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Abstract

Communication and Control for Quantum Circuits

by

Yatish Patel
Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor John Kubiatowicz, Chair

Quantum computers will potentially be able to solve certain classes of problems more effi-
ciently than possible on a classical computer. Due to the fragility of quantum data, a large
scale quantum computer will require a robust system to enable reliable communication
within the datapath. We present a scalable architecture for a quantum computer which
specifically addresses communication concerns. Our design minimizes communication er-
ror by using a specialized interconnection network to perform long-distance movement.

We developed a set of tools to construct and study quantum datapath designs based
on ion trap quantum technology. Our tools automatically synthesize and insert the inter-
connection network used for long-distance communication into the target datapath. We
present a set of greedy heuristics to optimize the routing and scheduling of communica-
tion within this network and show that our approach performs as well as an optimal case
determined using integer linear programming. We study a number of different quantum
circuits including randomly generated circuits, quantum adder circuits, and ultimately
Shor’s factorization algorithm and show that designs using our optimizations significantly
improve upon prior work in terms of a probabilistic area delay metric.
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Chapter 1

Introduction

Quantum computers have the potential to perform certain classes of problems more
efficiently than a traditional classical computer. The task that garners the most interest
in building a quantum computer is the ability to factor large numbers using Shor’s fac-
toring algorithm [57]. In order for a quantum computer to tackle such a complex task, it
must contain a large number of quantum bits and must be capable of performing many
quantum operations. These requirements force us to address a number of concerns, a fun-
damental one being how best to manage communication of quantum information within
the datapath.

Small quantum computer devices have been experimentally demonstrated using a num-
ber of different technologies [25, 35, 41, 15]. Common to all these technologies is the in-
herent fragility of the quantum bits. Simple tasks such as interacting two qubits together,
moving a qubit in the system, or even storing a qubit for long periods of time all expose
the quantum data to sources of error. To properly execute a quantum circuit we must
carefully schedule how qubits move through the datapath to account for these sources of
error. Moving quantum bits more than the shortest of distances can introduce enough
error into the system to prevent us from obtaining a valid result.

In a quantum computer a qubit is represented by a physical object, e.g., the nuclear
and electronic states of a single ion. To perform a two-qubit operation both qubits must be
physically adjacent to each other and must move from one location to another. Therefore,
during the execution of a quantum circuit qubits must constantly be shuttling around the
system to take part in their various operations. Unfortunately, the simple task of moving
a qubit can introduce significant amounts of error into the data stored by the qubit if not
managed correctly.

One approach to addressing communication issues is to separate movement into two
classes: short-distance and long-distance. Short-distance movement encapsulates all direct
physical qubit movement and is limited to distances where we can utilize error correction
techniques to reduce the error rates. Long-distance moves are those that would be too
costly (in error and time) to perform physically, requiring an alternate method of commu-
nication. Fortunately, quantum computers allow us to use the process of teleportation [6]
to perform these types of long-distance moves efficiently.

Teleportation utilizes helper qubits to move quantum information over longer dis-
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Figure 1.1: High-level view of a quantum computer architecture. The computer ulti-
mately receives and generates classical data, but the main computation is done using
qubits in the quantum datapath. The quantum datapath is constructed from a set of
compute regions connected via a communication network.

tances. Using this technique we can design an architecture similar to classical multi-core
chip with on-chip network: short-distance communication within a “core” (or compute
region) occurs ballistically, while long-distance communication (between compute regions)
occurs through an interconnection network based on teleportation. Figure 1.1 illustrates
this architecture.

The quantum computer is broken up into a classical control portion and a quantum
datapath. Both the input data and output data is classical; however, the computation
is done internally via quantum operations. The quantum datapath is constructed from
a set of compute regions connected via a communication network. The classical control
system manages all the operations and orchestrates the full program run.

Variations on this type of architecture have been minimally studied in prior work [42,
66]. The architectures proposed so far however, suffer from a number of limitations:

• The communication networks proposed are high latency. When architectural im-
provements are made in other parts of the system, network delays start to dramat-
ically impact overall latency.

• The architectural evaluations lacked detail about how various components in the sys-
tem are constructed. Without these details the architectures cannot be thoroughly
evaluated.

• Current research neglects the control system necessary to manage the quantum dat-
apath. The complex support infrastructure and the vast number of qubits contained
in the system will require a sophisticated control system that must be addressed.

• General-purpose architectures result in large designs with underutilized regions. In
one proposal the authors calculated that a device sized to factor a 1024-bit number
would measure approximately 1m2 in area [42]. Without optimizing the designs to
the target application it will be difficult to build these types of devices.
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Figure 1.2: Our approach to designing and studying quantum datapaths. The input to
the flow is a quantum circuit and the output is a full layout and schedule of operations.

In contrast to a general-purpose architecture, our work is based on using application-
specific knowledge to optimize the quantum datapath by concentrating on managing the
communication needs. A key result of this work is that by analyzing the quantum circuit
we can optimize the communication infrastructure to improve overall circuit latency and
reduce sources of error.

Our approach to studying the quantum circuit and performing optimization is shown
in Figure 1.2, and consists of the following major components:

Circuit Synthesis: Our tools take a quantum circuit specified in a technology indepen-
dent quantum assembly language combined with technology parameters to synthe-
size a new circuit with optimized error correction.

Datapath Synthesis: We use the synthesized circuit to automatically generate a quan-
tum datapath tailored to the circuits needs. We analyze computation and commu-
nication and use this information to determine the best layout of compute regions
and network structure.

Mapping: The mapping phase maps the circuit operations to the appropriate datapath
resources.

Network Routing & Scheduling: With a list of operations and locations we gener-
ate an optimized routing and scheduling for all the long-distance communication
operations that will take place.

Verification: The flow outputs a full layout and schedule of operations that are then fed
into a verification tool to determine the success probability of the circuit. These
results are then used to update the datapath to improve overall area, latency and
success probability.

Within this design flow we make the following contributions:

Short-distance communication: We develop a method to construct low-level quantum
datapaths for arbitrary quantum circuits. We provide tools to schedule gate and
movement operations within these datapaths and use them to generate detailed area
and communication requirements for our target architecture.
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Long-distance communication: We present an architecture to manage long-distance
communication within large quantum datapaths using a network built on telepor-
tation. We create a control system to manage the complex interactions within the
communication network and design low-level datapaths for all the network com-
ponents. We use these designs to study detailed communication needs for large
quantum circuits.

Routing algorithms for quantum communication networks: We present
algorithms that minimize overhead and delay within the long-distance communica-
tion network of quantum datapaths. Our algorithms intelligently determine when
and how to preschedule connections given available resources with the primary goal
of reducing an overall circuit delay-latency to success probability metric. We show
that our adaptive routing algorithm with prescheduling can improve on this metric
over the on demand case by a factor of 3 to 4.

In Chapter 2 we present an overview of general quantum computing concepts. In
Chapter 3 we outline the Quantum CAD flow we developed that allows us to study vari-
ous quantum circuits and describe where our contributions fit within this flow. Chapter 4
describes how we build ion trap based datapaths and how communication is managed
within such datapaths. Chapter 5 presents our teleportation-based long-distance commu-
nication network along with designs for the various network components. In Chapter 6,
we describe the routing and scheduling algorithms we use within the long-distance com-
munication network. We conclude in Chapter 7 by using our CAD flow to study Shor’s
factoring algorithm and its major components.
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Chapter 2

Quantum Computing

Quantum computers differ from classical computers in how they represent a basic
data unit. A quantum computer takes advantage of quantum mechanical properties to
implement quantum bits, or qubits. Similar to classical data bits, a qubit is capable of
representing two values such as 0 and 1. Additionally, a qubit may reside in a superpo-
sition, or mixture of these two values. The power of quantum computers come from this
ability to store data in superposition.

In a classical computer a data register can store a single value at a time, e.g., a 4-bit
register can be in one of 16 possible states at any given point. If our goal is to run an
algorithm on each of the 16 possible inputs in order to determine a single output we
generally have to run the algorithm 16 times. Along these lines, every time we add a new
bit to the data register we double the amount of computations we must perform.

Using superposition, a quantum computer can potentially outperform a classical com-
puter at this type of task. Rather than only storing a single value in the data register
at a time a quantum data register is able to create a superposition of the values, essen-
tially allowing the register to simultaneously be in all possible states at the same time.
While we can compute on all of these states simultaneously, the properties of quantum
mechanics dictate that when we measure the register’s value we will only obtain a single
output value. Because of this limitation, quantum algorithms are structured to increase
the probability of reading out the correct answer. Using this technique it is possible to run
a quantum algorithm a small number of times in order to determine the desired output
rather than once for each possible input value as in the classical case.

2.1 Quantum States

As we just mentioned, in classical computing the two possible states a bit can be
in is 0 or 1. In a quantum computing the equivalent to these base states are |0〉 and
|1〉. Unlike classical computing, a quantum state can also be in a linear combination (or
“superposition”) of these base states where the state is described as ψ = α |0〉+β |1〉. An
example of a state in superposition is the state 1√

2
|0〉 + 1√

2
|1〉.

Internally quantum algorithms take advantage of this state information and can ma-
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Figure 2.1: Quantum Circuit Model. Small example circuit that operates on three qubits.
The sequence of operations is read left to right. Quantum bits are represented by single
lines and classical bits are represented by double lines. This circuit contains four single
qubit gates, two double qubit gates, and a measure gate. In this example, the measure
gate generates a classical bit which is used to control the X gate on qubit A.

nipulate α and β. However, quantum mechanics prevent us from directly reading out the
values of α and β. Instead, when measuring a quantum bit to determine its state the only
possible outcomes are the base state values corresponding to 0 and 1. The value measured
is probabilistic and dependent on the values of α and β. We will obtain the value 0 with
probability |α|2 and the value 1 with probability |β|2.

Multiple qubits can be composed to create a larger quantum system. For example,
the state that describes a two-qubit system is:

|ψ〉 = α00 |00〉 + α01 |01〉 + α10 |10〉 + α11 |11〉
In this example, the state is a combination of the base states 00, 01, 10, 11. In this manner
a quantum system composed of n qubits is described as a linear combination of its 2n

possible base states.

2.2 Quantum Circuit Model

One method for expressing quantum algorithms is via the quantum circuit model [46].
In this model, qubits are represented by horizontal lines, while operations are represented
by sequences of quantum gates operating on these qubits. Figure 2.1 illustrates a quantum
circuit with three qubits, 6 gates, and 1 measurement. Quantum circuits, which are
superficially similar to classical circuits, will be our method for expressing quantum logic
in this thesis. Two major differences between a quantum circuit and a classical circuit
are:

• Quantum gates are unitary and therefore reversible [4]. Reversibility typically re-
quires the use of scratch bits called ancilla qubits or simply ancillae in order to have
the same number of inputs and outputs for each gate.

• Due to the no-cloning theorem [69] qubits cannot be duplicated. This characteristic
prevents any fan-out of wires in a quantum circuit.
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Figure 2.3: Basic gates for quantum circuits which supports a universal quantum com-
puting model. The Hadamard gate converts bit values to phase values and vice versa.
The phase, T and Z gates rotate the phase of the “1” qubit value by different angles.
The CNOT gate is the same as shown in Figure 2.2 and performs the XOR functionality.
The measurement “gate” measures a quantum state, returning a 1 or 0 and collapses any
superposition to that value as well. The X is a bit flip, Z a phase flip, and Y a combination
of both. The X, Y, Z, and phase gates can be generated by the other gates shown here
but we include them since they are often included as physical primitives.

Figure 2.2a shows quantum and classical XOR gates, the quantum version is known
as a controlled-not (CNOT) gate as shown in Figure 2.2b. If the quantum inputs are not
in a superposition state, the output of the gate is the same as the classical version (with
the addition of another output for reversibility). If the “control” input to the CNOT
gate is allowed to be a superposition, as in Figure 2.2c, things get more interesting. The
resulting output state is an entangled state and has no classical analog.

Quantum circuits operate on these entangled superposition states and this is where
the power of quantum algorithms comes from. The data cannot stay in superposition
indefinitely. In order to read out an answer from the quantum computer, the qubits must
be measured so that the data can be presented to the classical world. The process of
measurement collapses a superposition state into just one definite bit vector. Measurement
also helps us understand the output state from Figure 2.2c. The entangled state |00 >
+|11 > means that when we measure, the resulting classical bit vector will be 00 or 11
(with equal probability).
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2.2.1 Universal Gates

Due to the more complicated structure of quantum superpositions, there is no single
2-bit universal gate as in the case of the NAND gate in classical logic. Instead, one
can use the reversible 3-bit toffoli gate as a universal gate. Since many quantum circuit
technologies are practically limited to 1 and 2 bit interactions, we can construct a universal
set of 1 and 2 qubit gates as shown in [4]. A standard universal set of 1 and 2 qubit
quantum gates was described by Boykin et al. [10] and consists of the CNOT (shown
above as a reversible XOR), the Hadamard or H gate (which converts a bit value to a
phase value and vice versa), the π

4
rotation gate, also known as the T gate, and the phase

gate. These gates are shown in Figure 2.3 along with some additional gates we will use
in the circuits throughout the paper. In reality, different elementary gates are easier or
harder to implement depending on which technology one is using.

One more “gate” type is needed: measurement. In order to read out data from a
quantum computer, it must be measured, measurement is also instrumental in another
useful primitive, known as teleportation, which is discussed Section 2.4.1. Measurement
is not a unitary gate which is why we do not include it in the universal set, but it is still
a necessary quantum operation.

2.2.2 Quantum Decoherence

While the power of quantum superposition enables interesting algorithms, it comes at
a cost. The sensitivity of a quantum superposition state to noise from the environment
cannot be stabilized through noise margins and dynamic feedback as with classical logic.
We have to allow a continuum of possible quantum states per qubit instead of 2. For
this reason, the error rates of all operations on quantum data are much higher than
operations in classical logic. Errors to quantum states cause what is called quantum state
decoherence. Error rates in any current demonstrated quantum computing technology are
in the range of 10−2−0.1 errors per operation. “Realistic” estimates for error rates in the
foreseeable future are said to be around 10−5 − 10−2 errors per operation [63] compared
to CMOS transistor error rates which range from 10−20 to 10−15 errors per gate [56].

The gap is very wide so we would expect to have to pay more attention to errors
in quantum circuits than in classical circuits. Indeed, as we mentioned earlier, we have
shown that in many cases 95% of quantum circuits will be made up of error correction and
fault tolerance modules [34]. With error control circuitry imposing such a large overhead
in a quantum circuit, it has not even been conclusively proven that the algorithmic gains
promised by quantum computations will not be swallowed up by error correction overhead.
The methodical synthesis of circuits with fault tolerance will help us better understand
trade-offs between circuit performance and fault tolerance.

2.2.3 Fidelity

Fidelity measures the difference between two quantum bit vectors. Because of quantum
entanglement, each of the 2n combinations of bits in a vector of size n are physically
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separate states. For a given problem, one particular vector is considered a reference state
that other vectors are compared against. For example, if we start with a bit vector of
zeros [0000], and we send the bits through a noisy channel in which bit 3 is flipped with
probability p, we would end up with a probabilistic vector of ((1 − p)[0000] + p[0010]).
The fidelity of the final state in relation to the starting (“error-free”) state is just 1 − p.
So, in the case of an operational state vs. a reference “correct” state, the fidelity describes
the amount of error introduced by the system on the operational state [46]. A fidelity of
1 indicates that the system is definitely in the reference state. A fidelity of 0 indicates
that the system has no overlap with the reference state.

In Section 5.2 we use this concept of fidelity to present models for short-distance and
long-distance communication.

2.3 Error Correcting Codes

Quantum algorithms do not require many qubits to operate, due to their exploitation
of qubit superposition. Of course, the use of so few qubits is dependent on a perfect
qubit implementation. In reality technologies used to implement qubits are plagued with
high error rates. Qubit fidelity, or coherence of qubit state, can quickly degenerate to
unacceptable levels resulting in data loss. As in classical computing, data redundancy
may be used to combat high error rates by way of Quantum Error Correction Codes
(QECC) [36, 58, 59]. A QECC encodes a single data qubit used by the algorithm, or logical
qubit, as some number of basic, unencoded qubits, or physical qubits. A single QECC may
be applied recursively for more error tolerance at the cost of more redundant qubits. This
recursive encoding procedure is called code concatenation and is a straightforward way to
obtain stronger quantum codes from simpler basic ones.

Once a qubit is represented in the system using multiple physical qubits, performing a
gate operation becomes more complicated. A single logical operation is decomposed into a
set of physical gate operations, dependent on which QECC is used. Figure 2.4 illustrates
the two ways a logical gate may be decomposed into physical gates. In Figure 2.4(a),
the logical H gate is performed transversally by applying a physical H to each of the
qubits that compose the logical qubit. In Figure 2.4(b), the π/8 cannot be performed by
transversally applying a physical π/8 gate. Instead, we create an encoded π/8 ancilla [34]
and use X, S, and M gates to perform the logical π/8 operation. Once the correct set
of physical gate operations is performed a logical qubit may undergo error-correction
routines to compensate for any physical qubit errors that may have occurred. These
error-correction operations involve numerous physical operations and require additional
ancilla bits.

There are numerous types of QECCs available for use, each with relative advantages
and disadvantages. Designers must account for characteristics such as encoding/decod-
ing complexity, correction complexity, and ancilla requirements when choosing a specific
QECC for use within the system.
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Figure 2.4: Example of a transversal and non-transversal gate. Bold lines represent logical
qubits where are encoded by a number of physical qubits. In (a) the H gate is performed
on an encoded qubit transversally with a single H gate per physical bit. In (b) the π/8
cannot be performed transversally. Instead we create an encoded π/8 ancilla and use X,
S, and M gates to perform the encoded π/8.

2.4 Communication

Two qubits must be physically adjacent to perform any two-qubit quantum gate op-
eration. Short-distance movement can be performed using direct physical movement of
the qubits from one location in the datapath to another. As with all other quantum
operations, qubit movement also suffers from high error rates and result in qubit deco-
herence and overall move latency proportional to the distance moved. As the size of the
quantum datapath grows, the increased distance qubits must travel not only impacts the
performance of the computation due to communication time but also introduces signifi-
cant amounts of error caused by decoherence [47, 33]. Since the data qubits we wish to
move are very fragile (even when encoded with a QECC) we cannot rely on direct phys-
ical movement for all communication needs. Instead, we separate movement operations
into two classes: short-distance and long-distance. Short-distance moves will use direct
physical movement, while long-distance moves are performed by using teleportation, a
technique unique to quantum computing.

2.4.1 Teleportation

Within a quantum computer, teleportation [6] allows us to move a qubit from one
location to another by way of helper qubits. An abstract view of the teleportation process
is shown in Figure 2.5. Using this process our goal is to transmit the state of physical
qubit D from the source location to a distance target location without physically moving
the data qubit (since that would result in too much decoherence). Figure 2.6 shows the
circuit representation for this operation (note that E1 and E2 still must be physically
separated after the CNOT).

We start by interacting a pair of qubits (E1 and E2) to produce a joint quantum state
called an EPR pair. Qubits E1 and E2 are generated together and then sent to either
endpoint. Next, local operations are performed at the source location, resulting in two
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Figure 2.5: Teleporting data qubit D to the target location requires (1) a high-fidelity
EPR pair (E1/E2), (2) local operations at the source, (3) transmission of classical bits,
and (4) correction operations to recreate D from E2 at the target.

D

E1 = |0>

E2 = |0> H
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M
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Figure 2.6: Circuit representation for the teleportation operation: The first Hadamard
and CNOT gates generate the EPR pair E1 and E2. At the source of the teleportation,
one half of the EPR pair is CNOTed with the data followed by a Hadamard and measure-
ments. The measurement results (classical information represented by double bit lines)
are transmitted to the destination where they are used to apply X and Z gates to correct
E2 and recreate the state of D.

classical bits and the destruction of the state of qubits D and E1. Through quantum
entanglement, qubit E2 ends up in one of four transformations of qubit D’s original state.
Once the two classical bits are transmitted to the destination, local correction operations
can transform E2 into an exact replica of qubit D’s original state1. The only non-local
operations in teleportation are the transport of an EPR pair to source and destination
and the later transmission of classical bits from source to destination (which requires a
classical communication network).

We can view the delivery of the EPR pair as the process of constructing a quantum
channel between source and destination. This EPR pair must be of high fidelity to
perform reliable communication. As we will discuss in Section 5.2.3, purification permits
a trade-off between channel setup time and fidelity. Since EPR pair distribution can be
performed in advance, qubit communication time can approach the latency of classical

1Notice that the no-cloning theorem is not violated since the state of qubit D is destroyed in the
process of creating E2’s state.
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communication; of course, channel setup time grows with distance as well as fidelity.

To reliably perform the teleportation operation, the EPR pair distributed to the source
and destination must have high fidelity. Since moving the EPR qubits results in the same
error build-up as would be encountered when moving the data qubits we cannot use them
as is. Instead we utilize a process called purification, where two lower fidelity EPR pairs
are combined to create a single pair of higher fidelity [22]. In this manner we distribute
a number of EPR pairs to the source and destination, purify them down to a single high
fidelity EPR pair, and use the resulting pair to teleport the data qubit.

2.5 Quantum Computing Technologies

Various technologies exist as promising candidates for building a quantum computer.
Physicists have experimentally demonstrated the basic building blocks for quantum com-
puting using technologies such as nuclear magnetic resonance (NMR) [25], solid state nu-
clear spin [35], superconducting quantum interference devices (SQUIDS) [41], and trapped
ions [15, 44]. While each of these technologies are capable of performing single and dou-
ble qubit operations, most are not convincing candidates for building a large quantum
computer due to scalability concerns. Currently, trapped ions show the most promise as a
substrate for building a quantum computer big enough to perform useful functions [40, 55].
Consequently, we will focus on designing a quantum datapath using this technology. We
start by describing how trapped ion technology is used to implement qubits capable of
participating in single and multiple qubit quantum operations. Then we show how these
qubits move around the system and outline the procedure for qubit measurement.

2.5.1 Ion Trap and Qubits

In trapped ion technologies, a qubit is represented by the internal nuclear and elec-
tronic states of an ion that is trapped within an electromagnetic trap. The trap can be
constructed in a variety of different ways, however most implementations are based on
the linear RF Paul trap [51, 49] in which a set of electrodes confine ions within the trap.
The electrodes utilize a combination of static electric potentials and an RF field to trap
the ion. Specific ion species used in the traps vary across implementations; the following
ions have all been used in experiments demonstrating quantum computing primitives:
9Be+ [37], 40Ca+ [53], 111Cd+ [30], and 88Sr+ [11].

