
Probabilistic model X↔ Z↔ Y Z↔ X↔ Y

Direction of inference bidirectional unidirectional
Measure of succinctness I(X,Y;Z) I(X;Z)

Measure of fit/relevance D(p, q) I(Y;Z)
Optimal quantity J(X;Y) N/A

We finally remark that Alemi et al. (2017) proposed to train a neural network

classifier with a variational relaxation of the IB objective to seek a robust representation

and a few variations of this work were proposed to find an invariant factors of a target

X given an attribute Y (Gao et al., 2019; Song et al., 2019).

Interactive Information Maximization

Recently, Hwang et al. (2020) proposed a new information-theoretic regulariza-

tion principle to tackle the cross-domain disentanglement problem. To seek a disentan-

gled representation (Z,U,V) under the variational distribution

q′xy→(x,y, z,u,v) := qdata(x,y)qϕ(z|x,y)qϕ(u|x)qϕ(v|y),

they propose to maximize the interactive information among X, Y, Z to enforce Z to

capture a commonality of (X,Y), while minimizing I(Z;U) and I(Z;V) to enforce the

representations (Z,U,V) to be independent. Here, the interactive information among

X, Y, Z is defined as

I(X;Y;Z) := I(X;Z)− I(X;Z|Y)
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and it is symmetric in (X,Y,Z) (McGill, 1954). After all, they proposed to minimize a

variational upper bound of a weighted combination of a distribution matching term

DKL

(
q′xy→(x,y, z,u,v) ∥ p→xy(x,y, z,u,v)

)

and I(Z;U) + I(Z;V)− 2I(X;Y;Z). We remark that since I(Z;U) and I(Z;V) terms

should become 0 when the paired distributions exactly match, the essential driving

force of cross-domain disentanglement in this framework is from the maximization of

the interactive information. In a stark contrast, we propose to minimize the information

captured in Z. Further, this interactive-information maximization framework does not

define an optimality criterion for a good representation as alluded to earlier, and the

choice of weights in the objective term I(Z;U) + I(Z;V)− 2I(X;Y;Z) is rather ad-hoc,

based on a computational aspect of the final objective.

1.5.3 Other Cross-Domain Disentanglement Models and Bimodal
Generative Models

One of the most closely related work in the deep learning literature is the cross-

domain disentanglement networks proposed by Gonzalez-Garcia et al. (2018). Similar

to the variational Wyner model, their model also aims to decompose a joint representa-

tion into shared (common) and exclusive (local) representations explicitly. The crucial

difference is that, in (Gonzalez-Garcia et al., 2018), one of the key components for disen-

tanglement is the use of a gradient reversal layer (Ganin and Lempitsky, 2015), while the

variational Wyner model forces to learn succinct information using the CI regularization

terms, towards learning the optimally succinct representation characterized by (1.1).

The Wyner model can be viewed as a generalization of the probabilistic model

(i.e., encoder and decoder) assumed in two existing joint variational autoencoders

(VAEs)— JVAE (Vedantam et al., 2018) and JMVAE (Suzuki et al., 2016)—as alluded in
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the previous paragraph. These models implement a similar idea of performing joint

and conditional generation tasks via a symmetric Markov chain X↔W↔ Y, where

W is the joint representation of (X,Y). In other words, these models can be derived by

removing the local variables U and V in the variational Wyner model.

The same decoder structure of the variational Wyner model with the “shared”

(Z) and the “private” (U,V) latent variables has been also studied in the context of

multi-view learning (Damianou et al., 2012; Ek et al., 2008; Salzmann et al., 2010; Shon

et al., 2006) mostly based on a linear analysis such as canonical correlation analysis

(CCA). More recently, variational CCA-private (VCCA-private) (Wang et al., 2016)

was proposed to learn the decoder model with variational encoders qθ(z|x), qϕ(u|x),

and qϕ(v|y), with the encoder model qϕ(z,u,v|x,y) = qθ(z|x)qϕ(u|x)qϕ(v|y) to directly

capture the conditional model from X to Z to Y. On the other hand, the varia-

tional Wyner model relies on the conditional independence structure qϕ(z,u,v|x,y) =

qϕ(z|x,y)qϕ(u|z,x)qϕ(v|z,y), which is naturally induced by the decoder model; see Re-

mark 1.2.1. We argue that this choice of encoder model in our variational Wyner model

may capture better semantic meaning of the local (private) random variables U and V,

thereby leading a better generative performance; see, e.g., Fig. 1.4.

Conditional VAE (CVAE) (Sohn et al., 2015) directly models the conditional distri-

bution qdata(y|x), obtained by simply conditioning every component in the vanilla VAE

for qdata(y) with the conditioning variable X. If Y is an image and X is an attribute of the

image, a latent representation V in CVAE needs to capture the redundant information

of Y, which is not contained in X, i.e., style information of Y given X. The variational

Wyner model can be viewed as a combination of two CVAEs with Z as a common

conditioning variable, being capable of bidirectional sampling in its nature. Yet, if X is

high-dimensional, the conditional models like CVAE in general tend to overfit the input

data of X (Dutordoir et al., 2018). To address this problem, a subsequent related work,

bottleneck conditional density estimation (BCDE) (Shu et al., 2017), proposed to learn
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joint and conditional VAE models simultaneously by softly tying the parameters of the

two models for regularization. We note that the variational Wyner model naturally

addresses such problem by using a unified single probabilistic model for both joint

and conditional distribution learning, finding a succinct common representation Z for

regularization.

1.6 Experiments

We empirically demonstrate the power of the proposed approach with synthetic

and real-world datasets. We parameterized all model components by deep neural net-

works. Details of the experiments such as training schemes, network architectures, and

evaluation metrics are deferred to Appendix 1.C. We performed most of the experiments

over the Triton Shared Computing Cluster (San Diego Supercomputer Center, 2022).

The code is available online 1.

1.6.1 MNIST–SVHN Add-One Dataset

To show the effect of information decomposition in our model, we first consid-

ered a synthetic image-image pair dataset constructed from MNIST (LeCun, 1998) and

SVHN (Netzer et al., 2011) datasets, similar to Shi et al. (2019). Here, we randomly

picked an MNIST image Xi of label ℓi ∈ {0, . . . , 9} and paired with four randomly

picked SVHN images of label (ℓi + 1) mod 10; we call the resulting dataset the MNIST–

SVHN add-one dataset. Note that the images are paired only through their labels, and

clearly the common information structure we seek is the underlying label of a pair.

We trained all the joint and conditional models simultaneously, with the objec-

tives

Dxyzuv
→xy +Dxyzuv

x→y +Dxyzuv
y→x

1https://github.com/jongharyu/wyner-model
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+ λCI(I→xy + Ix→y + Iy→x)

+Rxy→x +Rxy→y +Rx→y +Ry→x

for training the variational Wyner model and

D̃xyzuv
→xy + D̃xyzuv

x→y + D̃xyzuv
y→x + Ĩ→xy + Ĩx→y + Ĩy→x

for training the discriminator. We tried four different CI regularization weight λCI ∈

{0, 0.1, 0.2, 0.5, 1} to demonstrate the effect of the regularization for 25 epochs and the

averaged ℓ1-distance over dimensions was used for the reconstruction loss functions.

The dimension of the latent space (Z,U,V) was (16, 16, 16).

In Fig. 1.4, we present a few joint and conditional samples generated from the

trained model with λCI = 0.5 at the end of training. In the figure, each row shares the

same z, and each column shares the same u and/or v. In particular, the top row of

the last panel (d) shows the reference samples whose style are transferred downward

along each column. The samples clearly indicate that the learned model successfully

disentangles the common and local representations. For example, in Fig. 1.4(b), in the

first three rows, regardless of the specifics of the input MNIST images independent to

their label 0, the generated samples coherently present the correct label 1 as well as

sharing the same style fixed along each column. Fig. 1.4(d) illustrates that using the

local variational encoder qϕ(u|z,x), we can generate conditional samples given a fixed

style extracted from a reference image; recall Remark 1.2.2.

In order to numerically examine the effect of CI regularization in the model, we

computed two metrics (1) custom Frechet distance (FD) scores and (2) classification

accuracy of generated samples. For the Frechet distance scores, unlike the original

proposal by Heusel et al. (2017) using the Inception network, we separately trained

two fully convolutional autoencoders with MNIST and SVHN datasets, respectively,
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(a) →(MNIST,SVHN) (b) MNIST→SVHN (d) MNIST→SVHN
with style transfer

(c) SVHN→MNIST

Figure 1.4. MNIST–SVHN add-one samples from the variational Wyner model. In
(b)-(d), the images in the red boxes are inputs to the conditional models. In (d), the
yellow box highlights the style reference images.

and used the bottleneck features to compute the first and second order statistics for

computing the Frechet distance. The digit classification errors were computed by

pretrained classifiers for MNIST and SVHN. We refer the reader to the details for

computing these metrics to Appendix. While achieving lower values under both

metrics are ideal, note that there exists a natural trade-off between them. For example, a

joint generative model that only generates good images of the digit pairs (1,2) could

achieve zero error in the classification error, but may suffer a large FD score. On the

other extreme, as a model tends to generate more diverse samples with different styles,

it may be more prone to suffer a large error in the digit consistency.

The results are summarized in Fig. 1.5. As shown in the figure, in general, increas-

ing λCI improves the quality of generated samples in terms of the smaller FD scores and

improved the (estimated) digit accuracy. Note that the effect of the CI regularization is

clear in→(MNIST, SVHN) and MNIST→SVHN, while it is not clear in SVHN→MNIST.

As an explanation to this phenomenon in SVHN→MNIST, we remark that the learned

model even with λciy→x = 0 achieved a decent degree of disentanglement, which can be

justified indirectly via the generated samples as shown in Fig. 1.4(c). In general, for

conditional models, we observed in our experiments that the CI regularization becomes

more effective for the direction from a simpler modality (e.g., MNIST) to a more complex
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Figure 1.5. A summary of numerical evaluations for MNIST–SVHN add-one dataset.
We ran five experiments with different random seeds and report the average scores. The
shaded areas indicate the standard deviations.

one (e.g., SVHN).

1.6.2 CUB Image-Caption Dataset

We further demonstrate that the proposed model can even learn a complex real-

world image-caption dataset, following the same setting of (Shi et al., 2019). We used

the Caltech-UCSD Birds (CUB) dataset (Wah et al., 2011) that consists of 11,788 photos

of birds, each of which is paired with 10 captions. To simplify the learning task, we

translate the images into 2048-dimensional ResNet-101 features (He et al., 2016); to

reconstruct a real image from feature, we retrieved the nearest neighbor in the feature

space with respect to the Euclidean distance.

For this dataset, we found that learning the image modality (x) from captions

(y) is harder than the other way around, and thus puts larger weights on learning the

image modality. In particular, we used the following objective function with imbalanced
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weights

Dxyzuv
→xy +Dxyzuv

x→y +Dxyzuv
y→x

+ 0.5(I→xy + Iy→x)

+ 256(Rxy→x +Ry→x +My→x)

+ 8(Rxy→y +Rx→y +Mx→y)

for training the variational Wyner model and

D̃xyzuv
→xy + D̃xyzuv

x→y + D̃xyzuv
y→x + Ĩ→xy + Ĩy→x

for training the discriminator. Note that we did not use the CI regularization term

Ix→y (from image to caption). We used the ℓ22-distance for x (image-feature space) and

(z,u,v) (latent space), and the categorical cross-entropy loss for y (sentence space), all

averaged over dimensions, for the reconstruction loss functions. The dimension of the

latent space (Z,U,V) was (16, 8, 8).

As a numerical evaluation, we computed the correlation scores of jointly and

conditionally generated samples with respect to the training samples, via a canonical

correlation analysis, following (Massiceti et al., 2018; Shi et al., 2019); we refer an

interested reader to Appendix for details. After 20 epochs of training, we attained

correlation scores (0.303, 0.327, 0.318) for joint, conditional generation (x → y and

y→ x), respectively. Note that the correlation scores computed with the test dataset is

0.273 and the reported scores attained by Shi et al. (2019) was (0.263, 0.104, 0.135).

We further report that without the CI regularization terms 0.5(I→xy + Iy→x) the

model fails to disentangle the representations (data not shown). We present some

examples of generated samples in Fig. 1.6, which show that the trained variational

Wyner model indeed generates a variety of samples of high coherence.
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1.6.3 Zero-Shot Sketch Based Image Retrieval

Lastly, to demonstrate the utility of learned representations beyond generative

modeling, we consider the zero-shot sketch based image retrieval (ZS-SBIR) task proposed

by Yelamarthi et al. (2018), where the goal is to construct a good retrieval model that

retrieves relevant photos from a sketch, with a training set of no overlapping classes

with a test set.

For this experiment, we borrowed the the same setting from Hwang et al. (2020).

We trained and evaluated our model with the Sketchy Extended dataset (Liu et al., 2017;

Sangkloy et al., 2016), which consists of total 75,479 sketches (X) and 73,002 photos

(Y) from 125 different classes. During training, we constructed a random pair of a

photo and a sketch from a same class. For training and evaluation, a pretrained VGG16

network (Simonyan and Zisserman, 2015) was used to extract features of the images.

We used the pretrained VGG network and train-test splits for evaluation from the

codebase2 of Dutta and Akata (2019). After training, we performed the retrieval task by

the procedure illustrated in Remark 1.2.3.

We trained our model only with conditional model components, as we only need

to learn good model encoders qθ(z|x) and qθ(z|y). Specifically, we used the objectives

Dxyzuv
x→y +Dxyzuv

y→x +Dxyzuv
x↔y

+ λCI(Ix→y + Iy→x)

+ λrec(Rx→y +Ry→x +Rx→x +Ry→y)

for training the variational Wyner model and

D̃xyzuv
x→y + D̃xyzuv

y→x + Ĩx→y + Ĩy→x

2https://github.com/AnjanDutta/sem-pcyc
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for training the discriminator. We used the ℓ22-distance averaged over dimensions for

the reconstruction loss functions. The dimension of the latent space (Z,U,V) was

(64, 64, 64).

As a quantitative evaluation, we computed the Precision@100 (P@100) and mean

average precision (mAP) scores on the test split; see Table 1.3.

Table 1.3. Evaluation of the ZS-SBIR task with the Sketchy Extended dataset.

Models P@100 mAP

LCALE Lin et al. (2020) 0.583 0.476
IIAE Hwang et al. (2020) 0.659 0.573

Variational Wyner 0.703 0.629

The reported scores for the adversarially learned Wyner model was obtained

with λCI = 0.1 and λrec = 8. We outperform the scores reported by Hwang et al. (2020),

who already demonstrated that their scores significantly improved upon the existing

work tailored to extra information; for example, LCALE Lin et al. (2020) incorporated

word embedding during training. The improvement corroborates the power of our

approach in learning disentangled representations.3 For an ablation study, we trained

our model with degenerate local encoders qϕ(u|x) and qϕ(u|y), i.e., without conditioning

with z, and achieved suboptimal scores (0.670,0.591); it justifies the design of our local

encoders qϕ(u|z,x) and qϕ(v|z,y).

Some examples of retrieved photos are shown in Fig. 1.7. Note that even the

falsely retrieved photos share visual similarity with the query sketches.

1.7 Concluding Remarks

Cuff’s channel synthesis and Wyner’s distributed simulation provide an informa-

tion-theoretic characterization of the simplest probabilistic structure that connects one

3To make a fair comparison as possible, the latent dimension and network architecture of the varia-
tional Wyner model part were also chosen almost identical to the one used in (Hwang et al., 2020).
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random object to another. The proposed variational Wyner model finds this succinct

structure in a disciplined manner, and provides a theoretically sound alternative to the

information bottleneck principle (Tishby et al., 1999). As alluded to earlier in Section 1.5,

our approach is the first to define an optimal common representation and learn a

generative model towards the optimality. The experimental results demonstrated the

potential of our approach as a new way of learning joint and conditional generation

tasks with optimal representation learning that can be further developed and refined

for more complex dataset such as auditory, text, or a pair of those.

Albeit its potentially wide applicability, we remark that the proposed model and

the accompanied training method may suffer slow training and memory inefficiency,

as each divergence and mutual information term requires a separate density ratio

estimator. While we reduce the number of parameters by sharing a joint feature map in

the discriminator, it might be crucial to devise a more efficient way to implement the

proposed framework with less parameters.

We conclude with future directions. First, we assumed fully paired data through-

out the paper. In practice, however, paired data are limited and we have a plenty of

unpaired data. Investigating on how to incorporate such unpaired data in the current

learning framework and studying the role and effect of common information regular-

ization in the semi-supervised setting may be a fruitful direction, which will make the

developed framework applicable in a much richer context. Second, in this paper, we

motivated the use of Wyner’s common information via a heuristic justification from

the resemblance between the generative tasks and the information theory problems.

Hence, it would be also interesting to formally establish an operational meaning of

the common information I(X,Y;Z) when learning distributions from samples. For

example, can we develop a theory that relates the common information I(X,Y;Z) with

its “generalization error” for a generative model as in Xu and Raginsky (2017)?
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Appendix

1.A From Minimal Sufficient Statistics to the Informa-
tion Bottleneck Principle and Wyner’s Optimization
Problem

In this section, starting from the notion of minimal sufficient statistics Lehmann

and Scheffé (1950) from the statistics literature, we derive the information bottleneck (IB)

principle and Wyner’s optimization problem from its relaxation, respectively. We hope

that this discussion highlights similarities and dissimilarities between the IB principle

and Wyner’s optimization problem.

1.A.1 Minimal Sufficient Statistics

Consider a pair of random variables (X,Y). A function Z = z(X) of X is said to

be a minimal sufficient statistic of X for Y if (1) (sufficiency) Z is a sufficient statistic of

X for Y, i.e., X↔ Z↔ Y, and (2) (minimality) Z is a function of any other sufficient

statistics. It can be easily shown that Z = z(X) is a minimal sufficient statistic if and

only if it is an optimal solution of the following optimization problem

minimize I(X;Z)

subject to X↔ Z↔ Y

variable Z = z(X).

(1.24)

Here, the optimization is over all possible functions z(·) over x.
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1.A.2 The IB Principle

First, note that the Markovity constraint X ↔ Z ↔ Y in (1.24) can be relaxed

as I(Y;Z) ≥ I(X;Y) by the data processing inequality. Second, optimization over

functions z(x) can be relaxed by considering optimization over a probabilistic mapping

q(z|x), as it subsumes deterministic functions. Finally, introducing a Lagrangian multi-

plier β > 0 to get rid of the inequality constraint on I(Y;Z), we obtain a relaxed version

of (1.24) in the unconstrained form

minimize I(X;Z)− βI(Y;Z)

variable q(z|x).
(1.25)

Note that this is the optimization problem that characterizes the IB principle. A similar

argument can be found in (Shamir et al., 2010).

1.A.3 Wyner’s Optimization Problem

As done above, we first relax optimization over z(x) by optimization over q(z|x).

Then, observe that optimizing over q(z|x) is equivalent to q(z|x,y) under an additional

constraint Z↔ X↔ Y. Hence, we can relax the optimization problem (1.24) as

minimize I(X;Z)

subject to X↔ Z↔ Y

Z↔ X↔ Y

variable q(z|x,y).

(1.26)

50



By removing the Markovity constraint Z↔ X↔ Y, we can further relax it as

minimize I(X;Z)

subject to X↔ Z↔ Y

variable q(z|x,y).

(1.27)

We claim that this is equivalent to Wyner’s optimization problem (1.1). Indeed, note

that we have I(X,Y;Z) = I(X;Z) + h(Y|X) under the Markov chain X → Z → Y,

since

I(X,Y;Z) = I(X;Z) + I(Y;Z|X)

= I(X;Z) + h(Y |X) + h(Y |X,Z)

= I(X;Z) + h(Y |X).

Here, h(Y|X,Z) = 0 follows from the Markov chain X ↔ Z ↔ Y. Since h(Y|X) is

constant given the target distribution q(x,y), (1.27) is equivalent to (1.1).

1.A.4 Discussion

We remark that we can derive an optimization problem from (1.27) that is directly

comparable to the IB principle (1.25). By applying the same argument in Appendix 1.A.2

to (1.27), we can relax X ↔ Z ↔ Y to I(Y;Z) ≥ I(X;Y) and convert it into an

unconstrained problem

minimize I(X;Z)− βI(Y;Z)

variable q(z|x,y).
(1.28)

Interestingly, this has a close resemblance to the IB principle 1.25. In particular, (1.28) can

be viewed as a relaxation of 1.25, since optimizing over q(z|x,y) subsumes optimizing
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over q(z|x).

1.B Deferred technical statements

The following justifies the form of local variational encoders qϕ(u|z,x) and

qϕ(v|z,y), as noted in Remark 1.2.1.

Proposition 1.B.1. If (X,Y,Z,U,V) ∼ p(z)p(u)p(v)p(x|z,u)p(y|z,v), then

p(u,v|z,x,y) = p(u|z,x)p(v|z,y),

i.e., U and V are conditionally independent given (Z,X,Y), U and Y are conditionally

independent given (Z,X), and V and X are conditionally independent given (Z,Y).

Proof. The conditional independence of the joint distribution

p(z)p(u)p(v)p(x|z,u)p(y|z,v)

is encoded as the following directed graphical model.

The desired conditional independences now follow from checking the d-separation (see,

e.g.,, (Koller and Friedman, 2009)) between the nodes. That is, U and V are d-separated

by (Z,X,Y), U and Y are d-separated by (Z,X), and V and X are d-separated by

(Z,Y).
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Proposition 1.B.2 (Monotonicity). For a convex function f : R+ → R, let Df (·∥·) denote the

f -divergence. For any joint distributions p1(x, y) and p2(x, y) over X × Y , we have

Df (p1(x)∥p2(x)) ≤ Df (p1(x, y)∥p2(x, y)).

Here, pi(x) is the marginal distribution over X induced by pi(x, y). In particular, the equality

holds if p2(y|x) ≡ p1(y|x) for all x ∈ X . When f is strictly convex, the condition becomes also

necessary for the equality.

Proof. Consider

Df (p1(x, y)∥p2(x, y)) =
∫
p1(x, y)f

(p2(x, y)
p1(x, y)

)
dx dy

=

∫
p1(x)p1(y |x)f

(p2(x)p2(y|x)
p1(x)p1(y|x)

)
dx dy

≥
∫
p1(x)f

(∫
p1(y |x)

p2(x)p2(y|x)
p1(x)p1(y|x)

dy
)
dx

=

∫
p1(x)f

(p2(x)
p1(x)

)
dx = Df (p1(x)∥p2(x)).

Here, we use the convexity of f and Jensen’s inequality. The equality condition follows

from that of the Jensen’s inequality.

1.C Experiment Details

1.C.1 Common Settings

We used NVIDIA TITAN X (Pascal) for our experiments. We implemented all

models using PyTorch (Paszke et al., 2017). For the inference phase, we applied the

exponential moving average with decay parameter 0.999. As alluded to earlier, all

distributions are parameterized by deterministic models.

Notation. Let fc(c in,c out) denote a fully-connected layer with c in input
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units and c out output units. Let

conv2d(c,k,s,p)

(deconv2d(c,k,s,p))

denote a two-dimensional convolutional (transposed convolutional) layer with c filters,

kernel of size k× k, stride (s,s), and zero-padding of size (p,p). Let

conv2d(c,(k1,k2),(s1,s2),(p1,p2))

(deconv2d(c,(k1,k2),(s1,s2),(p1,p2)))

denote a two-dimensional convolutional (transposed convolutional) layer with c filters,

kernel of size k1 × k2, stride (s1,s2), and zero-padding of size (p1,p2). We use

dropout1d and dropout2d to denote 1D and 2D dropout layers, and use

maxpool2d(k)

to denote a 2D max pooling layer with kernel of size (k,k).

1.C.2 MNIST–SVHN Add-One

In this dataset, x = MNIST, y = SVHN. For the MNIST–SVHN add-one dataset,

we constructed 50, 000 add-one pairs from the MNIST and SVHN training datasets.

For testing, we similarly constructed 1, 000 paired images from MNIST and SVHN test

datasets in each case. We padded zeros around the 28× 28 MNIST images to make them

of size 32× 32. All pixel values were linearly translated to range between [−1, 1].
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Table 1.C.1. The neural network architecture of the symmetric decoder in the MNIST
and SVHN autoencoders. We used 1 and 3 for c out, respectively for MNIST and SVHN
datasets. This architecture was used to evaluate the Frechet distance; see Section 1.C.2.

ψfeature→image

deconv2d(128,5,2,2)-bn2d-LReLU(0.2)
deconv2d(64,5,2,2)-bn2d-LReLU(0.2)
deconv2d(32,5,2,2)-bn2d-LReLU(0.2)

deconv2d(c out,5,2,2)

Evaluation Metrics

Frechet distance

To compute the Frechet distance (FD) score for the joint and conditional distribu-

tions over (MNIST, SVHN) pairs, we implemented a customized Frechet distance based

on the PyTorch implementation of the Frechet Inception distance (FID) score (Heusel

et al., 2017) by Seitzer (2020)4. Essentially, to be better tailored to the digit images of

MNIST and SVHN datasets, we replaced the Inception-v3 model with pretrained feature

extractors trained from autoencoders for MNIST and SVHN, respectively. We used the

network architectures defined in Tables 1.C.1 and 1.C.3 and defined autoencoders

ximage 7→ ψimage
feature→image((f

image
image→feature(ximage))

for image∈{mnist,svhn}. We trained the MNIST and SVHN autoencoders for 200

and 25 epochs, respectively, with Adam optimizer with learning rate 10−4 and batch

size 64. Note that we used the “extra” split of the SVHN dataset for training. After

training, we used the encoders as feature extractors. To evaluate the joint distribution,

we concatenated the two feature vectors to compute the mean and covariance for each

dataset. To evaluate the conditional distribution, we computed the FD score for each

digit class separately and reported the averaged values over the 10 classes. Note that

4https://github.com/mseitzer/pytorch-fid
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Table 1.C.2. The neural network architecture of the MNIST and SVHN classifiers. Note
that we used the identical architecture, and it only differs in the bottleneck dimension
due to the difference in the numbers of channels.

MNIST classifier

conv2d(10,5,1,0)-maxpool2d(2)-ReLU
conv2d(20,5,1,0)-dropout2d-maxpool2d(2)-ReLU

reshape(batch size, 320)
fc(320, 50)-maxpool2d(2)-ReLU-dropout1d

fc(50, 10)-softmax

SVHN classifier

conv2d(10,5,1,0)-maxpool2d(2)-ReLU
conv2d(20,5,1,0)-dropout2d-maxpool2d(2)-ReLU

reshape(batch size, 500)
fc(500, 50)-maxpool2d(2)-ReLU-dropout1d

fc(50, 10)-softmax

the FD score was evaluated with respect to the test datasets of MNIST and SVHN, so

that a low FD score implies that the model generates similar images to (unseen) test

images.

Digit classification error

For the digit classification error reported in Fig. 1.5, we used pretrained classifiers

with network architectures in Table 1.C.2. Each classifier was trained for 15 epochs with

the cross entropy loss and Adam optimizer with learning rate 10−3 and batch size 32. To

evaluate a conditional accuracy, we computed an accuracy for each class and reported

their average.

Network Architectures

The neural network architectures are summarized in Tables 1.C.3–1.C.5; here, f ’s

are used in encoders, g’s are in decoders, and h’s are in discriminators.

Define fjointaggregate(x,y) := fjointimage→feature(x,y).
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Generator Models

• MNIST encoder / decoder

• z ∼ q(z|x) ≡ z← fmnistfeature→z(f
mnist
image→feature(x)).

• u ∼ q(u|z,x) ≡ u← fmnistfeatures→u(f
mnist
z→latent feature(z),x).

• x ∼ p(x|z,u) ≡ x← gmnistfeature→ image(g
mnist
(z,u)→feature(z,u)).

• SVHN encoder / decoder

• z ∼ q(z|y) ≡ z← fsvhnfeature→z(f
svhn
image→feature(y)).

• v ∼ q(v|z,y) ≡ v← fsvhnfeatures→u(f
svhn
z→latent feature(z),y).

• y ∼ p(y|z,v) ≡ y← gsvhnfeature→ image(g
svhn
(z,v)→feature(z,v)).

• (MNIST, SVHN) encoder

• z ∼ q(z|x,y) ≡ z← fjointfeature→z(f
joint
aggregate(x,y)).

Discriminator Models

As noted in Section 1.4, all the discriminators shared the same feature network,

i.e., hcommonimage→feature(x,y).

• Each discriminator to match distributions for model ∈ {→ xy, x→ y, y→ x} (see

(1.11) and/or (1.17) for the model loss and e.g., (1.21) for the discriminator loss)

has the following form:

rmodel(x,y, z,u,v) = hmodelfeature→ratio(h
common
image→feature(x,y), h

model
latent→feature(z,u,v)).

• Each discriminator for common information of model ∈ {→ xy, x→ y, y→ x} (see

(1.6) for the model loss and (1.23) for the discriminator loss) has the following

form:

rmodel,ci(x,y, z) = hmodel,cifeature→ratio(h
common
image→feature(x,y), h

model,ci
latent→feature(z)).
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• Each discriminator for the latent matching loss of model ∈ {→ xy, x→ y, y→ x}

(see (1.16) for the model loss and (1.22) for the discriminator loss) has the following

form:

rmodel,agg(z) = hmodel,aggfeature→ratio(h
model,agg
latent→feature(z)).

Training

We used the Adam optimizer (Kingma and Ba, 2014) with (β1, β2) = (0.5, 0.999),

learning rate 10−4 for the generators and 2× 10−4 for the discriminators (Heusel et al.,

2017). We trained for 25 epochs.

In the discriminators, we added a mean-zero gaussian noise of standard deviation

0.25 for each variable x,y, z,u,v.

1.C.3 CUB Image–Caption

In this dataset, x = Image (pretrained ResNet features), y = Caption.

Evaluation Metrics

We followed the same evaluation procedure of (Massiceti et al., 2018) and

(Shi et al., 2019, Section 4.3), which is to perform the canonical correlation analysis

(CCA) (Hotelling, 1936) and report the correlation score with respect to feature vectors

of image and caption. For the image dataset, recall that we already have 2048-dim.

features from the pretrained ResNet-101, which were used in training. For each caption,

we trained a FastText model (Bojanowski et al., 2017) using all sentences in the training

dataset to convert each word to a 300-dim. vector; an embedding of a caption was ob-

tained by taking the average embedding of each word in the sentence. After extracting

features, we performed the CCA with projection dimension 40. For the jointly generated

samples, we used 1000 samples. For the conditionally generated samples, we used the

entire test set and reported the average score.
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Network Architectures

The following architectures were adopted from (Shi et al., 2019) with some

adjustments. When processing the caption, the maximum sentence length was 32 and

the embedding dimension was 128. The neural network architectures are summarized

in Tables 1.C.6–1.C.8; here, f ’s are used in encoders, g’s are in decoders, and h’s are in

discriminators. Again, we note that a network without superscript indicates that the

same network architecture is used in multiple places with different (i.e., not shared)

realizations.

We made the embedding layer trainable as well.

Generator Models

• Image encoder / decoder

• z ∼ q(z|x) ≡ z← fimagefeature→z(f
image
image→feature(x)).

• u ∼ q(u|z,x) ≡ u← fimagefeatures→u(f
image
z→latent feature(z),x).

• x ∼ p(x|z,u) ≡ x← gimagefeature→ image(g
image
(z,u)→feature(z,u)).

• Caption encoder / decoder

• z ∼ q(z|y) ≡ z← fsentfeature→z(f
sent
sent→feature(y)).

• v ∼ q(v|z,y) ≡ v← fsent(z,feature)→v(f
sent
z→latent feature(z),y).

• y ∼ p(y|z,v) ≡ y← gsentfeature→ image(g
sent
(z,v)→feature(z,v)).

• (Image, Caption) encoder

• z ∼ q(z|x,y) ≡ z← fjointfeature→z(f
joint
aggregate(x,y)).

Discriminator Models

As noted in Section 1.4, all the discriminators shared the same feature network,

i.e., hcommon(image,sent)→feature(x,y) := hcommonaggregate(h
common
image→feature(x), h

common
sent→feature(y)). Note that the
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following definitions are almost equivalent to the discriminators for the MNIST–SVHN

model except the form of the shared joint feature map.

• Each discriminator to match distributions for model ∈ {→ xy, x→ y, y→ x} (see

(1.11) and/or (1.17) for the model loss and e.g., (1.21) for the discriminator loss)

has the following form:

rmodel(x,y, z,u,v) = hmodelfeature→ratio(h
common
(image,sent)→feature(x,y), h

model
latent→feature(z,u,v)).

• Each discriminator for common information of model ∈ {→ xy, x→ y, y→ x} (see

(1.6) for the model loss and (1.23) for the discriminator loss) has the following

form:

rmodel,ci(x,y, z) = hmodel,cifeature→ratio(h
common
(image,sent)→feature(x,y), h

model,ci
latent→feature(z)).

• Each discriminator for the latent matching loss of model ∈ {→ xy, x→ y, y→ x}

(see (1.16) for the model loss and (1.22) for the discriminator loss) has the following

form:

rmodel,agg(z) = hmodel,aggfeature→ratio(h
model,agg
latent→feature(z)).

Training

We used the Adam optimizer (Kingma and Ba, 2014) with (β1, β2) = (0.5, 0.999),

learning rate 10−4 for the generators and 2× 10−4 for the discriminators (Heusel et al.,

2017). We trained for 50 epochs.

In the discriminators, we added a zero-mean Gaussian noise of standard devia-

tion 0.25 for each latent variable z,u,v. For the perturbation in the data variables x,y,

we did the following, adaptive noise injection based on the standard deviations of each
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Table 1.C.6. The neural network architectures in the CUB encoders.

fimage→feature

fc(2048,1024)-bn1d-LReLU(0.2)
fc(1024,512)-bn1d-LReLU(0.2)
fc(512,256)-bn1d-LReLU(0.2)

fimagefeature→ z

fc(256,dim z)

fimage
z →latent feature

fc(dim z,256)-bn1d-LReLU(0.2)

fimagefeatures→u

fc(512,dim u)

fsent→feature

embedding(1590,128)
reshape(batch size,128,32)

conv2d(32,4,2,1)-bn2d-LReLU(0.2)
conv2d(64,4,2,1)-bn2d-LReLU(0.2)
conv2d(128,4,2,1)-bn2d-LReLU(0.2)

conv2d(256,(1,4),(1,2),(0,1))-bn2d-LReLU(0.2)
conv2d(512,(1,4),(1,2),(0,1))-bn2d-LReLU(0.2)

fsentfeature→ z

fc(8192,dim z)

fsentz →latent feature

fc(dim z,8192)-bn1d-LReLU(0.2)

fsentfeatures→v

fc(16384,dim v)

f(image,sent)aggregate

fc(8448,1024)-bn1d-LReLU(0.2)
fc(1024,1024)-bn1d-LReLU(0.2)
fc(1024,512)-bn1d-LReLU(0.2)

f(image,sent)feature→z

fc(512,dim z)

Table 1.C.7. The neural network architectures in the CUB decoders.

gimage
(z,u)→feature

fc(dim z+dim u,256)-LReLU(0.2)

gimagefeature→image

fc(256,512)-bn1d-LReLU(0.2)
fc(512,1024)-bn1d-LReLU(0.2)

fc(1024,2048)

gsent(z,v)→feature

fc(dim z+dim v,8192)
reshape(batch size,512,4,4)

bn2d-LReLU(0.2)

gsentfeature→sent

reshape(batch size,512,4,4)
deconv2d(256,(1,4),(1,2),(0,1))-bn2d-LReLU(0.2)
deconv2d(128,(1,4),(1,2),(0,1))-bn2d-LReLU(0.2)

deconv2d(64,4,2,1)-bn2d-LReLU(0.2)
deconv2d(32,4,2,1)-bn2d-LReLU(0.2)

deconv2d(1,4,2,1)
reshape(batch size,32,128)

fc(128,1590)

Table 1.C.8. The neural network architectures in the CUB discriminators.

hcommonimage→feature

fc(2048,2048)-LReLU(0.2)
fc(2048,1024)-bn1d-LReLU(0.2)
fc(1024,512)-bn1d-LReLU(0.2)

hcommonsent→feature

embedding(1590,128)
reshape(batch size,128,32)

conv2d(64,4,2,1)-bn2d-LReLU(0.2)
conv2d(128,4,2,1)-bn2d-LReLU(0.2)
conv2d(256,4,2,1)-bn2d-LReLU(0.2)

conv2d(512,(1,4),(1,2),(0,1))-bn2d-LReLU(0.2)
conv2d(1024,(1,4),(1,2),(0,1))-bn2d-LReLU(0.2)

hcommonaggregate

fc(16896,2048)-bn1d-LReLU(0.2)
fc(2048,2048)-bn1d-LReLU(0.2)
fc(2048,1024)-bn1d-LReLU(0.2)

hlatent→feature

fc(total latent dim, 512)-LReLU(0.2)

hfeature→ratio

fc(1536, 512)-bn1d-LReLU(0.2)
fc(512,1)
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feature dimension.

• For x (images), we injected noise to the ResNet feature of dimension 2048. We

precomputed the standard deviation σresnet
i for each dimension i. For each evalua-

tion of a discriminator that takes the ResNet feature as one of its arguments, we

injected a zero-mean Gaussian noise of standard deviation αresnet × σresnet
i to the

dimension i, where we used αresnet = 2.

• For y (sentences), we injected noise at an embedding level. We used an embedding

layer that maps a word from the vocabulary of size 1590 to a 128-dimensional

dense vectors. Whenever we computed a discriminator value, we computed the

standard deviation σembed
i of the embedding layer for each embedding dimension

i ∈ {1, . . . , 128}; note here that the standard deviation changed along training as

the embedding layer was set to be trainable. Then, with a scale of αsent = 0.05, we

added a zero-mean Gaussian noise of standard deviation αembed × σembed
i to the

embedding dimension i.

1.C.4 ZS-SBIR

In this dataset,

x = Sketch image (pretrained VGG features),

y = Photo image (pretrained VGG features).

We followed the same experiment setting of (Hwang et al., 2020), including the network

architectures.

Evaluation Metrics

In this experiment, we evaluated Precision@100 (P@100) and mean average

precision (mAP), by translating the Tensorflow implementation of the codebase5 of
5https://github.com/gr8joo/IIAE
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(Hwang et al., 2020), which is in turn based on (Shen et al., 2018; Yelamarthi et al., 2018).

Network Architectures

The neural network architectures are summarized in Tables 1.3.9–1.3.11; here, f ’s

are used in encoders, g’s are in decoders, and h’s are in discriminators. We note that

a network without superscript indicates that the same network architecture is used in

multiple places with different (i.e., not shared) realizations.

The generators and discriminators are defined in the same manner as for the

MNIST–SVHN model (see Appendix 1.C.3), and thus omitted here.

Training

We used the Adam optimizer (Kingma and Ba, 2014) with (β1, β2) = (0.5, 0.999),

learning rate 5× 10−4 for the generators and 10−3 for the discriminators (Heusel et al.,

2017). We trained for 50 epochs.

The noise injection for discriminators was done similarly to the CUB model.

Namely, we added a zero-mean Gaussian noise of standard deviation 0.5 for each latent

variable z,u,v, and we added a zero-mean Gaussian noise with adaptive standard

deviation to based on the standard deviations of the features as for the CUB-image data,

with the multiplicative scale αx = αy = 0.5.
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Chapter 2

Kernel Embedding without Eigende-
composition of a Matrix

2.1 Introduction

Finding a good embedding of data for discovering meaningful structures is one of

the fundamental problems in machine learning and data science, with important appli-

cations such as clustering, dimensionality reduction, and data visualization. Among a

myriad of algorithms which have been proposed in the last few decades, we particularly

focus on a class of kernel-based spectral embedding algorithms, which find embedding

of data based on eigenvectors of data-dependent similarity kernel matrices (Bengio

et al., 2004; Ham et al., 2004)—this class subsumes kernel principal component analysis

(PCA) (Schölkopf et al., 1998), Laplacian eigenmaps (Belkin and Niyogi, 2003), spectral

clustering (Ng et al., 2001; Shi and Malik, 2000), multidimensional scaling (Cox and

Cox, 2008), locally linear embedding (Roweis and Saul, 2000), and Isomap (Tenenbaum

et al., 2000). Proven to be extremely powerful in various applications, the common

disadvantage of such methods is the computational complexity of eigendecomposition

of a kernel matrix, which could be prohibitively large in big data analysis.

As an attempt to resolve the computational bottleneck, in this paper, we pro-

pose a new kernel embedding framework, which suggests a sample based embedding

algorithm without eigendecomposition of a matrix for special choices of kernels. To
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motivate our approach, we first review kernel PCA and introduce Laplacian eigenmaps

as a special case of kernel PCA framework with a kernel with density regularization

in Section 2.2. In Section 2.3, we then propose and study a new density-regularized

kernel, which separates the underlying density and spectral decomposition of the kernel

operator. We describe the resulting sample based algorithm, which simply combines

density estimates given sample and known eigenfunctions of a kernel operator. In

Section 2.4, dot-product kernels over hypersphere are discussed as a concrete example

to which the proposed embedding framework may apply. We briefly discuss relevant

literature in Section 2.6.

Notation Throughout the paper, we assume that a random vector X is drawn

from density p over a closed subset X ⊂ Rd, and data points x1:N := {x1, . . . ,xN}

are independently and identically distributed (i.i.d.) random variables drawn from p.

Given X ⊂ Rd and a density µ on X , we consider a Hilbert space L2
µ(X ) := {f : X →

C|
∫
|f(x)|2 dµ(x) < ∞} with inner product ⟨f, g⟩µ :=

∫
f(x)g(x) dµ(x). For a kernel

function k : X × X → R, we denote the associated Hilbert–Schmidt integral operator in

boldface K : L2
µ(X ) → L2

µ(X ), which is defined as (Kf)(x) :=
∫
X k(x, t)f(t) dµ(t). In

what follows, we always assume that a kernel is symmetric, i.e., k(x, t) = k(t,x),

and satisfies
∫∫

X×X k
2(x, t) dµ(x) dµ(t) <∞, so that the operator K is self-adjoint and

compact.

2.2 Review of Kerenl PCA and Laplacian Eigenmaps

2.2.1 Kernel PCA

Feature space formulation

Kernel PCA (Schölkopf et al., 1998) was proposed as an efficient method to per-

form PCA over transformed samples with a given nonlinear mapping. Let |ϕ(·)⟩ : X →

F be a feature map that maps a data point x to a point in a feature space |ϕ(x)⟩ ∈ F ,
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where F is a vector space with inner product ⟨·|·⟩.1 For simplicity, assume for now that

E[|ϕ(X)⟩] = |0⟩. Kernel PCA aims to perform PCA over the lifted random vector |ϕ(X)⟩,

that is, to solve

maximize
|uℓ⟩∈F

L∑

ℓ=1

⟨uℓ |Cϕ |uℓ⟩

subject to ⟨uℓ |uℓ′⟩ = δℓℓ′

(2.1)

Here, Cϕ := E[|ϕ(X)⟩⟨ϕ(X)|] denotes the covariance operator of |ϕ(X)⟩. We call this the

(population) feature space problem of kernel PCA.2 When F is high- or infinite-dimensional,

it is often not feasible to directly solve this problem.

Function space formulation

To avoid the issue with high-dimensionality of the feature space F , we can

convert the feature space problem (2.1) into an equivalent optimization problem over a

function space by the so-called kernel trick as follows. Define a symmetric kernel function

k(x, t) := ⟨ϕ(x)|ϕ(t)⟩. Consider the following optimization problem

maximize
fℓ∈L2

p(X )

L∑

ℓ=1

⟨fℓ,Kfℓ⟩p

subject to ⟨fℓ, fℓ′⟩p = δℓℓ′

(2.2)

Since K is self-adjoint and compact, the solution is characterized by the top-L eigenfunc-

tions and eigenvalues of K; see, e.g., (Bolla, 2013, Proposition A.2.10). The following

proposition establishes the equivalence between (2.1) and (2.2); the proof is easy and

thus omitted.

Proposition 2.2.1. Let λ1, . . . , λL and |u⋆1⟩, . . . , |u⋆L⟩ be the top-L eigenvalues and orthonormal

eigenvectors of the operator Cϕ, respectively. Let µ1, . . . , µL and f ⋆
1 , . . . , f

⋆
L be the top-L

1We use the bra-ket notation to note that F may be infinite dimensional.
2If |ϕ(x)⟩ = x, it boils down to the original PCA.
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eigenvalues and orthonormal eigenfunctions of the operator K, respectively. Then, λℓ = µℓ,

f ⋆
ℓ (x) =

1√
λℓ
⟨ϕ(x)|u⋆ℓ⟩, and (2.3)

|u⋆ℓ⟩ =
1√
λℓ

∫
f ⋆
ℓ (x)|ϕ(x)⟩p(x) dx. (2.4)

for each ℓ ∈ [L].

Hence, we call this problem (2.6) as the (population) function space problem of

kernel PCA. If the top-L eigenfunctions f ⋆
1 , . . . , f

⋆
L of the operator K are given, then the

embedding of a query point x by kernel PCA is the projection of the lifted data |ϕ(x)⟩

onto the principal directions |u⋆1⟩, . . . , |u⋆L⟩, or equivalently in view of (2.3),

ψKPCA(x) := [
√
λ1f

⋆
1 (x), . . . ,

√
λLf

⋆
L(x)]

T . (2.5)

Sample solution

The spectral decomposition of K in L2
p(X ) cannot be performed directly in

general even if the density p is known. Given sample x1:N , we can approximately solve

(2.2) in practice. Let K ∈ RN×N denote the sample kernel matrix whose (m,n)-th entry is

(K)mn = k(xm,xn). Then, we can solve

maximize
fℓ∈RN

L∑

ℓ=1

fTℓ√
N

K

N

fℓ√
N

subject to
fTℓ√
N

fℓ′√
N

= δℓℓ′

(2.6)

as a proxy to (2.2), which is equivalent to the eigendecomposition of K. The optimal

solution is characterized by the top-L eigenvectors f⋆1 , . . . , f
⋆
L ∈ RN of the normalized

sample kernel matrix K/N with eigenvalues λ1, . . . , λL with norm ∥f⋆ℓ ∥2 =
√
N . The
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L-dimensional embedding of a point x is then

ψ̂KPCA(x) :=
1

N

N∑

i=1

k(x,xi)
[(f⋆1 )i√

λ1
, . . . ,

(f⋆L)i√
λL

]T
. (2.7)

This is often referred to the Nyström formula; see, e.g., (Bengio et al., 2004). In particular,

for a sample point xn, the embedding is simply

ψ̂KPCA(xn) := [
√
λ1(f

⋆
1 )n, . . . ,

√
λL(f

⋆
L)n]

T .

We refer to kernel PCA as the procedure consisting of the eigendecomposition of the

kernel matrix K and the embedding (2.7).

Remark 2.2.2 (Centering). In (2.1), (2.2), (2.6), and (2.7), we assume E[|ϕ(X)⟩] = |0⟩.

Hence, given sample x1:N , we need to center the sample kernel matrix K as Kc =

(IN − 1N)K(IN − 1N) ∈ RN×N , where 1N := 1
N
1N 1TN ∈ RN×N .

Remark 2.2.3. In practice, any choice of symmetric kernel function k can be deployed

in kernel PCA. Note, however, that the feature space formulation and PCA inter-

pretation via Proposition 2.2.1 remain valid if and only if the kernel is in the form

k(x, t) = ⟨ϕ(x)|ϕ(t)⟩ for some inner product space F and function ϕ : X → F . Mercer’s

theorem (Mercer, 1909) establishes positive definiteness of a kernel as an equivalent

condition for the existence of such a mapping.

2.2.2 Laplacian eigenmaps

Laplacian eigenmaps (Belkin and Niyogi, 2003) is one of the most popular embed-

ding algorithm, which can be justified as an approximation of the Laplacian–Beltrami

operator or a relaxed solution to the graph min-cut problem (Shi and Malik, 2000). Here,

we introduce Laplacian eigenmaps as a special instance of kernel PCA. Given a base

symmetric kernel function k, we first define the kernelized density pk(x) :=
∫
k(x, t)p(t) dt
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and define a new kernel function as

kp(x, t) :=
k(x, t)√
pk(x)pk(t)

.

The (kernelized) Laplacian eigenmaps with the base kernel k is characterized by the

population function space optimization problem (2.2) of kernel PCA with the kernel kp

which is the function space optimization problem (2.6) of kernel PCA with the kernel

kp(x, t). Let f ⋆
1 , . . . , f

⋆
L denote the top-L orthonormal eigenfunctions of the operator

Kp. Then, the Laplacian eigenmaps of a point x is defined as the evaluations of the

eigenfunctions:

ψLE(x) := [f ⋆
1 (x), . . . , f

⋆
L(x)]

T . (2.8)

As in kernel PCA, given samples x1:N , we perform eigendecomposition of the

sample kernel matrix Kp defined as

(Kp)ij :=
k(xi,xj)√
p̂k(xi)p̂k(xj)

,

where p̂k(x) := 1
N

∑N
i=1 k(x,xi) denotes the empirical estimate of the kernelized density

pk(x). The embedding by Laplacian eigenmaps of a sample point xn is then

ψ̂LE(xn) := [(f⋆1 )n, . . . , (f
⋆
L)n]

T .

Remark 2.2.4. Despite the apparent mathematical equivalence, kernel PCA embedding

with the kernel kp may differ from Laplacian eigenmaps embedding significantly due to

centering in kernel PCA (see Remark 2.2.2) and the different definitions of embeddings

(see (2.5) and (2.8)).

Remark 2.2.5. Laplacian eigenmaps may also use the k-th neighborhood adjacency

matrix instead of kernel-based weight matrix given samples—however, it does not fit
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to the current population optimization framework, and thus studying this version is

beyond the scope of the paper.

Remark 2.2.6. Eigendecomposition of Kp is approximately equivalent to the that of the

symmetric normalized graph Laplacian, which is typically used in spectral embedding.

Define a weight matrix W ∈ RN×N as (W)ij = (1−δij)k(xi,xj) and define a degree matrix

D as the diagonal matrix with entry (D)ii =
∑N

j=1(W)ij . The symmetric normalized

graph Laplacian is then defined as Lsym := D−1/2WD−1/2. Since the difference

Kp − Lsym =
1

N
diag

(k(x1,x1)

p̂k(x1)
, . . . ,

k(xN ,xN)

p̂k(xN)

)

vanishes in the operator norm asN →∞, eigendecomposition of Kp becomes equivalent

to that of Lsym in the sample limit.

2.3 Kernel Embedding Without Eigendecomposition

2.3.1 A new density-regularized kernel

So far, we reviewed the two important kernel-based embedding frameworks,

kernel PCA and Laplacian eigenmaps: Laplacian eigenmaps fits into the framework of

kernel PCA with a specific form of density-regularized kernel kp; see Table 2.3.1. The

population problems cannot be solved directly, but given sample, we can approximately

solve them via eigendecomposition of a matrix of possibly large size.

In this section, motivated by the form of the kernel kp of Laplacian eigenmaps,

we introduce a new kernel function

kp(x, t) :=
k(x, t)√
p(x)p(t)

(2.9)

and propose the population function space optimization problem (2.2) of kernel PCA
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with kp, that is,

maximize
fℓ∈L2

p(X )

L∑

ℓ=1

⟨fℓ,Kpfℓ⟩p

subject to ⟨fℓ, fℓ′⟩p = δℓℓ′

(2.10)

as a new criterion for kernel embedding. Compared to the kernel kp of Laplacian

eigenmaps, the base kernel function k is now regularized by the true underlying density

p instead of the kernelized density pk.

With the new kernel kp, we can reshape the population optimization prob-

lem (2.10) into a much simpler form. For a weighting function w : X → R+ whose

support subsumes the support of p, we define the density-scaled function

gℓ(x) :=

√
p(x)

w(x)
fℓ(x). (2.11)

Note that if fℓ ∈ L2
p(X ), then gℓ ∈ L2

w(X ). If we define kw(x, t) := k(x, t)/
√
w(x)w(t),

we have

⟨fℓ,Kpfℓ⟩p = ⟨gℓ,Kwgℓ⟩w and ⟨fℓ, fℓ′⟩p = ⟨gℓ, gℓ′⟩w,

which imply that the new problem (2.10) can be recast as

maximize
gℓ∈L2

w(X )

L∑

ℓ=1

⟨gℓ,Kwgℓ⟩w

subject to ⟨gℓ, gℓ′⟩w = δℓℓ′ .

(2.12)

We remark that (2.12) solely depends on the choice of kernel k and the weighting

function w. Provided that Kw is compact, the solution of this optimization problem
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is characterized by the top-L eigenfunctions g⋆1, . . . , g⋆L of the operator Kw. Somewhat

surprisingly, for a few special cases, the eigenexpansion of Kw is given in an analytical

form; see Section 2.4. The eigenfunctions of Kp are then given as the functions f ⋆
1 , . . . , f

⋆
L,

where f ⋆
ℓ (x) :=

√
w(x)/p(x)g⋆ℓ (x). Provided that the density p(x) can be evaluated, the

L-dimensional embedding of a query point x is

ψKE(x) :=

√
w(x)

p(x)
[g⋆1(x), . . . , g

⋆
L(x)]

T . (2.13)

2.3.2 A new sample based kernel embedding

Provided that spectral decomposition of Kw is known for a choice of k and w,

the only unknown in the embedding (2.13) is the density p. Hence, given sample x1:N ,

we only need to estimate the density, without any spectral decomposition of a matrix.

This yields the following kernel embedding algorithm.

Algorithm 1. Kernel embedding without spectral decomposition
Input a base kernel k, a weighting function w, a density estimator p̂(·), sample {xn}Nn=1,
a target dimension L ∈ N.

1: Find the top-L orthonormal eigenfunctions g⋆1, . . . , g
⋆
L of the integral operator

Kw : L
2
w(X )→ L2

w(X ).
2: Given a query point x ∈ X , output the L-dimensional embedding of x as

ψ̂KE(x) :=

√
w(x)

p̂(x)
[g⋆1(x), . . . , g

⋆
L(x)]

T .

2.4 Dot-Product Kernels Over Hypersphere

In this section, we focus on a special class of kernel functions of the form of

kw(x, t) = f(xT t) for some function f : R→ R, which are called dot-product kernels. This

class contains many interesting kernels including homogeneous polynomial f(u) = up

(p > 0), inhomogeneous polynomial f(u) = (1 + u)p (p > 0), Vovk’s real polynomial
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f(u) = (1 − up)/(1 − u) (p > 0), Vovk’s infnite polynomial f(u) = 1/(1 − u), and

hyperbolic tangent f(u) = tanh(a+ u) (a ∈ R) kernels (Smola et al., 2001).

Further, we consider a special domain, the unit hypersphere Sd−1 := {x ∈

Rd : ∥x∥2 = 1} in Rd. On Sd−1, the class of dot-product kernels include additional

popular kernels such as Gaussian kernels f(u) = e−(1+u)/σ2 (σ > 0) and arccosine kernel

f(u) = 1−(2/π) cos−1(u). Note that some real-world data such as images approximately

lie on a hypersphere (Minh et al., 2006; Smola et al., 2001) and dot-product kernels may

work best on Sd−1 by nature. The key property of Sd−1 is that with uniform weighting

function w, the eigensystem of Kw is characterized by spherical harmonics.

Definition 2.4.1 (Spherical harmonics). Let ∆ = −∑d
i=1

∂2

∂x2
i

denote the Laplacian opera-

tor on Rd. A homogeneous polynomial of degree n in Rd whose Laplacian vanishes is

called a homogeneous harmonic of order n. Let Pn denote the space of C-valued homoge-

neous polynomials of degree n in d real variables. Let Yn(d) denote the subspace of all

homogeneous harmonics of order n, that is, Yn(d) := {p ∈ Pn : ∆p = 0}. The spherical

harmonics of order n and dimension d are defined as the functions in Yn(d) restricted

over Sd−1.

