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METHODOLOGY

HiTIMED: hierarchical tumor immune 
microenvironment epigenetic deconvolution 
for accurate cell type resolution in the tumor 
microenvironment using tumor-type-specific 
DNA methylation data
Ze Zhang1*  , John K. Wiencke2,3, Karl T. Kelsey4, Devin C. Koestler5, Brock C. Christensen1,6,7† and 
Lucas A. Salas1† 

Abstract 

Background: Cellular compositions of solid tumor microenvironments are heterogeneous, varying across patients 
and tumor types. High-resolution profiling of the tumor microenvironment cell composition is crucial to understand-
ing its biological and clinical implications. Previously, tumor microenvironment gene expression and DNA methyla-
tion-based deconvolution approaches have been shown to deconvolve major cell types. However, existing methods 
lack accuracy and specificity to tumor type and include limited identification of individual cell types.

Results: We employed a novel tumor-type-specific hierarchical model using DNA methylation data to deconvolve 
the tumor microenvironment with high resolution, accuracy, and specificity. The deconvolution algorithm is named 
HiTIMED. Seventeen cell types from three major tumor microenvironment components can be profiled (tumor, 
immune, angiogenic) by HiTIMED, and it provides tumor-type-specific models for twenty carcinoma types. We dem-
onstrate the prognostic significance of cell types that other tumor microenvironment deconvolution methods do not 
capture.

Conclusion: We developed HiTIMED, a DNA methylation-based algorithm, to estimate cell proportions in the tumor 
microenvironment with high resolution and accuracy. HiTIMED deconvolution is amenable to archival biospecimens 
providing high-resolution profiles enabling to study of clinical and biological implications of variation and composi-
tion of the tumor microenvironment.

Keywords: DNA methylation, Deconvolution, Tumor microenvironment, Epigenetics, Cancer, Immune 
microenvironment, Tumor angiogenesis
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Background
Beyond clonally-derived tumor cells, abundant and het-
erogenous cells that harbor these tumor cells consti-
tute the tumor microenvironment (TME) [1]. The TME 
plays an essential role in tumor differentiation, growth, 
and invasion [2]. The TME comprises a spectrum of cell 
types responsible for immune and angiogenic responses 
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[2]. When antitumor immune responses are triggered, 
inflammatory cells populate the TME, including natural 
killer (NK) cells, active cytotoxic CD8 T cells, memory 
CD4 T cells, pro-inflammatory macrophages, and den-
dritic cells (DC). In contrast, a TME that contributes to 
functional evasion of tumor immune response includes 
Foxp3 + regulatory T cells (Tregs), exhausted CD8 T 
cells, inactive macrophages, and myeloid-derived sup-
pressor cells (MDSCs) [1]. Non-tumor stromal cells and 
endothelial cells remodel the angiogenic microenviron-
ment to support tumor growth and invasion [3]. Also, the 
plasticity of epithelial cells plays a critical role in tumor 
progression [4]. The dynamic interactions between tumor 
cells and other cells in their microenvironment can pro-
mote tumor progression [3].

Tumor immune subtypes can be identified based on 
immunological gene expression profiling [5]. Tumors that 
are highly characterized by pro-inflammatory cytokines 
and T cell infiltration, i.e., immunologically hot tumors, 
have a better response rate to immune checkpoint inhibi-
tors compared to immunologically cold tumors, which 
have a relatively low level of immune cell infiltration [6]. 
However, the binary classification of hot and cold tumors 
oversimplifies the broader underlying immune landscape 
in TME. In the angiogenic microenvironment, tumors 
that are inclined to promote endothelial cell proliferation 
by producing vascular endothelial growth factor (VEGF) 
to develop new blood vessels can be targeted by angio-
genesis inhibitors [7], e.g., cancers of the lung, kidney, 
breast, colon, and rectum [8]. Thus, understanding the 
heterogeneity of TME can guide therapy response and 
prognosis [1].

