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Abstract

The TOPAS (Tool for Particle Simulation)[2] is amongst the scientific frameworks powered by the 

Monte Carlo (MC) toolkit Geant4[1]. TOPAS focuses on providing ease of use, and has significant 

implementation in the radiation oncology space at present. TOPAS functionality extends across the 

full capacity of Geant4, is freely available to non-profit users, and is being extended into 

radiobiology via the TOPAS-nBio project[3]. A current “grand problem” in cancer therapy is to 

convert the dose of treatment from physical dose to biological dose, optimized ultimately to the 

individual context of administration of treatment. Biology MC calculations are some of the most 

complex and require significant computational resources. In order to enhance TOPAS’s ability to 

become a critical tool to explore the definition and application of biological dose in radiation 

therapy, we chose to explore the use of Field Programmable Gate Array (FPGA) chips to speed up 

the Geant4 calculations at the heart of TOPAS, because this approach called “Reconfigurable 

Computing” (RC), has proven able to produce significant (around 90x) speed increases in 
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scientific computing. Here, we describe initial steps to port Geant4 and TOPAS to be used on 

FPGA.

We provide performance analysis of the current TOPAS/Geant4 code from an RC implementation 

perspective. Baseline benchmarks are presented. Achievable performance figures of the 

subsections of the code on optimal hardware are presented. Aspects of practical implementation of 

“Monte Carlo on a chip” are also discussed.

Introduction

This technical report presents a novel, global project’s initiation and initial steps, to use new 

computer hardware technology and novel thinking to increase the speed of computations 

critical for biological dose calculations in radiation oncology. If successful, the project goal 

is to enhance the field, by fusing three broad scientific thoughts to potentially create a new, 

critical capacity crossing into multiple emerging areas to ultimately help enable precision, 

adaptive, biologic treatment planning. The long term goal of this project is to create tools to 

help implement the capacity to biologically and contextually calculate the dose of all forms 

of radiation therapy including “blends” of radiation, the immunological status of the patient, 

the genetics and epigenetics of the patient’s tumor and normal tissue, the biologic response 

to therapy by the patient to that point in treatment, and to be granular enough to address the 

complex spatial distribution of normal tissue and tumor tissue. Clearly, this is not the only 

tool that will be needed to enable this goal but the coalescence of expertise, need, and 

technology has made its deployment newly possible. Biologic treatment planning is a grand 

problem of radiation oncology and is driven by the need to properly employ radiation 

oncology to best treat our patients [4]. Tools to address this problem have broad, worldwide 

applicability.

The second critical component of this project is the hardware and expertise to implement 

what has been described as the “reconfigurable supercomputer” via the use of a class of 

processing unit called the Field Programmable Gate Array (FPGA)[5, 6]. The key concept in 

the use of the FPGA is to achieve speed via converting the series of general CPU 

instructions, each taking time, into an efficient equivalent-circuit in FPGA (Figure 1) 

performing required operations in parallel and thereby saving time. The strength of this 

approach is the generation of an optimized equivalent circuit; however, this approach lacks 

the inherent flexibility of the generic CPU to adapt to any code. At different times, multiple 

circuits can be put on FPGA making it reconfigurable, although at any point in time, it has 

essentially only one configuration. FPGAs are established as one of the best alternatives for 

solving complex scientific and engineering problems that are energy efficient compared to 

other available compute accelerators. This is mainly due to the fact that the FPGAs have 

inherently parallel hardware structure and are customizable as required. Use of this 

technique achieved a 90-fold improvement in search speed for the open source FASTA [7, 8, 

9] search software. Multiple FPGAs, often on PCIe cards, can be employed at the same time 

within one system to further enhance this capacity. Beyond radiation oncology, the need for 

many areas of big science to achieve increased speed makes this approach of universal high 

impact. The focus on Geant4 [1] specifically will significantly impact the global physics 

community in this dimension, as many projects in addition to the medical physics 
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community, for example in particle physics (such as the large High Energy Physics projects 

at CERN), particle-astrophysics (such as the Fermi Space Telescope) and materials scientists 

(such as studies of radiation effects in electronics), also use Geant4. Thus, the value of MC 

speedup being implemented in this project is significantly broader than that previously 

attempted [10].

The third aspect of this project convergence is the transformational ease of using TOPAS in 

the context of traditional MC programming and package use. It is not an understatement to 

say that to achieve expertise in Geant4 is something that can take a minimum of years. 

TOPAS provides the end user this power in only a few hours. This allows biologists and 

physicians to use MC, in addition to physicists. To achieve the goal of biological treatment 

planning, embracing more people with this tool to assist in research will be critical. In this 

paper we describe work that is focused on optimizing TOPAS[2] using new approaches for 

hardware and programming. The biological extension of TOPAS, the TOPAS-nBio [3], will 

also benefit directly from this project given the high calculation costs it demands and for the 

purpose of this paper should be considered part of TOPAS overall. Fast, easy to use, and 

biologically focused MC is the desired goal of this project.