Remark 2.4.2. The dimension of the subspace Yn(d) is

N(d, n) := dimYn(d) =
2n+ d− 2

n

(
n+ d− 3

n− 1

)

for n ≥ 0.

The following elegant theorem, which is often referred to as the Funk–Hecke

formula, shows that spherical harmonics fully characterize the eigenfunctions of any

dot-product kernel over Sd−1. Let Pm
ℓ (t) denote the associated Legendre polynomial of

degree ℓ and order m for integers 0 ≤ m ≤ ℓ. Let |Sd−1| := (2πd/2)/Γ(d/2) denote the

surface area of Sd−1.
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Theorem 2.4.3 (Funk–Hecke (Müller, 2012)). Let f : [−1, 1]→ R be a continuous function.

For Yn ∈ Yn(d) for n ≥ 0, we have

∫

Sd−1

f(xT t)Yn(t) dSd−1(t) = λnYn(x) ∀x ∈ Sd−1,

where λn = |Sd−2|
∫ 1

−1
f(u)P d

n(u)(1− u2)
d−3
2 du.

Corollary 2.4.4. Let X = Sd−1 for d ≥ 2 and let w be the uniform density on Sd−1. For any dot-

product kernel of the form kw(x,y) = f(xTy) for some continuous function f : [−1, 1] → R,

there is an orthonormal basis of Yn(d) comprised by the eigenfuntions of Kw with eigenvalue λn

defined in Theorem 2.4.3.

Remark 2.4.5. Minh et al. (2006, Theorems 2 and 3) computed the nonzero eigenvalues of

gaussian kernels f(u) = exp(−(1+u)/σ2) (σ > 0) and polynomial kernels f(u) = (1+u)p

(p ∈ N) in terms of special hypergeometric functions. In particular, the eigenvalues

(λn)
∞
n=0 of gaussian kernels are decreasing in n if σ2 ≥ 2/d, and those of the polynomial

kernel of degree p are always decreasing in n and λn = 0 for n ≥ p+ 1.

Hence, if we choose Gaussian or polynomial kernels, we only need to evaluate

the first L real spherical harmonics to compute the kernel embedding (2.13) on X =

Sd−1. For practical implementation, here we present a version of real orthonormal

basis {Y d
n,j(x)}N(d,n)

j=1 of spherical harmonics of order n and dimension d (Higuchi, 1987,

Section 2). Given a point x = (x1, . . . , xD) ∈ Sd−1, define a hyperspherical coordinate

system θ = (θ1, . . . , θd−1) ∈ [0, 2π)× [0, π]d−2 as

θ1 :=





cos−1 x2√
x21 + x22

if x1 ≥ 0,

2π − cos−1 x2√
x21 + x22

if x1 < 0,

θi := cos−1 xi+1√
x21 + . . .+ x2i+1

, 2 ≤ i ≤ d− 1.
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Here, θ1 and θ2, . . . , θd−1 are called the azimuthal angle and the polar angles, respectively.

For integers |ℓ1| ≤ ℓ2 ≤ . . . ≤ ℓd−1 = n, we define a canonical spherical harmonics of degree

ℓd−1 = n and order (ℓ1, . . . , ℓd−2) as

Yℓ1,...,ℓd−1
(θ) :=

1√
2π
eiℓ1θ1

d−1∏

j=2

jP
ℓj−1

ℓj
(θj), where

jP
ℓ

ℓ′(θ) :=

√(
ℓ+

j − 1

2

)(ℓ+ ℓ′ + j − 2)!

(ℓ′ − ℓ)!
P

−(ℓ+ j−2
2

)

ℓ′+ j−2
2

(cos θ)

sin
j−2
2 (θ)

for ℓ ≤ ℓ′ and j ≥ 2. Here, P µ
λ (z) denotes the Legendre functions of the first kind for z ∈ C

such that |1− z| < 2. Finally, we define a real-valued version, often called the tesseral

harmonics, as

Ỹℓ1,ℓ2,...,ℓd−1
:=





√
2(−1)ℓ1 Im(Y|ℓ1|,ℓ2,...,ℓd−1

) if ℓ1 < 0,

Y0,ℓ2,...,ℓd−1
if ℓ1 = 0,

√
2(−1)ℓ1 Re(Y|ℓ1|,ℓ2,...,ℓd−1

) if ℓ1 > 0.

Then, Bn(d) := {Ỹℓ1,...,ℓd−1
: |ℓ1| ≤ ℓ2 ≤ . . . ≤ ℓd−1 = n} forms a real orthonormal

eigenbasis of Yn(d).

A few remarks on related results are in order.

Remark 2.4.6 (Multiplicative dot-product kernels over a torus). Since Corollary 2.4.4

remains valid for d = 2, the eigenfunctions of any dot-product kernels over S1 are the

Fourier basis {eiℓθ/
√
2π}∞ℓ=0 for θ ∈ [0, 2π). Hence, any dot-product kernel of a multi-

plicative form such as Gaussian kernels over the d-dimensional torus Td := S1× · · · × S1

(with d products) has the product of 1-dimensional Fourier bases as eigenfunctions.

This result may be of particular interest for real-world data naturally lying on the torus

such as RNA structure data (Eltzner et al., 2018).
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Remark 2.4.7 (Dot-product kernels over a ball). Smola et al. (2001, Section 6) provided

a version of the eigensystem of a dot-product kernel over the unit ball Bd := {x ∈

Rd : ∥x∥2 ≤ 1} by the separation of variables trick. Here we present the idea with a

minor correction. Let f : R → R be an analytic function such that f(t) =
∑∞

m=0 fmt
m.

Plugging in the expansion of monomial um (u ∈ [−1, 1],m ≥ 0) with respect to the

associated Legendre polynomials (P d
n(u))n≥d of dimension d, we can write

f(xT t) =
∞∑

n=d

κn(∥x∥∥t∥)P d
n

( xT t

∥x∥∥t∥
)
,

where we define κn(u) :=
∑∞

m=0 fmcm(d, n)u
m and cm(d, n) := 2n+1

2
(n−d)!
(n+d)!

∫ 1

−1
umP d

n(u) du

for n ≥ d. Now, for each n ≥ d, let (φnm ∈ L2
r 7→rd−1([0, 1]))

∞
m=1 and (ρnm)

∞
m=1 be the

eigensytem of the 1D kernel κn, i.e.,

∫ 1

0

κn(rr̃)φnm(r̃)r̃
d−1 dr̃ = ρnmφnm(r). (2.14)

With the addition theorem (Müller, 2012, p. 18) on the expansion of P d
n with (Y d

n,j)
N(d,n)
j=1 ,

it is then easy to check that {φnm(r)Y
d
n,j(θ) : m ≥ 1, n ≥ d, 1 ≤ j ≤ N(d, n)} forms an

orthonormal eigenbasis of K over Bd with eigenvalues Sd−1

N(d,n)
ρnm of multiplicity N(d, n).

We note, in practice, that the integral equation (2.14) can be solved by eigendecom-

position of a matrix with approximation of κn with finite terms; we illustrate how to

perform the approximation in Appendix.

Remark 2.4.8 (Gaussian kernels with Gaussian weighting). For X = Rd, when Kw

is a Gaussian kernel with a Gaussian weighting function w, the eigensystem of Kw

is characterized by Hermite polynomials (Fasshauer, 2011; Rasmussen, 2003). Note,

however, that since w(x) is non-uniform being Gaussian, the base kernel k(x, t) =
√
w(x)kw(x, t)

√
w(t) becomes a Gaussian kernel with an additional attenuation term.
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(a) Raw image (b) PCA (c) Kernel PCA (d) Laplacian eigenmaps (e) Spherical embedding

Figure 2.5.1. An illustrative example with image segmentation.

2.5 Experiments

To illustrate the applicability of the proposed framework, we consider the follow-

ing simple image segmentation procedure. Suppose that we are given an (color) image

Y ∈ [0, 1]H×W×3. For each pixel Y (i) ∈ R3, we consider the P × P × 3 patch centered at

Y (i), denoted as y(i) ∈ [0, 1]P×P×3 ∼= [0, 1]3P
2 , as its representation. We apply a kernel

embedding algorithm such as Laplacian eigenmaps or the proposed kernel embedding

to the patches {y(i)}HW
i=1 , and apply the k-means algorithm (Hartigan and Wong, 1979;

Lloyd, 1982) as in spectral clustering (Shi and Malik, 2000); the resulting labels can be

viewed as a segmentation of the image.

We present a sample image segmentation result with P = 2 in Fig. 2.5.1. For

kernel PCA and Laplacian eigenmaps, we used isotropic Gaussian kernels with band-

width selected as median of all pairwise Euclidean distances. For the proposed kernel

embedding, we applied the kernel embedding based on spherical harmonics in Sec-

tion 2.4, by mapping the data onto a unit hypersphere and used the Gaussian kernel

density estimator with the same bandwidth. The number of clusters used in the k-means

algorithm was 8. We remark that the spherical embedding has orders-of-magnitude

lesser time complexity (∼2s) than the other kernel-based embeddings (∼100s), while

providing a comparable result.
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2.6 Related Work

Spectral clustering (Ng et al., 2001; Shi and Malik, 2000; Weiss, 1999) has many

versions depending on the form of graph Laplacian in the procedure, and Laplacian

eigenmaps (Belkin and Niyogi, 2003) is equivalent to the spectral embedding used in the

version of spectral clustering by Shi and Malik (2000). Schiebinger et al. (2015) analyzed

the normalized kernel operator Kp to establish the performance of spectral clustering.

The mathematical equivalence between Laplacian eigenmaps and kernel PCA

established in Section 2.2 is not entirely new. For example, Ng et al. (2001) pointed out a

link between spectral clustering and kernel PCA. More generally, Ham et al. (2004) and

Bengio et al. (2004) interpreted Laplacian eigenmaps, multidimensional scaling, Isomap,

and locally linear embedding as specific instantiations of kernel PCA. Note, however,

that they only considered the sample based algorithms not the underlying population

optimization problems, while this paper crucially relies on the population formulation.

Dot-product kernels have been studied in the context its regularization property

for support vector machines (Smola et al., 2001) and their feature functions (Minh et al.,

2006). For a more detailed account on spherical harmonics, we refer an interested reader

to (Efthimiou and Frye, 2014; Müller, 2012).

2.7 Concluding Remarks

In this work, we proposed a rather unorthodox perspective on kernel-based

spectral embedding. We introduced a new criterion for kernel embedding with a new

density-regularized kernel, which results in a kernel embedding algorithm without

spectral decomposition of a matrix. The advantage comes from the special structure of

the kernel kp in (2.9), which allows the separation of the density from the eigendecom-

position of the kernel operator.

We emphasize that the proposed algorithm is not proposed to replace the existing
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spectral methods; instead, it should be viewed as an extremely low-cost kernel-based

embedding, which may be particularly advantageous when a dataset is large and com-

putational resource is limited. A deeper investigation and more extensive experiments

including its variations in Remarks 2.4.6, 2.4.7, and 2.4.8 will be reported elsewhere.
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Appendix

2.A A Numerical Solution to the Eigenequation (2.14)

In this section, we elaborate how to solve (2.14) numerically given a function f

that characterizes a kernel.

Given an analytic function f(t) =
∑∞

m=0 fmt
m, let bnm := fmcm(d, n) so that we

can write κn(u) =
∑∞

m=0 bnmu
m.

2.A.1 Compute cm(d, n)

To compute the coefficient cm(d, n), essentially
∫ 1

−1
umP d

n(u) du, we utilize the

following closed form expression of the associated Legendre function: for 0 ≤ d ≤ n,

P d
n(x) = (−1)d2n(1− x2)d/2

n∑

k=d

k!

(k − d)!x
k−d

(
n

k

)(
n+k−1

2

n

)

for x ∈ [−1, 1]. Hence, for n ≥ d, we have

cm(d, n) =
2n+ 1

2

(n− d)!
(n+ d)!

∫ 1

−1

umP d
n(u) du

=
2n+ 1

2

(n− d)!
(n+ d)!

(−1)d2n
n∑

k=d

k!

(k − d)!

(
n

k

)(
n+k−1

2

n

)∫ 1

−1

(1− u2)d/2uk+m−d du.

Now, it is enough to compute for d ≤ k ≤ n

anmk :=

∫ 1

−1

(1− u2)d/2uk+m−d du.
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By the change of variables with u = cos θ, we can write

anmk =

∫ π

0

sind+1 θ cosk+m−d θ dθ.

Note that it is easy to compute that for m,n > 0,

∫
sinn θ cosm θ dθ = −sinn−1 θ cosm+1 θ

n+m
+
n− 1

n+m

∫
sinn−2 θ cosm θ dθ.

By recursively applying this relation, we obtain

∫
sinn θ cosm θ dθ

= − cosm+1 θ

⌊n
2
⌋∑

i=0

(n− 1)(n− 3) · · · (n− 2i− 1)

(n+m)(n+m− 2) · · · (n+m− 2i)

sinn−2i−1 θ

n+m− 2i− 1

+
(n− 1)(n− 3) · · · (n− 2⌊n

2
⌋+ 1)

(n+m)(n+m− 2) · · · (n+m− 2⌊n
2
⌋+ 2)

∫
sinn−2⌊n

2
⌋ θ cosm θ dθ.

For the remaining integral: we can use either

∫
sin θ cosm θ dθ = − 1

m+ 1
cosm+1 θ + C

for m ̸= −1, or

∫
cosm θ dθ =

1

m
cosm−1 θ sin θ +

m− 1

m

∫
cosm−2 θ dθ,

which yields

∫
cosm θ dθ = sin θ

⌊m
2
⌋∑

i=0

(m− 1)(m− 3) · · · (m− 2i− 1)

m(m− 2) · · · (m− 2i)

cosm−2i−1 θ

m− 2i− 1

+
(m− 1)(m− 3) · · · (m− 2⌊m

2
⌋+ 1)

m(m− 2) · · · (m− 2⌊m
2
⌋+ 2)

∫
cosm−2⌊m

2
⌋ θ dθ.
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For the integration over [0, π],

∫ π

0

cosm θ dθ =





0 if m is odd

(m−1)(m−3)···3·1
m(m−2)···4·2 π if m is even

and
∫ π

0

sin θ cosm θ dθ =





0 if m is odd

2
m+1

if m is even.

After all, we have

∫ π

0

sinn θ cosm θ dθ

=





(n−1)(n−3)···3·1
(n+m)(n+m−2)···(m+4)(m+2)

(m−1)(m−3)···3·1
m(m−2)···4·2 π if n is even and m is even

(n−1)(n−3)···3·1
(n+m)(n+m−2)···(m+4)(m+2)

2
m+1

if n is even and m is even

0 if m is odd.

=





(n−1)!(m−1)!

(n
2
−1)!(m

2
−1)!(n+m

2
)!2n+mπ if n is even and m is even

(m−1)!(n+m−1
2

)!(n−1
2

)!

(n+m)!(m
2
−1)!

2n+1 if n is even and m is even

0 if m is odd.

2.A.2 Compute (ρnm, φnm(r))

Now, we describe how to solve the eigenequation (κnφnm)(r) = ρnmφnm(r).

Since we have an infinite series κn(rr̃) =
∑∞

m=0 bnmr
mr̃m for each n, we first truncate

this series with finite, say M , terms:

κ̃n(rr̃) :=
M∑

m=0

bnmr
mr̃m =

M∑

m=0

√
bnmr

m
√
bnmr̃

m.
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As we saw in the last lecture, the eigenspectrum of κ̃ can be found by the eigendecom-

position of the corresponding matrix k̃ defined as

(k̃)ij =

∫ 1

0

√
bir̃

i
√
bj r̃

j r̃d−1 dr̃ =
√
bibj

∫ 1

0

r̃i+j+d−1 dr̃ =

√
bibj

i+ j + d
.
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Part II

Nearest-Neighbors Methods
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Chapter 3

Classification and Regression with One-
Nearest Neighbors

3.1 Introduction

Arguably being the most primitive, yet powerful nonparametric approaches for

various statistical problems, the k-nearest-neighbor (k-NN) based algorithms have been

one of the essential toolkits in data science since their inception. They have been exten-

sively studied and analyzed over several decades for canonical statistical procedures

including classification (Cover and Hart, 1967; Fix and Hodges, 1951), regression (Cover,

1968a,b), density estimation (Fukunaga and Hostetler, 1973; Loftsgaarden and Quesen-

berry, 1965; Mack and Rosenblatt, 1979), and density functional estimation (Kozachenko

and Leonenko, 1987; Leonenko et al., 2008). They are attractive even in this modern age

due to their simplicity, decent performance, and rich understanding of their statistical

properties.

There exist, however, clear limitations that hinder their wider deployment in

practice. First, and most importantly, standard k-NN based algorithms are often deemed

to be inherently infeasible for large-scale data, as they need to store and process the

entire data in a single machine for NN search. Second, though the number of neighbors

k needs to grow to infinity in the sample size to achieve statistical consistency in general

for such procedures (Biau and Devroye, 2015), small k is highly preferred in practice to
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avoid possibly demanding time complexity of large-k-NN search; see Section 3.3.1 for

an in-depth discussion.

Recently, specifically for regression and classification, a few ensemble based

methods (Duan et al., 2020; Qiao et al., 2019; Xue and Kpotufe, 2018) have been pro-

posed aiming to reduce the computational complexity while achieving the accuracy

of the optimal standard k-NN regression and classification rules; however, theoretical

guarantees of those solutions still require large-k-NN search. Xue and Kpotufe (2018)

proposed an idea dubbed as denoising, which is to draw (multiple) subsample(s) and

preprocess them with the standard large-k-NN rule over the entire data in the training

phase, so that the k-NN information can be hashed effectively by 1-NN searches in the

testing phase. Though the resulting algorithm is provably optimal with a small statisti-

cal overhead, the denoising step may still suffer prohibitively large complexity for large

N and/or large k in principle. More recently, to address the computational and storage

complexity of the standard k-NN classifier with large N , Qiao et al. (2019) proposed

the bigNN classifier, which splits data into subsets, applies the standard k-NN classifier

to each, and aggregates the labels by a majority vote. This ensemble method works

without any coordination among data splits, and thus they naturally fit to large-scale

data which may be inherently stored and processed in distributed machines. However,

they showed its minimax optimality only when both the number of splits M and the

base k increase as the sample size N increases but only a strictly suboptimal guarantee

for fixed k. Only with the optimality for increasingly large k, they suggested to use

the bigNN classifier in the preprocessing phase of the denoising framework. A more

recent work (Duan et al., 2020) on optimally weighted version of the bigNN classifier

still assumes increasingly large k.

In this paper, we complete the missing theory for small k and show that the

bigNN classifier with k = 1 suffices for minimax rate-optimal classification. More

generally, we analyze a variant of the bigNN classifier, called the M -split k-NN classifier,
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which is defined as the majority vote over the total kM nearest-neighbor labels obtained

after running k-NN search over the M data splits. Roughly put, we show that the

M -split k-NN classification rule behaves almost equivalently to the standard Θ(M)-NN

rules, for any fixed k ≥ 1. In particular, the M -split 1-NN rule, equivalent to the bigNN

classifier with k = 1, is shown to attain a minimax optimal rate up to logarithmic factors

under smooth measure conditions. We also provide a minimax-rate-optimal guarantee

for regression task with an analogously defined M -split k-NN regression rule.

Albeit both the algorithm and analysis are simple in nature, the practical implica-

tion of theoretical guarantees provided herein together with the divide-and-conquer

framework is significant: while running faster than the standard 1-NN rules by pro-

cessing smaller data with small-k-NN search in parallel, the M -split k-NN rules can

achieve the same statistical guarantee of the optimal standard k-NN rules run over the

entire dataset. Moreover, when deploying the rules in practice, we only need to tune the

number of splits M while fixing k, say, simply k = 1. We experimentally demonstrate

that the split 1-NN rules indeed perform on par with the optimal standard k-NN rules

as expected by theory, while running faster than the standard 1-NN rules.

The key technique in our analysis is to analyze intermediate rules that selectively

aggregates the small-k-NN estimates from each data split based on the k-th-NN dis-

tances from a query point. The intuition is that these intermediate rules which average

only neighbors close enough to a query point exactly behave like a standard Θ(M)-NN

rule for any fixed k. We establish the performance of the (M,k)-NN rules by showing

that its performance is approximated by the intermediate rules, with a small (logarith-

mic) approximation overhead in rates. Indeed, these intermediate rules attain exact

minimax optimal rates for respective problems at the cost of additional complexity for

ordering the NN distances.
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Organization

The rest of this chapter is organized as follows. Section 3.2 presents the main

results with the formal definition of the split NN rules and their theoretical guarantees.

In Section 3.3, we discuss computational complexity of the standard k-NN algorithms

and the M -split k-NN rules, a refined aggregation scheme that removes the logarithmic

factors in the previous guarantees, and a comparison to the bigNN classifier and its

theoretical guarantee of (Qiao et al., 2019). We demonstrate the convergence rates of the

split NN rules and their practicality over the standard k-NN rules with experimental

results in Section 3.4. Due to the space limit, we discuss other related work and present

all proofs in Appendix.

3.2 Main Results

Let (X , ρ) be a metric space and let Y be the outcome (or label) space, i.e., Y ⊆ R

for regression andY = {0, 1} for binary classification. We denote by P a joint distribution

over X × Y , by µ the marginal distribution on X , and by η the regression function

η(x) = E[Y |X = x].

We denote an open ball of radius r centered at x ∈ X by Bo(x, r) := {x′ ∈

X : ρ(x, x′) < r} and the closed ball by B(x, r) := Bo(x, r). The support of a measure µ

is denoted as supp(µ) := {x ∈ X : µ(Bo(x, r)) > 0, ∀r > 0}.

Given sample D = (X,Y) = {(Xi, Yi)}Ni=1 and a point x ∈ Rd, we use X(k)(x;X)

to denote the k-th-nearest neighbor of x from the sample instances X = X1:N and use

Y(k)(x;D) to denote the corresponding k-th-NN label among Y = Y1:N ; any tie is broken

arbitrarily. The k-th-NN distance of x is denoted as rk(x;X) := ρ(x,X(k)(x;X)) for

k ≤ N . We will omit the underlying data D or X whenever it is clear from the context.

Throughout in this chapter, we use N , M , and n = N/M to denote the size of

the entire data D, the number of data splits, and the size of each data split, respectively,
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assuming that M divides N .

3.2.1 Regression

Problem Setting

Given paired data D = {(Xi, Yi)}Ni=1 drawn independently from P, the goal of

regression is to design an estimator η̂ = η̂(·;D) : X → Y based on the data such that

the estimate η̂(x) is close to the conditional expectation η(x) = E[Y |X = x], where the

closeness between η and η̂ is typically measured by the lp-norm under µ, ∥η̂ − η∥p :=

(
∫
|η̂(x)− η(x)|pµ(dx))1/p for p = 1, 2, or the sup norm ∥η̂ − η∥∞ := supx∈X |η̂(x)− η(x)|.

The Proposed Rule

Given a query x ∈ X , we first recall that the standard k-NN regression rule outputs

the average of the k-NN labels, i.e.,

η̂(k)(x;D) := 1

k

k∑

i=1

Y(i)(x;D).

Instead of running k-NN search over the entire data, given the number of splits

M ≥ 1, we first split the data D of size N into M subsets of equal size at random. Let

P = {D1, . . . ,DM} denote the random subsets, where Dm corresponds to the m-th split.

After finding k-NN labels for each data split, the M -split k-NN (or (M,k)-NN in short)

regression rule is defined as the average of all kM of returned labels, i.e.,

η̃
(k)
M (x) := η̃(k)(x;P) := 1

M

M∑

m=1

η̂(k)(x;Dm). (3.1)

Performance Guarantees

We claim that the proposed (M,k)-NN regression rule for any fixed k ≥ 1 is

nearly optimal in terms of error rate under a standard regularity condition. For a formal
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statement, we borrow some standard assumptions on the metric measure space in the

literature on analyzing k-NN algorithms (Dasgupta and Kpotufe, 2019).

Assumption 3.2.1 (Doubling and homogeneous measure). The measure µ on metric space

(X , ρ) is doubling with exponent d, i.e., for any x ∈ supp(µ) and r > 0,

µ(Bo(x, r)) ≤ 2dµ(Bo(x, r/2)).

The measure µ is (Cd, d)-homogeneous, i.e., for some Cd > 0 for any x ∈ supp(µ) and

r > 0,

µ(Bo(x, r)) ≥ Cdr
d ∧ 1.

Note that a measure µ is homogeneous if µ is doubling and supp(µ) is bounded.

The doubling exponent d can be interpreted as an intrinsic dimension of a measure

space.

Assumption 3.2.2 (Hölder continuity). The conditional expectation function η(x) =

E[Y |X = x] is (αH, A)-Hölder continuous for some 0 < αH ≤ 1 and A > 0 in metric space

(X , ρ), i.e., for any x, x′ ∈ X ,

|η(x)− η(x′)| ≤ AραH(x, x′).

Assumption 3.2.3 (Bounded conditional expectation and variance). The conditional

expectation function η(x) = E[Y |X = x] and the conditional variance function v(x) :=

Var(Y |X = x) are bounded, i.e., supx∈X |η(x)| <∞ and supx∈X v(x) <∞.

The following condition is borrowed from (Xue and Kpotufe, 2018) to establish a

high-probability bound.

Assumption 3.2.4. The collection of closed balls in X has finite VC dimension V and the

outcome space Y ⊂ R is contained in a bounded interval of length lY .
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The main goal of this work is to demonstrate that the distributed (M,k)-NN

rules can attain almost statistically equivalent performance to the optimal k-NN rules.

Hence, our statements in what follows are written in parallel to the known results for

the standard k-NN rules, to which we include the pointers after cf. for the interested

reader. For example, the following statement is new and we refer to (Dasgupta and

Kpotufe, 2019) for an analogous statement for the standard k-NN regression algorithm.

Theorem 3.2.1 (cf. (Dasgupta and Kpotufe, 2019, Theorem 1.3)). Suppose that Assump-

tions 3.2.1 and 3.2.2 hold. Let k ≥ 1 be fixed.

(a) If Assumption 3.2.3 holds and the support of µ is bounded, for any M ≤ N such that

N/M ≥ k, we have

EP∥η̃(k)M − η∥2 ≤C1

((M
N

log
M

(logM)1.01

)αH
d
+

√
(logM)1.01

M

)
.

(b) If Assumption 3.2.4 holds, for any 0 < δ < 1, if M ≥ 16 log 1
δ
, then with probability at

least 1− δ over P , we have

∥η̃(k)M − η∥∞ ≤ C2

((M
N

logN
)αH

d
+

√
1

M
log

N

δ

)
.

In particular, C1 and C2 are constants and independent of the ambient dimension D.

Remark 3.2.2 (Minimax optimality). If we setM = Θ̃(N2αH/(2αH+d)), Theorem 3.2.1 gives

EP∥η̃(k)M − η∥2 = Õ(N−αH/(2αH+d)) and

∥η̃(k)M − η∥∞ = Õ(N−αH/(2αH+d)) with high probability,

where Õ(·) hides any logarithmic multiplicative terms. This rate is known to be minimax

optimal under the Hölder continuity of order αH; for the standard k-NN regression al-

gorithm, this rate optimality is attained for k = Θ(N2αH/(2αH+d)) (Dasgupta and Kpotufe,
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2019; Xue and Kpotufe, 2018). In this view, the (M,k)-NN regression algorithm attains

the performance of the standard Θ(M)-NN regression algorithm for any fixed k.

3.2.2 Classification

Problem Setting

We consider the binary classification with Y = {0, 1}. Given paired data D =

{(Xi, Yi)}Ni=1 drawn independently from P, the goal of binary classification is to design

a (data-dependent) classifier ĝ(·;D) : X → Y such that it minimizes the classification

error P(ĝ(X;D) ̸= Y ). For a classifier ĝ : X → Y , we define its pointwise risk at x ∈ X

as R(ĝ;x) := P(Y ̸= ĝ(x)|X = x), and define the (expected) risk as R(ĝ) := P(Y ̸= ĝ(X)).

Let g(x) denote the Bayes-optimal classifier, i.e., g(x) := 1{η(x) ≥ 1/2} for all x ∈ X ,

and let R∗(x) := R(g;x) = η(x) ∧ (1− η(x)) and R∗ := R(g) denote the pointwise-Bayes

risk and the (expected) Bayes risk, respectively. The canonical performance measure of a

classifier ĝ is its excess risk R(ĝ)−R∗.

Another important performance criterion is the classification instability proposed

by (Sun et al., 2016), which quantifies a stablility of a classification procedure with

respect to independent realizations of training data. Given N ∈ N, with a slight abuse

of notation, denote ĝ as a classification procedure D 7→ ĝ(·;D) that maps a dataset D of

size N to a classifier ĝ(·;D). The classification instability of the classification procedure

is defined as

CISN(ĝ) := E[P(ĝ(X;D) ̸= ĝ(X;D′)|D,D′)],

where D and D′ are independent, i.i.d. data of size N .
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The Proposed Rule

The standard k-NN classifier is defined as the plug-in classifier of the standard

k-NN regression estimate:

ĝk(x;D) := 1
(
η̂(k)(x;D) ≥ 1

2

)
.

It can be equivalently viewed as the majority vote over the k-NN labels given a query.

Similarly, we define the (M,k)-NN classification rule as the plug-in classifier of

the (M,k)-NN regression rule:

g̃
(k)
M (x) := g̃(k)(x;P) := 1

(
η̃(k)(x;P) ≥ 1

2

)
.

Performance Guarantees

As shown in the previous section for regression, we can show that the proposed

(M,k)-NN classifier behaves nearly identically to the standard Θ(M)-NN rules for any

fixed k ≥ 1. Here, we focus on guarantees on rates of excess risk and classification

instability, but the asymptotic Bayes consistency can be also established under a mild

condition; see Theorem 3.B.13 in Appendix.

To establish rates of convergence for classification, we recall the following notion

of smoothness for the conditional probability η(x) = P(Y = 1|X = x) defined in

(Chaudhuri and Dasgupta, 2014) that takes into account the underlying measure µ

to better capture the nature of classification than the standard Hölder continuity in

Assumption 3.2.2.

Assumption 3.2.5 (Smoothness). For α ∈ (0, 1] and A > 0, η(x) is (α,A)-smooth in metric

measure space (X , ρ, µ), i.e., for all x ∈ supp(µ) and r > 0,

|η(B(x, r))− η(x)| ≤ Aµα(Bo(x, r)).
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The following condition on the behavior of the measure µ around the decision

boundary of η is a standard assumption to establish a fast rate of convergence (Audibert

et al., 2007).

Assumption 3.2.6 (Margin condition). For β ≥ 0, η satisfies the β-margin condition in

(X , ρ, µ), i.e., there exists a constant C > 0 such that

µ(∂η∆) ≤ C∆β,

where ∂η∆ := {x ∈ supp(µ) : |η(x) − 1/2| ≤ ∆} denotes the decision boundary with

margin ∆ ∈ (0, 1/2].

The following statement is new.

Theorem 3.2.3 (cf. (Chaudhuri and Dasgupta, 2014, Theorem 4)). Under Assumptions

3.2.5 and 3.2.6, the following statements hold for any fixed k ≥ 1, where Mo, Co, and C ′
o are

constants depending on k, α, β, and C.

(a) Pick any δ ∈ (0, 1) and Mo > 0 such that M = MoN
2α

2α+1 (log 1
δ
)

1
2α+1 ≤ N . With

probability at least 1− δ over P ,

P(g̃
(k)
M (x) ̸= g(X)|P) ≤ δ + Co

( 1

N
log

1

δ

) βα
2α+1

(
log

N

log 1
δ

)βα
.

(b) Pick any Mo ∈ (0, N
1

2α+1 ] and set M =MoN
2α

2α+1 ≤ N . Then

EP [R(g̃
(k)
M )]−R∗ ≤ C ′

o

((logN)α∨
1
2

N
α

2α+1

)β+1

and

CISN(g̃
(k)
M ) ≤ C ′′

o

((logN)α∨
1
2

N
α

2α+1

)β
.

Remark 3.2.4 (Minimax optimality). Suppose that η is (αH, A)-Hölder continuous and µ

has a density with respect to Lebesgue measure that is strictly bounded away from zero
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on its support. Then, by (Chaudhuri and Dasgupta, 2014, Lemma 2), η is (αH

d
, A)-smooth.

Hence, if we set M = Θ̃(N2αH/(2αH+d)) in Theorem 3.2.3(b) as in Remark 3.2.2, we have

EP [R(g̃
(k)
M )]−R∗ = Õ(N−(β+1)αH/(2αH+d)) and

CISN(g̃
(k)
M ) = Õ(N−βαH/(2αH+d)),

which are known to be minimax optimal under the Hölder continuity assumption

(Chaudhuri and Dasgupta, 2014; Sun et al., 2016). In parallel to Remark 3.2.2, the

standard k-NN classifier is known to achieve these rates for k = Θ(N2αH/(2αH+d)), and

thus the (M,k)-NN classifier attains the performance of a standard Θ(M)-NN classifier

in this sense.

Remark 3.2.5 (Reduction to regression). For a regression estimate η̂, let ĝ be the plug-in

classifier with respect to η̂. Then, via the inequality

R(ĝ)−R∗ ≤ 2∥η̂ − η∥1,

the guarantees for the (M,k)-NN regression rule in Theorem 3.2.1 readily imply con-

vergence rates of the excess risk (Dasgupta and Kpotufe, 2019) even for a multiclass

classification scenario, by adapting the guarantee for a multivariate regression setting.

The current statements, however, are more general results for binary classification

that apply to beyond smooth distributions, following the analysis by Chaudhuri and

Dasgupta (2014).

3.3 Discussion

3.3.1 Computational Complexity

The standard k-NN rules are known to be asymptotically consistent only if

k →∞ as N →∞. Specifically to attain minimax rate-optimality, k = Θ(N2αH/(2αH+d))
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is required under measures are Hölder continuity of order αH; see Remarks 3.2.2 and

3.2.4. As alluded to earlier, this large-k requirement on the standard k-NN rules for

statistical optimality may be problematic in practice. The main claim of this work is

that the M -split 1-NN rules replace the large-k requirement of the standard k-NN rules

with a large-M requirement without almost no loss in the statistical performance, while

providing a natural, distributed solution to large-scale data with a possible speed-up

via parallel computation.

To examine the complexity more carefully, consider Euclidean space Rd for a

moment. Let TNN(k,N) denote the test-time complexity of a k-NN search algorithm for

data of size N . The simplest baseline NN search algorithm is the brute-force search,

which has time complexity TNN(k,N) = O(Nd) regardless of k.1 For extremely large-

scale data, however, even O(N) may be unwieldy in practice. To reduce the complexity,

several alternative data structures specialized for NN search such as KD-Trees (Bentley,

1975) for Euclidean data, and Metric Trees (Uhlmann, 1991) and Cover Trees (Beygelz-

imer et al., 2006) for non-Euclidean data have been developed; see (Dasgupta and

Kpotufe, 2019; Kibriya and Frank, 2007) for an overview and comparison of empirical

performance of these specialized data structures for k-NN search. These are preferred

over the brute-force search for better test time complexity O(logN) in a moderate size

of dimension, say d ≤ 10, but for much higher-dimensional data, it is known that the

brute-force search may be faster. In particular, the most popular choice of a KD-Tree

based search algorithm has time complexity TNN(1, N) = O(2d logN) for k = 1. The

time complexity of exact k-NN search is TNN(k,N) = O(k)TNN(1, N) for moderately

small k,2 but for a large k the time complexity could be worse than O(k)TNN(1, N).

1Given a query point, (1) compute the distances from the dataset to the query (O(Nd)); (2) find the
k-NN distance using introselect algorithm (O(N)), (3) pick the k-nearest neighbors; (O(N)).

2One possible implementation of exact k-NN search algorithm with KD-tree is to remove already
found points and repeatedly find 1-NN points until k-NN points are found using KD-tree-based 1-NN
search; after the search, the removed points may be reinserted into the KD-tree without affecting the
overall complexity for a moderate size of k.
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Thanks to the fully distributed nature, the (M,k)-NN classifier have compu-

tational advantage over the standard Θ(kM)-NN classifier of nearly same statistical

power run over the entire data. Suppose that we split data into M groups of equal size

⌈N
M
⌉ and they can be processed by S parallel processors, where each processor ideally

manages ⌈M
S
⌉ data splits. Given the time complexity TNN(k,N) of a base k-NN search

algorithm, the (M,k)-NN algorithms have time complexity

TM ;S(k,N) =
⌈M
S

⌉
TNN

(
k,
⌈N
M

⌉)
.

As stated in Section 3.2, the (M,k)-NN rules with S ≤M parallel units may attain the

performance of the standard Θ(kM)-NN rules in a single machine with the relative

speedup of
TM ;S(k,N)

TNN(kM,N)
∼ 1

S

with a brute-force search, and

TM ;S(k,N)

TNN(kM,N)
∼

kM
S

log N
M

kM logN
=

1

S

(
1− logM

logN

)

with a KD-Tree based search algorithm assuming TNN(k,N) = O(k logN) for simplicity.

Hence, the most benefit of the proposed algorithms comes from their distributed nature

which reduces both time and storage complexity.

3.3.2 A Refined Aggregation Scheme

As alluded to earlier, we can remove the logarithmic factors in the guarantees of

Theorems 3.2.1 and 3.2.3 with a refined aggregation scheme which we call the distance-

selective aggregation. With an additional hyperparameter L ∈ N such that 1 ≤ L ≤ M ,

we take L estimates out of the total M values based on the k-th-NN distances from the

query point to each data split instances. Formally, if m1, . . . ,mL denote the L-smallest
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values out of the (k + 1)-th-NN distances (rk+1(x;Xm))
M
m=1, we take the partial average

of the corresponding regression estimates:

η̆
(k)
M,L(x) := η̆

(k)
L (x;P) := 1

L

L∑

j=1

η̂(k)(x;Dmj
). (3.2)

We call the resulting rule the M -split L-selective k-NN (or (M,L, k)-NN in short)

regression rule and analogously define the (M,L, k)-NN classifier ğ(k)M,L(x) as the plug-in

classifier, i.e.,

ğ
(k)
M,L(x) := 1

(
η̆
(k)
M,L(x) ≥

1

2

)
. (3.3)

Intuitively, it is designed to filter out some possible outliers based on the (k + 1)-th-NN

distances, since a larger (k + 1)-th-NN distance to the query point likely indicates that

the returned estimate from the corresponding group is more unreliable.3

The refined schemes are indeed minimax rate-optimal without the extra logarith-

mic factors, as stated in the following statements. We omit their proofs since they can

be easily obtained from a straightforward modification of those of Theorems 3.2.1 and

3.2.3.

Proposition 3.3.1 (Regression). Under Assumptions 3.2.1, 3.2.2, and 3.2.3, for any fixed

k ≥ 1, any L < M ≤ N such that N/M ≥ k,

EP∥η̆(k)M,L − η∥2 = O
((M

N

)αH
d
+

√
1

M

)
.

Proposition 3.3.2 (Classification). Under Assumptions 3.2.5 and 3.2.6, if we set M =

MoN
2α

2α+1 and L = ⌈(1− κ)M⌉ for any fixed κ ∈ (0, 1),

EP [R(ğ
(k)
M,L)]−R∗ = O(N−α(β+1)

2α+1 ) and CISN(ğ
(k)
M,L) = O(N− αβ

2α+1 ).

3We use the (k + 1)-th-NN distance instead of k-th-NN distance due to a technical reason for clas-
sification; see Lemma 3.B.8 in Appendix. For regression, our analysis remains valid for the k-th-NN
distance.
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3.3.3 Comparison to the bigNN classifier (Qiao et al., 2019)

The bigNN classifier proposed by Qiao et al. (2019) takes the majority vote

over the M labels each of which is the output of the standard k-NN classifier from

each data split. Formally, it is defined as ĝ(k)big (x;P) := 1(η̂
(k)
big (x;P) ≥ 1/2), where

η̂
(k)
big (x;P) := 1

M

∑M
m=1 1(η̂

(k)(x;Dm) ≥ 1
2
). Qiao et al. (2019) showed that the bigNN

classifier is minimax rate-optimal, provided that k grows to infinity.

Theorem 3.3.3 ((Qiao et al., 2019, Theorems 1 and 2, rephrased)). Assume Assump-

tions 3.2.5 and 3.2.6. Set M = Nγ for some constant γ ∈ (0, 2α
2α+1

) and set k = koN
2α

2α+1
−γ for

some constant ko ≥ 1 such that k ≤ N . Then, we have

EP [R(ĝ
(k)
big )]−R∗ = O(N−α(β+1)

2α+1 ) and CISN(ĝ
(k)
big ) = O(N− αβ

2α+1 ).

Further, if k ≥ 1 is fixed, then for M = Nγ with γ ∈ (0, 2α
2α+1

), we have4

EP [R(ĝ
(k)
big )]−R∗ = O(N− γ(β+1)

2 ) and CISN(ĝ
(k)
big ) = O(N− γβ

2 ).

Note that the number of splits M = Nγ is restricted to be strictly slower than

Θ(N2α/(2α+1)), which is the optimal choice for our analysis. Further, in the first part of

the statement, k is set to grow to infinity as N →∞; the second part only guarantees

strictly suboptimal rates for fixed k. Their analysis is based on the intuition is that the

k-NN classification results from each subset of data become consistent as k grows to

infinity, and thus taking majority vote over the consistent guesses will likely result in a

consistent guess; hence, it inherently results in a suboptimal performance guarantee

when k is fixed. This technique is also not readily applicable for analyzing a regression

algorithm.

In contrast, in the current work, the (M,k)-NN classifier takes the majority over

4This part of the statement is only informally alluded to in the experiments section of Qiao et al. (2019).
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all kM returned labels and we establish the (near) rate-optimality for any fixed k ≥ 1, as

long as M grows properly. This implies that the M sets of k-NN labels over subsets are

almost statistically equivalent to Θ(M)-NN labels over the entire data. Our analysis

is based on the refined aggregation scheme discussed in the previous section, which

provides a careful control on the behavior of distributed nearest neighbors and is

naturally compatible with the analysis of the regression rule. We remark, however, that

the bigNN rule and the (M,k)-NN classifier become equivalent for the most practical

case of k = 1, and both schemes also showed similar performance for small k’s in our

experiments (data not shown). Therefore, the key contribution is in our analysis rather

in the algorithmic details.

3.4 Experiments

The goal of experiments in this section is twofold. First, we present simulated

convergence rates of the (M,k)-NN rules for small k, say k ∈ {1, 3}, are polynomial as

predicted by theory with synthetic dataset. Second, we demonstrate that their practical

performance is competitive against that of the standard k-NN rules with real-world

datasets, while generally reducing both validation complexity for model selection and

test complexity. In both experiments, we also show the performance of the (M, M
2
, k)-NN
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Figure 3.3.1. Summary of excess risks from the mixture of two Gaussians experiments.
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rules5 to examine the effect of the distance-selective aggregation.

Computing resources For each experiment, we used a single machine with one

of the following CPUs: (1) Intel(R) Core(TM) i7-9750H CPU 2.60GHz with 12 (logical)

cores or (2) Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz with 28 (logical) cores.

Implementation All implementations were based on Python 3.8 and we used the

NN search algorithms implemented in scikit-learn package (Pedregosa et al., 2011) ver.

0.24.1 and utilized the multiprocessors using the python standard package multipro-

cessing. The code for experiments can be found in Supplementary Material.

3.4.1 Simulated Dataset

We first evaluated the performance of the proposed classifier with a synthetic

data following Qiao et al. (2019). We consider a mixture of two isotropic Gaussians

of equal weight 1
2
N (0, Id) +

1
2
N (1, σ2Id), where 1 := [1, . . . , 1]T ∈ Rd and Id ∈ Rd×d

denotes the identity matrix. With d = 5, we tested 3 different values of σ ∈ {0.5, 2, 3}

with 5 different sample sizes N ∈ {500, 2500, 12500, 62500, 312500}. We evaluated the

(M,k)-NN rule and (M, M
2
, k)-NN rule for k ∈ {1, 3}with M = 10N2αH/(2αH+d) = 10N2/7

5As alluded to earlier, we used k-th-NN distance in experiments for the distance-selective classification
rule instead of (k + 1)-th-NN distance for simplicity.

Table 3.4.1. Summary of experiments with benchmark datasets. YearPredictionMSD in
the last row is a regression dataset. Recall that (M, 1)-NN is a shorthand for the M -split
1-NN rules. The values in the parentheses correspond to the (M, M

2
, 1)-NN rules. The

best values are highlighted in bold.

Dataset Error (% for classification) Test time (s) Valid. time (s)

1-NN k-NN (M ,1)-NN 1-NN k-NN (M ,1)-NN k-NN (M ,1)-NN

GISETTE (Guyon et al., 2004) 7.26 ±1.65 4.54 ±0.93 5.11 ±1.01 (4.86 ±0.86) 6.13 5.75 6.79 (6.18) 52 262 (270)
w/ brute-force - - - 0.30 0.26 1.20 (2.06) 38 200 (207)

HTRU2 (Lyon et al., 2016) 2.91 ±0.40 2.18 ±0.44 2.08 ±0.28 (2.28 ±0.37) 0.18 0.18 0.04 (0.04) 18 8 (10)
Credit (Dua and Graff, 2019) 26.73 ±0.99 18.68 ±1.01 18.65 ±1.05 (18.93 ±0.95) 0.85 1.2 0.2 (0.2) 122 25 (29)
MiniBooNE (Dua and Graff, 2019) 13.72 ±1.57 10.63 ±0.76 10.69 ±0.86 (10.62 ±0.64) 1.68 2.42 0.98 (0.94) 264 88 (92)
SUSY (Baldi et al., 2014) 28.27 ±1.50 20.32 ±1.04 20.55 ±1.35 (20.52 ±1.31) 32 35 14 (13) 3041 1338 (1362)
BNG(letter,1000,1) (Vanschoren et al., 2013) 46.13 ±1.18 40.88 ±1.12 41.53 ±1.04 (40.72 ±0.78) 379 350 17 (14) 2868 619 (959)

YearPredictionMSD (Dua and Graff, 2019) 7.22 ±0.34 6.72 ±0.25 6.79 ±0.22 (6.75 ±0.27) 33 31 40 (34) 1616 431 (412)
w/ brute-force - - - 15 18 3.5 (3.6) 1529 300 (336)
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based on αH = 1 and d = 5. For comparison, we also ran the standard k-NN algorithm

with k ∈ {1, 3, 10N2/7}. We repeated experiments with 10 different random seeds and

reported the averages and standard deviations.

The excess risks are plotted in Figure 3.3.1. We note that the (M, 1)-NN classifier

performs similarly to the baseline k-NN classifier across different values of σ, and

the performance can be improved by the (M, M
2
, 1)-NN classifier. This implies that

discarding possibly noisy information in the aggregation could actually improve the

performance of the ensemble classifier. Note also that the convergence of the excess

risks of the standard M -NN classifier and the (M, {1, 3})-NN classifiers is polynomial

(indicated by the straight lines), as predicted by theory.

3.4.2 Real-world Datasets

We evaluated the proposed rules with publicly available benchmark datasets

from the UCI machine learning repository (Dua and Graff, 2019) and the OpenML

repository (Vanschoren et al., 2013), which were also used in (Xue and Kpotufe, 2018)

and (Qiao et al., 2019); see Table 3.C.1 in Appendix for size, feature dimensions, and the

number of classes of each dataset. All data were standardized to have zero mean and

unit variances.

We tested four algorithms. The first two algorithms are (1) the standard 1-NN rule

and (2) the standard k-NN rule with 10-fold cross-validation (CV) over an exponential

grid k ∈ K := {2l − 1: 2 ≤ l ≤ log2(min{210, 1 + Ntrain/25})}, where Ntrain denotes the

size of training data. The rest are (3) the (M, 1)-NN rule and (4) the (M, M
2
, 1)-NN rule

both with 10-fold CV over M ∈ K. We repeated with 10 different random (0.95,0.05)

train-test splits and evaluated first min{Ntest, 1000} points from the test data to reduce

the simulation time. Table 3.4.1 summarizes the test errors, test times, and validation

times.6 The optimal (M, 1)-NN rules consistently performed as well as the optimal

6Here, we used a KD-Tree based NN search by default. Since, however, a KD-Tree based algorithm
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standard k-NN rules, even running faster than the standard 1-NN rules in the test phase.

We remark that the optimally tuned (M, M
2
, 1)-NN rules (i.e., with the distance-selective

aggregation) performed almost identical to the (M, 1)-NN rules, except slight error

improvements observed in high-dimensional datasets {GISETTE, YearPredictionMSD}.

We additionally include Figure 3.C.1 in Appendix which summarizes the validation

error profiles from the 10-fold CV procedures.

3.5 Concluding Remarks

In this chapter, we established the near statistical optimality of the (M,k)-NN

rules when k is fixed, which makes the sample-splitting-based NN rules more appealing

for practical scenarios with large-scale data. We also removed the logarithmic factors by

the distance-selective aggregation and exhibited some level of performance boost in ex-

perimental results; it is an open question whether the logarithmic factor is fundamental

for the vanilla (M,k)-NN rules or can be removed by a tighter analysis. As supported by

both theoretical guarantees and empirical supports, we believe that the (M,k)-NN rules,

especially for k = 1, can be widely deployed in practical systems and deserve further

study including an optimally weighted version of the classifier as studied in (Duan

et al., 2020). It would be also interesting if the current divide-and-conquer framework

can be modified to be universally consistent for any general metric space, whenever

such a consistent rule exists (Györfi and Weiss, 2021; Hanneke et al., 2020).

suffers a curse of dimensionality (recall Section 3.3.1), we ran additional trials with a brute-force search
for high-dimensional datasets {GISETTE, YearPredictionMSD}, whose feature dimensions are 5000 and
90, respectively, and report the time complexities in the subsequent rows.
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Appendix

In Appendix, we discuss other related work (Appendix 3.A), prove the techni-

cal statements (Appendix 3.B), and present some extra information on experiments

(Appendix 3.C).

3.A Other Related Work

The asymptotic-Bayes consistency and convergence rates of the k-NN classifier

have been studied extensively in the last century (Cover, 1968a,b; Cover and Hart,

1967; Devroye et al., 1994; Fix and Hodges, 1951; Fritz, 1975; Gyorfi, 1981; Kulkarni

and Posner, 1995; Wagner, 1971). More recent theoretical breakthroughs include a

strongly consistent margin regularized 1-NN classifier (Kontorovich and Weiss, 2015),

a universally consistent sample-compression based 1-NN classifier over a general

metric space (Györfi and Weiss, 2021; Hanneke et al., 2020; Kontorovich et al., 2017),

nonasymptotic analysis over Euclidean space (Gadat et al., 2016) and over a doubling

space (Dasgupta and Kpotufe, 2014), optimal weighted schemes (Samworth, 2012),

stability (Sun et al., 2016), robustness against adversarial attacks (Bhattacharjee and

Chaudhuri, 2020; Wang et al., 2018), and optimal classification with a query-dependent

k (Balsubramani et al., 2019). For NN-based regression (Cover, 1968a,b; Dasgupta

and Kpotufe, 2014, 2019), we mostly extend the analysis techniques of (Dasgupta and

Kpotufe, 2019; Xue and Kpotufe, 2018); we refer the interested reader to a recent survey

of Chen et al. (2018) for more refined analyses. For a more comprehensive treatment
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on the k-NN based procedures, see (Biau and Devroye, 2015; Devroye et al., 1996) and

references therein.

The most closely related work is (Qiao et al., 2019) as mentioned above. In a

similar spirit, Duan et al. (2020) analyzed a distributed version of the optimally weighted

NN classifier of Samworth (2012). More recently, Liu et al. (2021) studied a distributed

version of an adaptive NN classification rule of Balsubramani et al. (2019).

The idea of an ensemble predictor for enhancing statistical power of a base

classifier has been long known and extensively studied; see, e.g., (Hastie et al., 2009)

for an overview. Among many ensemble techniques, bagging (Breiman, 1996) and

pasting (Breiman, 1999) are closely related to this work. The goal of bagging is, however,

mostly to improve accuracy by reducing variance when the sample size is small and the

bootstrapping step is computationally demanding in general; see (Biau et al., 2010; Hall

and Samworth, 2005) for the properties of bagged 1-NN rules. The motivation and idea

of pasting is similar to the split NN rules, but pasting iteratively evolves an ensemble

classifier based on an estimated prediction error based on random subsampling rather

than splitting samples. The split NN rules analyzed in this paper are non-iterative and

NN-based-rules-specific, and assume essentially no additional processing step beyond

splitting and averaging.

Beyond ensemble methods, there are other attempts to make NN based rules scal-

able based on quantization (Gottlieb et al., 2018; Hanneke et al., 2020; Kontorovich et al.,

2017; Kpotufe and Verma, 2017; Xue and Kpotufe, 2018) or regularization (Kontorovich

and Weiss, 2015), where the common theme there is to carefully select subsample and/or

preprocess the labels. We remark, however, that they typically involve onerous and

rather complex preprocessing steps, which may not be suitable for large-scale data.

Approximate NN (ANN) search algorithms (Har-Peled et al., 2012; Indyk and Motwani,

1998; Slaney and Casey, 2008) are yet another practical solution to reduce the query

complexity, but ANN-search-based rules such as (Alabduljalil et al., 2013; Anastasiu and
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Karypis, 2019) hardly have any statistical guarantee (Dasgupta and Kpotufe, 2019) with

few exception (Efremenko et al., 2020; Gottlieb et al., 2014). Gottlieb et al. (2014) pro-

posed an ANN-based classifier for general doubling spaces with generalization bounds.

More recently, Efremenko et al. (2020) proposed a locality sensitive hashing (Datar et al.,

2004) based classifier with Bayes consistency but a strictly suboptimal rate guarantee in

Rd. In contrast, this paper focuses on exact-NN-search based algorithms.

We conclude with remarks on a seeming connection between the proposed

distance-selective aggregation and the k-NN based outlier detection methods. Ra-

maswamy et al. (2000) and Angiulli and Pizzuti (2002) proposed to use the k-NN

distance, or some basic statistics such as mean or median of the k-NN distances to a

query point, as an outlier score; a recent paper (Gu et al., 2019) analyzed these schemes.

In view of this line of work, the split-and-select NN rules can be understood as a se-

lective ensemble of inliers based on the k-NN distances. It would be an interesting

direction to investigate a NN-based outlier detection method for large-scale dataset,

extending the idea of the distance-selective aggregation.

3.B Deferred Proofs

In this section, we provide the full proofs of the statements in the main text.

For both regression and classification problems, the key idea in our analysis of the

(M,k)-NN rules is to consider the (M,L, k)-NN rules (3.2) and (3.3) as a proof device. It

relies on the observations that (1) the (M,k)-NN rules can be closely approximated to

the (M, ⌈κM⌉, k)-NN rules with κ ≈ 1, and (2) (M, ⌈κM⌉, k)-NN rules attain minimax

optimality for any fixed k and fixed κ ∈ (0, 1), as long as M is chosen properly.

This section is organized as follows. In Appendix 3.B.1, we state and prove a

key technical lemma for analyzing the distributed NN rules. As the regression rules are

easier to analyze, we prove Theorem 3.2.1 in Appendix 3.B.2. The proof of Theorem 3.2.3

118



is presented in Appendix 3.B.3, including an additional statement on Bayes consistency.

3.B.1 A Key Technical Lemma

We first restate a simple yet important observation on the k-nearest-neighbors

by Chaudhuri and Dasgupta (2014) that the k-nearest neighbors of x lies in a ball of

probability mass of O( k
n
) centered at x, with high probability. We define the probability

radius of mass p centered at x ∈ X as the minimum possible radius of a closed ball

containing probability mass at least p, that is,

rp(x) := inf{r > 0: µ(B(x, r)) ≥ p}.