A few diagrams of ion trap implementations are shown in Figure 2.7. Figure 2.7(a) is
the initial ion trap construction that used four electrodes to confine ions in the middle area
between all the electrodes. Figure 2.7(b) shows the trap built in [30] where a three-layer
structure is used to trap ions and Figure 2.7(c) is a planar trap configuration used in [50]
in which the ions are trapped above a plane of electrodes. Each of these trap structures
present manufacturing and operational challenges if we use them to build large circuits
and research is continuously being done to improve on their designs.
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Figure 2.7: Various structures used to create an Ion Trap. 2.7(a) Original trap config-
uration where an ion is trapped between 4 cylindrical rods. 2.7(b) Three-layer structure
used in [30]. 2.7(c) Planar trap structure from [50], where ions are trapped above a set
of electrodes.

Error Error Latency
Physical Operation Set 1 [23] Set 2 [63] in (µs) [48]

One-Qubit Gate 10−6 10−4 10
Two-Qubit Gate 10−6 10−4 100
Measurement 10−6 10−4 500
Zero Prepare 10−6 10−4 510
Straight Move (∼30 µm) 10−8 10−6 10
90 Degree Turn 10−8 10−6 100
Idle (per µs) 10−10 10−8 N/A

Table 2.1: Error probabilities and latency values used by our CAD flow for basic physical
operations
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Figure 2.8: Electrode groups and voltages used to move a qubit from one trap to another.
Each electrode group shares the same voltage level. Electrodes outside the dashed box
are not utilized in the movement protocol.

2.5.2 Movement

As described in the previous section two qubits must be physically adjacent to each
other in order to participate in a double qubit gate operation such as a CNOT. The
ion trap substrate must be capable of moving qubits around the system to enable us to
perform these gate operations. At rest, the qubits are held within a trap using electric
potentials provided by the surrounding electrodes. If we change the potentials on the
electrodes, we can effectively encourage the qubit to move out of its current trap and into
a neighboring trap in both 1 and 2-dimensions [30, 50].

As an example, movement of a qubit can be thought of as involving the following
operations: (1) lowering the voltages on the destination trap to attract the qubit, (2)
raising the voltages behind the qubit to push it out of its current trap and then (3) estab-
lishing the correct voltages to confine the qubit to the new trap. In reality, the voltages
applied to the electrodes are significantly more complicated than this example and vary
depending on the ion species used and trap configuration. To minimize error introduced
into the ion’s internal state via motional heating, adiabatic movement protocols requiring
precise control of the potentials on the trap electrodes are used. The following sections
summarize the movement protocols experimentally demonstrated in [30, 32, 70], in which
the authors used an array of 11 ion traps to create a T-junction shape. The individual
traps were built using a three-layer structure as shown in Figure 2.7(b). The figures in
this section are simplifications of the experimental setup and only show the electrodes as
viewed from above.
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Figure 2.9: Electrode groups used to move a qubit around a corner. Electrodes outside
the dashed box are not utilized in the movement protocol. All electrodes in a group use
the same voltage level. For group 2, 2a is the signal for the top layer, and 2b is the signal
for the bottom layer.

Straight Line Movement

Figure 2.8(a) and Figure 2.8(b) show the electrodes and voltages used to move a qubit
to an adjacent trap. For the first half of the protocol the electrodes behind and far in
front of the qubit are raised while the electrodes next to and directly in front of the qubit
are lowered. Then the outer electrodes are lowered while the old trap electrodes are raised
allowing the qubit to move into the new trap.

Corner Turning

Figure 2.9(a) and Figure 2.9(b) show the electrodes and voltages used to move a qubit
around a corner. A far more complicated sequence of voltages is required in order to move
an ion in two dimensions as compared to moving a single trap in one dimension. The
ion is first pushed into the junction region and then guided into the new trap around the
corner.

Splitting and Combining

Figure 2.10(a) and Figure 2.10(b) show the electrodes and voltages used to split apart
two qubits that occupy the same trap. At the end of the protocol, the qubits reside in
two separate traps. Combining two qubits into the same trap is performed using a time
reversal of the splitting protocol.
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Figure 2.10: Electrode groups and voltages used to implement ion splitting and combining.
Two ions start in the trap region between electrode groups 4 and 5 and move apart.
Electrodes outside the dashed box are not utilized in the movement protocol. Time
reversing the protocol will combine two separated ions into the same trap.

2.5.3 Measurement

To determine of the state of a qubit we use a measurement procedure specific to the
ion species used. The procedure involves one or more lasers and a measurement device.
The lasers are applied to the ion in order to excite a transition in the internal state.
Depending on the starting state of the ion the change in internal state may generate
fluorescence which is detectable by the measurement device. Since only certain state
changes generate fluorescence, one starting state can be distinguished from another by
the presence or lack of this fluorescence.

As an example, the procedure described in [54] uses two lasers and a CCD camera to
detect the state of a qubit represented by 40Ca+. One laser is at 397nm and the other
at 866nm. The CCD camera detects any fluorescence that occurs during the application
of the lasers. The measurement procedure takes 10ms and was able to discriminate the
state of the ion with close to 100% efficiency.

2.5.4 Gate Operations

As in measurement, performing gate operations in ion trap technology is conducted
using laser pulses. By controlling the frequency and phase of the laser and the duration
of the laser pulse, the ion’s internal state can be manipulated to perform single qubit gate
operations [37, 52, 5, 53].

From this listing, we note that each gate could take about 3 or 10 separate consecutive
laser pulses, depending on whether it is a single or double qubit gate. Each of these pulses
must be applied for a reasonably precise amount of time. A description of the qubit ion
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energy state transition curves under laser application is shown in [28] and [53]. The
important thing to note here is that qubit values are oscillatory in the time evolution
under laser application, thus the amount of time the laser pulse is applied is critical in
performing the correct gate. The approximate oscillation frequency of the ions used in
many of these experiments is around 200µs, thus in order to maintain a gate error of less
than 10−4 or so, we would need to control laser pulse length to a resolution of roughly
200µs× 10−4 = 20ns.

In addition to precise laser pulse length, substantial optics are necessary to sufficiently
focus the laser to a narrow enough beam width in order to address individual ions within
the trap. As mentioned in [45], two qubit gates require qubit ions to be adjacent in a
single ion trap with a distance between them around 7-20µm, leading to a requirement of a
beam width of around 5µm. In this particular experiment, obtaining such a resolution was
achieved with a rather large Nikon lens. Also mentioned in [45] is the need for a laser with a
very stable frequency, one that is within 1-kHz of the precise transition frequency between
qubit ion energy levels. This limitation precludes the use of miniaturized semiconductor
laser diodes from any current fabrication technology.2

Due to the large size (and probably expense) of the gate lasers and focusing optics,
we see a strict resource limitation on the number of laser beams we can produce for our
quantum computer. Additionally, double qubit gates require up to 4 different frequencies
of laser light, so in order to perform a single gate, we may need 4 large laser apparatuses.
The one thing we can miniaturize is an optical system to divert and split the already
focused and stabilized laser beam to deliver them to the particular trap locations. The
technology of electro-mechanical micro mirrors has already been applied on a large scale
to commercial optical routing technologies [8] and is capable of deflecting beams with over
1000 individually addressed micro mirrors.

For the above reasons, we assume a small number of lasers and a very large and flexible
system for routing and aiming the limited number of lasers. This structure naturally lends
itself to a SIMD design with individual laser beams being split and routed to many trap
locations, allowing a single gate type to be applied at many locations simultaneously using
one laser. A SIMD design imposes a globally synchronous model of operation at the lowest
level where large numbers of physical gates require synchronization to be performed by a
limited number of lasers.

2.5.5 Abstraction

The various ion trap implementations described in Section 2.5.1 differ slightly in var-
ious details such as ion species and electrode configuration (planar versus non-planar).
Many of these low level details do not effect our study of the datapath and control system
and therefore we use a simple model to represent all of these ion trap implementations: a

2Semiconductor lasers have beams consisting of multiple frequencies due to a large number of available
modes just above and below the band gap where the electrons and holes recombine. Additionally, the
band structure is highly sensitive to local temperature and current fluctuations, meaning that even if a
single mode could be isolated, that particular mode would fluctuate by an unacceptable amount [29].
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Figure 2.11: Ion trap abstraction. The dark gray boxes represent electrodes, and the
dashed box is a trap region capable of holding an ion (qubit). The left side of the figure
is an unoccupied ion trap, and the right side shows a trap with an ion confined in it.

set of electrodes used to confine an ion. For the rest of our study we will think of ion traps
in this fashion, representing an ion trap as in Figure 2.11, where electrodes surround a
region capable of trapping one or more ions (a larger library of our low-level modules is
shown in Figure 3.6).

In our abstraction, electrodes are depicted by the gray boxes and the trap regions
between electrodes that hold ions are shown as dashed boxes. As mentioned earlier,
movement only requires manipulation of the electrode voltages, however, gate operations
require additional laser resources. These laser resources may not be accessible at ev-
ery trap region and therefore we specially mark trap regions capable of performing gate
operations with a black box.

Our simple abstraction allows us to conduct our study without being constrained to
a specific ion trap implementation with explicitly defined electrode layouts, sizes and
spacings. The model insulates us from some of the extremely low-level details, while still
revealing the control complexities that must be addressed in the design of an ion trap-
based quantum computer. However, it is important to note that our layout abstraction is
chosen to be sufficiently accurate (based on existing designs) that it can be used for area
and latency estimation.

While our model allows us to study a wide variety of datapaths it has a few limitations.
Recently, some ion-trap structures have been proposed that use 60◦ intersections [9, 2].
Our model currently only supports 90◦ intersections and would need to be modified to
study datapaths built using these structures.

2.5.6 Comparing to Classical CMOS

Some key differences between this quantum circuit technology and classical CMOS are
as follows:

• “Wires” in ion traps consist of rectangular channels, lined with electrodes, with
atomic ions suspended above the channel regions and moved ballistically [40]. Bal-
listic movement of qubits requires synchronized application of voltages on channel
electrodes. Thus, each wire requires movement control circuitry to handle any qubit
communication.

• A by-product of the synchronous nature of the qubit wire channels is that these
circuits can be used in a synchronous manner with no additional overhead, enabling
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some convenient pipelining options. For example, moving a group of qubits down
a channel can be accomplished by sharing the control signals for each single qubit
move in the path, rather than requiring independent control signals for each qubit
in the group.

• Each gate location will likely have the ability to perform any operation available
in ion trap technology which enables the reuse of gate locations within a quantum
circuit.

• Scalable ion trap systems will almost certainly be two-dimensional due to the diffi-
culty of fabricating and controlling ion traps in a third dimension [31]. This limita-
tion means that all ion crossings must be intersections.

• Any routing channel may be time shared by multiple ions as long as control circuits
prevent multi-ion occupancy and only allow a single ion in the channel at a given
time. Consequently, our circuit model resembles a general network, qubits can be
likened to data packets that are routed through a network of ion traps.

• Movement latency of ions is not only dependent on Manhattan distance but also
on the geometry of the wire channel. Experimentally, it has been shown that a
right angle turn takes substantially longer than a straight channel over the same
distance [50, 30].
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Chapter 3

Quantum CAD Flow

The overall goal of this work is to facilitate the design and evaluation of large quantum
circuits with emphasis on addressing their communication and control needs. Most study
has been limited to extremely small quantum datapaths on the order of 10s of qubits.
While it is interesting and worthwhile to study these smaller datapaths, we must also
keep our sight on our most sought after goal: a quantum computer capable of performing
tasks such as Shor’s factoring algorithm on large input sizes. Previous research on large-
scale quantum architectures has mainly relied on manually specifying datapaths with
the goal of creating a general-purpose quantum computing device. Unfortunately this
approach doesn’t lend itself well to more thorough study of quantum datapaths. For
example, studying trade-offs in low-level datapath design and communication network
design is greatly simplified when automated tools are available. In order to conduct a
comprehensive study of quantum circuits we created a computer-aided design (CAD)
flow for quantum circuits.

We will show how the process of taking a quantum circuit description and creating a
physical layout is similar to the classical case. We will start by discussing some of the
differences between classical and quantum circuits:

Fault frequency: Errors are many orders of magnitude more likely in quantum logic
than in classical which places an additional requirement on a quantum circuit for
very strong fault tolerance.

Classical control: Implicit in everything mentioned so far is a network for controlling
qubit motion and gate operation. We address some of the problems of classical
control synthesis in this CAD flow. Along with any physical layout of a circuit, we
also generate a control schedule to implement the movement and gate operations
on the qubits.

Gate reuse: In a classical layout, performing a NAND followed by another NAND re-
quires two physical NAND gates connected by some wires to transmit the data value.
In contrast, a quantum circuit can time multiplex a single physical gate location to
perform the two gates in sequence without moving the data. This feature reduces
movement (reducing movement error) and reduces area, making fabrication easier.
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Reversibility: The reversibility constraint on quantum logic requires the use of many
more ancillary qubits to be created and tracked throughout the course of the com-
putation.

In addition to the differences in the quantum and classical circuit models, there are
differences in the underlying technology used to lay out our circuits. As mentioned in
Section 2.5, we focus on ion trap quantum computing in this study and so to compare ion
traps with classical CMOS:

Bit persistence: In ion traps, qubits are physical entities that cannot simply be created
or dissipated after the value on them is no longer useful. Dead physical qubits must
be disposed of or recycled, and new qubit values must be allocated a new physical
ion. The requirement for having many ancilla qubits to implement reversibility has
a large impact on this requirement because many qubits are created and destroyed
in a quantum circuit.

Planar wiring: Qubit ions are suspended in a vacuum above the electrodes and must
have space to float along surface channels, therefore it is unlikely there will be more
than one layer of ion trap “wiring” on the fabricated chip. Thus, all wiring crossings
are actual 4-way intersections where only one direction can be operational at a time.
This limitation impacts the area used to place dedicated channels for ion movement,
as well as scheduling of ions along potentially shared channels.

Multiplexing resources: Since qubits have a physical extent, different qubit values can
share a channel/wire in a circuit as long as they are spaced far enough apart to limit
unanticipated interactions. Thus, wires can be multiplexed rather easily, which is
important since the number of wires is limited to what we can fit in the plane.

Communication-cost metrics: Strict Manhattan distance is not an accurate measure
of wire length because preliminary studies have shown that turning corners and
traversing intersections will be more time consuming and acquire more vibrational
heating (and errors) than moving straight through a one-way channel [50, 30].

The quantum CAD system we have developed is modeled after a classical CAD tool
flow, but accounts for many of these differences between quantum and classical circuits.
Figure 3.1 shows the currently available components in our CAD flow. As mentioned
earlier, our tools rely on a relatively simple input specification and do not currently do
much circuit synthesis from higher-level descriptions. Our toolset is “bottom heavy”
in that we are more interested in creating a detailed physical design that implements
simple gate-level circuits than we are in transforming and optimizing high-level quantum
algorithms.

The components highlighted in grey are the focus of this work and will be covered in
great detail, but for now, we will give a brief description of all the components.
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Figure 3.1: A high level view of our computer-aided design flow for quantum circuits.
The highlighted blocks denote the contributions focused on in this work. Dashed boxes
correspond to the indicated section number where details of the stages are explained.
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Category Name Errors? # of (cla/qu)bits Description

Pure Quantum h yes 1 Hadamard gate, translates between X and Z basis.
x yes 1 Bit flip.
y yes 1 Bit and phase flip.
z yes 1 Phase flip.
s yes 1 Phase gate: phase rotation by π/2.
t yes 1 T gate: Phase rotation by π/4.
cx yes 2 CNOT gate: controlled-X gate, bit flip on target based

on control.
cz yes 2 Controlled-Z gate, phase flip on target based on con-

trol.
cphase yes 2 Controlled-phase gate, phase rotation by π/2 based on

control.
xprepare yes 1 Prepare input qubit in a particular state in the X basis.
zprepare yes 1 Prepare input qubit in a particular state in the Z basis.
correct no 1 Logical-only operation representing a correction step,

encoded gate implementation is code dependent.
Pure Classical or no variable Set output bits based on logical or over all input bits.

xverify no variable Verify that there are no X errors on the classical syn-
drome bits, sets output bit if there are errors that are
not undetectable by the code. Exact syndrome check
is code dependent.

zverify no variable Verify that there are no Z errors on the classical syn-
drome bits, sets output bit if there are errors that are
not undetectable by the code. Exact syndrome check
is code dependent.

Quantum-Classical xmeasure yes 2 Sets classical bit based on quantum bit value in the X
basis.

zmeasure yes 2 Sets classical bit based on quantum bit value in the Z
basis.

xcorrect no variable Corrects bit flip (X) errors on input qubits based on
the values of input classical bits.

zcorrect no variable Corrects phase flip (Z) errors on input qubits based on
the values of input classical bits.

(predicate) no variable Execute given quantum or classical operation if list of
predicates are all satisfied.

Table 3.1: Summary of all the quantum instructions we use. Pure quantum instructions
input quantum data and output quantum data. Pure classical instructions manipulate
classical data only. Quantum-classical instructions either use classical data to manipulate
the quantum data, or measure quantum data to generate classical output.

3.1 Application Circuit Specification

The primary method for input of application circuits into the CAD flow is the use of
the QASM description language. The original QASM was first introduced by Balensiefer
et al. in [3]. Basic quantum operations and qubit operands, similar to classical registers,
are listed in the order in which they are supposed to be executed.

The full QASM instruction set that we use is shown in Table 3.1. The instructions
that do not introduce errors are virtual instructions used for bookkeeping of qubit states
or classical information and do not correspond to actual physical quantum operations. We
note that the x/zcorrect operations are not error prone because they are only virtual
instructions that do qubit error state updates. They do not correspond to the entire
error-correction process which contains many error-prone physical gates.

Figure 3.2 shows an example of a quantum circuit and its QASM specification. In this
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q1
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cx q1, q0;
cx q1, q2;
correct q1;
h q2;
cx q3, q4;
zmeasure q3, c3;
correct q4;
(@c3==1) x q4;

Figure 3.2: A quantum circuit and the equivalent QASM instruction stream representing
it.

example gates/instructions are read from top to bottom in order, thus gates dependent
on the output of earlier gates appear later in the instruction stream. Two qubit gates like
the CNOT or cx (controlled-X) take the names of 2 qubit registers, the first one being
the control and the second, the target. Correction gates operate on a single logical qubit.
A measurement gate takes in a qubit and outputs a classical bit; classical bit register
names typically starting with a c. In this example c3 is a classical bit measurement
outcome which then predicates the execution of the last x gate. Predicates only compare
classical bits to a constant value (no quantum bits) and determine whether the gate they
are guarding is executed. So in this example, if the zmeasure outcome sets c3 to 1, then
the x gate will be applied to q4 later.

In a QASM definition of a circuit we explicitly declare qubit state and quantum gates.
Here is an example of a 1-bit quantum adder in QASM:

1 qubit c in ;

2 qubit cout ;

3 qubit a ;

4 qubit b ;

5
6 input c in ;

7 input a ;

8 input b ;

9 t o f f o l i cout , a , b ;

10 cx b , a ;

11 t o f f o l i cout , c in , b ;

12 cx b , c in ;

13 output a ;

14 output b ;

15 output cout ;

The program starts with a declaration of qubit states or “registers” declared with
the qubit keyword. These states will later be mapped to a physical element that can
represent a 2-level quantum system. The qubit declarations are followed by a sequence
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of gate operations on the qubit states. In this example, we use 3 qubit toffoli gates
and 2 qubit cx (CNOT) gates. This circuit takes a carry-in bit, cin and two input bits,
a and b. The sum output is in b and the carry-out is in cout. We also use the special
purpose virtual instructions input and output to specify which qubits would be set as
input/output for the circuit

In addition to simple sequences of gates, we can specify hierarchically structured pro-
grams through use of our added support of modules. We can define a sequence of qubits
and gates as a module and instantiate it in multiple places throughout the program. For
example, here is a circuit for a 4-bit adder made out of 1-bit adders:

1 module car ry cin , a , b , cout {
2 t o f f o l i cout , a , b ;

3 cx b , a ;

4 t o f f o l i cout , c in , b ;

5 } ;

6
7 module car ry inv cin , a , b , cout {
8 t o f f o l i cout , c in , b ;

9 cx b , a ;

10 t o f f o l i cout , a , b ;

11 } ;

12
13 module sum cin , a , b {
14 cx b , a ;

15 cx b , c in ;

16 } ;

17
18 qubit c in0 , c in1 , c in2 , c in3 , cout ;

19 qubit a0 , a1 , a2 , a3 ;

20 qubit b0 , b1 , b2 , b3 , b4 ;

21
22 car ry cin0 , a0 , b0 , c in1 ;

23 car ry cin1 , a1 , b1 , c in2 ;

24 car ry cin2 , a2 , b2 , c in3 ;

25 car ry cin3 , a3 , b3 , b4 ;

26 cx b3 , a3 ;

27 sum cin3 , a3 , b3 ;

28 car ry cin2 , a2 , b2 , c in3 ;

29 sum cin2 , a2 , b2 ;

30 car ry cin1 , a1 , b1 , c in2 ;

31 sum cin1 , a1 , b1 ;

32 car ry cin0 , a0 , b0 , c in1 ;

33 sum cin0 , a0 , b0 ;

Note that when calling modules, the register names must effectively be renamed so
the physical element with the qubit state of b3 must be renamed b in the sum module.
We will discuss this issue later when we discuss tracking qubit error state.
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Figure 3.3: Gate networks are represented as linked, modular dataflow graphs. In this
example, the top level graph consists of two nodes that each correspond to a 1-bit full
adder. They both refer to the 1-bit full adder module dataflow graph.

3.1.1 Application Dataflow Graph

Our core data structure representing the input application logic is a hierarchical, an-
notated dataflow graph. Figure 3.3 shows an example of such a graph. In this example,
the top level graph that consists of a 2-bit ripple carry adder is implemented with 2 nodes
that both point to the same full adder graph.

We maintain the hierarchy of the dataflow graph throughout the various stages of the
CAD flow. For instance, when we are encoding a quantum circuit into a quantum error
correction code (QECC), each logical gate is represented by a module pointing to a graph
that represents a specific encoded version of that gate type. If we are concatenating
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 Level 2 code gate graphs
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Figure 3.4: Hierarchical dataflow graphs are used to represented different levels of QEC
encodings. In this example we have the 2 gate application circuit encoded in 2 levels of
codes. Each code has a library of graphs, each graph implementing an encoded version of
one gate type.

several codes together to yield more reliability, there might be multiple levels in the
hierarchy for gate implementations in different codes, as shown in Figure 3.4. The modular
representation of a QECed circuit is especially beneficial since fault tolerant subcircuit
substitution introduces orders of magnitude more gates (about 500x for a one level [[7,1,3]]
code, for example). Since most of the subcircuits are the same, mapping all logical gates
of a particular type to a single graph for the fault tolerant version makes our design
representation tractable for large circuits.

Additionally, we may have different elementary gates that can be performed physically
depending on the implementing technology. We enable the technology-specific transla-
tion by providing technology gate libraries to translate logical gates into physically im-
plementable gates. Our technology translation currently converts single logical gates to
groups of technology-dependent gates so we utilize the hierarchical nature of our dataflow
graph again to maintain a modular mapping mechanism.