Gene expression and DNA methylation have been used 
to estimate cell composition in complex mixtures and 
include both reference-based and reference-free meth-
ods. CIBERSORT is a prominent reference-based method 
developed for deconvolving immune cell types using 
mRNA expression data [9]. The accuracy of cell composi-
tion estimates using gene expression approaches is lim-
ited by variability in cell-specific gene expression across 
cells and the feature-space of gene expression data. DNA 
methylation is an epigenetic modification associated with 
gene regulation and is essential to lineage specification in 
development to establish and preserve cellular identity 
[10]. There are three notable advantages to reference-
based DNA methylation methods compared with RNA-
based approaches in estimating cell composition. First, 
DNA is more stable than RNA. Second, the covalent 
addition of a methyl group to a cytosine is binary, track-
ing with cell count. Third, using standard measurement 
approaches, the feature space to define reference profiles 
of cell-specific DNA methylation is at least 40-fold that of 
the typical gene expression feature space and can be up 

to 2000-fold higher [11]. We have established and created 
extended libraries for reference-based DNA methylation 
deconvolution that result in improved accuracy and per-
formance for peripheral blood immune cell deconvolu-
tion [12, 13]. Tissue-specific reference-based libraries 
have also been developed to infer cell-type composition 
in the brain, breast, and skin [14, 15].

Initial approaches to deconvolve the TME using DNA 
methylation have been described. MethylCIBERSORT 
and MethylResolver have succeeded in resolving 10 and 
12 cell types, respectively [16, 17]. However, due to the 
complexity and heterogeneity of the cell types in the 
TME, existing methods lack accuracy, specificity, and 
detailed cell types. Both the MethylCIBERSORT and 
MethylResolver methods used data from cancer cell lines 
rather than data from primary cancer cells. This is poten-
tially problematic for deconvolution as cancer cell lines 
harbor additional epigenetic alterations as compared 
to primary tumors. [18]. Also, instead of using organ-
specific epithelial cell type DNA methylation signatures, 
MethylResolver used a universal standard reference for 
tumor purity estimation in all tumor types.

To address the limitations of existing methods and to 
enhance the accuracy and utility of TME deconvolution, 
we developed a novel DNA methylation-based algorithm 
that employs a tumor-type-specific hierarchical model 
and broadens the number of immune cell types that are 
deconvolved. Our method, called Hierarchical Tumor 
Immune Microenvironment Deconvolution (HiTIMED), 
uses deconvolution libraries specific to tumor type, 
identifying the most cell-discriminatory CpG sites for 
each cell type in each tumor type context, resulting in 
12 libraries per tumor type. Our method also organizes 
deconvolution into the three major tumor microenviron-
ment components (tumor, angiogenic, immune), result-
ing in the ability to resolve a total of 17 cell types in the 
TME: tumor, epithelial, endothelial, stromal, basophil, 
eosinophil, neutrophil, monocyte, dendritic cell (DC), B 
naïve (Bnv), B memory (Bmem), CD4T naïve (CD4nv), 
CD4T memory (CD4mem), CD8T naïve (CD8nv), CD8T 
memory (CD8mem), T regulatory (Treg), and natu-
ral killer (NK) cells, in 20 carcinoma types. HiTIMED’s 
ability to resolve tumor cellular composition with high 
resolution promises a better understanding of cell hetero-
geneity in the TME and offers new opportunities to study 
more complex relationships of the TME with etiologic 
exposures, patient outcomes, and response to treatment.

Results
HiTIMED tumor‑type‑specific hierarchical model, library 
development, and cell projection
HiTIMED employs a novel tumor-type-specific hier-
archical model to deconvolve the TME. To develop 
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HiTIMED we used discovery data from 6726 samples 
across 20 types of carcinomas and matched normal or 
normal-adjacent tissue. In addition, 26 samples for three 
angiogenic/non-immune cell types, and 61 samples for 
13 immune cell types were included (Additional file  1: 
Table  S1). Twelve libraries in 6 hierarchical layers were 
optimized for each carcinoma type to estimate cell pro-
portions. The first layer (Library L1) uses a tumor-type-
specific reference library to deconvolve the tumor cell 
fraction from other cell types (Fig.  1). Library L1 was 
developed by identifying the top 1000 most informative 
differentially methylated CpG sites from cancer-normal 
comparisons using the InfiniumPurify pipeline [19]. To 
discern tumor, immune, and angiogenic cells Library L2 
and subsequent libraries were developed using the Mef-
fil package [20], which used limma linear regression with 
empirical Bayes adjustment statistics to reduce meth-
ylation profiles to top 100 cell-type-specific hyper- and 
hypo-methylated CpGs. Then, two reference libraries in 
layer 3 of the hierarchical deconvolution were applied. 
Library L3A discerns the angiogenic microenvironment 
and deconvolves endothelial, epithelial, and stromal cell 
components. Library L3B separates lymphoid and mye-
loid cell fractions in the immune microenvironment. In 
the fourth layer, Library L4A distinguishes granulocytes 
and mononuclear cells under the myeloid lineage, and 
Library L4B separates NK, B, and T cells, in the lym-
phocyte lineage. In the fifth layer, Library L5A discerns 
neutrophils, basophils, and eosinophils, under the granu-
locyte lineage, and Library L5B discriminates monocyte 
and dendritic cells under the mononuclear cell lineage. 
Library L5C differentiates B naïve and B memory cells 
under the B cell lineage, and Library L5D was developed 
to detect CD4T and CD8T cells under the T cell lineage. 
In the sixth layer, Library L6A recognizes CD4T naïve, 
CD4T memory, and T regulatory cells under the CD4T 
lineage, and Library L6B differentiates CD8T naïve and 
CD8T memory under the CD8T lineage.