Lemma 3.B.1 (Chaudhuri and Dasgupta, 2014, Lemma 8). Pick any x ∈ X , 0 ≤ p ≤ 1,

0 ≤ ξ ≤ 1, and any positive integers n and k such that k ≤ ξnp. If X1, . . . , Xn are drawn i.i.d.

from µ, then

P(rk+1(x;X1:n) > rp(x)) ≤ e−np(1−ξ)2/2 ≤ e−k(1−ξ)2/(2ξ).

We now state an analogous version of the above lemma for our analysis of the

(M,k)-NN rules. The following lemma quantifies that, with high probability (expo-

nentially in M ) over the split instances PX , the the k-nearest neighbors of x from the

selected data splits based on the (k + 1)-th-NN distances will likely lie within a small

probability ball of mass O(kM
N
) around the query point.

Lemma 3.B.2. Pick any positive integer k ≥ 1 and τ ∈ (0, 1], and set L = ⌈(1− τ)2M⌉. If the

data splits X1, . . . ,XM are independent, we have

P
(
max
j∈[L]

rk+1(x;Xmj
) > rp(x)

)
≤ e−

(1−τ)τ2

2
M
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for n ≥ k + ln 1
τ
+
√

2k ln 1
τ
+ (ln 1

τ
)2 and p = 1

n
(k + ln 1

τ
+
√

2k ln 1
τ
+ (ln 1

τ
)2) ∈ (0, 1].

Proof. Define

ξ =
k

k + ln 1
τ
+
√

2k ln 1
τ
+ (ln 1

τ
)2

so that we can write p = k
ξn

= kM
ξN

. Note that ξ ∈ (0, 1] for any k ≥ 1 and τ ∈ (0, 1].

For each data split indexed by m ∈ [M ], we define a bad event

Em = {rk+1(x;Xm) > rp(x)}.

Observe that Em occurs if any only if the closed ball of probability mass p contains

less than k points from Xm. By Lemma 3.B.1, the probability of the bad event Em is

upper bounded by e−k(1−ξ)2/(2ξ), which is equal to τ by the choice of ξ. Now, since the

data splits are independent, (1(Em))
M
m=1 is a sequence of independent Bernoulli random

variables with parameter P(E1) ≤ τ . Hence, we have

P
(
max
j∈[L]

rk+1(x;Xmj
) > rp(x)

)
≤ P

( M∑

m=1

1(Em) > M − L
)

≤ P(BM,1−τ < (1− τ)2M),

where BM,τ ∼ Binom(M, τ) denotes a binomial random variable with parameters M

and τ . Another application of the multiplicative Chernoff bound to the right-hand side

concludes the desired bound.

3.B.2 Regression: Proof of Theorem 3.2.1

Proof of Theorem 3.2.1(a)

This analysis extends the proof of (Dasgupta and Kpotufe, 2019, Theorem 1.3).

Let PX := {Xm}Mm=1 denote the set of splits of X. We let V := supx∈X v(x) <∞ andH :=

supx∈X |η(x)| <∞. Since the support of µ is bounded, we let R := diam(supp(µ)) <∞.
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Step 1. Error decomposition

Recall that we wish to bound

EP∥η̃(k)M − η∥2 = EP

√
EX [(η̃(k)(X;P)− η(X))2]

≤
√

EPEX [(η̃(k)(X;P)− η(X))2].

Here, the inequality follows by Jensen’s inequality. We will consider the (M,L, k)-NN

regression rule with L = ⌈(1 − τ)2M⌉ as a proof device, where τ is to be determined

at the end of the proof. Pick any x ∈ X . We denote the conditional expectation of the

(M,L, k)-NN regression estimate η̆(k)L (x;P) by

η
(k)
L (x;PX) := EY|PX

[η̆
(k)
L (x;P)] = 1

kL

L∑

j=1

k∑

i=1

η(X(i)(x;Xmj
)),

where the expectation is over Y -values Y given the data splits PX . Note that with

L = M , η(k)M (x;PX) becomes the conditional expectation of the (M,k)-NN regression

estimate η̃(k)(x;P). We decompose the squared error (η̃(k)(x;P)− η(x))2 as

(η̃(k)(x;P)− η(x))2

=
(
η̃(k)(x;P)− η(k)M (x;PX) + η

(k)
M (x;PX)− η(k)L (x;PX) + η

(k)
L (x;PX)− η(x)

)2

≤ 3
{
(η̃(k)(x;P)− η(k)M (x;PX))

2 + (η
(k)
M (x;PX)− η(k)L (x;PX))

2 + (η
(k)
L (x;PX)− η(x))2

}
,

where we use the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2). Taking expectation over the

Y values given the data splits PX , we have

EY|PX
[(η̃(k)(x;P)− η(x))2] ≤ 3

{
VarY|PX

(η̃(k)(x;P))︸ ︷︷ ︸
(A)

(3.4)
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+ EY|PX
[(η

(k)
M (x;PX)− η(k)L (x;PX))

2]︸ ︷︷ ︸
(B)

+ (η
(k)
L (x;PX)− η(x))2︸ ︷︷ ︸

(C)

}
.

We now bound the three terms separately in the next steps.

Step 2(A). Variance term

Consider

VarY|PX
(η̃(k)(x;P)) = EY|PX

[(η̃(k)(x;P)− η(k)M (x;P))2]

= EY|PX

[( 1

kM

k∑

i=1

M∑

m=1

(Y(i)(x;Dm)− E[Y(i)(x;Dm)|PX ])
)2]

(a)
=

1

(kM)2

k∑

i=1

M∑

m=1

VarY|PX
(Y(i)(x;Dm))

=
1

(kM)2

k∑

i=1

M∑

m=1

v(X(i)(x;Xm))
(b)

≤ V

kM
. (3.5)

Here, (a) follows by the independence of Yi’s conditioned on the splits PX and (b)

follows from the assumption v(x) ≤ V for all x ∈ X .

Step 2(B). Approximation term

We claim that the second term (B) is bounded as O(τ 2). We have

|η(k)M (x;P)− η(k)L (x;P)| ≤
(
1− L

M

)
|η(k)L (x;P)| +

∣∣∣ 1
M

M∑

j=L+1

1

k

k∑

i=1

η(X(i)(x;Xmj
))
∣∣∣

(a)

≤
(
1− L

M

)
H +

M − L
M

H

= 2H
(
1− L

M

)

(b)

≤ 4Hτ, (3.6)
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where (a) follows by the assumption |η(x)| ≤ H for all x ∈ X and (b) follows since

L = ⌈(1− τ)2M⌉ ≥ (1− 2τ)M .

Step 2(C). Bias term

It only remains to bound the term (C), which is the bias of the (M,L, k)-NN

regression estimate η̆(k)L (x;P). Since η is (αH, A)-Hölder continuous, it immediately

follows that

|η(k)L (x;PX)− η(x)| ≤
1

kL

k∑

i=1

L∑

j=1

|η(X(i)(x;Xmj
))− η(x)|

≤ Amax
j∈[L]

rαH
k+1(x;Xmj

).

Now, for any p ∈ (0, 1), we observe that by the homogeneity of µ, we have

Cd

(rp(x)
2

)d
≤ µ

(
Bo
(
x,
rp(x)

2

))
< p,

which implies that rp(x) < 2( p
Cd
)1/d. Now, if we set p = 1

n
(k + ln 1

τ
+
√
2k ln 1

τ
+ (ln 1

τ
)2),

then by Lemma 3.B.2 and the boundedness of the support, i.e., diam(supp(µ)) ≤ R, we

have

EPX
[(η

(k)
L (x;PX)− η(x))2] ≤ A2EPX

[
max
j∈[L]

r2αH
k+1(x;Xmj

)
]

≤ A2
{
r2αH
p (x) +R2αH P

(
max
j∈[L]

rk+1(x;Xmj
) > rp(x)

)}

≤ A2
(
22αH

( p

Cd

) 2αH
d

+R2αHe−
(1−τ)τ2

2
M
)
. (3.7)
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Step 3.

Plugging in (3.5), (3.6), and (3.7) to the error decomposition (3.4) leads to

E[(η̃(k)(x;P)− η(x))2] ≤ 3
{ V

kM
+ 16H2τ 2 + A222αH

( p

Cd

) 2αH
d

+ A2R2αHe−
(1−τ)τ2

2
M
}
.

If we set τ =
√

(lnM)1.01/M , then we obtain the desired bound since p = O( 1
n
(k +

ln 1
τ
)) = O(M

N
lnM) and e−

(1−τ)τ2

2
M = e−

1
2
(lnM)1.01(1−τ) decays faster than any polynomial

rate.

Proof of Theorem 3.2.1(b)

This analysis adopts the proof technique of (Xue and Kpotufe, 2018, Proposition 1)

and will invoke the following lemma therein.

Lemma 3.B.3 (Xue and Kpotufe, 2018, Lemma 1). Assume that µ is a (Cd, d)-homogeneous

measure and the collection of all closed balls in X has finite VC dimension V . Then, with

probability at least 1− τ over the sample X of size n, for any k ∈ [n], we have

sup
x∈X

rk(x;X) ≤
( 3

Cdn

(
k ∨

(
V log 2n+ log

8

τ

))) 1
d
.

Step 1. Approximate with (M,L, k)-NN estimator

We consider the (M,L, k)-NN regression estimate η̆(k)L (x;P) withL = ⌈(1−τ)2M⌉,

where τ is to be determined. Similar to the proof of Theorem 3.2.1(a), we can decompose

and upper-bound the error of η̃(k)M as

∥η̃(k)M − η∥∞ ≤ ∥η̃
(k)
M − η̆

(k)
L ∥∞ + ∥η̆(k)L − η∥∞ ≤ 4Hτ + ∥η̆(k)L − η∥∞. (3.8)

That is, with the approximation error 4Hτ , it suffices to analyze the (M,L, k)-NN

estimator η̆(k)L (x;P).
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Step 2. Analyze (M,L, k)-NN estimator

To bound the sup-norm ∥η̆(k)L − η∥∞ = supx∈X |η̆(k)L (x;P)− η(x)|, we consider the

following bias-variance decomposition

|η̆(k)L (x;P)− η(x)| ≤ |η(k)L (x;PX)− η(x)|︸ ︷︷ ︸
bias

+ |η̆(k)L (x;P)− η(k)L (x;PX)|︸ ︷︷ ︸
variance

,

where we define the conditional expectation η
(k)
L (x;PX) := E[η̆(k)L (x;P)|PX ] as in the

proof of Theorem 3.2.1(a).

Step 2(a). Bias bound

The following lemma, which is a variant of Lemma 3.B.2, can be readily shown

by invoking Lemma 3.B.3 with n← N/M and following the same line of the proof of

Lemma 3.B.2.

Lemma 3.B.4. Assume that µ is a (Cd, d)-homogeneous measure and the collection of all closed

balls in X has finite VC dimension V . Pick any δ ∈ (0, 1). If the data splits PX = {Xm}Mm=1

are independent and of equal size N/M , for L := ⌈(1− τ)2M⌉, we have

P
(
max
j∈[L]

rk(x;Xmj
) >

( 3M

CdN

(
k ∨

(
V log 2N

M
+ log

8

τ

))) 1
d
)
≤ e−

(1−τ)τ2

2
M .

For M ≥ 16 log 1
δ
, we define τ =

√
4
M

log 1
δ
≤ 1

2
so that δ = e−

τ2M
4 ≥ e−

(1−τ)τ2M
2 .

Then, Lemma 3.B.4 and the Hölder continuity of η imply that with probability at least

1− δ over the data splits PX , we have

sup
x∈X
|η(k)L (x;PX)− η(x)| ≤ A sup

x∈X
max
j∈[L]

rαH
k (x;Xmj

)

≤ A
( 3M

CdN

(
k ∨

(
V log 2N

M
+

1

2
log

16M

log 1
δ

)))αH
d
. (3.9)
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Step 2(b). Variance bound

For any fixed x ∈ X and split instances PX = {Xm}Mm=1, Hoeffding’s inequality

guarantees that with probability at least 1− δo over the labels {Ym}Mm=1, we have

|η̆(k)L (x;P)− η(k)L (x;PX)| ≤
√

l2Y
2kL

log
2

δo
. (3.10)

Now, observe that given PX , the left hand side is a function of x only via its nearest

neighbors from X, and thus only depends on a closed ball centered at x. The finite

VC dimensionality assumption then implies that if we vary x ∈ X , there are at most

(eN/V)V different such inequalities (3.10). Hence, letting δ = δo(eN/V)V and applying

union bound, we have, with probability at least 1− δ over {Ym}Mm=1,

sup
x∈X
|η̆(k)L (x;P)− η(k)L (x;PX)| ≤

√
Vl2Y
kL

log
N

δ
. (3.11)

Since this inequality holds independent of PX , it also holds with probability at least

1− δ over the split data P .

Step 3.

Continuing from (3.8) and combining the bias bound (3.9) and variance bound

(3.11) by a union bound, we have with probability at least 1− δ,

∥η̃(k)M − η∥∞ ≤ 4H

√
4

M
ln

1

δ
+ A

( 3M

CdN

(
k ∨

(
V log 2N

M
+

1

2
log

16M

log 1
δ

)))αH
d

+

√
Vl2Y
kL

log
2N

δ
,

which leads to the desired bound.
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3.B.3 Classification

All theoretical guarantees on classifiers in this paper are analogous to the results

for the standard k-NN classifier established in the seminal paper by Chaudhuri and

Dasgupta (2014).

Definitions

We first review some technical definitions introduced in (Chaudhuri and Das-

gupta, 2014). For any x ∈ X and any 0 ≤ p ≤ 1, define the probability radius of a ball

centered at x as

rp(x) = inf{r : µ(B(x, r)) ≥ p}.

One can show that µ(Bo(x, rp(x))) ≥ p, and rp(x) is the smallest radius for which this

holds.

The support of the distribution µ is defined as

supp(µ) := {x ∈ X : µ(B(x, r)) > 0,∀r > 0}.

In separable metric spaces, it can be shown that µ(supp(µ)) = 1; see (Cover and Hart,

1967) or (Chaudhuri and Dasgupta, 2014, Lemma 24).

We define for any measurable set A ⊂ X with µ(A) > 0,

η(A) := p(y = 1|A) = 1

µ(A)

∫

A

p(y = 1|x) dµ(x).

This is the conditional probability of Y being 1 given a point X chosen at random from

the distribution µ restricted to the set A.

Based on the definitions above, we now define the effective interiors of the two

classes, and the effective boundary. For p ∈ [0, 1] and ∆ > 0, we define the effective
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interiors for each class as

X+
p,∆ := supp(µ) ∩

{
x ∈ X : η(x) >

1

2

}
∩
{
x ∈ X : η(B(x, r)) ≥ 1

2
+ ∆,∀r ≤ rp(x)

}

and

X−
p,∆ := supp(µ) ∩

{
x ∈ X : η(x) <

1

2

}
∩
{
x ∈ X : η(B(x, r)) ≤ 1

2
−∆,∀r ≤ rp(x)

}
.

For a measurable set A ⊆ X , we define Ŷ (A;D) as the mean of Yi for points Xi ∈

A given data D = (X,Y). The quantity Ŷ (A;D) is not defined if there exists no sample

point Xi in A. We also define an average conditional distribution η(A) := 1
µ(A)

∫
A
η dµ

whenever µ(A) > 0.

Let g(x) := 1(η(x) ≥ 1/2) denote the Bayes classifier. Let ĝ(k)(x;D) denote the

k-NN classifier based on training data D = (X,Y). Note that we can equivalently write

ĝ(k)(x;D) = 1
(
Ŷ (Bk(x;D)) ≥

1

2

)
.

For the sake of simplicity, we assume that there is no distance tie in what follows, but it

can be handled by a similar argument in (Chaudhuri and Dasgupta, 2014).

A key technical lemma

The analysis of the standard k-NN classifier by Chaudhuri and Dasgupta (2014)

relies on their key lemma (Chaudhuri and Dasgupta, 2014, Lemma 7), which proves

a sufficient condition for the k-NN classifier to agree with the Bayes classifier. In this

section, we provide an analogous lemma for the (M,k)-NN classifier. The key idea is to

leverage the closeness of the (M,k)-NN classifier to a (M,L, k)-NN classifier for L ≤M

sufficiently large. We remark that the following lemma is the only place we use the

(M,L, k)-NN rule in the rest of our analysis.
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Lemma 3.B.5 (cf. (Chaudhuri and Dasgupta, 2014, Lemma 7)). Pick any xo ∈ X , any

p ∈ (0, 1), ∆ ∈ (0, 1/2], and τ ∈ (0, ∆
8
]. Let L := ⌈(1 − τ)2M⌉. For each m ∈ [M ], define

Bm := Bo(xo, rk+1(xo;Xm)). Then, we have

1(g̃(k)(xo;P) ̸= g(xo)) ≤ 1(xo ∈ ∂p,∆)

+ 1
(
max
j∈[L]

rk+1(xo;Xmj
) > rp(xo)

)

+ 1
(∣∣∣ 1
L

L∑

j=1

(Ŷ (Bmj
;Dmj

)− η(Bmj
))
∣∣∣ ≥ ∆

2

)
, (3.12)

where m1, . . . ,mL are the indices that correspond to the L-smallest values among the (k + 1)-

th-NN distances (rk+1(xo;Xm))
M
m=1.

Proof. Suppose xo /∈ ∂p,∆. Without loss of generality, consider xo ∈ X+
p,∆, whereupon

g(xo) = 1. By definition of the effective interior, η(B(xo, r)) ≥ 1
2
+∆ for all r ≤ rp(xo).

Now, suppose

max
j∈[L]

rk+1(xo;Xmj
) ≤ rp(xo).

Then, we have, for any j ∈ [L], that

η(Bmj
) = η(Bo(xo, rk+1(xo;Xmj

))) ≥ 1

2
+ ∆,

by Lemma 3.B.6 (stated below).

Further, if | 1
L

∑L
j=1(Ŷ (Bmj

;Dmj
)− η(Bmj

))| < ∆
2

, then

η̆
(k)
L (xo;P) =

1

L

L∑

j=1

Ŷ (Bmj
;Dmj

) ≥ 1

2
+

∆

2
,

where we recall that η̆(k)L (·;P) denotes the (M,L, k)-NN regressor based on the training

data splits P = {(Xm,Ym)}Mm=1.

Finally, since |η̃(k)(xo;P)−η̆(k)L (xo;P)| ≤ 2(1− L
M
) < 4τ ≤ ∆

2
, we have η̃(k)(xo;P) >
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1
2
, which concludes g̃(k)(xo;P) = 1 = g(xo).

Lemma 3.B.6 (Chaudhuri and Dasgupta, 2014, Lemma 26). Suppose that for some xo ∈

supp(µ) and ro > 0 and q > 0, we have [r ≤ ro ⇒ η(B(xo, r)) ≥ q]. Then, we also have

[r ≤ ro⇒ η(Bo(xo, r)) ≥ q].

A general upper bound on the misclassification error

We first present a generalization of the main result in (Chaudhuri and Das-

gupta, 2014), which is a general upper bound on the misclassification error rate. Theo-

rem 3.2.3(a) and (b) will almost readily follow as corollaries of this theorem.

Theorem 3.B.7 (cf. (Chaudhuri and Dasgupta, 2014, Theorem 5)). Let k ≥ 1 be fixed and

pick any δ ∈ (0, 1). Pick any integer M ≥ 214

15
log 2

δ
, set

∆ :=

√
212

15M
log

2

δ
∈
(
0,

1

2

]
.

Pick any integer n ≥ k + log 8
∆
+
√

2k log 8
∆
+ (log 8

∆
)2 and set

p :=
1

n

(
k + log

8

∆
+

√
2k log

8

∆
+ (log

8

∆
)2
)
∈ (0, 1].

Then, for a set of data splits P = {D1, . . . ,DM}, where every split Dm has n data points, with

probability at least 1− δ over P , we have

P(g̃(k)(X;P) ̸= g(X)|P) ≤ δ + µ(∂p,∆).

Proof. Given k ≥ 1, δ ∈ (0, 1), and ∆ ∈ (0, 1/2], we set τ = ∆
8

and define L = ⌈(1−τ)2M⌉

as stated in Lemma 3.B.2. Pick any xo ∈ X . Applying Lemma 3.B.5, we have

1(g̃(k)(xo;P) ̸= g(xo)) ≤ 1(xo ∈ ∂p,∆) + Ibad(xo;P),
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where we define the bad event indicator variable

Ibad(xo;P) ≜ 1
(
max
j∈[L]

rk+1(xo;Xmj
) > rp(xo)

)

+ 1
(∣∣∣ 1
L

L∑

j=1

(Ŷ (Bmj
;Dmj

)− η(Bmj
))
∣∣∣ ≥ ∆

2

)
, (3.13)

where m1, . . . ,mL are the indices for the L smallest distances among {rk+1(xo;Xm)}Mm=1.

For any fixed point xo ∈ X , if we take the expectation over the training data splits P ,

we have

E[Ibad(xo;P)] ≜ P
(
max
j∈[L]

rk+1(xo;Xmj
) > rp(xo)

)

+ P
(∣∣∣ 1
L

L∑

j=1

(Ŷ (Bmj
;Dmj

)− η(Bmj
))
∣∣∣ ≥ ∆

2

)
. (3.14)

The first term can be bounded by Lemma 3.B.2. For the second term, we need the

following lemma, whose proof is given at the end of this proof:

Lemma 3.B.8.

P
(∣∣∣ 1
L

L∑

j=1

(Ŷ (Bmj
;Dmj

)− η(Bmj
))
∣∣∣ ≥ ∆

2

)
≤ 2e−

∆2

2
L ≤ 2e−

∆2

8
M . (3.15)

By Lemmas 3.B.2 and 3.B.8, we have

E[Ibad(xo,P)] ≤ e−
(1−τ)τ2

2
M + 2e−

∆2

8
M .

Here, since ∆ =
√

212

15M
log 2

δ
≤ 1

2
, we have τ = ∆

8
≤ 1

16
, which implies that (1−τ)τ2M

2
≥

15∆2M
211

= 2 log 2
δ

and ∆2M
8

= 29

15
log 2

δ
≥ 2 log 2

δ
. Therefore, we can further upper bound
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the expectation as

E[Ibad(xo,P)] ≤ e−
(1−∆/8)∆2

128
M + 2e−

∆2

8
M ≤ δ2.

Note that the expectation is over the training data P . Taking expectation over the query

point Xo ∼ µ, we have E[Ibad(Xo,P)] ≤ δ2, which in turn implies

P(E[Ibad(Xo,P)|P ] ≥ δ) ≤ δ.

The desired conclusion follows by noting that

P(g̃
(k)
M (Xo;P) ̸= g(Xo)|P) ≤ µ(∂p,∆) + E[Ibad(Xo,P)|P ]

from Lemma 3.B.5.

Proof of Lemma 3.B.8. We note that this statement is a distributed version of (Chaudhuri

and Dasgupta, 2014, Lemma 9). To prove it, first observe that we can draw the training

data splits D1:M , Dm = {(Xmi, Ymi)}ni=1, where N =Mn, by the following steps.

1. Draw M points X(1)
1 , . . . , X

(M)
1 ∈ X independently at random, according to the

marginal distribution of the (k + 1)-th nearest neighbor of the fixed point xo with

respect to n independent sample points.

2. Sort the M points {X(1)
1 , . . . , X

(M)
1 } based on their distances to xo. Let X̃(1)

1 , . . . ,

X̃
(M)
1 denote the sorted points in the increasing order of the distances, where we

break ties at random. Let B̃j := Bo(xo, ρ(xo, X̃
(j)
1 )).

3(a). For each j ∈ [L], pick k points at random from the distribution µ restricted to B̃j .

3(b). For each j ∈ [L], pick n− k− 1 points at random from the distribution µ restricted

to X\B̃j .
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4. For each m ∈ [M ]\[L], repeat the same steps in 3a and 3b.

5. For each m ∈ [M ], randomly permute the n points obtained in this way.

6. For each m ∈ [M ] and for Xmi in the permuted order, draw a label Ymi from the

conditional distribution η(Xmi).

We now condition everything on Step 1 and Step 2, or equivalently, on X̃(1)
1 , . . . ,

X̃
(M)
1 . Recall that we denote by m1, . . . ,mL the indices that correspond to the L-

smallest values among (rk+1(xo;Xm))
M
m=1. Since the corresponding sample points are

X̃
(1)
1 , . . . , X̃

(L)
1 , we can write Bmj

= B̃j . Hence, in the desired inequality, Ŷ (Bmj
;Dmj

)

for each j ∈ [L] is the average of the Y -values which correspond to the X’s drawn from

Step 3(a). Since the corresponding Y -values have expectation E[Y |X ∈ B̃j] = η(B̃j) for

each j ∈ [L] and the total kL of Y -values are independent, we can apply Hoeffding’s

inequality and obtain

P
(∣∣∣ 1
L

L∑

j=1

(Ŷ (Bmj
;Dmj

)− η(Bmj
))
∣∣∣ ≥ ∆

2

∣∣∣X̃(1)
1 , . . . , X̃

(M)
1

)
≤ 2e−

∆2

2
L ≤ 2e−

∆2

8
M .

Taking expectations over X̃(1)
1 , . . . , X̃

(M)
1 , we prove the desired inequality.

Proof of Theorem 3.2.3

Proof of Theorem 3.2.3(a)

Recall that we use ∂η∆ := {x ∈ supp(µ) : |η(x)−1/2| ≤ ∆} to denote the decision

boundary with margin ∆ ≥ 0. Under the smoothness of the measure µ, the effective

decision boundary ∂p,∆ is a subset of the decision boundary with a certain margin as

stated below:

Lemma 3.B.9 (Chaudhuri and Dasgupta, 2014, Lemma 18). If η is (α,A)-smooth in

(X , ρ, µ), then for any p ∈ [0, 1] and ∆ ∈ (0, 1/2], we have ∂p,∆ ⊂ ∂η∆+Apα .
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Set ∆ =
√

212

15M
log 2

δ
. Under the margin condition, this lemma implies that

µ(∂p,∆) = O
(√ 1

M
log

1

δ
+
(M
N

log
M

log 1
δ

)α)
.

Applying the general upper bound in Theorem 3.B.7 concludes the proof.

Proof of Theorem 3.2.3(b) expected risk bound

This proof modifies that of (Chaudhuri and Dasgupta, 2014, Theorem 4) in

accordance with Lemma 3.B.5 instead of (Chaudhuri and Dasgupta, 2014, Lemma 7).

We pick and fix any τ ∈ (0, 1) for now, and will choose a specific choice at the end of the

analysis. Set L = ⌈(1− τ)2M⌉, p = M
N
(k+log 1

τ
+
√

2k log 1
τ
+ (log 1

τ
)2) as in Lemma 3.B.5

and Theorem 3.B.7, respectively, and define ∆o = Apα.

We first state and prove the following lemma.

Lemma 3.B.10 (cf. (Chaudhuri and Dasgupta, 2014, Lemma 20)). For any xo ∈ supp(µ)

with ∆(xo) ≥ ∆o + 8τ . Under the (α,A)-smoothness condition, we have

EP [R(xo; g̃
(k)
M )]−R∗(xo) ≤ e−

(1−τ)τ2

2
M + 4∆(xo)e

− (∆(xo)−∆o)
2

8
M .

Proof of Lemma 3.B.10. Without loss of generality, assume that η(xo) > 1
2
. By the smooth-

ness condition, for any 0 ≤ r ≤ rp(xo), we have

η(B(xo, r)) ≥ η(xo)− Apα = η(xo)−∆o =
1

2
+ (∆(xo)−∆o),

which implies xo ∈ X+
p,∆(xo)−∆o

and thus xo /∈ ∂p,∆(xo)−∆o .

Recall that for any classifier ĝ, we can write R(xo; ĝ)−R∗(xo) = 2∆(xo)1(ĝ(xo) ̸=

g(xo)), where R∗(xo) is the Bayes risk. Since we assume that τ ≤ ∆(xo)−∆o

8
, we can apply
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Lemma 3.B.2 with ∆← ∆(xo)−∆o and have

R(xo, g̃
(k)
M )−R∗(xo) = 2∆(xo)1(g̃

(k)
M (xo) ̸= g(xo)) ≤ 2∆(xo)Ibad(xo;P), (3.16)

where we define the bad-event indicator variable as

Ibad(xo;P) ≜ 1
(
max
j∈[L]

rk+1(xo;Xmj
) > rp(xo)

)
+

1
(∣∣∣ 1
L

L∑

j=1

(Ŷ (Bmj
;Dmj

)− η(Bmj
))
∣∣∣ ≥ ∆(xo)−∆o

2

)
,

as in (3.13) in the proof of Theorem 3.B.7 with ∆← ∆(xo)−∆o. By taking the expecta-

tions over the random splits P in (3.16), we have

EPR(xo; g̃
(k)
M )−R∗(xo) ≤ 2∆(xo)E[Ibad(xo;P)].

Now, by applying Lemma 3.B.2 and Lemma 3.B.8 as in the proof of Theorem 3.B.7, we

can bound the right hand side as

EPR(xo; g̃
(k)
M )−R∗(xo) ≤ 2∆(xo)(e

− (1−τ)τ2

2
M + 2e−

(∆(xo)−∆o)
2

8
M)

≤ e−
(1−τ)τ2

2
M + 4∆(xo)e

− (∆(xo)−∆o)
2

8
M ,

where the last inequality follows from the assumption that ∆(xo) ≤ 1/2.

We then prove the following statement under the margin condition.

Lemma 3.B.11 (cf. (Chaudhuri and Dasgupta, 2014, Lemma 21)). Under the (α,A)-

smoothness and the (β, C)-margin condition, we have

EPR(g̃
(k)
M )−R∗ ≤ e−

(1−τ)τ2

2
M + 6C

(
max

{
2A
(8M
N

log
1

τ

)α
,

√
β + 2

8M

}
+ 8τ

)β+1

. (3.17)
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Proof of Lemma 3.B.11. For each integer i ≥ 1, define ∆i = 2i∆o + 8τ . Fix any io ≥ 1. To

bound the expected risk, we apply Lemma 3.B.10 for any xo with ∆(xo) > ∆io and use

EPR(xo; g̃
(k)
M ) − R∗(xo) ≤ 2∆io for all remaining xo. Taking expectations over Xo, we

have

EPR(g̃
(k)
M )−R∗

≤ EXo [2∆io1(∆(Xo) ≤ ∆io) + e−
(1−τ)τ2

2
M + 4∆(Xo)e

− (∆(Xo)−∆o)
2

8
M1(∆(Xo) > ∆io)]

≤ 2C∆β+1
io

+ e−
(1−τ)τ2

2
M + 4EXo [∆(Xo)e

− (∆(Xo)−∆o)
2

8
M1(∆(Xo) > ∆io)]. (3.18)

Here, we invoke the (β, C)-margin condition in the second inequality to bound the first

term.

It only remains to bound the last term. First, by another application of the

(β, C)-margin condition, we have

EXo [∆(X)e−
(∆(X)−∆o)

2

8
M1(∆i < ∆(X) ≤ ∆i+1)] ≤ EXo [∆i+1e

− (∆i−∆o)
2

8
M1(∆(X) ≤ ∆i+1)]

≤ C∆β+1
i+1 e

− (∆i−∆o)
2

8
M . (3.19)

Now, we set

io = max
(
1,
⌈
log2

√
32(β + 2)

M∆2
o

⌉)
,

so that the terms (3.19) are upper-bounded by a geometric series with ratio 1/2. Indeed,

for i ≥ io, we have

∆β+1
i+1 exp(−M

8
(∆i −∆o)

2)

∆β+1
i exp(−M

8
(∆i−1 −∆o)2)

=
(2i+1∆o + 8τ

2i∆o + 8τ

)β+1

exp
(
−M

8
{(∆i −∆o)

2 − (∆i−1 −∆o)
2
)

≤ 2β+1 exp
(
−M

8
{((2i − 1)∆o + 8τ)2 − ((2i−1 − 1)∆o + 8τ)2

)
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= 2β+1 exp
(
−M

8
{∆2

o((2
i − 1)2 − (2i−1 − 1)2) + 16∆oτ(2

i − 2i−1)}
)

≤ 2β+1 exp(−M∆2
o2

2i−5)

≤ 2β+1 exp(−(β + 2)) ≤ 1

2
.

Therefore, we can bound the last term in (3.18) as

EXo [∆(Xo)e
− (∆(Xo)−∆o)

2

8
M1(∆(Xo) > ∆io)]

=
∞∑

i=io

EXo [∆(Xo)e
− (∆(Xo)−∆o)

2

8
M1(∆i < ∆(Xo) ≤ ∆i+1)]

≤ C
∞∑

i=io

∆β+1
i+1 e

− (∆i−∆o)
2

8
M ≤ C∆β+1

io
.

Plugging this back into (3.18), we have EPR(g̃
(k)
M ) − R∗ ≤ e−

(1−τ)τ2

2
M + 6C∆β+1

io
. The

desired inequality follows by substituting ∆io = 2io∆o + 8τ .

Now, back to the proof of Theorem 3.2.3(b), setting τ =
√

(logM)1.01

M
and applying

Lemma 3.B.11 lead to

EPR(g̃
(k)
M )−R∗ = O

({(M
N

log
M

(logM)1.01

)α
+

√
(logM)1.01

M

}β+1)
,

since the first term e−
(1−τ)τ2

2
M in (3.17) decays faster than any polynomial rate. Finally,

setting M ∝ N2α/(2α+1) concludes the proof.

Proof of Theorem 3.2.3(b) CIS bound

Since the proof is an easy modification of the previous proof of the expected risk

bound, we only outline the critical steps that differ from the proof of Theorem 3.2.3(b)

regret bound. Observe that the classification instability is upper-bounded as

CISN(ĝ) ≤ 2ED[PX(ĝ(X;D) ̸= g(X))] (3.20)
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for any classification procedure ĝ(·;D). Hence, following the exact same line of the

proof of Lemma 3.B.10, we have

Lemma 3.B.12. For any xo ∈ supp(µ) with ∆(xo) ≥ ∆o + 8τ . Under the (α,A)-smoothness

condition, we have

ED[1(g̃
(k)
M (xo;D) ̸= g(xo))] ≤ e−

(1−τ)τ2

2
M + 4e−

(∆(xo)−∆o)
2

8
M .

We then follow the same line of the proof of Lemma 3.B.11. For each integer

i ≥ 1, define ∆i = 2i∆o + 8τ . Fix any io ≥ 1. To bound the expected probability of the

mismatch ED[PX(g̃
(k)
M (Xo;D) ̸= g(Xo))], we will apply Lemma 3.B.12 for any xo with

∆(xo) > ∆io and use a trivial bound ED[1(g̃
(k)
M (xo;D) ̸= g(xo))] ≤ 1 for all remaining xo.

Taking expectations over Xo and invoking the (β, C)-margin condition, we have

ED[PXo(g̃
(k)
M (Xo;D) ̸= g(Xo))]

≤ EXo [1(∆(Xo) ≤ ∆io) + e−
(1−τ)τ2

2
M + 4e−

(∆(Xo)−∆o)
2

8
M1(∆(Xo) > ∆io)]

≤ e−
(1−τ)τ2

2
M + C∆β

io
+ 4EXo [e

− (∆(Xo)−∆o)
2

8
M1(∆(Xo) > ∆io)]. (3.21)

By the same logic in the proof of Lemma 3.B.11, the last term can be bounded by C∆β
io

with the same io. Plugging this back into (3.21), we have

ED[PXo(g̃
(k)
M (Xo;D) ̸= g(Xo))] ≤ e−

(1−τ)τ2

2
M + 5C∆β

io
.

By substituting ∆io = 2io∆o + 8τ , we have

CISN(g̃
(k)
M ) ≤ 2ED[PX(g̃

(k)
M (Xo;D) ̸= g(Xo))]

≤ 2e−
(1−τ)τ2

2
M + 10C

(
max

{
2A
(8M
N

log
1

τ

)α
,

√
β + 2

8M

}
+ 8τ

)β
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and setting τ =
√

(logM)1.01

M
concludes the proof.

Asymptotic Bayes consistency

As alluded to in the main text, we can establish the asymptotic Bayes consistency

of the proposed rules under the Lebesgue differentiation condition on the metric measure

space (X , ρ, µ), i.e., for any bounded measurable function f ,

lim
r→0

1

µ(Bo(x, r))

∫

Bo(x,r)

f dµ = f(x)

for almost all (µ-a.e.) x ∈ X . For example, any metric space with doubling measure

satisfies this condition as a consequence of Vitali covering theorem; see, e.g., (Heinonen,

2012, Theorem 1.8).

Theorem 3.B.13 (cf. (Chaudhuri and Dasgupta, 2014, Theorem 1)). Suppose that a metric

measure space (X , ρ, µ) satisfies the Lebesgue differentiation condition. Let k ≥ 1 be fixed.

(a) If M →∞ and M
N
→ 0 as N →∞, for all ϵ > 0, lim

N→∞
P(R(g̃

(k)
M )−R∗ > ϵ) = 0.

(b) If M
logN

→∞ as N →∞, then R(g̃(k)M )→ R∗ almost surely.

Proof of Theorem 3.B.13. Observe that we haveR(x; ĝ)−R∗(x) = |1−2η(x)|1(ĝ(x) ̸= g(x))

for any binary classifier ĝ, which implies

R(g̃
(k)
M )−R∗ ≤ P(η(X) ̸= 1/2, g̃

(k)
M (X) ̸= g(X)).

Let ∂o := {x ∈ X : η(x) = 1/2} denote the decision boundary. Then, we have the

following corollary of Theorem 3.B.7.

Corollary 3.B.14 (cf. (Chaudhuri and Dasgupta, 2014, Corollary 13)). Let k ≥ 1 be fixed

and let (δN) and (∆N) be any sequences of positive reals. For each N , set MN = 212

15∆2
N
log 2

δN
.
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Then,

P{R(ĝ(k)MN
)−R∗ > δN + µ(∂pN ,∆N

\ ∂o)} ≤ δN .

Note that the Lebesgue differentiation condition implies that µ(∂pN ,∆N
\ ∂o)→ 0:

Lemma 3.B.15 (Chaudhuri and Dasgupta, 2014, Lemma 15). Assume that (X , ρ, µ) satisfies

the Lebesgue differentiation condition. If pN ,∆N ↓ 0, then µ(∂pN ,∆N
\ ∂o) ↓ 0 as N →∞.

We are now ready to prove the consistency results.

Proof of Theorem 3.B.13(a)

Define δN = e−
√
MN and ∆N =

√
212

15MN
log 2

δN
. Then, as N → ∞, pN → 0 and

∆N → 0 by assumption.

Pick any ϵ > 0. Choose a positive integerN ′ such that δN ≤ ϵ
2

and µ(∂pN ,∆N
\ ∂o) ≤

ϵ
2

for all N ≥ N ′. Then by Corollary 3.B.14, for N ≥ N ′,

P(R(ĝ
(k)
MN

)−R∗ > ϵ) ≤ δN .

Taking N →∞ concludes the proof.

Proof of Theorem 3.B.13(b)

We note that this proof is almost identical to that of (Chaudhuri and Dasgupta,

2014, Lemma 17). Choose δN = 1/N2 and for each N , set pN and ∆N as in Theorem 3.B.7.

It is easy to see pN ,∆N → 0 as N →∞, provided that M/ logN →∞.

For any ϵ > 0, there exists N ′ sufficiently large such that
∑

N≥N ′ δN ≤ ϵ. Letting

ω denote the infinite training data, by Corollary 3.B.14, we have

P{ω |∃N ≥ N ′ : R(ĝ
(k)
MN

(ω)−R∗ > δN + µ(∂pN ,∆N
\ ∂o)} ≤

∑

N≥N ′

δN ≤ ϵ.
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Therefore, with probability at least 1− ϵ over ω, we have

ĝ
(k)
MN

(ω)−R∗ > δN + µ(∂pN ,∆N
\ ∂o)

for all N ≥ N ′. Since µ(∂pN ,∆N
\ ∂o)→ 0 as N →∞ by Lemma 3.B.15, we conclude the

proof.

3.C Experiment details

Table 3.C.1. Summary of dimensions of the benchmark datasets.

Dataset # training # dim. # class.

GISETTE (Guyon et al., 2004) 7k 5k 2
HTRU2 (Lyon et al., 2016) 18k 8 2
Credit (Dua and Graff, 2019) 30k 23 2
MiniBooNE (Dua and Graff, 2019) 130k 50 2
SUSY (Baldi et al., 2014) 5000k 18 2
BNG(letter,1000,1) (Vanschoren et al., 2013) 1000k 17 26

YearPredictionMSD (Dua and Graff, 2019) 463k 90 1
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Figure 3.C.1. Validation error profiles from 10-fold cross validation. Here, as expected,
the optimal M chosen for (M, 1)-NN rules is in the same order of the optimal k for the
standard k-NN rules.
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Chapter 4

Density Functional Estimation with
Fixed-k-Nearest Neighbors

4.1 Introduction

In this chapter, we study the problem of estimating an entropy functional of the

form

Tf (p) := EX∼p[f(p(X))] =

∫
f(p(x))p(x) dx,

where f : R+ → R is a given function and p is a probability density over Rd. Table 4.1.1

lists examples of f and the corresponding functional Tf . The goal is to estimate Tf (p)

based on independent and identically distributed (i.i.d.) samples X1:m = (X1, . . . ,Xm)

from p by forming an estimator T̂m
f (X1:m) that converges to Tf (p) in L2 as the sample

size m grows to infinity, that is,

lim
m→∞

E
[(
T̂m
f (X1:m)− Tf (p)

)2]
= 0.

More generally, let f : R+ × R+ → R and consider a divergence functional

Tf (p, q) := EX∼p[f(p(X), q(X))] =

∫
f(p(x), q(x))p(x) dx

of a pair of probability densities p and q over Rd. Table 4.1.2 lists examples of f and
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the corresponding Tf . In this case, the main problem is to construct an estimator

T̂m,n
f (X1:m,Y1:n) based on i.i.d. samples X1:m from p and Y1:n from q, independent of

each other, such that

lim
m,n→∞

E
[(
T̂m,n
f (X1:m,Y1:n)− Tf (p, q)

)2]
= 0.

Consistent estimation of such quantities, such as Shannon’s differential entropy

(f = ln(1/p)), (exponentiated) Rényi α-entropies (f = pα−1), Kullback–Leibler (KL)

divergence (f = ln(p/q)), Hellinger distance (f =
√
q/p), (exponentiated) Rényi α-

divergences (f = pα−1q−α), and Jensen–Shannon divergence (see Table 4.1.2), is a prob-

lem of considerable practical interest, having wide-ranging applications in parameter

estimation (Weidemann and Stear, 1969; Wolsztynski et al., 2005), goodness-of-fit test-

ing (Crzcgorzewski and Wirczorkowski, 1999; Girardin and Lequesne, 2017; Goria et al.,

2005), quantization (Marano et al., 2007), independent component analysis (Boukouvalas

et al., 2016; Kraskov et al., 2004; Learned-Miller and Fisher III, 2003), texture classifi-

cation (Hero et al., 2002; Susan and Hanmandlu, 2013), design of experiments (Lewi

et al., 2007; Liepe et al., 2013), pattern recognition (Hero and Michel, 1999; Lajevardi

and Hussain, 2009; Neemuchwala et al., 2005; Shan et al., 2005), clustering and feature

selection (Aghagolzadeh et al., 2007; Lajevardi and Hussain, 2009; Peng et al., 2005;

Sotoca and Pla, 2010), and statistical inference (Giet and Lubrano, 2008). In addition,

divergence estimates can be used as measures of distance between two distributions

and thus can generalize distance-based algorithms for metric spaces to the space of

probability distributions; see, for example, (Henderson et al., 2015; Oliva et al., 2013)

and the references therein.

One of the most basic and prominent nonparametric approaches is the k-nearest

neighbor (k-NN) based method, which is appealing since its hyperparameter tuning

is relatively simple and is computationally efficient, especially when k is held fixed,
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independent of the sample sizes m and n. In this paper, we propose a new, universal

design principle of a L2-consistent k-NN based estimator for a wide class of the density

functionals Tf (p) and Tf (p, q) based on the inverse Laplace transform, which generalizes

many existing estimators which have been developed and analyzed separately. Based

on the proposed mathematical framework, we establish the consistency and the rate of

convergence in MSE of the density functional estimator under fairly general regularity

conditions, by extending and simplifying the existing analyses of the KL estimator by

Bulinski and Dimitrov (2019a,b) and Gao et al. (2018).

4.1.1 The Proposed Single-Density Functional Estimators

Suppose that a metric ρ : Rd × Rd → R+ is associated with the d-dimensional

space Rd. Given samples X1:m and a point x ∈ Rd, we denote the k-NN distance of x

from the samples by rkm(x) := rk(x|X1:m) for k ≤ m. Here, rk(x|A) denotes the k-NN

distance of x from a set A ⊆ Rd, where the distance tie is broken arbitrarily. The key

statistic in this paper is a normalized volume

Ukm(x) := Uk(x|X1:m) := mλ(B(x, rk(x|X1:m))) (4.1)

of the k-NN ball centered at x with respect to X1:m. Here and henceforth, λ denotes the

Lebesgue measure over Rd, B(x, r) := {y ∈ Rd : ρ(x,y) < r} denotes the open ball of

radius r > 0 centered at x ∈ Rd, and B(x, r) denotes the closure of B(x, r). When the

k-NN distance rk is evaluated at one of the samples x = Xi (1 ≤ i ≤ m), we define it

as rk(Xi|X1:i−1Xi+1:m) to exclude the trivial zero distance. Consequently, we use the

convention

Ukm(Xi) := (m− 1)λ(B(x, rk(x|X1:i−1Xi+1:m))).
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Note that under this convention, we have

Ukm(Xm) = Uk,m−1(Xm). (4.2)

Let G(α, β) denote the Gamma distribution with shape parameter α > 0 and rate

parameter β > 0, whose density is

βα

Γ(α)
uα−1e−βu, u ≥ 0.

Here Γ(α) :=
∫∞
0
xα−1e−x dx denotes the Gamma function. The following fact on the

asymptotic distribution of Ukm(x) is well known (Goria et al., 2005; Leonenko et al.,

2008; Singh et al., 2003). The proof is presented in Appendix 4.B.2 for completeness.

Proposition 4.1.1. Suppose that k ≥ 1 is a fixed integer, and let X1:m be i.i.d. samples drawn

from p on Rd. Then, for almost every x, Ukm(x) converges to a G(k, p(x)) random variable in

distribution as m goes to infinity.

This general convergence result is the cornerstone of the design of our estimator.

To be more specific, for functionals of one density p, consider an estimator of the form

T̂
(k)
f (X1:m) =

1

m

m∑

i=1

ϕk(Ukm(Xi)) (4.3)

that depends on the samples only through the k-NN distance evaluated at each of them.

As a necessary condition for the L2-consistency of this estimator, the function ϕk should

be chosen such that

lim
m→∞

E[T̂ (k)
f ] = Tf (p),

that is, the estimator is asymptotically unbiased. On the one hand, since X1:m are

identically distributed, we have, from (4.2) and (4.3), that E[T̂ (k)
f ] = E[ϕk(Uk,m−1(Xm))],

and thus the desired asymptotic unbiasedness for a fixed k can be expressed equivalently
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as

lim
m→∞

E[ϕk(Uk,m−1(Xm))] = Tf (p) =

∫
p(x)f(p(x)) dx. (4.4)

On the other hand, from Proposition 4.1.1, we expect that under certain regularity

conditions,

lim
m→∞

E[ϕk(Uk,m−1(Xm))] = E[ϕk(Uk∞(X))] (4.5)

=

∫
p(x)E[ϕk(Uk∞(x))] dx,

where Uk∞(x) is a G(k, p(x)) random variable, independent of X ∼ p for every x. We

choose ϕk(u) so as to equate the integrands in (4.4) and (4.5), i.e., for every p > 0, if

U ∼ G(k, p), then

f(p) = E[ϕk(U)]

=

∫ ∞

0

ϕk(u)
pk

Γ(k)
uk−1e−up du

=
pk

Γ(k)
L{uk−1ϕk(u)}(p), (4.6)

where L{·} represents the one-sided Laplace transform (see, e.g., (Korn and Korn, 2000,

Ch. 29)), defined as

L{g(u)}(p) :=
∫ ∞

0

g(ũ)e−pũ dũ.

Rearranging the terms in (4.6), we obtain the key equation of this paper via inverse

Laplace transform

ϕk(u) =
Γ(k)

uk−1
L−1

{f(p)
pk

}
(u), (4.7)

which we refer to as the estimator function ϕk for f with parameter k. In general, inverse
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Laplace transform L−1{·}(·) can be obtained by the Bromwich integral, which is the

contour integral

L−1{f(p)}(u) = 1

2πi
lim
T→∞

∫ γ+iT

γ−iT

epuf(p) dp,

where γ is chosen so that all singularities of f(p) lie to the left of the vertical line

Re(p) = γ in the complex plane and that f(p) is bounded on the line (see, e.g., (Cohen,

2007, Ch. 2)). For most cases of our interest (see Tables 4.1.1 and 4.1.2), however,

inverse Laplace transforms can be computed using known transforms of elementary

functions (Korn and Korn, 2000), along with several properties of Laplace transform,

such as linearity, time-scaling, and convolution. The reader is referred to Table 4.E.1 in

Appendix 4.E for a list of elementary Laplace transforms. Note, for example, that by the

linearity of the inverse Laplace transform, if ϕk is the estimator function for f , then the

estimator function for af + b is aϕk + b for any a, b ∈ R. Concrete examples of estimator

functions for different choices of f are presented in Table 4.1.1. See Appendix 4.E for

detailed derivation of these examples.

The main contributions of this paper, for single-density functionals, are as follows:

By establishing the asymptotic unbiasedness condition in (4.4) and (4.5) of the proposed

estimator (4.3), the necessity of which was first observed in the Ph.D. thesis of one of the

authors (Noh, 2011, Ch. 5), and by establishing that the variance of the estimator also

vanishes asymptotically, we show that the proposed estimator is L2-consistent under

mild regularity conditions on densities. The general statement (Corollary 4.3.8) capture

the hardness of estimating a given functional based on k-NN statistics as a polynomial

tail behavior of its corresponding inverse Laplace transform. For smooth, bounded

densities, we also establish the polynomial convergence rate in mean-squared error

(MSE) by carefully bounding nonasymptotic error terms. Informally, under certain
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regularity conditions, we establish that

E[(T̂ (k)
f − Tf (p))2] = Õ(m−λ(σp,a,k)) +O(m−1/2),

where σp is the order of smoothness of the underlying distribution p, a quantifies

how much the functional Tf is affected by high densities (see (4.21)), and λ(σ, a, k)

is the bias rate exponent defined in (4.25); see Section 4.3.2 and Corollary 4.3.20 for

details. For example, when the densities are sufficiently smooth, i.e., σp ≥ 1, the rate

exponent becomes λ ≈ 1/d for k sufficiently large, implying the approximate MSE rate

of Õ(m−1/max{d,2})).

4.1.2 The Proposed Double-Density Functional Estimators

For functionals of two densities, we naturally extend the same idea to the Laplace

transform in two dimensional spaces. For g : R2
+ → R, we use (u, v) and (p, q) to denote

“time domain” and “frequency domain” variables, respectively, and define

L{g(u, v)}(p, q) :=
∫ ∞

0

∫ ∞

0

g(ũ, ṽ)e−pũe−qṽ dũ dṽ.

Note we keep dummy variables such as u and v in L{g(u, v)}(p, q) explicit, so as to

avoid any confusion on which function is being transformed. We define the estimator

function ϕkl for f with parameters (k, l), computed through the two-dimensional inverse

Laplace transform, as

ϕkl(u, v) =
Γ(k)Γ(l)

uk−1vl−1
L−1

{f(p, q)
pkql

}
(u, v). (4.8)

When Tf (p, q) is in the form of divergence, i.e., f(p, q) is a function of p/q, the corre-

sponding estimator function ϕkl(u, v) is also a function of u/v; see Proposition 4.E.1 in

Appendix 4.E. Concrete examples of estimator functions for different choices of f are
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presented in Table 4.1.2. See Appendix 4.E for detailed derivations of these examples.

Given two sets of samples X1:m from p and Y1:n from q, we further define

Vln(x) := Vl(x|Y1:n) := nλ(B(x, rl(x|Y1:n))).

We then propose a (k, l)-NN estimator of the form

T̂f (X1:m,Y1:n) =
1

m

m∑

i=1

ϕkl(Ukm(Xi), Vln(Xi)). (4.9)

As in the single-density case, we establish the L2-consistency and MSE convergence

rate of our estimator (4.9) under respective regularity conditions.

Throughout the paper, we assume the Euclidean distance, i.e., ρ(x,y) = ∥x− y∥,

but the results will continue to hold for the p-norm (p ≥ 1) with minor modifications;

see Section 4.7 for related remarks.

Notation. We use ϱd(v) := (v/υd)
1/d to denote the radius of a d-dimensional ball

of a volume v and υd(r) := ϱ−1
d (r) = λ(B(0, r)) to denote the volume of ball of radius r.

We further use υd := υd(1) = 2dΓ(1+ 1
2
)dΓ(1+ d

2
)−1 to denote the volume of the unit ball

B(0, 1). We denote the density of a random variable U as ρU(u). We use the calligraphic

letters P and Q to denote the probability measures corresponding to the density p and q,

respectively, and denote the support of a density p as

supp(p) := {x ∈ Rd : P(B(x, r)) > 0, ∀r > 0}.

We use P≪ Q to denote the absolute continuity of P with respect to Q. For nonnegative

functions A(x) and B(x) of x ∈ X , we write A(x) ≲α B(x) if there exists C(α) > 0,

depending only on some parameter α, such that A(x) ≤ C(α)B(x) for all x ∈ X . We

use the standard Bachmann–Landau notation O and Θ (see, e.g., (Cormen et al., 2009))

throughout the paper, and write f(n) = Õ(g(n)) to represent the polylogarithmic order
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f(n) = O(g(n)(ln g(n))k) for some k ∈ R.We use the shorthand notation a∧b = min{a, b}

and a ∨ b = max{a, b}. Finally, 1A stands for the indicator function of a set A.

Organization

The rest of the paper is organized as follows. Section 4.2 discusses the relevant

literature and positions our contributions in that context. We analyze the proposed

estimator for functionals of one density (cf. (4.3) and (4.7)) in Section 4.3 and of two

densities (cf. (4.9) and (4.8)) in Section 4.4. We discuss the convergence rate of the

estimators with adaptive choices of k and l in Section 4.5. We present in Section 4.6

numerical results to demonstrate the proposed estimator for a few synthetic examples.

Section 4.7 concludes the paper.

4.2 Related Work

One of the most straightforward estimators of the density functional Tf (p) =

EX∼p[f(p(X))] is the “plug-in” estimator that first forms a density estimate x 7→ p̂(x)

from the samples X1:m, such as the standard k-NN density estimate

p̂km(x) = p̂(x) =
k/m

λ(B(x, rkm(x)))
, (4.10)

then plugs it in as

T̃f (p̂) =
1

m

m∑

i=1

f(p̂(Xi)). (4.11)

Building on the consistency of the k-NN density estimate p̂km when k increases sub-

linearly with m (Biau and Devroye, 2015; Loftsgaarden and Quesenberry, 1965), one

can establish the consistency and finite-sample analysis of the plug-in estimator when

k → ∞ (Moon and Hero, 2014a,b; Sricharan et al., 2012, 2013). For estimating the

double-density functional Tf (p, q) = EX∼p[f(p(X), q(X))], Berrett and Samworth (2019)

159



recently proposed a weighted version of the plug-in (k, l)-NN estimators of the form

T̃f (p̂, q̂) =
1

m

m∑

i=1

f(p̂(Xi), q̂(Xi)), (4.12)

with the k-NN density estimate p̂km and the l-NN density estimate q̂kn based on the

samples X1:m from p and Y1:n from q, respectively. They proved its efficiency by estab-

lishing a tight local asymptotic minimax lower bound and established a corresponding

central limit theorem, given that k and l of the weighted-averaged plug-in estimators

grow to infinity.