Note that even though only a single instance of a module is created and stored for
a particular graph. When we traverse the graph, we must re-traverse the single module
dataflow graph for all the nodes of a particular module type. This process adds some
complexity to the traversal of our modular graphs.
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3.2 Error Correction Circuit Optimization

Our tools allows us to vary the amount of error correction that occurs in the circuit. A
conservative approach is to insert an error correction operation after every logical gate in
the circuit. This approach is fast but it doesn’t perform any circuit based optimizations
and can result in circuits unnecessary correction operations, increasing area needs and
total circuit latency.

We optimize the error correction process by using a Retiming approach detailed in [68].
In any non-trivial circuit some qubits will undergo more gates, movement, of idling than
others. Thus, different qubits will have different probabilities of error at different times
throughout their life in the circuit. The previous conservative approaches to error cor-
rection call for the assumption that each logical qubit be corrected after every logical
gate. Thus, it is effectively treating all qubits in the circuit as if they have the same
probability of having an error at all times. This assumption is not the case and therefore
the treatment is overly conservative.

Our approach effectively analyzes each qubit at each gate and applies error corrections
only when necessary. We draw an analog between minimizing latency in synchronous
classical circuits and minimizing failures in our quantum circuits. We use the technique
of circuit retiming [38] to “recorrect” the given circuit. Based on an approximation of
how errors propagate in a circuit, we can more effectively distribute error correction steps
throughout our circuit.

3.3 Quantum Logic Synthesis

The primary goal of logic synthesis in classical CAD flows is to derive a technology-
dependent gate network from a high-level circuit specification. In addition to this goal,
our quantum logic synthesizer also must add additional circuitry to ensure that our circuit
is fault tolerant.

3.3.1 Technology Dependent Gates

Since we allow the superset of all interesting quantum gates from quantum computing
literature to be used in our QASM definitions, we have a synthesis stage in which we con-
vert QASM gate operations into gate operations that are supported natively by the type
of quantum computing technology we are designing for. We specify technology libraries
to map abstract QASM gates to physically implementable gates for each technology our
CAD flow can target. For example, since we limit the number of qubits in an ion trap
to 1 or 2 per interaction, we cannot physically implement a toffoli operation, so instead
we translate toffolis into a sequence of 1 and 2 qubit gates from the ion trap technology
library.
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3.3.2 Fault Tolerant Gate Constructions

Once we have a set of physically implementable gates to work with, we must next
make them fault tolerant. We can apply quantum error correcting codes to the problem,
transforming each logical gate from the technology-dependent network into an encoded
subcircuit implementing the same operation fault tolerantly. For each code our CAD flow
supports, we have a library of encoded gates that can be substituted into the circuit.
These libraries are generated automatically using Andrew Cross’s ftqctools [16]. The
selection of QECC to be used in the synthesized circuit is selected by the user.

3.4 Datapath Microarchitectures

The first step in specifying overall spatial placement of computation elements for a
quantum circuit is to have a high-level organization of the different quantum computer
elements. Our solution to this problem builds on several previous works that focused on
tiled-dataflow architectures for a quantum computer.

Proposed architectures, including ours, have consisted of computation regions con-
nected by an interconnection network using quantum teleportation [42, 33]. High fault
rates in quantum computing necessitate the widespread use of quantum error correction
(QEC). Further, ancilla state generation is important to aid in the correction process [61]
and as an integral part of quantum algorithms, as we showed in [34].

3.4.1 Three Major Organizations

Figure 3.5 shows three major datapath organizations that represent the “state of the
art” in quantum computing1. They are QLA [42], CQLA [66], and our work, Qalypso [34],
and can be viewed as a spectrum from inflexible to flexible ancilla distribution. They differ
in their configuration of compute regions, ancilla generation areas, memory regions (for
idle qubits), and teleportation network resources (for longer-distance communication)[33,
42].

The QLA architecture is most like a classical FPGA, in that all elements are identical:
each element contains enough resources to perform a two-bit quantum gate. Each such
compute region contains dedicated ancilla generation resources, space for two encoded
quantum bits, and a dedicated teleportation router for communication.

CQLA improves upon QLA by allowing two different types of data regions: compute
regions (identical to those in QLA) and memory regions (which store eight quantum
bits) [66]. To account for different failure modes (idle errors vs interaction errors), data
in memory regions are encoded differently from data in compute regions.

Finally, Qalypso improves upon CQLA by further relaxing the strict assignment of
ancilla generation resources. It allows optimized, pipelined ancilla generators to feed
regions of data bits (compute regions) that can perform more than just two-bit gates.

1Since circuits are mapped to these datapaths, they are not quite “architectures” but rather raw
material for constructing architectures.
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Figure 3.5: Quantum Datapath Organizations: a) Quantum Logic Array (QLA): An
FPGA-style sea of quantum two-bit gates (compute tiles), where each gate has dedicated
ancilla resources. b) Compressed QLA (CQLA): QLA compute tiles surrounded by denser
memory tiles. c) Qalypso: Variable sized compute and memory tiles with shared ancilla
resources for each tile; teleportation network can have variable bandwidth links.

The sizing of ancilla generators and data regions can be customized based on circuit
requirements. Qalypso requires analysis (Section 3.6) to balance ancilla consumption
with ancilla generation. Such analysis can automatically adjust the amount of ancilla
bandwidth required in memory regions based on the residency time of qubits.

In all three organizations, each compute or memory region is placed adjacent to a
teleport router. Qubits are moved ballistically within regions and teleported between
regions.

Proper design of the datapath elements (such as teleportation routers or ancilla gener-
ators) is an important factor. In all these microarchitectures, we also pay careful attention
to the teleportation network [33, 42]. We have produced layouts for the routers and EPR
generators and utilize these in computing area, latency, and error probability of circuits.

In our prior work [34, 68], we study the major datapath organizations in Figure 3.5 and
determine that our Qalypso architecture outperforms the other structures. Consequently
we will focus the remainder of this work on studying Qalypso based datapaths.

3.4.2 Network Synthesis

For large quantum circuits a teleportation based communication network must be
inserted into the datapath to perform the long-distance moves. The network synthesis
phase inserts the necessary network components into the datapath as further described
in Chapter 5.
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Figure 3.6: Library of ion trap macroblocks. Gray boxes represent electrodes and the
black box represents a trap region capable of performing a gate operation. Gates are not
allowed in the intersection or turn macroblocks as these trap regions are not as stable as
a trap region between two electrodes.

3.5 Ion Trap Layout

The currently version of the CAD flow is designed to study quantum datapaths based
on ion-trap technology. As mentioned in Section 2.5 there are a number of different
experimental implementations of quantum computing using ion-trap technology. Since
details of the varying implementations differ in laser positioning and electrode shape and
spacing we created the macroblock abstraction and ultimately specify all of our datapaths
in terms of macroblocks.

The library of macroblocks we use to create our quantum datapath is shown in Fig-
ure 3.6. The idea is that while many of the details of a ion trap will change, we will still
most likely have designated positions for gates, and channels for moving qubits around
with 90 degree turns. Since our heuristics use this abstracted view of communication and
gate blocks, we could use these techniques on other technologies as well.

The next step is to take our optimized circuit and create a layout of physical compo-
nents. Not only does this layout give us a design that can then be fabricated, but it also
allows us to create a precise schedule of qubit movement and qubit idling in addition to
gates. We go into detail on how this scheduling is done in Chapter 4. The schedule of all
the qubits’ operations can then be extracted to an error model that accounts for all error
sources.

3.5.1 Layout Graph Representation

Our layouts are represented by a layout graph which contains macroblock nodes (as
mentioned in Section 4.1) that are linked together with QNets. The QNets hold informa-
tion on how connected macroblocks are oriented with respect to one another. Figure 3.7
shows an example of a layout graph structure. Macroblock nodes specify their location
and orientation on the substrate. They also contain additional information to be used by
the scheduler to track ion movement through the macroblocks.

Layout graphs can have a similar modular structure as our dataflow graphs have. An
abstract layout module can refer to a single macroblock or another layout graph. The
embedding of a complex layout module is not as simple as in the dataflow case since
the sublayout must be spatially fit into the higher-level design, but layout modularity
again gives us considerable savings in representing the full layout since many structures
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Figure 3.7: A layout and its associated graph. The nodes correspond to macroblocks and
the edges correspond to “qnets” which do not have any associated physical entity but
determine how macroblocks are oriented with respect to each other.

are often repeated. Some examples of repeated sublayouts are teleportation routers and
ancilla factories.

3.5.2 Modular Layouts

Our layout specification consists of a sequence of layout module instances, all parametrized
by location and a rotation angle, in an XML format. At the lowest level, everything is
made up of macroblocks for the underlying technology, like those shown in Figure 3.6.
Additionally, we can define higher-level modules, made out of macroblocks, which can
then have instances placed in the layout. Higher-level modules must define ports where
they connect up to adjacent modules so that the qubit movement scheduler can track
movements across module boundaries. Figure 3.8 show an example of such a modular
layout.

3.5.3 Layout Metrics

Similar to the case of classical CMOS metrics we are also interested in area and delay
for layouts of quantum circuits as well. Design area is an important consideration espe-
cially in light of the fact that previous work has estimated a design for Shor’s factorization
of a 1024-bit number to be 0.9m2 in area. Since the technology under consideration uses
a silicon substrate, fabrication considerations dictate more area-efficiency in our designs.

Delay is another important consideration, since quantum computers promise to per-
form certain tasks asymptotically faster than classical computers. It is important that
the constants involved do not swallow up asymptotic gains.
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<de�ne_module>

    <type>horseshoe</type>
    <module>
        <type>straight_channel</type>
        <location>0,0</location>
        <rotation>0</rotation>
    </module>
    <module>
        <type>turn</type>
        <location>30,0</location>
        <rotation>0</rotation>
    </module>
    <module>
        <type>turn</type>
        <location>30,30</location>
        <rotation>90</rotation>
    </module>
    <module>
        <type>straight_channel</type>
        <location>0,30</location>
        <rotation>0</rotation>
    </module>
</de�ne_module>

<module>
    <type>horseshoe</type>
    <location>0,0</location>
    <rotation>0</rotation>
</module>
<module>
    <type>horseshoe</type>
    <location>60,0</location>
    <rotation>180</rotation>
</module>

Figure 3.8: Layouts can consist of placements of single macroblocks or definition and
then instantiation of larger layout blocks. In this example, we define a larger “horseshoe”
block made up of macroblocks and then instantiate two of them in different positions and
orientations.

3.6 High-level Mapping

Given a tiled datapath such as Qalypso, we must have a method to map groups of
circuit elements from our application onto various compute regions in the datapath. The
mapper determines where each data qubit will reside during the course of the execution
as well as when and where each quantum gate will execute. It starts with a coarse-
grained partitioning of gates to compute-regions that minimizes communication. Next,
the mapper attempts to schedule each gate operation so that it occurs as late as possible,
while prioritizing operations on the critical path. As the mapper progresses, it tracks
the location and times of all gate operations, error corrections, and network connections
needed to perform the quantum circuit. The mapper discourages imbalanced mappings,
such as those that over utilize network links or ancilla generation resources. If the target
datapath has fixed ancilla generation resources, the mapper attempts to map operations
to regions with unused ancilla bandwidth. In datapaths with flexible ancilla generation,
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like Qalypso, the mapper assumes that operations will never wait for ancilla, while still
attempting to balance ancilla usage. A later phase matches ancilla generation resources
to demand.

3.7 Network Routing and Scheduling

Given a mapping of gates to compute regions, we move on to the network routing
and scheduling phase where all the long-distance communication within the network is
handled. The high-level mapping mentioned in Section 3.6 creates a list of all the long-
distance communication that is necessary to run the circuit. The routing phase creates a
full route through the network for each of these communication connections. Additionally,
the routing phase is responsible for optimizing the connection scheduling to minimize
overall circuit latency. The details of this process are described in Chapter 6.

3.8 Low-level Scheduling

The only way to properly determine the latency of the application circuit is to schedule
the low-level ion trap movement operations in the datapath. This stage of the tools uses
the circuit graph to schedule gates and movement at the macroblock level. The details of
how scheduling is accomplished are described in Chapter 4.

3.9 Fault Tolerance Verification

After a circuit has been mapped to one of the datapaths described in Section 3.4, we
must evaluate the resulting error behavior. The goal of the fault tolerance verification
tool is to determine the probability of an unrecoverable error on the qubits that would
yield an incorrect answer to our computation. Furthermore, we would like to know at
which points in the design are data most likely to incur errors.

A circuit is considered to have failed if:

• The circuit is not encoded in an error correction code and one of the output data
qubits incurs an error.

• The circuit is encoded and an encoded output qubit incurs more errors than the
code can correct.

We classify errors into three categories [3, 65]:

• Gate: Errors that occur while manipulating quantum data. This category is the
most widely studied in association with error correction performance. It is generally
believed that gate errors will be the most significant of the three types.
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• Movement: Errors that result from moving quantum data. For example, ballistic
ion movement in trapped ion technology involves accelerating and decelerating ions
both linearly and around corners[30]. This movement induces unwanted vibrations
or even collisions, disrupting the internal state that represents the datum.

• Idle: Errors in idle qubits that result from spontaneous quantum effects. It is
generally thought that idle or storage errors are the least severe of the three per
unit time for most technologies.

In principle, we must simulate a circuit from start to finish, injecting errors by assuming
that every gate, qubit movement, and qubit stall has an associated error rate and that
every error event injects either a bit flip, phase flip or both. Unfortunately, interesting
circuits are too large to do simulate exactly—leading to a need for a hybrid methodology.

Hybrid Error Modeling: Large designs are specified hierarchically, as a tree of mod-
ules. While we can synthesize a complete macroblock layout with fine-grained placement
and routing for smaller modules, high-level modules are better handled via coarse-grained
mapping techniques. Our mapper does not create exact macroblock specifications for all
inter-block channels but instead relies on estimates of ballistic movement and teleporta-
tion based on inter-block distances. Further, the distance traveled from ancilla factories to
data bits is estimated (quite accurately) after data bits have been placed. Consequently,
we utilize a hybrid simulation model in computing communication costs and qubit idle
times: not every qubit movement is simulated, but rather aggregate movements are com-
puted and combined to speed simulation and support hierarchical design.

The calculation of the error probability for a mixed ballistic movement model involves
three types of information: exact error probabilities, errors from estimated ballistic chan-
nels, and errors from teleportation channels. For smaller, leaf modules, we extract error
properties exactly through simulation. The coarse-mapped distance estimates for longer
ballistic communications are translated into a count of straight and turn macroblocks
traversed, yielding error fidelity numbers for traversing these channels.

Finally, the effects of teleportation are determined by computing the fidelity and band-
width of EPR bits in the channel. We have a model of EPR generation, routing, and
purification which permits accurate computation of the latency to setup a teleportation
channel as well as the fidelity of the EPR bits available for it. We compute the gate and
movement errors within routers along the path, EPR generators, and purifiers.

Consequently, to compute the error probability of a large, hierarchically specified
circuit, we combine inter-block movement and idle errors from ballistic and teleportation
channels with the exact gate, movement, and idle errors in the compute and ancilla regions
to produce one sequential list of possible error points in the layout as the circuit executes.
This error list is passed to the Monte Carlo error simulator.

Monte Carlo Error Simulation: To propagate errors, we utilize Monte Carlo (MC)
simulation [62, 17], in which errors are sampled for each circuit element and errors are
propagated accordingly. We traverse a graph representing the full circuit and layout,
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sampling gate, movement and idle errors (some of which are aggregate error counts for
ballistic and teleportation-based communication) on each qubit in dataflow order. If the
final state of the qubits results in an uncorrectable error, the run is counted as a failure.
This process is repeated many times to get a statistically significant sample. Our tool
uses the Colt JET library [12] version of the Mersenne Twister random number generator.

3.10 Benchmarks and Evaluation

Our CAD flow allows us to evaluate arbitrary application circuits. Any circuit that can
be specified in QASM can by synthesized and laid out by our tools to generate a detailed
layout and schedule of operations. Because of its wide spread interest, we concentrate
most of our study on the components of Shor’s Factorization algorithm. However, we are
also interested in how our approach performs on other quantum circuits. To augment our
study, we generate random circuits with varying communication patterns and use these
as inputs into our CAD flow.

3.10.1 Adder Circuits and Shor’s Algorithm

Since Shor’s Factorization algorithm generates significant interest, we use it as a major
benchmark within our study. Chapter 7 describes the algorithm in more detail along with
the various components that compose it, one of which is the Quantum Adder circuit. We
study two different structures of quantum adders: a ripple-carry adder and a carry look-
ahead adder and use these modules to study a full implementation of Shor’s Algorithm.

3.10.2 Random Circuit Generation

In addition to the real application benchmarks we mentioned, it is convenient to have
benchmark circuits in which we can exert more control over various properties, such as
the number of qubits, gates, or overall communication structure. For this reason, we
developed a method for synthesizing random quantum circuits to test various portions of
our tool flow. The generated random circuits have the following parameters:

Gate count: Number of total gates that are in this circuit.

Gate type: Types of gates included in the random circuit. Typically, we focus on the
gates that appear most often in our applications, CNOT, Hadamard, and some
non-transversal gate like T are common choices.

Qubit count: Number of data qubits that are operated upon in the circuit.

Splitting fraction: The splitting fraction tells us how to group gates when we are de-
termining what gates should connect to each other when generating the circuit. A
fraction of 0.5 will generate a circuit by successively breaking it into 2 equal sized
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parts and adding connections within each part, then recursively dividing each sub-
part in half. A fraction of 0.9 will divide the circuit into one with 10% of the gates
and another with 90% of the gates and follow the same recursive procedure.

3.10.3 ADCR: An Aggregate Metric for Probabilistic

Computation

As mentioned earlier, delay and success probability are closely connected in the eval-
uation of any quantum circuit. We are not simply interested in a single run of a circuit
on a layout if it does not produce the correct answer. We would instead like to know the
expected time to get a correct answer:

E(Delay) = Delaysinglerun × E(runs for correct result) (3.1)

= Delaysinglerun ×
∞

∑

n=1

n

Psuccess(1 − Psuccess)n−1
(3.2)

= Delaysinglerun × 1

Psuccess
(3.3)

Prior work has focused on maximizing the overall success probability Psuccess at all
costs. This goal might be a suitable sacrifice if we are always on the verge of a catastrophic
decline in success probability for a design (probably the case in all current laboratory
setups). As the technology matures, it will be more important to evaluate all the design
considerations; for example, reducing a layout’s delay by 10x with only a 10% reduction in
success probability may be a worthwhile trade-off to consider. Critical to this evaluation
is a comprehensive evaluation of the overall probability of success of a design. If we
overestimate this probability, we could end up making trade-offs resulting in a design
that does not work at all.

To evaluate the quality of quantum layouts with a single number, we propose a com-
posite metric called Area-Delay-to-Correct-Result (ADCR). ADCR is the probabilistic
equivalent of the Area-Delay product from classical circuit evaluations:

ADCR = Area × E(Latencytotal) (3.4)

= Area ×
∞

∑

n=1

n · Latencysingle · Psuccess(1 − Psuccess)
n−1 (3.5)

= Area × Latencysingle

Psuccess

(3.6)

For ADCR, lower is better. By incorporating potential for circuit failure, ADCR provides
a useful metric to evaluate the area efficiency of probabilistic circuits. It highlights, for
instance, layouts that use less area for the same latency and success probability. Or,
layouts that use the same area for lower latency or higher success probability.

37



ADCR-optimal

With the definition of ADCR, we can now talk about designs that are ADCR-optimal,
or the set of design parameters the yields the lowest ADCR. Since ADCR is meant to be
a comprehensive metric for all the stages in our CAD flow, finding the design with the
best ADCR takes some amount of iteration and feedback.

In order to obtain an ADCR-optimal layout for an application circuit we must search
over these parameters:

Error correcting code selection: Different codes impact area, latency and success
probability, due to encoder size, complexity and errors corrected. Thus we must
iterate through different encodings in the QEC synthesis phase, optimizing, laying
out the encoded circuit, and simulate for failures.

QEC optimization level: We can tune the degree of QEC optimization in order to
trade-off success probability for area and/or latency. Thus, we must iterate over
different optimization settings, lay out the resulting circuit, and simulate for failures
to find a design with a good ADCR value.

Datapath configuration: Within the datapath we can vary a number of parameters
ranging from the compute datapath to the network structure. Varying the number
and size of compute regions or number of communication links in the network im-
pacts area, delay and thus we must iterate through different designs in the datapath
space, then lay out and simulate for failures.

All these choices leads to a multi-parameter optimization problem. We currently
binary search through many of these parameter spaces to find ADCR-optimal designs,
but future work includes using better heuristics to narrow the set of candidate parameter
settings to converge on a good design faster.
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Chapter 4

Optimizing Short-distance Quantum

Communication

At the lowest level, the quantum datapaths we study are constructed from ion-traps.
A quantum circuit specified as a series of quantum gates (such as those described in
Section 3.1), must be mapped into a series of operations within this datapath to ultimately
execute the desired circuit. A large part of what occurs in the datapath is centered around
short-distance communication needs: moving qubits from one trap location to another in
order to perform gate operations.

As mentioned in Section 2.5.6, ion-trap datapaths take on a planar structure and
consist of a number of electrodes and trapping regions. Moving a qubit through this
type of datapath requires carefully manipulating the electrodes to push and pull ions into
and out of trap regions. Additionally, we must be mindful of qubit locations within the
datapath as we cannot allow qubits to collide with other qubits as they move throughout
the datapath.

4.1 Ion Trap Datapath

To construct a datapath for a given quantum circuit we first analyze the circuit to
determine it’s computational and communication needs. For each gate in the circuit, we
must find a location within the datapath that is capable of performing that gate. Unlike in
a classical circuit, each gate location in our datapaths can be time-multiplexed to perform
multiple gates. However, we must be careful. With too few gate locations, a datapath
can adversely effect overall circuit latency through gate serialization.

Qubits must be physically adjacent to each other to perform a double-qubit operation
such as a CNOT. The gate locations in the datapath are interconnected with ballistic
movement communication channels, the quantum equivalent of classical wires. Moving
a qubit from gate location to another is accomplished by using movement protocols as
described in Section 2.5.2. Qubits move through a series of ion traps until the destination
trap is reached.

While two qubits can reside in the same ion trap to perform gate operations, a qubit

39



Q A

(a) Invalid movement opera-
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Figure 4.1: Example of invalid and valid movement operations. The operation in (a)
is not allowed since qubit Q cannot move through the trap occupied by qubit A. The
operation in (b) is allowed as qubit A is now far enough away from the path qubit Q
wants to take.
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Figure 4.2: Circuit used to teleport qubit Q to some destination. Initially qubits A
and B are entangled to form an EPR pair. Qubit B is then moved to the destination
location. After interacting qubits Q and A, their states are measured and the results are
classically transmitted to the destination. Using this classical information B is operated
on to recreate Q at the destination.

cannot travel through another qubit. Therefore, all the traps a qubit moves through to
reach a destination must not be occupied by other qubits as illustrated in Figure 4.1.
Figure 4.1(a) shows an invalid movement operation. Qubit Q cannot take a path that
goes through the trap occupied by qubit A. The path shown in Figure 4.1(b) shows a
valid movement as now qubit Q is traveling along a clear path. To prevent these types
of collisions from occurring the datapath must be carefully designed to provide enough
communication channels.