Materials and Methods

Computer:

The computer environment utilized for this work was a multicore Xeon workstation, running 

the Centos version 7 LINUX operating system software with standard programming tools.

FPGA programming tools:

Xilinx Vivado Design Suite version 2017.3 was used for generating the FPGA design.

FPGA Card:

C-DAC developed accelerator card with Xilinx FPGA and Xilinx Alveo U200 was used.

Software Tools:

TOPAS version 3.1.3 including Geant4 version 10.3.1 was used. Profiler tools Open|

SpeedShop v2.3.1, Perf v3.10, Valgrind v3.13, kcachegrind v0.7.2 and IgProf v5.9.16 were 

used for profiling.

Design Flow:

FPGAs are semiconductor devices that can be reprogrammed to desired application or 

functionality requirements after manufacturing. They implement an actual circuit, 

corresponding to the desired functions. The design flow for porting applications on FPGA 

accelerators is different than that of a standard software-design-flow. The FPGA design flow 

consists of various steps such as application profiling, converting algorithm into Hardware 

Description Language (HDL) design or customization of algorithm to FPGA architecture, 

functional simulation of the obtained design and implementing the design into FPGA. To 

extract maximum performance, benchmarking and optimization of the design is performed. 

It is very difficult to put the whole application on the FPGA; only the compute intensive 
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portion of the application is run on the FPGA and the rest of the application is run on the 

CPU. Application profiling is used to identify the most compute intense portions of the 

application. After the identification of the compute intense portions of the application, the 

same is converted to FPGA design. There are two approaches for doing this. The first one is 

traditional, manually converting the portion to HDL design. The second and more recent 

approach is to directly convert the high level C or OpenCL code to HDL using high level 

synthesis tools. With this approach, the user is not required to have hardware programming 

knowledge. After the conversion, functional simulation is performed to verify the 

functionality of the design. Further, the design is synthesized and converted to a 

programming file for the FPGA. After porting of the compute intense portion of the 

application onto the FPGA, optimization and benchmarking is done to extract further 

performance from the FPGA.

Use case:

SAMEER, India, has developed low energy oncology system, named Siddhartha, capable of 

delivering 6 MeV energy photons with flattened dose of 240 cGy/min at 1m distance [11]. 

The radiation field generated by this machine is square in shape due to symmetric movement 

of X-Y jaws and has a maximum field size of 35×35 cm2. To test applicability of Geant4/

TOPAS on the FPGA card, a Geant4 code which describes the basic geometry of SAMEER 

6 MeV electron linear accelerator as shown in Figure 2 was developed. A pencil beam of 6 

MeV energy was taken as input to study the bremsstrahlung pattern generated after 

impinging on a high Z target like tungsten or tantalum. The photon output is collimated in 

the forward direction using primary and secondary collimators. The dose profiles were 

obtained in a water phantom of dimensions 50 cm × 50 cm with a voxel size of 1 cm3 for 20 

million histories. The dose profile was also compared with the experimentally obtained data 

to verify the Geant4/TOPAS code. This code was profiled to identify the compute intense 

functions in Geant4.

Results

Although the main goal is to improve the computational efficiency of TOPAS, the work so 

far has focused on developments affecting the underlying Geant4 code. A Geant4 MC 

simulation toolkit-based application described as the use-case above was profiled using 

multiple open-source profilers such as Open|SpeedShop, pref, Valgrind and IgProf. Multiple 

profilers were used to validate the profiled output. For profiling the application, the 

application source code as well as the Geant4 toolkit were compiled using the –pg and –g 

options. This helps the profiler in creating a function call-list and file references by 

extracting information from the application compiled using the above options.

The function “G4PhysicsVector::Value” that takes most of the compute time as depicted by 

the profiled data (Figure 3), was analyzed and assessed for portability to FPGA. The same 

function surfaced as the most compute function when the application was profiled using all 

three profiler tools, confirming the selection of the function. The “G4PhysicsVector::Value” 

function as shown in Figure 4, calls an inline function “Interpolation”, this in-turn, calls 

another inline function “SplineInterpolation”. The Inline functions do not appear in our 
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profile call-list due to the fact that for the inline functions the compiler at compile time 

places a copy of the code of that function at each point where the function is called. The call 

graph for the G4PhysicsVector (Figure 5) indicates the path that the application code 

follows, while calling the SplineInterpolation function.

The Spline-interpolation as shown in Figure 6, is based on a piecewise polynomial called 

cubic spline, known to reduce interpolation errors. This is a widely used numerical method 

for interpolation in the scientific domain, compared to other interpolation methods. In order 

to measure the software execution time of this function independently, we isolated the 

function code from the Geant4 toolkit. When executed independently, each call to the spline-

interpolation function took around 23 ns. Since the cubic spline interpolation is a piecewise 

polynomial equation, we expect the number of calls to this particular function to be 

extremely high, when the full application is executed.

We implemented the spline interpolation function on the FPGA. A simplified block diagram 

of the spline interpolation function is shown in Figure 7.