For a fixed k, however, an appropriate “bias correction” is necessary for the

plug-in estimator in (4.11) to be asymptotically unbiased, since the fixed-k-NN density

estimator in (4.10) is not consistent for a finite k. A fixed-k plug-in estimator with

bias correction was first studied by Kozachenko and Leonenko (1987), who applied

1-NN distances to estimate differential entropies of densities on Rd based on an idea of

Dobrushin (1958), and established the L2-consistency of their estimator. Subsequently,

Singh et al. (2003) and Goria et al. (2005) generalized the 1-NN Kozachenko–Leonenko

estimator to k ≥ 1 as

T̂
(k)
KL (X1:m) = T̃f (p̂km) + ln k −Ψ(k) (4.13)

=
1

m

m∑

i=1

ln
1

p̂km(Xi)
+ ln k −Ψ(k),

where Ψ(x) := Γ′(x)/Γ(x) denotes the digamma function (Korn and Korn, 2000). As the

canonical fixed-k density functional estimator, the Kozachenko–Leonenko estimator

has been investigated extensively in the literature. Beyond the L2-consistency, Tsybakov

and van der Meulen (1996) first established
√
m-consistency, i.e., the L2-convergence

rate of O(m−1), of a truncated version of the 1-NN Kozachenko–Leonenko estimator

in R, which was extended by Gao et al. (2018) to k ≥ 1 and d ≥ 1. Some recent
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developments include a central limit theorem (Delattre and Fournier, 2017), results on

large-k behavior (Berrett et al., 2019), and minimax optimality (Han et al., 2020; Jiao

et al., 2018).

Along the same line, L2-consistent fixed-k or fixed-(k, l) plug-in estimators

with proper additive or multiplicative bias correction were proposed1 for KL diver-

gence (Wang et al. (2009)), Rényi entropies (Leonenko et al. (2008)), Rényi diver-

gences (Póczos and Schneider (2011)), and several other divergences of a specific

polynomial form (Póczos et al. (2012)). These plug-in estimators can be expressed

in general as

T̃ aff
f (p̂) = akT̃f (p̂) + bk, (4.14)

or

T̃ aff
f (p̂, q̂) = aklT̃f (p̂, q̂) + bkl, (4.15)

where p̂ is the fixed-k-NN density estimator from X1:m in (4.10), q̂ is the fixed-l-NN

density estimate similarly obtained from Y1:n, and (ak, bk) and (akl, bkl) determine

functional-specific bias correction, respectively. Many density functionals beyond the

special examples mentioned earlier, however, do not allow such affine bias correction.

For example, a plug-in estimator for the logarithmic α-entropy in Table 4.1.1 cannot be

made unbiased, even asymptotically, by any affine bias correction.

A more general approach to correcting bias of the fixed-k plug-in estimator was

1As pointed out in (Pál et al., 2010), there are slight errors in the original analyses in (Goria et al., 2005;
Kozachenko and Leonenko, 1987; Leonenko et al., 2008; Wang et al., 2009) when invoking asymptotic
theory to establish L2-consistency. Correct proofs were given later in (Bulinski and Dimitrov, 2019a,b;
Leonenko and Pronzato, 2010).
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proposed by Singh and Póczos (2016) as

T̃b◦f (p̂) =
1

m

m∑

i=1

bkm(f(p̂km(Xi))), (4.16)

which obviously subsumes affine bias correction. This estimator was shown to be

L2-consistent for a fixed k with definite convergence rate if there exists a bias-correcting

function bkm that satisfies

E[bkm(f(p̂km(x)))] = E[f(pkm(x))] (4.17)

for every m and any underlying density p, and for P-a.e. x, where

pkm(x) =
P(B(x, rkm(x)))

λ(B(x, rkm(x)))

is the average density over the k-NN ball B(x, rkm(x)). Despite the general form of this

estimator, however, the existence of bkm satisfying the stringent condition of equality in

(4.17) for every m could be established only for differential entropy (and only for KL

divergence in case of functionals of two densities).

In contrast to the existing literature, our estimator

T̂
(k)
f (X1:m) =

1

m

m∑

i=1

ϕk(Ukm(Xi)) (4.18)

=
1

m

m∑

i=1

ϕk

( k

p̂km(Xi)

)

bypasses the whole bias correction issue of the plug-in approach by specifying the esti-

mator function ϕk directly via the inverse Laplace transform (4.7). Here, we identified

that Ukm(x) = k/p̂km(x) by the respective definitions in (4.1) and (4.10). Our approach

naturally unifies all existing estimators of the form (4.14) or (4.15), and finds new estima-

162



tors for logarithmic entropies and divergences that cannot be obtained even in the most

general bias-corrected form (4.16) of the traditional plug-in estimator (4.11). For exam-

ple, our estimator for the logarithmic α-entropy (f(p) = pα−1 ln(1/p)) is characterized

by the estimator function

ϕk(u) = ϕk

(k
p

)
(4.19)

=
Γ(k)

Γ(k − α + 1)
k−α+1pα−1

(
ln
k

p
−Ψ(k − α + 1)

)
,

which cannot be expressed as a function bkm(f(p)) for some bkm.

We comment on how analysis techniques of the proposed estimators are related

to those in the literature. Through the design of our estimator functions (4.7) and (4.8)

via inverse Laplace transform, we can naturally extend and simplify existing analyses

for differential entropy and KL divergence by Bulinski and Dimitrov (2019a,b), and

establish the asymptotic unbiasedness of our estimators (4.3) and (4.9) for a general

functional. By adapting the nonasymptotic analysis for differential entropy in Gao et al.

(2018), we can also establish the bias convergence rate of the estimator for a general

functional, but without truncation. For variance analysis, we deviate from the aforemen-

tioned work (Bulinski and Dimitrov, 2019a,b; Gao et al., 2018) for simplicity and deploy

a technique for the Euclidean space used by Singh and Póczos (2016); see also (Biau and

Devroye, 2015, Ch. 7). Note, however, that the established variance results of our esti-

mator continue to hold under the p-norm; see Remark 4.3.12. Our consistency analysis

(unbiasedness and vanishing variance) strengthens and simplifies many existing ones

including those for Rényi entropies (Leonenko et al., 2008), Rényi divergences (Póczos

and Schneider, 2011), and divergences of polynomial form (Póczos et al., 2012). The

convergence rates for the functionals in Tables 4.1.1 and 4.1.2 are established in this

paper for the first time, except the Kozachenko–Leonenko estimator (Gao et al., 2018;

Jiao et al., 2018; Singh and Póczos, 2016; Tsybakov and van der Meulen, 1996) and the
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KL divergence estimator (Singh and Póczos, 2016).

In a different direction of investigation, kernel density estimator (KDE)-based

approaches have been widely studied in the literature for estimation of smooth den-

sity functionals, which also include many of the examples presented in Sections IV

and VI as special cases. Birge and Massart (1995) established a minimax optimal rate

O(m− 8σ
d+4σ +m−1) on convergence rates in MSE of estimators of certain integral func-

tionals involving the density and its derivatives under Hölder smoothness of order σ

(Definition 4.3.14) on the density and demonstrated that the parametric rate O(1/m) is

achievable if the density is sufficiently smooth, say, σ ≥ d/4. For estimating polyno-

mial divergence functionals, Krishnamurthy et al. (2014) proposed plug-in estimators

corrected through estimating higher-order terms in the von Mises expansions, which

may require computationally demanding numerical integration, and established a

minimax lower bound Ω(m− 8σ
4σ+d + m−1) under Hölder smoothness of order σ > 0.

Kandasamy et al. (2015) generalized this approach to more general functionals and

mutual information and established similar rates. In another line of work, extending

the boundary-corrected plug-in estimator for mutual information of (Liu et al., 2012),

Singh and Póczos (2014a,b) established the MSE rate O(m− 2σ
σ+d +m−1) for a kernel-based

plug-in estimator of a class of density functionals under certain regularity conditions;

we remark that this approach commonly requires a prior knowledge on the support.

Convergence of k-NN distance-based estimators of density functionals can be

improved by using the so-called “ensemble method”, where a convex combination of es-

timators with different k values is used. Moon et al. (2017) studied the ensemble method

for estimation of the mutual information between two continuous random variables,

and demonstrated that under certain broad regularity conditions on the density, the

optimal convex combination, which can be computed by solving a convex optimization

problem, yields the parametric MSE rate O(1/m) provided that the density is sufficiently

smooth. In a similar spirit, Moon et al. (2018), Noshad et al. (2017), and Wisler et al.
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(2018) obtained the MSE rate O(1/m) for estimating the KL divergence, f -divergences,

and a wider class of density functionals including f -divergences, respectively, using

the ensemble method. Analyzing the ensemble version of the proposed estimators is

beyond the scope of this paper.

We finally remark that Nguyen et al. (2010) studied the estimation of f -diverge-

nces through minimization of empirical risk, by formulating the problem as a convex

program. They established convergence rates when the likelihood ratio between the

two distributions belongs to a reproducing kernel Hilbert space. It seems, however,

quite nontrivial to compare these assumptions with those on smoothness used in the

present work.

4.3 Functionals of One Density

Recall that we define the estimator function ϕk : R+ → R for a given f : R+ → R,

with parameter k ∈ N as

ϕk(u) =
Γ(k)

uk−1
L−1

{f(p)
pk

}
(u), (4.7)

whenever the inverse Laplace transform exists, and then define the estimator as

T̂
(k)
f (X1:m) =

1

m

m∑

i=1

ϕk(Ukm(Xi)). (4.3)

Remark 4.3.1. One can check that, for all the examples in Table 4.1.1,

lim
k→∞

ϕk

(k
p

)
= f(p) (4.20)

for each p > 0. In light of (4.18), this observation heuristically indicates that our es-

timator becomes closer to the plug-in estimator (4.11) as we use larger, fixed k. This
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observation is consistent with our intuition that we do not need any bias correction

for the plug-in estimator with very large k, since the plugged-in k-NN density es-

timate (4.10) becomes consistent as k → ∞ in the sample limit (Loftsgaarden and

Quesenberry, 1965).

To analyze the proposed estimator for general functionals Tf (p) in a unified

manner, we abstract polynomial tail behaviors of each estimator function ϕk(u) as u ↓ 0

and u ↑ ∞ by a pair of constants (ak, bk) ∈ R2 such that |ϕk(u)| ≲ ψak,bk(u), where we

define a piecewise polynomial function ψa,b : R+ → R for a, b ∈ R as

ψa,b(u) :=





ua if 0 < u ≤ 1,

ub if u > 1.

(4.21)

Note that as a gets larger and b gets smaller, the piecewise polynomial function

ψa,b(u) decays faster as u ↓ 0 and as u ↑ ∞, respectively. Therefore, a and b quantify

the amount of contribution of low and high density values to the estimator function

ϕk(u), respectively. Consistent with the observation that such extreme density values

typically make the density functional estimation problem harder, we will establish

stronger statements for functionals with larger a and smaller b. Below we present the

estimator functions for a few representative functionals.

Example 4.3.2 (Differential entropy (Kozachenko and Leonenko, 1987)). For f(p) =

ln(1/p) and any k ≥ 1, we can compute, as detailed in Example 4.E.2 in Appendix 4.E,

ϕk(u) = lnu−Ψ(k).

Note that we can write Ψ(k) = Hk−1 − γ for k ∈ N, where Hk =
∑k

i=1(1/i) denotes the k-th

harmonic number and γ := limk→∞(Hk − ln k) denotes the Euler–Mascheroni constant (Korn
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and Korn, 2000). As a bound on the estimator function ϕk(u), we consider

|ϕk(u)| ≲ | lnu| + 1 ≲ ψ−ϵ,ϵ(u)

for any arbitrarily small ϵ > 0 throughout the paper. A finer analysis without relying on the

polynomial bound ψ−ϵ,ϵ(u) may lead to a marginal improvement in the resulting performance

guarantee (Bulinski and Dimitrov, 2019a,b; Gao et al., 2018), but we do not pursue that in this

paper.

Example 4.3.3 (α-entropy (Leonenko et al., 2008)). For f(p) = pα−1 (α ≥ 0), we refer to

the density functional Tf (p) =
∫
pα(x) dx as the α-entropy. In the literature, this functional

appears in Rényi (1961) entropy hα(p) = (lnTf (p))/(1− α) and Harvda and Charvat (1967)

or Tsallis (1988) entropy h̃α(p) = (1− Tf (p))/(α− 1). For any k ∈ N such that k > α− 1, we

can compute, as verified in Example 4.E.3 in Appendix 4.E,

ϕk(u) =
Γ(k)

Γ(k − α + 1)

(1
u

)α−1

,

which allows the tight polynomial bound

|ϕk(u)| ≲ ψ1−α,1−α(u).

Example 4.3.4 (Logarithmic α-entropy). For f(p) = pα−1 ln(1/p) (α > 0), we refer to the

density functional Tf (p) =
∫
pα(x) ln(1/p(x)) dx as the logarithmic α-entropy. For any

k ∈ N such that k > α− 1, we can compute, as verified in Example 4.E.4 in Appendix 4.E,

ϕk(u) =
Γ(k)

Γ(k − α + 1)
u−α+1(lnu−Ψ(k − α + 1)),

and we consider

|ϕk(u)| ≲ u−a+1(| lnu| + 1) ≲ ψ1−α−ϵ,1−α+ϵ
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for any arbitrarily small ϵ > 0 as its polynomial bound.

Example 4.3.5 (Exponential (α, β)-entropy). For f(p) = pα−1e−βp (α > 0, β ≥ 0), we refer

to the density functional Tf (p) =
∫
pα(x)e−βp(x) dx as the exponential (α, β)-entropy. For

any k ∈ N such that k > α− 1, we can compute

ϕk(u) =
Γ(k)

Γ(k − α + 1)

(u− β)k−α

uk−1
1[β,∞)(u)

using time shifting property of Laplace transform from the estimator function expression of the

α-entropy. The estimator function ϕk can be bounded as

|ϕk(u)| ≲ ψ0,1−α(u)

for k ≥ α and cannot be bounded by a piecewise polynomial function if k < α.

In our subsequent analysis, regularity conditions for the consistency and conver-

gence rate of the proposed estimator depend on k and f via the lower tail exponent a

and the upper tail exponent b. By (4.18), extreme values of p̂km are amplified more via

ϕk as a decreases and and b increases. Hence, intuitively, when a is large and b is small,

the regularity conditions are milder and the estimator converges faster.

4.3.1 Consistency

Focusing solely on the asymptotic behavior of our estimator, we can establish

the L2-consistency for general functionals under mild assumptions on densities. To

state the results rigorously, we first define certain technical conditions. For future use in

Section 4.4.1 for functionals of two densities, we state the conditions in terms of two

densities p and p̃ such that P≪ P̃. Later, we identify p̃ as the density p for samples X1:m

or the density q for samples Y1:n.

For the sake of easy analysis of density functional estimators, the standard

168



simplifying assumptions are global upper- and lower-boundedness on the underlying

density p, i.e., there exist c > 0 and C > 0 such that c ≤ p(x) ≤ C for any x ∈ supp(p);

note that the boundedness of the support follows from the lower boundedness of

the density. In what follows, to establish the asymptotic consistency of the proposed

estimators for a larger class of densities, we will consider weaker conditions than the

boundedness assumptions, similar to those in (Bulinski and Dimitrov, 2019a,b).

For each r > 0, we define the local maximal operator Mr on Rd for a density p by

Mrp(x) := sup
r′∈(0,r]

P(B(x, r′))

λ(B(x, r′))
.

Similarly, for each r > 0, we define the local minimal operator mr on Rd for a density p

by

mrp(x) := inf
r′∈(0,r]

P(B(x, r′))

λ(B(x, r′))
.

For each r > 0, x 7→ Mrp(x) and x 7→ mrp(x) are lower- and upper-semicontinuous,

respectively, and so are Borel measurable (Bulinski and Dimitrov, 2019a,b). In particular,

Mrp(x) and mrp(x) are pointwise upper and lower bounds, respectively, on the density

p.

Given a non-decreasing function ξ : R+ → R+, for densities p and p̃, we define

the functionals

W (p, p̃;ϑ, r) :=

∫
p(x)(Mrp̃(x))

ϑ dx,

w(p, p̃; ξ, ϑ, r) :=

∫
p(x)ξ((mrp̃(x))

−ϑ) dx,
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and

R(p, p̃; ξ, ϑ, r) :=

∫∫

ρ(x,y)>r

p(x)p̃(y)ξ(υϑ(ρ(x,y))) dx dy

for each ϑ > 0 and r > 0. Here we define these quantities with possibly different

densities p and p̃ for the future use with double-density functionals; for single-density

functionals, the readers can simply assume p = p̃. In place of the upper- and lower-

boundedness assumptions on the density p̃, we will impose the finiteness of the expected

values W (p, p̃;ϑ, r) and w(p, p̃; ξ, ϑ, r), respectively. Further, R(p, p̃; ξ, ϑ, r) roughly quan-

tifies how fast p and p̃ decay to zero in there tails. Observe that R(p, p̃; ξ, ϑ, r) → 0 as

r → ∞. Intuitively, as the tails of p and p̃ decay faster, the speed of convergence of

R(p, p̃; ξ, ϑ, r) will be faster. In particular, if both p and p̃ have bounded support, then

R(p, p̃; ξ, ϑ, r) = 0 for r sufficiently large. Note further that W , w, and R become larger

as ϑ increases.

Given k ∈ N and (a, b) ∈ R2, consider the following conditions.

(Upp̃; k, a) Either a ≥ 0, or if a < 0, then there exists r > 0 such that W (p, p̃; k, r) <∞.

(Lpp̃; ξ, b) Either b ≤ 0, or if b > 0, then there exists r > 0 such that w(p, p̃; ξ, b, r) < ∞

and

lim sup
m→∞

ξ(mb)R
(
p, p̃; ξ, b, ϱ

(κm
m

))
<∞ (4.22)

for some κm such that κm/m→∞ and (lnκm)/m→ 0 as m→∞.

Recall that the polynomial tail exponents a and b of the the k-NN estimator func-

tion (4.18) of a given density functional quantify the amount of contribution of high

and low density values to the estimator, respectively. Hence, a is coupled with W that

captures the upper boundedness of the density, while b is pertinent to w and R that

quantify the lower boundedness. We note that as a gets larger, k gets smaller, and b gets
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smaller, conditions (Lpp̃; ξ, b) and (Upp̃; k, a) become weaker, thus encompassing a larger

class of densities.

Let Ξ be the class of non-decreasing functions ξ : R+ → R+ such that ξ(t)/t→∞

as t → ∞, that ξ(t1t2) ≤ ξ(t1)ξ(t2) for any x, y > t0 for some t0 ∈ R+, and that ω(ξ) :=

inf{η > 1: ξ(t)/tη → 0 as t→∞} <∞. For example, ξ1(t) = (t ln t) ∨ 0 ∈ Ξ with t0 = e

and ω(ξ1) = 1, and ξ2(t) = tα ∈ Ξ for α > 1 with t0 = 0 and ω(ξ2) = α.

We are now ready to state the L2-consistency results. We show separately that

the bias and variance converge to zero under certain regularity conditions. Note that all

estimator functions presented in Table 4.1.1 are continuous. Throughout, we consider

a fixed (a, b) ∈ R2 for a target functional Tf (·) that satisfies |ϕk(u)| ≲ ψa,b(u), provided

that the estimator function ϕk(u) exists for k > −a.

Theorem 4.3.6 (Vanishing bias). For a target functional Tf (·), if the estimator function ϕk is

continuous and the underlying density p satisfies (Upp; k, a) and (Lpp; ξ, b) with some function

ξ ∈ Ξ, then the estimator (4.3) with fixed k > −ω(ξ)a is asymptotically unbiased.

Theorem 4.3.7 (Vanishing variance). For a target functional Tf (·), if the underlying density

p satisfies (Upp; k, a) and (Lpp; ξ, b) with ξ(t) = t2, the variance of the estimator (4.3) with fixed

k > −2a converges to zero as m→∞.

Combining Theorems 4.3.6 and 4.3.7, the L2-consistency readily follows as a

corollary.

Corollary 4.3.8 (Consistency). For a target functional Tf (·), if the estimator function ϕk is

continuous and the underlying density p satisfies (Upp; k, a) and (Lpp; ξ, b) with ξ(t) = t2, then

the estimator (4.3) with fixed k > −2a is L2-consistent.

In the following examples, we illustrate how Corollary 4.3.8 can be instantiated

for a few representative functionals.
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Example 4.3.9 (Differential entropy; Example 4.3.2 contd.). Recall that for any k ∈ N,

|ϕk(u)| ≲ ψ−ϵ,ϵ(u) for arbitrarily small ϵ > 0. By Corollary 4.3.8, the estimator (4.3) is L2-

consistent if the underlying density p satisfies that (Upp; k,−ϵ) and (Lpp; ξ, ϵ) with ξ(t) = t2 for

some ϵ > 0. We note that the condition (4.22) in (Lpp; ξ, ϵ) can be relaxed to a milder condition

in which there exist some δ, R > 0 such that

∫∫

ρ(x,y)>R

p(x)p(y)| ln υ(ρ(x,y))|δ dx dy <∞

by performing a similar analysis based on the upper bound |ϕk(u)| ≲ | lnu|+ 1, i.e., without

invoking the polynomial bound ψ−ϵ,ϵ(u) for an arbitrarily small ϵ > 0. This recovers a similar

result reported in (Bulinski and Dimitrov, 2019b).

Example 4.3.10 (α-entropy; Example 4.3.3 contd.). Recall that for any k ∈ N, |ϕk(u)| ≲

ψ1−α,1−α(u). For α > 1, since b = 1 − α < 0, the estimator with fixed k > 2(α − 1)

is L2-consistent if p satisfies (Upp; k, a), which slightly generalizes the upper-boundedness

condition and the requirement k > 2α− 1 assumed in Leonenko et al. (2008). For α < 1, since

a = 1 − α > 0, the estimator with fixed k ≥ 1 is L2-consistent if p satisfies (Lpp; ξ, b) with

ξ(t) = t2, for examples, if p is bounded away from zero and supported over a hyperrectangle.

We remark that Leonenko and Pronzato (2010) reported the L2-consistency of the estimator for

densities satisfying alternate conditions when α < 1.

Proof of Theorem 4.3.6 (vanishing bias)

If the estimator function ϕk is continuous, by the continuous mapping theo-

rem and Proposition 4.1.1, we have the convergence of the statistic ϕk(Uk,m−1(Xm))

to ϕk(Uk∞(X)) in distribution as m → ∞, where Uk∞(x) is a G(k, p(x)) random vari-

able, independent of X ∼ p for P-a.e. x. Hence, if the sequence of random variables

(ϕk(Uk,m−1(Xm)))m≥1 is uniformly integrable, we readily establish the asymptotic unbi-
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asedness:

lim
m→∞

E[T̂ (k)
f (X1:m)] = lim

m→∞
E[p̂k(Uk,m−1(Xm))]

= E[ϕk(Uk∞(X))] = Tf (p).

To show the uniform integrability of (ϕk(Uk,m−1(Xm)))m≥1, we invoke the following

lemma.

Lemma 4.3.11 (De la Vallée Poussin theorem (Borkar, 1995, Theorem 1.3.4)). A collection

of random variables (Xi)i∈I is uniformly integrable if and only if there exists a non-decreasing

function ξ : R+ → R+ such that supi∈I E[ξ(|Xi|)] <∞ and ξ(t)/t→∞ as t→∞.

Observe that we have

E[ξ(|ϕk(Uk,m−1(Xm))|)] =
∫
p(x)E[ξ(|ϕk(Uk,m−1(x))|)] dx

≲
∫
p(x)E[ξ(ψa,b(Uk,m−1(x)))] dx

=

∫
p(x)

∫ ∞

0

ξ(ψa,b(u)) dFkm(u|x) dx.

Since ξ ∈ Ξ, we have −
∫ 1

0
uk dξ(ua∧0) < ∞ for k > −ω(ξ)a and

∫∞
0
e−tξ(tb∨0) dt < ∞,

and thus we can apply Lemma 4.B.19 in Appendix 4.B.4, which yields

lim sup
m→∞

E[ξ(|ϕk(Uk,m−1(Xm))|)] <∞.

This ensures the uniform integrability of (ϕk(Uk,m−1(Xm)))m≥1 by the de la Vallée

Poussin theorem (Lemma 4.3.11), and thus concludes the proof.
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Proof of Theorem 4.3.7 (vanishing variance)

By Lemma 4.B.27 for the Euclidean space (Rd, ∥ · ∥), we have

Var(T̂
(k)
f ) ≤ 2(1 + kγd)

m
{(2k + 1)E[ϕ2

k(Uk,m−1(Xm))] + 2kE[ϕ2
k(Uk+1,m−1(Xm))]},

where γd is a constant which only depends on d; see Lemma 4.B.27. Since ξ(t) = t2

and k > −2a imply that −
∫ 1

0
uk dξ(ua∧0) <∞ and

∫∞
0
e−tξ(tb∨0) dt <∞, we can apply

Lemma 4.B.19, which ensures for k′ ∈ {k, k + 1} that

lim sup
m→∞

E[ϕ2
k(Uk′,m−1(Xm))] <∞.

It establishes Var(T̂ (k)
f ) = O(m−1) for m sufficiently large.

Remark 4.3.12. The variance analysis relies on the Efron–Stein inequality (Lemma 4.B.28)

and a covering lemma (Lemma 4.B.29) that only applies to the Euclidean space; see

Appendix 4.B.6. An idea for the generic variance bound (Lemma 4.B.27) first appeared

in Singh and Póczos (2016) as a generalization of a technique for analyzing the 1-NN

Kozachenko–Leonenko estimator by Biau and Devroye (2015, Ch. 7), and has been

employed in the literature to bound the variance of k-NN based estimators; see, e.g.,

Moon et al. (2017). We note that one can attain the same rate (up to polylogarithmic

factors) under the p-norm, by instead adapting the analysis in Gao et al. (2018). As it

demands a rather involved argument to bound a covariance term, however, we present

a simpler approach in this paper.

4.3.2 Convergence Rates for Smooth, Bounded Densities

So far, we have established the L2-consistency of the proposed estimator for

general functionals under mild assumptions on densities. Under rather stronger as-

sumptions such as smoothness and boundedness, we can actually establish the conver-
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gence rate of the proposed estimator in MSE. Specifically, we consider certain regularity

conditions adapted from (Gao et al., 2018).

First, we assume that

(Up) there exists 0 < Cp <∞ such that p(x) ≤ Cp almost everywhere (a.e.).

Further, we impose a few conditions related to lower-boundedness of the density, that

is,

(L1p) there exists cp > 0 such that p(x) ≥ cp for x ∈ supp(p),

(L2p) the support of p is bounded, and

(L3p) there exists r > 0 such that

ηp := inf
x∈supp(p)

inf
r′∈(0,r]

λ(B(x, r′) ∩ supp(p))
λ(B(x, r′))

> 0.

The last condition (L3p) is called the (ηp, r)-regularity of supp(µ) in the literature (Au-

dibert et al., 2007).

Remark 4.3.13. The upper-boundedness condition (Up) implies the condition (Upp; k, a),

sinceMrp(x) ≤ Cp <∞ for every x ∈ Rd and any r > 0. Also, the conditions (L1p), (L2p),

and (L3p) on lower-boundedness of p imply the condition (Lpp; ξ, b) for any nonnegative

function ξ, since for b > 0 we have

w(p, p; ξ, b, r) =

∫
p(x)ξ((mrp(x))

−b) dx

≤
∫
p(x)ξ((ηpcp)

−b) dx = ξ((ηpcp)
−b) <∞

for some r > 0 by (L1p) and (L3p), and R(p, p; ξ, b, ϱ(κm/m))) = 0 for m sufficiently large

by the boundedness of the support of p from (L2p).
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We recall the following notion of Hölder continuity for smoothness of the density

p, which is assumed commonly in nonparametric statistics; see, e.g., (Birge and Massart,

1995; Han et al., 2020; Jiao et al., 2018; Krishnamurthy et al., 2014; Singh and Póczos,

2016).

Definition 4.3.14. For σ > 0, a function g : Rd → R is said to be σ-Hölder continuous over

an open subset Ω ⊆ Rd if g is continuously differentiable over Ω up to order κ := ⌈σ⌉ − 1

and

L(g; Ω) := sup
r∈Zd

+

|r|=κ

sup
y,z∈Ω
y ̸=z

|∂rg(y)− ∂rg(z)|
∥y − z∥β

<∞, (4.23)

where β := σ − κ. Here we use a multi-index notation (see, e.g., (Folland, 2013, Ch. 8)),

that is, |r| := r1 + · · ·+ rd for r ∈ Zd
+ and ∂rg(x) := ∂κg(x)/(∂xr11 · · · ∂xrdd ).

Since the density is not smooth on the boundary of the support due to the lower-

boundedness condition (L1p), we assume a smoothness condition on the underlying

density only over the interior of its support and impose a separate regularity condition

on the boundary:

(Sp) The density p is σp-Hölder continuous over the interior of supp(p) for σp ∈ (0, 2],

and

(Bp) the boundary of supp(p) has finite (d−1)-dimensional Hausdorff measure (Folland,

2013).

Truncated versions of well-known distributions such as exponential, Gaussian,

and Cauchy distributions, as well as distributions with bounded support, such as

uniform distribution and beta distributions with parameters α, β ≥ 1, satisfy these

conditions with σp = 2, and the truncated Laplace distribution satisfies the condi-

tions with σp = 1; see Appendix 4.F for details on these examples. For densities of
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unbounded support, we provide a separate treatment using a variant of our estimator;

see Section 4.3.3.

Equipped with these regularity conditions, we upper bound the MSE of our

estimator by considering its bias and variance separately.

Theorem 4.3.15 (Bias rate). For a target functional Tf (·), if the underlying density p satisfies

the conditions (Up), (L1p), (L2p), (L3p), (Sp), and (Bp), then the estimator (4.3) with fixed

k > −a satisfies

∣∣E[T̂ (k)
f ]− Tf (p)

∣∣ = Õ(m−λ(σp,a,k)) (4.24)

as m→∞, where

λ(σ, a, k) =





1
d
(σ ∧ 1)(k+a

k−1
) if a ≤ −σ

d
− 1,

1
d
(σ ∧ k+a

k−1
) if − σ

d
− 1 < a ≤ −1,

1
d
(σ ∧ 1) if a > −1.

(4.25)

Remark 4.3.16. Since k > −a is required to apply Theorem 4.3.15, when a ≤ −1 (for

example, the 2-entropy), our estimator is well-defined and λ in (4.25) is positive only

for k > 1. Conversely, our bias bound holds for 1-NN estimators of any functional

Tf (p) with estimator function ϕ1(u) of lower tail exponent a > 1, the examples of which

include differential entropy, the α-entropy with α < 2, the logarithmic α-entropy with

α < 2, and exponential (α, β)-entropy with α ≤ 1 in Table 4.1.1.

Remark 4.3.17. The rate exponent λ increases as the lower-tail-polynomial exponent a

increases, or equivalently, the estimator function ϕk(u) converges to 0 faster as u ↓ 0. If a

is independent of k, the rate exponent λ becomes larger with larger k. In Section 4.5, we

show that a properly growing k in sample size can guarantee the largest rate exponent

in (4.25). Note, however, that if a decreases as k increases, which is the case for some
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exceptional cases (Examples 4.4.20 and 4.4.21), the rate exponent could become slower

with larger k. This is in contrast to the large-k requirement for plug-in estimators, to

guarantee the underlying k-NN density estimate to be consistent. We remind that our

estimator is designed to be asymptotically unbiased for every fixed k, without appealing

to the consistency of the k-NN density estimator, and it thus does not contradict the

behavior of plug-in estimators.

Remark 4.3.18. The upper tail exponent b appears only in the exponent of polylogarith-

mic factors O(poly ln(m)) in the rate, and thus is hidden by Õ in (4.25). At a finer scale,

the rate increases as b decreases; see the proof of Theorem 4.B.25 and Lemmas 4.B.23

and 4.B.25 in Appendix 4.C.1.

The variance of the estimator can be bounded without the smoothness conditions.

Theorem 4.3.19 (Variance rate). For a target functional Tf (·), if the underlying density p

satisfies (Up), (L1p), (L2p), and (L3p), then the estimator (4.3) with fixed k > −2a satisfies

Var(T̂
(k)
f ) = O(m−1). (4.26)

Combining Theorem 4.3.15 on bias and Theorem 4.3.19 on variance, we can

obtain the convergence rate in MSE and establish the L2-consistency of the estimator.

Corollary 4.3.20 (Convergence rate). Under the same assumptions in Theorem 4.3.15, then

the estimator (4.3) with fixed k > −2a satisfies

E
[(
T̂

(k)
f − Tf (p)

)2]
= Õ(m−2λ(σp,a,k) +m−1). (4.27)

Remark 4.3.21. For d ≥ 2, the bias bound always dominates the variance bound so that

the MSE is bounded as Õ(m−2λ). For d = 1, the variance bound may dominate the bias

bound, depending on σp and a.
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Remark 4.3.22. We note that the bias rate of the proposed estimators under Hölder

smoothness of order σ > 0 is at most O(m−(σ∧1)/d); it may be improved to O(m−(σ∧2)/d)

if the boundary bias is ignored, as remarked in (Gao et al., 2018), but it still suffers the

curse of dimensionality. As pointed out in Jiao et al. (2018), it is an inherent problem

with any positive-kernel-based estimator that a higher smoothness σ > 2 cannot be

exploited in density functional estimation (Tsybakov, 2009, Chapter 1). In particular, the

key component in our analysis is Lemma 4.B.6 from (Jiao et al., 2018), which cannot be

improved for σ > 2. See (Han et al., 2020) for an extensive deliberation on this issue and

see (Delattre and Fournier, 2017; Moon et al., 2017, 2018; Noshad et al., 2017; Sricharan

et al., 2012, 2013; Wisler et al., 2018) for a solution based on the jackknife idea for some

density functionals. Providing a remedy to the limitation of the proposed estimators is

left as an open problem.

Remark 4.3.23. An estimator of a given density functional is said to be minimax optimal

if its MSE for the worst-case density is no larger than that of any other estimator. In

general, the established convergence rates in MSE, including the rates for divergence

functional estimators in Corollaries 4.4.14, are not minimax optimal (Kandasamy et al.,

2015; Krishnamurthy et al., 2014; Singh and Póczos, 2014a,b) due to the suboptimal bias

rates; see, e.g., Example 4.3.24. Since our main focus is on providing unified consistency

and convergent rate analyses of the proposed generic estimators, we leave proving

minimax optimality under proper regularity conditions with or without modifications

of the proposed estimators as important future directions. For the special case of

differential entropy, we note that Jiao et al. (2018) established an asymptotic minimax

optimality of the Kozachenko–Leonenko estimator (Jiao et al., 2018) for for smooth

densities of order σ ∈ (0, 2] over a torus (no boundary condition), matching the lower

bound of (Han et al., 2020) up to a polylogarithmic factor.

Example 4.3.24 (Differential entropy; Example 4.3.2 contd.). Recall from Example 4.3.2
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that |ϕk(u)| ≲ ψ−ϵ,ϵ(u) for any arbitrarily small ϵ > 0. Suppose that the underlying density p

satisfies the conditions (Up), (L1p), (L2p), (L3p), (Sp), and (Bp), in Theorem 4.3.15 with some

σp ∈ (0, 2]. Then we have the bias exponent λ = σp/d as in the third case of (4.25) and the

variance exponent of 1 from (4.26). Consequently, by Corollary 4.3.20 the MSE of our estimator

is bounded as Õ(m−2(σp∧1)/d +m−1). This result recovers the same MSE rate of a truncated

Kozachenko–Leonenko estimator in (Gao et al., 2018) for σp = 2. We remark that Gao et al.

(2018) reported a lower bound Ω(m− 16
d+8 +m−1) for estimating differential entropy under σ = 2

and hence, the convergence rate is not minimax optimal.

Example 4.3.25 (α-entropy; Example 4.3.3 contd.). Recall from Example 4.3.3 that |ϕk(u)| ≲

ψ1−α,1−α(u) for any k ∈ N such that k > α− 1. Hence, for densities satisfying the conditions

(Up), (L1p), (L2p), (L3p), (Sp), and (Bp), the MSE of our estimator (4.3) with fixed k > 2(α− 1)

is bounded as (4.27) with the bias rate exponent

λ(σp, a, k) =





1
d
(σp ∧ 1) if α < 2,

1
d
(σp ∧ k+1−α

k−1
) if 2 ≤ α < 2 + σp

d
,

1
d
(σp ∧ 1)(k+1−α

k−1
) if α ≥ 2 + σp

d
.

(4.28)

Note that similar convergence rates can be established for the logarithmic α-entropy and the

exponential (α, β)-entropy.

Proof of Theorem 4.3.15 (bias rate)

First note that Ukm(X1), . . . , Ukm(Xm) are identically distributed, and Ukm(Xm) =

Uk,m−1(Xm) by definition; see (4.2). Hence, we can write

E[T̂ (k)
f ] = E[ϕk(Uk,m−1(Xm))]

=

∫
E[ϕk(Uk,m−1(Xm))|Xm = x]p(x) dx

=

∫
E[ϕk(Uk,m−1(x))]p(x) dx, (4.29)
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where the last equality holds since Xm and X1:m−1 are independent. Recall from Propo-

sition 4.1.1 that Ukm(x) converges to a G(k, p(x)) random variable Uk∞(x) for P-a.e.

x. Thus, by the construction (4.6) of the estimator function ϕk(u), we can express the

density functional as

Tf (p) =

∫
f(p(x))p(x) dx =

∫
E[ϕk(Uk∞(x))]p(x) dx.

Applying the triangle inequality, we first have

∣∣E[T̂ (k)
f ]− Tf (p)

∣∣ ≤
∫
p(x)|E[ϕk(Uk,m−1(x))− ϕk(Uk∞(x))]| dx

=

∫
p(x)

∣∣∣
∫ ∞

0

ϕk(u)(ρUk,m−1(x)(u)− ρUk∞(x)(u)) du
∣∣∣ dx. (4.30)

For some real numbers τm and νm such that 0 ≤ τm ≤ 1 ≤ νm < ∞, which are to be

determined later as functions of k, a, d, and σp, we break the inner integral and apply

the polynomial bound |ϕk(u)| ≲ ψa,b(u) with the triangle inequality to obtain

∣∣E[T̂ (k)
f ]− Tf (p)

∣∣ ≲ Iout,1 + Iin,1 + Iin,2 + Iout,2, (4.31)

where

Iout,1 := Ep[Iout,1(X)] = Ep

[∫ τm

0

ψa,b(u)(ρUk,m−1(X)(u) + ρUk∞(X)(u)) du
]
,

Iin,1 := Ep[Iin,1(X)] = Ep

[∫ 1

τm

ψa,b(u)|ρUk,m−1(X)(u)− ρUk∞(X)(u)| du
]
,

Iin,2 := Ep[Iin,2(X)] = Ep

[∫ νm

1

ψa,b(u)|ρUk,m−1(X)(u)− ρUk∞(X)(u)| du
]
,

and

Iout,2 := Ep[Iout,2(X)] = Ep

[∫ ∞

νm

ψa,b(u)(ρUk,m−1(X)(u) + ρUk∞(X)(u)) du
]
.
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The inner bias terms Iin,1 and Iin,2 can be bounded by Lemma 4.B.23 under the con-

ditions (Up), (Sp), and (Bp), and the outer bias terms Iout,1 and Iout,2 can be bounded

by Lemma 4.B.25 under the conditions (Up), (L1p), (L2p), and (L3p). After putting the

bounds from Lemmas 4.B.23 and 4.B.25 together, a proper choice of the break points

(τm, νm) concludes the proof; see Appendix 4.C.1 for the details.

Remark 4.3.26. The key step in this analysis is the decomposition in (4.31), which

is based on the construction of the estimator (4.6) from its asymptotic unbiasedness.

Moreover, by considering only the polynomial tail behavior of each estimator function

and using (4.31), our analysis can deal with a general functional in a simple, unified

manner. The rest of the bias analysis, that is, bounding the four bias terms, closely

follows and naturally extends that of (Gao et al., 2018) for a truncated version of the

Kozachenko–Leonenko estimator of differential entropy.

Proof of Theorem 4.3.19 (variance rate)

Since the boundedness conditions (Up), (L1p), (L2p), and (L3p) imply (Upp; k, a)

and (Lpp; ξ, b) (see Remark 4.3.13), the variance rate directly follows from the proof of

Theorem 4.3.7 in Section 4.3.1.

4.3.3 Convergence Rates for Smooth Densities of Unbounded
Support

Theorem 4.3.15 establishes the bias rate of the proposed estimator for smooth,

bounded densities that inherently assume nonsmooth boundary. In this section, we

establish convergence rate of a truncated version of the estimator for densities of

unbounded support.

For functionals of one density, we define a truncated version of the estimator (4.3)

as

T
(k)
f (X1:m) :=

1

m

m∑

i=1

ϕk(Ukm(Xi); τm, νm), (4.32)

182



where we define the truncated estimator function

ϕk(u; τ, ν) := ϕk(u) 1(τ,ν)(u)

and the lower and upper truncation points τm, νm ∈ R+ are hyperparameters such that

0 ≤ τm ≤ 1 ≤ νm <∞ that are to be determined based on the function f , the dimension

d, the number of nearest neighbors k, and/or the smoothness order of the underlying

density p.

We assume the following condition on the tail behavior of the underlying density,

which is more general than (L1p):

(L1′
p) There exist θ > 0 and D0 > 0 such that

∫
p(x)e−βp(x) dx ≤ D0β

−θ for all β > 1.

This tail condition with θ = 1 was originally considered by Tsybakov and van der

Meulen (1996) for their analysis in R. As pointed out in (Tsybakov and van der Meulen,

1996), densities with strictly sub-exponential tails, such as Gaussian distributions, satisfy

(L1′
p) with θ = 1. It can also be shown that densities with polynomially decaying tails

satisfy condition (L1′
p) for some 0 < θ < 1.

We additionally introduce the following functional-dependent condition on the

behavior of the estimator function for small density values:

(L4p) There exists δ > 0 such that
∫
p(x)(p(x))−(1+δ)b dx <∞.

Finally, as we consider densities with unbounded support, we assume that

(S′
p) the density p is σp-Hölder continuous over Rd for σp ∈ (0, 2],

in place of (Sp).

Exclusively for the following proposition, we additionally assume that ϕk(u)

satisfies |ϕk(u)| ≲ ψa,b(u), ϕk(u) is differentiable at any u > 0, and |ϕ′
k(u)| ≲ ψa−1,b−1(u),

which hold for all the examples in Table 4.1.1.

183



Proposition 4.3.27 (Bias rate for smooth densities of unbounded support). For a target

functional Tf (·), if the underlying density p satisfies the conditions (Up), (L1′
p), (L4p), and (S′

p),

then the truncated estimator (4.32) with −a < k < −b+ θ + 1 and truncation points

τm =





Θ(m
−σp

d
1

k−
σp
d

−1 ) if a ≤ −σp

d
− 1,

O(m−σp
d

1
k+a ) o.w.

(4.33)

and

νm =





Θ(m(
σp
d
∧1) 1

θ−k−b+1 ) if k ≤ −b− 1, b ≤ −σp

d
− 1,

Θ(m
σp
d

1

θ−k+
σp
d

+2
)

if k ≤ −b− 1, b > −σp

d
− 1,

Θ(m
1

θ+2 ) if k > −b− 1, b ≤ −σp

d
− 1,

Θ(m(
σp
d
∧1) 1

θ+2 ) if k > −b− 1, b > −σp

d
− 1,

with νm = o(
√
m) as m→∞ satisfies

∣∣E
[
T

(k)
f

]
− Tf (p)

∣∣ = O
(
m−λτ∧λν

)
,

where

λτ =





σp

d
k+a

k−σp
d
−1

if a ≤ −σp

d
− 1,

σp

d
o.w.,

(4.34)
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and

λν =





σp

d
∧ 1 if k ≤ −b− 1, b ≤ −σp

d
− 1,

(σp

d
(1− b+

σp
d
+1

θ−k+
σp
d
+2

)) ∧ 1 if k ≤ −b− 1, b > −σp

d
− 1,

σp

d
∧ (1− k+b+1

θ+2
) if k > −b− 1, b ≤ −σp

d
− 1,

(σp

d
∧ 1)(1− k+b+1

θ+2
) if k > −b− 1, b > −σp

d
− 1.

(4.35)

We can establish the variance rate with truncation under only the upper-bounded-

ness condition, without explicitly imposing the condition k > −2a as required in

Theorem 4.3.19.

Proposition 4.3.28 (Variance rate of truncated estimator). For a target functional Tf (·), if

the underlying density p satisfies (Up), then the estimator (4.32) with k > −a satisfies

Var
(
T

(k)
f

)
= O

(k2
m

(
k−kτ (k+2a)∧0

m + ν2b∨0m

))
. (4.36)

Combining Propositions 4.3.27 and 4.3.28, we can obtain a corresponding consis-

tency result as in Corollary 4.3.20, the formal statement of which is omitted.

At face value, Proposition 4.3.27 enlarges considerably the class of densities

under the purview of our analyses. On the flip side, however, it requires the underlying

density to be smooth over the whole of Rd and this rules out, for example, the uniform

distribution, which is covered by (L1p). Thus, Proposition 4.3.27 and Theorem 4.3.15

complement each other.

The stringent requirement k < −b+ θ + 1 in Proposition 4.3.27 is due to a bias

term O(νb+k−1−θ
m ) that appears in the analysis; a smaller k, which is, of course, still larger

than −a, gives a tighter bound on this term, whereas a larger k is desired to reduce

the bias due to the lower truncation. Proposition 4.3.27 thus cannot guarantee the

L2-consistency of the estimator when k grows as m→∞, as the condition k < θ − b+ 1
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is violated.

Example 4.3.29 (Differential entropy; Example 4.3.2 contd.). For estimating differential

entropy, recall that |ϕk(u)| ≲ ψ−ϵ,ϵ(u) for arbitrarily small ϵ > 0. Consider densities that

satisfy the conditions (Up), (L1′
p), (L4p), and (S′

p) for some 0 < θ ≤ 1. Since Proposition 4.3.27

requires k < θ+1− ϵ, we need to choose k = 1 to guarantee the L2-consistency of our estimator.

We obtain a bias bound O(m− θ−ϵ
θ+2

(
σp
d
∧1)), a variance bound O(m−(1−δ)) for arbitrarily small

δ > 0 from Proposition 4.3.28, and thus the MSE rate O(m− 2(θ−ϵ)
θ+2

(
σp
d
∧1)). In particular, for

one-dimensional densities with σp ≥ 1 and θ = 1, we obtain the MSE rate O(m− 2(1−ϵ)
3 ). Note

that this rate is slightly worse than O(m−1), as obtained by Tsybakov and van der Meulen

(1996, Section 2, pp. 77–78) under different regularity conditions with a faster growing upper

truncation point νm = Θ(
√
m).

Example 4.3.30 (α-entropy; Example 4.3.3 contd.). Consider estimating the α-entropy

(α ̸= 1) of densities that satisfy the conditions (Up), (L1′
p), (L4p), and (S′

p) with some θ > 0.

Since |ϕk(u)| ≲ ψ1−α,1−α(u), we need to use k ∈ (α − 1, α + θ) for our estimator to apply

Proposition 4.3.27. By setting the truncation points as

(τm, νm) =





(O(m−σp
d

1
k−α+1 ),Θ(m(

σp
d
∧1) 1

θ+2 )), if α < σp

d
+ 2,

(Θ(m
−σp

d
1

k−
σp
d

−1 ),Θ(m
1

θ+2 )), if α ≥ σp

d
+ 2,

our estimator achieves the bias rate O(m−(λτ∧λν)), where

(λτ , λν) =





(σp

d
, (σp

d
∧ 1) θ+α−k

θ+2
) if α < σp

d
+ 2,

(σp

d
k−α+1
k−σp

d
−1
, σp

d
∧ θ+α−k

θ+2
) if α ≥ σp

d
+ 2.

186



From Proposition 4.3.28, we can bound the variance of our estimator as O(m−λv), where

λv =





1− (σp

d
∧ 1)2(1−α)∨0

θ+2
if α < σp

d
+ 2,

1− σp

d
(2α−k−2)∨0
k−σp

d
−1

if α ≥ σp

d
+ 2,

and thus we establish the MSE rate O(m−2(λτ∧λν) +m−λv).

Remark 4.3.31. We remark in passing on the consistency of the truncated estimator

(without convergence rate analysis). With lower truncation point τm such that τ k+2a
m =

o(m), the conditions k > −2a can be relaxed to k > −a in Corollary 4.3.8. Moreover, a

very mild upper truncation of speed νm = eo(m) can relax the condition (Lpp) assumed in

the consistency results to a milder one, i.e.,

(L′
pp̃; ξ, b) Either b ≤ 0, or if b > 0, then there exists r > 0 such that w(p, p̃; ξ, b, r) <∞

with p̃ = p.

4.4 Functionals of Two Densities

We now consider estimating a functional Tf (p, q) of two densities p and q. Hence-

forth, we assume that P≪ Q. Recall that for fixed k, l ∈ N and a given f : R2
+ → R, we

define the estimator function ϕkl : R2
+ → R of f with parameters k, l as

ϕkl(u, v) =
Γ(k)Γ(l)

uk−1vl−1
L−1

{f(p, q)
pkql

}
(u, v), (4.8)

whenever the inverse Laplace transform exists, and then define the estimator as

T̂
(k)
f (X1:m,Y1:n) =

1

m

m∑

i=1

ϕkl(Ukm(Xi), Vln(Yi)). (4.9)

Here we define

Vln(x) := Ul(x|Y1:n) = nλ(B(x, rl(x|Y1:n))).
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Remark 4.4.1. Similar to the observation made in Remark 4.3.1, an analogous limiting

behavior

lim
k,l→∞

ϕkl

(k
p
,
l

q

)
= f(p, q)

can be verified for all the examples in Table 4.1.2 except Le Cam distance and Jensen–

Shannon divergence.

As for the single-density case, a polynomial tail behavior of the estimator function

ϕkl(u, v) affects the convergence rate of each instantiated estimator. We describe a

tail behavior of ϕkl(u, v) by a quadruple (akl, bkl, ãkl, b̃kl) ∈ R4 such that |ϕkl(u, v)| ≲

ψakl,bkl(u)ψãkl,b̃kl
(v). This characterization allows us to handle the convergence of Ukm(x)

and Vln(x) separately so that we can extend the analysis for the single-density case

in a straightforward manner. Note that for all the examples presented in Table 4.1.2,

(akl, bkl, ãkl, b̃kl) can be found as constants independent of k and l, except Le Cam distance

and Jensen–Shannon divergence. Also note that all the estimator functions ϕkl(u, v)

presented in Table 4.1.2 are continuous.

Example 4.4.2 (KL divergence (Wang et al., 2009)). For f(p, q) = ln(p/q), we can compute,

as shown in Example 4.E.2 in Appendix 4.E,

ϕkl(u, v) = ln
v

u
+Hk−1 −Hl−1.

As a bound on the estimator function ϕkl(u, v), we consider

|ϕkl(u, v)| ≲ 1 + | lnu| + | ln v |

≲ (1 + | lnu|)(1 + | ln v |) ≲ ψ−ϵ,ϵ(u)ψ−ϵ,ϵ(v)

for any arbitrarily small ϵ > 0.
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Example 4.4.3 (Polynomial functional (Póczos and Schneider, 2011; Póczos et al., 2012)).

For f(p, q) = pα−1qβ (α > 0, β > 1− α) and any k, l ∈ N such that k > α− 1 and l > β, we

can compute, as shown in Example 4.E.3 in Appendix 4.E,

ϕkl(u, v) =
Γ(k)Γ(l)

Γ(k − α + 1)Γ(l − β)u
1−αv−β,

which allows the tight polynomial bound

|ϕk(u)| ≲ ψ1−α,1−α(u)ψ−β,−β(v).

This class of polynomial functionals includes many important functionals. For the special

instance of β = 1− α, we refer to the density functional Tf (p, q) =
∫
pα(x)q1−α(x) dx as the

α-divergence, which appears in the literature in a few different forms; see, e.g., Rényi (1961)

and Cichocki et al. (2008).

Example 4.4.4 (Logarithmic α-divergence). For f(p, q) = (p/q)α−1 ln(p/q) (α > 0), we

refer to the density functional Tf (p, q) =
∫
pα(x)q1−α(x) ln(p(x)/q(x)) dx as the logarithmic

α-divergence. For any k, l ∈ N such that k > α− 1 and l > 1− α, we can compute, as shown

in Example 4.E.4 in Appendix 4.E,

ϕkl(u, v) =
Γ(k)Γ(l)

Γ(k − α + 1)Γ(l + α− 1)

× u−α+1
(
ln
v

u
+Ψ(k − α + 1)−Ψ(l + α− 1)

)
.

As a bound on the estimator function ϕkl(u, v), we consider

|ϕkl(u, v)| ≲ u−α+1vα−1(1 + | lnu| + | ln v |)

≲ u−α+1vα−1(1 + | lnu|)(1 + | ln v |)

≲ ψ1−α−ϵ,1−α+ϵ(u)ψα−1−ϵ,α−1+ϵ(v)
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for any arbitrarily small ϵ > 0.

Example 4.4.5 (Le Cam distance). For f(p, q) = (p − q)2/(2p(p + q)), the corresponding

divergence functional

DLC(p, q) =
1

2

∫
(p(x)− q(x))2
p(x) + q(x)

dx

= 1−
∫

2p(x)q(x)

p(x) + q(x)
dx

is called Le Cam distance (Le Cam, 2012, p. 47) in the literature (Polyanskiy and Wu, 2019).

We note in passing that this functional has a connection to the nearest neighborhood binary

classification rule: it is well known that the asymptotic error of the nearest neighborhood binary

classification for equiprobable classes is given as 1
2
(1− Tf (p, q)) (Cover and Hart, 1967). For

any k, l ∈ N, we can compute, as shown in Example 4.E.5 in Appendix 4.E,

ϕkl(u, v) = 2

(
k + l − 2

k − 1

)−1(
−u
v

)l−1

×
{ l−1∑

i=0

(
k + l − 2

i

)(
−v
u

)i
−
(
1− v

u

)k+l−2

1[v,∞)(u)

}
− 1.

As a bound on the estimator function ϕkl(u, v), we have

|ϕkl(u, v)| ≲ ψ−k+1,l−1(u)ψ−l+1,k−1(v).

Example 4.4.6 (Jensen–Shannon divergence). When Q≪ P, we can write Jensen–Shannon

divergence as

DJS(p, q) =
1

2

(
D
(
p
∥∥∥ p+ q

2

)
+D

(
q
∥∥∥ p+ q

2

))
= Tf (p, q)

for

f(p, q) =
1

2

(q
p
+ 1
)
ln

2

(q/p) + 1
+

q

2p
ln
q

p
,
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Bkl(u, v) =



(k + l − 2

k − 1

)−1 l−1∑
j=1

(k + l − 2

k − 1 + j

) (−u/v)j

j
if

u

v
< 1,

− ln
u

v
+

(k + l − 2

k − 1

)−1{
−

−1∑
j=−k+1

(k + l − 2

k − 1 + j

) (−u/v)j

j
+

l−1∑
j=−k+1

j ̸=0

(k + l − 2

k − 1 + j

) (−1)j

j

}
if

u

v
≥ 1.