Cell proportions in the tumor TME were projected 
hierarchically using the above-mentioned Libraries. In 
the first layer, tumor and nontumor proportions were 
predicted by the probability density of methylation lev-
els of Library L1 CpGs using the InfiniumPurify pipe-
line. From the second layer to the sixth layer, Libraries 
L2 to L6B were used in conjunction with the constrained 
projection quadratic programming approach described 
by Houseman et  al. [21] to project the proportions of 

angiogenic and immune cells in the nontumor com-
ponent from the first layer hierarchically by weighting 
the lower layer cell projections to the higher layer cell 
projections. In this manner, we identified 20 sets of 12 
Libraries—one for each type of carcinoma—to optimally 
deconvolve the tumor microenvironment. The HiTIMED 
deconvolution function in the HiTIMED package was 
created to deconvolve the TMEs with a user-specified 
tumor site and layer. The package is available on https:// 
github. com/ Salas Lab/ HiTIM ED.

HiTIMED validation
To validate tumor purity estimates from HiTIMED, we 
compared the HiTIMED projected tumor cell proportion 
with the existing tumor purity estimation methods on 
publicly available tumor data. InfiniumPurify is a meth-
ylation-based and validated method for tumor purity 
prediction [19]. HiTIMED projected tumor proportions 
correlate significantly with the InfiniumPurify predicted 
tumor purities across tumor types (Additional file  2: 
Figure S1). Although highly correlated for most tumor 
types, five tumor types demonstrated correlation coef-
ficient less than 0.5 (cholangiocarcinoma, kidney papil-
lary, pancreatic, stomach, and thyroid carcinoma). To 
further validate our method for those five tumor types, 
we showed that HiTIMED tumor specific library has a 
clearer methylation distinction between tumor and nor-
mal samples compared to the InfiniumPurify’s default 
library for tumor purity estimation (Additional file  2: 
Figure S2). Furthermore, among thyroid carcinomas, we 
observed a cluster of tumors with lower tumor cell pro-
portions from HiTIMED compared with InfiniumPurify. 
The heatmap demonstrated a more similar methylation 
state of the clustered tumors with controls compared to 
other tumors, which was not captured by InfiniumPurify 
(Additional file 2: Figure S3A). Follow-up uncovered that 
the cluster is predominantly composed of non-invasive 
follicular thyroid neoplasm with papillary-like nuclear 
features [22], and non-invasive follicular thyroid tumor 
purity is significantly lower than the invasive papillary 
thyroid carcinoma (Additional file 2: Figure S3B). Several 
tumor purity estimation methods, including those that 
use data sources other than DNA methylation, were com-
pared to HiTIMED. These included methylation-based 
MethylCIBERSORT [17], MethylResolver [16], LUMP 
[23], gene expression-based ESTIMATE [24], somatic 
copy-number-based ABSOLUTE [25], image stain-based 

Fig. 1 Structure of the HiTIMED tumor-type-specific hierarchical model, library development, and cell projection. For each carcinoma type, 12 
libraries in 6 hierarchical layers (Library L1 – Library L6B) were optimized to estimate cell proportions. The first layer uses a tumor-type-specific 
reference library to deconvolve the tumor cell fraction from other cell types (Library L1). The second layer uses a library to separate tumor, 
angiogenic, and immune components (Library L2). Similarly, the third to the six layers use libraries to deconvolve angiogenic and immune cell 
subtypes (Library L3A-L6B)

