
UC San Diego
UC San Diego Previously Published Works

Title
Tailor: Altering Skip Connections for Resource-Efficient Inference

Permalink
https://escholarship.org/uc/item/5dh912vr

Authors
Weng, Olivia
Marcano, Gabriel
Loncar, Vladimir
et al.

Publication Date
2023-10-13

DOI
10.1145/3624990

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5dh912vr
https://escholarship.org/uc/item/5dh912vr#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/
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Deep neural networks use skip connections to improve training convergence. However, these skip connections are costly in hardware,
requiring extra buffers and increasing on- and off-chip memory utilization and bandwidth requirements. In this paper, we show that
skip connections can be optimized for hardware when tackled with a hardware-software codesign approach. We argue that while a
network’s skip connections are needed for the network to learn, they can later be removed or shortened to provide a more hardware
efficient implementation with minimal to no accuracy loss. We introduce Tailor, a codesign tool whose hardware-aware training
algorithm gradually removes or shortens a fully trained network’s skip connections to lower their hardware cost. Tailor improves
resource utilization by up to 34% for BRAMs, 13% for FFs, and 16% for LUTs for on-chip, dataflow-style architectures. Tailor increases
performance by 30% and reduces memory bandwidth by 45% for a 2D processing element array architecture.

CCS Concepts: • Hardware→ Hardware-software codesign; • Computer systems organization→ Neural networks.

Additional Key Words and Phrases: Hardware-software co-design, neural networks
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Inference. ACM Trans. Reconfig. Technol. Syst. 1, 1, Article 1 (January 2023), 23 pages. https://doi.org/10.1145/3624990

1 INTRODUCTION

Convolutional neural networks (NNs) often rely on skip connections—identity functions that combine the outputs
of different layers—to improve training convergence [17, 45]. Skip connections help mitigate the vanishing gradient
problem [4, 15] that occurs when training large CNNs, which helps increase the network’s accuracy. Skip connections
allow NNs to have fewer filters/weights than architectures that lack skip connections [17], such as VGG [43].

However, skip connections are generally detrimental to hardware efficiency. They have an irregular design that is
ill-suited for hardware acceleration. This is due to their long lifetimes, which span several NN layers, increasing memory
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2 Weng, et al.

(a) Traditional (b) Shortened (c) None

Fig. 1. Neural networks with traditional skip connections, like ResNet (a), have inefficient hardware implementations because the

skip connection data must be preserved in memory during five layers of computation. This irregular topology increases memory

resources and bandwidth. A more regular topology with reduced skip connection lifetimes would use fewer resources. Tailor achieves

this by shortening skip connections (b) or by eliminating them completely (c). Skip connections are in red.

utilization and bandwidth requirements. This is particularly true in ResNets [17], which introduced skip connections
that spanned across five layers: two convolutions, two batch normalizations (BNs), and a ReLU activation [16, 34]
(see Fig. 1a). The skip connection involves minimal computation—it is either the identity or a 1×1 convolutional layer
for scaling—but it extends the necessary lifespan of the input data. Thus, we must store skip connection data for the
duration of time needed to compute the five NN layers. In total, a model’s skip connection data accounts for ∼10% of its
memory bandwidth either on or off chip. Buffering skip connections on chip increases on-chip memory utilization,
whereas moving them off chip not only increases off-chip memory bandwidth but also requires extra control logic for
scheduling [29, 30].

Optimizing skip connections requires careful hardware-software codesign. Skip connections are crucial for model
convergence; naively removing them to reduce hardware resources leads to low accuracy [32, 50]. Instead, we must
codesign how the model is (1) trained and (2) implemented in hardware to achieve a model that is both accurate and
resource-efficient.

We develop Tailor, a codesign method that gradually alters a NN’s skip connections during training to produce a
highly accurate and resource-efficient NN. Our results in Sec. 4 show that Tailor can remove or shorten skip connections
to achieve topologically regular NNs (Fig. 1b and 1c) that substantially reduce hardware resources, reduce memory
bandwidth, and increase performance with minimal to no accuracy loss.

Tailor takes an existing pre-trained model and reduces the hardware complexity of its skip connections with minimal
to no accuracy loss. Moreover, Tailor exploits the flexiblity of the FPGA architecture to customize the skip connection
memories, which is not possible on a GPU or CPU. Tailor accomplishes this dynamically during retraining in one
of two ways: (1) SkipRemover removes the skip connections altogether (Fig. 1c) to eliminate all associated hardware
complications or (2) SkipShortener shortens each skip connection by splitting it into multiple shorter ones (Fig. 1b).

We evaluate Tailor’s applicability and benefit on ResNets [17, 18] and QuartzNets [23]—two important classes of
NNs that contain skip connections of varying lengths. We also study implementing skip connections with an on-chip,
dataflow-style FPGA architecture using hls4ml [2, 12] and a 2D array of multiply-accumulate processing elements.
Manuscript submitted to ACM
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Tailor reduces resource utilization of hls4ml architectures by up to 34% for BRAMs, 13% for FFs, and 16% for LUTs.
Tailor increases the performance of 2D array architecture by 30% and reduces memory bandwidth by 45%..

Tailor’s hardware-software codesign approach reduces hardware complexity and resources by altering skip connec-
tions dynamically during retraining. Our contributions are:

• the Tailor software methodology of removing or shortening skip connections from existing NNs with minimal
to no loss in accuracy,

• the Tailor hardware designs that exploit FPGA-specific architecture optimizations, which are not possible on
GPU/CPU, to produce less resource-intensive skip connection implementations,

• experiments demonstrating that SkipShortener and SkipRemover models are implemented more efficiently
with better performance and resource utilization than their traditional skip connection counterparts,

• and public release of the Tailor hardware-software codesign framework [1].

In Sec. 2, we review relatedwork. In Sec. 3, we explain howTailor’s NN alterations optimize the hardware architecture.
We then describe Tailor’s two training methods, SkipRemover and SkipShortener, that alter skip connections
with little to no loss in accuracy. Sec. 4 provides training, quantization, and hardware results for SkipRemover and
SkipShortener. Sec. 5 discusses the tradeoffs Tailor presents between accuracy and hardware resource reductions.
Sec. 6 concludes the paper.

2 BACKGROUND

2.1 Removing Skip Connections

While skip connection removal has been studied before [8, 25, 32, 50, 51], prior work is lacking in several ways: (1)
preliminary work [32, 50, 51] only studies shallow models (up to 34 layers); (2) Li et al. [25] do not remove all of the skip
connections in the models they evaluate; (3) Ding et al. [8] and Li et al. [25] both have limited architectural evaluations
(e.g., GPU & mobile) that do not consider the highly customized skip connections memories enabled by FPGAs; and (4)
Ding et al. [8] require starting with an entirely new NN topology whose skip connections are removable.

Monti et al. [32] start with a standard ResNet and introduce a new training method. This method uses an objective
function that penalizes the skip connections and phases them out by the end of the training. This technique has only
been applied to smaller ResNets (18 to 34 layers) with a small decrease in accuracy between 0.5 and 3%.