(4.37)

where D(p ∥ q) denotes the KL divergence between p and q. For any k ≥ 1 and l ≥ 2, we can

compute, as shown in Example 4.E.8 in Appendix 4.E,

ϕkl(u, v) =
1

2

{
ln 2 +

l − 1

k

u

v

(
Ψ(l − 1)−Ψ(k + 1) + ln 2

u

v

)

+Bkl(u, v) +
l − 1

k

u

v
Bk+1,l−1(u, v)

}
,

where Bkl(u, v) is defined in (4.37). As a polynomial bound, we have

|ϕkl(u, v)| ≲ ψ−k+1,l−1(u)ψ−l+1,k−1(v).

4.4.1 Consistency

As in Section 4.3.1, we can establish the L2-consistency of the estimator of func-

tionals of two densities under mild regularity conditions. Throughout, we consider a

fixed (a, b, ã, b̃) ∈ R4 for a target functional Tf (·, ·) whose estimator function ϕkl satisfies

|ϕkl(u, v)| ≲ ψa,b(u)ψã,b̃(v), provided that the estimator function ϕkl exists for k > −a

and l > −ã.

Theorem 4.4.7 (Vanishing bias). For a target functional Tf (·, ·), if the estimator function

ϕkl(u, v) is continuous and the underlying densities p and q satisfy (Upp; k, a), (Lpp; ξ2, b), (Upq;

l, ã), and (Lpq; ξ2, b̃) for some function ξ ∈ Ξ, then the estimator (4.9) with k > −2ω(ξ)a and

l > −2ω(ξ)ã is asymptotically unbiased as m,n→∞.

Theorem 4.4.8 (Vanishing variance). For a target functional Tf (·, ·), if the underlying

densities p and q satisfy (Upp; k, a), (Lpp; ξ2, b), (Upq; l, ã), and (Lpq; ξ2, b̃) with ξ(t) = t2, then
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then the variance of the estimator (4.9) with fixed k > −4a and fixed l > −4ã converges to zero

as m,n→∞.

Corollary 4.4.9 (Consistency). For a target functional Tf (·, ·), if the estimator function

ϕkl(u, v) is continuous and the underlying densities p and q satisfy (Upp; k, a), (Lpp; ξ2, b), (Upq;

l, ã), and (Lpq; ξ2, b̃) with ξ(t) = t2, then the estimator (4.9) with fixed k > −4a and fixed

l > −4ã is L2-consistent.

In the following examples, we illustrate how Corollary 4.4.9 can be instantiated

for a few representative functionals.

Example 4.4.10 (KL divergence; Example 4.4.2 contd.). Recall that for estimating differential

entropy, |ϕkl(u, v)| ≲ ψ−ϵ,ϵ(u)ψ−ϵ,ϵ(v) for arbitrarily small ϵ > 0 and for any k, l ∈ N. By

Corollary 4.4.9, the estimator (4.9) with fixed k ≥ 1 and l ≥ 1 is L2-consistent if the underlying

densities p and q satisfy (Upp; k,−ϵ), (Lpp; ξ2, ϵ), (Upq; l,−ϵ), and (Lpq; ξ2, ϵ) with ξ(t) = t2.

As discussed in Example 4.3.9, a finer analysis recovers a similar consistency result established

in (Bulinski and Dimitrov, 2019b).

The proofs of the main results (Theorems 4.4.7, 4.4.8, 4.4.12, and 4.4.13) in this

section follow with minor extensions to those of the single-density case, and are deferred

to Appendix 4.C.

Example 4.4.11 (α-divergence; Example 4.4.3 contd.). Recall that for estimating the α-

divergence (α ̸= 1), we have |ϕkl(u, v)| ≲ ψ1−α,1−α(u)ψα−1,α−1(v) for any k, l ∈ N such that

k > α−1 and l > 1−α. For α > 1, since b = 1−α < 0 and ã = α−1 > 0, the estimator with

fixed k > 4(α−1) and l ≥ 1 is L2-consistent if the underlying densities p and q satisfy that (Upp;

k, 1−α) and (Lpq; ξ2, α−1) with ξ(t) = t2. For α < 1, since a = 1−α > 0 and b̃ = α−1 < 0,

the estimator with k ≥ 1 and l > 4(1− α) is L2-consistent if the underlying densities p and q

satisfy that (Lpp; ξ2, b) and (Upq; l, ã) with ξ(t) = t2. This consistency result covers a strictly

larger class of densities than an earlier result by Póczos and Schneider (2011), whereby the
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L2-consistency of the estimator with l = k is established under rather stronger assumptions

such as boundedness and uniform continuity of densities. Moreover, Propositions 4.4.9 and

4.4.9 strengthen the L2-consistency result established in Póczos et al. (2012) for a polynomial

functional (see Example 4.4.3), which subsumes α-divergence.

4.4.2 Convergence Rates for Smooth, Bounded Densities

Theorem 4.4.12 (Bias rate). For a target functional Tf (·, ·), if the underlying density p satisfies

(Up), (L1p), (L2p), (L3p), (Sp), and (Bp), and q satisfies (Uq), (L1q), (L2q), (L3q), (Sq), and (Bq),

then the estimator (4.9) with fixed k > −a and l > −ã satisfies

∣∣E[T̂ (k,l)
f ]− Tf (p, q)

∣∣ = Õ
(
m−λ(σp,a,k) + n−λ(σq ,ã,l)

)
,

as m,n→∞, where the rate exponent function λ(σ, a, k) is as defined in (4.25).

Theorem 4.4.13 (Variance rate). For a target functional Tf (·, ·), if the underlying density p

satisfies (Up), (L1p), (L2p), and (L3p), and q satisfies (Uq), (L1q), (L2q), and (L3q), then the

estimator (4.9) with fixed k > −2a and fixed l > −2ã satisfies

Var
(
T̂

(k,l)
f

)
= O(m−1). (4.38)

Combining Theorems 4.4.12 and Theorem 4.4.13, we obtain the convergence rate

in MSE and conclude the L2-consistency of the estimator.

Corollary 4.4.14 (Convergence rate). Under the same assumptions in Theorem 4.4.12, then

the estimator (4.9) with fixed k > −2a and fixed l > −2ã satisfies

E
[(
T̂

(k,l)
f − Tf (p, q)

)2]

= Õ
(
m−2λ(σp,a,k) + n−2λ(σq ,ã,l) +m−1

)
(4.39)

and thus is L2-consistent.
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Remark 4.4.15. Similar to the single-density case, if d ≥ 2, the bias bound dominates

the variance bound.

Example 4.4.16 (KL divergence; Example 4.4.2 contd.). For estimating KL divergence,

recall that |ϕkl(u, v)| ≲ ψ−ϵ,ϵ(u)ψ−ϵ,ϵ(v) for any arbitrarily small ϵ > 0. It can be shown, using

Theorems 4.4.12 and 4.4.13, that for estimating the (forward) KL or reverse KL divergences

between any two densities p and q such that P ≪ Q, each of which is either the uniform

distribution, or one of the truncated Gaussian, Cauchy, Laplace, or exponential distributions, we

obtain a bias bound of Õ(m−1/d) and a variance bound of O(m−1), and therefore, the MSE rate

of Õ(m−2/d + n−2/d +m−1) as established in Corollary 4.4.14.

Example 4.4.17 (α-divergence; Example 4.4.3 contd.). For estimating the α-divergence

(α > 0), recall that |ϕkl(u, v)| ≲ ψ1−α,1−α(u)ψα−1,α−1(v) for any k, l ∈ N such that k > α− 1

and l > 1− α. Hence, if p satisfies (Up), (L1p), (L2p), (L3p), (Sp), and (Bp), and q satisfies (Uq),

(L1q), (L2q), (L3q), (Sq), and (Bq), then the MSE of the estimator (4.9) with k > 2(α− 1) and

l > 2(1− α) is bounded as (4.39) with the bias rate exponents

λ(σp, a, k) =





1
d
(σp ∧ 1) if α < 2,

1
d
(σp ∧ k+1−α

k−1
) if 2 ≤ α < 2 + σp

d
,

1
d
(σp ∧ 1)(k+1−α

k−1
) if α ≥ 2 + σp

d
.

and

λ(σq, ã, l) =
1

d
(σq ∧ 1).

This result also holds for the logarithmic α-divergence.
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4.4.3 Le Cam Distance and Jensen–Shannon Divergence: Perfor-
mance Guarantee with Truncation

The statements in the previous section do not apply to the estimators for Le Cam

distance (Example 4.4.5) and Jensen–Shannon divergence (Example 4.4.6). The difficulty

arises from the fact that the estimator function ϕkl for these divergences have lower-

polynomial-tail exponents (a, ã) = (−k + 1,−l + 1) which become smaller with larger k

and l. Therefore, while the bias guarantees (Theorems 4.4.7 and 4.4.12) are still appli-

cable, we cannot control the variance of the estimator using Theorems 4.4.8 or 4.4.13,

as (a, ã) = (−k + 1,−l + 1) does not meet the requirements {k > −4a, l > −4ã} or

{k > −2a, l > −2ã}.

To handle the variance of the estimator for these exceptional cases, we consider a

truncated version of the estimator (4.9). For functionals of two densities, we define the

truncated estimator as

T
(k,l)
f (X1:m,Y1:n) :=

1

m

m∑

i=1

ϕkl(Ukm(Xi), Vln(Xi); τm, νm, τ̃n, ν̃n), (4.40)

where we define the truncated estimator function

ϕkl(u, v; τ, ν, τ̃ , ν̃) := ϕkl(u, v) 1(τ,ν)(u) 1(τ̃ ,ν̃)(v)

and the truncation points τm, νm, τ̃n, ν̃n are hyperparameters such that 0 ≤ τm ≤ 1 ≤ νm ≤

∞ and 0 ≤ τ̃n ≤ 1 ≤ ν̃n ≤ ∞. As noted earlier, we do not require the upper-truncation

points in contrast to Section 4.3.3 and thus only consider a lower-truncated estimator with

νm =∞ and ν̃n =∞ in this section.

We can first establish the consistency of the lower-truncated estimator.

Proposition 4.4.18 (Consistency). For a target functional Tf (·, ·), if the estimator function

ϕkl(u, v) is continuous and the underlying densities p and q satisfy (Upp; k, a), (L′
pp; ξ2, b),
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(Upq; l, ã), and (L′
pq; ξ2, b̃) with ξ(t) = t2, then the lower-truncated estimator (4.40) with fixed

k > −a and l > −ã and with lower-truncation points such that τ (k+4a)∧0
m τ̃

(l+4ã)∧0
n = o(m) is

L2-consistent.

We can also establish convergence rate of the truncated estimator 4.40 for func-

tionals of two densities. Define a lower truncation point function as

τ(m,σ, a, k) =





Θ
(
m− σ∧1

d(k−1)
)

if a ≤ −σ
d
− 1,

Θ
(
m− 1

d(k−1)
)

if − σ
d
− 1 < a ≤ −1,

O
(
m− 1

d(a+1)
)

if a > −1.

(4.41)

Proposition 4.4.19 (Convergence rate). For a target functional Tf (·, ·), if the underlying

density p satisfies the conditions (Up), (L1p), (Sp), and (Bp), and q satisfies the conditions (Uq),

(L1q), (Sq), and (Bq), the truncated estimator (4.40) with fixed k > −a and l > −ã satisfies

E
[(
T

(k,l)

f − Tf (p, q)
)2]

= Õ
(
m−2λ(σp,a,k) + n−2λ(σq ,ã,l) +m−1τ (2a+k)∧0

m τ̃ (2ã+l)∧0
n

)
,

as m,n→∞, and thus is L2-consistent.

Example 4.4.20 (Le Cam distance; Example 4.4.5 contd.). For estimating Tf (p, q) with

f(p, q) = q/(p + q), recall that |ϕkl(u, v)| ≲ ψ−k+1,l−1(u)ψ−l+1,k−1(v) for any k ≥ 1 and

l ≥ 1. For densities p and q satisfying conditions in Proposition 4.4.18, the lower-truncated

estimator (4.40) for Le Cam distance is L2-consistent. In particular, the estimator with k =

l = 1 is consistent even without lower truncation, since τ (k+4a)∧0
m τ̃

(l+4ã)∧0
n = τ 0mτ̃

0
n = 0 with

τm = τ̃n = 0 and k = l = 1. If the underlying densities p and q satisfy the conditions

in Proposition 4.4.19, then the lower-truncated estimator with fixed k ≥ 1 and l ≥ 1 and

truncation points τm = τ(m,σp,−k + 1, k), and τ̃n = τ(n, σq,−l + 1, l) satisfies

E
[(
T̂

(k,l)
f − Tf (p, q)

)2]
= Õ

(
m−2λk(σp) + n−2λl(σq) +m−1τ (−k+2)∧0

m τ̃ (−l+2)∧0
n

)
, (4.42)
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as m,n→∞, where λp = λk(σp) and λq = λl(σq), where

λk(σ) := λ(σ,−k + 1, k) =





1
d
(σ ∧ 1) if k = 1,

1
d
(σ ∧ 1

k−1
) if 2 ≤ k < 2 + σ

d
,

1
d
σ∧1
k−1

, if k > 2 + σ
d
.

Based on this rate-exponent expression and the additional factor of τ (2a+k)∧0
m τ̃

(2ã+l)∧0
n in the

variance rate which only worsens the rate with larger k and l4, one would expect that the

convergence becomes only slower as k and/or l become large, and thus, the fastest rate achieved

is Õ(m− 2
d
(σp∧1) + n− 2

d
(σq∧1) + m−1), when k = 1 and l = 1 with lower truncation points

τm = 0 and τ̃n = Θ(n− 1
d ). This is in contrast with Remark 4.3.17, where we observed faster

convergence with larger values of k when a does not decrease in k. We note that the experiments

with synthetic data in Section 4.6 show that the estimator performs well even for large values of

k and l, suggesting that the detrimental effect of the lower tail exponents might be removed with

a tighter analysis.

Example 4.4.21 (Jensen–Shannon divergence; Example 4.4.6 contd.). For estimating

Jensen–Shannon divergence, recall that |ϕkl(u, v)| ≲ ψ−k+1,l−1(u)ψ−l+1,k−1(v) for any k ≥ 1

and l ≥ 2. For densities p and q satisfying conditions in Proposition 4.4.18, the lower-truncated

estimator (4.40) for Jensen–Shannon divergence is L2-consistent. Also, we do not require the

lower-truncation τm for k = 1, by the same argument in the previous example. If the underlying

densities p and q satisfy the conditions in Proposition 4.4.19 and additionally Q≪ P, then the

estimator (4.9) with fixed k ≥ 1 and l ≥ 2 and the same truncation points in Example 4.4.20

satisfies (4.42). The established rate seems to get only slower as k and/or l become large, and

thus achieves its fastest rate Õ(m− 2
d
(σp∧1)+n− 2

d
(σq∧1)+m−1) when k = 1 and l = 2 with lower

truncation points τm = 0 and τ̃n = Θ(n− 1
d ). Note, however, this conclusion might not hold in

practice; see Example 4.4.20.
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4.5 Adaptive Choices of k and l

In Section 4.3, we established the convergence rate of the proposed estimator (4.3)

for fixed k. Since E[ϕk(Uk∞(x))] = f(p(x)) for each valid k ∈ N by design, we can

choose any valid k without violating the asymptotic unbiasedness. In Remark 4.3.17,

we observed that a larger fixed k in general leads to a larger rate exponent in (4.25), and

thus, a faster convergence rate. This prompts the question of whether increasing k →∞

along with m improves the convergence rate upon fixed k. The following proposition

answers this in the affirmative. The proof is deferred to Appendix 4.D.2.

Proposition 4.5.1 (Convergence rate and L2-consistency with increasing k). For a target

functional Tf (·), if the underlying density p satisfies (Up), (L1p), (L2p), (L3p), (Sp), and (Bp),

then the estimator (4.3) with k = Θ((lnm)1.1) satisfies

∣∣E
[
T̂

(k)
f

]
− Tf (p)

∣∣ = Õ
(
m−σp∧1

d

)
(4.43)

as m→∞. Furthermore, the estimator (4.3) satisfies

E
[(
T̂

(k)
f − Tf (p)

)2]
= Õ

(
m− 2(σp∧1)

d +m−1
)

(4.44)

and thus is L2-consistent.

Remark 4.5.2. As expected heuristically, the bias rate exponent (σp∧1)/d in (4.43) equals

the limit of the finite-k rate exponent in (4.25) as k →∞.

Remark 4.5.3. There is no consensus on the optimal choice of k for functional estimation

in the literature. For example, Singh and Póczos (2016) analyzed k = O(1), whereas

Berrett et al. (2019) suggested k = O((lnm)5) for asymptotic efficiency of the estimator,

a slightly faster choice than the previous theorem, for differential entropy. Pérez-Cruz

(2009) discussed some relevant empirical results on the choice of k.
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Remark 4.5.4. While our main focus in this paper is to establish consistency and con-

vergence rates for the proposed estimators with fixed k (and l), we point out that a

tighter analysis on the dependence on k may lead to a better asymptotic convergence

rate. Note that the analysis of Kozachenko–Leonenko estimator by Berrett et al. (2019)

allows polynomial growth of k in the sample size. The loose dependence on k in our

analysis can be traced back to Lemma 4.B.4, which quantifies the gap between densities

of the normalized volume of k-NN ball Ukm(x) and its limiting Poisson random variable

Uk∞(x). To tighten the bound, one needs to sharpen Lemma 4.B.5 on the speed of

convergence of a Poisson binomial random variable to a Poisson random variable.

Example 4.5.5 (Differential entropy; Example 4.3.24 contd.). Applying Proposition 4.5.1

on differential entropy with k = Θ((lnm)1.05), we obtain the MSE rate (4.44). This rate is the

same as the fixed-k case in Example 4.3.24.

Example 4.5.6 (α-entropy; Example 4.3.25 contd.). Applying Proposition 4.5.1 on α-entropy

with k = Θ((lnm)1.05), we obtain the bias rate exponent (σp ∧ 1)/d, which is greater than or

equal to that in Example 4.3.25 with k fixed.

Similarly to the single-density case, we can establish the convergence rate when k

and l vary polylogarithmically with m and n, provided that m and n grow to infinity in

the same speed, i.e., m ≍ n. The following proposition can be proved by extending the

proof of Proposition 4.5.1 to the double-density case as in the proofs of Theorems 4.4.12

and 4.4.13, and thus is omitted.

Proposition 4.5.7 (Convergence rate and L2-consistency with increasing k and l). For a

target functional Tf (·, ·), if the underlying densities p and q satisfy the conditions (Up), (L1p),

(L2p), (L3p), (Sp), (Bp), (Uq), (L1q), (L2q), (L3q), (Sq), and (Bq), then the estimator (4.9) with

k = Θ((lnm)1.1) and l = Θ((lnn)1.1) satisfies

∣∣E[T̂ (k,l)
f ]− Tf (p, q)

∣∣ = Õ(m−σp∧1

d + n−σq∧1

d ),
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as m,n→∞ with m ≍ n. Furthermore, the estimator (4.9) satisfies

E
[
(T̂

(k,l)
f − Tf (p, q))2

]
= Õ(m− 2(σp∧1)

d + n− 2(σq∧1)

d +m−1), (4.45)

and thus is L2-consistent, provided that m ≍ n.

Remark 4.5.8. For d ≥ 2, if k and l increase as in Proposition 4.5.7, the bias bound

always dominates the variance bound so that the MSE is bounded as O(m−1). For d = 1,

the variance bound may dominate the bias bound depending on σp, σq, d, and/or the

choices of k and l.

Example 4.5.9 (KL divergence; Example 4.4.16 contd.). Letting k and l increase as k =

Θ((lnm)1.05)) and l = Θ((lnn)1.05)), we obtain the MSE rate (4.45) for estimating KL diver-

gence. As a complementary asymptotic result, Wang et al. (2009) showed that the (k, l)-NN

KL divergence estimator with k = km and l = ln such that km/m → 0 and km/(lnm) → ∞

as m→∞ and ln/n→ 0 and ln/(lnn)→∞ as n→∞ converges to the true KL divergence

almost surely for uniformly continuous densities bounded from below on their support.

Example 4.5.10 (α-divergence; Example 4.4.17 contd.). Letting k and l increase as k =

Θ((lnm)1.05)) and l = Θ((lnn)1.05)), the MSE of our estimator is bounded as (4.45).

4.6 Numerical Results

The performance of the proposed estimators (4.3) and (4.9) for several density

functionals were simulated over 500 runs for sample sizes ranging from 100 till 25600.2

For each dimension d from 1 through 5, we considered the uniform density Unif([0, 1]d),

the Gaussian density N(0, Id) restricted to ∥x∥ ≤ 3, and the Gaussian density N(0, Id)

as the density p. For double-density functionals, we considered Unif([0, 2]d), N(0, 4Id)

2The code is available at https://github.com/jongharyu/knn-functional-estimation.
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restricted to B(0, 3), and N(0, 4Id) as the density q.3 Note that all the functionals con-

sidered in these simulations can be expressed in closed form up to incomplete gamma

function, except the exponential entropies, Le Cam distance, and Jensen–Shannon

divergences for Gaussian densities. We estimated the latter using Monte Carlo approxi-

mation. Polynomial rates of convergence were observed for all cases, and in each case,

the exponent was calculated by ordinary least-squares linear regression between the

logarithms of the sample sizes and the MSE. We considered k ∈ {1, 2, 3, 4, 5, 10, 15} and,

for double-density functional estimators, l = k for simplicity.

Figure 4.7.1 presents the convergence of the estimator for differential entropy,

α-entropies for α ∈ {0.5, 1.5}, logarithmic 2-entropy, and exponential (2.5, 1)-entropy

for 3-dimensional densities. The simulation results show that smaller k yields faster

convergence while incurring larger variance, which suggests the use of a moderate size

of k in practice. Figure 4.7.2 summarizes the empirical exponents of the estimator for

each functional and density. A simple upper bound (2/d)∧1 on the theoretical exponents

established in Corollary 4.3.20 is also plotted for comparison; see also Examples 4.3.24

and 4.3.25. Empirical convergence rates are consistently better than theoretical bounds

for the truncated densities.

Corresponding simulation results for a few representative double-density func-

tionals (KL divergence, α-divergence, logarithmic α-divergence, Le Cam distance, and

Jensen–Shannon divergence) are presented in Figures 4.7.3 and 4.7.4. These simulations

indicate that the requirement k > −4a and l > −4ã in Theorem 4.4.8 may be relaxed to

the milder condition k > −2a and l > −2ã. For example, the estimator with k = l = 4

3As an exception for the experiment with the Jensen–Shannon divergence estimator, instead of
Unif([0, 1]d) and Unif([0, 2]d), we used piecewise constant densities p and q supported on [0, 1]d, which
are defined as follows:

p(x) =

{
3/2 if 0 ≤ x1 ≤ 1/2,

1/2 if 1/2 < x ≤ 1,
and q(x) =

{
1/2 if 0 ≤ x1 ≤ 1/2,

3/2 if 1/2 < x ≤ 1.
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for logarithmic 2-divergence (k = 3 ≤ −4(1− 2) = 4 and l = 3 ≤ −4(1− 2)) still exhibit

consistency in Figure 4.7.3. As presented in the last two rows in Figures 4.7.3 and 4.7.4,

simulations also indicate that our estimator is consistent in practice for the exceptional

examples of Le Cam distance and Jensen–Shannon divergence even without truncation.

For estimating Le Cam distance, we observed that using too large values for k or l lead

to bad convergence behavior for small dimensions; see, e.g., the case of k = l = 15 for

d = 1 at the second column of the fourth row in Figure 4.7.4.

4.7 Concluding Remarks

In this paper, we developed a systematic approach to designing k-NN based

consistent estimators for a variety of functionals, starting from the fundamental re-

quirement of asymptotic unbiasedness and utilizing the limiting behavior of the k-NN

statistics (Proposition 4.1.1). The proposed estimators rediscovered and unified several

existing k-NN based estimators for Shannon entropy, KL divergence, α-entropies and

α-divergences, and polynomial functionals, which have been sporadically studied and

individually analyzed in the literature. It demystified the need of the known, but rather

ad-hoc “bias corrections” for some functionals, providing an alternative, principled

recipe to identify L2-consistent estimators. Our list of examples is not exhaustive; other

density functionals in the same form may exist or may be discovered in future, and

our recipe will furnish consistent k-NN estimators for the same, with nonasymptotic

performance predicted by our current analysis.

We remark that the established convergence rates are not minimax optimal; see

Remark 4.3.23. As further noted in Remark 4.3.22, the proposed estimators cannot adapt

to a higher order of smoothness σ > 2, due to the inherent limitation of positive-valued

kernels. One possible solution to both problems is the ensemble approach (Moon and

Hero, 2014a; Sricharan et al., 2013) that takes a weighted average of multiple estimators
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based on the asymptotic bias expansion of each density functional estimator. Studying

the ensemble version of the estimators is beyond our scope and left as a future direction;

see (Berrett and Samworth, 2019) for a weighted version of the proposed divergence

functional estimator with local minimax optimality.

Throughout the paper, we assumed the Euclidean distance ρ(x,y) = ∥x − y∥.

We conclude the paper with specifying technical issues one needs to address in order

to extend the results of this paper to a general metric measure space (X , ρ, µ), where

(X , ρ) is a complete separable metric space and µ is a locally finite measure on the

Borel σ-algebra of X (see, e.g., Sturm (2006)). Consider a µ-absolutely continuous

probability measure P with density p. In general, the weak convergence property in

Proposition 4.1.1 for asymptotic unbiasedness (Theorems 4.3.6 and 4.4.7) requires the

Lebesgue differentiation theorem to hold in the metric measure space (X , ρ, µ), i.e., we

need

lim
r→0

P(B(x, r))

µ(B(x, r))
= p(x)

for µ-a.e. x ∈ X . Further, for the bias rate analysis to work, we need to extend

Lemma 4.B.6, which states that if p is locally σ-Hölder smooth on B(x,R), then for

r < R,

∣∣∣P(B(x, r))

µ(B(x, r))
− p(x)

∣∣∣ ≲ rσ and
∣∣∣dP(B(x, r))

dµ(B(x, r))
− p(x)

∣∣∣ ≲ rσ.

If there exists a nonsmooth boundary, we then further need Lemma 4.B.24 to hold in

the metric measure space. For the variance analysis to hold under p-norm and other

norms, we can apply and extend the analysis in (Gao et al., 2018) as pointed out earlier

in Remark 4.3.12.
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Figure 4.7.1 (following page). Convergence of the single-density functional estimator
for differential entropy, α-entropies α ∈ {0.5, 1.5}, logarithmic 2-entropy, and exponen-
tial (2.5, 1)-entropy for 3-dimensional densities. The first, second, and third columns
present simulation results with Unif([0, 1]3), N(0, I3) restricted to ∥x∥ ≤ 3, and N(0, I3),
respectively. The true functional values are indicated as dashed lines and one sample
standard deviations of the estimates are indicated as shaded area.
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Figure 4.7.2 (following page). Simulated MSE rate exponents of the single-density
functional estimator for differential entropy, α-entropies for α ∈ {0.5, 1.5}, logarith-
mic 2-entropy, and exponential (2.5, 1)-entropy. The first, second, and third columns
present simulation results with Unif([0, 1]d), N(0, Id) restricted to ∥x∥ ≤ 3, and N(0, Id),
respectively, for d ∈ {1, 2, 3, 4, 5}.
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Figure 4.7.3 (following page). Convergence of the double-density functional estimator
for KL divergence, 1.5-divergence, and logarithmic 2-divergence for 3-dimensional
densities. The first, second, and third columns present simulation results for the den-
sities p and q considered as Unif([0, 1]3) and Unif([0, 2]3), N(0, I3) restricted to ∥x∥ ≤ 3
and N(0, 4I3) restricted to ∥x∥ ≤ 3, and N(0, I3) and N(0, 4I3), respectively. The true
functional values are indicated as dashed lines and one sample standard deviations of
the estimates are indicated as shaded area. LCD and JSD are abbreviations for Le Cam
distance and Jensen–Shannon divergence, respectively.
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Figure 4.7.4 (following page). Simulated MSE rate exponents of the double-density
functional estimator for KL divergence, 1.5-divergence, and logarithmic 2-divergence.
The first, second, and third columns present simulation results for the densities p and
q considered as Unif([0, 1]3) and Unif([0, 2]3), N(0, I3) restricted to ∥x∥ ≤ 3 and N(0, 4I3)
restricted to ∥x∥ ≤ 3, and N(0, I3) and N(0, 4I3), respectively, for d ∈ {1, 2, 3, 4, 5}.
LCD and JSD are abbreviations for Le Cam distance and Jensen–Shannon divergence,
respectively.
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Appendix

4.A Notation

In what follows, let PU(u) = P{U ≤ u} and ρU(u) = dPU(u)/ du denote the cu-

mulative distribution function (cdf) and the density of a random variable U , respectively.

We use Bn,P to denote a binomial random variable with parameters n and P . We use

Pq to denote a Poisson random variable with rate q > 0. We use Xα,β to denote a beta

random variable with parameters α, β > 0 for α, β > 0, whose density is

tα−1(1− t)β−1

B(α, β)
, 0 ≤ t ≤ 1.

Here B(α, β) :=
∫ 1

0
tα−1(1− t)β−1 dt denotes the beta function. Finally, we use Hd−1 to

denote the (d− 1)-dimensional Hausdorff measure.

4.B Technical Lemmas

4.B.1 Auxiliary Lemmas

Lemma 4.B.1. Assume that P and P̃ have densities p and p̃, respectively, with respect to the

Lebesgue measure λ. If P≪ P̃, then P({x : mrp̃(x) > 0}) = 1 for any r > 0.

Proof. Let r > 0 be fixed. We first observe that P(supp(p̃)) = 1, since

1− P(supp(p̃)) =
∫
p(x)(1− 1supp(p̃)(x)) dx
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=

∫
p(x) 1{∃δ>0 s.t.P̃(B(x,δ))=0} dx

(a)

≤
∫
p(x) 1{∃δ>0 s.t. P(B(x,δ))=0} dx,

(b)
= 0.

Here, (a) follows from the absolute continuity P ≪ P̃, and (b) follows since p(x) = 0

for a.e. x over the set {x : ∃δ > 0 s.t. P(B(x, δ)) = 0}, by the Lebesgue differentiation

theorem.

Now, define Aδp̃(x) = P̃(B(x, δ))/ λ(B(x, δ)) for each δ > 0 and x ∈ Rd. On the

one hand, we have

lim
δ→0

Aδp̃(x) = p̃(x)

for λ-a.e. x by the Lebesgue differentiation theorem. On the other hand, for x ∈

T ∩ supp(p̃) where T := {x : mrp̃(x) = 0}, we have Aδp̃(x) > 0 for every δ > 0 and

0 = mrp̃(x) = inf
0<δ≤r

Aδp̃(x)

for any r > 0. Hence, we must have

p̃(x) = lim
δ→0

Aδp̃(x) = 0

for λ-a.e. x ∈ T ∩ supp(p̃), which implies that P̃(T ∩ supp(p̃)) = 0, and thus P(T ∩

supp(p̃)) = 0 since P ≪ P̃. This, together with P(supp(p̃)) = 1, establishes that

P(T ) = 0.

Lemma 4.B.2. For the lower incomplete gamma function γ(s, x) :=
∫ x

0
ts−1e−t dt and the

upper incomplete gamma function Γ(s, x) :=
∫∞
x
ts−1e−t dt, we have

γ(s, x) ≤ Γ(s) ∧ x
s

s
, ∀s > 0, x > 0, (4.46)
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Γ(s, x) ≤ Γ(s)xs−1e−x+1, ∀s ≥ 1, x ≥ 1. (4.47)

Proof. As Γ(s, x)/Γ(s) is decreasing in s for fixed x ≥ 1, we have that for s ≥ 1,

Γ(s, x)

Γ(s)
≤ Γ(⌊s⌋, x)

Γ(⌊s⌋) = e−x

⌊s⌋−1∑

k=0

xk

k!

≤ e−xx⌊s⌋−1

∞∑

k=0

1

k!
≤ e−x+1xs−1.

The second inequality follows since, for any x > 0, letting t = xe−u, we have

γ(s, x) =

∫ x

0

ts−1e−t dt = xs
∫ ∞

0

e−(su+xe−u) du

≤ xs
∫ ∞

0

e−su du =
xs

s
.

4.B.2 Convergence of Distribution of k-NN Statistics

We first state a basic statistical property of k-NN statistics.

Lemma 4.B.3 (Distribution of k-NN distance). The cdf of rkm(x) is

Prkm(x)(r) = P{Bm,P(B(x,r)) ≥ k} = PXk,m−k+1
(P(B(x, r))).

Proof. Consider

Prkm(x)(r) = P{rkm(x) ≤ r}

= P{ρ(x,X(k)(x)) ≤ r}

= P
{
|{i ∈ [m] : Xi ∈ B(x, r)}| ≥ k

}

= P{Bm,P(B(x,r)) ≥ k}

= PXk,m−k+1
(P(B(x, r))).
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The last equality follows from the identity

P{Bm,P ≥ k} = PXk,m−k+1
(P ).

Using this fact, Proposition 4.1.1, which claims the weak convergence of the

k-NN statistics Ukm(x) to a Gamma random variable, readily follows.

Proof of Proposition 4.1.1. Fix x ∈ Rd and u > 0, and let Pm := P(B(x, ϱ( u
m
))). Since

PUkm(x)(u) = Prkm(x)(ϱ(
u
m
)), we have

PUkm(x)(u) = P{Bm,Pm ≥ k}

from Lemma 4.B.3. By the Lebesgue differentiation theorem (see, e.g., (Rudin, 1987)),

for λ-a.e. x,

lim
m→∞

mPm = lim
m→∞

u
P(B(x, ϱ( u

m
)))

λ(B(x, ϱ( u
m
)))

= up(x).

Therefore, for each i = 0, . . . , k − 1, we have

lim
m→∞

(
m

i

)
P i
m(1− Pm)

m−i

= lim
m→∞

i!

mi

(
m

i

)(
1− Pm

)m−i (mPm)
i

i!

= e−up(x) (up(x))
i

i!
,

since

lim
m→∞

i!

mi

(
m

i

)
= 1 and lim

m→∞
(1− Pm)

m−i = e−up(x).
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This leads us to concludes that

lim
m→∞

P{Ukm(x) > u} =
k−1∑

i=0

e−up(x)up(x)
i

i!

= P{Uk∞(x) > u},

where Uk∞(x) is a G(k, p(x)) random variable.

Moreover, if the density p is locally smooth, then one can establish a polynomial

convergence rate of the density of Ukm(x) to Uk∞(x) as follows.

Lemma 4.B.4 (Generalization of (Gao et al., 2018, Lemma 2)). Suppose that νm = o(
√
m)

and k = km = o(
√
m) as m → ∞. For x ∈ supp(p), if p(x) ≤ Cp < ∞ and p is σp-Hölder

continuous (σp ∈ [0, 2]) over B(x, ϱ( u
m
)) with Hölder constant L, we have

∣∣ρUkm(x)(u)− ρUk∞(x)(u)
∣∣

≲σp,L,Cp,d (1 + u)
( u
m

)σp
d
+ k−k (k

2 + u2)uk−1e−up(x)

m

for u ∈ [0, νm] and m sufficiently large.

We first state two technical lemmas required to prove Lemma 4.B.4, whose

proofs are omitted here; we refer the interested readers to (Gao et al., 2018). The first

lemma in the following establishes a rate of convergence of a Poisson binomial random

variable Bm,Q/m ∼ Binom(m,Q/m) to a Poisson random variable PQ ∼ Poisson(Q) in

distribution.

Lemma 4.B.5 (Generalization of (Gao et al., 2018, Lemma 5)). For any Q, k = o(
√
m) as

m→∞, there exists a constant C0 > 0 such that for m sufficiently large

∣∣P{Bm,Q
m
= k} − P{PQ = k}

∣∣ ≤ C0
Qke−Q

k!

(k2 +Q2)

m
.

216



The second lemma establishes the speed of convergence of P(B(x, r))/ λ(B(x, r))

and dP(B(x, r))/ dλ(B(x, r)) to p(x) as r → 0, when p is locally smooth at x.

Lemma 4.B.6 (Generalization of (Gao et al., 2018, Lemma 4)). If a density p is σp-Hölder

continuous with constant L > 0 over B(x, R) for x ∈ Rd and some σp ∈ [0, 2], we have for any

0 < r < R,

∣∣∣P(B(x, r))

λ(B(x, r))
− p(x)

∣∣∣ ≤ d

σp + d
Lrσp ,

∣∣∣dP(B(x, r))

dλ(B(x, r))
− p(x)

∣∣∣ ≤ Lrσp .

The proof of the first inequality can be found in (Jiao et al., 2018) and the second

inequality can be proved by a similar argument.

Remark 4.B.7. If g is bounded above over B(x, R), then g is σp-Hölder continuous over

B(x, R) with σp = 0. The convergence of Ukm(x) to a G(k, p(x)) random variable as

m → ∞ can be quantified in terms of a gap between the densities using this lemma

and the order of smoothness σp of the underlying density p; however, the bounds

in Lemma 4.B.6 cannot be improved further beyond O(r2). It is consistent with the

observation that the higher-order smoothness beyond 2 cannot be exploited with k-NN

methods (Han et al., 2020; Tsybakov and van der Meulen, 1996).

Now we are ready to present the proof of Lemma 4.B.4.

Proof of Lemma 4.B.4. First note that the density of the k-th NN statistics rkm(x) is

ρrkm(x)(r) = mP{Bm−1,P(B(x,r)) = k − 1}dP(B(x, r))

dr

= gkm(P(B(x, r)))
dP(B(x, r))

dr
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from Lemma 4.B.3 in Appendix 4.B.2. Here we define

gkm(P ) := mP{Bm−1,P = k − 1}

for p ∈ [0, 1], which is the density of the k-th order statistic from among m random sam-

ples drawn from the uniform distribution over [0, 1]. It is easy to check that gkm(P ) ≤ m

and g′km(P ) ≤ 2m(m−1) ≤ 2m2 for any P ∈ [0, 1]. Recall that Pm(u|x) := P(B(x, ϱ( u
m
))).

The density of Ukm(x) can then be written as

ρUkm(x)(u) = ρrkm(x)

(
ϱ
( u
m

))d ϱ( u
m
)

du

= gkm(Pm(u|x))
dPm(u|x)

du
.

We define an intermediate density approximation

ρkm(u) := gkm

(up(x)
m

)p(x)
m

for u ≤ m/Cp, and bound the density gap by

|ρUkm(x)(u)− ρUk∞(x)(u)| ≤ |ρUkm(x)(u)− ρkm(u)|+ |ρkm(u)− ρUk∞(x)(u)|.

We bound each term on the right hand side.

For the first term, consider

|ρUkm(x)(u)− ρkm(u)| ≤ gkm(Pm(u|x))
∣∣∣dPm(u|x)

du
− p(x)

m

∣∣∣

+
∣∣∣gkm(Pm(u|x))− gkm

(up(x)
m

)∣∣∣p(x)
m

≤ gkm(Pm(u|x))
∣∣∣dPm(u|x)

du
− p(x)

m

∣∣∣

+ max
p∈(0,1)

|g′km(p)|
∣∣∣Pm(u|x)−

up(x)

m

∣∣∣p(x)
m
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≤ m
∣∣∣dPm(u|x)

du
− p(x)

m

∣∣∣+ 2m2
∣∣∣Pm(u|x)−

up(x)

m

∣∣∣p(x)
m

=
∣∣∣
dP(B(x, ϱ( u

m
)))

dλ(B(x, ϱ( u
m
))
− p(x)

∣∣∣+ 2up(x)
∣∣∣
P(B(x, ϱ( u

m
)))

λ(B(x, ϱ( u
m
))
− p(x)

∣∣∣

≤
(
1 + 2Cp

d

σp + d
u
)
Lϱσp

( u
m

)

≲σp,L,Cp,d (1 + u)
( u
m

)σp
d
.

The second last inequality follows from Lemma 4.B.6. Note that this term is independent

of k.

The second term can be bounded using Lemma 4.B.5. For m sufficiently large,

we have

|ρkm(u)− ρUk∞(x)(u)| =
k

u
|P
{
Bm,up(x)/m = k

}
− P{Pup(x) = k}|

≤ k

u
C0

(up(x))ke−up(x)

k!

k2 + u2p2(x)

m

=
C0

Γ(k)

(k2 + (up(x))2)(up(x))ke−up(x)

mu

≲C0,Cp k
−k (k

2 + u2)uk−1e−up(x)

m
,

which holds uniformly for all u, k = o(
√
m) as m → ∞. Here we use the Stirling

approximation Ck
p/k! ∼ (eCp)

k/kk+
1
2 .

Remark 4.B.8. This proof closely follows the one in (Gao et al., 2018), while keeping

track of the explicit dependence on the constants C0, Cp and k.

The following lemma quantifies the convergence of the cdf of Ukm(x) to the cdf

of Uk∞(x) when the underlying density p is smooth.

Lemma 4.B.9 (Generalization of (Gao et al., 2018, Lemma 3)). Suppose that νm = o(
√
m)

and k = km = o(
√
m) as m → ∞. For x ∈ supp(p), if p(x) ≤ Cp < ∞ and p is σp-Hölder
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continuous (σp ∈ [0, 2]) over B(x, ϱ(u/m)) with Hölder constant L, we have

|PUkm(x)(u)− PUk∞(x)(u)| ≲σp,L,Cp,d ku
( u
m

)σp
d
+

(k2 + u2)uk−1e−up(x)

m
, (4.48)

for u ∈ [1/(p(x)), νm] for m sufficiently large.

Proof. First, note that

PUk∞(x)(u) = 1−
k−1∑

j=0

P{Pup(x) = j}

and

PUkm(x)(u) = 1−
k−1∑

j=0

P{Bm,Pm(u|x) = j},

from Lemma 4.B.3 in Appendix 4.B.2. By triangle inequality, we have

∣∣PUkm(x)(u)− PUk∞(x)(u)
∣∣

≤
k−1∑

j=0

∣∣P{Pup(x) = j} − P{Bm,Pm(u|x) = j}
∣∣

≤
k−1∑

j=0

{∣∣P{Pup(x) = j} − P{B
m,

up(x)
m

= j}
∣∣+
∣∣P{B

m,
up(x)
m

= j} − P{Bm,Pm(u|x) = j}
∣∣
}
.

For the first term, using Lemma 4.B.5, we obtain

∣∣P{Pup(x) = j} − P
{
B

m,
up(x)
m

= j
}∣∣ ≤ C0

(up(x))je−up(x)

j!

j2 + (up(x))2

m
,

for each j = 0, . . . , k − 1, which implies that

k−1∑

j=0

∣∣P{Pup(x) = j} − P
{
B

m,
up(x)
m

= j
}∣∣ ≤ C0

k2 + (up(x))2

m
e−up(x)

k−1∑

j=0

(up(x))j

j!
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= C0
k2 + (up(x))2

m

Γ(k, up(x))

Γ(k)

≤ C0
k2 + (up(x))2

m
(up(x))k−1e−up(x)+1,

where the last inequality follows from Lemma 4.B.2.

For the second term, we have

∣∣P
{
B

m,
up(x)
m

= j
}
− P{Bm,Pm(u|x) = j}

∣∣ ≤ 2m
∣∣∣Pm(u|x)−

up(x)

m

∣∣∣

= 2u
∣∣∣
P(B(x, ϱ( u

m
)))

λ(B(x, ϱ( u
m
)))
− p(x)

∣∣∣

≤ 2u
d

σp + d
L ϱσp

( u
m

)
,

for each j = 0, . . . , k − 1, from Lemma 4.B.6.

Putting the bounds together and using the triangle inequality, we have that for

k, u = o(
√
m)

∣∣PUkm(x)(u)− PUk∞(x)(u)
∣∣ ≤ 2kud

σp + d
L ϱσp

( u
m

)
+ C0

k2 + (up(x))2

m
(up(x))k−1e−up(x)+1

≲σp,d,L,C0,Cp ku
( u
m

)σp
d
+

(k2 + u2)uk−1e−up(x)

m
,

which concludes the proof.

4.B.3 Bounds on Distribution of k-NN Statistics

We now present several bounds on

Fkm(u|x) := P{Ukm(x) ≤ u}

= P
{
rkm(x) ≤ ϱ

( u
m

)}

= P{Bm,Pm(u|x) ≥ k},
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which is the cdf of Ukm(x). Here and henceforth, for x ∈ Rd and u ≥ 0, we define

Pm(u|x) := P
(
B
(
x, ϱ
( u
m

)))
=

u

m

P(B(x, ϱ( u
m
)))

λ(B(x, ϱ( u
m
)))

.

Note that by the definitions of mrp(x) and Mrp(x), we have

u′mrp(x) ≤ mPm(u
′ |x) ≤ m ∧ (u′Mrp(x))

for r = ϱ( u
m
) and for any 0 < u′ ≤ u.

The following lemma presents an upper bound on the cdf Fkm(u|x).

Lemma 4.B.10 (Generalization of (Bulinski and Dimitrov, 2019b, Eq. (3.19))). For any

x ∈ Rd and u > 0, we have

Fkm(u|x) ≤
(mPm(u|x))k

k!
. (4.49)

Proof. Since Fkm(u|x) = PTk,m−k+1
(Pm(u|x)) from Lemma 4.B.3, we have

Fkm(u|x) =
∫ Pm(u|x)

0

tk−1(1− t)m−k

B(k,m− k + 1)
dt

≤ P k
m(u|x)

k B(k,m− k + 1)

=

(
m

k

)
P k
m(u|x)

≤ (mPm(u|x))k
k!

,

which concludes the proof.

We present two upper bounds on the complementary cdf 1− Fkm(u|x).

Lemma 4.B.11 ((Bulinski and Dimitrov, 2019b, Eq. (3.23))). For any x ∈ Rd, 0 < D < 1,
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and u ≥ 0, we have

1− Fkm(u|x) ≤ (1−D)−k+1e−DmPm(u|x). (4.50)

In particular, if mPm(u|x) > k, we have

1− Fkm(u|x) ≤
(emPm(u|x)

k

)k
e−mPm(u|x). (4.51)

Proof. Since we can write 1 − Fkm(u|x) = P{Bm,Pm(u|x) < k} from Lemma 4.B.3, the

bound follows immediately from a Chernoff bound on a binomial random variable. For

any λ > 0,

P{Bm,P < k} ≤ eλkE[e−λBm,P ]

= eλk(1− P + Pe−λ)m

≤ eλke−mP (1−e−λ),

and this proves (4.50) if we set D := 1− e−λ ∈ (0, 1). If mP > k, we then can minimize

the right hand side by plugging in λ = ln mp
k

, which obtains

P{Bm,P < k} ≤
(emP

k

)k
e−mP .

Lemma 4.B.12 ((Bulinski and Dimitrov, 2019b, Eq. (3.32))). For any x ∈ Rd, δ > 0,

m ≥ (1 + 1/δ)(k − 1), and u ≥ 0, we have

1− Fkm(u|x) ≤ (1 + δ)(1− Pm(u|x)). (4.52)
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Proof. Consider

1− Fkm(u|x) =
k−1∑

j=0

(
m

j

)
P j
m(u|x)(1− Pm(u|x))m−j

= (1− Pm(u|x))
k−1∑

j=0

m

m− j

(
m− 1

j

)
P j
m(u|x)(1− Pm(u|x))m−j−1.

For any fixed δ > 0, if m ≥ (1 + δ−1)(k − 1), then

m

m− j ≤
m

m− k + 1
≤ 1 + δ

for j = 0, . . . , k − 1. Therefore, we have

1− Fkm(u|x) ≤ (1 + δ)(1− Pm(u|x)).

Lemma 4.B.13. If p(z) ≤ Cp for z ∈ B(x, r), we have

ρUkm(x)(u) ≤
Ck

pu
k−1

Γ(k)
.

We first prove the following lemma. Let us denote the sphere centered at x ∈ Rd

of radius r > 0 by S(x, r) := {y : ρ(x,y) = r}. Note that the the Hausdorff measure

Hd−1(S(x, r)) of the sphere is dυdrd−1.

Lemma 4.B.14. If p(z) ≤ Cp for z ∈ S(x, r), we have

dP(B(x, r))

dλ(B(x, r))
≤ Cp.

Proof of Lemma 4.B.14. It is easy to see that p(x) ≤Mrp(x) for any r > 0 by contradiction.
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From the coarea formula (Evans and Gariepy, 2015), we have

dP(B(x, r))

dr
=

d

dr

∫

B(x,r)

p(y) dy

=

∫

S(x,r)
p(y)Hd−1(dy)

≤ Cp(dυdr
d−1)

since p(x) ≤ Cp for x ∈ S(x, r). Therefore, we have

dP(B(x, r))

dλ(B(x, r))
=

d
dr

P(B(x, r))
d
dr
λ(B(x, r))

≤ Cp.

Proof of Lemma 4.B.13. Now, from Lemma 4.B.3 and Lemma 4.B.14, if p(y) ≤ Cp for

y ∈ B(x, r), then

ρrkm(x)(r) = ρXk,m−k+1
(P(B(x, r)))

dP(B(x, r))

dr

≤ mk

Γ(k)
Pk−1(B(x, r))

dP(B(x, r))

dr

≤ (Cpm)k

Γ(k)

d

r
λk(B(x, r)).

We then bound the density of Ukm(x) as

ρUkm(x)(u) = ρrkm(x)

(
ϱ
( u
m

))d ϱ( u
m
)

du

≤ (Cpm)k

Γ(k)

d

ϱ( u
m
)

( u
m

)k ϱ( u
m
)

du
=

Ck
p

Γ(k)
uk−1,

which concludes the proof.

4.B.4 Bounds on Expected Values of k-NN Statistics

Let f̃km(u|x) := ρŨkm(x)(v) denote the density of the normalized volume Ũkm(x) =

λ(B(x, rk(x|X̃1:m))), where X̃1:m is drawn i.i.d. from density p̃. Later, the density p̃ may
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be identified as the density p for X1:m or the density q for Y1:n. Pick any numbers

0 ≤ τm ≤ 1 ≤ νm ≤ κm <∞. Suppose that we are given a nondecreasing function ξ ∈ Ξ.

For (a, b) ∈ R2 and k ∈ N, we define, for each x ∈ Rd

Akm(x; p̃; ξ) :=

∫ τm

0

ξ(ua)f̃km(u|x) du, (4.53)

B
(1)
km(x; p̃; ξ) :=

∫ νm

1

ξ(ub)f̃km(u|x) du, (4.54)

B
(2)
km(x; p̃; ξ) :=

∫ κm

νm

ξ(ub)f̃km(u|x) du, (4.55)

and

B
(3)
km(x; p̃; ξ) :=

∫ ∞

κm

ξ(ub)f̃km(u|x) du. (4.56)

Lemma 4.B.15. For r = ϱ( τm
m
), we have

Akm(x; p̃; ξ) ≤
(Mrp̃(x))

k

k!

(
τ kmξ(τ

a
m)− 1(−∞,0)(a)

∫ τm

0

uk dξ(ua)
)
.

In particular, if τm = 1 and −
∫ 1

0
uk dξ(ua) <∞, we have for r = ϱ( 1

m
),

Akm(x; p̃; ξ) ≲
(Mrp̃(x))

k

k!
.

Proof. Integrating by parts and applying Lemma 4.B.10, we have

Akm(x; p̃; ξ) =

∫ τm

0

ξ(ua) dF km(u|x)

≤ ξ(τam)F km(τm |x)−
∫ τm

0

F km(u|x) dξ(ua)

≤
(Mϱ( τm

m
)p̃(x))

k

k!
τ kmξ(τ

a
m)−

∫ τm

0

F km(u|x) dξ(ua).
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If a < 0, we again apply Lemma 4.B.10 again to the remaining integral and obtain

Akm(x; p̃; ξ) ≤
(Mϱ( τm

m
)p̃(x))

k

k!

(
τ kmξ(τ

a
m)−

∫ τm

0

uk dξ(ua)
)
.

Lemma 4.B.16. If b ≤ 0, we have

B
(1)
km(x; p̃; ξ) ≲ 1.

If b > 0 and
∫∞
0
e−tξ(tb) dt <∞, then for any 0 < D < 1 and r = ϱ(νm

m
), we have

B
(1)
km(x; p̃; ξ) ≲k,D ξ(νbm)e

−Dνm(mrp(x)) + ξ((Dmrp̃(x))
−b).

Proof. By definition, if b ≤ 0, we have

B
(1)
km(x; p̃; ξ) =

∫ νm

1

ξ(ub)f̃km(u|x) du

≤ ξ(1)

∫ νm

1

f̃km(u|x) du

≤ ξ(1).

We now assume b > 0. Integrating by parts, we have

B
(1)
km(x; p̃; ξ) = −

∫ νm

1

ξ(ub) d(1− F km(u|x))

≤ ξ(1)(1− F km(u|x)) +
∫ νm

1

(1− F km(u|x)) dξ(ub).

Applying Lemma 4.B.11 yields, for any 0 < D < 1, that

B
(1)
km(x; p̃; ξ) ≤ ξ(1) + (1−D)−k+1

∫ νm

1

e−DmP̃m(u|x) dξ(ub)

≤ ξ(1) + (1−D)−k+1

∫ νm

1

e−Du(mr p̃(x)) dξ(ub) (4.57)
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for r = ϱ(νm
m
). Integrating by parts again, we thus obtain

∫ νm

1

e−Du(mr p̃(x)) dξ(ub)

≤ ξ(νbm)e
−Dνm(mr p̃(x)) +D(mrp̃(x))

∫ νm

1

e−Du(mr p̃(x))ξ(ub) du

≤ ξ(νbm)e
−Dνm(mr p̃(x)) +

∫ Dνm(mr p̃(x))

D(mr p̃(x))

e−tξ(tb(Dmrp̃(x))
−b) dt. (4.58)

Here, using the property that ξ(xy) ≤ ξ(x)ξ(y) for any x, y > t0 for some t0 ≥ 0, it is

easy to show that

∫ Dνm(mr p̃(x))

D(mr p̃(x))

e−tξ(tb(Dmrp̃(x))
−b) dt

≤
(
t0ξ(t

b
0) +

∫ ∞

0

e−tξ(tb) dt
)
ξ((Dmrp̃(x))

−b) + ξ(t0)

∫ ∞

0

e−tξ(tb) dx

≲ 1 + ξ((Dmrp̃(x))
−b). (4.59)

Putting (4.57), (4.58), and (4.59) together, we obtain the desired bound.

Lemma 4.B.17. For any 0 < D < 1 and r = ϱ(νm
m
), we have

B
(2)
km(x; p̃; ξ) ≲k,D ξ(νbm ∨ κbm)e−Dνm(mr p̃(x)).

Proof. Integrating by parts, we have

B
(2)
km(x; p̃; ξ) = −

∫ κm

νm

ξ(ub) d(1− F km(u|x))

≤ ξ(νbm)(1− F km(νm |x)) +
∫ κm

νm

(1− Fkm(u|x)) dξ(ub)

≤ 2ξ(νbm ∨ κbm)(1− F km(νm |x)). (4.60)
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Applying Lemma 4.B.11, we have that for any 0 < D < 1 and r = ϱ(νm
m
)

B
(2)
km(x; p̃; ξ) ≤ 2(1−D)−k+1ξ(νbm ∨ κbm)e−DmP̃m(νm|x)

≤ 2(1−D)−k+1ξ((νbm ∨ κbm)e−Dνm(mrp(x)).

Lemma 4.B.18. For any δ > 0 and m sufficiently large, we have

B
(3)
km(x; p̃; ξ) ≲δ ξ(m

b)

∫
p(y)ξ(υb(ρ(x,y))) 1{ρ(x,y)>ϱ(κm

m
)} dy.

Proof. We recall the following bound (4.52) on the complementary cdf 1 − F km(u|x)

from Lemma 4.B.10: for any δ > 0 and m ≥ (1 + 1/δ)(k − 1), we have

1− F km(u|x) ≤ (1 + δ)(1− P̃m(u|x))

= (1 + δ)

∫
p̃(y) 1{ρ(x,y)>ϱ( u

m
)} dy.