As an example of a circuit-specific datapath, we will consider an implementation of
the Teleportation circuit, shown in Figure 4.2. This circuit consists of three qubits Q, A,
and B and uses the quantum circuit notation introduced in Section 2.2.

Recall from Section 2.4.1 that teleporting a data bit is performed by entangling two
qubits to form an EPR pair (shown in the figure as qubits A and B), moving one of the
qubits to the destination location (qubit B), interacting the data bit and the remaining
EPR pair qubit (qubits Q and A), measuring their values, and using the measurement
results to perform operations on the destination EPR pair qubit (qubit B) to recreate the
data qubit.

One possible implementation of the quantum datapath for this circuit is presented
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Q

A B

Figure 4.3: One possible datapath implementation for the teleportation circuit shown in
4.2. Qubit B is shown in the destination ion trap to where qubit Q will ultimately be
teleported. The large dashed box in the middle represents an arbitrary distance.

in Figure 4.3. The left side of the figure is where the initial EPR pair generation takes
place. After the EPR pair is created, qubit B moves to the destination location. The
large dashed rectangle represents an arbitrary distance qubit B moves to eventually get to
the destination. With the datapath in this state, qubits Q and A are now able to interact
to perform the teleportation operation.

In ion trap technology, given unlimited resources, it is possible to create a datapath
where every trap is capable of performing a gate operation. However, assuming unlimited
laser resources is unrealistic and therefore we limit the number of ion traps capable of
performing gate operations and always explicitly mark them. The teleport datapath
shown in Figure 4.3 only contains three ion traps with gate capabilities. The rest of the
traps are used for movement.

4.2 Datapath Control

The quantum datapath is useless without any classical control. The classical control
is designed to manipulate the quantum datapath in order to perform the necessary oper-
ations. The classical control system manages the ion trap electrodes, all laser resources
used to perform gate operations, and the measurement device.

We begin by discussing the control requirements for the ion traps. As described in
Section 2.5.1, each ion trap has some number of electrodes that must be individually
controlled to effectively confine an ion. We move ions between traps by applying voltage
sequences to the relevant electrodes, and then stabilize the electrode voltages to confine
the ion within the trap. Regardless of which ion-trap implementation is used, all changes
to the electrode voltages must be done in small increments and with precise timing to
minimize the amount of energy gained by the ion. Currently, experimental demonstrations
of ion-trap technology utilize Digital-to-Analog Converters (DACs) to accomplish this
task [50, 32, 70]. The DACs allow designers to specify a sequence of discrete voltage levels
which are then converted into the intricate voltage sequences required for the various trap
operations.
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Figure 4.4: DACs are used to control the voltages of the ion trap electrodes. Electrodes
that share a label receive the same voltage sequence. The control logic programs the
DACs to generate the necessary voltage sequences. The voltage sequences corresponding
to the various movement operations are stored in a memory.
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Figure 4.5: Electrodes required to move two qubits to the trap region between the
electrodes labeled 1. The movement of qubit A requires all the electrodes within the
dashed rectangle. The movement of qubit B requires all the electrodes within the region
enclosed by the dotted line.

A method to integrate DACs into the control system is outlined in Figure 4.4. On
the left are a set of DACs fed by various movement voltage sequences. Each primitive
operation has a defined voltage sequence, essentially a list of time steps with the corre-
sponding voltage levels for the electrodes, stored in RAM. Multiplexers are set by the
control system to feed the DACs with the appropriate voltage sequence for the desired
movement operation. The control logic is responsible for deciding where qubits need to
go and in what order to perform the operations. Once this decision is made, the control
logic retrieves the predetermined voltage sequences for the desired operation and uses this
information to program the DACs corresponding to the electrodes that are participating
in the operation. In this example, qubit A and qubit B need to perform a CNOT operation.
To do so, they must be co-located in the trap between the electrodes labeled 3, so the
control logic programs the DACs to move them from trap to trap until they reach their
destination. For qubit A, first electrode groups 1 and 2 are set to perform a single trap to
trap movement from 1 to 2. Then the same operation is again performed, but this time
using electrode groups 2 and 3. The same operations are performed to move qubit B.
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Control

Figure 4.6: The same datapath shown in Figure 4.5 redrawn to highlight repetitive
operations that can be exploited by a hierarchical control system. The control logic
required to perform the straight arrow movement is the same in all cases. Similarly, the
control to perform the turn arrows is also the same in each turn case.

Performing these types of movement operations requires the coordination of multi-
ple adjacent trap electrodes as ions cross from one trap into another. For example, in
Figure 4.5, we see two qubits that will be moved from their current location to the trap
between the electrodes labeled 1. All the electrodes contained within the dashed rectangle
are required to move qubit A, and all the electrodes surrounded by the dotted line are
required to move qubit B. The control system must individually control each of these
electrodes to allow these simultaneous movements to occur.

4.2.1 Macroblock Abstraction

Designing a control system to track and manipulate a few ion traps and qubits is not
terribly challenging. As the datapath grows in size, however, this design problem becomes
increasingly complex, as more electrodes must be controlled and additional qubits must
be tracked. Moreover, even after a control system is designed for a specific datapath, any
changes to this datapath requires modifications to the control system to accommodate
these changes. Some of these issues can be addressed by utilizing a hierarchical control
system design that isolates changes in low-level control from higher-level control logic.

If we look at Figure 4.6 (the same datapath shown in Figure 4.5) then we can see
there are a number of repeated operations that occur. All the straight arrow movements
utilize the exact same control logic. The same holds true for all the turn arrows. By
analyzing a number of datapaths, we can identify a set of repetitive control actions that
can be turned into a library of macroblocks.

Our macroblocks are simple abstractions that combine multiple trap regions and elec-
trodes into a single group. The macroblocks can be designed to include any number of
electrodes and trap regions. Each macroblock has an associated control unit to handle
all its internal control and provide interface logic to other macroblock control units and a
higher level controller. We purposely design our macroblocks so they only interact with
surrounding macroblocks when a qubit needs to travel between them. In all other cases
the macroblock need only be concerned with its internal state.
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Figure 4.7: Example library of ion trap macroblocks. Gray boxes represent electrodes
and the black box represents a trap region capable of performing a gate operation. Gates
are not allowed in the intersection or turn macroblocks as these trap regions are not as
stable as a trap region between two electrodes.

A

BMC MC

M
C

1

MC

Control

1

Macroblock Control Units

High−level

Figure 4.8: The same movement as pictured in Figure 4.5, but with the macroblock
abstractions inserted. The macroblock control units are shown along with their interface
to high-level control.

The macroblocks we use in our datapath evaluations are shown in Figure 4.7. They
consist of four communication macroblocks: StraightChannel, ThreeWayIntersection, Turn,
and FourWayIntersecion, and two gate operation capable macroblocks: DeadEndGate and
StraightChannelGate. We do not permit gate operations inside the intersection or turn
macroblocks as the trap regions within them are unlikely to be stable enough. If, in the
future, this assumption proves to be untrue, adding new macroblocks into our library
would be a simple task.

All of our macroblocks are sized identically, but designing macroblocks of varying sizes
is possible. We choose to use uniform sizes because it greatly simplifies the creation of
datapaths by allowing us to use simple grids for layout. Additionally, all openings in the
macroblocks are always centered on the side allowing us to place macroblocks next to any
other macroblock with a corresponding opening without complex alignment procedures.

To illustrate how macroblocks are used, we build the example datapath shown in
Figure 4.5 using our macroblocks and show the result in Figure 4.8. Rather than a single
control block required to manage all the electrodes we create a modular system where
smaller control units are responsible for fewer electrodes thereby minimizing complexity.
Placing the macroblocks next to each other automatically connects the lower-level control
units together. All that remains is designing the high-level control.
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Figure 4.9: Macroblock control interface. For each quantum port in the macroblock,
there are a set of Input and Output signals that connect to the neighboring macroblock.
The macroblock interfaces to higher level controllers through the Instruction Controller
and Laser Controller interfaces. Each macroblock also has a unique ID for addressing
purposes.

4.2.2 Macroblock Sequencing

The interface used by our macroblocks is shown in Figure 4.9. Each macroblock in-
terfaces with high-level control and the laser control. Additionally, macroblocks have a
set of input and output signals for each datapath port it contains, shown on the right
side of the figure. These signals connect the macroblock control to the control unit of the
neighboring macroblock(s). The REQUEST and AVAILABLE signals are used to determine
when qubit movement is permitted. If a macroblock containing a qubit is instructed to
move the qubit to a neighboring macroblock it first asserts the REQUEST signal associated
with the port out of which the qubit will travel. The neighboring macroblock then as-
serts AVAILABLE if the qubit movement is permitted and on the following cycle the qubit
moves into the new macroblock along with a qubit command message (described below).
This simple handshaking prevents qubits from entering macroblocks that already contain
qubits and prevents qubit collisions from occurring. Only macroblocks that support gate
operations (DeadEndGate and StraightChannelGate) allow two qubits to reside within
them simultaneously.

Each macroblock is capable of receiving a qubit control message. Using these qubit
control messages, macroblock control logic blocks can determine where to move qubits
and when to execute a gate operation. Qubit control messages are simple bit streams
composed of a qubit ID along with a sequence of commands. When a qubit needs to
perform an action the high-level control logic sends the macroblock a control message.
This control message then travels with the qubit as it traverses the datapath. Once
a macroblock receives a qubit and its corresponding control message, it uses the first
command in the sequence to determine the operation it must perform. The macroblock
then removes the command bits it used and passes on the remaining control message to
the next macroblock into which the qubit travels. In this manner, the high-level control
logic can create a multi-command qubit control message that specifies the path a qubit
will traverse through consecutive macroblocks along with where gate operations take
place. The high-level control logic only has to transmit this control message to the source
macroblock, relying on the inter-macroblock communication interface to handle the rest.
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Figure 4.10: Example of how a qubit control message is constructed to move a qubit
through a series of macroblocks. The layout is constructed from four macroblocks. In this
example, M1 happens to be rotated 90 degrees compared to M2 and M0. The qubit enters
M0 and travels through M1 and M2, arriving at M3 where it is instructed to perform a
CNOT.

Figure 4.10 illustrates how macroblocks accept control messages from the high-level
control logic and how the messages travel along the path. In this example, the high-level
control determined the path Q1 will take: M0→M1→M2→M3. This path is converted
into a single control message as shown in the figure and sent to M0. M0 looks at the
first two bits of the control message and determines the qubit must exit port P2. After
conducting the handshaking protocol with M1 as described above, Q1 moves from M0 to
M1 and the command message is passed to M1’s control unit with the lowest two bits
removed. M1 now looks at the low bits of the command message to determine that Q1
must exit through port P1. This process repeats until the qubit reaches M3 where the
command message indicates a gate operation will take place. Once the gate operation
completes (as indicated by the GATE COMPLETE signal) the high-level control will issue
a new command message to M3 to detail the next path Q1 will take. If no command
message is received, the qubit remains in M3 until the new message arrives.

Communication between the high-level control logic and the macroblocks takes place
using a shared control message bus to minimize the number of wire connections required.
Each macroblock listens to the control message bus for messages addressed to it and only
processes messages with destination IDs that match the macroblock’s ID. A macroblock
is only responsible for monitoring the control message bus if it contains a qubit that has
no remaining command bits. This condition generally occurs after a gate operation takes
place when the high-level control logic is deciding what action the qubit should take next.
Once a new control message is received for a qubit, the macroblock resumes operation.

The macroblock interface enables the high-level control logic to schedule qubit move-
ment as a path through a sequence of macroblocks without concerning itself with the low
level details of qubit movement. This modular system allows macroblocks to be replaced
with any other macroblock that implements the defined interface with minimal changes to
the high-level control logic. The high-level control logic must always know the datapath
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structure as it needs this information to determine qubit paths, however, the high-level
control is insulated from changes that may occur in the macroblock control units such as
modifications to the electrode voltage sequences.

4.2.3 Lasers and Measurement

As described in Section 2.5.4, performing gate and measurement operations in ion trap
technology requires lasers. Lasers are a global resource shared among all macroblocks in
the system. When a macroblock is instructed to perform a physical gate operation, it
passes a laser request message to its higher-level control. The high-level control combines
all laser requests it receives and forwards the request out to the laser control unit. The
laser control unit aggregates incoming laser requests and fires off the desired pulses at
appropriately synchronized times. Because of the number of simultaneous requests that
will occur at every time step and what will most likely be a limited number of available
lasers, the laser control unit must act as an arbitration unit. It aggregates all incoming
laser requests and decides which requests to grant. Any requests that are not granted at
a given time step must stall until a laser resource becomes available. The laser control
also manages the laser distribution scheme used and ensures that laser pulses are directed
only at the desired macroblocks.

Measurement control operates in a similar fashion. Measurement not only requires a
laser resource but also uses a CCD to detect the measured values. All measurements in
the system must by synchronized or delayed until the next time unit the CCD becomes
available.

4.2.4 Interface to High-level Control

The final piece of the control system is the high-level control. This component is
responsible for interfacing with all the macroblock control units and the laser and mea-
surement control. The high-level control is designed to accept a set of instructions and
translate them into the appropriate macroblock control messages.

With all of these pieces in place, creating a fully functional circuit, given a predefined
library of macroblocks, becomes a simple procedure. The datapath is specified using
the macroblocks in the library. With this datapath specification, the macroblock control
units automatically interface together and with the high-level control to create a functional
control system. A series of instructions representing the quantum circuit is then input
into the high-level control unit to execute on the datapath. The sequence of instructions
details all of the qubit movement requirements and defines when and where gate operations
occur. In this manner, arbitrarily complex quantum circuits can be created including a
full control system.

4.2.5 Scheduling Communication

Qubit movement and communication must be carefully scheduled within a quantum
datapath in order to perform the desired circuit. Once we have a datapath built out of
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macroblocks we use our scheduler to execute the circuit on the datapath. The scheduler
is responsible for deciding the location gates occur, the order in which the gates occur
and the movement paths used by the qubits to get from one gate location to another.

Our scheduler tracks each qubit in the datapath individually and determines how they
move around the system. It must decide where the next gate operation will occur and
allocate channels for the qubits to use to move to this new gate location. Our scheduler
is based on a standard priority list scheduling algorithm [27].

The scheduler executes the instruction in dataflow order, prioritizing instructions on
the critical path. This method allows the highest priority instruction to run first making
it more likely for it to gain access to the required resources. These contested resources
include both gates and channels/intersections. Once all possible instructions have been
scheduled, time advances until one or more resources are freed and more instructions
may be scheduled. This scheduling and stalling cycle continues until the full sequence has
been executed or until deadlock is detected, in which case the highest priority unscheduled
instruction at the time of deadlock is reported.

It is often the case that we design a datapath with a logical to physical qubit mapping
in mind. For example, if we are studying datapath with a [[7, 1, 3]] encoding in mind
we know that each logical qubit will be represented by 7 physical qubits. Knowing this
mapping, we may choose to allocate additional communication channels to allow all the
physical qubits to move in a synchronised manner. The scheduler must be careful to allow
this types of moves to occur correctly, otherwise it may not take full advantage of the
resources available in the datapath.

Figure 4.11 illustrates an example of a incorrectly scheduled move operation. In this
example, the logical qubit is encoded as three physical qubits residing in region A. The
goal of the move is to move all three qubits from A to B. A scheduler that only operates at
the physical level might schedule each move in series so that they each take the same path,
when it is clear that the designer included extra horizontal channels with the intention
that all the qubits to move simultaneously as shown in Figure 4.12. In this figure, the three
physical qubits are treated as a logical qubit and moved together, optimizing the overall
move latency. Our scheduler allows us to annotate logical to physical qubit mappings so
that we choose the best move path possible.

4.3 Manual Layout of Quantum Circuits

Our CAD tools provide multiple options for creating macroblock layouts. The most
hands on and flexible method is to use a graphical layout tool we developed to manually
build layouts. Our layout tool is similar in concept to those used in classical CAD flows in
that the designer selects modules from a library and manually places them in the layout.
A screenshot of the layout tool is shown in Figure 4.13. Users can build layouts using our
standard macroblock definitions or they can create more complex modules to add to the
library of available modules.

As modules are placed in the layout their respective ports are connected to enable
qubit movement between the modules. When the layout is complete, we run design-rule
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Figure 4.11: A poorly scheduled logical
qubit movement. The three qubits at A
need to move to B. If each qubit takes
the first shortest path they will all follow
serially causing congestion at the turn
and delaying the overall movement.

A

B

Figure 4.12: A correctly scheduled log-
ical qubit movement. The three qubits
moving from A to B do so in parallel
reducing congestion at the turns.

Figure 4.13: Custom designed Layout Tool. The manual layout tool interface allows users
to create arbitrary layouts using standard macroblocks or other user-defined modules.
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checks to verify the layout is consistent: gate locations cannot be in an unconnected island
and channel openings must line up with other channel openings.

The Layout Tool also serves as a way to visualize qubit movement and communication
within a datapath. After the CAD tools have processed a circuit (either with a layout
manually specified or automatically generated) it outputs a full schedule of operations
that occur in the datapath (as described in Section 4.2.5). This information along with
the corresponding layout can be loaded into the Layout Tool to observe the full circuit
run. Qubit movement is animated through the datapath and qubits are highlighted when
gate operations occur allowing visual inspection of the circuit run. This direct observation
simplifies the task of spotting congestion issues in smaller layouts.

4.4 Automated Grid-Based Layout

Manually specifying a full circuit layout is convenient for small layouts, however it
becomes difficult to use this process to evaluate large quantum circuits. We use specialized
automated layout techniques to speedup up the design process and provide assistance to
create larger layouts.

One common theme to many of the previously proposed quantum computing datapaths
is that they are all created by first constructing a smaller cell and tiling this cell to form
a larger layout. We refer to these types of layouts as grid-based layouts, since they are
constructed from a grid of primitive cells. In some cases the primitive cell is composed of
very few ion traps with only one gate location, in other cases the cell consists of many ion
traps with numerous gate locations. Once a primitive cell is designed, it is easy to tile the
cell to create an appropriately sized datapath for a given quantum circuit. Furthermore,
grid-based structures are very appealing to consider because, apart from selecting the
number of cells in the layout and the initial qubit placement, no other customization is
required in order to map a quantum circuit onto the layout.

4.4.1 Regular Tiled Datapaths

A number of proposals have been made for ion trap datapath designs. Metodi et al [42]
initially presented the Quantum Logic Array (QLA) design which used the structure shown
in Figure 4.14(a) as its basic building block. The qubits only perform gate operations in
the trap regions denoted by the black box. This layout allows qubits to move around while
other qubits remain in gate locations as none of the channels can be blocked. Consequently
the design requires a large layout to accommodate the communication channels.

Metodi et al [43] additionally propose a layout using the structure shown in 4.14(b).
This layout packs in more gate locations per area, but does so at the expense of requiring
a more complicated scheduling algorithm as it is possible to trap a qubit by blocking
channels. Recall that if a qubit is occupying a trap region, another qubit cannot pass
through that trap. Instead, the qubit must move out of the trap region in order to clear
a path for the the passing qubit, an unfavorable operation that exposes the qubit to
additional sources of error.
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(a) QLA Logical Qubit Layout
from [42].

(b) QPOS Grid Layout
from [43].

(c) Svore/Balensiefer Layout
from [64, 3].

Figure 4.14: A sample of physical layouts of Functional Units taken from the literature.

Svore et al [64] and later Balensiefer et al [3] use variations of the design shown
in Figure 4.14(c). This design tiles blocks which are composed of regions dedicated to
computation surrounded by special communication channels.

While all of these physical layouts have been proposed, very little has been done to
determine which layouts are good. Balensiefer et al [3] provide some tools to evaluate the
performance of their layouts by varying characteristics such as number of communication
channels and gate locations, but do not extend the work to more general structures. In
a more recent work, Metodi et al [43] present a Quantum Physical Operations Scheduler
(QPOS) that given a quantum circuit description and a layout, can generate a schedule
of operations upon that layout, however their QPOS is limited to layouts that conform
to the structure shown in Figure 4.14(b).

4.4.2 Optimizing Titled Datapaths

We developed a set of tools to create and evaluate these types of grid-based datapaths.
Our goal was to exhaustively search through a number of different grid-based datapaths
to determine if datapath designs such as the QPOS grid (Figure 4.18) can be improved
upon. We limit our search to primitive cells sized 3 × 3 and smaller as the amount of
compute time to search for larger cells is prohibitive. Once we construct a primitive cell
out of macroblocks, we tile the cell to create a larger layout and execute the circuit with
this datapath.

An overview of the tools we use for the evaluation is shown in Figure 4.15 and described
here:

51



ScheduleCell

Grid

Size
Circuit

Place

Qubits

Generate

Grid Layout
CreateCell

Size

Figure 4.15: Tools used to create and evaluate various grid-based functional unit layouts.

Create Cell: The process begins by first deciding on a primitive cell size. We start with
the small cells, 1 × 2 and 2 × 1, and build up to 3 × 3 sized cells. Give a cell size,
we create the primitive cells out of macroblocks. Each block in the cell can be one
of 17 different macroblocks after accounting for rotation (6 of which are shown in
Section 4.2.1). The process starts by placing macroblocks in the cell until a valid
cell is created. Valid cells must have at least one gate location and at least two
open ion traps that when tiled will line up with the neighboring cell’s open ion
traps. A cell cannot be completely enclosed as when it is tiled qubits will not be
able to traverse from one cell into another. Additionally a primitive cell must be
internally consistent; an opening from a macroblock must align with the opening of
a neighboring macroblock.

Generate Grid: Once we have established the primitive cell structure, we move on to
generating the full datapath. The datapath is constructed by tiling the primitive
cell until we create a grid of the desired size. There is no inherent limit to the
maximum size of the grid, but there is a minimum. One of the restrictions we make
is that qubits can only “idle” in ion traps that are designated gate regions which
only appear in the StraightChannel and DeadEndGate macroblocks. We make this
restriction because traps between two electrodes are more stable than trap regions
in intersections. The trap regions in intersections are only used in qubit transit
when the qubit is expected to leave the trap immediately after it enters. In an effort
to limit the large search space of potential grid sizes, we only use grid dimensions
which match the area of the datapaths presented in [43], allowing us to compare the
performance of datapaths with matching areas.