(See figure on next page.)

https://github.com/SalasLab/HiTIMED
https://github.com/SalasLab/HiTIMED
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Fig. 1 (See legend on previous page.)
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immunohistochemistry IHC [26], and consensus meas-
urement of purity estimations (CPE) [26]. The results 
demonstrated significantly and highly correlated tumor 
cell projections with HiTIMED as compared to other 
established methods (Additional file  2: Figure S4). To 
validate the immune cell projections from HiTIMED, 
we deconvolved 12 immune cell artificial mixture sam-
ples whose ground truth immune composition across 
12 cell types was known (Additional file 1: Table S2). All 
12 immune cells showed a highly significant correlation 
between HiTIMED prediction and ground truth and 
low RMSE. 8 out of 12 cell types showed Pearson’s cor-
relation coefficients (R) over 0.90, and 11 out of 12 cell 
types showed R over 0.80 (Additional file  2: Figure S5). 
Although the scatterplots demonstrated slight under-
prediction for some CD4T cell subsets and slight over-
prediction for some CD8T cell subsets, the HiTIMED 
prediction for total T cells was highly accurate (R = 0.98, 
RMSE = 1.38, Additional file 2: Figure S6).

To validate HiTIMED in angiogenic microenviron-
ment projection, we identified publicly available purified 
epithelial [27] and endothelial cells [28] for HiTIMED 
deconvolution (Additional file  1: Table  S2). In the nor-
mal human intestinal epithelium, HiTIMED predicted on 
average 78.7% epithelial cell (SD = 6.3, Additional file  2: 
Figure S6). In human vein endothelial cells, HiTIMED 
predicted on average 87.6% endothelial cells (SD = 3.6, 
Additional file 2: Figure S7).

HiTIMED deconvolution performance compared 
to the existing methods
To demonstrate the advantages of using HiTIMED to 
deconvolve tumor microenvironment, we compared 
its performance with MethylCIBERSORT and Methyl-
Resolver. HiTIMED encompassed all cells that can be 
captured by MethylCIBERSORT and MethylResolver 
except for macrophage, and offered 8 additional unique 
cell types (Additional file 2: Figure S8A). When compar-
ing the performance of HiTIMED, MethylCIBERSORT, 
and MethylResolver on the 12 immune cell artificial mix-
ture samples for the cell types that can be estimated by all 
three methods, HiTIMED showed the best performance 
with the mean absolute error 3.54% (SD = 3.3) compared 
to MethylCIBERSORT (Mean = 3.64%, SD = 2.4) and 
MethylResolver (Mean = 15.2%, SD = 16.7) (Additional 
file 2: Figure S8B).

HiTIMED deconvolution of twenty types of carcinoma
To further investigate the utility of HiTIMED, we iden-
tified variation in TME cell proportions among 5986 
carcinoma samples from 20 tumor types using DNA 
methylation data from multiple sources, including TCGA 
and GEO. The HiTIMED projected cell proportions for 

each tumor are illustrated in stacked bar plots (Fig.  2) 
and boxplots (Additional file  2: Figure S9). Due to the 
limited sample size for the TCGA ovarian cancer data 
set, additional publicly available samples were pooled 
(Additional file  1: Table  S2). We assessed the variation 
in the immune component of the TME for all tumors, 
and the within-tumor variation across patients in the 
immune component was highest in lung adenocarci-
noma, muscle-invasive bladder carcinoma, kidney clear 
cell carcinoma, head and neck squamous cell carcinoma 
and cervical carcinoma (Additional file  2: Figure S10A). 
Assessing variation in the tumor angiogenic microenvi-
ronment uncovered the highest within-tumor variation 
across patients in prostate, thyroid, stomach, pancreatic, 
and cervical carcinomas (Additional file 2: Figure S10B). 
The results implied potential high variability in immune- 
and angiogenic- related treatment response in those 
tumors.