The SplineInterpolation function was coded in System Verilog, a hardware description 

language to generate hardware. A snapshot of this code is shown in Figure 8. The System 

Verilog code was simulated (figure 9) using the Isim simulator that is part of the Xilinx 

Vivado design suite and the outputs verified against our SplineInterpolation software code. 

After the simulation, the function was synthesized and implemented into the FPGA using 

the Xilinx Vivado design suite (Figure 10). The resource utilization for a single instance of 

the hardware implementation is shown in table 1. This preliminary, non-pipelined 

implementation performs one spline interpolation in 280 ns when clocked at 125 MHz. By 

pipelining this design, we can effectively perform spline interpolation in 10 ns, clocked at 

100 MHz. Based on this calculation, a pipelined design is around 2x faster than the spline 

interpolation software. Since we can fit multiple such spline interpolation hardware blocks 

onto the FPGA, each working in parallel, we expect further acceleration for spline 

interpolation calculation.

To validate the energy efficiency of the FPGAs, the power consumed by the spline 

interpolation hardware-block was measured using the Xilinx tool. A single block consumed 

around 2.7 Was shown in Table 1. If we populate the whole FPGA, it will consume around 

30W as indicated by the Xilinx power estimator. This value is considerably less than the 

power consumed by general processors or other accelerators.

Discussion

The analysis of has shown Geant4 to be a highly optimized code, where no single piece of 

code occupies over 10% of the total time spent by the CPU. This was not surprising to our 

group considering the extensive history of the work done to Geant4 for optimizing it across 

traditional hardware. Despite this fact, our initial work of porting a single piece of Geant4 

code on FPGA has shown encouraging results. Using the FPGAs full potential to handle 

parallel code we expect to see significant reduction in execution time. The results shown 

here are preliminary and do not reflect full FPGA utilization nor do they reflect possible 
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code optimization of Geant4 for FPGA implementation. For example, taking the top 3 to 10 

functions or models used for clinical radiation oncology and combining them into one FPGA 

“circuit” may allow enormous speed increases; however this would require some clever 

reorganization of the Geant4 code. It may be possible using the current 16 nm and upcoming 

7 nm FPGA products to make very large portions of Geant4 fit in one FPGA. Finally, we 

show that power usage is relatively low for the FPGA solution employed. The high-level 

synthesis tools, that directly convert high level C or OpenCL code to HDL, look very 

promising. We plan to use these high-level tools for targeting more functions of Geant4, as 

this approach will reduce the development time, enabling evaluation of a number of 

functions in a short span of time.

Conclusions

FPGAs represent a possible way to dramatically increase the speed of MC calculations. The 

power consumption advantage of using FPGA is clearly evident from our results. Our 

preliminary work shows that the MC code in Geant4 can be ported to an FPGA. To get 

considerable FPGA speed up, further work is needed to find Geant4 functions that take a 

large chunk of CPU time i.e. real computational bottlenecks. It may be required to look 

deeper into some of the Geant4 functions and may require formatting Geant4 in a novel 

fashion to suit FPGAs. Given the central importance of treatment planning in radiation 

oncology and the need to calculate biological dose, FPGA use for MC calculations will have 

an enormous impact on the field, if successful. As a bonus, FPGA acceleration offers new 

computational efficiency to all users of the Geant4 toolkit, from radiobiologists to particle 

physicists, particle-astrophysicists and materials scientists.
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Figure 1. Algorithm to equivalent circuit.
The algorithm is manually converted to equivalent circuit to extract performance
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Figure 2. Geant4 Use case.
Shows setup of the use case developed using Geant4 toolkit
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Figure 3. Valgrind profile.
Shows the profiles of Geant4 based code generated by Valgrind profiler. The function 

“G4PhysicsVector::Value” appears at the top of the profile list.
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Figure 4. G4PhysicsVector.cc source snippet.
G4PhysicsVector::Value is defined here and the function in-turn call a function interpolation.
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Figure 5. Call graph for G4PhysicsVector.
The call graph for the G4PhysicsVector indicates the path that the code follows.
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Figure 6. Spline Interpolation code snippet.
The spline interpolation is an inline function called by G4PhysicsVector::value and this 

doesn’t show up in our profile list.
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Figure 7. Simplified block diagram of spline interpolation.
The simplified block diagram of spline interpolation calculation
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Figure 8. System Verilog code.
System Verilog code for spline interpolation to generate the necessary hardware.
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Figure 9. Simulation output:
Simulation waveform of spline interpolation system verilog code
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Figure 10. Synthesized netlist:
Synthesis output of spline interpolation system verilog code.
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Table 1.

Resource and Power utilization of single instance of spline interpolation function.

Resource Utilization (Xilinx UltraScale+)

CLB LUT 0.82%

CLB Registers 0.16%

DSP’s 0.37%

Power Utilization

Total Power 2.76 W

Dynamic Power 0.29 W

Static Power 2.47 W
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