Place Qubits: Given a full datapath and a quantum circuit to execute, the first step
in execution is determining where qubits are initially placed. The two methods we
use are: a systematic left to right, one qubit per cell approach, and a randomized
placement. The systematic placement allows us to fairly compare different layouts.
However, since the initial placement of the qubits can affect the performance of the
circuit, the tool also tries a number of random placements in an effort to determine
if the systematic placement unfairly handicapped the circuit.

Schedule: The scheduler creates a full schedule of movement and gate operations within
the datapath and is further described in Section 4.2.5.

This layout generation and evaluation procedure is iterated until all valid cell con-
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Qubit Gate
Circuit name count count

[[7, 1, 3]] L1 encode [60] 7 21
[[23, 1, 7]] L1 encode [62] 23 116
[[7, 1, 3]] L2 encode [60] 49 245

Table 4.1: List of our QECC benchmarks, with quantum gate count and number of qubits
processed in the circuit.

figurations of the given size are searched. We then repeat this process for different cell
sizes.

4.4.3 Evaluating Grid-Based Datapaths

Using our tool set we evaluated three quantum error correction circuits to determine
the effects of datapath structure on runtime. We chose error correction circuits because the
high error rates present in all currently demonstrated quantum technologies necessitate
the use of some level of error correction to perform all but the simplest tasks. The three
circuits we targeted are listed in Table 4.1 and consist of the Steane [[7, 1, 3]] Code [60]
level 1 encode circuit (7 physical bits to represent 1 data bit), the Steane [[7, 1, 3]] level 2
encode circuit (49 physical bits to 1 data bit) and the Golay [[23, 1, 7]] Code [62] level 1
encode circuit.

For each circuit we ran our tools to determine the best grid-based datapath structure.
We searched grids based on primitive cells sized 2 × 2, 2 × 3, 3 × 2, and 3 × 3. As an
example, Figure 4.16 shows the results of searching for the best layout composed of 3× 2
sized cells targeting the [[23, 1, 7]] Golay encode circuit with an area of 143 macroblocks.
In this example, we searched over more than 900 valid cell configurations (listed as the
X-axis in the graph). For each cell configuration, we try multiple initial qubit placements,
resulting in a range of runtimes for each cell configuration (Y-axis). Differences in the
runtime of the circuit are not limited to just variations on the cell configuration but are in
fact also highly dependent on the initial qubit placement as can be seen by the difference
in minimum and maximum times across the different structures. The runtime for the
worst structure and initial qubit placement is four times worse than the best-case runtime
given a good structure and initial qubit placement.

Figure 4.17 shows the best cell structure found after conducting a search of all 2 × 2,
2×3, 3×2 and 3×3 sized cells for the three different circuits. As can be seen in the figure,
the best grid-based layout is dependent on what circuit will be run upon it. By varying
the location of gates and communication channels, the tools found a layout tailored to
the circuit requirements.

To evaluate the performance of our optimized datapaths, we compare our datapaths to
the QPOS grid shown in Figure 4.14(b)[43] (the most recent published datapath proposal).
We can construct the QPOS grid structure with our macroblocks using a 2 × 2 sized
primitive cell as shown in Figure 4.18. The dark gray box highlights the primitive cell.
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Figure 4.16: Variations in runtime of various grid-based physical layouts for [[23, 1, 7]]
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(a) (c)(b)

Figure 4.17: Comparison of the best 3 × 2 cell for two different circuits. (a) The best
cell for the [[23, 1, 7]] Golay encode circuit. (b) The best cell for the [[7, 1, 3]] L1 correct
circuit. (c) The best cell for the [[7, 1, 3] L2 encode circuit.
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Figure 4.18: QPOS grid structure constructed by tiling the highlighted 2× 2 macroblock
cell. The cells can extend in all directions to create an arbitrarily sized layout.

Circuit Area Datapath Latency (µs)

QPOS Grid 548.0
[[7, 1, 3]] L1 encode 49

Optimal Grid 509.0
QPOS Grid 2411.0

[[7, 1, 3]] L2 encode 1365
Optimal Grid 1367.0

QPOS Grid 2268.0
[[23, 1, 7]] Golay encode 575

Optimal Grid 1801.0

Table 4.2: Latency results for the three error correction circuits we tested. In each case
an exhaustive search for an optimal grid structure yielded a datapath with lower latency.
The best grid structure found is shown in Figure 4.17.

In this case it is constructed of two StraightChannel blocks with gate locations (one
rotated 90◦) a FourWayIntersection block, and one empty block. The figure only shows
a small portion of a layout constructed from 8 of these primitive cells, but any number of
them can be tiled to form larger layouts.

In each case, our exhaustive search resulted in a cell structure that performed better
than the QPOS grid. Table 4.2 shows the results of running the error correction circuits
on the QPOS grid datapath and on the grid structure produced by our exhaustive search.

While this type of exhaustive search of physical layouts is capable of finding an optimal
layout for a quantum circuit, it suffers from a number of drawbacks. Namely, as the
size of the cell increases, the number of possible cell configurations grows exponentially.
Searching for a good layout for anything but the smallest cell sizes is not a realistic option.

4.5 Qalypso Compute Regions

Since we are most interested in creating datapaths based on our Qalypso architecture,
we use our tools to construct detailed layouts and schedules of operations within the
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major Qalypso components. A Qalypso datapath is constructed out of a set of compute
regions connected via a communication network. The compute regions have two major
components: a data area used for gate operations, and an QEC ancilla generation area
used to create encoded ancilla. The first step to building a Qalypso datapath is to evaluate
designs for these two major components.

We start by describing the structure of the ancilla generator units in Section 4.5.1
and follow that by discussing datapaths for the data portion of the compute region in
Section 4.5.2.

4.5.1 Ancilla Generator Datapaths

In Section 4.4.3 we studied datapaths that perform in-place ancilla generation. In
these structures the ancilla is generated in the module and moved out after generation
is complete. After the encoded ancilla leaves, a new ancilla generation process can run.
Rather than rely on the serial ancilla generation procedure, we instead use pipelined
ancilla factories in our compute regions [34] as shown in Figure 4.19. Detailed layouts of
the components are presented in Figure 4.20.

This pipelined ancilla factory has a number of benefits over the in-place version. The
most prominent one being increased bandwidth. The process of pipelining allows us to
create multiple ancilla simultaneously and output them at a higher rate than possible
with a single in-place generator. It is possible to stack a number of in-place generators
together to achieve the same bandwidth as a pipelined version. However, multiple in-place
generators require us to move encoded ancilla much further to get to the final data. In
contrast, the pipelined factory has a single output port that can be placed directly adjacent
the data region. Thus, ancilla only need move a short distance from the generator to the
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data.

Since ancilla generation is such a vital component of the circuit run, we manually
design and layout the pipelined ancilla factories. We use our low-level scheduling tools
to evaluate communication within the layouts and calculate the total bandwidth for the
ancilla factories. These numbers are then fed into the CAD flow to evaluate the target
quantum circuit.

4.5.2 Modeling Congestion

The data areas of the compute regions are where all the data qubits reside and where
all the circuit operations take place. Communication operations within these regions play
a large part is determining how the overall quantum circuit will perform. The flexibil-
ity of our CAD flow allows us to create arbitrary ion-trap datapaths and use them to
build larger more complex circuits. To study the effects of congestion and movement la-
tency, we schedule all the qubit movement and communication that occurs and determine
performance.

In order to correctly determine the performance of these layouts we would schedule
all the qubit movement and communication that occurs to study the effects of congestion
and movement latency.

Unfortunately, as circuits become larger, the benefits of scheduling operations at a
physical qubit level is quickly eclipsed by the time necessary to calculate the schedule.
When scheduling requires multiple days to complete, the process of evaluating datapaths
becomes extremely difficult. Since the main goal of our CAD flow is to allow the thorough
study of many different parameters, we decided to sacrifice some low-level detail in an
effort to decrease overall runtime of our analysis tools.

Rather than sacrifice all low-level detail to speed up circuit evaluation, we parametrize
layout modules to create a communication model that we use to estimate overall circuit
performance. This method allows us to quickly evaluate circuit while retaining the core
effects resulting from communication needs. Since most of our circuits are built from log-
ical qubits encoded as a set of physical qubits, we start by creating models of components
at the logical qubit level.

For example, take the datapaths shown in Figure 4.21 and Figure 4.22. These are
two potential datapaths for a compute region where logical qubits are encoded as three
physical qubits. The datapath in Figure 4.21 is an area-efficient datapath. Logical qubits
are grouped in a square with only a single communication channel separating the logical
qubit regions. The alternate datapath shown in Figure 4.22 provides more communication
channels and lays out the physical qubits in a line. The goal of this layout is to minimize
communication delay to move a logical qubit. In datapath A, the physical qubits must
serially move out of the logical qubit regions in order to reach another logical qubit. In
datapath B, the qubits can all move simultaneously and remain in the line configuration.

Using these types of datapath inputs, our tools create a communication and congestion
model of the compute region based on size and number of communications occurring at
a given time. We start by constructing layouts with varying numbers of logical qubits.
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Figure 4.21: Compute Region Datap-
ath A. In this example the logical qubit
is encoded via three physical qubits and
are laid out in an area-efficient manner.

Figure 4.22: Compute Region Datapath
B. In this example the logical qubit is en-
coded via three physical qubits and are
laid out to optimize logical qubit move-
ment.

With these layouts, we generate random communication operations and record the average
amount of time qubits require to move within the datapath. As more communication
operations occur at a given time, additional delay from congestion causes move operations
to take longer and longer. We record the performance of the layout and use it when
scheduling the higher-level operations (mapping and network routing).

Figures 4.23 and 4.24 illustrate the models we generate. In Figure 4.23 we see the
performance of a compute region built using datapath A from Figure 4.21. The two
lines on the graph correspond to a compute region sized to hold 16 logical qubits and a
compute region sized to hold 36 logical qubits. Because the 16 qubit datapath is smaller,
it starts with a lower average move latency when there is no congestion (0 other active
moves). But, as illustrated in the graph, as we add more simultaneous move operations,
the amount of congestion in the region causes the average move latency in the 16 bit
datapath to increase much faster than in the 36 bit datapath.

Figure 4.24 contains the same setup except in this case for datapath B. Here we can
clearly see the advantages to the additional communication channels in the datapath.
When compared to datapath A, datapath B has a lower initial move latency (for the
similar sized datapaths in bits) and additionally as more moves are performed the slope
on the average move latency line remains much lower than that of datapath A due to the
availability of more communication channels, limiting the amount of congestion-induced
delays.

Our tools parametrize all the datapaths we study in this fashion and use the results
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Figure 4.23: Average time (including congestion delays) to move a logical qubit given
the number of active moves in the Compute Region for datapath A (Figure 4.21).
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given the number of active moves in the Compute Region for datapath B (Figure 4.22).
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during the high-level mapping and routing phase. The results are cached and only updated
when new datapaths are used or when lower-level parameters are changed. This approach
allows us to properly evaluate the effects of communication and congestion in the low-level
datapath without requiring us to schedule physical qubit movement when studying large
circuits.

4.6 Summary

Building a low-level datapath out of ion-traps requires careful design of the layout and
the control system. By using our macroblock abstraction, we are able to construct arbi-
trary datapaths where the control system is automatically assembled. Our abstractions
allow us to study area and latency of ion-trap datapaths without relying on details of
low-level implementation technology.

Using our layout and scheduling tools, we studied a number of different grid-based
datapaths. We show that the structure used can dramatically affect overall latency of
the circuit. Thus, it is important to tailor the datapath structure to the target quantum
circuit in order to achieve the best performance. Our CAD flow uses these tools to evaluate
different datapath structures and is designed to select the best datapath for the circuit
under study.
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Chapter 5

Optimizing Long-distance Quantum

Communication

Being able to reliably and efficiently perform long-distance communication is vital to
building a large-scale quantum computer. The quantum architecture we present in this
work is constructed out of a set of compute regions connected by a quantum communi-
cation network, as shown in Figure 5.1. In this architecture all the computation is done
on the qubits within the compute regions and all movement within a compute region is
done using ballistic movement. Communication between compute regions makes use of
the communication network and is performed via teleportation.

The basic process of teleportation within the communication network is shown in the
right side of Figure 5.1. A data qubit D enters the communication network and moves
into a teleporter unit. The communication network is responsible for generating the EPR
pair E1, E2 and distributing these qubits to the end points of the desired communication.
When all qubits are in place, the teleport operation occurs, indirectly moving the state of
D into E2. After some classical information is transmitted to complete the teleportation,
D is now ready to move into the destination compute region.

Communication Network

Qubits

Compute 

Regions
ballistic 

movement

teleportation Teleporter To

 Compute 

Region

EPR

Generator

E1 E2E1

D

Teleporter

E2 D
Data

Data

Figure 5.1: Overview of the Quantum Datapath. A set of Compute Regions are connected
via a communication network. Within compute regions data uses ballistic movement. To
communication between compute regions, data uses teleportation through the communi-
cation network. The right side of the figure shows a summary of the data teleportation
process.
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Figure 5.3: Chained Teleportation Distribution Methodology: EPR qubits generated at
the midpoint generator are successively teleported until they reach the endpoint teleporter
nodes before being ballistically moved to corrector nodes and then purifier nodes.

We favor teleportation for long-distance communication because it limits errors on
the data qubits by drastically reducing the distance that they travel. Instead, the EPR
qubits perform the long-distance movement in the data’s place. Although naively it
would appear that teleportation exposes the data to error by interacting data qubits
with EPR qubits (which have accumulated error by long-distance communication), we
utilize a process of purification [7] to remove noise from the EPR pair before performing
teleportation. Specifically, purification improves the quality of some EPR qubits at the
expense of others, allowing us to create relatively error-free EPR qubits for use in the
data teleport.

5.1 Communication Network

The communication network’s main task is to generate and distribute EPR pairs
to the source and destination of requested communications. One option for EPR pair
distribution is to generate EPR pairs at generator (G) nodes in the middle of the path
and ballistically transport them to purifier (P) nodes that are close to the endpoints, as
shown in Figure 5.2. Purification combines two EPR pairs to produce a single one of
higher fidelity. For each qubit in the left purification (P) node, its entangled partner is in
the right P node undergoing the same operations. For each purification performed, one
classical bit is sent from each end to the opposite one. Discarded qubits are returned to
the generator for reuse.

Another option is to generate an EPR pair and perform a sequence of teleportation
operations to transmit these pairs to their destination. Correction information from a
teleportation (two classical bits) can be accumulated over multiple teleportations and
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performed in aggregate at each end of the chain. This process is depicted in Figure 5.3.
A T’ node contains units that perform the local operations to entangle qubits (step 2 in
Figure 2.5), but no correction capability (step 4 in Figure 2.5). Instead, each T’ node
updates correction information and passes it to the next hop in the chain.

The path consists of alternating G nodes and T’ nodes, with a C node and a P node at
each end. Each G node sends EPR pairs to adjacent T’ nodes. The EPR pairs generated
at the central G node are moved ballistically to the nearest T’ nodes, then successively
teleported from T’ node to T’ node using the EPR pairs generated by the other G nodes.
Since the EPR pairs along the length of the path can be pre-distributed, this method can
improve the latency of the distribution if the T’ nodes are spaced far enough apart.

Between each pair of “adjacent” T’ nodes (as defined by network topology) is a G node
continually generating EPR pairs and sending one qubit of each pair to each adjacent T’
node. Thus, each T’ node is constantly linked with each adjacent T’ node by these
incoming streams of entangled EPR qubits. Each G node is essentially creating a virtual
wire which connects its endpoint T’ nodes, allowing teleportation between them. By
performing purification at either end of a virtual wire, we can increase the fidelity of the
EPR pairs, effectively amplifying the connection between endpoints; we will investigate
this effect in Section 5.2.3.

To permit general computation, any functional unit must have a nearby T’ node
(although they may be shared). This structure implies the necessity of a connected grid
of T’ nodes across the chip, which are linked by virtual wires. The exact topology is an
implementation choice; one need not link physically close or even nearby T’ nodes, as
long as enough channels are included to allow each G node to be continuously linked to
the endpoint T’ nodes of its virtual wire with a steady stream of EPR qubits. Thus, any
routing network could be implemented on this base grid of T’ nodes, such as a butterfly
network or a mesh grid.

5.1.1 Structuring Global Communication

As we discussed in Section 4.2, the process of moving quantum bits ballistically from
point to point presents a challenging control problem. Designing control logic to move
ions along a well-defined path appears tractable. However, controlling every electrode to
select one of many possible paths becomes much more complex. Thus, we can benefit from
restricting the paths that ions can take within our quantum computer. Such a tractable
control structure will involve a sequence of “single-path” channels (much like wires in a
classical architecture) connecting router-like control points.

Internally, we structure the communication network similar to that of a classical inter-
connection network using a mesh grid [1, 18] of routers connected to the various compute
regions. In our case, the routers contain the teleporter and purifier units and the links
consist of the EPR generators and channels to move qubits. We choose a mesh grid net-
work topology (as opposed to higher dimension topologies) due to the planar nature of
ion-trap datapaths. Current technology implementations do not have the luxury of stack-
ing ion trap channels in multiple layers. Therefore, any link connecting non-neighboring
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routers would have to cross through existing links thereby increasing congestion and com-
plicating control. Further, the distance traveled in a two-dimensional mesh is no worse
than a factor of

√
2 over the shortest possible distance.

Figure 5.4 illustrates the general network structure. Each compute region connects
to the network at a router. Routers contain teleporters that are used for both EPR
teleport chaining and final data qubit teleportation. Additionally, routers have purifier
units to purify the final EPR bits that will eventually be used for data teleportation.
The neighboring routers are connected via links composed of centrally located generators
connected to link purifiers (to purify EPR bits used within the link) as shown in Figure 5.2.

5.1.2 Terminology

The process of moving a logical qubit from one compute region to another via the net-
work requires the coordination of a number of components within the network. To explain
the details of communication with the network we must first present some terminology:

Link: A link connects two neighboring routers in the network. The link is composed
of a set of generators and purifiers to link the two routers, along with the ballistic
movement channels.The purifiers at either end of the link can be viewed as decreasing
noise observed when using the link to teleport quantum information.

Path: A path is defined as a sequence of routers and links that connect them.
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Connection: A connection in our network links a source and destination router via some
internal path. Two connections with the same source and destination router may
use differing paths.

Figure 5.5 illustrates these terms. In it we see a connection from source router Rs to
destination router Rd. By itself, the connection only tells us the source and destination
to which the final data EPR bits must eventually be routed. For this specific case,
the connection is implemented as the path Rs, L1, R1, L2, R2, L3Rd. All of the purifier-
generator-purifier connections between routers are links. Note that this connection can
also be created along a number of other paths and our network provides flexibility along
these lines.

5.1.3 Metrics

Within the network we will study various approaches to distributing EPR pairs keeping
the following metrics for connection setup in mind:

Fidelity: Both ballistic transport and teleportation cause qubits to decohere. The ar-
chitectural design must take into account the number of operations each qubit will
undergo and the resulting chance for errors. As mentioned in Section 2.2.3, we will
use fidelity to characterize the effects of errors on quantum information. Fidelity is
a measure of the difference between the desired and actual state of a qubit.

EPR Pair Count: While most operations cause qubits to decohere, purification de-
creases error on one EPR pair by sacrificing one or more other pairs. The EPR Pair
Count is a measure of the number of EPR Pairs that must be transmitted to either
end of a connection in order to reach a desired level of EPR fidelity. The more error
that is accumulated during connection setup, the more pairs that will need to be
transported to the endpoints to achieve the desired EPR fidelity.
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Figure 5.6: Ballistic Movement Model. Communication channels are constructed as a
sequence of macroblocks. The fidelity of a qubit and time to move the qubit is directly
proportional to the distance (in macroblocks) moved.

Latency: Logical communication set-up time determines how far in advance EPR dis-
tribution must occur. The latency of a connection is defined as the time to purify
all the link level bits, chain teleport the data EPR bits, and perform the final data
teleportation.

In addition, we keep the following more global architectural metrics in mind:

Quantum Resource Needs: The quantum datapath resource needs (quantity of each
component) affect chip area and thus communication distance.

Classical Control Complexity: Generation, ballistic movement, teleportation and pu-
rification must each be controlled classically, so the classical control requirements
vary with communication methodology.

Runtime: Ultimately, we want to know the impact of long-distance communication setup
on execution time.

5.2 Network Communication Models

To properly evaluate the architecture of the communication network we start by in-
troducing communication models for ballistic movement, teleportation and purification.
Our models are centered around studying the fidelity (see Section 2.2.3) of the qubits
involved in the communication operations.

5.2.1 Ballistic Transport Model

Ballistic movement is the low-level method for moving qubits within ion trap datap-
aths. In ballistic movement, the fidelity of a bit going through the ballistic channel and
the latency of the movement operation is proportional to the distance moved. Figure 5.6
shows an example of a small communication channel constructed out of three macroblocks
(D = 3).

The fidelity of the qubit after a move of distance D is described by:

Fnew = Fold(1 − pmv)
D (5.1)
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where Fold is the fidelity of the bit at the beginning of the move and pmv is the probability
of error for a single macroblock move. The time to perform ballistic movement is given
in time per macroblock moved through and from Table 2.1 is 0.2µs/cell.

tballistic = tmv ×D (5.2)

5.2.2 Teleportation Transport Model

Unlike the model of ballistic movement the fidelity of a qubit teleportation is more
complicated because it involves a combination of single and double qubit gates (p1q, p2q)
and qubit measurement (pms) [22]:

Fnew =
1

4

(

1 + 3(1 − p1q)(1 − p2q)
(4(1 − pms)

2 − 1)

3

× (4Fold − 1)(4FEPR − 1)

9

)

(5.3)

Where Fnew is the data fidelity after the teleportation, Fold is the data fidelity before tele-
portation and FEPR is the fidelity of the EPR bits used. The fidelity after a teleportation
is dependent on the EPR pair fidelity and the data fidelity before teleportation.

Although ballistic movement error does not appear directly in this formula, it should
be mentioned that the fidelity of the EPR pair will be degraded while being distributed
to the endpoints of the teleportation channel. Thus, even though the qubit undergoing
teleportation incurs no error from direct ballistic movement, there is still fidelity degra-
dation due to EPR pair distribution. Thus, it is important to produce the highest fidelity
EPR pairs that we can.

We produce EPR pairs from two qubits initialized to the zero state using a few single
and double qubit gates. The fidelity of an EPR pair immediately after generation is:

Fgen ∝ (1 − p1q)(1 − p2q)Fzero (5.4)

Fzero is the fidelity of the starting zeroed qubits. Generation time involves one single and
one double qubit gate. As mentioned in Table 2.1, this time is projected to be 21µs.

If we assume that EPR pairs are already located at the endpoints of our channel,
teleportation time is given in Table 2.1 as 122µs and has the form:

tteleport = 2t1q + t2q + tms + tclassical bit mv ×D (5.5)

Because the time scale of quantum operations is on the order of µs, we assume the amount
of time required to transmit classical data (tclassical bit) does not add appreciably to the
teleportation and purification process.