Zagoruyko and Komodakis [50] also develop a method for removing skip connections in a NN. They replace skip
connections with Dirac parameterization, creating a new NN called DiracNet. The Dirac parameterization is shown in
Eq. 1,

DiracNet [50]: 𝑦 = 𝜎 (𝑥 +𝑊𝑥) (1)

ResNet [17]: 𝑦 = 𝑥 + 𝜎 (𝑊𝑥) , (2)

where 𝜎 (·) is the nonlinear activation function,𝑊 is the layer weight matrix, 𝑥 is the layer input, and 𝑦 is the layer
output. For ease of comparison with ResNets, Eq. 2 is simplified to show only one convolutional layer. In fact, skip
connections in ResNets hop over more than one convolutional layer, while in DiracNets, the identity mapping is over
one single convolutional layer. Therefore, the weights and the identity mapping of the input can be folded because
𝑥 +𝑊𝑥 = (𝐼 +𝑊 )𝑥 . This change requires DiracNets to widen the NN layers in the ResNets that they started with.
The authors showed that their technique could be used to create models with up to 34 layers. Although it works for
shallower models, DiracNets show a decrease in accuracy between 0.5% and 1.5% compared to ResNets. In contrast,
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4 Weng, et al.

SkipRemover eliminates skip connections without widening the layers in the NN and does not need to make this
accuracy tradeoff.

Li et al. [25] develop residual distillation (RD), which is a modified knowledge distillation framework. RD starts
with a ResNet as the teacher and a plain CNN without skip connections as the student. Unlike standard knowledge
distillation, RD passes the teacher’s gradients to the student during training. This differs from Tailor because RD starts
with a student model without skip connections, whereas Tailor gradually modifies a model’s skip connections every
few epochs during training without sharing gradients. Moreover, while RD removes all skip connections from models
evaluated on simpler datasets like CIFAR-10 and CIFAR-100 [24], it fails to remove all skip connections in its ImageNet
evaluation, leaving 18% of them in the network, which is a costly choice. In our ImageNet evaluation (see Sec. 4.1), our
SkipRemover method removes all skip connections with minimal accuracy loss.

Ding et al. [8] introduce a new model architecture RepVGG, which trains using 3×3 convolutional layers that are
each skipped over by both a 1×1 convolution and an identity connection. At inference time, these connections can
be re-parameterized into the parameters of the 3×3 convolutional layers. While RepVGG is more accurate than our
SkipRemover model, it requires starting from their specialized training model architecture. This is costly to developers
who have already trained a model with skip connections on their dataset. Similarly, transferring a pre-trained RepVGG
model to a new dataset via transfer learning can be time-consuming given the many different methods [36, 47, 52] to
evaluate. As such, Tailor is ideal for these developers because it modifies the skip connections of an existing pre-trained
model to be more resource-efficient with minimal to no accuracy loss. Developers can leverage the training they have
already done and need not start from scratch with a brand new RepVGG architecture.

2.2 Simplifying Skip Connection Hardware

ShuffleNet [28], DiracDeltaNet [48], and DenseNet [20] simplify skip connections by making them concatenative, i.e.,
they concatenate, rather than add, the skip connection data to the output of a layer. Concatenative skip connections
take advantage of the fact that spatially consecutive memory accesses are typically faster than random accesses. This
concatenation and off-chip data movement is possible using a simple controller (e.g., DMA engine).

Tailor uses two techniques to simplify the skip connection hardware. SkipRemover eliminates all logic and memory
needed for a skip connection, making them less expensive than concatenative skip connections. Careful retraining allows
skip connection removal in smaller networks with no degradation in accuracy. For larger networks, SkipShortener
shortens the additive skip connections. By reducing their lifespans, the hardware implementation requires fewer
resources. SkipShortener is not necessarily simpler than ShuffleNet [28] or DiracDeltaNet [48]. However, these
concatenative skip connections have only been evaluated on image classification and object detection tasks. In our work,
we demonstrate our SkipRemover and SkipShortener methods on multifarious NNs and classification tasks, namely
image-classifying ResNets of varying depths, DNA-basecalling QuartzNet-5×5, and automatic-speech-recognizing
QuartzNet-10×5. With respect to DenseNet [20], SkipShortener ResNets use much less memory and bandwidth
because DenseNet relies on significantly more skip connections throughout its NN. Given a NN with 𝐿 layers, DenseNet
needs the memory and bandwidth to execute 𝐿(𝐿+1)/2 concatenative skip connections, compared with SkipShortener
ResNets’ mere 𝐿 skip connections. With so many more skip connections, DenseNet is more expensive for hardware
than SkipShortener ResNets.

Finally, all these techniques simplify skip connection hardware from the outset, building their models with modified
skip connections and then training them from scratch. Tailor differs because its hardware-aware training method
dynamically alters the skip connections every few epochs during training, taking advantage of what the NN has learned
Manuscript submitted to ACM
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(a) Traditional skip connection architecture

(b) No skip connection architecture (c) Shortened skip architecture

Fig. 2. The hls4ml hardware architectures for traditional, shortened, and no skip connections. hls4ml pipelines each layer as is

common for latency-critical tasks in resource-constrained environments [2, 12]. The three architectures correspond to a ResNet

implemented with a traditional skip connection (a), shortened skip connections (b), and no skip connections (c). Note that we combine

the batch normalization parameters with the kernel, as is commonly done [21].

with skip connections. Thus Tailor allows the NN to gradually adapt to shortened skip connections (SkipShortener)
or none at all (SkipRemover).

3 TAILOR

Skip connections are important for training (to provide good accuracy), yet complicate implementation (requiring
additional hardware resources and reducing performance). Tailor modifies skip connections to make their hardware
implementation more efficient. Tailor uses a retraining method that gradually alters the network, resulting in little to
no loss in accuracy.

3.1 Hardware Design

Fig. 2 shows three hardware implementations for NNs with traditional, shortened, and no-skip connections. The
implementations correspond to accelerators produced by hls4ml—a tool that translates Python models into high-level
synthesis code [11]. hls4ml creates a separate datapath for each layer and performs task-level pipelining across the
layers. The layers communicate using FIFOs (AXI streams). Everything encapsulated by a dashed line resides in one
pipeline stage. The inputs are fed into the architecture using a stream, and the results are given as an output stream.
The weights are all stored on-chip, and all the internal results are stored on-chip. We evaluate each of these designs
on FPGA later in Sec. 4.2 along with another style of architecture using a 2D array of processing elements. Tailor
allows us to trade off between accuracy, performance, and resource usage through co-design of the neural network
using hardware-aware training.