Integrating by parts, we first obtain

B
(3)
km(x; p̃; ξ) = −

∫ ∞

κm

ξ(ub) d(1− F km(u|x))

≤ ξ(κbm)(1− F km(κm |x)) +
∫ ∞

κm

(1− Fm(u|x)) dξ(ub)

≤ ξ(κbm)(1− F km(κm |x)) + (1 + δ)

∫ ∞

κm

(1− P̃m(u|x)) dξ(ub). (4.61)

Integrating the second term by parts leads to

∫ ∞

κm

(1− P̃m(u|x)) dξ(ub) ≤ lim
u→∞

ξ(ub)(1− P̃m(u|x)) +
∫ ∞

κm

ξ(ub) dP̃m(u|x). (4.62)

For the first term in (4.62), since for m sufficiently large with mb > t0 and (κm/m)b > t0,
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we have ξ(ub) ≤ ξ(mb)ξ((u/m)b) for u ≥ κm, it follows that

ξ(ub)(1− P̃m(u|x)) = ξ(ub)

∫
p̃(y) 1{ρ(x,y)>ϱ( u

m
)} dy

≤ ξ(mb)

∫
p̃(y)ξ

(( u
m

)b)
1{ρ(x,y)>ϱ( u

m
)} dy

≤ ξ(mb)

∫
p̃(y)ξ(υb(ρ(x,y))) 1{ρ(x,y)>ϱ( u

m
)} dy

≤ ξ(mb)

∫
p̃(y)ξ(υb(ρ(x,y))) 1{ρ(x,y)>ϱ(κm

m
)} dy.

Therefore,

lim
u→∞

ξ(ub)(1− P̃m(u|x)) ≤ ξ(mb)

∫
p̃(y)ξ(υb(ρ(x,y))) 1{ρ(x,y)>ϱ(κm

m
)} dy. (4.63)

The second term in (4.62) can be bounded similarly as

∫ ∞

κm

ξ(ub) dP̃m(u|x) =
∫
p̃(y)ξ((mυ(ρ(x,y)))b) 1{ρ(x,y)>ϱ(κm

m
)} dy (4.64)

≤ ξ(mb)

∫
p̃(y)ξ(υb(ρ(x,y))) 1{ρ(x,y)>ϱ(κm

m
)} dy.

Plugging (4.62), (4.63), and (4.64) into (4.61) establishes the desired bound.

The following is the key lemma in establishing vanishing bias and vanishing

variance for single- and double-density cases.

Lemma 4.B.19. Assume that −
∫ 1

0
uk dξ(ua∧0) < ∞ and

∫∞
0
e−tξ(tb∨0) dt < ∞. If the

densities p and p̃ satisfy P̃≪ P, (Upp̃; k, a), and (Lpp̃; ξ, b), we have

lim sup
m→∞

∫
p(x)

∫ ∞

0

ξ(ψa,b(u)) dF km(u|x) dx <∞.

Proof. Let τm = 1 and κm = eo(m). Then, there exists νm such that νm → ∞, νm/m → 0,
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and for any c > 0, e−cνmξ(κbm)→ 0, as m→∞. Consider

∫ ∞

0

ξ(ψa,b(u)) dFkm(u|x) =
∫ 1

0

ξ(ua) dF km(u|x) +
∫ ∞

1

ξ(ub) dF km(u|x)

= Akm(x; p̃; ξ) +Bkm(x; p̃; ξ),

where

Bkm(x; p̃; ξ) := B
(1)
km(x; p̃; ξ) +B

(2)
km(x; p̃; ξ) +B

(3)
km(x; p̃; ξ).

Recall the definitions of Akm(x; p̃; ξ), B
(1)
km(x; p̃; ξ), B

(2)
km(x; p̃; ξ), and B

(3)
km(x; p̃; ξ) in (4.53),

(4.54), (4.55), and (4.56), respectively. Letting

Akm(p, p̃; ξ) :=

∫
p(x)Akm(x; p̃; ξ) dx

and

Bkm(p, p̃; ξ) :=

∫
p(x)Bkm(x; p̃; ξ) dx,

we show separately that lim supm→∞Akm(p, p̃; ξ) <∞ and lim supm→∞Bkm(p, p̃; ξ) <∞.

Step 1. Bounding Akm(p, p̃; ξ). If a ≥ 0, we trivially have Akm(p, p̃; ξ) ≤ ξ(1). If

a < 0, by Lemma 4.B.15, we have

Akm(p, p̃; ξ) ≤
W (p, p̃; k, ϱ( 1

m
))

k!

(
ξ(1)−

∫ 1

0

uk dξ(ua)
)

≲k W
(
p, p̃; k, ϱ

( 1
m

))
.

Hence, since there exists r′ > 0 such that W (p, p̃; k, r′) < ∞ by the the condition (Upp̃;

k, a) and W (p, p̃; k, r) is nonincreasing as r → 0, we conclude that Akm(p, p̃; ξ) <∞ for

m sufficiently large such that ϱ(1/m) < r′.

Step 2. Bounding Bkm(p, p̃; ξ). If b ≤ 0, then we trivially have Bkm(p, p̃; ξ) ≤ ξ(1).

If b > 0, by applying Lemmas 4.B.16, 4.B.17, and 4.B.18, we have that for any 0 < D < 1
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and m sufficiently large

Bkm(p, p̃; ξ) ≲ ξ(κbm)

∫
e−Dνm(mr1 p̃(x))p(x) dx

+ w(p, p̃; ξ, b, r1)

+ ξ(mb)R(p, p̃; ξ, b, r2),

where r1 = ϱ(νm/m) and r2 = ϱ(κm/m).

• For the first term, since, by Lemma 4.B.1, P ≪ P̃ implies that P({x : mr1 p̃(x) >

0}) = 1, we have ξ(κbm)e−νm(mr1 p̃(x)) → 0 as m→∞ for P-a.e. x by definition of νm

and κm. Therefore, by the dominated convergence theorem,

lim
m→∞

∫
ξ(κbm)e

−νm(mr1 p̃(x))p(x) dx = 0.

• Since there exists r′′ > 0 such that w(p, p̃; ξ, b, r′′) < ∞ by the condition (Lpp̃; ξ, b)

and w(p, p̃; ξ, b, r) is nonincreasing as r → 0, the second term is bounded for m

sufficiently large such that ϱ(κm

m
) < r′′.

• The limit superior of the last term ξ(mb)R(p, p̃; ξ, b, r2) as m→∞ is bounded by

the condition (Lpp̃; ξ, b).

Overall, we conclude that

lim sup
m→∞

Bkm(p, p̃; ξ) <∞.

Following the proof of Lemma 4.B.19 with the stronger assumptions establishes

the following bound.

Lemma 4.B.20. Assume that −
∫ 1

0
uk dξ(ua∧0) <∞ and

∫∞
0
e−tξ(tb∨0) dt <∞. If p̃ satisfies
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the conditions (Up), (L1p), (L2p), and (L3p), we have

∫ ∞

0

ξ(ψa,b(u)) dF km(u|x) ≲ 1

for P-a.e. x.

Continuing from (4.60) and applying (4.51) in Lemma 4.B.11 yield the following

bound, which is required for establishing performance guarantees with adaptive choices

of k and l.

Lemma 4.B.21. For r = ϱ(νm/m), we have

B
(2)
km(x; p̃; ξ) ≤ 2ξ(νbm ∨ κbm)

(eνmMrp̃(x)

k

)k
e−νmmr p̃(x).

Lemma 4.B.22. If k + a > 0, for x ∈ supp(p), we have

∫ ∞

0

ψa,b(u)ρUk∞(x)(u) du ≤
pk(x)

(k + a)Γ(k)
+

Γ((k + b) ∨ 1)

Γ(k)
(p(x))(k−1)∧(−b).

In particular, if cp ≤ p(x) ≤ Cp, then

∫ ∞

0

ψa,b(u)ρUk∞(x)(u) du ≲ 1.

Proof. First, consider

∫ 1

0

uaρUk∞(x)(u) du =
pk(x)

Γ(k)

∫ 1

0

uk+a−1e−up(x) du

=
(p(x))−a

Γ(k)

∫ p(x)

0

tk+a−1e−t dt

≤ pk(x)

(k + a)Γ(k)
,

where the last inequality follows from the bound on the lower incomplete gamma in
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Lemma 4.B.2. Similarly, we consider

∫ 1

0

ubρUk∞(x)(u) du =
(p(x))−b

Γ(k)

∫ p(x)

0

tk+b−1e−t dt.

On the one hand, if k + b > 1, by bounding the integral by Γ(k + b), we have

∫ 1

0

ubρUk∞(x)(u) du ≤
Γ(k + b)

Γ(k)
(p(x))−b.

On the other hand, if k + b ≤ 1, we have

∫ 1

0

ubρUk∞(x)(u) du ≤
(p(x))k−1

Γ(k)

∫ ∞

p(x)

e−t dt

≤ (p(x))k−1

Γ(k)
.

Therefore, we obtain

∫ 1

0

ubρUk∞(x)(u) du ≤
Γ((k + b) ∨ 1)

Γ(k)
(p(x))(k−1)∧(−b),

which completes the proof.

4.B.5 Generic Bias Bounds

Lemma 4.B.23 (Generic inner bias bound). Suppose that the density p satisfies the conditions

(Up), (Sp), and (Bp), and let k = o(
√
m) as m→∞.

1. We have

Iin,1 = O
(τ (a+

σp
d
+1)∧0

m

m
σp
d

+
k−k

m
+
( 1

m

) 1
d
τ (a+1)∧0
m

)
. (4.65)
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2. If νm = o(
√
m) as m→∞, we have

Iin,2 = O
(ν(b+

σp
d
+2)∨0

m

m
σp
d

+
k−kν

(b+k+2)∨0
m

m
+
(νm
m

) 1
d
ν(b+2)∨0
m

)
. (4.66)

Proof. We establish each bound separately.

Bounding the lower inner bias Iin,1. For each r > 0, define a set

Sp(r) := {x ∈ supp(p) : p is σp-Hölder continuousover B(x, r)}.

By the smoothness assumption (Sp), we can bound the inner bias incurred at the “smooth

region”, i.e.,

Iin,1,smooth =

∫

Sp(ϱ(
1
m
))

Iin,1(x)p(x) dx,

by applying Lemma 4.B.4. Since p(x) ≤ Cp < ∞ for P-a.e. x, this lemma holds for m

sufficiently large uniformly over P-a.e. x. Applying Lemma 4.B.4 for x ∈ Sp(ϱ(
1
m
)), we

have

Iin,1(x) ≲σp,L,Cp,C0,d

∫ 1

τm

ua
{
(1 + u)

( u
m

)σp
d
+ k−k (k

2 + u2)uk−1e−up(x)

m

}
du. (4.67)

It is easy to see that the first term is bounded by O
(
τ
(a+

σp
d
+1)∧0

m m−σp
d

)
.4 To bound

the second term, we use the upper bound on the lower incomplete gamma function

(Lemma 4.B.2). Since we always assume that k + a > 0, we have

∫ 1

τm

k−k

m
(k2 + u2)uk+a−1e−up(x) du

≤ k−k

m

{
k2p(x)−(k+a)γ(k + a, p(x)) + p(x)−(k+a+2)γ(k + a+ 2, p(x))

}
= O

(k−k

m

)
.

4Here a +
σp

d + 1 ̸= 0 is implicitly assumed. If a +
σp

d + 1 = 0, then the first term behaves as
O((ln τm)m−σp

d )
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Hence, we conclude that

Iin,1,smooth = O(τ
(a+

σp
d
+1)∧0

m m−σp
d + k−km−1). (4.68)

To control the inner bias incurred at x ∈ supp(p)\Sp(ϱ(m
−1)), i.e.,

Iin,1,nonsmooth =

∫

supp(p)\Sp(ϱ(
1
m
))

Iin,1(x)p(x) dx,

we first note that the bound (4.67) on Iin,1(x) holds with σp = 0 from the upper bound-

edness assumption (Up), which implies that

Iin,1,nonsmooth = O(λ(supp(p)\Sp(ϱ(m
−1)))(τ (a+1)∧0

m + k−km−1)). (4.69)

We now only need to bound the Lebesgue measure of the set where supp(p)\Sp(ϱ(m
−1)).

Observe that for any r > 0

supp(p)\Sp(r) ⊆ {x ∈ Rd : B(x, r) ∩ ∂(supp(p)) ̸= ∅},

where ∂A denotes the boundary of a set A. Using the following lemma with the

condition (Bp) on the finiteness of the Hausdorff measure of the boundary of the support,

we can bound the Lebesgue measure of Rd\Sp(ϱ(m
−1)) by O(ϱ(1/m)) = O(m− 1

d ).

Lemma 4.B.24 ((Gao et al., 2018, Section A)). For S ⊂ Rd, suppose that 0 < Hd−1(S) <∞.

Let T (r) := {x ∈ Rd : B(x, r) ∩ S ̸= ∅} for r > 0. Then λ(T (r)) = 2rHd−1(S) + o(r) for r

sufficiently small.

Combining (4.68) and (4.69) establishes the desired bound (4.65).

Bounding the upper inner bias Iin,2. The proof follows a similar line of argument
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as that of (4.65). We first apply Lemma 4.B.4 for x ∈ Sp(ϱ(
νm
m
)) and obtain

Iin,2(x) ≲σp,L,Cp,C0,d

∫ νm

1

ub
{
(1 + u)

( u
m

)σp
d
+ k−k (k

2 + u2)uk−1e−up(x)

m

}
du.

The first term is bounded by O(m−σp
d ν

(b+
σp
d
+2)∨0

m ). The second term is again bounded by

the upper bound on the lower incomplete gamma function. If b+ k > 0, we have

∫ νm

1

k−k

m
(k2 + u2)ub+k−1e−up(x) du

≤ k−k

m
(k2p−(b+k)(x)γ(b+ k, νmp(x)) + p−(b+k+2)(x)γ(b+ k + 2, νmp(x)))

= O
(
k−k (k

2ν
(b+k)∨0
m + ν

(b+k+2)∨0
m )

m

)

= O
(
k−k ν

(b+k+2)∨0
m

m

)
.

One can easily show that the bound also holds when b+ k ≤ 0. Hence, we conclude that

Iin,2,smooth =

∫

Sp(ϱ(
νm
m

))

Iin,2(x)p(x) dx (4.70)

= O(m−σp
d ν

(b+
σp
d
+2)∨0

m +m−1ν(b+k+2)∨0
m ).

Similar to (4.69), we have

Iin,2,nonsmooth =

∫

supp(p)\Sp(ϱ(
νm
m

))

Iin,2(x)p(x) dx, (4.71)

= O((νm/m)
1
d (ν(b+2)∨0

m +m−1ν(b+k+2)∨0
m )),

since λ(supp(p)\Sp(ϱ(νm/m))) = O(ϱ(νm/m)) = O((νm/m)
1
d ) by Lemma 4.B.24. Putting

(4.70) and (4.71) together establishes the desired bound (4.66).

Lemma 4.B.25 (Generic outer bias bound). Suppose that the density p satisfies (Up).
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1. If k > −a, we have

Iout,1 = O
(
k−kτ k+a

m

)
. (4.72)

2. If p satisfies (L1p), (L2p), and (L3p), then, for m sufficiently large, we have

Iout,2 = O
(
kbνb+k−1

m e−cpνm + (νbm ∨ κbm)
(νm
k

)k
e−ηpcpνm

)
. (4.73)

Proof. Recall that

ρUk∞(x)(u) =
pk(x)

Γ(k)
uk−1e−up(x).

Define

Ak∞(x; p) :=

∫ τm

0

uaρUk∞(x)(u) du

and

Bk∞(x; p) :=

∫ ∞

νm

ubρUk∞(x)(u) du.

For some κm = ω(m) such that κm ≥ νm, we also let

Akm(x; p) := Akm(x; p; ξ),

B
(2)
km(x; p) := B

(2)
km(x; p; ξ), and

B
(3)
km(x; p) := B

(3)
km(x; p; ξ)

for ξ(t) = t; recall the definitions in Appendix 4.B.4. Now we can write the lower outer

bias as

Iout,1 =

∫
p(x)(Akm(x; p) + Ak∞(x; p)) dx
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and the upper outer bias as

Iout,2 =

∫
p(x)(B

(2)
km(x; p) +B

(3)
km(x; p) +Bk∞(x; p)) dx

Bounding the lower outer bias Iout,1. On the one hand, by invoking the lower

incomplete gamma function in Lemma 4.B.2, we obtain

Ak∞(x; p) =
pk(x)

Γ(k)

∫ τm

0

uk+a−1e−up(x) du

=
p−a(x)

Γ(k)
γ(k + a, τmp(x))

≤ pk(x)τ k+a
m

Γ(k)(k + a)

≤ Ck
p τ

k+a
m

Γ(k)(k + a)
= O(k−kτ k+a

m ).

On the other hand, by applying Lemma 4.B.15 with the upper boundedness condi-

tion (Up), we obtain

∫
p(x)Akm(x; p) dx ≤

Ck
p τ

k+a
m

k!

(
1 ∨ k

k + a

)

= O(k−kτ k+a
m ).

Combining the two bounds, we conclude that Iout,1 = O(k−kτ k+a
m ).

Bounding the upper outer bias Iout,2. For the Bk∞(x; p) term in the upper outer

bias Iout,2, we apply the bound (4.47) on the upper incomplete gamma function in

Lemma 4.B.2. Consider

Bk∞(x; p) =
pk(x)

Γ(k)

∫ ∞

νm

uk+b−1e−up(x) du

=
p−b(x)

Γ(k)

∫ ∞

νmp(x)

tk+b−1e−t dt.
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If νmp(x) < 1, we have

Bk∞(x; p) ≤ p−b(x)

Γ(k)

∫ ∞

0

tk+b−1e−t dt

≤ Γ((k + b) ∨ 1)

Γ(k)
p−b(x).

We now assume that νmp(x) ≥ 1. If k + b ≥ 1, we have

Bk∞(x; p) =
p−b(x)

Γ(k)
Γ(k + b, νmp(x))

≤ p−b(x)

Γ(k)
Γ(k + b)(νmp(x))

k+b−1e−νmp(x)+1

=
Γ(k + b)

Γ(k)
νk+b−1
m pk−1(x)e−νmp(x)+1,

where the inequality follows from Lemma 4.B.2. For k + b < 1, a similar bound can be

derived:

Bk∞(x; p) =
p−b(x)

Γ(k)
(νmp(x))

k+b−1

∫ ∞

νmp(x)

e−t dt

=
1

Γ(k)
νk+b−1
m pk−1(x)e−νmp(x).

To sum up, we can bound Bk∞(x; p) as

Bk∞(x; p) ≤ Γ((k + b) ∨ 1)

Γ(k)
(p−b(x) 1{νmp(x)<1}+ν

k+b−1
m pk−1(x)e−νmp(x)+1)

(a)

≤ Γ((k + b) ∨ 1)

Γ(k)
(p−b(x) + νk+b−1

m pk−1(x))e−νmp(x)+1

(b)

≤ Γ((k + b) ∨ 1)

Γ(k)
((C−b

p ∨ c−b
p ) + νk+b−1

m Ck−1
p )e−νmcp+1

= O(kbνk+b−1
m e−cpνm).

Here, (a) follows from the inequality 1{t≤1} ≤ e−t+1, and (b) follows from the bounded-
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ness conditions (Up) and (L1p). Therefore, we conclude that

∫
p(x)Bk∞(x; p) dx = O(kbνk+b−1

m e−cpνm). (4.74)

Next, we bound
∫
p(x)(B

(2)
km(x; p) + B

(3)
km(x; p)) dx. On the one hand, applying

Lemma 4.B.21 with the upper boundedness condition (Up), we first have

∫
p(x)B

(2)
km(x; p) dx ≤ 2(νbm ∨ κbm)

(eCpνm
k

)k ∫
p(x)e−νmmrp(x) dx

for r = ϱ(νm
m
). Further, since we have

ηp = inf
x∈supp(p)

inf
r′∈(0,r]

λ(B(x, r) ∩ supp(p))
λ(B(x, r))

> 0

from condition (L3p), it follows that mrp(x) ≥ cpηp for x ∈ supp(p), leading to

∫
p(x)B

(2)
km(x; p) dx ≤ 2(νbm ∨ κbm)

(eνmCp

k

)k
e−ηpcpνm .

On the other hand, since the support of the density p is bounded by the condition (L2p),

R(p, p; ξ, b, ϱ(κm/m)) becomes 0 for m sufficiently large, since κm/m → ∞ as m → ∞.

Hence, by applying Lemma 4.B.18 for a fixed δ > 0, we have

∫
p(x)B

(3)
km(x; p) dx ≤ 3(1 + δ)mbR

(
p, p; ξ, b, ϱ

(κm
m

))
= 0

for m sufficiently large. Therefore, we conclude that

∫
p(x)(B

(2)
km(x; p) +B

(3)
km(x; p)) dx = O(νbm ∨ κbm)

(νm
k

)k
e−ηpcpνm

)
. (4.75)

Combining the bounds (4.74) and (4.75) establishes the desired bound (4.73).
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Remark 4.B.26. A more general condition, namely, that

(B1′
p) there exists E0, E1 > 0 such that

∫
p(x)e−βp(x) dx ≤ E0e

−E1β for all β > 1,

was originally assumed in (Gao et al., 2018). Known examples of densities that satisfy

the condition (B1′
p) satisfy the more intuitive condition (L1p). We remark, however, that

it is nontrivial to adapt the proofs in this paper to work with (B1′
p) in place of (L1p),

as the lower boundedness condition (L1p) is explicitly utilized to remove the upper

truncation of the estimator in the analysis of (Gao et al., 2018).

4.B.6 Generic Variance Bounds

Lemma 4.B.27. For a given function ϕ : R+ → R, let ζk(x|x1:m) := ϕ(rk(x|x1:m)) for any

points x,x1:m in the d-dimensional Euclidean space (Rd, ∥ · ∥). Let

Φ(x1:m) =
1

m

m∑

i=1

ζk(xi |x∼i
1:m). (4.76)

If the samples X1:m are i.i.d., then

Var(Φ(X1:m)) ≤
2(1 + kγd)

m
{(2k + 1)E[ζ2k(Xm |X1:m−1)] + 2kE[ζ2k+1(Xm |X1:m−1)]},

where γd ∈ N is a constant which depends only on d.

Before we prove Lemma 4.B.27, we introduce two technical lemmas.

Lemma 4.B.28 (Efron–Stein inequality (Efron and Stein, 1981; Steele, 1986)). LetX1,. . .,Xn

be independent random variables, and let g(X1:n) = g(X1, . . . , Xn) be a square-integrable

function of X1, . . . , Xn. Then if X ′
1, . . . , X

′
n are independent copies of X1, . . . , Xn, we have

Var(g(X1:n)) ≤
1

2

n∑

i=1

E
[
|g(X1:n)− g(X1:i−1X

′
iXi+1:n)|2

]
.
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The proof of this lemma can be found in (Steele, 1986).

We need another fact on k-nearest neighbors in the Euclidean space, stated below

in Lemma 4.B.27. Informally speaking, given a finite collection S of points in Rd, each

fixed point in Rd can be one of the k nearest neighbors of at most γd points in S, where

γd depends only on d. Henceforth, for a set of points A such that x /∈ A, we use Nk(x|A)

to denote the k-nearest neighbors of x in A.

Lemma 4.B.29 ((Biau and Devroye, 2015, Lemma 20.6), (Devroye et al., 2013, Ch. 5.3)).

In the d-dimensional Euclidean space (Rd, ∥ · ∥) there exists a constant γd > 0 which depends

only on d such that for any m ∈ N and for any distinct points x,x1, . . . ,xm ∈ Rd,

m∑

i=1

1{x∈Nk(xi|x∼i
1:m,x)} ≤ kγd.

Proof. We follow the proof of Stone’s lemma in Devroye et al. (2013, Ch. 5.3). For

z ∈ Rd\{0} and θ ∈ (0, π/2], we define a cone C(z, θ) := {y ∈ Rd : y = 0 or ∠(z,y) ≤

θ}. It is well known (Biau and Devroye, 2015, Theorem 20.16) that there exists a

constant γd > 0, which depends only on the dimension d, such that there exist γd cones

C(z1, π/6), . . . , C(zγd , π/6) which cover the entire space Rd. Furthermore, it is easy to see

that (⋆) if y1,y2 ∈ C(x, π/6) and ∥y1∥ < ∥y2∥, then ∥y1 − y2∥ < ∥y2∥; see, e.g., (Biau and

Devroye, 2015, Lemma 20.5).

Now, for each j ∈ [γd], mark all xi’s (if any) among the k-nearest neighbors of x

in x+ C(zj, π/6). If xi ∈ x+ C(zj, π/6) for some j ∈ [γd] and xi is not marked, then x is

not among the k-nearest neighbors of xi in x1:i−1,xi+1:m,x, i.e., x /∈ Nk(xi|x∼i
1:m,x), by

the property (⋆). Therefore, we have

n∑

i=1

1{x∈Nk(xi|x∼i
1:m,x)} ≤

n∑

i=1

1{xi is marked} ≤ kγd,

since there exist at most kγd marked points.
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We are now ready to prove Lemma 4.B.27.

Proof of Lemma 4.B.27. Let X′
1 be an independent copy of X1. Then, by applying the

Efron–Stein inequality (Lemma 4.B.28), we have

Var
(
Φ(X1:m)

)

≤ m

2
E
[(
Φ(X1:m)− Φ(X′

1X2:m)
)2]

(a)

≤ mE
[(
Φ(X1:m)−

m− 1

m
Φ(X2:m)

)2
+
(
Φ(X′

1X2:m)−
m− 1

m
Φ(X2:m)

)2] (4.77)

= 2mE
[(
Φ(X1:m)−

m− 1

m
Φ(X2:m)

)2]
, (4.78)

where (a) follows from the elementary inequality (a− b)2 ≤ 2((a− x)2 + (b− x)2).

Define

Ei := {X1 is one of the k-NNs of Xi in X∼i
1:m}

for 2 ≤ i ≤ m. Applying Lemma 4.B.29, we obtain

m∑

i=2

1Ei
≤ kγd.

Further, note that if Ec
i occurs, i.e., X1 is not among the k nearest neighbors of Xi in

X∼i
1:m, then ζk(Xi|X∼i

1:m) = ζk(Xi|X∼i
2:m). We thus obtain (4.79), where (b) follows from

Cauchy–Schwarz inequality. By taking expectations with respect to X1:m on both sides

and multiplying by 2/m, we can continue from (4.78) to obtain

Var
(
Φ(X1:m)

)
(4.80)

≤ 2(1 + kγd)

m

{
E
[
ζ2k(X1 |X2:m)

]
+ 2E

[ m∑

i=2

1Ei
(ζ2k(Xi |X∼i

1:m) + ζ2k(Xi |X∼i
2:m))

]}
.

Note that if Ei occurs, i.e., X1 is among the k nearest neighbors of Xi in X∼i
1:m, we have
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m2
(
Φ(X1:m)−

m− 1

m
Φ(X2:m)

)2

=
(
ζk(X1 |X2:m) +

m∑

i=2

1Ei

(
ζk(Xi |X∼i

1:m)− ζk(Xi |X∼i
2:m)

))2

(b)

≤
(
1 +

m∑

i=2

1Ei

)(
ζ2k(X1 |X2:m) +

m∑

i=2

1Ei

(
ζk(Xi |X∼i

1:m)− ζk(Xi |X∼i
2:m)

)2)

≤ (1 + kγd)
(
ζ2k(X1 |X2:m) + 2

m∑

i=2

1Ei

(
ζ2k(Xi |X∼i

1:m) + ζ2k(Xi |X∼i
2:m)

))
. (4.79)

ζk(Xi|X∼i
2:m) = ζk+1(Xi|X∼i

1:m). Therefore, it follows that

E
[ m∑

i=2

1Ei
(ζ2k(Xi |X∼i

1:m) + ζ2k(Xi |X∼i
2:m))

]

= E
[ m∑

i=2

1Ei
(ζ2k(Xi |X∼i

1:m) + ζ2k+1(Xi |X∼i
1:m))

]

(c)
= E

[ m∑

i=2

1{Xi is among the k-NNs of X1 in X2:m}(ζ
2
k(X1 |X2:m) + ζ2k+1(X1 |X2:m))

]

= kE[ζ2k(X1 |X2:m) + ζ2k+1(X1 |X2:m)], (4.81)

where (c) follows by exchanging X1 and Xi in each summand 2 ≤ i ≤ m. Therefore,

plugging the equation in (4.81) into (4.80) proves the desired bound.

For the double-density case, we can establish a similar variance bound.

Lemma 4.B.30. For a given function ϕ : R+ × R+ → R, let

ζkl(x|x1:m,y1:n) := ϕ(rk(x|x1:m), rl(x|y1:n))

for any points x,x1:m,y1:n in the d-dimensional Euclidean space (Rd, ∥ · ∥). Let

Φ(x1:m,y1:n) :=
1

m

m∑

i=1

ζkl(xi |x∼i
1:m,y1:n). (4.82)
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If X1:m and Y1:n are independent i.i.d. samples, we have

Var(Φ(X1:m,Y1:n)) ≤
2(1 + kγd)

m
{(2k + 1)E[ζ2kl(Xm |X1:m−1,Y1:n)]

+ 2kE[ζ2k+1,l(Xm |X1:m−1,Y1:n)]}.

Proof. Given Y1:n = y1:n, we can show that

Var
(
Φ
(
X1:m,y1:n

))

≤ 2mE
[(
Φ(X1:m,y1:n)−

m− 1

m
Φ(X2:m,y1:n)

)2]

≤ 2(1 + kγd)

m
{(2k + 1)E[ζ2kl(Xm |X1:m−1,y1:n)] + 2kE[ζ2k+1,l(Xm |X1:m−1,y1:n)]}

by following the same line of reasoning as in the proof of Lemma 4.B.27. Since Y1:n is

independent of X1:m, taking expectation on both sides with respect to Y1:n establishes

the desired bound.

4.C Deferred Proofs of Main Results

4.C.1 Detailed Proof of Theorem 4.3.15

We continue the proof from (4.31).

∣∣E[T̂ (k)
f ]− Tf (p)

∣∣ ≲ Iout,1 + Iin,1 + Iin,2 + Iout,2. (4.31)

Applying the bounds in Lemmas 4.B.23 and 4.B.25, we obtain the following bias bound

for an underlying density p satisfying the conditions (Up), (L1p), (Sp), and (Bp), provided

that νm = o(
√
m) as m→∞ and k ∈ N is fixed:

|E[T̂ (k)
f ]− Tf (p)| ≲σp,L,Cp,C0,d,k m−σp

d τ
(a+

σp
d
+1)∧0

m +m−1 +m− 1
d τ (a+1)∧0

m

+m−σp
d ν

(b+
σp
d
+2)∨0

m +m−1ν(b+k+2)∨0
m +m− 1

dν
(b+2)∨0+ 1

d
m
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+ τ k+a
m + νb+k−1

m e−cpνm .

First, by choosing νm = Θ((lnm)1+δ) for some δ > 0, we make the last term νb+k−1
m e−cpνm

decay faster than any polynomial rate. With this choice, the bound can be simplified as

|E[T̂ (k)
f ]− Tf (p)| = Õσp,L,Cp,C0,d,k(τ

(a+
σp
d
+1)∧0

m m−σp
d + τ (a+1)∧0

m m− 1
d +m−σp∧1

d + τ k+a
m ).

We consider three different ranges of the lower tail exponent a.

1. If a ≤ −σp/d− 1, we have

|E[T̂ (k)
f ]− Tf (p)| = Õ(τa+1

m m−σp∧1

d + τ k+a
m )

as a suboptimal bound. By equating the two terms, we obtain a rate Õ(m− (σp∧1)

d
k+a
k−1 )

with τm = Θ(m− (σp∧1)

d
1

k−1 ).

2. If −σp/d− 1 < a ≤ −1, the rate becomes

|E[T̂ (k)
f ]− Tf (p)| = Õ(τa+1

m m− 1
d +m−σp∧1

d + τ k+a
m ).

Equating τa+1
m m− 1

d and τ k+a
m as a suboptimal choice, we obtain τm = Θ(m− 1

d
1

k−1 ),

which results in the final rate

|E[T̂ (k)
f ]− Tf (p)| = Õ(m− 1

d
k+a
k−1 +m−σp∧1

d )

= Õ(m− 1
d
(σp∧ k+a

k−1
))

3. If a > −1, we can attain the bias rate Õ(m−σp∧1

d ) by using τm = O(m− 1
d(a+1) ).
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To sum up, by choosing

τm = τ(m, d, σp, a, k) (4.83)

=





Θ
(
m− σp∧1

d(k−1)
)

if a ≤ −σp

d
− 1,

Θ
(
m− 1

d(k−1)
)

if − σp

d
− 1 < a ≤ −1,

O
(
m− 1

d(a+1)
)

if a > −1,

we establish the bias bound in Theorem 4.3.15.

4.C.2 Proof of Theorem 4.4.7

Following a similar line of reasoning as in the proof of Proposition 4.1.1 and

using the continuous mapping theorem, it is easy to show that ϕk(Uk,m−1(Xm), Vln(Xm))

converges to ϕkl(Uk∞(X), Vl∞(X)) in distribution as m,n → ∞, where Uk∞(x) and

Vl∞(x) are a G(k, p(x)) random variable and a G(l, q(x)) random variable, respectively,

which are independent of each other and of X ∼ p, for P-a.e. x. Hence, if we can

only show that the collection of random variables (ϕkl(Uk,m−1(Xm), Vln(Xm)))m,n≥1 is

uniformly integrable, we can readily establish the asymptotic unbiasedness as follows:

lim
m,n→∞

E[T̂ (kl)
f (X1:m,Y1:n)] = lim

m,n→∞
E[ϕkl(Uk,m−1(Xm), Vln(Xm))]

= E[ϕkl(Uk∞(X), Vl∞(X))]

= Tf (p, q).

Consider

E[ξ(|ϕkl(Uk,m−1(Xm), Vln(Xm))|)] =
∫
p(x)E[ξ(|ϕkl(Uk,m−1(x), Vln(x))|)] dx.
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By invoking the polynomial bound |ϕkl(u, v)| ≲ ψa,b(u)ψã,b̃(v) and using the indepen-

dence of Uk,m−1(x) and Vln(x), we have

E[ξ(|ϕkl(Uk,m−1(Xm), Vln(Xm))|)] (4.84)

≲ξ(t0) 1 + E[ξ(ψa,b(Uk,m−1(Xm)))]

+ E[ξ(ψã,b̃(Vln(Xm)))]

+ {E[(E[ξ(ψa,b(Ukm(Xm)))|Xm]E[ξ(ψã,b̃(Vln(Xm)))|Xm])]}2,

since ξ(xy) ≤ ξ(x)ξ(y) for any x, y > t0. We can bound the last term as

{E[(E[ξ(ψa,b(Ukm(Xm)))|Xm]E[ξ(ψã,b̃(Vln(Xm)))|Xm])]}2

(a)

≤ E[(E[ξ2(ψa,b(Ukm(Xm)))|Xm])
2]E[(E[ξ2(ψã,b̃(Vln(Xm)))|Xm])

2]

(b)

≤ E[ξ2(ψa,b(Uk,m−1(Xm)))]E[ξ2(ψã,b̃(Vln(Xm)))],

where (a) and (b) follow from Cauchy–Schwarz inequality and Jensen’s inequality. We

thus only need to show that

lim sup
m→∞

E[ξ2(ψa,b(Uk,m−1(Xm)))] <∞

and

lim sup
n→∞

E[ξ2(ψã,b̃(Vln(Xm)))] <∞,

since they would imply that all the terms in (4.84) are bounded. Applying Lemma 4.B.19

to both integrals for k > −2aω(ξ) and l > −2ãω(ξ), we conclude the proof by the de la

Vallée Poussin theorem (Lemma 4.3.11).
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4.C.3 Proof of Theorem 4.4.8

Recall from the generic variance bound (Lemma 4.B.30) that we have

Var(T
(kl)
f ) ≤ 2(1 + kγd)

m
{(2k + 1)E[ϕ2

kl(Uk,m−1(Xm), Vln(Xm))]

+ 2kE[ϕ2
kl(Uk+1,m−1(Xm), Vln(Xm))]}.

Hence, following the same logic as in Section 4.C.2, in order to ensure that Var(T̂ (kl)
f ) =

O(m−1) for m and n sufficiently large, it is enough to show that

lim sup
m→∞

E[ξ2(ψa,b(Uk′,m−1(Xm)))] <∞

and

lim sup
n→∞

E[ξ2(ψã,b̃(Vln(Xm)))] <∞

for ξ(t) = t2 and for k′ ∈ {k, k + 1}. By applying Lemma 4.B.19 to both integrals for

k > −4a and l > −4ã with ξ(t) = t2, we conclude the proof.

4.C.4 Proof of Theorem 4.4.12

Let k > −a and l > −ã be fixed. First, following similar steps as in (4.29), we can

write the expected value of T̂ (kl)
f (X1:m,Y1:n) as

E
[
T̂

(kl)
f (X1:m,Y1:n)

]
=

∫
p(x)E

[
ϕkl(Uk,m−1(x), Vln(x))

]
dx,

since Uk,m−1(x) and Vln(x) are independent of Xm = x for P-a.e. x. Moreover, similar to

(4.30), we can write the target density functional as

Tf (p, q) =

∫
p(x)E[ϕkl(Uk∞(x), Vl∞(x))] dx,
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Iin(x) :=

∫

□m,n

ψa,b(u)ψã,b̃(v)
∣∣ρUk∞(x)(u)ρVl∞(x)(v)− ρUk,m−1(x)(u)ρVln(x)(v)

∣∣dudv, (4.86)

Iout(x) :=

∫

R2
+\□m,n

ψa,b(u)ψã,b̃(v)(ρUk∞(x)(u)ρVl∞(x)(v) + ρUk,m−1(x)(u)ρVln(x)(v)) dudv. (4.87)

where Uk∞(x) ∼ G(k, p(x)) and Vl∞(x) ∼ G(l, q(x)) are independent each other, and of

X ∼ p for P-a.e. x. Consider real numbers τm, νm, τ̃n, and ν̃n, to be determined later,

such that 0 ≤ τm ≤ 1 ≤ νm < ∞ and 0 ≤ τ̃n ≤ 1 ≤ ν̃n < ∞. Using the polynomial

bound |ϕkl(u, v)| ≲ ψa,b(u)ψã,b̃(v) and the triangle inequality, we then have

|E[T̂ (kl)
f ]− Tf (p, q)| ≲

∫
(Iin(x) + Iout(x))p(x) dx

= Iin + Iout, (4.85)

where Iin(x) and Iout(x) are defined in (4.86) and (4.87), where □m,n := (τm, νm)×(τ̃n, ν̃n).

We bound the inner bias Iin =
∫
Iin(x)p(x) dx and the outer bias Iout =

∫
Iout(x)p(x) dx

separately. Henceforth, we use the following shorthand notation:

ψa,b(u; τ, ν) = ψa,b(u) 1(τ,ν)(u)

and

ψa,b(u; τ, ν) = ψa,b(u)(1− 1(τ,ν)(u)).

Step 1: Bounding the inner bias. For x ∈ Rd, let

δ
(p)
km(u|x) :=

∣∣ρUk,m−1(x)(u)− ρUk∞(x)(u)
∣∣

and

δ
(q)
ln (v |x) :=

∣∣ρVln(x)(v)− ρVl∞(x)(v)
∣∣.
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Iout(x) ≤
∫

R\(τm,νm)

∫ ν̃n

τ̃n

(ρUk∞(x)(u)ρVl∞(x)(v) + ρUk,m−1(x)(u)ρVln(x)(v))ψa,b(u)ψã,b̃(v) dudv (4.88)

+

∫ νm

τm

∫

R\(τ̃n,ν̃n)

(ρUk∞(x)(u)ρVl∞(x)(v) + ρUk,m−1(x)(u)ρVln(x)(v))ψa,b(u)ψã,b̃(v) dudv.

By the triangle inequality, we have

∣∣ρUk,m−1(x)(u)ρVln(x)(v)− ρUk∞(x)(u)ρVl∞(x)(v)
∣∣ ≤ δ

(p)
km(u|x)ρVln(x)(v) + δ

(q)
ln (v |x)ρUk∞(x)(v)

≤ δ
(p)
km(u|x)δ

(q)
ln (v |x) + δ

(p)
km(u|x)ρVl∞(x)

+ δ
(q)
ln (v |x)ρUk∞(x).

Therefore, for each x ∈ supp(p), we can bound Iin(x) as

Iin(x) ≤
∫ νm

τm

ψa,b(u)δ
(p)
km(u|x) du

∫ ν̃n

τ̃n

ψã,b̃(v)δ
(q)
ln (v |x) dv

+ E[ψã,b̃(Vl∞(x); τ̃n, ν̃n)]

∫ νm

τm

ψa,b(u)δ
(p)
km(u|x) du

+ E[ψa,b(Uk∞(x); τm, νm)]

∫ ν̃n

τ̃n

ψã,b̃(v)δ
(q)
ln (v |x) dv

(a)

≲
∫ νm

τm

ψa,b(u)δ
(p)
km(u|x) du+

∫ ν̃n

τ̃n

ψã,b̃(v)δ
(q)
ln (v |x) dv,

where (a) follows by applying Lemma 4.B.22 with the assumptions (Up) and (L1p).

Therefore, we have

Iin ≲
∫
p(x)

(∫ νm

τm

ψa,b(u)δ
(p)
km(u|x) du+

∫ ν̃n

τ̃n

ψã,b̃(v)δ
(q)
ln (v |x) dv

)
dx,

and we can now apply the generic inner bias bounds in Lemma 4.B.23 to bound the

inner bias.

Step 2: Bounding the outer bias. We first consider the upper bound of Iout(x) in

(4.88). For the first integral, we have
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∫

R\(τm,νm)

∫ ν̃n

τ̃n

{ρUk∞(x)(u)ρVl∞(x)(v) + ρUk,m−1(x)(u)ρVln(x)(v)}ψa,b(u)ψã,b̃(v) du dv

= E[ψ(Uk∞(x); τm, νm) + ψ(Uk,m−1(x); τm, νm)]E[ψ(Vl∞(x); τ̃n, ν̃n) + ψ(Vln(x); τ̃n, ν̃n)]

(b)

≲ E[ψ(Uk∞(x); τm, νm) + ψ(Uk,m−1(x); τm, νm)],

where (b) follows from Lemmas 4.B.22 and 4.B.20. The second integral can be bounded

similarly. Overall, we have

Iout ≲
∫
p(x)E[ψ(Uk∞(x); τm, νm) + ψ(Uk,m−1(x); τm, νm)] dx

+

∫
p(x)E[ψ(Vl∞(x); τ̃n, ν̃n) + ψ(Vln(x); τ̃n, ν̃n)] dx,

and we can now apply the generic outer bias bounds in Lemma 4.B.25.

Step 3: Choosing break points. Putting the bounds on the inner and outer bias

together and choosing the break points (τm, νm, τ̃n, ν̃n) as in the proof of Theorem 4.4.12,

we obtain the desired bias rates.

4.C.5 Proof of Theorem 4.4.13

By Lemma 4.B.30, we have

Var(T
(kl)
f (X1:m,Y1:n)) ≤

2(1 + kγd)

m
{(2k − 2)E[ϕ2

kl(Uk−1,m−1(Xm), Vln(Xm))]

+ (2k + 1)E[ϕ2
kl(Uk,m−1(Xm), Vln(Xm))]

+ E[ϕ2
kl(Uk+1,m−1(Xm), Vln(Xm))]}.

Using Lemma 4.B.20, we have

E[ϕ2
kl(Uk′,m−1(Xm), Vln(Xm))] =

∫
p(x)E[ϕ2

kl(Uk′,m−1(x), Vln(x))] dx

≲
∫
p(x)E[ψ2

a,b(Uk′,m−1(x))]E[ψ2
ã,b̃
(Vln(x))] dx
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≲ 1

for

k ∈





{1, 2} if k = 1,

{k − 1, k, k + 1} if k ≥ 2,

and for m and n sufficiently large, which concludes the proof.

4.D Deferred Proofs of Auxiliary Results

4.D.1 Proof of Proposition 4.3.27

Similar to Lemmas 4.B.23 and 4.B.25, we establish the following bounds.

Lemma 4.D.1 (Generic inner bias bound under (S′
p)). Suppose that the density p satisfies

the conditions (Up) and (S′
p) , and let k = o(

√
m) as m→∞.

1. We have

Iin,1 = O
(τ (a+

σp
d
+1)∧0

m

m
σp
d

+
k−k

m

)
.

2. Suppose that ϕk(u) is differentiable at every u > 0 and |ϕ′
k(u)| ≲ ψa−1,b−1(u). If

νm = o(
√
m) as m→∞, then we have

Iin,2 = O
(
k
ν
(b+

σp
d
+1)∨0

m

m
σp
d

+
ν
(b+k+1)∨0
m

m

)
.

Proof. To establish the second bound, we invoke Lemma 4.B.9 instead of Lemma 4.B.4;

this helps us obtain a tighter bias bound by reducing the exponent of νm by at most 1,

which comes at the cost of additional factors in k. Let

∆km(u) :=
∣∣PUkm(x)(u)− PUk∞(x)(u)

∣∣.
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Since we assume that ϕk(u) is differentiable at any u > 0 and |ϕ′
k(u)| ≲ ψa−1,b−1(u),

integration by parts leads to

Iin,2(x) =
∣∣∣[ϕk(u)∆km(u)]

νm
1 +

∫ νm

1

ϕ′
k(u)∆km(u) du

∣∣∣

≤ |ϕk(νm)| ·∆km(νm) + |ϕk(1)| ·∆km(1) +

∫ νm

1

|ϕ′
k(u)| ·∆km(u) du

= Õσp,L,d

(
k
ν
(b+

σp
d
+1)∨0

m

m
σp
d

+
ν
(k+b+1)∨0
m

m

)

for x ∈ supp(p), establishing the second bound.

Assuming (L1′
p) in place of (L1p), we obtain a different generic bound on the

upper outer bias Iout,2 than that of Lemma 4.B.25; see also Remark 4.B.26.

Lemma 4.D.2 (Generic outer bias bound under (L1′
p) and (L4p)). Suppose that the density

p satisfies the conditions (Up), (L1′
p), and (L4p), we have

Iout,2 = O(νb+k−1−θ
m ).

For any density p satisfying the conditions (Up), (L1′
p), (L4p), and (S′

p), if νm =

o(
√
m) and k is fixed, we have the bias bound from Lemmas 4.D.1 and 4.D.2:

∣∣E
[
T̂

(k)
f

]
− Tf (p)

∣∣

≲σp,L,Cp,C0,d,k
τ
(a+

σp
d
+1)∧0

m

m
σp
d

+
ν
(b+

σp
d
+1)∨0

m

m
σp
d

+
ν
(b+k+1)∨0
m

m
+ τ k+a

m + νb+k−1−θ
m .

Since νm → ∞ as m → ∞, we require b + k − 1 − θ < 0 to guarantee that the bias

vanishes in our analysis, which forces us to choose a fixed k.

We first choose τm. If a+ σp

d
+ 1 > 0, we can take τm = O(m−σp

d
1

k+a ). Otherwise,

we take τm = Θ(m
−σp

d
1

k−1−
σp
d ) to make the first and the fourth terms decay with the same
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νm =





Θ(m(
σp
d
∧1) 1

θ−k−b+1 ) if k ≤ −b− 1, b ≤ −σp

d
− 1,

Θ(m
σp
d

1

θ−k+
σp
d

+2
)

if k ≤ −b− 1, b > −σp

d
− 1,

Θ(m
1

θ+2 ) if k > −b− 1, b ≤ −σp

d
− 1,

Θ(m(
σp
d
∧1) 1

θ+2 ) if k > −b− 1, b > −σp

d
− 1

(4.90)

speed. To summarize, we choose

τm =





Θ(m
−σp

d
1

k−
σp
d

−1 ) if a ≤ −σp

d
− 1,

O(m−σp
d

1
k+a ) o.w.

(4.89)

to bound the first and the fourth terms as

τ
(a+

σp
d
+1)∧0

m

m
σp
d

+ τ k+a
m =





O(m
−σp

d
k+a

k−
σp
d

−1 ) if a ≤ −σp

d
− 1,

O(m−σp
d ) o.w.

Similarly, by choosing νm as defined in (4.90) with νm = o(
√
m) as m → ∞, we

bound the second, third, and last terms as

1

m
σp
d

+
ν
(b+k+2)∨0
m

m
+ νb+k−θ−1

m = O(m−λν ),

where λν is as defined in (4.35).

4.D.2 Proof of Proposition 4.5.1

For any density p satisfying the conditions (Up), (L1p), (Sp), and (Bp), if νm =

o(
√
m) and k → ∞ with k = o(

√
m) as m → ∞, we have the bias bound from

Lemma 4.B.23:

∣∣E[T̂ (k)
f ]− Tf (p)

∣∣ ≲σp,L,Cp,C0,d
τ
(a+

σp
d
+1)∧0

m

m
σp
d

+
k−k

m
+
τ
(a+1)∧0
m

m
1
d

256



+
ν
(b+

σp
d
+2)∨0

m

m
σp
d

+ k−k ν
(b+k+2)∨0
m

m
+
ν
(b+2)∨0+ 1

d
m

m
1
d

+ k−kτ k+a
m + k(b∨0)νb+k−1

m e−cpνm .

Setting νm = Θ((lnm)1+δ) and k = Θ((lnm)1+δ′) for some 0 < δ′ < δ, the last term

k(b∨0)νb+k−1
m e−cpνm decays faster than any polynomial rate, that is, for any C > 0,

(b ∨ 0) ln k + (b+ k − 1) ln νm − cpνm < −C lnm

for m sufficiently large. With these choices of νm and k, the bias bound then can be

simplified as

∣∣E[T̂ (k)
f ]− Tf (p)

∣∣ = Õσp,L,Cp,C0,d

(τ (a+
σp
d
+1)∧0

m

m
σp
d

+
τ
(a+1)∧0
m

m
1
d

+
1

m
σp∧1

d

)
.

By choosing

τm = τ ′(m, ak) (4.91)

=





O((poly lnm)−1) if ak ≤ −1

0 if ak > −1,

we obtain

∣∣E[T̂ (k)
f ]− Tf (p)

∣∣ = Õσp,L,Cp,C0,d

(
m−σp∧1

d

)
.

Now, we show that Var(T̂ (k)
f ) = Õ(m−1) if k = Θ((lnm)1+δ) as m→∞ for some

δ > 0. Using Lemmas 4.B.15, 4.B.13, 4.B.21, and 4.B.18, if we choose νm and κm such that
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νm/m→ 0 and κm/m→∞ as m→∞, we have

Var(T̂
(k)
f ) = O

(k2
m

{Ck
p

k!
+ ν2b∨0m + (ν2bm ∨ κ2bm)e−νmηpcp

(eCpνm
k

)k})

for m sufficiently large. Letting νm = (2b/(ηpcp))(lnm)1+δ/2 and κm = e(lnm)1+δ/4 ensures

that the bound is Õ(m−1).

4.E Derivation of Estimator Functions

In this section, we present derivations of some selected examples of estimator

functions ϕkl(u, v) for some functions f(p, q) in Table 4.1.2. Estimator functions ϕk(u)

for the single-density case can be computed in a similar manner. In particular, we

present the examples of KL divergence (Example 4.E.2), logarithmic α-divergences

(Example 4.E.4), entropy difference (Example 4.E.6), reverse KL divergence (Exam-

ple 4.E.7), polynomial functionals (Example 4.E.3), Le Cam distance (Example 4.E.5),

and Jensen–Shannon divergence (Example 4.E.8).

We remark that as alluded to in the main text, the estimator function ϕkl(u, v) is a

function of u/v if f(p, q) is a function of q/p.

Proposition 4.E.1. If f(p, q) is a function of q/p, then there exists a function φkl : R+ → R

such that ϕkl(u, v) = φkl(u/v).

Proof. Suppose that we can write f(p, q) = g(q/p) for some function g : R+ → R. Recall

that we have

L{uk−1vl−1ϕkl(u, v)}(p, q) =
∫∫

R2
+

uk−1vl−1e−pue−qvϕkl(u, v) du dv

=
Γ(k)Γ(l)

pkql
g
(q
p

)
.
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Now, for any c > 0, we consider

L{uk−1vl−1ϕkl(cu, cv)}(p, q) =
∫∫

R2
+

uk−1vl−1e−pue−qvϕkl(cu, cv) du dv

=
1

ck+l

∫∫

R2
+

ũk−1ṽl−1e−pũ/ce−qṽ/cϕkl(ũ, ṽ) dũ dṽ

=
1

ck+l
· Γ(k)Γ(l)

(p/c)k(q/c)l
g
(q/c
p/c

)

=
Γ(k)Γ(l)

pkql
g
(q
p

)
.

Thus, by the (a.e.) uniqueness of Laplace transform, we have ϕkl(cu, cv) = ϕkl(u, v),

whence ϕkl(u, v) can be written as ϕkl(u, v) = φkl(u/v) for some function φ : R+ → R.

In what follows, for the one-dimensional inverse Laplace transform of two-

variable functions, we will specify the transformed variable by a subscript of the inverse

Laplace operator. For example, L−1
p {G(p, q)}(u) denotes the inverse Laplace transform

of G(p, q) along the p-axis with a corresponding time-domain variable u.

Example 4.E.2 (KL divergence; Example 4.4.2). For f(p, q) = ln(p/q), the corresponding

functional Tf (p, q) = D(p ∥ q) is the KL divergence. This is one of the simplest cases, as we

only need to deal with one-dimensional inverse Laplace transforms by linearity:

L−1
{ 1

pkql
ln
p

q

}
= L−1

{ ln p
pk

}
L−1

{ 1

ql

}
− L−1

{ 1

pk

}
L−1

{ ln q
ql

}
.

Note that for any κ > 0,

L−1
{ ln p
pκ

}
=
uκ−1

Γ(κ)

(
Ψ(κ)− lnu

)
. (4.92)

This can be verified by taking Laplace transform of the right-hand expression. From the definition
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of the estimator function ϕkl(u, v) in (4.9), we obtain

ϕkl(u, v) = ln
v

u
+Ψ(k)−Ψ(l). (4.93)

Example 4.E.3 (Polynomial functionals; Example 4.4.3). Consider f(p, q) = pα−1qβ for

some α, β ∈ R, which corresponds to the functional

Tf (p, q) = E
[
pα−1(X)qβ(X)

]
=

∫
pα(x)qβ(x) dx.

This includes many special cases such as Rényi entropies, Rényi divergences, Hellinger distance,

and χ2-divergence. The estimator function is

ϕkl(u, v) =
Γ(k)Γ(l)

Γ(k − α + 1)Γ(l − β)u
1−αv−β

for k > α − 1 and l > β. We remark that our estimator recovers the bias-corrected estimator

presented in (Póczos et al., 2012).

Example 4.E.4 (Logarithmic α-divergence; Example 4.4.4). For α ∈ R, consider a function

f(p, q) = (p/q)α−1 ln p
q
, which corresponds to the functional

Tf (p, q) = E
[(p(X)

q(X)

)α−1

ln
p(X)

q(X)

]

=

∫
pα(x)q1−α(x) ln

p(x)

q(x)
dx.

Similar to KL divergence, the estimator function can be found immediately from (4.92), i.e.,

ϕkl(u, v) =
Γ(k)Γ(l)

Γ(k − α + 1)Γ(l + α− 1)

(v
u

)α−1(
ln
v

u
+Ψ(k − α + 1)−Ψ(l + α− 1)

)
,

for k > α − 1 and l > −α + 1. Note that α = 1 recovers the estimator function for the KL

divergence (4.93).
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Example 4.E.5 (Le Cam distance; Example 4.4.5). For f(p, q) = 1− 2q/(p+ q), we wish to

compute the estimator function ϕkl(u, v), that is,

ϕkl(u, v) = 2
Γ(k)Γ(l)

uk−1vl−1
L−1

{ 1

pkql
1

1 + q
p

}
− 1.