5.2.3 EPR Purification Model

As shown by Equation 5.3, the fidelity of the EPR pairs utilized in teleportation (FEPR)
has a direct impact on the fidelity of information transmitted through the teleportation
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Figure 5.7: Chained Teleportation Distribution Methodology: EPR qubits generated at
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nodes before being ballistically moved to corrector nodes and then purifier nodes.
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Figure 5.8: Final EPR error (1-fidelity) as a function of number of teleportations per-
formed, for various initial EPR fidelities. The horizontal line represents the minimum
fidelity the EPR pair must be at to be suitable for teleportation of data qubits, 1−7.5∗10−5

channel. Since EPR pairs accrue errors during ballistic movement, teleportation by itself
is not an improvement over direct ballistic movement of data qubits unless some method
is used to improve the fidelity of EPR pairs.

Purification combines two lower-fidelity EPR pairs with local operations at either
endpoint to produce one pair of higher fidelity; the remaining pair is discarded after being
measured. Figure 5.9 illustrates this process, which must be synchronized between the
two endpoints since classical information is exchanged between them. On occasion, both
qubits will be discarded (with low probability).

The purification process can be repeated in a tree structure to obtain higher fidelity
EPR pairs. Each round of purification corresponds to a level of the tree in which all
EPR pairs have the same fidelity. Since one round consumes slightly more than half
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of the remaining pairs, resource usage is exponential in the number of rounds. There
are two similar tree purification protocols, the DEJMPS protocol [19] and the BBPSSW
protocol [7]. The analysis of the DEJMPS protocol provides tighter bounds which assures
faster, higher fidelity-producing operation compared to the BBPSSW protocol. The effects
are significant, implying that purification mechanisms must be considered carefully1.

Figure 5.11 shows error rate as a function of number of purification rounds. The
BBPSSW protocol takes 5-10 times more rounds to converge to its maximum value as the
DEJMPS protocol. Since EPR pair consumption is exponential in number of rounds, the
purification protocol has a large impact on total EPR resources needed for communication.
Other features of Figure 5.11 to note are that DEJMPS has higher maximum fidelity and
converges to maximum fidelity faster than BBPSSW (possibly because BBPSSW partially
randomizes its state after every round).

Finally, the time to purify a set of EPR qubits is dependent on the initial and desired
fidelity. The time to complete one round of purification is 121µs from Table 2.1:

tpurify round = t2q + tms + tclassical bit (5.6)

where t2q is the time to perform a two qubit gate, tms is the time to measure a qubit,
and tclassical bit is the time to transmit a classical bit to the purifier on the other end.

5.2.4 Communication Model Analysis

When studying error and fault tolerance in quantum computers, researchers are often
interested in learning the threshold for error that still permits sustainable quantum com-

1Dur also proposes a linear approach to purification [22]; unfortunately, it appears to be sensitive to
the error profile. We will not analyze it here.
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putation. Essentially, we want to know how much error an operation (gate or movement)
is permitted to introduce into the system while still maintaining fault tolerance. The most
recent version of the threshold theorem for fault-tolerant quantum computation indicates
that data qubit fidelity must be maintained above 1 − 7.5 ∗ 10−5 [65]. Any operation
in the system that degrades fidelity past this value is unlikely to operate successfully as
operations used to perform error correction will introduce more error into the system than
they remove. Therefore, our goal is to construct a communication system that maintains
qubit fidelity above this threshold.

The microarchitectures we study use teleportation based interconnect for long range
qubit communication. In long range communication, the preservation of data qubit fi-
delity, is our highest priority. Therefore, we choose to transport all data by way of single
teleports, since this approach introduces the minimum error from ballistic movement.
Using teleportation necessitates the distribution of EPR pair qubits to communication
endpoints. Since data qubits interact with these EPR pairs, the above threshold must be
imposed on them to avoid tainting the data.

Two options present themselves for distributing high-quality EPR pairs to channel
endpoints. First, one could ballistically move the EPR pairs to the endpoints, which
is preferable to moving data ballistically because EPR pairs can be sacrificed if they
accumulate too much error. Second, one could route EPR pairs through a series of
teleporters, as shown in Figure 5.3. While preserving fidelity of our data states is top
priority, when dealing with less precious EPR pairs, we do not have to adhere to strict
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maximal fidelity preserving distribution methods since we can use purification to amplify
the fidelity of EPR pairs once they reach their destination. In the rest of this section,
we will investigate the trade-offs between ballistic distribution and chained teleportation
distribution of EPR pairs.

Fidelity Difference: The final fidelity of these two techniques is approximately the
same. Conceptually, the final EPR pair either directly accumulates movement error
(through ballistic movement) or is interacted with several other EPR pairs to teleport
it to the endpoints and these intermediate EPR pairs have accumulated the same dis-
tance ballistically. By interacting with intermediate pairs, the final pair accumulates all
this error. This statement assumes that the fidelity loss from gate error is much less
than the loss due to ballistic movement, which is the case for ion traps, as shown in Ta-
ble 2.1 (for two teleporters spaced 100 macroblocks apart, ballistic movement error equals
1 − (1 − 10−6)100 ≈ 10−4 compared to 10−7 for a two-qubit gate error).

Long-distance distribution of EPR pairs can severely reduce the fidelity of the EPR
pairs arriving at a functional unit for data teleportation, as shown in Figure 5.8. In order
to process 1024 compute regions, we could imagine arranging them on a square 32x32
grid, in which the longest possible Manhattan distance is 64 compute region lengths. If
we assume that we have teleporter units at every compute region, EPR pair distribution
could require up to 64 teleports. From the figure, teleporting 64 times could increase EPR
pair qubit error by a factor of 100. The dotted line represents the threshold at which the
EPR pairs must be in order to not corrupt the data qubit when teleporting it. In order
to preserve data fidelity, we must use EPR pair purification. One way to think about this
process is to stitch Figures 5.11 and 5.8 side-by-side, so that EPR pairs accumulate error
(degrade in fidelity) as they are teleported and then purified back to a higher fidelity at
the endpoints before being used with data.

Latency Difference: Equation 5.2 shows a linear dependence on distance for ballistic
movement latency. Equation 5.5 also shows that teleportation has a linear dependency on
distance as well, but the constant in this case is for the necessary classical communication.
We assume classical information can be transferred on a time scale orders of magnitude
faster than the quantum operations.

If teleportation is considered performed in near constant time, then we would like to
know the distance crossover point where teleportation becomes faster than the equiva-
lent ballistic transport. From Table 2.1, teleportation takes about 122µs while ballistic
movement takes 0.2µs per macroblock. Thus for a distance of about 600 macroblocks,
teleportation is faster than ballistic movement. We assume our communications fabric to
be a 2-D mesh of teleporter nodes and use 600 cells as the distance that each teleportation
“hop” travels. Allowing teleportations of longer distances would further reduce commu-
nication latency in some cases but would then require more local ballistic movement to
get an EPR pair from the nearest teleporter to its final destination.
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5.2.5 Purification Resources

Earlier in this section, we noted that when we purify a set of EPR pairs, we measure
and discard at least half of them for every iteration. This EPR overhead means that to
perform x rounds, we need more than 2x EPR pairs to produce a single good pair.

To measure EPR resource usage, we count the total number of pairs used over time to
move a level 2 [60] error corrected logical data qubit between endpoints. The teleportation
requires us to transport 49 physical data qubits some distance by way of teleportation.
We find that the total number of EPR qubits necessary to move a datum critically affects
the data bandwidth that our network can support. This metric differs from that used
in a number of proposals for quantum repeaters which focus on the layout of a quantum
teleporter and are most concerned with spatial EPR resources, i.e. how much buffering is
necessary for a particular teleporter in the network [14]. We will show that our design is
fully pipelined, and therefore only a small number of qubits must be stored at any place
in the network at any time.

We saw in Figure 5.11 that if we start at a relatively low fidelity and try to obtain a
relatively high fidelity, we could need more than a million EPR pairs to produce a single
high fidelity pair using the BBPSSW protocol. Therefore we use the DEJMPS protocol in
all further analysis. Even though the DEJMPS protocol converges to good fidelity values
much quicker, the exponential increase in resources for each additional round performed
means we must be careful about how much error we accumulate when distributing EPR
pairs. We will also show that the point in the datapath at which purification is performed
can have a dramatic impact on total EPR pairs consumed. We consider three reasonable
options:

Endpoints only: Purify only at the endpoints, immediately before using EPR pairs to
teleport data.

Virtual wire: Purify EPR pairs which create the links between teleporters, namely the
constant stream of pairs from a G node to adjacent T’ nodes. The result is higher
fidelity qubits used for chained teleportation.

Between teleports: Purify EPR pairs after every teleportation; this method purifies
qubits that are being chain teleported rather than qubits assisting the chained tele-
portation.

We now model the error present in our entire communication path. Assuming the EPR
pairs at the logical qubit endpoints must be of fidelity above threshold, we determine the
number of EPR pairs needed to move through different parts of the network per logical
qubit communication.

Total EPR Resources: Figure 5.12 shows that the Endpoints Only scheme uses the
fewest total EPR resources. This conclusion is evident if we refer back to Figure 5.11,
where purification efficiency asymptotes at high fidelity; thus, purifying EPR pairs of
lower fidelity shows a larger percentage gain in fidelity than purifying EPR pairs of high
fidelity. From this figure, we can see that to minimize total EPR pairs used in the whole
system, it makes sense to correct all the fidelity degradation in one shot, just before use.
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Figure 5.12: Total EPR pairs consumed as a function of distance and point at which
purification scheme DEJMPS is performed.

Non-local EPR Pairs: Another metric of interest is to focus only on those EPR pairs
that are transmitted to endpoints during channel setup (i.e. those that are teleported
through the path). This resource usage is critical for several reasons: First, every EPR
pair moved through the network consumes the slow and potentially scarce resource of
teleporters; in contrast, the EPR pairs consumed in the process of producing virtual
wires are purely local and thus less costly. Second, because of contention in the network,
EPR pairs communicated over longer distances (multiple hops) place a greater strain on
the network than those that are transmitted only one hop. The channel setup process
can be considered to consume bandwidth on every virtual wire that it traverses. Third,
the total EPR pairs transmitted to endpoints during channel setup consumes purification
resources at the endpoints—a potentially slow, serial process.

Figure 5.13 shows that purifying EPR pairs after each teleport transmits many more
EPR pairs than purifying at the endpoints (either with or without purifying the virtual
wires). From this figure, we see that over-purifying bits leads to additional exponen-
tial resource requirements without providing improved final EPR fidelity2. Virtual wire
purification improves the underlying channel fidelity for everything moving through the
teleporters, thereby allowing less error to be introduced into qubits traveling through the
channel. For a given target fidelity at the endpoints, virtual wire purification reduces
the number of EPR pairs that need to move through the teleporters and also reduces the

2The authors of [14] claim that this nested purification technique (after every teleport) has small
resource requirements; however, they count spacial resources rather than total resources over time.

73



10 20 30 40 50 60
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

distance travelled in teleports

E
P

R
 p

a
ir
s
 t
e
le

p
o
rt

e
d

DEJMPS protocol twice after each teleport

DEJMPS protocol once after each teleport

DEJMPS protocol only at end

DEJMPS protocol once before teleport

DEJMPS protocol twice before teleport
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strain on the endpoint purifiers.
To summarize, we have made the following design decisions based on fidelity and

latency concerns:

Teleport data always: Data qubits sent to destination with single teleportation to min-
imize ballistic error.

Teleport EPR pairs: EPR pairs distributed to endpoints with teleportation, allowing
pre-purification to increase the overall fidelity of the network.

Purification before teleport and at endpoints: Purify intermediate EPR pairs be-
fore they are used for teleportation as well as EPR pairs at the channel endpoints.

Finally, Figure 5.14 shows the sensitivity of the EPR resources necessary to sustain
our previous error threshold goals as a function of the error of the individual operations
like quantum gates, ballistic movement, and quantum measurement. The first thing to
note are the abrupt ends of all the plots near 10−5. This value is the point at which our
whole distribution network breaks down, and purification can no longer give us EPR pairs
that are of suitably high fidelity (above 1− 7.5 ∗ 10−5). The fact that all the purification
configurations stop working for the same error rate is due to the fact that the purification
schemes we investigated are limited in maximum achievable fidelity by operation error rate
and not the fidelity of incoming EPR pairs (unless the fidelity is really bad). Throughout
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the regime at which our system does work however, the total network resources only differ
by a factor of up to 100 for a 10,000 times difference in operation error rate.

5.3 Network Connections and Control

In our network, a single connection between routers requires the coordination of a
number of different components in the system. This coordination and control is con-
ducted through a classical control network which runs parallel to the quantum datapath.
A detailed sequence of operations to set up a communication connection within the net-
work is show in Figure 5.15. Here we see all the classical control messages that must
be transmitted between the various components in order to establish and perform the
connection.

We start this section by describing the the control messages used to perform chain
teleportation (the basis of how our EPR bits are distributed to the destination routers).
We will then describe how the various stages of the network connection enable this process
to occur.
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Figure 5.15: Classical control messages to setup and use a network connection. Each
stage in the process requires the passing of classical control messages to synchronize the
operations. The process is described in detail in Section 5.3.
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5.3.1 Chain Teleportation

We use a process of chain teleportation (Figure 5.7) to transport the EPR bits from
the master generator link to the final routers. Figure 5.17 shows one half of the telepor-
tation operation where the goal is to move one half of the master EPR pair EM1 to the
destination. This task is accomplished using three teleport operations in sequence.

One way to perform the chained teleport operations is to perform the full teleport
circuit (Figure 5.18(a)) in each router. At each router two classical bits would be sent
from the previous router and used to perform the controlled-X and controlled-Z gate to
correct the data. This method is illustrated in Figure 5.18(b). In Figure 5.18(c) we show
an expansion of the teleport module. As can be seen in the figure, after two hops we
must execute 4 correction gates, one controlled-X and one controlled-Z for each hop. If
we have to perform 3 hops, we would require 6 correction operations, and so on. Rather
than introduce correction operations for each hop in the path, we optimize the process in
order to reduce the number of gates necessary at the end point to three: controlled-X,
controlled-Z and a controlled-Sign gate.

To understand the optimization, we first start with the sequence of correction opera-
tions that occur assuming a two-hop connection:

Xcx2
Zcz2

Xcx1
Zcz1

Where each controlled-X and controlled-Z gate is controlled by their respective clas-
sical control bit indicated in the subscript (cx2, cz2, cx1, cz1). Using the quantum gate
identity ZX = −XZ we can rearrange the formula to read:

(−1)cz2∧cx1Xcx2
Xcx1

Zcz2
Zcz1

We’ve added a controlled-Sign operation that is performed if both cz2 and cx1 are
enabled. From this point we make use of the following gate identities: XX = I and
ZZ = I. With these identities, we can reduce the sequence of gates to:

(−1)cz2∧cx1Xcx2⊕cx1
Zcz2⊕cz1
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Figure 5.18: Chain Teleport Circuits. (a) The standard teleport circuit that uses E01

and E11 to teleport Input to Output. Classical bits cx and cz are transmitted to the
destination and used to control the X and Z operations. (b) Circuit representation of
chain teleportation where an additional teleport operation is inserted to teleport E11

to the destination (via E02 and E12). (c) Same as the circuit in (b) with the Teleport
box expanded. This figure shows the controlled-X/Z/X/Z correction operations that
must occur at the destination to recreate the Input value. Our optimizations remove the
multiple correction gates and instead collect the classical bits at each hop in the form of
a correction message. At the destination, the correction message controls a single set of
controlled-X,Z, Sign gates.

Rather than performing the four controlled gates, we now only have to perform three
controlled gates (Figure 5.18(c)). We can extend this process to support as many hops
as necessary, and still only perform the three controlled gates at the destination. At each
hop in the chain teleport process, we collect the correction information in a correction
message. We start by creating a correction message at the source in the form [cx, cz,

csign] where cx, cz, and csign start with the value 0. After each teleport hop the
message is updated such that after hop n the message becomes:

[cxn−i⊕ cxn, czn−1⊕ czn, signn−1 ⊕ ( cxn−1∧czn)]

At the destination we use these correction bits to perform the final controlled-X, controlled-
Z and controlled-Sign gates.
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5.3.2 Path Reservation

A connection begins with a connection setup message issued by the high-level network
control unit. The connection setup message contains a unique connection ID, the ID of
the logical qubit to teleport, an ID of the master link whose EPR pair will be used for
the final data teleport, and the full path through the network the connection will use (as
determined by the routing phase described in Section 6.2. This setup message is initially
issued to the source router. The source router reserves local resources (teleporters and
end-point purifiers) and then passes the message on to the first link in the path.

When a link receives a connection setup message it reserves local resources for the
connection (generator and link level purifiers) and passes the message on to the next
router in the path. In this manner, the message is passed along to reserve resources until
the destination router is reached.

Figure 5.16 shows how the reservation messages pass through the router interface.
Reservation messages come through the link purifiers and enter the router to reserve
EPR teleporters (X/Y dimension teleporters) and the end point resources (purifiers/tele-
porters). The reservation message is then passed on to the next router in the path.

The reservation message is passed along the connection path and initiates the link
setup and EPR distribution described below.

5.3.3 Link Setup

Network links generate, distribute and purify EPR bits to connect adjacent routers
and create the virtual wires. A link can operate in either direction, however at any given
time a link will only operate in a single direction. The reservation message sets the link’s
direction according to the needs of the connection. Once the reservation message triggers
the connection setup, the process begins. EPR pairs are created at the centrally located
generator and moved to the link purifiers. Each EPR bit generated has an associated ID
which allows the network to identify which EPR bits form entangled EPR pairs. As the
EPR bits travel through the quantum datapath, this control message for the bit travels
with it in the classical network (step 2 in Figure 5.15 ).

A qubit’s message contains the ID assigned by the G node, the destination of this
qubit, the destination of its partner (which is necessary for the purification steps at the
endpoints), and space for the cumulative correction message described above. Each G
and P node needs local classical control to determine how it handles qubits. G nodes
have minimal intelligence. Each G node has one or more dedicated channels for sending
fresh EPR pairs to its P node endpoints. When the P node blocks (due to being full), the
channel blocks, and when the channel blocks, the G node stalls its generation. Thus, a G
node is capable of determining whether it can fit more qubits on its outgoing channels.

When EPR bits reach the link level P nodes they are purified before entering the EPR
teleporters. The process of purification takes two bits and outputs a single higher quality
bit and discards the other, or with low probability discards both bits. Each end point of
the link must synchronize to establish which bit is being purified and which bit is being
discarded. The purifier uses the qubit message to notify the partner purifier about the
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outcome of the purification process. This process is shown as step 3 in Figure 5.15. After
purification, one or both of the bits are discarded and recycled back to the generator while
the good (if purification was success) bit is moved into the adjacent routers.

5.3.4 EPR Teleportation

The EPR Teleportation stage takes the link-level EPR bits and teleports them via
chain teleportation to the source and destination routers. The master link is specified by
the high-level control and its identifier is contained in the initial path reservation message.
This link will generate the EPR bits that will eventually be used for data teleportation.
All the remaining links in the path will be creating EPR pairs to chain teleport the master
EPR bits to the source and destination router.

The master link’s generator creates EPR bits with the empty correction message as
described in Section 5.3.1. After these bits are purified and they enter the EPR teleporters
they are chain teleported to the end points of the path, one hop at a time. After each
hop, the correction message is updated to reflect the new correction values that will be
applied at the end points.

In each router, there are two banks of EPR teleporters, one for the X network dimen-
sion, and one for the Y network dimension (shown in Figure 5.16). Qubits are routed to
the appropriate bank depending on what direction the connection is going. Each bank
of teleports connect to the link purifiers to process the incoming EPR bits. Additionally,
a control message interface connects the two banks with the banks in the neighboring
routers to synchronize teleports and correction bits.

5.3.5 Data Teleportation

When the EPR bits reach the source and destination router for the connection they
are moved into end-point purifiers. The EPR bits are purified according to the total
distance travelled (in teleport hops). This purification process requires synchronization
between the the end-point purifiers at the source and destination routers. Once the bits
are sufficiently purified they are moved into the end-point teleporters within the router
node. Only the source and destination router in the connection require the use of these
end-point purifiers and teleporters. The EPR Teleportation process must remain active
until the source and destination receive enough high-fidelity EPR bits to teleport the
logical qubit (a number dependent on the desired error-correction encoding).

After the data teleport completes, the qubits are moved into the local compute region
to perform their operations. Figure 5.16 shows the control interface for the end-point
resources. End-point purifiers and teleporters are directly connected to the end-point
purifiers and teleporters in the neighboring routers. This interface is used to synchronize
purification and teleportation correction messages.

When the data exists the destination router, a path tear-down message is send back-
wards along the path to the source router. This message releases the resources along the
path so following connections may use them.
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Figure 5.19: Breakdown of time to perform a network connection. All the operations that
occur before the Data Teleport stage are considered part of the data independent setup.

5.3.6 Connection Breakdown

In Figure 5.19 we see the breakdown of time necessary to establish a network con-
nection. The various pieces correspond to the steps described in Figure 5.15. Of note, a
large part of the connection setup process is independent of the data qubit. As shown in
the figure, all the steps from Reserve Path to End Point Purification can be done prior
to data availability. In Chapter 6, we will exploit the data independence of connection
setup in order to optimize the network performance. Our goal will be to preschedule the
setup portion so the connection is available for teleportation as close to the time the data
completes its operation as possible.

5.4 Component Design

The time to set up a network connection and perform a data teleportation is dependent
on the design of the various network components. We cannot accurately determine move-
ment latency without macroblock level designs of the routers, purifiers and generators.
In this section we provide datapath designs for these components. These components are
used during the network synthesis phase of our CAD flow.

5.4.1 Purifier

We could implement tree purification (Section 5.2.3) protocol naively at each possible
endpoint by including one hardware purifier for each node in the tree (Figure 5.10). For
example, if it is known that there will never be a need for more than three rounds of
purification at the endpoints, then the tree consists of seven purifiers (four at L0, two
at L1, one at L2). So long as this number is low, the entire tree could be implemented
in hardware at each possible endpoint. While this method provides minimal latency
and maximal pipelining for tree-style purification, the hardware needs quickly become
prohibitive as the tree depth increases. Additionally, this mechanism provides no natural
means of recovering from a failed purification (that is, the loss of a subtree).
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Figure 5.20: Queue purification process. Incoming level 0 qubits are purified in the L0
Purifier. Recycled bits exit and return to the generator units. Purified level 1 bits are
then moved into the L1 purifier to await the arrival of additional qubits. This process
repeats as necessary.