Manuscript submitted to ACM



6 Weng, et al.

Fig. 2a shows the hardware needed to implement a single ResNet’s skip connection. Note that in all of the designs
shown in Fig. 2, we fuse the batch normalization parameters with the kernel, as is commonly done [21]. To be low
latency and high throughput, the design uses task-level pipelining (i.e., the HLS dataflow pragma) for each NN layer, or
a small grouping of layers, and streams the data between each dataflow stage using first-in first-out buffers (FIFOs).
Since FIFOs can only be read from once, skip connections complicate the design. We must spend a dataflow stage
on cloning the skip connection data from its input FIFO into two other FIFOs so that it can be read twice for its two
datapaths. The first path goes through a collection of convolutional and ReLU layers, and the second stores the data
in a FIFO exclusive to skip connections (skip FIFO). Once the data has gone through the first path, we read from the
skip FIFO to perform the addition to complete the skip connection’s identity function. As such, implementing a skip
connection on chip requires several extra FIFOs for handling the skip connection data, and this in turn increases on-chip
memory resource utilization.

Ideally, we would eliminate the skip connections. As seen in Fig. 2b, without skip connections, we cut the number of
dataflow stages in half (no more Clone, Add, or ReLU stages) and use less than half of the requisite FIFOs compared with
Fig. 2a. All we need to do is pass the data through the convolutional and ReLU layers. This reduces resource utilization
by up to 16% (see Sec. 4.2).

It may not be possible to remove the skip connections because they are essential for training convergence. In these
cases, shortening the skip connections can simplify their hardware implementation. Fig. 2c shows a modified network
with shortened skip connections such that each skip connection’s lifespan resides within a single dataflow stage. We
do not need additional dataflow stages to clone skip connection data. The shorter lifespans allow the shortened skip
connections to be stored in shift registers, which can be implemented using the more abundant FFs as opposed to
BRAMs, which is used in the traditional skip connection’s hardware design. In this way, we exploit the short skip
connections’ lifetimes and use simpler, more efficient hardware memories to implement them (see Sec. 4.2). As such, we
achieve a similar architecture to the version without skip connections (Fig. 2b), and similarly reduce resources spent on
additional dataflow stages and FIFOs in Fig. 2a. SkipShortener is thus more resource-efficient than the traditional
skip connection design. In fact, SkipShortener provides a tradeoff between the SkipRemover and traditional designs
because it uses more resources than SkipRemover but less than the traditional one (see Sec. 4.2). But as we later show
in Sec. 4.1, SkipShortener maintains accuracy in cases where SkipRemover accuracy drops off. Thus, SkipShortener
allows for design space exploration to balance accuracy and resource usage.

When used with hls4ml, Tailor reduces resource consumption without changing the performance. This is a
consequence of hls4ml’s dataflow design; the resources we remove are not on the critical path—they are operating in
parallel to the critical path. A dataflow design uses task-level pipelining, so reducing the resources spent on stages not
on the critical path does not help or hurt overall throughput. Based on our Vivado co-simulation results, the clone stage
executes in microseconds while the convolutional layer executes in milliseconds, an order of magnitude difference.
Therefore, removing the clone buffer (Fig. 2b) or implementing it more efficiently (Fig. 2c) will not affect the overall
dataflow latency because its latency is an order of magnitude less than the convolution’s latency. This means Tailor’s
resource reductions do not increase or decrease latency or throughput for this architecture style, as later shown in
Tab. 7.

Another prevalent style of FPGA CNN architectures instantiates a 2D processing element (PE) array and iteratively
programs the convolutions and other operations onto that PE array. We call this style of computation a Reconfigurable
DNN Architecture. Fig. 3 provides an example architecture used in our experiments. We build this architecture using

Manuscript submitted to ACM
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Fig. 3. (a) A Reconfigurable DNN Architecture synthesized on a ZCU102 FPGA development board. The architecture has a 2D array

of processing elements that are iteratively programmed to compute layer operations. The controller runtime programs the DMA

engines to load off-chip inputs and weights and store the intermediate and final results off-chip. (b) The processing elements (PE) are

a multiply-accumulate datapath.

DeepSoCFlow 1. Following the taxonomy described in [22], the reconfigurable DNN architecture is a 2D array of
processing elements that optimally perform standard convolution and matrix multiplication with high data reuse.
The dataflow is primarily output stationary while prioritizing maximal weight reuse and also reusing inputs to an
extent. The engine performs fixed-point computations, where the input, weight, and output bit widths are adjustable
as synthesis parameters, along with the number of rows and columns of processing elements. The weights rotator
prefetches the weights of the next iteration into one block of on-chip memory while the other bank delivers weights,
rotating them hundreds of times for maximal data reuse. The Pixel Shifter shifts perform vertical convolution. Partial
sums are shifted to the PE on the right to compute horizontal convolution. The results are streamed out through the
output DMA to the off-chip memory. The runtime controller would perform the residual addition, quantization, and
activation on the processing system side while the engine computes the next iteration. Our implementation uses the
ARM processor available in the Zynq chip. FPGAs without processors could instantiate a softcore processor to perform
the controller runtime operations.

The Tailor optimizations have different effects on the Reconfigurable DNN architecture as compared to hls4ml
architecture. The Reconfigurable DNN architecture computes skip connections by loading input data from off-chip
memory and performing the required operations upon it (addition, convoluation) Thus, unlike in hls4ml, removing a
skip connection does not change the architecture; instead it changes how computations are mapped to that architecture.

1https://github.com/abarajithan11/deepsocflow

Manuscript submitted to ACM
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8 Weng, et al.

(a) SkipRemover

(b) SkipShortener

Fig. 4. Three iterations in the SkipRemover and SkipShortener algorithms as applied to a ResNet. In this example, skip connections

are altered every 𝛼 epochs and 𝛼 |𝑛. Each pill block represents a set of convolutional, BN, and ReLU layers, and the skip connections

are in red. L is the KD loss function defined in Eq. 3. Only the student model is used for inference.

Skip connection removal eliminates the need to fetch the skip connection data and perform the associated convolution
and addition operations. This increases the overall performance as we describe in Sec. 4.

3.2 Hardware-aware Training

It is difficult to modify a NN’s skip connections without reducing accuracy. Naively removing all skip connections before
or after training a NN is detrimental to its accuracy. Instead, Tailor consists of two training algorithms, SkipRemover
and SkipShortener, that gradually alter a NN’s skip connections on the fly—removing or shortening them every few
epochs—in order to make them resource-efficient. Gradually altering the model during training tempers the performance
drop of removing or shortening the skip connections, yielding minimal to no loss in accuracy as well as significant
advantages in the hardware implementation, as described above.