The two-dimensional inverse Laplace transform can be peeled off dimension by dimension as

follows:

L−1
p,q

{ 1

pkql
1

1 + q
p

}
(u, v) = L−1

p

{ 1

pk+l
L−1

q

{ 1

( q
p
)l(1 + q

p
)

}
(v)
}
(u). (4.94)

Letting q̃ = q/p, we first find the inverse Laplace transform of

1

q̃l(1 + q̃)
= (−1)l

( l∑

i=1

(−1)i
q̃i

+
1

1 + q̃

)
, (4.95)

which is

L−1
q̃

{ 1

q̃l(1 + q̃)

}
(v) = (−1)l

(
e−v −

l−1∑

i=0

(−v)i
i!

)
,

since we have

L−1
p

{ 1

pn+1

}
(u) =

un

n!
1[0,∞)(u)

for n ∈ N ∪ {0} and

L−1
p

{ 1

s+ a

}
(u) = e−au 1[0,∞)(u).
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L−1
p,q

{ 1

pkql
1

1 + q
p

}
(u, v)

= L−1
p

{
(−1)l

( e−pv

pk+l−1
−

l−1∑

i=0

(−v)i
i!

1

pk+l−i−1

)}
(u)

= (−1)l
( (u− v)k+l−2

(k + l − 2)!
1[v,∞)(u)−

l−1∑

i=0

(−v)i
i!

uk+l−i−2

(k + l − i− 2)!

)

= (−1)l uk+l−2

(k + l − 2)!

((
1− v

u

)k+l−2

1[v,∞)(u)−
l−1∑

i=0

(
k + l − 2

i

)(−v
u

)i)
. (4.96)

ϕkl(u, v) = 2

(
k + l − 2

k − 1

)−1(
−u
v

)l−1

×

( l−1∑

i=0

(
k + l − 2

i

)(
− v
u

)i
−
(
1− v

u

)k+l−2

1[v,∞)(u)
)
− 1. (4.97)

Moreover, by the time-scaling property, we have

L−1
q

{ 1

( q
p
)l(1 + q

p
)

}
(v) = (−1)l

(
pe−pv −

l−1∑

i=0

(−v)i
i!

pi+1
)
.

Now, continuing from (4.94), we have (4.96), which leads to the estimator function (4.97). As a

bound on the estimator function ϕkl(u, v), we observe that

|ϕkl(u, v)| ≲
(u
v

)l−1( l−1∑

i=0

(v
u

)i
+

k+l−2∑

j=0

(v
u

)j)

≲ ψ−k+1,l−1(u)ψ−l+1,k−1(v).

For the remaining examples, we assume that Q≪ P.

Example 4.E.6 (Entropy difference). For f(p, q) = ln(1/p)−(q/p) ln(1/q), the corresponding

functional Tf (p, q) = h(p)− h(q) becomes the difference of the differential entropies h(p) and
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h(q). It is easy to show that

ϕkl(u, v) =
(l − 1)

k

u

v
(Ψ(l − 1)− ln v)− (Ψ(k)− lnu).

As a bound on the estimator function ϕkl(u, v), we have

|ϕkl(u, v)| ≲
u

v
(1 + | ln v |) + (1 + | lnu|)

≲ ψ1,1(u)ψ−1−ϵ,−1+ϵ(v) + ψ−ϵ,ϵ(u)

≲ ψ−ϵ,1(u)ψ−1−ϵ,−1+ϵ(v).

Example 4.E.7 (Reverse KL divergence). When Q ≪ P, we can write the reverse KL

divergence as

D(q ∥ p) =
∫
q(x) ln

q(x)

p(x)
dx

=

∫
p(x)

q(x)

p(x)
ln
q(x)

p(x)
dx = Tf (p, q)

for f(p, q) = (q/p) ln(q/p). Then, for k ≥ 1 and l ≥ 2, we have

L−1
{f(p, q)

pkql

}

= L−1
{ 1

pk+1

}
L−1

q

{ ln q

ql−1

}
− L−1

{ ln p

pk+1

}
L−1

q

{ 1

ql−1

}

=
uk

Γ(k + 1)

vl−2

Γ(l − 1)

(
Ψ(l − 1)− ln v

)
− uk

Γ(k + 1)

(
Ψ(k + 1)− lnu

) vl−2

Γ(l − 1)
.

Here, the case l = 1 is excluded, since L−1{ln s} is ill-defined. Finally, we have

ϕkl(u, v) =
Γ(k)Γ(l)

uk−1vl−1

uk

Γ(k + 1)

vl−2

Γ(l − 1)

{(
Ψ(l − 1)− ln v

)
−
(
Ψ(k + 1)− lnu

)}

=
l − 1

k

u

v

(
ln
u

v
+Ψ(l − 1)−Ψ(k + 1)

)
.
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Table 4.E.1. Inverse Laplace transforms of few elementary functions and basic opera-
tions.

Frequency domain
F (p) = L{f(u)}

Time domain
f(u) = L−1{F (p)}

p−k (k > 0) uk−1/Γ(k)
ln p/p −(lnu+ γ)

1/(p+ α) e−αu

F (ap) f
(
u/a
)
/a

e−apF (p) f(u− a) 1[a,∞)(u)
F (n)(p) (−1)nunf(u)
F (p)/p

∫ u

0
f(t) dt

F (p)G(p) (f ∗ g)(u) =
∫ u

0
f(ũ)g(u− ũ) dũ

pF (p) f ′(u)− f(0)

As a bound on the estimator function ϕkl(u, v), we have

|ϕkl(u, v)| ≲
u

v
(1 + | lnu| + | ln v |)

≲
u

v
(1 + | lnu|)(1 + | ln v |)

≲ ψ1−ϵ,1+ϵ(u)ψ−1−ϵ,−1+ϵ(v).

Example 4.E.8 (Jensen–Shannon divergence; Example 4.4.6). We wish to compute the

estimator function ϕkl(u, v) for

f(p, q) =
1

2

(q
p
+ 1
)
ln

2

(q/p) + 1
+

q

2p
ln
q

p
.

For l ≥ 2, we have

2f(p, q)

pkql
=
( 1

pk+1ql−1
+

1

pkql

)
ln 2 +

1

pk+1ql−1
ln
q

p
+
Gl−1(

q
p
) +Gl(

q
p
)

pk+l
,
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where we define Gl(q) := − ln(q + 1)/ql. Using the identity (4.95), we can show that for l ∈ N

gl(v) = L−1
q {Gl(q)}(v)

= (−1)l
(∫ ∞

1

e−vx

xl
dx−

l−2∑

j=0

(−v)j
(l − 1− j)j!

)
.

Now the desired estimator function can be written as

2ϕkl(u, v) =
Γ(k)Γ(l)

uk−1vl−1
L−1

{f(p, q)
pkql

}
(u, v)

=
l − 1

k

u

v

(
Ψ(l − 1)−Ψ(k + 1) + ln

u

v

)
+
( l − 1

k

u

v
+ 1
)
ln 2 + Akl(u, v),

(4.98)

where we define

Akl(u, v) =
Γ(k)Γ(l)

uk−1vl−1
L−1

p

{L−1
q {Gl−1(

q
p
) +Gl(

q
p
)}(v)

pk+l

}
(u)

(a)
=

Γ(k)Γ(l)

uk−1vl−1
L−1

p

{gl−1(pv) + gl(pv)

pk+l−1

}
(u)

= Bkl(u, v) +
l − 1

k

u

v
Bk+1,l−1(u, v), (4.99)

where

Bkl(u, v) =
Γ(k)Γ(l)

uk−1vl−1
L−1

p

{ gl(pv)
pk+l−1

}
(u).

Here, (a) follows by the time scaling property, that is, L−1
q {Gl(q/p)}(v) = pgl(pv). Now, since

we have (4.100), it follows that

(
k + l − 2

k − 1

)
Bkl(u, v)

= − 1[1,∞)(w)(−w)−k+1

∫ w

1

(x− w)k+l−2

xl
dx+

l−2∑

j=0

(
k + l − 2

j

)
(−w)l−1−j

l − 1− j ,
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L−1
p

{ gl(pv)
pk+l−1

}

=

∫ ∞

1

1

xl
L−1

p

{ e−pvx

pk+l−1

}
dx−

l−2∑

j=0

(−v)j
(l − 1− j)j!L

−1
p

{ 1

pk+l−1−j

}

=

∫ ∞

1

1

xl
1[vx,∞)(u)

(u− vx)k+l−2

(k + l − 2)!
dx−

l−2∑

j=0

(−v)j
(l − 1− j)j!

uk+l−2−j

(k + l − 2− j)! , (4.100)

where w := u/v.

Rearranging the integral in the parenthesis as

(−w)k+1

∫ w

1

(x− w)k+l−2

xl
dx

=
k+l−2∑

i=0
i ̸=k−1

(
k + l − 2

i

)
(−1)k−1−i − (−w−1)k−1−i

k − 1− i +

(
k + l − 2

k − 1

)
lnw,

we finally obtain

Bkl(u, v) =

(
k + l − 2

k − 1

)−1 l−2∑

j=0

(
k + l − 2

j

)
(−u/v)l−1−j

l − 1− j (4.101)

if u
v
< 1, and

Bkl(u, v) = − ln
u

v
+

(
k + l − 2

k − 1

)−1

(4.102)

×
{k−2∑

i=0

(
k + l − 2

i

)
(−v/u)k−1−i

k − 1− i −
k+l−2∑

i=0
i ̸=k−1

(
k + l − 2

i

)
(−1)k−1−i

k − 1− i
}

if u
v
≥ 1. Substituting the expressions for Bkl(u, v) from (4.101) and (4.102) into (4.99) and

then into (4.98) yields the final expression for the estimator function as

ϕkl(u, v) =
1

2

{
ln 2 +

l − 1

k

u

v

(
ln 2 + Ψ(l − 1)−Ψ(k + 1) + ln

u

v

)
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+Bkl(u, v) +
l − 1

k

u

v
Bk+1,l−1(u, v)

}
.

As a bound on the estimator function ϕkl(u, v), we have

|ϕkl(u, v)| ≲ ψ−k+1,l−1(u)ψ−l+1,k−1(v).

4.F Examples of Smooth Densities

In this section, we show that the d-dimensional truncated Gaussian, Cauchy, and

exponential distributions, as well as the uniform distribution and the d-dimensional

product of identical beta distributions with parameters α ≥ 3 and β ≥ 3 satisfy the con-

ditions (Up), (L1p), (Sp), and (Bp) with σp = 2, and the d-dimensional truncated Laplace

distribution satisfies the conditions with σp = 1. We remark that the boundedness of the

Hessian of the density p over a compact set implies 2-Hölder continuity, if the Hessian

is integrable. Since we have considered that the Hessian is integrable, we only need to

prove the boundedness of the Hessian in order to demonstrate the 2-Hölder continuity.

Example 4.F.1 (Truncated Gaussian). Consider the truncated d-dimensional Gaussian distri-

bution defined by the density

p(x) :=
Γ(d/2 + 1)

πd/2Kd(R)
e−∥x∥22/2 1(−∞,R](∥x∥2),

where Kd(R) :=
∫ R

0
drd−1e−r2/2 dr. Then, supp(p) = {x ∈ Rd : ∥x∥ ≤ R} and

Γ(d/2 + 1)

πd/2Kd(R)
e−R2/2 ≤ p(x) ≤ Γ(d/2 + 1)

πd/2Kd(R)

for x ∈ supp(p). Moreover, on supp(p)o,

∇2p(x)ij =
Γ(d/2 + 1)

πd/2Kd(R)
(xixj − δij)e−∥x∥22/2,
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whence,

∥∇2p(x)∥ ≤ ∥∇2p(x)∥F ≤
Γ(d/2 + 1)

πd/2Kd(R)

√
R4 + d.

Finally, ∂supp(p) = S(0, R) satisfies

Hd−1(S(0, R)) = dυdR
d−1.

Therefore, this density satisfies the conditions (Up), (L1p), (Sp), and (Bp) with σp = 2 and

sup
x
p(x) =

Γ(d/2 + 1)

πd/2Kd(R)
,

L(p; supp(p)o) =
Γ(d/2 + 1)

πd/2Kd(R)

√
R4 + d,

Hd−1(∂supp(p)) = dυdR
d−1.

Example 4.F.2 (Truncated exponential). Let SR := {x ∈ Rd : x1, . . . , xd ≥ 0, x1+ . . .+xd ≤

R}. The truncated d-dimensional exponential distribution defined by the density

p(x) :=
e−(x1+···+xd)

1−
(∑d−1

i=0
Ri

i!

)
e−R

1SR
(x)

is 2-Hölder continuous over supp(p) and satisfies

sup
x
p(x) =

(
1−

(d−1∑

i=0

Ri

i!

)
e−R

)−1

,

L(p; supp(p)o) = d sup
x
p(x),

and

Hd−1(∂supp(p)) =
( √

d

(d− 1)!
+ d
)
Rd−1,

as can be seen by an analysis similar to that in the previous example.
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Example 4.F.3 (Truncated Laplace). Consider the truncated d-dimensional Laplace distribu-

tion defined by the density

p(x) :=
e−(|x1|+···+|xd|)

2d
(
1−

(∑d−1
i=0

Ri

i!

)
e−R

) 1(−∞,R](∥x∥1).

Then, (Up), (L1p), and (Bp) can be demonstrated similarly to the previous examples. For (Sp),

note that for x, y ∈ R,
∣∣e−|x| − e−|y|∣∣ ≤ |x− y |.

Generalizing this to d dimensions, we have

∣∣e−(|x1|+···+|xd|) − e−(|y1|+···+|yd|)
∣∣ ≤ ∥x− y∥1 ≤

√
d∥x− y∥2.

Therefore, the truncated d-dimensional Laplace distribution is 1-Hölder continuous over supp(p)

and satisfies

sup
x
p(x) =

(
2d
(
1−

(d−1∑

i=0

Ri

i!

)
e−R

))−1

,

L(p; supp(p)o) =
√
d sup

x
p(x),

and

Hd−1(∂supp(p)) =
2d
√
d

(d− 1)!
Rd−1.

Example 4.F.4 (Truncated Cauchy). Consider the truncated d-dimensional Cauchy distribu-

tion defined by the density

p(x) :=
Γ
(
(d+ 1)/2

)

π(d+1)/2Ld(R)
(
1 + ∥x∥22

)(d+1)/2
1(−∞,R](∥x∥2),
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where

Ld(R) :=

∫ arctanR

0
sind−1 θ dθ

∫ π/2

0
sind−1 θ dθ

∈ [0, 1].

Then, we have

∇2p(x)ij =
(d+ 1)Γ((d+ 1)/2)

π(d+1)/2Ld(R)
(
1 + ∥x∥22

)(d+5)/2

(
(d+ 3)xixj −

(
1 + ∥x∥22

)
δij
)
,

which leads to the bound

∥∥∇2p(x)
∥∥ ≤ (d+ 1)Γ((d+ 1)/2)

π(d+1)/2Ld(R)

√
R4(d+ 1)(d+ 3) + d

on supp(p)o. Therefore, the truncated d-dimensional Cauchy distribution is 2-Hölder continuous

over supp(p) and satisfies

sup
x
p(x) =

Γ
(
(d+ 1)/2

)

π(d+1)/2Ld(R)
,

L(p; supp(p)o) =
(d+ 1)Γ((d+ 1)/2)

π(d+1)/2Ld(R)

√
R4(d+ 1)(d+ 3) + d,

and

Hd−1(∂supp(p)) = dυdR
d−1.
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Chapter 5

Efficient Discrete Universal Denoising

5.1 Introduction

One of the simplest, yet most powerful approaches in data processing (such as

compression, prediction, filtering, and estimation) of sequential data with spatiotempo-

ral memory (text, image, biological sequences, and time series) is to first parse a given

sequence according to a context model and then apply symbol-by-symbol solutions for

each context independently. The discrete universal denoiser (DUDE) algorithm (Weiss-

man et al., 2005) is a canonical example of this approach for denoising. With context

size k, the DUDE algorithm is a two-sided k-th order sliding window denoiser, which

decides each reconstruction symbol as the Bayes optimal response with respect to a

given loss function and noise model, solely based on the counts of noisy symbols in

the noisy observation sequence without any additional knowledge on the underlying

sequence.

Due to its theoretical performance guarantee and low-complexity implementa-

tion, DUDE has been studied in various settings including continuous-alphabet (Sivara-

makrishnan and Weissman, 2008, 2009), nonstationary (Moon and Weissman, 2009), and

online (Khadivi et al., 2015) denoising. It has also found applications such as denoising

DNA sequence (Lee et al., 2017) and image (Motta et al., 2005, 2011; Ordentlich et al.,

2003, 2010; Sivaramakrishnan and Weissman, 2006).
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Most context-based algorithms, with DUDE being no exception, however, suffer

the “sparse context” problem (see, e.g., (Carpentieri et al., 2000; Motta et al., 2011)).

As we increase the context size k, which is necessary to capture more spatiotemporal

dependence in given data, the number of contexts increases exponentially in k and

thus each context has too few samples to learn the structure of the data reliably. As

this problem becomes more severe when the alphabet size is large, it poses a serious

challenge on grayscale image denoising with DUDE (Buades et al., 2005; Motta et al.,

2005, 2011).

One remedy to this sparse context problem is context aggregation that reduces the

number of contexts by merging statistically or semantically similar contexts together.

Image denoising using this context aggregation approach was developed as the iDUDE

algorithm proposed in (Motta et al., 2005, 2011). In iDUDE, multiple contexts are

explicitly aggregated based on vector quantization as well as prior assumptions on

natural images previously used in lossless image compression (Carpentieri et al., 2000).

The resulting denoising performance and computational complexity improves upon

the naive k-context DUDE algorithm by orders of magnitude, and are comparable to

other state-of-the-art grayscale image denoising algorithms.

As an alternative to an explicit reduction of a context model, one can implicitly

aggregate contexts by allowing multiple contexts to “share” their samples. This idea

was materialized recently by the Neural DUDE algorithm (Moon et al., 2016) that

utilizes a neural network to learn a smooth mapping from a given context to expected

losses of all single-symbol denoisers, through which contexts are effectively aggregated.

Neural DUDE outperforms DUDE for a large context size k without suffering the

aforementioned sparse context problem. On the downside, Neural DUDE has to learn

all single-symbol denoiser losses, which becomes intractable even with a moderate

alphabet size and makes it unfit for grayscale images.

In this paper, we propose a more natural and perhaps more principled approach
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to implicit context aggregation, in which a simple feedforward deep neural network

is trained from the given noisy image to learn a smooth mapping from each context

to the conditional distribution of a noisy symbol conditioned on the context. This

conditional probability is then plugged in to construct the Bayes optimal symbol-by-

symbol denoiser used in DUDE and iDUDE. Compared to Neural DUDE, the neural

network employed in the proposed context-aggregated universal denoiser (CUDE)

algorithm scales linearly in the alphabet size, which makes it suitable for denoising

of grayscale images and other larger alphabet problems. We remark that the idea of

learning the contextual conditional distribution via neural networks and plugging in a

corresponding Bayes optimal response to a given data processing problem is not new.

For example, in the previous work (Adali et al., 1997), the conditional distribution of a

binary channel information sequence was learned adaptively for channel equalization

using a neural network with structure and training objective similar to ours.

Throughout this paper, we use xn to denote a length-n sequence (x1, x2, . . . , xn),

and xji to denote its subsequence (xi, xi+1, . . . , xj). A random variable is denoted by an

uppercase symbol, and a corresponding lowercase symbol denotes its realization. The

probability mass function (pmf) of a random variable X ∈ X is denoted by P{X = x} =

p(x) and is often identified as a vector in the simplex ∆|X |. Finally, 1z ∈ {0, 1}|Z| denotes

the one-hot encoding vector of z ∈ Z whose z-th coordinate is 1 and others are 0.

5.2 Problem Formulation

We first describe the problem in the one-dimensional case, and discuss how it can

be generalized in higher dimensions later. We follow the standard definition of universal

denoising in (Weissman et al., 2005). Let X , Z , and X̂ denote the alphabets of the clean

source, the noisy observation, and the reconstruction symbol, respectively. Suppose

that there is an underlying hidden sequence of clean symbols Xn ∈ X n emitted from an
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unknown stationary distribution, which is corrupted by a discrete memoryless channel

Π(z|x) to result in a noisy observation sequence Zn. A denoiser x̂n(zn) is a mapping

from Zn to a reconstruction sequence X̂n = x̂n(Zn) with associated cumulative loss
∑n

i=1 Λ(Xi, X̂i), where Λ : X × X̂ → [0,∞) is a prespecified loss function. We assume

that Π is known and, when written in a matrix form, has a right inverse Π†.

We note that the aforementioned stochastic setting can be relaxed to the semis-

tochastic setting, in which there is no probabilistic assumption on the clean source

sequence xn.

5.3 Review of the DUDE Algorithm

We first assume that the distribution of (Xn, Zn) is known. For a given context

size k, let Ci := (Zi−1
i−k , Z

i+k
i+1 ) be a two-sided balanced context consisting of k symbols on

the left and k symbols on the right of the symbol Zi. For each position i = 1, 2, . . . , n,

consider the Bayes optimal denoiser x̂∗i (ci, zi) based on the observation {Ci = ci, Zi =

zi}:

x̂∗i (ci, zi) = argmin
x̂∈X̂

E[Λ(Xi, x̂)|Ci = ci, Zi = zi], (5.1)

where the expectation is taken with respect to p(xi|ci, zi), which can be found from

p(zi|ci) by the Bayes rule and the inverse channel Π†. This denoiser can be readily

shown to minimize the expected cumulative loss
∑n

i=1 EΛ(Xi, X̂i) among all denoisers

x̂i that use zi+k
i−k = (ci, zi). Therefore, if the stationary pmf p(zi|ci) were known, the

optimal denoiser could be found immediately.

Without any prior knowledge of the distribution, the DUDE algorithm follows

this symbol-by-symbol Bayes optimal denoising approach by using the empirical distri-
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bution

p̂emp(z |c) =
|{j : cj = c, zj = z}|
|{j : cj = c}| (5.2)

in place of the true p(z|c) for each position i. Accordingly, the algorithm runs in

two passes. In the first pass, scanning through the data once, it finds the empirical

conditional pmf p̂emp(z|c) in (5.2) by counting the number of occurrences of noisy

symbols for each context c. In the second pass, it finds the Bayes optimal denoiser (5.1)

under p̂(xi|ci, zi), which can be computed from the empirical conditional pmf p̂emp(zi|ci)

and the inverse channel matrix Π†. This computation can be performed easily by a few

matrix–vector operations (see, for example, eq. (2) in (Moon et al., 2016).)

The DUDE algorithm has been shown to be universal in the sense that for any

underlying stationary process it asymptotically attains the Bayes optimal performance,

provided that k grows appropriately with n. A similar universality result has been also

established for the semistochastic setting (Weissman et al., 2005).

The two-sided balanced context model can be easily extended to other context

models. For example, a square-window neighborhood of side length 2k + 1 centered at

each symbol can be used for two-dimensional images. For a detailed discussion on the

choice of a context model in higher dimensions, we refer the reader to (Ordentlich et al.,

2011).

5.4 The Proposed CUDE Algorithm

Our CUDE algorithm consists of two steps. First, it learns the conditional distri-

bution p(z|c) using a neural network. It then plugs in the estimated distribution to find

the symbol-by-symbol Bayes optimal denoiser (5.1), as in DUDE.
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5.4.1 Conditional Distribution Learning Network

As before, suppose that a context model C of order k is used (e.g., the two-sided

context model or the square-window context model). We introduce a feedforward fully

connected neural network with multiple layers p̂w : C → ∆|Z| parameterized by the

weight vector w, which is trained with the training data {(ci, 1zi)}ni=1, solely based on

the noisy observation sequence zn, to learn the stationary conditional distribution p(z|c),

under the cross entropy loss function H(p∥q) := −∑z∈Z p(z) log q(z). Equivalently, the

network training minimizes

L(w|zn) := 1

n

n∑

i=1

H(1zi ∥p̂w(z |ci)). (5.3)

To force the output to be a proper probability distribution, the softmax layer of dimen-

sion |Z| is placed at the output layer.

The context aggregating behavior of our conditional distribution learning net-

work can be explained by rewriting the objective function (5.3) as

1

n

n∑

i=1

p̂emp(c)(D(p̂emp(z |c)∥p̂w(z |c)) +H(p̂emp(z |c))).

Here we use H(p∥q) = D(p ∥ q) + H(p), where D(p ∥ q) =
∑

z∈Z p(z) log(p(z)/q(z))

denotes the relative entropy between p and q, and H(p) = −∑z∈Z p(z) log p(z) denotes

the entropy of p. As the second term is independent of w, our neural network can

be trained to estimate the conditional distribution to minimize the first term, which

captures the discrepancy between the empirical distribution and the trained distribution.

This term converges to the conditional relative entropy E[D(p(z|C) ∥ p̂w(z|C))] almost

surely in the sample limit by Birkhoff’s ergodic theorem (Cover and Thomas, 2012).

Due to the finite capacity of the neural network and the continuity of the mapping

c 7→ p̂w(z|c), the network is expected to assign similar conditional probabilities to close
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contexts, effectively aggregating multiple contexts.

5.4.2 Context-Based Symbol-by-Symbol Denoising

After training the network, we use the trained conditional distribution p̂w(z|c)

for symbol-by-symbol denoising by finding the Bayes optimal denoiser in (5.1). This

plug-in approach provides a complete separation between probability learning and the

denoising operation.

5.5 Comparison with Neural DUDE

The Neural DUDE algorithm (Moon et al., 2016) is a variant of DUDE that was

designed to select the optimal symbol-by-symbol denoiser for a given context based

on a neural network. Neural DUDE trains a single fully connected feedforward neural

network qw : C → ∆|S|, which maps a context to a probability vector over the collection

S := {s : Z → X̂} of all single-symbol denoisers. After training the parameter w with

the training data constructed from zn and a new loss function over Z × S, the output

probability distribution qw(s|c) is used as the score vector of each single-symbol denoiser

for a context c as in classification (see, e.g., (Christopher, 2006, Ch. 5)). Neural DUDE

then selects the single-symbol denoiser of the highest score and uses it to denoise the

given noisy symbol.

The advantage of CUDE over Neural DUDE lies mostly in its simple and flexible

plug-in architecture. CUDE uses a smaller output layer that scales linearly in the

alphabet size |Z|, while the output layer in Neural DUDE scales as |S| = |Z||X̂ | (see

Fig. 5.5.1 for a comparison of the neural networks used in CUDE and Neural DUDE). As

a concrete example, when |Z| = |X̂ | = 4 (quaternary image), the network for CUDE has

the output layer dimension of 4, whereas the dimension for Neural DUDE is 44 = 256.

Hence, CUDE can be implemented in lower complexity for a large alphabet, while

achieving a faster convergence to the desired performance.
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(a) CUDE (b) Neural DUDE

Figure 5.5.1. Comparison of neural networks used in CUDE and Neural DUDE under
the two-sided balanced context model of order k = 4.

5.6 Experiments

Experiments were carried out with Python 3.6 and Keras package with Theano

backend (Bastien et al., 2012). We trained the networks with six hidden layers of 40

rectified linear unit (ReLU) activations for Neural DUDE and CUDE by the optimization

method Adam (Kingma and Ba) following the same setting such as mini-batch size in

(Moon et al., 2016). Raw alphabets were used for both cases, instead of the one-hot

encoding used in (Moon et al., 2016).

To compare CUDE with DUDE and Neural DUDE, we performed denoising

experiments with publicly available standard test images such as Barbara, boat, cam-

eraman, and Lena of size 512 × 512 (e.g., (BM3)), scaled down to the bit depth of 2

(alphabet size 4). We chose the quaternary alphabet for our simulation because DUDE

and Neural DUDE can only handle small alphabets. We considered an image as a

one-dimensional sequence by raster scan, and used the balanced two-sided context

model of order k = 1, 2, . . . , 40. The images were corrupted by the salt and pepper

(S&P) noise (Motta et al., 2011) with error probability δ = 10% and 30%, and by the
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quaternary symmetric channel (QSC) noise with error probability δ = 10% and 30%.

The squared-error loss was assumed. Fig. 5.6.1 shows the plot of PSNRs of the different

context order k for the boat image corrupted by S&P noise, and CUDE consistently

outperforms Neural DUDE. Denoising results for different images and noise models

exhibit a similar trend, as summarized in Table 5.6.1. Note that the gain in performance

as well as computational complexity would become more pronounced as the alphabet

size grows.

Unlike DUDE and Neural DUDE that cannot be scaled to large alphabets due to

either high complexity or the sparse context problem, CUDE can be applied directly to

grayscale image denoising. To demonstrate the potential of CUDE for grayscale images,

we performed a denoising experiment for the grayscale Barbara image of the original

bit depth 8 corrupted by S&P noise with δ = 50% in Fig. 5.6.2. In this experiment, we

used two-dimensional square context model, which yields a better performance than

one-dimensional model in general. Fig. 5.6.2(c) shows the reconstructed image using

Table 5.6.1. Comparison of denoising performance in PSNR(dB) attained by DUDE,
Neural DUDE, and CUDE for quaternary scaled images corrupted by S&P or QSC noise
with δ = 10% and 30%. The number in the parentheses indicates the best order k that
achieves the PSNR presented.

Noise Algorithms Barbara Boat Cameraman Lena

S&P
(10%)

DUDE 21.3 (3) 23.4 (2) 25.8 (2) 23.3 (2)
Neural DUDE 21.9 (30) 23.7 (10) 25.8 (16) 24.0 (21)

CUDE 23.0 (20) 24.4 (16) 27.8 (5) 25.3 (35)

S&P
(30%)

DUDE 13.4 (2) 16.4 (2) 19.0 (2) 14.7 (2)
Neural DUDE 16.3 (23) 18.0 (11) 19.0 (5) 16.8 (23)

CUDE 17.2 (38) 19.1 (20) 20.3 (17) 17.9 (34)

QSC
(10%)

DUDE 20.5 (3) 22.0 (2) 24.4 (2) 22.4 (2)
Neural DUDE 20.7 (26) 21.9 (5) 23.9 (3) 21.9 (27)

CUDE 21.5 (36) 22.6 (11) 25.2 (10) 23.1 (6)

QSC
(30%)

DUDE 14.7 (3) 16.3 (2) 16.7 (2) 15.7 (3)
Neural DUDE 16.3 (10) 17.8 (13) 18.7 (16) 17.6 (17)

CUDE 16.5 (18) 18.2 (16) 19.1 (15) 17.9 (15)
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Figure 5.6.1. PSNR plot for the quaternary boat image corrupted by S&P noise (δ = 10%
and 30%) with different context orders.

CUDE under the best context order of k = 1 (8 pixels surrounding a given pixel), and

the attained PSNR. As is clear from the image, CUDE was able to denoise the corrupted

image only roughly, leaving numerous visible spots. It was generally observed that in

low SNR as in this case, excessive aggregation of contaminated contexts degraded the

performance.

In order to mitigate this issue, we extended the CUDE algorithm with prefiltering

followed by iterated denoising. This approach was developed originally in (Motta et al.,

2011), where the iterated median selective median filter (IMSM) tailored for S&P noise

was used as a prefilter for initial, low-quality denoising, and a context-aggregated

DUDE algorithm was used iteratively as a main denoiser. Our conditional distribution

learning framework can readily incorporate prefiltered images to enhance the quality

of context aggregation. Let yn be a cleaner version of the original noisy observation

zn, obtained by prefiltering or iterated denoising. Instead of learning p(zi|ci), we can

learn the conditional distribution p(zi|ci(yn)) of zi given the corresponding context at

position i in yn. This can be implemented by training our network with {(ci(yn), 1zi}ni=1.

Under this modification, we performed IMSM prefiltering initially on the same noisy
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image and iteratively applied CUDE. Fig. 5.6.2(d) shows the prefiltered image by the

IMSM filter (no CUDE yet), and Fig. 5.6.2(e) shows the denoised image obtained after 5

iterations of CUDE under the context order of k = 15, initially starting from Fig. 5.6.2(d).

Although the IMSM prefilter destroys some image structures and results in a blurry

image (see the magnified patches below the image), the subsequent CUDE iterations

recover the texture details in the original image. It can be also noted that, compared to

CUDE-only denoising, larger contexts are utilized without performance degradation.

According to our preliminary results (data not shown), this extension of CUDE achieves

denoising performance comparable to that of iDUDE, especially in a low SNR regime,

although further research and more extensive experiments are called for in high SNR

and other noise models.

Tuning the context order can be performed by visual assessment of the resulting

images. An alternative was proposed in (Moon et al., 2016) based on the observation that

the estimated loss for Neural DUDE concentrates tightly around the true loss. The same

phenomenon was also observed for CUDE (data not shown). A theoretical development

on the CUDE loss estimator and its concentration behavior will be reported elsewhere.
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Chapter 6

Parameter-Free Online Learning with
Side Information

6.1 Introduction

In this paper, we consider the problem of online linear optimization (OLO) in

a Hilbert space V with norm ∥ · ∥. In each round t = 1, 2, . . ., a learner picks an action

xt ∈ V , receives a vector gt ∈ V with ∥gt∥ ≤ 1, and suffers loss ⟨gt,xt⟩. In this repeated

game, the goal of the learner is to keep her cumulative regret small with respect to any

competitor u for any adversarial sequence gT := g1, . . . ,gT , where the cumulative regret

is defined as the difference between the cumulative losses of the learner and u ∈ V , i.e.,

RegT (u) := Reg(u;gT ) :=
T∑

t=1

⟨gt,xt⟩ −
T∑

t=1

⟨gt,u⟩.

Albeit simple in nature, an OLO algorithm serves as a versatile building block in

machine learning algorithms (Shalev-Shwartz, 2011); for example, it can be used to

solve online convex optimization.

While there exist standard algorithms such as online gradient descent (OGD)

that achieve optimal regret of order RegT (u) = O(∥u∥
√
T ), these algorithms typically

require tuning parameters with unknowns such as the norm ∥u∥ of a target competitor

u. For example, OGD with step size η = 1/
√
T achieves RegT (u) = O((1 + ∥u∥2)

√
T )
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for any u ∈ V , while OGD with η = U/
√
T achieves RegT (u) = O(U

√
T ) for any u ∈ V

such that ∥u∥ ≤ U ; see, e.g., (Shalev-Shwartz, 2011). To avoid tuning parameters,

several parameter-free algorithms have been proposed in the last decade, aiming to

achieve cumulative regret of order Õ(∥u∥
√
T ) for any u ∈ V without knowing ∥u∥ a

priori (McMahan and Abernethy, 2013; McMahan and Orabona, 2014; Orabona, 2013,

2014; Orabona and Pál, 2016), where Õ(·) hides any polylogarithmic factor in the big

O notation; the extra polylogarithimic factor is known to be necessary (McMahan and

Abernethy, 2013; Orabona, 2013).

While these optimality guarantees on regret seem sufficient, they may not be

satisfactory in bounding the incurred loss of the algorithm, due to the limited power of

the class of static competitors u as a benchmark. For example, consider the adversarial

sequence g,−g,g,−g, . . . for a fixed vector g ∈ B := {x ∈ V : ∥x∥ ≤ 1}. Despite the

apparent structure (or predictability) in the sequence, the best achievable reward of

any static competitor u ∈ V is zero for any even T . In general, the cumulative loss of

a static competitor u is
∑T

t=1⟨gt,u⟩ = ⟨
∑T

t=1 gt,u⟩, and can be large if and only if the

norm ∥∑T
t=1 gt∥ is large, or equivalently, when g1, . . . ,gT are well aligned. It is not only

a theoretical issue, since, for example, when we consider a practical scenario such as

weather forecasting, the sequence (gt) may have such a temporal structure that can be

exploited in optimization, rather than being completely adversarial.

One remedy for this issue is to consider a larger class of competitors, which may

adapt to the history gt−1 := g1, . . . ,gt−1. Hereafter, we use xst to denote the sequence

xt, . . . , xs for t ≤ s and xt := xt1 by convention. For instance, in the previous example,

consider a competitor which can play two different actions u+1 and u−1 based on the

quantization Q(gt−1) = sgn(⟨f ,gt−1⟩) for some fixed f ∈ V ; for example, we chose

standard vectors ei for a Euclidean space V in our experiments; see Section 6.4. Then the

best loss achieved by the competitor class on this sequence becomes −(T/2)∥g∥(∥u+1∥+

∥u−1∥), which could be much smaller than 0. We remark that, from the view of binary
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prediction, this example can be thought of a first-order Markov prediction, which takes

only the previous time step into consideration. Hence, it is natural to consider a k-th

order extension of the previous example, i.e., a competitor that adapts to the length-k

sequence Q(gt−1
t−k) := Q(gt−k) . . . Q(gt−1) ∈ {1, 1̄}k, where we define 1̄ := −1.

<latexit sha1_base64="eKu2e0uV8HNJCuqiRdlXOsNPLrk=">AAAB9XicbVBNSwMxEJ2tX7V+VT16CRbBU9ktoh4LXjxWsB/QriWbzrah2eySZJWy9H948aCIV/+LN/+NabsHbX0wzOO9GTJ5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkSleSzvzSRBP6JDyUPOqLHSQy+gKvOmeeuXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/Nr56SM6sMSBgrW9KQufp7I6OR1pMosJMRNSO97M3E/7xuasJrP+MySQ1KtngoTAUxMZlFQAZcITNiYgllittbCRtRRZmxQZVsCN7yl1dJq1b1Lqu1u4tKvZbHUYQTOIVz8OAK6nALDWgCAwXP8ApvzpPz4rw7H4vRgpPvHMMfOJ8/daWScQ==</latexit>

1̄1̄

<latexit sha1_base64="PPbdqxY5JqmUFo26m4ts084NviI=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeCF48V7Ae0oUy2m3bpZpPuboQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUUdaksYhVJ0DNBJesabgRrJMohlEgWDsY38399hNTmsfy0UwT5kc4lDzkFI2VOl4vQJV5s3654lbdBcg68XJSgRyNfvmrN4hpGjFpqECtu56bGD9DZTgVbFbqpZolSMc4ZF1LJUZM+9ni3hm5sMqAhLGyJQ1ZqL8nMoy0nkaB7YzQjPSqNxf/87qpCW/9jMskNUzS5aIwFcTEZP48GXDFqBFTS5Aqbm8ldIQKqbERlWwI3urL66RVq3rX1drDVaVey+MowhmcwyV4cAN1uIcGNIGCgGd4hTdn4rw4787HsrXg5DOn8AfO5w+mGo+s</latexit>

11̄

∗1

Figure 6.1.1. An example set of suffixes T = {∗1, 11̄, 1̄1̄}.

We can even further sophisticate a competitor’s dependence structure by allow-

ing it to adapt to a tree structure (also known as a variable-order Markov structure) of the

quantization sequence, which is widely deployed structure in sequence prediction; see,

e.g., (Begleiter et al., 2004). For example, for the depth-2 quantization sequence Q(gt−1
t−2),

rather than adapting to the all four possible states, a competitor may adapt to the suffix

falls into a set of suffixes T = {∗1, 11̄, 1̄1̄} of one fewer states; here, ∗ denotes that any

symbol from {1, 1̄} is possible in that position. As depicted in Figure 6.1.1 for T, in

general, a suffix set has a one-to-one correspondence between a full binary tree, and

is thus often identified as a tree; see Section 6.3.3 for the formal definition and further

justification of the tree side information.

Since we do not know a priori which tree structure is best to adapt to, we

ultimately aim to design an OLO algorithm that achieves the performance of the best

tree competitor of given maximum depth D ≥ 1. Since there are O(22D) possible trees of

depth at most D, it becomes challenging even for a moderate size of D. We remark that

the problem of following the best tree structure in hindsight, the tree problem in short,
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is a classical problem which has been studied in multiple areas such as information

theory (Willems et al., 1995) and online learning (Freund et al., 1997), but an application

of this framework to the OLO problem has not been considered in the literature.

To address this problem, we combine two technical components from online

learning and information theory. Namely, we apply an information theoretic technique

of following the best tree structure for universal compression, called the context tree

weighting (CTW) algorithm invented by Willems et al. (1995), to generalize a parameter-

free OLO algorithm called the KT OLO algorithm proposed by Orabona and Pál (2016),

which is designed based on universal coin betting. Consequently, as the main result,

we propose the CTW OLO algorithm that efficiently solves the problem with only O(D)

updates per round achieving nearly minimax optimal regret; see Section 6.3.3.

We motivate the proposed approach by solving two intermediate, abstract OLO

problems, the one with (single) side information (Section 6.3.1) and the other with multi-

ple side information (Section 6.3.2), and propose information theoretic OLO algorithms

(i.e., product KT and mixture KT) respectively, which might be of independent interest.

We remark, however, that it is not hard to convert any parameter-free algorithm to solve

the abstract problems with same guarantees and complexity of the proposed solutions,

using existing meta techniques such as a black-box aggregation scheme by Cutkosky

(2019) with per-state extension of a base OLO algorithm; hence, the contribution of the

intermediate solutions is rather purely of intellectual merit.

In Section 6.4, we experimentally demonstrate the power of the CTW OLO

algorithm with real-world temporal datasets. We conclude with some remarks in

Section 6.5. All proofs and discussion with related work are deferred to Appendix due

to the space constraint.
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Notation

Given a tuple a = (a1, . . . , am), we use
∑

a :=
∑m

i=1 ai to denote the sum of all

entries in a tuple a. For example, we write
∑
gt−1 to denote the sum of g1, . . . , gt−1 by

identifying gt−1 as a tuple (g1, . . . , gt−1). For the empty tuple (), we define
∑

() := 0

by convention. We use |a| to denote the number of entries of a tuple a. For a tuple of

vectors u1:S := (u1, . . . ,uS) ∈ V × · · · × V , we use ∥u∥1:S := (∥u1∥, . . . , ∥uS∥) ∈ RS
≥0 to

denote the tuple of norms of each entry.

6.2 Preliminaries

We review the coin betting based OLO algorithm of Orabona and Pál (2016).

From this point, we will describe all algorithms in the reward maximization framework,

which is philosophically consistent with the goal of gambling, to avoid any confusion,

but we will keep using the conventional naming OGD even though it is actually gradient

ascent.1

6.2.1 Continuous Coin Betting and 1D OLO

Consider the following repeated gambling. Starting with an initial wealth W0, at

each round t, a player picks a signed relative bet bt ∈ [−1, 1]. At the end of the round, a

real number gt ∈ [−1, 1] is revealed as an outcome of the “continuous coin toss” and the

player gains the reward gtbtWt−1. This game leads to the cumulative wealth

Wt(g
t) = W0

t∏

i=1

(1 + gibi).

When gt ∈ {±1}, this game boils down to the standard coin betting, where the player

splits her wealth into 1+bt
2

Wt−1 and 1−bt
2

Wt−1, and bets the amounts on the binary

outcomes +1 and −1, respectively. It is well known that the standard coin betting
1Note that one can translate a reward maximization algorithm to an equivalent loss minimization

algorithm by feeding −gt instead of gt, and vice versa.
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game is equivalent to the binary compression, or binary log-loss prediction, which have

been extensively studied in information theory; see, e.g., (Cover and Thomas, 2006,

Chapter 6).

Even when the outcomes gt are allowed to take continuous values, many inter-

esting connections remain to hold. For example, the Krichevsky and Trofimov (1981)’s

(KT) probability assignment, which is competitive against i.i.d. Bernoulli models, can

be translated into a betting strategy

bKT(gt−1) := bKTt (
∑
gt−1),

where bKTt (x) := x
t

for x ∈ [−t + 1, t− 1]. As a natural continuous extension of the KT

probability assignment, we define the KT coin betting potential

ψKT(gt) := ψKT
t (

∑
gt) := 2tq̃KTt (

∑
gt),

where

q̃KTt (x) := B
(t+ x+ 1

2
,
t− x+ 1

2

)/
B
(1
2
,
1

2

)

for x ∈ [−t, t] and B(x, y) := Γ(x)Γ(y)/Γ(x+ y) and Γ(x) denote the Beta function and

Gamma function, respectively. We remark that the interpolation for continuous values is

naturally defined via the Gamma functions. This simple KT betting scheme guarantees

that the cumulative wealth satisfies

WT (g
T ) ≥ W0ψ

KT(gT ) = W02
T q̃KTT (

∑
gT ) (6.1)

for any T ≥ 1 and g1, . . . , gT ∈ [−1, 1]; see the proof of Theorem 6.2.1 in Appendix.

It can be easily shown that the wealth lower bound is near-optimal when compared

to the best static bettor bt = b for some fixed b ∈ [−1, 1] in hindsight, the so-called
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Kelly betting (Kelly Jr., 1956). This follows as a simple consequence of the fact that

the KT probability assignment is a near-optimal probability assignment for universal

compression of i.i.d. sequences. In this paper, going forward the interpretation of the

coin betting potential as probability assignment in the parlance of compression will

prove useful.

In their insightful work, Orabona and Pál (2016) demonstrated that the universal

continuous coin betting algorithm can be directly translated to an OLO algorithm with

a parameter-free guarantee. By defining an absolute betting wt := btWt−1, we can write

the cumulative wealth in an additive form

Wt(g
t) = W0 +

t∑

i=1

gtwt,

whence we interpret
∑t

i=1 giwi as the cumulative reward in the 1D OLO with g1, . . . , gt ∈

[−1, 1]. Now, if we define the KT coin betting OLO algorithm by the action

wKT
t := wKT(gt−1) = bKT(gt−1)Wt−1(g

t−1),

then the “universal” wealth lower bound (6.1) with respect to any gT can be translated

to establish a “parameter-free” bound on the 1D regret

Reg(u; gT ) :=
T∑

t=1

gtu−
T∑

t=1

gtw
KT
t ,

against static competitors u ∈ R. Let (ψKT
T )⋆ : R → R denote the Fenchel dual of the

potential function ψKT
T : R→ R, i.e.,

(ψKT
T )⋆(u) := sup

g∈R
(gu− ψKT

T (g)).

Theorem 6.2.1. For any g1, . . . , gT ∈ [−1, 1], the 1D OLO algorithm wKT
t = bKT(gt−1)Wt−1
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satisfies

sup
u∈R

{
Reg(u; gT )−W0(ψ

KT
T )⋆

( u

W0

)}
≤ W0.

In particular, for any u ∈ R, we have

Reg(u; gT ) ≤
√
Tu2 ln(Tu2/(e

√
πW2

0) + 1) +W0.

6.2.2 Reduction of OLO over a Hilbert Space to Continuous Coin
Betting

This reduction can be extended for OLO over a Hilbert space V with norm ∥ · ∥,

where we wish to maximize the cumulative reward
∑T

t=1⟨gt,xt⟩ for g1, . . . ,gT ∈ B :=

{x ∈ V : ∥x∥ ≤ 1}. Orabona and Pál (2016) proposed the following OLO algorithm over

Hilbert space based on the continuous coin betting. For an initial wealth W0 > 0, we

define the cumulative wealth

WT (g
T ) := W0 +

T∑

t=1

⟨gt,xt⟩

as the cumulative reward plus the initial wealth, analogously to the coin betting. If we

define the vectorial betting given gt−1 as

vKT(gt−1) := bKTt (∥∑gt−1∥)
∑

gt−1

∥∑gt−1∥ =
1

t

∑
gt−1

and define a potential function

ΨKT(gt) := ψKT
t (∥

∑
gt∥) = 2tq̃KTt (∥∑gt∥),

then the corresponding OLO algorithm ensures the wealth lower bound Wt(g
t) ≥

W0Ψ
KT(gt), and thus the corresponding regret upper bound in the same spirit of Theo-

rem 6.2.1.
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Theorem 6.2.2 (Orabona and Pál, 2016, Theorem 3). For any g1, . . . ,gT ∈ B, the OLO

algorithm wKT
t = vKT(gt−1)Wt−1 based on the coin betting satisfies WT ≥ W0Ψ

KT(gT ), and

moreover

sup
u∈V

{
Reg(u;gT )−W0(ψ

KT
T )⋆

(∥u∥
W0

)}
≤ W0.

In particular, for any u ∈ V , we have

Reg(u;gT ) ≤
√
T∥u∥2 ln(T∥u∥2/(e√πW2

0) + 1) +W0.

6.3 Main Results

In what follows, we will illustrate how to incorporate (multiple) sequential

side information based on coin betting algorithms in OLO over Hilbert space with

an analogous guarantee by extending the aforementioned algorithmic reduction and

guarantee translation. In doing so, we will leverage the connection between coin

betting and compression, and adopt universal compression techniques beyond the

KT strategy, namely per-state adaptation (Section 6.3.1), mixture (Section 6.3.2), and

context tree weighting techniques (Section 6.3.3). For each case, we will first define a

potential function and introduce a corresponding vectorial betting which guarantees

the cumulative wealth to be at least the desired potential function.

6.3.1 OLO with Single Side Information via Product Potential

We consider the scenario when a (discrete) side information H = (ht ∈ [S])t≥1 is

sequentially available for some S ≥ 1. That is, at each round t, the side information ht is

revealed before the plays. As motivated in the introduction, the canonical example is

a causal side information based on the history gt−1 such as a quantization of gt−1
t−D for

some D ≥ 1. Yet another example is side information given by an oracle with foresight

such as ht = sgn(⟨gt, f⟩), i.e., the sign of the correlation between a fixed vector f ∈ V
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and the incoming symbol gt, as a rough hint to the future.

We define an adaptive competitor with respect to the side information H , denoted

as u1:S[H] for an S-tuple u1:S := (u1, . . . ,uS) ∈ V × · · · × V , to play uht at time t, and

let C[H] := {u1:S[H] : u1:S ∈ V × · · · × V } denote the collection of all such adaptive

competitors.

We first observe that the cumulative loss incurred by an adaptive competitor

u1:S[H] ∈ C[H] can be decomposed with respect to the states defined by the side infor-

mation symbols, i.e.,
T∑

t=1

⟨gt,uht⟩ =
S∑

s=1

〈 ∑

t∈[T ]:ht=s

gt,us

〉
.

Hence, a naive solution is to run independent OGD algorithms for each subsequence

gt(s;ht) := (gi : hi = s, i ∈ [t]) sharing the same side information s ∈ [S]; it is straight-

forward to show that the per-state OGD with optimal learning rates achieves the regret

of order O(
∑S

s=1 ∥us∥
√
Ts) with knowing the competitor norms ∥u∥1:S . Like the per-

state OGD algorithm, we can also extend other parameter-free algorithms such as

DFEG (Orabona, 2013) and AdaNormal (McMahan and Orabona, 2014) to adapt to side

information; see Appendix 6.B. This is what we call the per-state extension of an OLO

algorithm.

Here, we propose a different type of parameter-free per-state algorithm based

on coin betting. To compete against any adaptive competitor from C[H], we define a

product KT potential function

ΨKT(gt;ht) :=
∏

s∈[S]

ΨKT(gt(s;ht))

=
∏

s∈[S]

ψKT
ts (∥∑gt(s;ht)∥),

where ts := |gt(s;ht)| for each s ∈ [S]. Note that ΨKT(gt;ht) is a function of the summa-
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tions of the subsequences (
∑

gt(1;ht), . . . ,
∑

gt(S;ht)). For each time t, we then define

the vectorial KT betting with side information ht as the application of the vectorial KT

betting onto the subsequence corresponding to the current side information symbol ht,

i.e.,

vKT(gt−1;ht) := vKT(gt−1(ht;h
t−1)).

Unlike the other per-state extensions which play independent actions for each

state thus allowing straightforward analyses, the per-state KT actions

wKT
t (gt−1;ht) = vKT(gt−1;ht)Wt−1 (6.2)

depend on all previous history gt−1 due to the wealth factor Wt−1. We can establish

the following guarantee with the same line of argument in the proof of Theorem 6.2.1,

by analyzing the Fenchel dual of ΨKT(gt;ht). Recall that for a multivariate function

Ψ: Rd → R, its Fenchel dual Ψ⋆ : Rd → R is defined as

Ψ⋆(y) := sup
x∈Rd

(yTx−Ψ(x)).

Theorem 6.3.1. For any side information H = (ht ∈ [S])t≥1 and any g1, . . . ,gT ∈ B, let

ϕKT
T1:S

: RS → R be the Fenchel dual of the function

(f1, . . . , fS) 7→
∏

s∈[S]

ψKT
Ts

(fs),

where Ts := |{t ∈ [T ] : ht = s}|. Then, the OLO algorithm

wKT
t (gt−1;ht) := vKT(gt−1;ht)Wt−1
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satisfies WT ≥ W0Ψ
KT(gT ;hT ), and moreover

sup
u1:S

{
Reg(u1:S[H];gT )−W0ϕ

KT
T1:S

(∥u∥1:S
W0

)}
≤ W0.

In particular, for any u1:S[H] ∈ C[H],

Reg(u1:S[H];gT ) = W0 + Õ

(√√√√
S∑

s=1

Ts∥us∥2
)
. (6.3)

Example 6.3.2. Recall the “easy” adversarial sequence gT = (g,−g,g, . . . ,−g) for some

g ∈ B previously considered in the introduction. For a side information ht = sgn(⟨gt, f⟩) with

some f ∈ V , Theorem 6.3.1 states that Reg((u+,u−);g
T ) = Õ((∥u+∥+ ∥u−∥)

√
T ), matching

the regret guarantee of the optimally tuned per-state OGD up to logarithmic factors. Overall,

the regret guarantee against adaptive competitors for the per-state KT method implies a much

larger overall reward than was achieved by an algorithm competing against static competitors.

Remark 6.3.3 (Cost of noninformative side information). Consider a scenario where

competitors of the form u1:S = (u, . . . ,u) with some vector u ∈ V perform best; in this

case, an algorithm without adapting to side information may suffice for optimal regret

guarantees. Even in such cases with noninformative side information, the dominant

factor in the regret remains the same as the regret guarantee with respect to the static

competitor class, since
∑S

s=1 Ts∥us∥2 = T∥u∥2.

Remark 6.3.4 (Effect of large S). While side information with larger S may provide

more levels of granularity, too large S may degrade the performance of the per-state

algorithms. Intuitively, if S ≫ 1, it is likely that we will see each state only few times,

which results in poor convergence for almost every state. These are also captured in the

regret guarantee; we note that the hidden logarithmic factor of the regret bound (6.3)

might incur a multiplicative factor of at most O(
√
S). Similarly, in the optimal regret
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attained by the per-state OGD, we have O(
∑S

s=1 ∥us∥
√
Ts) ≤ O(maxs∈[S] ∥us∥

√
ST ).

6.3.2 OLO with Multiple Side Information via Mixture of Product
Potentials

Now suppose that multiple side information sequences

{H(m) = (h
(m)
t ∈ S(m))t≥1 : m ∈ [M ]}

are sequentially available; for example, each H(m) can be either constructed based on

a different quantizer Qm : V → {1, 1̄} and/or based on the history gt−1
t−Dm

of different

lengths Dm ≥ 0, each of which aims to capture a different structure of (gt). In this

setting, we aim to minimize the worst regret among all possible side information, i.e.,

max
m∈[M ]

Reg(u1:S(m) [Hm];g
T ) =

T∑

t=1

⟨gt,wt⟩ − min
m∈[M ]

T∑

t=1

⟨gt,u
(H)
hmt
⟩, (6.4)

which is equivalent to aiming to follow the best side information in hindsight.

We first remark that Cutkosky (2019) recently proposed a simple black-box

meta algorithm that combines multiple OLO algorithms achieving the best regret

guarantee, which can also be applied to solving this multiple side information problem.