Instead of designing our purifies in this manner, we use the more robust queue-based
purifier shown in Figure 5.20. The incoming stream consists of standard level-0 EPR
qubits. If the purifier marked L0 is empty, then the incoming qubit enters it and waits.
If it already contains an L0 qubit, the incoming qubit is used to purify the qubit already
present. On failure, both are recycled. On success, the new L1 qubit moves into the L1
purifier and waits for a second L1 qubit, or purifies the L1 qubit already there. There are
three advantages of this implementation. First, a tree structure of depth n is implemented
with n purifiers (rather than 2n − 1, as above). Second, movement between levels of
purification is minimized, lessening the impact of movement (which is over an order of
magnitude worse than two-qubit gate error; see Table 2.1). Third, no special handling for
lost subtrees due to failed purification is necessary as they’ll be rebuilt naturally.

The primary drawback of this implementation is the latency penalty. If x purifications
are needed at level L0, then they must necessarily be done sequentially. This problem
may be alleviated by including more queues, however, since each logical communication
requires multiple high-fidelity EPR pairs, depending upon the encoding used.

5.4.2 Router Links

Figure 5.21 shows the datapath we use to create our network links. The general
structure consists of a centrally located EPR generator, connected via ballistic channels
to queue purifiers at the end points. Each single link as two ballistic channels. One channel
is used to send EPR bits to the purifiers while the other channel returns discarded qubits
to the generator for reuse.

At the end points we insert as many queue purifies as are necessary to obtain the
appropriate fidelity EPR bit. The purifier design is shown on the right side of the figure.

If more than one link is necessary between neighboring routers we can stack these
route link datapaths to obtain the desired bandwidth. In Section 6.5.1 we show how
adding more links between routers effects the overall performance of the communication
network.
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Figure 5.22: Datapath layout for a network router. The link purifiers are shown integrated
into the router area. Each network dimension has a bank of link teleporters and a separate
set of purifiers and teleporters exist for the end point connections.

5.4.3 Routers

The router component in the network both routes multi-link connections and acts as
an interface to the network for the local compute region. Figure 5.22 shows the datapath
layout for our routers. The purifiers from the router links are shown at the end points of
the connected links. These purifies are used to improve the fidelity of the local EPR bits
that compose the virtual wire. If the router is acting as a mid-point in a longer chain
teleportation the link teleport region is used to store bits until they are ready to teleport
to neighboring routers.

If this router is the destination for a connection, the end point purifiers are used
for the final purification process and a separate teleporter is used to conduct the data
teleport. We insert buffer space within the router to temporarily hold the data qubits
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until the connection is ready for use. Once the data qubits have teleported in, they exit the
router to the local compute region. Our tool set uses the short-distance communication
scheduler( 4.2.5) to schedule all the movement within the network components and the
movement between the router and the compute regions. This overhead is appended to
the raw data teleport time and inserted into the overall communication time.
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Chapter 6

Routing

The communication network portion of the quantum datapath is responsible for estab-
lishing connections between the numerous compute regions. In Section 5.3 we described
the various phases of a network communication operation in detail. As we previously
mentioned only a small portion of the total connection time is dependent on the data
qubits that will be moved and therefore a large part of the communication setup and
preparation can occur before the data is ready to use the connection. By completing
the data-independent phase of the network connections early we can minimize the overall
delays introduced by the long-distance communication operations.

Establishing a network connection can be decomposed into two major parts:

Routing: A connection is constructed by establishing a path through the network over
which all the EPR pairs will be linked. This path must be routed through the
network in order to determine the resources that will be allocated to the connection.
If the desired resources are not available at the scheduled times the connection will
stall until they become available.

Scheduling: Each connection must be scheduled to start at a given time. The sched-
uled start time determines when the connection reserves its needed resources and
ultimately determines when the connection will be ready for use.

In a perfect scenario all the network connections are scheduled such that they have
completed their setup and preparation and are ready for final data teleport at the ex-
act moment the data qubits are ready to move. A network connection that isn’t ready
in time causes the data qubits to sit idle, potentially introducing errors resulting from
decoherence. In fact, as we show in Section 7.1, the difference between pre-scheduled
and on-demand connection setup can make the difference between a functioning and non-
functioning circuit. Further, network connections that are ready well before the data
qubit is ready unnecessarily consume network resources as the connection must remain
active until the final data teleport occurs.

In this chapter our goal is to efficiently use available network resources and reduce
overall circuit latency. We will discuss techniques to route connections within the network
so that they are ready as close to the time when data is ready to teleport as possible.
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6.1 Circuit Schedule

The input to the routing phases consists of of a set of events produced by the mapping
stage in the CAD flow. These events are determined by mapping all the gate operations
to specific functional units within a compute region and listing all the movement that
must occur to get a qubit to it’s assigned functional unit. An event can be one of three
types: gate operation event, local ballistic move event, or long-distance move event.

As an example consider the datapath shown in Figures 6.1, which contains four com-
pute regions. In this example, each compute region contains two functional units – each
of which holds sufficient resources to perform a two-qubit gate. Figure 6.2 shows a pos-
sible mapping of a dataflow graph to the example datapath. Each vertex is assigned to
a compute region and the edges in the graph that correspond to long-distance moves are
highlighted in bold. An example mapping for this circuit resembles the following:

[ 0] GateEvent: H Q0 @ CR2:FU0

[ 0] GateEvent: CX Q2, Q3 @ CR1:FU0

[ 10] MoveEvent: Q0 -> CR0:FU0 [network]

[ 100] GateEvent: H Q3 @ CR1:FU0

[ 100] MoveEvent: Q2 -> CR2:FU1 [network]

[1200] GateEvent: CX Q0, Q1 @ CR0:FU0

[1300] MoveEvent: Q1 -> CR2:FU1 [network]

[2400] GateEvent: CR Q1, Q2 @ CR2:FU1

The routing phase takes this event list and routes all the network connections assigning
them to the appropriate links and updating the expected start times for all the events. In
this example, if the Q0 move from CR2 to CR0 needs to be delayed, all the subsequent
operations are delayed to maintain data dependencies.

A fully specified circuit schedule produced by the routing phase must contain a route
and scheduled start time for all long-distance communication connections. As an exam-
ple, consider the data flow graph and network shown in Figure 6.3. In this example,
there are three communication edges (the bold lines) that require the network. Each of
these connections must have a corresponding path and setup start time in the datapath’s
network. A connection reserves resources beginning at the setup start time, sets up the
communication channel and then is available for data teleportation.

To state the problem more formally, given the circuit dataflow graph G = (V,E)
where V is the set of gate operations that occur and E is the set of communication edges
between gate operations (some local, some long-distance), the network N = (R,L) where
R is the set of routers in the network and L is the set of EPR distribution links between
routers, and a list of connections C, a valid schedule maps each connection in C to a set
of routers R and links L and indicates the start and end time for the connection.

The schedule must respect the data ordering specified in G such that if edges exist
from v1 to v2, any connection used to get data to v2 must be scheduled during or after
all connections used to get data to v1. In Figure 6.3, the connection for (v2, v4) must
occur during or after the connection for (v0, v2) since it depends on data generated by

86



Ancilla

R

FU0 FU1

Ancilla

R

FU0 FU1

Ancilla

R

FU0 FU1

Ancilla

R

FU0 FU1

CR0 CR1

CR2 CR3

Figure 6.1: Example 4 node datapath.
This datapath contains four compute re-
gions with their corresponding routers.
Each compute region (CR) contains ancilla
generators and two functional units. The
thicker lines connecting routers are the net-
work links.

H

CX

Q0

Q1

Q2

Q3

CX

H

CX

Q0

Q1

Q2

Q3

CR0

CR1

CR1

CR2

CR2

Figure 6.2: Example four qubit 5 gate
dataflow graph. Each vertex is assigned to
execute within a specific compute region.
Solid edges between vertices represent long-
distance network connections. All other
edges are ballistic movement within a com-
pute region.

v0

v1

Q0

Q1

Q2

Q3

v2

v3

v4

Q0

Q1

Q2

Q3

R

(a) (b)

R

R

R

R

R

R

R

R

Connections

Links

Figure 6.3: Circuit and Network model used to create a schedule of communication. In
(a), the bold lines are communication edges that require the use of the network.

87



v2. If a later connection reserves resources before the previous connection is established
the schedule may result in deadlock. Additionally, two connections that share a link in
the network must be ordered such that one completes before the other uses the link. We
chose not to share links between connections since sharing the resources during an active
connection would delay the overall connection. Our goal is to minimize the amount of
time qubits idle. Longer connection setup times (due to sharing resources) would increase
the idle time of the EPR bits and potentially the data qubits.

6.2 Routing

Routing can either be performed dynamically (i.e. on-line, utilizing local information
to route messages through the network) or statically (i.e. off-line, utilizing static analysis
of the complete quantum circuit to pick routes through the network). Obviously, the static
option has the greatest potential for optimization, but may also consume an unreasonable
amount of computational resources in order to produce an optimal result.

One obvious option for routing and scheduling would be the equivalent of a classi-
cal multiprocessor network, one that operated dynamically by opening connections on-
demand at the time that a quantum bit is ready to transmit. In this section, we will
introduce our routing variants in the context of on-demand routing. Later, in the static
scheduling algorithms of Sections 6.3 and 6.4, routing will be called as a subroutine.

The routing portion of the network connection setup takes the source and destina-
tion points for the connection and selects a consecutive set of routers to establish the
connection. The routers then reserve resources for the connection and perform all the
necessary EPR purification and EPR teleportation with the ultimate goal of distributing
the appropriate number of EPR bits for use by the data qubit.

6.2.1 Dimension Order

The first routing technique we will discuss is Dimension Order, a simple algorithm
widely used within classical networking. Dimension Order routing makes for an excellent
reference point to evaluate our more complex adaptive algorithms. Further, it is provably
deadlock free.

In our implementation the long-distance communication network is constructed as a
two-dimensional mesh grid with each router assigned a coordinate value given its position
in the grid. The path from source router to destination router is constructed by first
traversing the x direction until reaching the corresponding x value of the destination
router, followed by doing the same in the y dimension until the destination router is
reached. Algorithm 1 shows pseudo-code for Dimension Order Routing.

Dimension Order routing is simple and easy to implement but it does come with some
drawbacks in that links can quickly become oversubscribed. If too many connections are
requested between the same source and destination router all the connections will attempt
to use the same path through the network and will result in significant network delays.
To combat this problem we consider Adaptive routing algorithms.
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Algorithm 1 Dimension Order Routing

(src.x, src.y) ⇐ Source Router coordinates
(dst.x, dst.y) ⇐ Destination Router coordinates
path⇐ [src]
while src.x 6= dst.x do

if src.x > dst.x then

src.x⇐ src.x− 1
else

src.x⇐ src.x+ 1
end if

path.append(src)
end while

while src.y 6= dst.y do

if src.y > dst.y then

src.y ⇐ src.y − 1
else

src.y ⇐ src.y + 1
end if

path.append(src)
end while

return path

6.2.2 Adaptive

We can improve upon the Dimension Order router by using adaptive routing tech-
niques. Adaptive routing picks a path through the network given the network state with
the goal of distributing connections across the available network resources to minimize
network delays. The two variations of adaptive algorithms we study are Minimal Adaptive
and Full Adaptive.

Minimal Adaptive picks the best path from a source router to a destination router with
a maximum length equal to the length of a Dimension Order path. This approach allows
the network to balance the load across a number of minimum distance paths between the
end points.

In contrast, Full Adaptive picks the best path between source and destination but un-
like Minimal, it allows paths longer than the Dimension Order path. This addition allows
us to use much longer paths in our efforts to minimize the amount of delay introduced by
the network.

There are a number of pros and cons to each of these Adaptive schemes. Minimal
Adaptive has a much smaller set of potential paths to choose from and limits the control
complexity required to pick a path. However, because of the limited choices it cannot
take advantage of unused network resources outside of the selection area. Full Adaptive
routing allows us to search throughout the whole network to find the best path. Unfortu-
nately as network sizes increase the number of potential paths between any given source
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and destination increases dramatically. This larger search space complicates control and
selection of the paths. Additionally, edge cases exist making it possible that a circuitous
path chosen for one move may end up consuming resources best saved for a future move
thereby delaying the overall circuit latency.

The high-level algorithm for Adaptive routing is shown in Algorithm 2. FindPaths

determines all the paths between the source and destination router up to a given maximum
length. The only difference between Minimal and Full Adaptive is the value used for
max length. For Minimal max length is set to the length of the Dimension Order path.
In the ideal case, Full Adaptive would set max length to ∞ in order to search for all
possible paths between the src and dst. Unfortunately, this procedure would be very
expensive for larger network sizes. Instead we limit the search to paths that are the
length of the DO path plus six, allowing two turns “away” from the destination to avoid
congestion while minimizing the path search space. Further, we do not allow cycles in the
path.

Algorithm 2 Adaptive Routing

(src.x, src.y) ⇐ Source Router coordinates
(dst.x, dst.y) ⇐ Destination Router coordinates
potential paths ⇐ FindPaths(src, dst,max length)
path⇐ BestPath(potential paths)
return path

Once we have a list of all possible paths to get from source to destination we move
on to selecting the best one among them which is performed in the call to BestPath.
BestPath ranks the paths according the three criteria in this order:

1. Teleport Ready Time The time the teleport will be ready to run for the requested
move. If there is congestion along a given path the teleport will be delayed until the
path frees up. We determine which paths have the earliest ready time and remove
all the other paths from consideration.

2. Spare Capacity For each link in the path we determine how much spare capacity
will remain in the link after this connection is created. The goal is to select the
path that maximizes the remaining capacity, biasing the paths to lower utilized
paths making it more likely future connections will not be delayed.

3. Path Length The total length of the path using by the connection. For Minimal
Adaptive this value will be the same for all paths under consideration. For Full
Adaptive we use the shorter length paths to minimize resource utilization in the
network.

6.3 Optimal Routing and Scheduling

In this section, we start our exploration of off-line scheduling by developing a ’guaran-
teed not to exceed’ optimal routing schedule. Although our solution will be impractical
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for large circuits, it will give us a minimum baseline latency to compare for small circuits.
Further, by formulating the optimal solution, we will gain insight into what is required
for a heuristic solution, as discussed in the following section.

We can determine an optimal schedule and routing for a quantum circuit on a given
network by framing the problem as a Mixed Integer Linear Program (MILP), a technique
frequently used to solve scheduling problems. One approach to creating a MILP is to
extend a standard network-flow Linear Program (LP) to account for time. A single
connection in our teleportation network can be considered a network flow and the LP
can solve for link usage at every time unit. This formulation results in a single LP to
generate full routing and scheduling for all connections. Unfortunately such a program
quickly becomes too large to be feasible.

Instead of attempting to solve the full program in a single pass, we break the problem
into smaller subproblem. Our solution iteratively solves an LP until the optimal schedule
and routing is obtained. The goal is to continuously limit the search space of subsequent
iterations by adding new constraints obtained from the current iteration.

6.3.1 MILP for Quantum Routing

The iterative algorithm we use is shown in Algorithm 3. The input to the algorithm
consists of the following: the datapath network N(R,L) where R is the set of routers in
the network and L is the set of links connecting the routers, the quantum circuit dataflow
graph G = (V,E) where V is the set of quantum operations and E is the set of communi-
cation edges between the operations, and a set of connections C which enumerates all the
long-distance communication operations with their source and destination routers. Each
connection c ∈ C corresponds to an edge in E, however not all edges will have a connection
as movements within a compute region do not require a long-distance connection.

We initialize the algorithm with the base LP variables and constraints described here:

Variables

Each connection is created as a path of links through the network. xl(l, c) indicates
whether or not a connection uses a given link in the network.

∀l ∈ L, ∀c ∈ C

xl(l, c) =

{

1 if c uses link l
0 otherwise

All the connections must be ordered in time if they share a link. This way we know which
connection is established first. The subsequent connections must wait for the prior ones
to complete before the resources are allocated. xo(c1, c2) tells us if c1 precedes c2 in the
program run.

∀c1, c2 ∈ C
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Algorithm 3 Linear Program Optimization

latency = ∞
constraints = InitialLinearProgram(G)
AddOrderingConstraints(constraints, G)
while true do

schedule = LPSolve(constraints)
if schedule = Unsolvable then

return latency
end if

UpdateGraph(G, schedule)
if G has cycles then

AddCycleConstraints(constraints, G)
else

latency = min(latency,ComputeLatency(G))
constraints = AddCriticalPathConstraint(constraints, G)

end if

end while

return schedule

xo(c1, c2) =

{

1 if c1 precedes c2
0 otherwise

Constraints

If a connection is set to occur before another connection, it must not also occur after the
connection. Both xo(c1, c2) and xo(c2, c1) cannot be 1.

∀c1, c2 ∈ C, c1 6= c2

xo(c1, c2) + xo(c2, c1) <= 1

A connection cannot occur before itself.

∀c1 ∈ C

xo(c1, c1) = 0

If two connections share a link, they must also specify an ordering.

∀c1, c2 ∈ C, c1 6= c2, ∀l ∈ L

xo(c1, c2) + xo(c2, c1) >= xl(l, c1) + xl(l, c2) − 1
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Figure 6.4: Adding move event edges to the dataflow graph.

Objective

Minimize the number of orderings:

minimize
∑

c1,c2∈C

xo(c1, c2)

Ordering Constraints

The linear program variables only deal with connections in the network. To generate
a correct schedule of communication we need to make sure these connections don’t violate
the dataflow graph dependencies. In the input dataflow graph, each node represents a
quantum operation, and the edges are communication between the operations. Some edges
require long-distance communication, while others are only ballistic movement within a
compute region.

We take this graph and transform all network connection edges into move operation
nodes. This process is illustrated in Figure 6.4. The bold edges are the network edges,
which eventually are converted into MOVE nodes. Once we have this graph, we can quickly
search through it to generate all move ordering constraints. If a path exists from a movea

to moveb we add an ordering constraint to the linear program formulation asserting that
moveb must either occur at the same time or after movea.

Output

The output of the LP optimization are the variables indicating which links a connection
uses, and what order the connections occur (if any links are shared). We process this
information and update the transformed dataflow graph as shown in Figure 6.5. When
two move operations are ordered an edge is added between them. Using the new graph
we first check to see if any cycles exist. If a cycle exists the move operations that formed
the cycle are added to the LP constraints and the LP process is repeated.

If the output doesn’t contain any cycles, we can safely calculate the critical path and
determine the total latency of the circuit. If the latency improves on the prior best value
we save the schedule. A constraint is then added to the LP to prevent the same critical
path from occurring again and the LP process is repeated. When an LP runs indicates
no feasible solution, we output the best schedule encountered.
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6.3.2 Results

We use the GNU Linear Programming Kit (GLPK) [26] to solve our linear program
formulation. We formulate the problem in the GNU MathProg modeling language and
execute the command line version of GLPK to solve the problem. Our tools post process
the output to recreate the solution in our internal representation. As we progress through
the search for an optimal solution we simply append new constraints onto the base LP
description and rerun GLPK.

The time necessary to properly determine an optimal solution using the LP method
increases dramatically as the problem size increases. As an example, solving a circuit with
90 gates on a 3× 2 node network can take anywhere from 90 minutes to multiple days to
search all critical paths (on a 2 Quad-Core Intel Xeon running at 2.67GHz). The matrix
generated is on the order of 10000 rows by 5000 columns and requires many iterations to
search the full space.

Even though we made a number of optimizations to decrease the number of iterations
necessary to solve the LP, once we enter circuits with 1000s of gates and networks bigger
than 4× 4 the LP technique is infeasible. Unfortunately, given the 10 day run time limit
imposed on us by our compute resources, the LP was unable to solve a single iteration of
the problem. An optimal solution to the LP was found, however the integer optimization
stage of the calculation failed to find an integer solution.

6.4 Practical Scheduling and Routing

While it is interesting to determine an optimal solution to the scheduling and routing
problem for small circuits, we are most interested in evaluating larger circuits. As we
mentioned above, the optimal search cannot be performed on circuits of these sizes. In-
stead, we introduce a set of heuristic algorithms and will show that our heuristics generate
solutions within 10% of optimal and do so in dramatically less time, allowing us to study
larger circuits (Chapter 7).
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6.4.1 On Demand Scheduling

The base-line scheduling technique we present is the On Demand method. In this
method the network determines a route and initiates the connection starting at the time
a communication request is encountered. Since the network requires time to properly
establish the connection and distribute all the EPR bits the teleport operation must stall
until the connection is ready.

The On Demand method will be the base-case to which we will compare our alternate
techniques. In our implementation of On Demand we use a Minimal Adaptive routing
scheme to generate the paths. The basic algorithm used is presented in Algorithm 4.

Algorithm 4 On Demand Scheduling

schedule = Map(G, datapath)
schedulerouted = ∅
while schedule not empty do

event = NextEvent(schedule)
tstart = DetermineOnDemandStart(event)
RouteEvent(event, tstart)
schedulerouted.append(event)
UpdateDependencies(event)

end while

return schedulerouted

The major functions that compose the algorithm are:

Map(G, datapath): The mapper phase maps each operation in the circuit graph to a
compute region in the datapath. Each operation is assigned a start time to indicate
the correct ordering of operations within the compute regions. The mapper inserts
communication operations into the schedule of operations whenever a qubit must
move from one compute region to another.

NextEvent(schedule): The algorithm processes events in the order determined by the
mapping phase. The first ready event is removed from the schedule and processed.

DetermineOnDemandStart(event): This function determines the start time for the
event given dependencies and network congestion. If the event is a gate operation,
it is set to start when all the qubits will arrive in the compute region. For commu-
nication events the start time is dictated by when the previous gate that uses the
qubit completes.

RouteEvent(event, tstart): This function determines the full route the connection will
take within the network. It uses the minimal adaptive routing algorithm described
in Section 6.2 and only returns connections that will start the setup procedure at
tstart. If no route exists that can start at tstart the connection is delayed until the
first available route can be used, updating the connection to reflect the delay.

95



UpdateDependencies(event): After an event is scheduled we update dependency
tracking tables so future events that depend on the current event’s resources are
appropriately delayed.

6.4.2 Heuristic Prescheduling

As we previously mentioned one of the major benefits of using a teleportation based
long-distance communication network is the ability to remove significant portions of the
communication setup times from the critical path. This optimization is performed by
prescheduling the communication setup so it will complete just before the data qubit
needs to move. At compile time we have global knowledge of the circuit run and we
utilize this information to schedule the move operations prior to run-time.

Algorithm 5 Heuristic Prescheduling

schedule = Map(G, datapath)
schedulerouted = ∅
while schedule not empty do

event = NextEvent(schedule)
tstart = DeterminePreScheduledStart(event)
RouteEventPreScheduled(event, tstart)
schedulerouted.append(event)
UpdateDependencies(event)

end while

return schedulerouted

Algorithm 5 outlines the prescheduling algorithm. The methods used are identical to
the On Demand Scheduling algorithm with the exception of:

DeterminePreScheduledStart(event): Unlike the on demand case, the preschedul-
ing algorithm tries to schedule connections before the data bit is ready to use the
connection. When a movement event is encountered, this function returns the ear-
liest time a data qubit is ready to move to indicate that the connection must be
complete and ready to use by this time. The goal is to perform the final data
teleport at the exact moment the data completes it’s previous operation.