Tailor’s iterative learning approach finetunes the altered NNs using a compression method known as knowledge
distillation (KD) [19]. KD distills the knowledge of a larger, more complex NN (the teacher) into a smaller, simpler NN (the
student). While the student model is training, it compares its output to the teacher model’s output and thus learns from
the teacher to perform better. KD provides impressive results for compressing NNs for various applications [31, 41, 44].
In traditional KD, the teacher model is already trained, and the student model is trained to match the teacher’s behavior
by replicating its output. The student achieves this by training with a loss function

L = (1 − 𝛽)G(ℓ, 𝑠) + 𝛽H(𝑡, 𝑠) (3)

where G andH are distance functions, 𝑠 and 𝑡 are student and teacher output vectors respectively, ℓ is the correct label
vector, and 𝛽 is a tunable parameter [19].
Manuscript submitted to ACM
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With this idea in mind, both SkipRemover and SkipShortener start with two identical pre-trained NNs with
traditional skip connections, where one serves as the teacher and the other serves as the student. During the retraining
stage, SkipRemover removes a given skip connection every few epochs. SkipShortener takes a similar iterative
approach and, every few epochs, splits a given skip connection into multiple shorter ones. The skip connections are
removed or shortened starting from the first skip connection encountered in the NN (from the input) to the last.

Fig. 4 visualizes both SkipRemover’s (Fig. 4a) and SkipShortener’s (Fig. 4b) training algorithms for a ResNet-style
NN. During training, we remove (SkipRemover) or shorten (SkipShortener) one of the student’s skip connections
every 𝛼 epochs. If 𝑛 is divisible by 𝛼 (as in Fig. 4), then at epoch 𝑛, the student has had 𝑛/𝛼 skip connections altered,
and we are viewing the next two skip connections to be modified in the student model: the (𝑛/𝛼) + 1st and (𝑛/𝛼) + 2nd.
At epoch 𝑛 + 𝛼 , the (𝑛/𝛼) + 1st skip connection is altered (removed under SkipRemover or split into two shorter skip
connections under SkipShortener). The NN then trains for 𝛼 epochs so that the student model can improve its weights
given the latest model topology. Afterwards, at epoch 𝑛 + 2𝛼 , the (𝑛/𝛼) + 2nd skip connection is similarly altered.
During the entire skip modification retraining process, the student uses the KD loss function L defined in Eq. 3 to learn
from the teacher and the true labels. The teacher’s model topology and weights remain fixed during training. Once
all skip connections have been altered, the student model continues training under KD for the remaining number of
training epochs as defined by the user. Only the student model is used for inference.

Tailor is novel because it dynamically transforms skip connections every few epochs during training. This is an
instance of hardware-aware training because the skip connection are slowly altered specifically to reduce hardware
resources, as previously discussed in Sec. 3.1. The gradual skip connection alterations allow the NN to take advan-
tage of what it has learned with skip connections, so that it can dynamically adapt to shortened skip connections
(SkipShortener) or none at all (SkipRemover). Alg. 1 describes Tailor’s hardware-aware training process.

4 RESULTS

We evaluate Tailor on two popular kinds of NNs that rely on skip connections: ResNets [17] and QuartzNets [23]. We
study the effects of Tailor on model accuracy, quantization, and hardware resource utilization.

4.1 Training results

To evaluate how Tailor affects a NN’s accuracy, we train ResNets and QuartzNets of varying depths using our
SkipRemover and SkipShortener algorithms in PyTorch [39]. The ResNets range from 20 to 110 layers and are trained
on the CIFAR-10 [24], CIFAR-100 [24], and SVHN [35] datasets. We also evaluate ResNet50, which has a different skip
connection topology than standard ResNets, on the ImageNet dataset [7]. The QuartzNets span between 29 and 54 layers.
Their structure is determined by the number and lifetimes of their skip connections. For instance, a QuartzNet-10×5 has
10 skip connections that each have a lifetime of 5 sets of layers. We train a QuartzNet-5×5 on the Oxford Nanopore Reads
dataset [42], a DNA basecalling task. We also train a QuartzNet-10×5 on the LibriSpeech dataset [37], an automatic
speech recognition (ASR) task, which converts speech audio to text. ASR tasks are assessed using word error rate (WER),
which measures the percent of words that the model predicted incorrectly. In all of our ResNet and QuartzNet-10×5
training experiments, we set 𝛼 = 3 in Alg. 1, so skip connections are removed or shortened every three epochs. For
QuartzNet-5×5, we set 𝛼 = 1 instead because it trains better this way. For the ResNets, we set G and H in Eq. 3 to
categorical cross entropy and mean-squared error, respectively, and set 𝛽 = 0.35. For the QuartzNets, we set Eq. 3’s
parameters similarly, except for G, which we set to connectionist temporal classification loss, which is used to train
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10 Weng, et al.

Algorithm 1: Hardware-aware Training
1 set 𝑎𝑙𝑡𝑒𝑟 // REMOVE or SHORTEN

2 let 𝛼 = how often to modify a skip connection
3 teacher = pre-trained model
4 student = pre-trained model
5 let current-skip = student’s first skip connection from the input side
6 let current-layers = all layers skipped by current-skip
7 Function SkipRemover(current-skip):

// see Fig. 4a

8 remove current-skip
9 return student model’s next skip connection from the input side

10 Function SkipShortener(current-skip, current-layers):
// see Fig. 4b

11 Split current-skip into 𝑙𝑒𝑛(current-layers) skip connections
12 current-skip = student model’s next skip connection from the input side
13 current-layers = student’s next layers skipped by the new current-skip
14 return current-skip, current-layers
15 for 𝑖 in epochs do
16 if 𝑖 ≠ 0 and 𝑖 mod 𝛼 = 0 then
17 if 𝑎𝑙𝑡𝑒𝑟 == REMOVE then

18 current-skip = SkipRemover(current-skip)
19 else if 𝑎𝑙𝑡𝑒𝑟 == SHORTEN then

20 current-skip, current-layers = SkipShortener(current-skip, current-layers)
21 end

22 train student using Eq. 3
23 end

24 save the student model

difficult tasks involving sequence alignment (like DNA basecalling and ASR). Note that in our training results, “Baseline”
refers to the unmodified NN counterpart with conventional skip connections.

Fig. 5 shows that SkipRemover works well for ResNet-44 and smaller, at times even outperforming its baseline
(traditional skip connection model). However, its accuracy drops as the number of layers increases. This indicates that
shallower NNs do not need skip connections for these classification tasks, but they become more necessary for deeper
networks. SkipShortener mostly outperforms the baseline on all three datasets, even on deep models.

4.1.1 Ablation Studies. We also perform ablation studies in which we remove key parts of Tailor to understand
why they are critical to minimizing accuracy loss. One key part of SkipRemover/SkipShortener is the dynamic
skip connection removal/shortening that occurs every few epochs during training under KD. We thus take away this
dynamic model alteration by first altering the NNs to have either no skip connections or shortened skip connections.
These pre-modified NNs are then trained under KD only. Another key part of SkipRemover and SkipShortener is KD.
We evaluate how skip-less and shortened-skip NNs perform without KD, training from randomly initialized weights
(i.e., from scratch).

For ResNets trained on CIFAR-10, SkipRemover and SkipShortener usually yield better results than either normal
training or using KD-only on a statically pre-modified network on CIFAR-10 per Fig. 6a and Fig. 6b. The difference
Manuscript submitted to ACM
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(a) CIFAR-10 (b) CIFAR-100 (c) SVHN

Fig. 5. Top-1 accuracy of SkipRemover and SkipShortener ResNets of increasing depth on various datasets. “Baseline” refers to an

unmodified ResNet with conventional skip connections.