For example, for algorithms (Am)m∈[M ] each of which play an action w
(m)
t , the meta

algorithm Awhich we refer to the addition plays wt =
∑M

m=1w
(m)
t and guarantees the

regret

RegAT (u) ≤ ε+ min
m∈[M ]

RegAm
T (u),

provided that Am’s suffer at most constant regret ε against u = 0; the same guarantee

also hold for adaptive competitors.

Rather, we propose the following information theoretic solution. For each side

information sequence H(m), we can apply the per-state KT algorithm from the previous
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section, which guarantees the wealth lower bound W0Ψ
KT(gt; (h(m))t). To achieve the

best among the per-state KT algorithms, we consider the mixture potential

Ψmix(gt;ht) =
M∑

m=1

wmΨ
KT(gt; (h(m))t)

for some w1, . . . , wM > 0 such that
∑M

m=1wm = 1. Here, ht := (h
(1)
t , . . . , h

(M)
t ) denotes

the side information vector revealed at time t. When there exists no prior belief on how

useful each side information is, one can choose the uniform weight w1 = . . . = wM =

1/M by default. Now, define the vectorial mixture betting given gt−1 and ht as

vmix(gt−1;ht) :=
umix(gt−1;ht)

Ψmix(gt−1;ht−1)
, where

umix(gt−1;ht) :=
M∑

m=1

wmΨ
KT(gt−1; (h(m))t−1)vKT(gt−1; (h(m))t),

and finally define the mixture OLO algorithm by the action

wmix
t (gt−1;ht) := vmix(gt−1;ht)Wt−1. (6.5)

In the language of gambling, the mixture strategy bets by distributing her wealth

based on the weights wm’s to strategies, each of which is tailored to a side information

sequence, and thus can guarantee at least wm times the cumulative wealth attained by

the m-th strategy following H(m) for any m ∈ [M ].

Theorem 6.3.5. For any side information H(1), . . . , H(M) and any g1, . . . ,gT ∈ B, the mixture

OLO algorithm (6.5) satisfies WT ≥ W0Ψ
mix(gT ;hT ), and moreover for any m ∈ [M ], we have

sup
u
1:S(m)

{
Reg(u1:S(m) [H(m)]);gT )− wmW0ϕ

KT
T
1:S(m)

(∥u∥1:S(m)

wmW0

)}
≤ wmW0.
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In other words, for any m and any u1:S(m) , we have

Reg(u1:S(m) [Hm];g
T ) = wmW0 + Õ

(√√√√
(
ln

1

wm

) Sm∑

sm=1

T
(Hm)
sm ∥u(Hm)

sm ∥2
)
.

Remark 6.3.6 (Cost of mixture). A mixture strategy adapts to any available side in-

formation with the cost of replacing W0 with wmW0 in the regret guarantee for each

m ∈ [M ]. Since the dependence of regret on W0 scales as O(
√

ln(1 + 1/W0) +W0) from

Theorem 6.3.1, a small wm may degrade the quality of the regret guarantee by only a

small multiplicative factor O(
√

ln(1/wm)).

Remark 6.3.7 (Comparison to the addition technique). While the mixture algorithm at-

tains a similar guarantee to the addition technique (Cutkosky, 2019), it is only applicable

to coin betting based algorithms and requires a rather sophisticated aggregation step.

Thus, if there are only moderate number of side information sequences, the addition

of per-state parameter-free algorithms suffices. The merit of mixture will become clear

in the next section in the tree side information problem of combining O(22
D
) many

components for a depth parameter D ≥ 1, while a naive application of the addition

technique to the tree problem is not feasible due to the number of side information; see

Section 6.5 for an alternative solution with the addition technique.

6.3.3 OLO with Tree Side Information

In this section, we formally define and study a tree-structured side information

H , which was illustrated in the introduction. We suppose that there exists an auxiliary

binary sequence Ω = (ωt ∈ {±1})t≥1, which is revealed one-by-one at the end of each

round; hence, a learner has access to ωt−1 when deciding an action at round t. In the

motivating problem in the introduction, such an auxiliary sequence was constructed as

ωt := Q(gt) with a fixed binary quantizer Q : V → {±1}.
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Markov Side Information

Given Ω = (ωt)t≥1, the most natural form of side information is the depth-D

Markov side information ht := ωt−1
t−D ∈ {±1}D, i.e., the last D bits of (ωt)t≥1—note that it

can be mapped into a perfect binary tree of depth D with 2D possible states.

Example 6.3.8. As an illustrative application of the mixture algorithm and a precursor to

the tree side information problem, suppose that we wish to compete with any Markov side

information of depth ≤ D. Then, there are D + 1 different side information, one for each

depth d = 0, . . . , D; for simplicity, assume uniform weights wd = 1/(D + 1) for each depth d.

Then, Theorem 6.3.5 guarantees that the mixture OLO algorithm (6.5) satisfies, for any depth

d = 0, . . . , D,

Reg(u
(d)

1:2d
;gT ) =

W0

D + 1
+ Õ

(√√√√ln(D + 1)
2d∑

s=1

T
(d)
s ∥u(d)

s ∥2
)

for any competitor u(d)

1:2d
∈ V 2d , where we identify 2d possible states by 1, . . . , 2d and T (d)

s is the

number of time steps with s as side information.

While a larger D can capture a longer dependence in the sequence, however, the

performance of a per-state algorithm could significantly degrade due to the exponential

number of states as pointed out in Remark 6.3.4.

Tree-Structured Side Information

The limitation of Markov side information motivates a general tree-structured

side information (or tree side information in short). Informally, we say that a sequence

has a depth-D tree structure if the state at time t depends on at most D of the previous

occurrences, corresponding to a full binary tree of depth D; see Figure 6.1.1. This degree

of freedom allows to consider different lengths of history for each state, leading to the

terminology variable-order Markov structure, as opposed to the previous fixed-order Markov
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structure. If an underlying structure is approximately captured by a tree structure of

depth D with the number of leaves far fewer than 2D, the corresponding per-state

algorithm can enjoy a much lower regret guarantee.

We now formally define a tree side information. We say that a string ω1−lω2−l . . .

ω0 is a suffix of a string ω′
1−l′ω

′
2−l′ . . . ω

′
0, if l ≤ l′ and ω−i = ω′

−i for all i ∈ {0, . . . , l−1}. Let

λ denote the empty string. We define a (binary) suffix set T as a set of binary strings that

satisfies the following two properties (Willems et al., 1995): (1) Properness: no string

in T is a suffix of any other string in T; (2) Completeness: every semi-infinite binary

string . . . ht−2ht−1ht has a suffix from T. Since there exists an one-to-one correspondence

between a binary suffix set and a full binary tree, we also call T a suffix tree. Given

D ≥ 0, let T≤D denote the set of all suffix trees of depth at most D.

For a suffix tree T ∈ T≤D, we define a tree side information HT;Ω with respect to T

and Ω = (ωt)t≥1 as the matching suffix from the auxiliary sequence. We can also identify

ht, the tree side information defined by T at time t, with a unique leaf node sTt ∈ T. For

example, if a suffix set T consists of all possible 2D binary strings of length D ≥ 1, then

it boils down to the fixed-order Markov case ht = ωt−1
t−D.

For a single tree T, the goal is to keep the regret

Reg(u[T];gT ) :=
T∑

t=1

⟨gt,wt − uT
sTt
⟩

small for any competitor u[T] := (uT
s )s∈T. In the next two subsections, we aim to

follow the performance of the best suffix tree of depth at most D, or equivalently, to

keep the worst regret maxT∈T≤D
RegA(u[T];gt) small for any collection of competitors

(u[T])T∈T≤D
.

Remark 6.3.9 (Matching Lower Bound). When the auxiliary sequence Ω is constructed

from a binary quantizer Q with the history gt−1 as mentioned earlier, we can show an

optimality of the per-state KT algorithm in Section 6.3 for a single tree by establishing a
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matching regret lower bound extending the technique of Orabona (2019, Theorem 5.12);

see Appendix 6.C.2.

Below, we will use the tree potential with respect to T and Ω defined as

ΨKT(gt;T,Ω) :=
∏

s∈T

ΨKT(gt(s; Ω)),

where we write s ∈ T for any leaf node s of the tree T with a slight abuse of notation

and we define

gt(s; Ω) := (gi : s is a suffix of ωi−1
i−D, 1 ≤ i ≤ t).

From now on, we will hide any dependence on Ω whenever the omission does not incur

confusion.

Context Tree Weighting for OLO with Tree Side Information

To compete against the best competitor adaptive to any tree side information

of depth ≤ D, a natural solution is to consider a mixture of all tree potentials; note,

however, that there are doubly-exponentially many O(22D) possible suffix trees of depth

≤ D, and thus it is not computationally feasible to compute such a mixture naively.

Instead, inspired by the context tree weighting (CTW) probability assignment of Willems

et al. (1995), we analogously define the CTW potential as ΨCTW(gt) := ΨCTW
λ (gt) with a

recursive formula

ΨCTW
s (gt) :=





1
2
ΨKT

s (gt) + 1
2
ΨCTW

1̄s (gt)ΨCTW
1s (gt) if |s| < D

ΨKT
s (gt) if |s| = D

(6.6)

for any binary string s of length ≤ D and ΨKT
s (gt) := ΨKT(gt(s)). Conceptually, this

recursion can be performed over the perfect suffix tree of depth D, which we denote

by TD and call the context tree of depth D; see Figure 6.3.1 for the context tree of depth
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Figure 6.3.1. A context tree of depth 2.

D = 2. Following the same logic of Willems et al. (1995), one can easily show that

ΨCTW(gt) =
∑

T∈T≤D

w(T)ΨKT(gt;T)

for w(T) = 2−ΓD(T), where ΓD(T) := 2|T| − 1 − |{s ∈ T : |s| = D}| is a complexity

measure of a full binary tree T of depth ≤ D, |T| denotes the number of leaf nodes of a

full binary tree T, and T≤D denotes the set of all suffix trees of depth ≤ D.

For a path ρ from the root to a leaf node of TD and a full binary tree T, we let

sT(ρ) denote the unique leaf node of T that intersects with the path ρ. We also define

vKT(gt−1;T) := vKT(gt−1(sT(ω
t−1
t−D))). Then, based on the construction of the vectorial

betting for a mixture potential in Section 6.3.2, we define the vectorial CTW betting

vCTW(gt−1) :=
uCTW(gt−1)

ΨCTW(gt−1)
, where (6.7)

uCTW(gt−1) :=
∑

T∈T≤D

w(T)ΨKT(gt−1;T)vKT(gt−1;T),

then we define the CTW OLO algorithm as the action

wCTW(gt−1) := vCTW(gt−1)Wt−1(g
t−1). (6.8)
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By Theorem 6.3.5, we readily have the regret guarantee of the CTW OLO algorithm as

follows:

Corollary 6.3.10. Let D ≥ 0 be fixed. For any g1, . . . ,gT ∈ B, the CTW OLO algorithm (6.8)

satisfies WT ≥ W0Ψ
CTW(gT ). Moreover, we have

Reg(u[T];gT ) = w(T)W0 + Õ

(√(
ln

1

w(T)

)∑

s∈T

TT
s ∥uT

s ∥2
)

for any tree T ∈ T≤D, where TT
s denotes the number of occurrences of a side information symbol

s ∈ T with respect to the tree side information HT;Ω.

Hence, the CTW OLO algorithm (6.8) can tailor to the best tree side information

in hindsight. Now, the remaining question is: can we efficiently compute the vectorial

CTW betting (6.7)? As a first attempt, the summation over the trees T ∈ T≤D in (6.7)

can be naively computed via a similar recursive formula as (6.6). We define

ρ(ωt−1
t−D) := {λ, ωt−1, . . . , ω

t−1
t−D}

and call the active nodes given the side information suffix ωt−1
t−D.

Proposition 6.3.11. For each node s of TD, define

uCTW
s (gt−1) :=





1
2Ψ

KT
s (gt−1)vKT

s (gt−1) + 1
2u

CTW
1̄s

(gt−1)uCTW
1s (gt−1) if |s| < D,

ΨKT
s (gt−1)vKT

s (gt−1) if |s| = D,

vKT
s (gt−1) :=





vKT(gt−1(s)) if s ∈ ρ(ωt−1
t−D)

1 otherwise.
(6.9)

Then, the recursion is well-defined, and uCTW
λ (gt−1) = uCTW(gt−1).

While the recursions (6.6) and (6.9) take O(2D) steps for computing a mixture of

O(22
D
) many tree potentials, they are still not feasible as an online algorithm even for a
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moderate D. In the next section, we show that the per-round time complexity O(2D)

can be significantly improved to O(D) by exploiting the tree structure further.

The Efficient CTW OLO Algorithm with O(D) Steps Per Round

(1) Compute vCTW in O(D) steps

The key idea is that, given the suffix ωt−1
t−D, the vector betting vCTW = uCTW/ΨCTW

can be computed efficiently via the recursive formulas (6.6) and (6.9), by only traversing

the active nodes ρ(ωt−1
t−D) = {λ, ωt−1, . . . , ω

t−1
t−D} in the context tree TD. In order to do so,

we define

βs(g
t−1) :=

ΨKT
s (gt−1)

ΨCTW
1̄s

(gt−1)ΨCTW
1s (gt−1)

(6.10)

for every internal node s of TD.

Proposition 6.3.12. Define

vCTW
sd

(gt−1) :=





βsd(g
t−1)

βsd(g
t−1) + 1

vKT
sd

(gt−1) +
1

βsd(g
t−1) + 1

vCTW
sd+1

(gt−1) if d < D

vKT
sD

(gt−1) if d = D

(6.11)

for sd = ωt−1
t−d ∈ TD, d = 0, . . . , D. Then, vCTW(gt−1) = vCTW

λ (gt−1).

Hence, if we can store
∑

gt−1(s) and the value βs(gt−1) as defined in (6.10) for

every node s of TD, we can compute vCTW in O(D).

(2) Update βs in O(D) steps

Upon receiving gt, we need to update βsd(g
t−1) as

βsd(g
t) = βsd(g

t−1)
ΨKT

sd
(gt)

ΨKT
sd

(gt−1)

ΨCTW
sd+1

(gt−1)

ΨCTW
sd+1

(gt)
(6.12)

for each sd = ωt−1
t−d ∈ TD. Here, the ratio ΨCTW

sd
(gt)/ΨCTW

sd
(gt−1) can be also computed

efficiently while traversing the path ρ(ωt−1
t−D) from the leaf node sD to the root s0 = λ,

based on the following recursion:
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Proposition 6.3.13. For each node sd = ωt−1
t−d ∈ TD, d = 0, . . . , D,

ΨCTW
sd

(gt)

ΨCTW
sd

(gt−1)
=





βsd(g
t−1)

βsd(g
t−1) + 1

ΨKT
sd

(gt)

ΨKT
sd

(gt−1)

+ 1
βsd

(gt−1)+1

ΨCTW
sd+1

(gt)

ΨCTW
sd+1

(gt−1)
if d < D

ΨKT
sD

(gt)

ΨKT
sD

(gt−1)
if d = D

. (6.13)

Hence, updating βs’s can be also performed efficiently in O(D) time. The space

complexity of this algorithm is O(DT ), since there can be at most D nodes activated for

the first time at each round. The complete algorithm is summarized in Algorithm 6.D.3

in Appendix.

6.4 Experiments

To validate the motivation of this work and demonstrate the power of the

proposed algorithms in online convex optimization, we performed online linear re-

gression with absolute loss following Orabona and Pál (2016). We observed, how-

ever, that the datasets considered therein do not contain any temporal dependence

and thus the proposed algorithms did not prove useful (data not shown). Instead,

we chose two real-world temporal datasets (Beijing PM2.5 (Liang et al., 2015) and

Metro Interstate Traffic Volume (Hogue, 2019)) from the UCI machine learning repos-

itory (Dua and Graff, 2019). All details including data preprocessing can be found

in Appendix 6.E and the code that fully reproduce the results is available at https:

//github.com/jongharyu/olo-with-side-information.

To construct auxiliary sequences, we used the canonical binary quantizers Qei ,

where ei denotes the i-th standard vector. We first ran the per-state versions of OGD,

AdaNormal (McMahan and Orabona, 2014), DFEG (Orabona, 2013), and KT with

Markov side information of different depths and ran the CTW algorithm for the maxi-

315

https://github.com/jongharyu/olo-with-side-information
https://github.com/jongharyu/olo-with-side-information


mum depth ranging 0, 1, 3 . . . , 11. We optimally tuned the per-state OGD using only a

single rate for all states due to the prohibitively large complexity of the optimal grid

search; see Figures 6.E.1(a) and 6.E.2(a) in Appendix. While the per-state KT consis-

tently showed the best performance, the performance degraded as we used too deep

Markov side information beyond some threshold for all algorithms. In Figures 6.E.1(b)

and 6.E.2(b) in Appendix, CTW often achieved even better performance than the best

performance achieved by KT across the different choices of quantizer, also being robust

to the choice of the maximum depth.

In practice, however, we do not know which dimension to quantize a priori.

Hence, we showed the performance of the combined CTW algorithms over all d quan-

tizers aggregated by either the mixture or the addition—conceptually, the mixture of

CTWs can be viewed as a context forest weighting. As a benchmark, we also ran the

combined KT algorithms over all d quantizers for each depth. In Figure 6.4.1, we sum-

marized the per-coordinate results by taking the best performance over all quantizers;

see the first five dashed lines in the legend. While these are only hypothetical which

were not attained by an algorithm, surprisingly, the combined CTW algorithms over

different quantizers, either by the mixture or the addition of Cutkosky (2019), achieved

the hypothetically best performance (plotted solid).
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Figure 6.4.1. Summary of the experiments.

6.5 Concluding Remarks

Aiming to leverage a temporal structure in the sequence gn, we developed the

CTW OLO algorithm that can efficiently adapt to the best tree side information in

hindsight by combining a universal coin betting based OLO algorithm and universal

compression (or prediction) techniques from information theory. Experimental results

demonstrate that the proposed framework can be effective in solving real-life online

convex optimization problems.

The key technical contribution of the paper is to consider the product and mixture

potentials, motivated from information theory, and to adapt the CTW algorithm of

Willems et al. (2006) to online linear optimization in Hilbert spaces. Main technical

difficulties lie in analyzing the product potential (Proposition 6.C.15) and properly
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invoking Rissanen’s lower bound in Theorem 6.C.7 to establish the optimality.

We remark that an anonymous reader of an earlier version of this manuscript

proposed a simpler alternative approach based on a meta algorithm that recasts any

parameter-free OLO algorithm for tree-structured side information. The idea is to com-

bine the specialist framework of Freund et al. (1997) and apply the addition technique

of Cutkosky (2019). Running a base OLO algorithm at each node of a context tree as a

specialist, the meta algorithm adds up the outputs of the specialists on the active path

at each round and updates them at the end of the round. This approach achieves a

similar regret guarantee of the CTW OLO (Corllary 6.3.10) with the same complexity. A

detailed study is beyond the scope of this paper and thus left as future work.
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Appendix

6.A Related Work

There have been several parameter-free methods proposed for OLO in Hilbert

space (McMahan and Orabona, 2014; Orabona, 2013, 2014; Orabona and Pál, 2016) as

well as learning with expert advice (LEA) (Chaudhuri et al., 2009; Chernov and Vovk,

2010; Foster et al., 2015; Freund and Schapire, 1997; Koolen and Van Erven, 2015; Luo

and Schapire, 2015; Orabona and Pál, 2016); see also (Orabona, 2019, Chapter 9) and

the references therein. A parallel line of work on parameter-free methods considers the

case when the maximum norm of gt (often referred to as the Lipschitz constant), which

is assumed to be 1 throughout in this paper, is unknown but the competitor norm ∥u∥

is known (Cutkosky and Boahen, 2017; Duchi et al., 2011). Recently, Chen et al. (2021);

Zhang et al. (2021) studied a similar setting in this paper, albeit establishing guarantees

only for bounded domains. We remark that AdaNormalHedge (Luo and Schapire, 2015)

is a parameter-free LEA algorithm which can compete with mixtures of forcasters with

side information, in particular tree experts via mixtures of sleeping experts; for example,

Kuzborskij and Cesa-Bianchi (2020) used AdaNormalHedge with tree experts for binary

classification with absolute loss. For a comprehensive overview of these parameter-free

methods, see the tutorial (Orabona and Cutkosky, 2020).

The connection between OLO and gambling was shown by Orabona and Pál

(2016), where they also described a reduction for LEA. This idea was also applied to

training deep neural networks (Orabona and Tommasi, 2017). While the proposed
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algorithms in this paper are against stationary competitors, Jun et al. (2017) proposed a

coin betting based OLO algorithm against nonstationary competitors characterized by a

sequence of vectors u1, . . . ,uT such that have at most m change points. Van der Hoeven

et al. (2018, Section 5 and particularly Theorem 9) establishes a connection between

the exponential weights (EW) algorithm and the coin-betting scheme. Earlier on in the

paper, in Section 2 the interpretation of compression as a special case of EW with η = 1 is

provided as well. Similarly, Jun and Orabona (2019) utilize such a connection as well. To

the best of our knowledge, however, we did not find a clear bridge constructed between

compression and coin-betting methods in either, even though a careful examination of

the mathematical details may hint toward this connection.

Universal compression, which is a classical topic in information theory, aims to

compress sequences with no (or very little) statistical assumptions. In the last century,

there have been several techniques proposed that can compete against the best i.i.d.

compressor (Krichevsky and Trofimov, 1981; Rissanen, 1984; Xie and Barron, 1997),

finite state compressor (Ziv and Lempel, 1977) and tree compressor (Willems et al.,

1995). The CTW probability assignment invented by (Willems et al., 1995) has been

one of the most successful and widely used universal compression techniques. Beyond

compression, this technique has been applied to estimation of directed information (Jiao

et al., 2013), universal portfolios (Kozat et al., 2008), and reinforcement learning (Messias

and Whiteson, 2018), to name a few. The efficient CTW OLO algorithm presented in

Section 6.3.3 is in the spirit of the processing betas algorithm proposed by Willems

et al. (2006) for computing the predictive conditional probability induced by the CTW

probability assignment (Willems et al., 1995). Cesa-Bianchi and Lugosi (2006, Section 5.3)

also presented a CTW-based Hedge algorithm for LEA; see bibliographic remarks

therein for other applications of CTW to learning problems.

A related line of recent work on online learning with hints (Bhaskara et al.,

2020a,b; Dekel et al., 2017) considers a scenario where the learner receives a vector
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ht with ∥ht∥ = 1 such that ⟨ht,gt/∥gt∥⟩ ≥ α > 0 as a “hint” to the future. However,

our setting is not directly comparable, since we only consider a finite side information

and this line of work aims to establish small regret o(
√
T ) measured with respect to

static competitors. We also remark that Rakhlin and Sridharan (2013) studied the

problem of OLO when gt is modelled as a “predictable” sequence, in the sense that

gt =M(gt−1)+nt with some adversarial noise nt with a (possibly randomized) function

M ; yet, they considered static competitors unlike this work.

6.B Per-State Extensions of Existing Algorithms

Here we present per-state versions of OGD and two existing parameter-free OLO

algorithms: the dimension-free exponentiated gradient algorithm (DFEG) (Orabona,

2013) and the adaptive normal algorithm (AdaNormal) (McMahan and Orabona, 2014).

Following the original problem setting in (Orabona, 2013), we describe the per-

state DFEG only for online linear regression. Consider a loss function ℓ(ŷ, y), which is

convex and L-Lipschitz in its first argument. At each round t, a learner picks wt ∈ V .

A nature then reveals (xt, yt) ∈ V × R, and the learner suffers loss ℓt(wt) := ℓ(ŷt, yt),

where ŷt := ⟨wt,xt⟩. Note that the DFEG algorithm requires a norm of the instance ∥xt∥

to form an action wt.

We remark that these two algorithms are also guaranteed to incur essentially

the same order of regret without tuning learning rate. Also, while the per-state KT

OLO algorithm serves as a base algorithm in the CTW OLO algorithm, to be a fair

comparison, the two algorithms can be also used as a base in the specialist framework

to solve the tree side information problem, as noted in Section 6.5. There are, however,

two minor disadvantages we can observe. First of all, the DFEG algorithm is tailored to

the online linear regression problem, while the per-state KT OLO and AdaptiveNormal

algorithms can be applied to a general OLO problem. Second, while the KT OLO has
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Algorithm 6.B.1. Per-state Dimension-free Exponentiated Gradient (Orabona, 2013) for
online regression

1: procedure PERSTATEDFEG(L, δ, 0.882 ≤ a ≤ 1.109)
2: Initialize θ(s) ← 0 ∈ V,H(s) ← δ for each s ∈ [S]
3: for 1 ≤ t ≤ T do
4: Receive ht ∈ [S] and ∥xt∥
5: Update H(ht) ← H(ht) + L2max{∥xt∥, ∥xt∥2}
6: Set αt ← a(H(ht))1/2, βt ← (H(ht))3/2

7: if ∥θ(ht)∥ = 0 then
8: Set wt ← 0
9: else

10: Set wt ← θ(ht)

βt∥θ(ht)∥ exp(
∥θ(ht)∥

αt
)

11: end if
12: Receive (xt, yt) and incur loss ℓt(wt)
13: Update θ(ht) ← θ(ht) − ∂ℓt(⟨wt,xt⟩)xt

14: end for
15: end procedure

only one hyperparameter, the initial wealth W0, the above two per-state algorithms have

two hyperparameters (except the Lipschitz constant), which may need to be chosen or

tuned in practice.

6.C Deferred Technical Materials

6.C.1 Proofs for Section 6.2

Proof of Theorem 6.2.1

We note that all statements in Section 6.2 originally appeared in (Orabona and

Pál, 2016). The proofs given here are rephrased and simplified from (Orabona and Pál,

2016).

Before we prove Theorem 6.2.1, we state some key properties of the KT potential

function ψKT.

Proposition 6.C.1. For each t ≥ 1 and any g1, . . . , gt ∈ [−1, 1], the followings hold:

(a) (Coordinatewise convexity) g 7→ ψKT(gt−1g) is convex for g ∈ [−1, 1].
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Algorithm 6.B.2. Per-state AdaptiveNormal (McMahan and Orabona, 2014) for OLO
with side information

1: procedure PERSTATEADANORMAL(L, a ≥ 3L2π
4
, ϵ)

2: Initialize θ(s) ← 0 ∈ V for each s ∈ [S]
3: for 1 ≤ t ≤ T do
4: Receive ht ∈ [S]
5: if ∥θ(ht)∥ = 0 then
6: Set wt ← 0
7: else
8: Set wt ← ϵ θ(ht)

∥θ(ht)∥
1

2L ln2(t+1)
{exp( (∥θ(ht)∥+L)2

2at
)− exp( (∥θ

(ht)∥−L)2

2at
)}

9: end if
10: Receive gt and incur loss ⟨gt,wt⟩
11: Update θ(ht) ← θ(ht) − gt

12: end for
13: end procedure

(b) (Consistency) ψKT(gt−1) = 1
2
(ψKT(gt−11) + ψKT(gt−11̄)).

(c) (The relation of signed betting and potential)

bKT(gt−1) =
ψKT(gt−11)− ψKT(gt−11̄)

ψKT(gt−11) + ψKT(gt−11̄)
=
ψKT(gt−11)− ψKT(gt−11̄)

ψKT(gt−1)
.

(d) For any x ∈ [0, t), x(ψKT
t )′′(x) ≥ (ψKT

t )′(x).

Proof. Recall q̃KTt (x) := B( t+x+1
2

, t−x+1
2

)/B(1
2
, 1
2
) and

ψKT(gt) := ψKT
t (

∑
gt) := 2tq̃KTt (

∑
gt).

(a) and (d) follow from the properties of the Gamma function Γ(·); for details, see

(Orabona and Pál, 2016, Lemma 12) and the proof therein. (b) and (c) can be easily

verified by the definition of the KT potential ψKT.

We remark that the relation (b) can be understood as a continuous extension

of the consistency of q̃KT as a joint probability over a binary sequence gt ∈ {−1, 1}t.
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Further, in view of the relation (c), the signed bet bKT is a continuous extension of the

prequential probability q̃KT(·|gt−1) induced by the joint probability assignment q̃KT(gt).

We now show the following single round bound.

Lemma 6.C.2. For any t ≥ 1 and g1, . . . , gt ∈ [−1, 1], we have

(1 + gtb
KT
t (gt−1))ψKT(gt−1) ≥ ψKT(gt).

Proof. By the definition of coin betting potentials, we have

(1 + gtb
KT(gt−1))ψKT(gt−1)

(i)

≥ (1 + gtb
KT(gt−1))

1

2
(ψKT(gt−11) + ψKT(gt−11̄))

(ii)
=
(
1 + gt

ψKT(gt−11)− ψKT(gt−11̄)

ψKT(gt−11) + ψKT(gt−11̄)

)1
2
(ψKT(gt−11) + ψKT(gt−11̄))

=
1 + gt
2

ψKT(gt−11) +
1− gt
2

ψKT(gt−11̄)

(iii)

≥ ψKT(gt).

where (i), (ii), and (iii) follow from (b), (c), and (a) in Proposition 6.C.1, respectively.

While the above lemma establishes the lower bound on the cumulative wealth,

we then need the following statement that connects regret and wealth via convex duality.

We remark that this relation is the key statement that motivates all coin betting based

algorithms.

Proposition 6.C.3 (McMahan and Orabona, 2014, (Orabona and Pál, 2016, Lemma 1)).

Let Φ: V → R be a convex function and let Φ⋆ : V → R ∪ {+∞} denote its Fenchel conjugate

function. For any g1, . . . ,gT ∈ V ⋆ and any wt, . . . ,wT ∈ V , we have

sup
u∈V
{Reg(u;gT )− Φ(u)} = −

T∑

t=1

⟨gt,wt⟩+ Φ⋆
( T∑

t=1

gt

)
,
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where Reg(u;gT ) :=
∑T

t=1⟨gt,u−wt⟩.

Proof. By definition of Fenchel dual, we have

sup
u∈V
{Reg(u;gT )− Φ(u)} = sup

u∈V

{ T∑

t=1

⟨gt,u−wt⟩ − Φ(u)
}

= −
T∑

t=1

⟨gt,wt⟩+ sup
u∈V

{〈 T∑

t=1

gt,u
〉
− Φ(u)

}

= −
T∑

t=1

⟨gt,wt⟩+ Φ⋆
( T∑

t=1

gt

)
.

Now we are ready to prove Theorem 6.2.1.

Proof of Theorem 6.2.1. We first show the wealth lower bound Wt ≥ W0ψ
KT(gt) stated in

(6.1) by induction on t. Suppose that Wt−1 ≥ W0ψ
KT(gt−1). Then,

Wt = Wt−1 + gtwt

= (1 + bKT(gt−1)gt)Wt−1

(a)

≥ (1 + bKT(gt−1)gt)W0ψ
KT(gt−1)

(b)

≥ W0ψ
KT(gt),

where (a) follows from the induction hypothesis and (b) follows from Lemma 6.C.2.

The wealth lower bound can be converted into the desired regret bound by

Proposition 6.C.3. That is, we have

sup
u∈R
{Reg(u; gT )− ϕ(u)} = −

T∑

t=1

gtwt +W0ψ
KT(gT ) ≤ W0,

where ϕ : R→ R is a convex function such that its conjugate function ϕ⋆ : R→ R∪{+∞}

is equal to W0ψ
KT
T (

∑
gt). Since x 7→ ψKT

T (x) is a convex, proper, closed function, one can

check that ϕ(u) = W0(ψ
KT
T )⋆( u

W0
) using Lemma 6.C.10.
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Proof of Theorem 6.2.2

As in 1D OLO case, we first show the following single round bound.

Lemma 6.C.4. For any g1, . . . ,gt ∈ B, we have

(1 + ⟨gt,v
KT(gt−1)⟩)ΨKT(gt−1) ≥ ΨKT(gt).

Proof. Let ft−1 :=
∑

gt−1. Consider

(1+⟨gt,v
KT(gt−1)⟩)ΨKT(gt−1)−ΨKT(gt)

= ΨKT(gt−1) + ⟨gt,v
KT(gt−1)⟩ΨKT(gt−1)−ΨKT(gt)

= ψKT
t−1(∥ft−1∥) +

〈
gt, b

KT
t (∥ft−1∥)

ft−1

∥ft−1∥
〉
ψKT
t−1(∥ft−1∥)− ψKT

t (∥ft−1 + gt∥)
(a)

≥ ψKT
t−1(∥ft−1∥) + min

r∈{±1}
{r∥gt∥bKTt (∥ft−1∥)ψKT

t−1(∥ft−1∥)− ψKT
t (∥ft−1∥+ r∥gt∥)}

= min
r∈{±1}

{(1 + r∥gt∥bKTt (∥ft−1∥))ψKT
t−1(∥ft−1∥)− ψKT

t (∥ft−1∥+ r∥gt∥)}

≥ min
g∈[−1,1]

{(1 + gbKTt (∥ft−1∥))ψKT
t−1(∥ft−1∥)− ψKT

t (∥ft−1∥+ g)}
(b)

≥ 0.

Here, we apply Lemma 6.C.8 since ψKT
t satisfies x(ψKT

t )′′(x) ≥ (ψKT
t )′(x) for all x ∈ [0, t),

to have (a) by plugging in u ← gt, v ← ft−1, c(∥u∥, ∥v∥) ← bKTt (∥ft−1∥)
∥ft−1∥ ψKT

t−1(∥ft−1∥), and

h(·) ← ψKT
t (·). (b) follows from the single round bound for 1D case established in

Lemma 6.C.2.

The proof of Theorem 6.2.2 now follows similarly to that of Theorem 6.2.1.

Proof of Theorem 6.2.2. We show Wt ≥ W0Ψ
KT(gt) by induction on t. For t = 0, it trivially

holds. For t ≥ 1, assume that Wt−1 ≥ W0Ψ
KT(gt−1) holds. Then, we have

Wt = ⟨gt,w
KT
t ⟩+Wt−1
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= (1 + ⟨gt,v
KT(gt−1)⟩)Wt−1

(a)

≥ (1 + ⟨gt,v
KT(gt−1)⟩)W0Ψ

KT(gt−1)

(b)

≥ W0Ψ
KT(gt).

Here, (a) follows from the induction hypothesis and (b) follows from the above lemma.

The regret bound follows by the same logic of the 1D case using Proposition 6.C.3 with

the additional application of Lemma 6.C.9, which implies that (ψKT
t )⋆(u) = (ψKT

t )⋆(∥u∥).

6.C.2 Proofs for Section 6.3

Proof of Theorem 6.3.1

The following statement generalizes Proposition 6.C.3 for static competitors to

adaptive competitors.

Proposition 6.C.5. Let Φ: V × · · ·×V → R be a convex function and let Φ⋆ : V × · · ·×V →

R ∪ {+∞}. For any side information sequence H = (ht)t≥1, any g1, . . . ,gT ∈ V ⋆, and any

wt, . . . ,wT ∈ V , we have

sup
u1:S∈V×···V

{Reg(u1:S[H];gT )− Φ(u1:S)}

= −
T∑

t=1

⟨gt,wt⟩+ Φ⋆
( ∑

t∈[T ]:ht=1

gt, . . . ,
∑

t∈[T ]:ht=S

gt

)
,

where Reg(u1:S[H];gT ) :=
∑S

s=1

∑
t∈[T ]:ht=S⟨gt,us −wt⟩.

Proof. By definition of Fenchel dual, we have

sup
u1:S∈V×···V

{Reg(u1:S[H];gT )− Φ(u1:S)}

= sup
u1:S∈V×···V

{ S∑

s=1

∑

t∈[T ]:ht=s

⟨gt,us −wt⟩ − Φ(u1:S)
}
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= −
T∑

t=1

⟨gt,wt⟩+ sup
u1:S∈V×···V

{ S∑

s=1

〈 ∑

t∈[T ]:ht=s

gt,us

〉
− Φ(u1:S)

}

= −
T∑

t=1

⟨gt,wt⟩+ Φ⋆
( ∑

t∈[T ]:ht=1

gt, . . . ,
∑

t∈[T ]:ht=S

gt

)
.

We are now ready to prove Theorem 6.3.1.

Proof of Theorem 6.3.1. Since the vectorial betting vKT(gt−1;ht) only affects the compo-

nent potential ΨKT(gt(ht;h
t−1)) by construction, the wealth lower bound readily follows

from the same argument in the proof of Theorem 6.2.2. Now, we observe that

ΨKT(gT ;hT ) = 2T
∏

s∈[S]

q̃KTTs
(∥∑gT (s;hT )∥),

where Ts := |{t ∈ [T ] : ht = s}|. Since q̃KTT (x) ≥ 1
2T e

√
π

1√
T
e

2x2

T for T ≥ 1 by (Orabona and

Pál, 2016, Lemma 14), we have

ΨKT(gT ;hT ) ≥
( 1

e
√
π

)S′ 1√
T ′
1 · · ·T ′

S

exp
( S∑

s=1

2∥∑gT (s;hT )∥2
T ′
s

)
,

where S ′ :=
∑S

s=1 1{Ts ≥ 1} and T ′
s := Ts ∨ 1. Applying Propositions 6.C.5 and 6.C.15

then establishes the regret upper bound.

Proof of Theorem 6.3.5

We show Wt ≥ W0Ψ
mix(gt;ht) by induction on t. For t = 0, it trivially holds. For

t ≥ 1, assume that Wt−1 ≥ W0Ψ
mix(gt−1;ht−1) holds. Then, we have

Wt = ⟨gt,w
mix
t (gt−1;ht)⟩+Wt−1

= (1 + ⟨gt,v
mix(gt−1;ht)⟩)Wt−1

(a)

≥ (1 + ⟨gt,v
mix(gt−1;ht)⟩)W0Ψ

mix(gt−1;ht−1)
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(b)

≥ W0Ψ
mix(gt;ht).

Here, (a) follows from the induction hypothesis, and (b) follows from the construction

of vmix(gt−1;ht). The regret guarantee for m ∈ [M ] readily follows from the construction

of the mixture potential, which guarantees WT ≥ wmW0Ψ
KT(gT ; (h(m))T ).

Matching lower bounds for tree side information

We first require the following theorem from (Orabona, 2019).

Theorem 6.C.6 (Orabona, 2019, Theorem 5.11). Suppose that an OLO algorithm satisfies

that for each t ≥ 0

sup
gt∈Bt

Reg(0;gt) = − inf
gt∈Bt

t∑

i=1

⟨gi,wi⟩ ≤ W
(t)
0 (6.14)

with some nondecreasing sequence (W(t)
0 )t≥0. Then, for each T ≥ 1, there exists v1, . . . ,vT ∈ B

such that

wt = vt

(
W

(T )
0 +

t−1∑

i=1

⟨gi,wi⟩
)

for all t ∈ [T ].

For a binary quantizer Q : B→ {±1}, let HT,Q denote the tree side information

with respect to a tree T and an auxiliary sequence Ω = (ωt)t≥1 with ωt = Q(gt).

Theorem 6.C.7. Let V = Rd be the d-dimensional Euclidean space. Suppose that a binary

quantizer Q : B → {±1} satisfies Q(ej) = 1 and Q(−ej) = −1 for some j ∈ [d]. For T

sufficiently large, for any causal OLO algorithm that satisfies the condition (6.14) in Theo-

rem 6.C.6, for any binary suffix tree T, there exist a sequence g1, . . . ,gT ∈ B and a competitor

(u∗
s)s∈T[HT,Q] ∈M(HT,Q) such that

Reg((u∗
s)s∈T[HT,Q]);g

T ) ≥
√∑

s∈T

Ts∥u∗
s∥22 ln

((T/|T|)|T|

(W
(T )
0 )2

∑

s∈T

Ts∥u∗
s∥22 + 1

)
+W

(T )
0 .

Proof. Without loss of generality, assume that the binary quantizer Q : B → {±1}

satisfies Q(e1) = 1 and Q(−e1) = −1. For a binary sequence cT ∈ {±1}T , we set
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gt = (ct, 0, . . . , 0) for ct ∈ {±1}, so that ⟨gt,wt⟩ = ctxt1. Then, by Theorem 6.C.6, we can

write

xt1 = vt1

(
W

(T )
0 +

t−1∑

i=1

⟨gi,wi⟩
)
= vt1

(
W

(T )
0 +

t−1∑

i=1

cixi1

)

for some vt1 such that |vt1| ≤ 1. Hence, the OLO problem with any causal algorithms

satisfying (6.14) with respect to the 1D sequences gT can be equivalently viewed as the

1D coin betting with initial wealth W0 = W
(T )
0 .

Now, we state the celebrated Rissanen’s lower bound for universal compression

in the form of the wealth upper bound for the coin betting. Rissanen (1996) showed that

for any probability assignment q(xT ) on a binary sequence xT ∈ {0, 1}T , there exists a

sequence x̃T ∈ {0, 1} such that

q(x̃T ) ≤ e−
|T|
2

ln T
|T| max

pT
pT(x̃

T ),

where the maximum is over all possible tree sources pT with the underlying tree T.

This can be translated into the wealth upper bound for the standard coin betting with

binary outcomes ct ∈ {±1} thanks to the equivalence between the coin betting and

universal compression: for any continuous coin betting algorithm which plays a relative

bet bt ∈ [−1, 1] at time t, there exists a binary sequence c̃T ∈ {±1}T such that

WT

W0

=
T∏

t=1

(1 + btc̃t) ≤
( |T|
T

) |T|
2
∏

s∈T

max
bs∈[−1,1]

∏

t∈[T ]:ht=s

(1 + bsc̃t)

(a)

≤
( |T|
T

) |T|
2
∏

s∈T

exp
( ln 2
T ′
s

( ∑

t∈[T ]:ht=s

c̃t

)2)
,

= f
(
(
∑
c̃T (s;HT,Q))s∈T

)
, (6.15)

where ht denotes the suffix of the sequence ct−1 with respect to T at time t, T ′
s := Ts ∨ 1,

Ts := |{t ∈ [T ] : ht = s}|, f((xs)s∈T) :=
∏

s∈T hs(xs), and hs(xs) = βs exp(
x2
s

2αs
) with

330



αs =
2Ts′
ln 2

, and βs =
√
|T|/T . Here, (a) follows by Lemma 6.C.16.

For the adversarial coin sequence (c̃t)t≥1 satisfying (6.15), we now define gt :=

(c̃t, 0, . . . , 0). Then, we have

W
(T )
0 +

T∑

t=1

⟨g̃t,wt⟩ = W
(T )
0 +

T∑

t=1

c̃txt1

≤ W
(T )
0 f

(
(
∑
c̃T (s;HT,Q))s∈T

)

=
∑

s∈T

(∑
c̃T (s;HT,Q)

)
u∗s −W

(T )
0 f ⋆

(( |u∗s|
W

(T )
0

)
s∈T

)

=
T∑

t=1

⟨gt,u
∗
ht
⟩ −W

(T )
0 f ⋆

((∥u∗
s∥2

W
(T )
0

)
s∈T

)
,

where (u∗s)s∈T = W
(T )
0 ∇f((

∑
c̃T (s;HT,Q))s∈T) and u∗

s := (u∗s, 0, . . . , 0) for each s ∈ T.

Rearranging the terms, we have

Reg((u∗
s)s∈T[HT,Q]);g

T ) =
T∑

t=1

⟨gt,u
∗
ht
⟩ −

T∑

t=1

⟨gt,wt⟩

≥ W
(T )
0 +W

(T )
0 f ⋆

((∥u∗
s∥2

W
(T )
0

)
s∈T

)
.

Proof of Proposition 6.3.11

We use a backward induction over the depth |s| to show that the recursion is well-

defined. First, if |s| = D, uCTW
s (gt−1) = ΨKT

s (gt−1)vKT
s (gt−1). By definition of vKT

s (gt−1),

uCTW
s (gt−1) is a vector if s is the active node at depth D, and a scalar otherwise. Now,

for d ≤ D − 1, assume that uCTW
s′ (gt−1) is a scalar if s′ is an active node and a vector

otherwise for any |s′| = d+ 1 (induction hypothesis). Consider any node s of TD with

|s| = d. If s is an active node, then uCTW
1̄s (gt−1)uCTW

1s (gt−1) is a vector by the induction

hypothesis, since exactly one of 1̄s and 1s is active. Hence, uCTW
s (gt−1) is a vector. If s is

not an active node, then, uCTW
1̄s (gt−1)uCTW

1s (gt−1) is a scalar by the induction hypothesis,

since neither of 1̄s and 1s is active. Hence, uCTW
s (gt−1) is a scalar. This completes the
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induction and thus the recursion is well-defined for all nodes s.

The claim uCTW
λ (gt−1) = uCTW(gt−1) can be checked by a similar induction argu-

ment.

Proof of Proposition 6.3.12

We claim that vCTW
s (gt−1) = uCTW

s (gt−1)
ΨCTW

s (gt−1)
for any s = sd = ωt−1

t−d ∈ TD, d = 0, . . . , D.

This trivially holds for the leaf node sD = ωt−1
t−D. For the internal nodes sd with d < D,

by plugging in the recursive formulas of uCTW(gt−1) and ΨCTW(gt−1), we can write

uCTW(gt−1)

ΨCTW(gt−1)
=

βs(g
t−1)

βs(gt−1) + 1
vKT
s (gt−1) +

1

βs(gt−1) + 1

uCTW
1̄s (gt−1)

ΨCTW
1̄s

(gt−1)

uCTW
1s (gt−1)

ΨCTW
1s (gt−1)

.

It is now enough to show that

uCTW
s′ (gt−1)

ΨCTW
s′ (gt−1)

= 1 for s′ = ωt−1−|s|s.

This holds since uCTW
s = ΨCTW

s for any off-path node s /∈ ρ(ωt−1
t−D) by definition (6.9).

Proof of Proposition 6.3.13

Similar to the processing betas algorithm (Willems et al., 2006), we only need to

show that
ΨCTW

ωt−1−|s|s
(gt)

ΨCTW
ωt−1−|s|s

(gt−1)
= 1 for s′ = ωt−1−|s|s for any s /∈ ρ(ωt−1

t−D).

Since the new symbol gt is added to a node s if and only if s ∈ ρ(ωt−1
t−D), if s /∈ ρ(ωt−1

t−D),

then the CTW potential on the node s will not be updated. This proves the claim.

6.C.3 Technical Lemmas

Lemma 6.C.8 (Orabona and Pál, 2016, Lemma 10). Let h : (−a, a)→ R be an even, twice

differentiable function that satisfies xh′′(x) ≥ h′(x) for all x ∈ [0, a). Let c : [0,∞)× [0,∞)→
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R be an arbitrary function. If u, v ∈ H satisfy ∥u∥+ ∥v∥ < a, then

c(∥u∥, ∥v∥) · ⟨u, v⟩ − h(∥u+ v∥) ≥ min
r∈{±1}

{rc(∥u∥, ∥v∥)∥u∥∥v∥ − h(∥u∥+ r∥v∥)}.

Proof sketch. It is easy to check that the inequality holds if u = 0 or v = 0. Hence, we

assume u, v ̸= 0. With α := ⟨u, v⟩/(∥u∥∥v∥), we can write the left hand side of the

desired inequality as

f(α) := c(∥u∥, ∥v∥)∥u∥∥v∥α− h(
√
∥u∥2 + ∥v∥2 + 2α∥u∥∥v∥).

Since the function h is assumed to be even, it is equivalent to showing that

inf
α∈[−1,1]

f(α) = min{f(+1), f(−1)}.

By using the condition xh′′(x) ≥ h′(x), one can easily show that f is concave by checking

f ′′(α) ≤ 0, which concludes the proof.

Lemma 6.C.9 (Bauschke and Combettes, 2011, Example 13.7). Let ϕ : R→ (−∞,+∞] be

even. Then (ϕ ◦ ∥ · ∥)⋆ = ϕ⋆ ◦ ∥ · ∥.

Lemma 6.C.10 (Orabona, 2019, Lemma 5.8). Let f be a function and let f ⋆ be its Fenchel

conjugate. For a > 0 and b ∈ R, the Fenchel conjugate of g(x) = af(x) + b is g⋆(z) =

af ⋆(z/a)− b.

Lemma 6.C.11 (Orabona, 2019, Theorem 5.8). For a convex, proper, closed function h : Rd →

(−∞,+∞], we have ⟨θ, x⟩ ≥ h(x) + h⋆(θ), where the equality is attained if and only if

x ∈ ∂h⋆(θ).

Since f(x) ≥ h(x) for any x ∈ R implies f ⋆(u) ≥ h⋆(u) for any u ∈ R, it is enough

to find the conjugate dual of a function h(x) = β exp( x
2

2α
) for α, β > 0.
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The Lambert function W : (−1/e,∞) → [0,∞) is defined by the equation x =

W (x)eW (x) for x ≥ 0.

Lemma 6.C.12 (Orabona and Pál, 2016, Lemma 17). For x ≥ 0,

0.6321 ln(x+ 1) ≤ W (x) ≤ ln(x+ 1).

Remark 6.C.13. Here, 0.6321 . . . ≈ 1/b∗, where b∗ is the solution to the equation

eb

(e+ 1)b+ 1
=

b

(b+ 1) ln(b+ 1)
.

Proposition 6.C.14 (Orabona and Pál, 2016, Lemma 18). For h(x) = β exp( x
2

2α
) with

α, β > 0,

h⋆(y) = y

√
αW

(αy2
β2

)
− β exp

(1
2
W
(αy2
β2

))
= y
√
α
(√

W
(αy2
β2

)
−
√

1

W (αy
2

β2 )

)
.

In particular,

h⋆(y) ≤ y

√
α ln

(αy2
β2

+ 1
)
− β.

For a generalization with the product potential, we also have the following

proposition.

Proposition 6.C.15. Define fi(yi) = βi exp(
y2i
2αi

) with αi, βi > 0 for each i ∈ S, and define

f(y1, . . . , yS) = f1(y1) · · · fS(yS). Then, we have

f ⋆(y1, . . . , yS) =
√
α1y21 + . . .+ αSy2S

(√
W
(α1y21 + . . .+ αSy2S

β2
1 · · · β2

S

)
− 1√

W
(

α1y21+...+αSy
2
S

β2
1 ···β2

S

)
)
.
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In particular,

f ⋆(y1, . . . , yS) ≤
√

(α1y21 + . . .+ αSy2S) ln
(α1y21 + . . .+ αSy2S

β2
1 · · · β2

S

+ 1
)
− β1 · · · βS

Proof. For the sake of simplicity, we prove only for S = 2. The proof can be generalized

to any S ≥ 2 with little modification. To find

f ⋆(y1, y2) = sup
x1,x2

(y1x1 + y2x2 − f1(x1)f2(x2)),

we consider the stationarity conditions

∂

∂xi
(y1x1 + y2x2 − f1(x1)f2(x2)) = 0

for i ∈ {1, 2}, which leads to





y1 = f ′
1(x1)f2(x2),

y2 = f1(x1)f
′
2(x2).

Since f ′
i(x) =

x
αi
fi(x), we have





y1 = x1

α1
f1(x1)f2(x2),

y2 = x2

α2
f1(x1)f2(x2).

Manipulating the equations, we have

(x21
α1

+
x22
α2

)
exp
(x21
α1

+
x22
α2

)
=
α1y

2
1 + α2y

2
2

β2
1β

2
2

,
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which leads to
x21
α1

+
x22
α2

= W
(α1y

2
1 + α2y

2
2

β2
1β

2
2

)
.

Hence,

f(x∗1, x
∗
2) = β1β2 exp

(1
2
W
(α1y

2
1 + α2y

2
2

β2
1β

2
2

))
=

√√√√ α1y21 + α2y22

W (
α1y21+α2y22

β2
1β

2
2

)
.

Finally, we can compute

y1x
∗
1 + y2x

∗
2 =

α1y
2
1 + α2y

2
2

f(x∗1, x
∗
2)

=

√
(α1y21 + α2y22)W

(α1y21 + α2y22
β2
1β

2
2

)
,

whence

f ⋆(y1, y2) = y1x
∗
1 + y2x

∗
2 − f(x∗1, x∗2)

=
√
α1y21 + α2y22

(√
W
(α1y21 + α2y22

β2
1β

2
2

)
− 1√

W (
α1y21+α2y22

β2
1β

2
2

)

)
.

Lemma 6.C.16 (Orabona, 2019, Lemma 9.4). For any T ≥ 1 and any cT ∈ [−1, 1]T , we have

max
b∈[−1,1]

∏

t∈[T ]

(1 + bct) ≤ exp
( ln 2
T

(
∑
cT )2

)
.

6.D The CTW OLO Algorithm

See Algorithm 6.D.3.

6.E Experiment Details and Additional Figures

Problem setting

We applied the proposed OLO algorithms to solve the online linear regression

problem as described in Appendix 6.B especially with absolute loss ℓt(wt) = |⟨wt,xt⟩ −

yt|, where wt denotes the action of an OLO algorithm and xt denotes the feature vector.
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Algorithm 6.D.3. CTW OLO algorithm
Parameters maximum depth D ≥ 1, auxiliary sequence Ω = (ωt)t≥1, initial wealth
W0 > 0.

1: procedure CTWOLO(D,Ω,W0)
2: Initialize a context tree TD of depth D with Gs ← ϕ and βs ← 1 for each s ∈ TD
3: for each t = 1, 2, . . . do
4: Compute vCTW(gt−1) = vCTW

λ (gt−1) by computing, for s0, . . . , sD ∈ ρ(ωt−1
t−D),

vCTW
sd

(gt−1)←
{

βsd
(gt−1)

βsd
(gt−1)+1

vKT
sd

(gt−1) + 1
βsd

(gt−1)+1
vCTW
sd+1

(gt−1) if d < D

vKT
sD

(gt−1) if d = D
(6.11)

5: Set wCTW
t (gt−1)← vCTW(gt−1)Wt−1

6: Receive gt and update the cumulative wealth Wt ← Wt−1 + ⟨gt,w
CTW
t (gt−1)⟩

7: Update Gs ← Gs + gt and update βs for sd = ωt−1
t−d, d = 0, . . . , D − 1, as

βsd(g
t−1)← βsd(g

t) = βsd(g
t−1)

ΨKT
sd

(gt)

ΨKT
sd

(gt−1)

ΨCTW
sd+1

(gt−1)

ΨCTW
sd+1

(gt)
, (6.12)

where

ΨCTW
sd

(gt)

ΨCTW
sd

(gt−1)
=





βsd
(gt−1)

βsd
(gt−1)+1

ΨKT
sd

(gt)

ΨKT
sd

(gt−1)
+ 1

βsd
(gt−1)+1

ΨCTW
sd+1

(gt)

ΨCTW
sd+1

(gt−1)
if d < D

ΨKT
sD

(gt)

ΨKT
sD

(gt−1)
if d = D

(6.13)

for sd = ωt−1
t−d, d = 0, . . . , D

8: Receive ωt

9: end for
10: end procedure

Hence, we linearized the convex loss and fed the subgradient ∂ℓt(wt) = sgn(⟨wt,xt⟩ −

yt)xt to an OLO algorithm.

Data preprocessing

For each dataset, we linearly interpolated any missing values. We discarded

time stamps as well as some categorical features such as cbwd of Beijing PM2.5 and

weather description of Metro Inter State Traffic Volume, and binarized the others,

if possible, such as holiday, weather main, and snow 1h of Metro Inter State Traffic

Volume. We also applied a logarithmic mapping x 7→ ln(1 + x) for the features lws,
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ls, lr of Beijing PM2.5 and applied another logarithmic mapping x 7→ lnx to the

feature rain 1h, to make the features more suitable for linear regression. We then

normalized each feature x̃t so that ∥x̃t∥2 = 1 and added all-one coordinates as the

bias component with an additional scaling by 1/
√
2. After this preprocessing step, we

obtained 7-dimensional feature vectors for both datsets. See the attached Python code

for the details in Supplementary Material.

Computing resource

All experiments were run on a single laptop with a CPU Intel(R) Core(TM)

i7-9750H CPU 2.60GHz with 12 (logical) cores and 16GB of RAM.
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