RouteEventPreScheduled(event, tstart): The prescheduled version of RouteEvent

attempts to find a valid route for the connection that will complete and be ready
for the data teleport to start at tstart. This function tries to find a route where all
the setup overhead can be done before the data qubit is ready to teleport. The
process uses the same routing algorithms as RouteEvent but must also calculate
the connection setup start time. In the on demand case, the connection setup start
time is tstart. For prescheduling, we start by assuming the connection will start at
tstart − tdopath, the requested time minus the time to use a dimension ordered path.
We search for all the routes that are possible at that time. If our adaptive routing
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returns a path longer than the dimension ordered path we have to check to see if
the route is still valid with the connection setup start time set to tstart − tpath. If
valid, the route is returned. If not we repeat the process with the next best route
in the list.

6.4.3 Simulated Annealing

The final algorithm that we propose is on Simulated Annealing (SA). The SA algorithm
is shown in Algorithm 6. The general structure of our algorithm follows that of most other
SA implementations. We start with a high temperature and make random moves within
our search space. All moves that lead to a better schedule are accepted, and depending on
temperature moves that increase total latency may also be accepted with some probability.
Eventually we reach a target temperature and the best schedule obtained so far is returned.
In searching for an optimal solution, we will allow a fully adaptive solution.

The initial schedule is obtained by running our heuristic prescheduling algorithm with
full adaptive routing and with minimal adaptive routing. The best schedule returned is
used to start the annealing process. For each iteration, we pick a random connection from
the list of network connections and modify it as indicated in the description of Move.
All moves that reduce the circuit latency are accepted, and a move that increases the
circuit latency is accepted with some probability. The goal of simulated annealing is to
try to move out of any local minima that the greedy heuristic approach may have fallen
into. By randomly changing a connection route and start time, we may jump out of the
local minima and determine a better overall circuit schedule.

Algorithm 6 Simulated Annealing Search

latencybest, schedulebest = min(FullAdaptive(G,N),MinAdaptive(G,N))
latency = latencybest, schedule = schedulebest

cost = Cost(schedule), temp = T0

while temp < Tend do

schedulenew = Move(schedule)
costnew = Cost(schedule)
if AcceptTransition(temp, cost, costnew) then

cost = costnew

schedule = schedulenew

if cost < costbest then

costbest = cost
schedulebest = schedule

end if

end if

temp = Temp(temp)
end while

return schedulebest

For our implementation we define the major components of the algorithm as follows:
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Cost(s): The cost function returns the quality of the passed in schedule. In our
case Cost(s) returns the total latency of the schedule.

Temp(t): The temperature function calculates a new temperature given the current
temperature and the iteration number. We transition the temperature only after a
set number of iterations (determined by the circuit size).

AcceptTransition(t, c, cnew): This function determines if a given transition in
the schedule will be accepted given the current temperature. A transition is allowed
if:

e−
cnew−c

t >= RandomDouble(0, 1)

Move(schedule): Move makes a single change to the current schedule’s routing or
connection ordering and returns a new schedule with the change applied. From the
current schedule we pick a random connection and with equal probability decide if
we will change the route of that connection or the ordering of that connection. If we
decide to change the route of the connection we generate a random route through
the network for the connection, apply it and return the new schedule. If we instead
decide to change the ordering of connections we add a connection ordering edge in
the schedule graph making sure to avoid any cycles (two connections sharing a link
must be ordered to match the circuit dataflow graph).

6.5 Routing Analysis

The main goal of this work is to present a communication infrastructure for a quantum
datapath and show how we can optimize it to best run a given quantum circuit. The
naive approach to establishing connections is to execute the quantum circuit and create
connections on demand. This approach is simple to implement but leaves a lot of room
for improvement.

With the various routing and scheduling techniques in hand we now analyze their per-
formance under various conditions. Since there are multiple choices for both the routing
and the scheduling technique used we’ve chosen to narrow our search space to the com-
binations listed in Table 6.1. From here on out we will refer to a combination of routing
and scheduling by using the type name listed in the table.

Ideally we would like to use the linear program technique to generate the optimal
schedule and routing for all the quantum circuits we would like to evaluate. Unfortunately,
running an MILP for interesting sized circuits is impossible. Instead we’ve presented
a heuristic approach that comes very close to the optimal schedule but does so in a
reasonable amount of time (allowing us to study the large circuits described in the next
Chapter).

We are mainly going to rely on our heuristic routing and scheduling approach so we
start by comparing our approach to the optimal case. Using small randomly generated
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Name Scheduling Routing

Optimal Linear Program Full Adaptive
On Demand On Demand Minimal Adaptive

Dimension Ordered Heuristic Prescheduling Dimension Ordered
Minimal Adaptive Heuristic Prescheduling Minimal Adaptive

Full Adaptive Heuristic Prescheduling Full Adaptive
Simulated Annealing Simulated Annealing Full Adaptive

Table 6.1: Routing and Scheduling Types
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Figure 6.6: Circuit Latency for different Routing techniques. For small circuits the Sim-
ulated Annealing and Full Adaptive routing techniques come very close to the optimal
time as determined by the Linear Program.

graphs, we ran our CAD flow using the various routing schemes described above. A
representative sample of these results are shown in Figure 6.6. The main take away
is that our adaptive techniques come very close to the optimal schedule generated by
the linear program and does so in considerably less time (minutes to hours compared
to multiple days). Consequently, from here on out we won’t present additional results
from the LP or SA algorithms and instead mainly rely on the results obtained from our
heuristic approach.

6.5.1 Network Area Impact

The main factor that determines the performance of the network is the amount of
area and resources dedicated to the network. We start by studying the effects of routing
technique on overall circuit latency. Figure 6.7 graphs the performance of a random circuit
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Figure 6.7: Network speedup versus link capacity. Each point is normalized to the circuit
latency obtained by using On Demand routing. As link capacity is added to the network
the adaptive algorithms have more options for routing around congestion and improve
over the Dimension Order routing. At the largest network size Dimension Order routing
catches up as it no longer encounters congestion.

given increasing network link sizes. These results were generated using an 8x8 mesh grid
where the only parameter varied is the width of the links connecting the routers. Each
point in the graph is plotted as the speedup over the on demand baseline result.

As demonstrated in the graph, the speedup we can achieve is directly linked to the
size of the network provided in the datapath. For low link capacities, our optimized
routing and scheduling yields almost no improvement over the base case, regardless of
which routing technique we utilize. When the network is sized this small, there is no
opportunity to preschedule any connections as the network is fully utilized. In this case,
almost every communication operation contributes delay to the overall circuit latency.

As we increase the link size we start to see significant improvement in total circuit
latency when compared to the on demand baseline. Both of the adaptive routing tech-
niques perform almost identically and are able to outperform the dimension ordered case.
This result is expected since the dimension ordered case is unable to compensate for any
congestion (all connections between two given routers will always take the same path).
Overall, we are able to achieve a speedup of a factor of 4 for larger link capacities.

Figure 6.8 plots the average amount of delay introduced by long-distance communica-
tion. The delay is the amount of time between when a connection is requested, and when
the data teleport is ready. Congestion within the network delays connections until a link
is available. For the on-demand scheduler, the delay will always include the connection
setup time (in addition to any network congestion). In contrast, the heuristic scheduler
tries to preschedule connections to remove any connection setup delay.
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Figure 6.8: Average per move delay introduced by the network. For each routing tech-
nique, the average amount of delay to move a qubit through the network is plotted against
the size of the network links.

In the figure we see all the scheduler and routing types have high delay resulting from
an oversubscribed network. This effect is further illustrated in Figure 6.9 where we see
the fraction of move operations that are delayed. For small link capacities, almost 80%
of move requests are delayed due to congestion. There is no line for the on-demand case
because all connections are delayed in the on-demand case since we consider connection
setup time to be part of delay.

As the size of the network increases, the average move delay decreases accordingly.
Eventually the heuristic prescheduled techniques reach a point where no delay is intro-
duced by network connections. This value is the ideal point where all connections can be
prescheduled in time for the data teleport to occur. The on-demand scheduler asymptotes
at a value above zero due to the lack of prescheduling.

6.5.2 Sensitivity to Mapping

As we mentioned earlier in this chapter our router operates on a list of mapped in-
structions as generated by the high-level coarse mapping phase of our CAD flow. The
mapper decides where instructions are run in the datapath. The router is bound by the
decisions made by the mapper.

Figure 6.10 illustrates how the routing techniques perform using different mappers.
We generate a random circuit and then use a unintelligent randomized mapper to create
the mapping of instruction to compute region. A number of random mappings are tested
and the average is plotted in the graph with minimum and maximum error bars.

As we can see in the graph, our routing techniques are able to generate a speedup
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capacity is added the number of moves delayed decreases. Dimension Order has fewer
delays initially because the communication requests are spread out resulting in a longer
total latency when compared to the Adaptive schemes.

 0

 2

 4

 6

 8

 10

 0  20  40  60  80  100  120  140S
p

e
e

d
u

p
 f

ro
m

 N
e

tw
o

rk
 O

p
ti
m

iz
a

ti
o

n

Link Capacity

Minimal Adaptive
Full Adaptive

Dimension Ordered
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using multiple random Mappers and then routed using the different techniques. For each
data point the average speedup is plotted along with the minimum and maximum speedup
(over On Demand routing).

102



 0

 2

 4

 6

 8

 10

 0  20  40  60  80  100  120  140S
p

e
e

d
u

p
 f
ro

m
 N

e
tw

o
rk

 O
p

ti
m

iz
a

ti
o

n

Link Capacity

Unoptimized Mapper
Optimized Mapper

Figure 6.11: Network speedup over on-demand given optimized and unoptimized Map-
pers. The unoptimized mapper generates a poor mapping with less locality allowing the
optimized routing techniques to obtain better speedup. The optimized mapper balances
computation more effectively reducing speedup (over On Demand routing).

ranging from a factor of .5 (at small network sizes) to 6 (at larger network sizes). One
might ask why optimized routing is able to extract up to a factor of 6 speedup for a
random mapper when in the previous Section we only demonstrated a maximum speedup
of a factor of 4. This difference is explained by the communication pattern created by the
mapper.

The intelligent mapper we use within our CAD flow exploits communication locality
and attempts to map neighboring instructions to the same compute region. Additionally,
if an instruction must be scheduled into a different compute region the intelligent mapper
picks a destination to minimize connection setup.

When compared to our intelligent mapper, the random mappings end up generating
a lot more network communication, as no communication locality is used to generate
the mapping. The locality differences causes the unoptimized router to delay the circuit
considerably while the network connections are made whereas the optimized router is
able to preschedule connections more efficiently and therefore generates a much greater
speedup.

We compare our optimized router given optimized and unoptimized mappers in Fig-
ure 6.11. A single circuit is run on datapaths with varying link capacity. Here you can see
the optimized router is able to extract up to a factor of 6 speedup given unoptimized map-
ping, and is only able to extract a speedup of 4 given the intelligent optimized mapper.
Note, this graph doesn’t preset the raw latency numbers. Even after a 6x speedup, the
latency of the circuit using unoptimized mapping is significantly worse than the optimized
mapper with only a 4x speedup.
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Figure 6.12: Routing performance relative to communication density. Random circuits
were generated with varying Rent parameters. Lower rent parameters correspond to a
larger computation to communication ratio.

6.5.3 Communication Patterns and Circuit Size

The communication pattern within a quantum circuit can vary considerably depending
on the structure and size of the circuit. In this section we evaluate how our optimized
routing holds up under different communication patterns and circuit sizes. We generate
a number of random circuits by varying the number of gates and the Rent parameter
described in Section 3.10.2. This process generates circuits with differing amounts and
types of communication.

Figure 6.12 shows the difference between Adaptive routing and On-demand routing
when varying the Rent parameter. In this case, Adaptive is obtained by using both Mini-
mal Adaptive and Full Adaptive to determine the best schedule. Over all Rent parameter
values the Adaptive routing and scheduling improves upon the On-Demand case. How-
ever, at lower Rent parameters the Adaptive routing and scheduling improvement is more
noticeable. The reason for this difference is that at lower Rent parameters there is more
computation that occurs between communication requests. The added time between com-
munication requests provides our Adaptive algorithm more opportunity to use less direct
paths to distribute load within the network.

Figure 6.13 shows the difference between the two routing and scheduling techniques
given increasing circuit sizes. As the size of the circuits increase, ADCR also increases
due to larger area and latency. For all cases, the Adaptive routing is able to obtain an
improvement over On Demand by a factor of 1.5 to 2.
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Figure 6.13: ADCR versus the number of gates in a circuit. Random circuits were
generated with increasing numbers of gates to determine ADCR for Adaptive and On
Demand routing.

6.6 Summary

The communication network plays a key role in determining the overall latency of a
quantum circuit. We present a number of routing and scheduling techniques to manage
communication within the network. Our heuristic prescheduling with minimal and full
adaptive routing perform almost as well as optimal, but unlike the optimal algorithm,
they are able to scale to large circuit sizes.

From the rest of this work, we run both heuristic prescheduling with minimal adaptive
and full adaptive routing to determine the best schedule. We will refer to this best schedule
as the Optimized case. We will compare all of our results to the On-demand scheduler
and refer to it as the Unoptimized case.

Our optimized routing and scheduling algorithms take advantage of the data inde-
pendent portions of connection setup to preschedule connections and reduce total circuit
latency. We are able to use a simple greedy heuristic scheduling algorithm to improve on
the On-demand case by a factor of 2 to 4 in terms of latency. Additionally, we show that
our greedy heuristic generates a schedule and routing that performs within 10% of the
optimal case.
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Chapter 7

Large Quantum Circuits

In previous chapters we developed tools to create low-level ion trap datapaths, schedule
short-distance communication, developed an architecture to perform long-distance com-
munication and presented scheduling and routing algorithms to optimize the performance
of the communication network. Now we will put all these tools together to analyze the
performance of large quantum circuits. Figure 7.1 shows our target application: Shor’s
factoring algorithm.

Shor’s algorithm can be decomposed into two major components: modular exponenti-
ation and a quantum fourier transform (QFT). The bulk of the computation occurs within
the modular exponentiation task. In our implementation, modular exponentiation is per-
formed via a series of repeated additions. Therefore, to start our study of large circuits
we will focus on the main kernel used to perform Shor’s algorithm: a quantum adder.
Once we decide on a good adder design, we will use it to build the full Shor’s factorization
application. The goals of this chapter are to find the best adder circuit implementations,
good ADCR-efficient datapaths, and demonstrate how our routing techniques can improve
overall circuit performance.

Throughout this section we will compare our Optimized routing and scheduling to
Unoptimized routing (On Demand scheduling). The Optimized value is obtained by using

n-bit

Adder

QFT

Modular Exponentiation

Multiply mod N
Adder mod Nn-bit Number

to Factor

Figure 7.1: Shor’s factoring architecture.
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the best of the two schedules obtained from running heuristic prescheduling with minimal
adaptive routing, and heuristic prescheduling with full adaptive routing.

7.1 Quantum Addition Circuits

The quantum adder is a fundamental component of Shor’s factorization. In this section
we will analyze the communication needs of adder circuits and demonstrate how our
optimized routing algorithms can improve overall performance. Since we are targeting
1024-bit factorization, we will examine 1024-bit adders.

For our adder implementation we consider the quantum ripple-carry adder (QRCA) [20]
and the quantum carry look-ahead adder (QCLA) [21], shown in Figure 7.2 and 7.3 re-
spectively.

A summary of our search for an optimal adder design and datapath is shown in
Figure 7.4. Here we see that we are able to obtain the best ADCR using the QCLA
circuit with optimized routing. Notably, in our search for an optimal datapath using a
QRCA circuit with unoptimized routing, we were unable to locate a single datapath with
a success probability greater than zero. The serial nature of a ripple carry adder combined
with the delays introduced by the communication network resulted in too much error for
the system to tolerate.

7.1.1 Ripple-carry Adder

In Figure 7.5 we present ADCR performance for the optimal QRCA optimized datap-
ath. This datapath is the one that generates the optimal ADCR shown in Figure 7.4. Here
we can see how the datapath performs as additional network capacity is added. Initially
adding network links to the system is beneficial and results in lower ADCR. However,
after exceeding a link capacity of 8, the calculated ADCR continues to rise as more link
capacity is added to the network. The serial nature of the ripple carry adder essentially
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prevents the routing algorithm from exploiting larger link capacities. As the links are
added, total area increases while latency remains constant, resulting in increasing ADCR.

As we noted earlier, all the datapaths searched using unoptimized routing resulted in
a success probability of zero. This result is mainly due to the amount of idling data qubits
do during the computation as shown in Figure 7.6. The unoptimized routing case results
in 6× the amount of time qubits spend idling. The additional idling introduces too much
error within the circuit, causing it to fail.
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7.1.2 Carry Look-ahead Adder

Figure 7.7 shows the ADCR performance for the best QCLA datapath using unop-
timized routing. This datapath corresponds to the QCLA Unoptimized routing bar in
Figure 7.4. As a comparison, we also plot the ADCR on this datapath if optimized routing
is used.

The success probability of this datapath given both optimized and unoptimized routing
is shown in Figure 7.8. In this datapath, optimized routing has a lower success probability
when compared to unoptimized routing.

Figure 7.9 shows the ADCR performance for the best QCLA datapath using optimized
routing. This datapath corresponds to the QCLA optimized routing bar in Figure 7.4.
As a comparison, we also plot the ADCR on this datapath if unoptimized routing is used.

The success probability of this datapath given both optimized and unoptimized routing
is shown in Figure 7.10. In this datapath, optimized routing has a lower success probability
when compared to unoptimized routing.

7.2 Shor’s Factorization Algorithm

Given what we’ve learned by analyzing the adder designs, we can now move on to
evaluating the full Shor’s factorization quantum circuit.

7.2.1 Implementation of Shor’s

Figure 7.11 shows a block-diagram of our target circuit. It consists of two main
components: modular exponentiation and the quantum Fourier transform (QFT). For
the modular exponentiation circuit, we rely on the work done in [67] and for the QFT,
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[24]. Since addition is a key component of the modular exponentiation circuit, we use our
best adder designs from Section 7.1.

7.2.2 Performance of Shor’s Algorithm

We evaluated circuits for Shor’s algorithm based on varying input sizes (128-bit to
1024-bit). For each circuit, we evaluated a number of Qalypso based datapaths to locate
the best datapath for the circuit in question and compare our optimized routing algorithms
to the unoptimized case. Unfortunately, due to the size of of the Shor’s circuits, we
were unable to run full error simulations on them to obtain ADCR values. Instead, we
optimistically assume the circuits will have a success probability of 1 and simply use
Area×Delay to obtain the optimal datapath.

In Figure 7.12 we see that our optimized routing algorithms require datapaths with
slightly larger areas than the unoptimized cases. Since the optimized version has a lower
overall latency the operations that occur are spaced much closer together. Consequently,
the optimized case requires larger ancilla factories to supply the same amount of ancilla
in less time resulting in the increased area numbers.

In Figure 7.13 we see that our optimized routing algorithms improve the latency of the
circuits by a factor of 2.4 to 3.6. This improvement is consistent with our adder design
results presented earlier. Ultimately, constructing a datapath for a 1024-bit version of
Shor’s algorithm consumes an area of 880mm2 and has a latency of 4.8 × 108 seconds.

7.3 Future Work

This work has investigated communication and control issues in far more detail than
prior work and has permitted us to perform a more thorough evaluation of larger circuits
than was possible before. While we have addressed details and issues at all levels of
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communication and control, there are still a number of area that could benefit from
further investigation.

7.3.1 Alternate Technologies

Our study has concentrated on ion trap technology as this technology is currently one
of the most promising in terms of scalability. A major characteristic of ion trap technology
is that movement error is proportional to distance moved. This characteristic may not
be the case in alternate technologies. For example, in electron-spins on helium quantum
technology [39, 13] movement error is thought to be dramatically less than gate error
and less dependent on the distance moved. For these types of technologies, we have to
reevaluate the long-distance communication network and use of teleportation.

Additionally, current ion trap technology only operates in two dimensions. It is pos-
sible that advances in ion trap technology, or alternate quantum technologies will permit
stacking, allowing us to use the third dimension to assist in routing communication chan-
nels. Adding an additional dimension warrants studying alternate network topologies.
Network structures such as higher dimension hypercubes and butterfly networks may
reduce communication set up time and overall circuit latency.

7.3.2 Early Network Connections

Our long-distance network is designed to establish a connection for use such that the
connection is ready to teleport data as soon as the data completes the prior operation.
The connection reserves resources and locks these resources until the data teleports, con-
tinuously creating EPR pairs at the source and destination. The reason we keep the
connection open the whole time is because we do not want the final EPR pairs used to
teleport data to sit idling as it would introduce error. Instead the EPR bits are refreshed
with new ones until the data teleport occurs. An alternative would be to consider the case
where a connection is setup and closed before the data actually teleports. The final EPR
bits used to teleport may decohere slightly as they idle at the end points waiting for data,
but we would benefit from releasing the resources in the network. It is worth studying the
impact of this idle time to determine if releasing resources early would benefit the overall
performance of the circuit.

7.3.3 Ballistic Move with Periodic Error Correction

We have determined that relying on low-level ballistic movement to move long dis-
tances is impractical in ion trap technology as too much error will accumulate on the data
qubits. One technique worth investigating is performing error correction in the middle of
longer ballistic move operations. Rather than moving a logical qubit the full distance, we
could theoretically move a shorter distance, stop and error correct, and continue moving
(possibly stopping multiple times to error correct). This approach will increase the total
latency of the move, but may allow us to reduce the size of the long-distance communica-
tion network. Unfortunately, performing error correction part way through a move would
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require ancilla generation resources in the middle of the communication channels. Adding
these resources may eclipse any savings obtained by reducing the size of the long-distance
network.

7.4 Conclusion

In this work we have presented the first detailed study of communication and control
issues within large quantum datapaths. We find that communication plays a significant
role in the operation of a large quantum circuit and a functional quantum datapath must
contain a robust system to enable reliable communication. To address this issue, we
present a scalable architecture for a quantum computer which specifically addresses com-
munication concerns. Our design minimizes communication error by using a specialized
teleportation based interconnection network to perform long-distance movement.

We developed a set of tools to construct and study quantum datapath designs based
on ion trap quantum technology. Our tools automatically synthesize and insert the inter-
connection network used for long-distance communication into the target datapath. We
carefully design the various components that compose the communication network and
present low-level datapaths and control for these components. To optimize the perfor-
mance of our network, we present a set of greedy heuristics to performance routing and
scheduling of communication within the network and show that our approach performs
as well as an optimal case determined using integer linear programming.

We study a number of different quantum circuits including randomly generated cir-
cuits, quantum adder circuits, and ultimately Shor’s factorization algorithm and show
that designs using our optimizations significantly improve upon prior work in terms of a
probabilistic area delay metric.
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