(a) Skip-less models (b) Shortened-skip models

Fig. 6. Accuracy results for ResNets whose skip connections are all altered before training (apart from SkipRemover and SkipShortener)

on CIFAR-10. “From scratch” means training with randomly initialized weights without KD. “KD only” means training without

dynamic skip alterations.

Table 1. Top-1 accuracy of ResNet-50 on the ImageNet dataset.
∗
RD [25] only removes 82% of the skip connections.

Model Accuracy (%)

ResNet-50 75.85
No skips (from scratch) 58.36
No skips (KD only) 69.40
Residual distillation (RD)∗ [25] 76.08
RepVGG-A2 [8] 76.48
SkipRemover 75.36

between all of the approaches in the figures is minimal for smaller models, but it becomes more apparent as NN depth
increases. For instance, skip-less ResNet-110 under regular training yields an accuracy of 26.02% versus SkipRemover,
which achieves an accuracy of 90.68%, a 64.66% difference. SkipRemover marginally outperforms regular training and
KD-only on smaller skip-less models, but performs much better in comparison as the networks deepen. SkipShortener
also generally performs better than the other two approaches for shortened skip models. Regular training mostly lags
behind both KD and SkipShortener for shortened skip models.

For ResNet-50 on ImageNet, we only apply SkipRemover because it uses an irregular skip connection architecture
known as a “bottleneck block” to reduce the number of parameters [17]. This block has a skip connection spanning
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(a) ResNet-50 block (b) Tailor (c) RD [25] (d) RepVGG [8]

Fig. 7. Comparing Tailor’s ResNet-50 skip removal method with residual distillation (RD) [25] and RepVGG [8]. The dashed portions

are only used during training and are later removed, leaving the final inference NNs, indicated by bolder lines. Note that Tailor (b)

removes skip connections from a pretrained ResNet-50 (a). RD does the same but uses a modified KD method that does not remove

the 1×1 convolution addition (c). RepVGG starts training from a different NN topology altogether (d).

three layers: a 1×1 convolution, then a 3×3 convolution, then another 1×1 convolution (Fig. 7a). This irregular topology
is not optimal for SkipShortener because it requires the majority of the shortened skip connections to pass through
extra downsampling 1×1 convolutions to match the activation tensor shapes, significantly increasing the number of
model parameters. As such, for ResNets with bottleneck blocks, like ResNet-50, we recommend SkipRemover. As seen
in Tab. 1, SkipRemover incurs a 0.49% accuracy loss compared to the traditional ResNet-50. Compared to prior work
such as RD [25] and RepVGG [8], SkipRemover has slightly lower accuracy (at most 1.12% accuracy difference)2.

Nevertheless, SkipRemover has two advantages compared with these methods. First, SkipRemover removes all skip
connections from ResNet-50, whereas RD only removes 82% of them. RD does not remove the 1×1 convolution addition
used for downsampling (see Fig. 7c), which is particularly detrimental. In our experiments on hls4ml architectures,
Vivado HLS estimates that ResNet-50’s large 1×1 convolution skip connection consumes as many resources as the
layers it skips over, effectively doubling resource consumption for that skip connection block. Although Vivado HLS
has a tendency to overestimate the actual place-and-route (P&R) resource utilization, these estimates demonstrate
that performing the 1×1 convolution is a nontrivial task that significantly affects resource consumption. Second,
SkipRemover removes the skip connections from an existing pre-trained model, whereas RepVGG requires developers
to adopt a newmodel topology (see Fig. 7d). If developers do not already have a model on hand, RepVGG is a better option.
However, if developers already have a ResNet trained for their specific dataset, it is advantageous to use SkipRemover if

2Ding et al [8] introduce RepVGG models of varying depths. We compare against RepVGG-A2 because it is about the same size as ResNet-50.
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Table 2. Top-1 accuracy of QuartzNet-5×5 on the Oxford Nanopore Reads dataset.

Model Accuracy (%)

QuartzNet-5×5 95.107
No skips (from scratch) 94.475
No skips (KD only) 94.863
SkipRemover 95.086

Shortened skips (from scratch) 95.019
Shortened skips (KD only) 95.016
SkipShortener 94.902

Table 3. Word error rate (WER) of QuartzNet-10×5 on LibriSpeech dataset. This includes clear (“dev-clean”) and noisy (“dev-other”)

audio samples. “—” indicates the model failed to converge.

Model

dev-clean

WER (%)

dev-other

WER (%)

QuartzNet-10×5 5.56 16.63
No skips (from scratch) — —
No skips (KD only) — —
SkipRemover — —
Shortened skips (from scratch) 6.40 17.68

Shortened skips (KD only) 7.14 19.95
SkipShortener 7.86 21.16

they can afford a small accuracy loss. This prevents starting from scratch with RepVGG, which could require extensive
hyperparameter tuning. Even finetuning a pre-trained RepVGG model to a new dataset using transfer learning is time
consuming, as it is unclear which of the many methods [36, 47, 52] would work best. Instead, SkipRemover allows
developers to take advantage of their existing work and achieve a more resource-efficient model.

For QuartzNet-5×5, the SkipRemover model performs the best—only 0.021% from the baseline (Tab. 2). These results
all have high accuracy likely because DNA basecalling is an easier sequence alignment task (only four classes) and
the model is more than sufficient. For a harder ASR task like LibriSpeech, QuartzNet-10×5 fails to converge without
skip connections. Since the model must translate audio samples to text, the audio samples can be noisy, making
ASR harder. LibriSpeech, in fact, divides its test samples into “dev-clean” for clearly spoken samples and “dev-other”
for noisy samples. With such a challenging task, it is not possible to remove the skip connections (like with DNA
basecalling). Nonetheless, QuartzNet-10×5 performs well under SkipShortener, as it is within 2% of the baseline WER
(Tab. 3). For both QuartzNet-5×5 and -10×5, the best performing shortened skip connection model was one whose skip
connections were shortened first and then trained from scratch. While SkipShortener has minimal accuracy loss for
both QuartzNets, we recommend training a model with shortened skip connections from scratch for this task.

Overall, SkipRemover and SkipShortener perform better than either training on randomly initialized weights or
training with KD only. For harder tasks like ASR though, training a shortened-skip model from scratch is a better choice.
Nevertheless, the success of SkipRemover and SkipShortener lies in augmenting KD with dynamic skip alterations.

4.2 Hardware Results

We first quantize ResNets ranging from 20 to 56 layers deep to see how Tailor’s accuracy fares under reduced precision.
We then evaluate Tailor’s effects on hardware resources and latency by performing a case study on ResNet-20-style skip
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connections implemented using the hls4ml architecture, i.e., the designs illustrated in Fig. 2. We select this style of skip
connection because it is the fundamental building block of ResNets that range from 20 to 110 layers. In our case study,
we vary the bit precision and number of filters to see how Tailor scales up. Based on how Tailor’s resource reductions
scale, designers can understand how Tailor extrapolates to their own hardware designs. We report latency as well
as P&R resource results on the Alveo U200 FPGA accelerator card (part no. xcu200-fsgd2104-2-e). For end-to-end
application results, we evaluate the benefits of Tailor on two different styles of CNN architectures. The first uses the
hls4ml tool to generate architectures. The second is the Reconfigurable DNN Engine—a 2D array of processing elements.
Both styles of architectures are described in Sec. 3.1.

4.2.1 Quantization. The parameters of a hardware-accelerated NN are typically quantized from floating-point to
fixed-point precision [6, 33, 48].

20 32 44 56
ResNet Depth

20

40

60

80

Ac
cu

ra
cy

 (%
)

Traditional 8-bit
SkipRemover 8-bit
SkipShortener 8-bit
Traditional 4-bit
SkipRemover 4-bit
SkipShortener 4-bit

Fig. 8. Quantized accuracy results for 8-bit and 4-bit fixed point using Brevitas.

Quantizing deep NNs with minimal accuracy loss is a largely manual and time-consuming task [14]. We use
Brevitas [38] to quantize our SkipRemover and SkipShortener ResNets with depths of 20 to 56 from 32-bit floating-
point (float32) to 8-bit and 4-bit fixed-point precision on the CIFAR-10 dataset. We modified Tailor’s hardware-aware
training algorithm where the teacher continues to use floating-point representation whereas the student is quantized.
This results in the student undergoing quantization-aware training. In Fig. 8, we find that SkipShortener ResNets
consistently outperform traditional ResNets under Brevitas quantization-aware training by 0.5%. SkipRemover ResNets
start to suffer from the lack of bits as they get deeper, with accuracy dropping to random classification for ResNet-56.
But, Brevitas is only one of dozens of ways to quantize neural networks [9, 10, 14, 33, 46], so it may be the case that
a SkipRemover ResNet-56 requires a different method of quantization to achieve a quantized accuracy similar to its
float32 counterpart.

4.2.2 FPGA Evaluation. Our first study looks solely at one ResNet block. The second study performs an end-to-end
implementation of ResNet8 and ResNet50.

For our case study on a ResNet skip connection blocks (see designs in Fig. 2), we evaluate Tailor at ap_fixed<8,3>
and ap_fixed<16,6> precisions using the hls4ml architecture. Under both bitwidths, we increase the number of filters
for all designs from 16 to 32 to 64. This way, we can understand how Tailor scales with the number of filters. We use
hls4ml [12] to translate these hardware designs into Vivado HLS, targeting the Alveo U200 FPGA accelerator card.
hls4ml uses task-level pipelining (i.e., HLS dataflow) for each NN layer, or small group of layers and streams data
between dataflow stages using FIFOs. hls4ml also exposes a knob known as reuse factor, which determines how often
multipliers are reused in a design. To fairly compare our designs as the number of filters increases, we fix the reuse
Manuscript submitted to ACM
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Table 4. Place-and-route resource utilization of a skip connection block as the number of filters increases for ⟨8, 3⟩ precision on an

Alveo U200. SkipRemover reduces LUT and FF usage, whereas SkipShortener trades an increase in FFs for a decrease in LUTs. T =

Traditional, R = SkipRemover, S = SkipShortener.

# filters

LUT FF DSP BRAM

T R S T R S T/R/S T/R/S
16 9,984 8,482 9,764 8,654 7,841 8,916 0 18.5
32 19,566 16,512 18,993 16,183 14,506 16,489 0 36.5
64 42,688 36,882 42,121 31,124 27,815 31,850 0 82

(a) LUT (b) FF

Fig. 9. Percent resource utilization of a ⟨8, 3⟩ skip connection block at various filter sizes on an Alveo U200. DSPs and BRAMs remain

the same across the three designs, so they are not shown. SkipRemover and SkipShortener LUT and FF reductions scale linearly, as

expected.

(a) LUT (b) FF

Fig. 10. Resource utilization normalized to the traditional design of a ⟨8, 3⟩ skip connection block at various filter sizes. DSPs and

BRAMs remain the same across the three designs, so they are not shown. SkipRemover and SkipShortener LUT and FF reductions

scale proportionally, as expected.

factor to 576. We then synthesize our designs to report P&R resource utilization as well as co-simulation latency results.
Lastly, we run the designs on the U200 to verify correctness.

Under 8-bit precision, we find that both SkipRemover and SkipShortener reduce resources. Tab. 4 summarizes our
P&R results. Since our model uses 8-bit precision, we see that all of our models exhibit low DSP usage and higher LUT
and FF utilization. This is because Vivado HLS maps multiplications on datatypes that are less than 10 bits to LUTs
instead of DSPs, as noted by [2, 48]. It is possible to pack two 8-bit weights into a DSP [13], but this is out of scope and
orthogonal to the effects Tailor has on hardware. Furthermore, all of the traditional and Tailor designs use the same
amount of BRAMs with respect to the number of filters because here the BRAMs are used solely for on-chip weight
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storage, which does not differ across design. Nonetheless, SkipRemover decreases LUT usage by up to 16% and FF
usage by up to 11% compared with the traditional design (Fig. 10). These resource savings represent the extra hardware
needed to implement a skip connection and subsequently the resources saved. As previously mentioned in Sec. 3.1,
the extra dataflow stages that carry out a skip connection are no longer necessary. More importantly, SkipRemover’s
savings scale linearly as the number of filters increases from 16 to 64 (Fig. 9). SkipShortener’s resource reductions
present a tradeoff, increasing FFs by 2% in exchange for decreasing LUTs by 3% (Fig. 10). SkipShortener lowers LUT
utilization because the lifespan of each skip connection lasts only one dataflow stage instead of the traditional two.
This means we need not spend extra logic on the dataflow stages needed to copy the skip connections to buffers that
last longer than one stage. However, since the shortened skip connection now fully resides in a single dataflow stage
(previously described in Fig. 2c), this requires some extra FFs. This represents the tradeoff SkipShortener provides
at 8-bit precision: some extra FFs for fewer LUTs. These resource tradeoffs also scale linearly as the number of filters
scales up, as seen in Fig. 9.

We find more dramatic resource reductions when we look at our 16-bit designs. Tab. 5 summarizes our P&R results.
In contrast with our 8-bit designs, at higher precision, our designs rely more on DSPs and BRAMs. This time the BRAMs
are used not only to store weights on chip but also to implement the FIFOs that connect the dataflow stages. Therefore,
as we tailor the dataflow stages according to each design (e.g., SkipRemover or SkipShortener), the BRAMs now also
reflect these changes. At its best, SkipRemover lowers LUTs by 11%, FFs by 13%, and BRAMs by 13%. Without a skip
connection to implement, SkipRemover uses fewer resources than the traditional design. The DSPs remains unchanged
because they are used solely for the convolutional layers’ multiplications and not the skip connection, which is also the
case for SkipShortener.

Similar to the 8-bit designs, SkipShortener presents a resource tradeoff—this time trading a small increase in LUTs
(at most 1%) for decreases in FFs and BRAMs. In the best case, SkipShortener reduces LUTs by 1%, FFs by 4%, and
BRAMs by 34%. While SkipShortener uses fewer LUTs than the traditional case for 32 filters, SkipShortener pays
about a 1% increase in LUTs for 16 and 64 filters in exchange for decreases in FFs and BRAMs. This small disparity is
likely an artifact of the heuristics Vivado P&R uses to allocate resources. Again, these resource tradeoffs and savings
are possible because the shortened skip connections can be implemented within a single dataflow stage due to its
reduced lifetime. Tab. 6 shows that the lifetime of each shortened skip connection is a little less than half the lifetime
of the traditional one. With shorter lifetimes, we find that the SkipShortener’s skip connections’ FIFOs can now
be implemented using shift registers instead of BRAMs, which is what the traditional design still uses (Tab. 6). Shift
registers are much more efficient memories compared to BRAMs. As such, it is advantageous to hardware designers
to consider how SkipShortener provides opportunity to implement skip connections with a more efficient memory
architecture like shift registers. This leads to 30–34% fewer BRAMs than the traditional design, even as the number
of filters scales up. While in this case SkipShortener uses fewer BRAMs than SkipRemover does, SkipShortener
offsets this difference by using more FFs than SkipRemover does. For both SkipRemover and SkipShortener, resource
utilization (and the associated reductions) scale linearly, as seen in Fig. 11.

Tailor does not affect latency for hls4ml architectures. As seen in Tab. 7, for each number of filters, all designs exhibit
the same latency, according to co-simulation on an Alveo U200. The slight decrease in latency as the number of filters
scales is due to an increase in DSPs and a higher degree of parallelism. As discussed in Sec. 3.1, hls4ml designs pipeline
their tasks. The convolutions’ multiplication tasks dominate the overall dataflow latency. The tasks that SkipRemover
eliminates and SkipShortener implements more efficiently, namely the skip connection cloning and addition stages,
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Table 5. Place-and-route resource utilization of a skip connection block as the number of filters increases for ⟨16, 6⟩ precision on an

Alveo U200. SkipRemover reduces resources across the board, whereas SkipShortener trades an increase in LUTs for a decrease in FFs

and BRAMs. T = Traditional, R = SkipRemover, S = SkipShortener.

# filters

LUT FF DSP BRAM

T R S T R S T/R/S T R S
16 14,733 13,320 14,933 17,044 14,935 16,438 12 60.5 52.5 42.5
32 28,498 25,330 28,184 32,923 28,747 31,764 48 124 108 84.5
64 55,699 50,074 55,720 64,564 56,263 62,252 192 267.5 235.5 203.5

(a) LUT (b) FF (c) BRAM

Fig. 11. Percent resource utilization of a ⟨16, 6⟩ skip connection block at various filter sizes on an Alveo U200. SkipRemover and

SkipShortener resource reductions scale linearly, as expected.

Fig. 12. Resource utilization normalized to the traditional design of a ⟨16, 6⟩ skip connection block at various filter sizes. The

SkipRemover and SkipShortener resource savings scale proportionally as the number of filters scales up.

Table 6. FIFO depths of a single skip connection hardware design at 16-bit precision. SkipRemover has no skip connections, so it has

no skip connection FIFOs.

Hardware Design FIFO Depth FIFO Implementation
Traditional 69 BRAM
SkipRemover 0 —
SkipShortener 1st skip 33 Shift Register
SkipShortener 2nd skip 34 Shift Register

have significantly lower latency than the convolutions and are thus not on the critical path. The throughput thus
remains the same.

By shortening skip connections, we reduce their lifespans, which provides an opportunity for simplifying their
hardware implementation specifically for hls4ml architectures. However, shortening skip connections is not beneficial
for all architectures. As seen in Tab. 8, shortening skip connections is worse for both GPU and CPU because doing so
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Table 7. Latency co-simulation results of a skip connection block at ⟨8, 3⟩ and ⟨16, 6⟩ precision. The latency for the Traditional,

SkipRemover, and SkipShortener designs are the same for each number of filters because they all rely on task-level pipelining that

reuses multipliers at the same rate (576×).

# filters

Latency (ms)
Traditional/SkipRemover/SkipShortener

16 23.38
32 23.05
64 22.39

increases off-chip memory accesses. These extra accesses lower throughput by 5% on GPU and 2% on CPU. On FPGAs
with hls4ml architectures, however, we can modify the architecture to take advantage of shortened skip connections,
reducing resource consumption without negatively affecting throughput (Tab. 8).

Table 8. Normalized throughput of a ResNet20. The GPU and CPU both were run with batch size = 64, whereas FPGA was run

with batch size = 1. Throughput is normalized column-wise to the top entry. GPU = 1080Ti. CPU = AMD Ryzen 9 5900X. FPGA

= Alveo U200. SkipRemover increases GPU and CPU throughput because it decreases off-chip memory accesses. SkipShortener,

however, decreases GPU and CPU throughput because it increases off-chip memory accesses. For a fully on-chip, dataflowed FPGA

architecture, neither SkipRemover nor SkipShortener have any effect on throughput.

Model GPU CPU FPGA

Traditional skip connections 1× 1× 1×
SkipRemover 1.11× 1.03× 1×
SkipShortener 0.95× 0.98× 1×

We performed two studies to understand how Tailor performs for end-to-end implementations of ResNet models.
The first is ResNet8 from MLPerf Tiny that was designed in hls4ml [3, 5]. The second is ResNet50 implemented on the
Reconfigurable DNN architecture.

The ResNet8 model targets the Alveo U200. It uses 16-bit fixed-point representation with six integer bits. The reuse
factor for the layers was hand-tuned to 72, which directly affects the resource usage and latency of the layers. The reuse
factor is one of the more important knobs for design space exploration in hls4ml and is often hand-tuned to maximize
resource usage of the platform while optimizing the overall network performance.

Table 9. MLPerf Tiny ResNet8 model implemented using hls4ml with skip connection, with shortened skip connections, and without

skip connections.

With Skip Connections Shortened Skip Connections Without Skip Connections

Accuracy (%) 87.39 87.93 87.62
LUTs 158609 165699 144206
FFs 196012 204914 181768
DSP48s 1083 1083 1043
BRAMs 173 158.5 156

Tab. 9 shows the resource usage results for the ResNet8 model with skip connections, with shortened skip connections,
and without skip connections. Removing the skip connections has clear benefits across all the resources. Shortening the
skip connections reduces BRAMs while increasing LUTs and FFs. Both the shortened skip connections and the removed
skip connections models show improved accuracy over traditional skip connections. In all cases, the latency remains
the same, requiring 304,697 cycles running at 100 MHz (approximately 3ms/inference).
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Our second full model case study implemented a Reconfigurable DNN architecture on the ZCU102 development
board which contains a Zynq UltraScale+ MPSoC. The Reconfigurable DNN array is configured to have 7 rows × 96
columns for a total of 672 of processing elements (PEs) that support 8-bit inputs and 8-bit weights. Each PE contains a
multiplier and an accumulator implemented using DSPs on FPGA fabric. Input pixels and weights are streamed into the
engine as AXI-Stream packets. Images are processed in batches of 7, to increase the reuse and reduce memory accesses.
The Reconfigurable DNN architecture was synthesized, placed & routed at a clock frequency of 250 MHz on a ZCU102.
The architecture with 7 × 96 = 672 PEs used 49057 LUTs (18%), 81446 flip flops (15%), 114 BRAMs (13%), and 1344 DSPs
(53%) on the FPGA fabric.

We implemented a ResNet50 model with and without skip connections on a 672-element Reconfigurable DNN
architecture running on the ZCU102. Tab. 10 shows the performance of ResNet50. Removing the skip connections
largely benefits the performance due to the removal of the 1× 1 convolution blocks. Removing the skip connections also
removes those layers, which no longer need to be scheduled on the PE array. The results are much better performance
in terms of all metrics: approximately 30% increases in FPS and latency and approximately 45% decrease in memory
accesses.

Table 10. ResNet50 performance with and without skip connections on the Reconfigurable DNN architecture. The architecture has

672 processing elements and runs on the ZCU102 development board at 250 MHz.

With skip connections Without skip connections

Accuracy (%) 75.85 75.36
Frames per second (FPS) 28.69 37.47
Time per image (s) 0.035 0.027
Latency (s) 0.244 0.187
Memory access per image (Mb) 140.95 92.71

5 DISCUSSION

With these results in hand, designers can now consider which accuracy versus resource tradeoffs they are willing to
make during the hardware-software codesign process.

SkipRemover provides minimal accuracy loss while reducing resource consumption and increasing performance—a
win-win scenario. As seen in Sec. 4.1, SkipRemover ResNet-50 is only 0.49% less accurate than the baseline on ImageNet.
But, SkipRemover is less effective on deeper NNs (such as QuartzNet-10×5 and ResNet-110). In fact, QuartzNet-10×5 fails
to converge when trained under SkipRemover. For such deep NNs trained on difficult tasks like ASR, skip connections
are instrumental in training convergence [17]. By removing skip connections, we expect and see a degradation in
accuracy for deeper NNs. This degradation is not as drastic for other tasks. For instance, ResNet-110 still converges
when trained using SkipRemover, but it is 3.72% less accurate on CIFAR-10 and 9.61% less accurate on CIFAR-100,
compared to the original baseline model. We propose this tradeoff between NN size and SkipRemover performance as
an additional consideration during design space exploration. In response, SkipShortener is more suitable for deeper
NNs when SkipRemover is less effective. SkipShortenermaintains accuracy comparable to its original skip connection
models and reduces resource requirements by up to 34% compared to the traditional skip connection model.

Based on our hls4ml evaluation, designers can extrapolate to their own designs because, as we have shown in Fig. 9
and Fig. 11, the resource usage and savings scale linearly as the number of filters grows. We have also shown that
at the higher 16-bit precision, Tailor provides significant resource reductions, so if designers need more precision,
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Tailor’s savings will follow. If they need lower 8-bit precision, SkipRemover still manages to lower the 8-bit designs’
LUTs by 16% and FFs by 11%. Even SkipShortener decreases LUTs by 3% despite a 2% increase in FFs, though these
smaller resource savings are offset by its overall higher accuracy performance compared with SkipRemover. As a result,
it is up to the designer to consider how to best apply Tailor’s codesign methods given their accuracy and resource
requirements.

5.1 Theoretical Understanding

Prior work investigated why skip connections are so helpful to ResNets. Veit et al [45] argue that ResNets behave like
ensembles of smaller subnetworks that vary in depth and allow the NN to train and converge more easily. Li et al [26] and
Yao et al [49] show that introducing skip connections make the NN loss landscape to be much smoother and have less
nonconvexity. They show that naively removing these skip connections causes an explosion of nonconvexity in the loss
landscape, which makes training significantly more difficult. We confirm these results in our ablation studies (Sec. 4.1),
as accuracy indeed drops when skip connections are removed naively. With both KD and SkipRemover, we see an
improvement in accuracy. Since the student is trying to mimic the teacher’s outputs, it is possible that the teacher’s
outputs guide the student in such a way that prevents the loss landscape from becoming less smooth. Theoretical work
from Lin et al [27] has proven that a ResNet with one-neuron hidden layers is a universal approximator. This work
suggests that adding more neurons to the hidden layers creates an over-parameterized ResNet. Since stochastic gradient
descent performs better in the presence of over-parameterization, having more neurons per hidden layer increases
training efficiency, making it easier to converge. This work also argues that a ResNet is essentially a sparse version of a
fully connected NN because the identity skip connections create simpler paths within the ResNet, which was similarly
posited by Lin et al [27]. Given that CNNs and ResNets have both been proven to be universal approximators [27, 40],
this implies that there exists a set of parameters for a CNN that can mimic a ResNet such that they equal the same
function. It is mainly easier to find a well performing ResNet because Lin et al [27] showed that one-neuron hidden
layers is sufficient for a ResNet to be a universal approximator.

5.2 Future Work

In our work, Tailor has taken removing and shortening skip connections to their extremes: it either fully removes or
fully shortens all the skip connections in a NN. It would be worthwhile to understand the accuracy versus resource
utilization tradeoff under less extreme cases, e.g., removing only half of the skip connections. It would also be interesting
to mix SkipRemover and SkipShortener together to try and recover accuracy in the instances when SkipRemover fails.
These approaches may help address SkipRemover’s scalability issues and strike a balance between SkipShortener’s
high accuracy and SkipRemover’s resource savings and performance improvements.

6 CONCLUSION

Tailor introduces two new methods, SkipRemover and SkipShortener, that alters NNs with skip connections
dynamically during retraining to fit better on hardware, achieving resource-efficient inference with minimal to no loss
in accuracy. With SkipRemover, NNs no longer need to rely on skip connections for high accuracy during inference.
With SkipShortener, we retrain NNs to use shorter skip connections with minimal to no loss in accuracy. Shortening
skip connections is beneficial for hardware architectures generated by the hls4ml tool as it reduces the skip connection
lifetime. We demonstrate FPGA resource consumption reductions of up to 34% for BRAMs, 13% for FFs, and 16% for LUTs.
We show that Tailor is also valuable for optimizing 2D PE array architectures. SkipRemover increases performance by
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30% and decreases memory bandwidth by 45%. Designers can decide which accuracy versus resource tradeoffs offered
by SkipRemover and SkipShortener are suitable to their design requirements. As a result, Tailor is another tool in
the hardware-software codesign toolbox for designers to use when building customized accelerators.
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