The association of specific cell type prevalence in TME 
with cancer patient survival is a major area of inter-
est [29]. The high resolution of HiTIMED enables us to 
study cell-type prevalence and survival without poten-
tial confounding by other cell types. We investigated the 
relationship of seven quantitatively prominent and clini-
cally relevant immune and angiogenic cell types in TME 
with patients’ 5-year survival. We tested the association 
of HiTIMED-projected Treg, Bmem, DC, CD8mem, epi-
thelial, endothelial, and stromal cells, respectively, with 
survival using Cox proportional hazard models adjusted 
for age, gender, tumor stage, HiTIMED-projected tumor 
proportion, and other cell-type proportions (Treg, 
Bmem, DC, CD8mem, epithelial, endothelial, stromal) by 
tumor type. Patients were stratified on the median value 
for each cell type. Statistically significant hazard ratios 
(HR) are demonstrated in Additional file 1: Table S3. We 
observed worse 5-year survival outcomes with higher 
than median level endothelial cell proportions in lung 
adenocarcinoma (HR 1.83, 95% CI [1.13, 2.95]), head 
and neck squamous cell carcinoma (HR 1.57, 95% CI 
[1.07,2.29]), and kidney papillary carcinoma (HR: 3.48, 
95% CI [1.27, 9.55]) (Fig. 3). In lung squamous cell carci-
noma, a higher than median level epithelial cell propor-
tion is associated with a worse 5-year survival outcome 
(HR 1.80, 95% CI [1.16, 2.78]) (Fig. 3). For immune cells, 
better 5-year survival outcomes were observed for higher 
than median level DC and CD8mem proportions in blad-
der carcinoma (HR: 0.45, 95% CI [0.28, 0.73]) and lung 
adenocarcinoma (HR: 0.50, 95% CI [0.32, 0.79]) (Fig. 3). 
We compared two Cox models in kidney clear cell renal 
cell carcinoma with and without adjustment for cell types 
for a sensitivity analysis. We observed a higher effect 
estimate for the association of stromal cell prevalence 
and survival, a smaller effect estimate for the similar 
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association of Treg prevalence and survival, and the asso-
ciation of the estimated DC prevalence with survival 
turned from significant to insignificant with survival after 
controlling for additional cell types (Additional file 2: Fig-
ure S11). This clearly suggests that adjusting for cell types 
in survival analysis is crucial for both understanding the 
nature of these cellular interactions and interpreting their 
association with patient outcomes. Additional Kaplan-
Meier survival curves for the significant cell proportion 
associations adjusting for age, gender, and tumor propor-
tion with survival are shown in Additional file 2: Figure 
S12.

Cell profiling in TME can be used to identify tumor 
immune subtypes [30]. Previous research used con-
sensus partition around medoids (PAM) cluster-
ing to classify head and neck cancer immune hot 
and cold tumors based on predicted tumor cell frac-
tions [17]. Similarly, based on the HiTIMED-pro-
jected immune microenvironment compositions, the 
TCGA carcinomas were classified as immune hot or 
cold by higher or lower immune proportion in two 
PAM clusters (Fig.  4A). In the immune hot tumors, 

we observed significantly higher proportions of den-
dritic cells (Δ = 3.28%, p-value = 8.5e-271), B memory 
cells (Δ = 3.39%, p-value < 2.2e-308, CD8 memory 
cells (Δ = 5.42%, p-value < 2.2e-308), and T regula-
tory cells (Δ = 0.87%, p-value = 3.4e-92), compared to 
immune cold tumors after adjusting for age, gender, 
and tumor type (Fig.  4A). We also used the consen-
sus PAM clustering to classify the TCGA carcinomas 
as angiogenic hot or cold based on the HiTIMED-
projected angiogenic microenvironment composi-
tions (Fig.  4B). In the angiogenic hot tumors, we 
observed significantly higher proportions of endothe-
lial cells (Δ = 7.29%, p-value < 2.2e-308), epithelial 
cells (Δ = 4.12%, p-value = 1.3e-221), and stromal 
cells (Δ = 2.97%, p-value < 2.2e-308) adjusting for age, 
gender, and tumor type (Fig.  5B). Cox proportional 
hazard models were applied to interrogate the 5-year 
survival difference between immune/angiogenic hot 
and cold tumors, adjusted for age, gender, and tumor 
stage (Fig.  4B). Worse 5-year survival outcomes were 
observed for angiogenic hot tumors in the head and 
neck squamous cell carcinoma (HR 1.41, 95% CI [1.05, 

Fig. 2 Cell composition differs substantially and captures sample heterogeneity using HiTIMED projected proportions. Seventeen cell types were 
captured for each sample by tumor type
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1.90]), stomach adenocarcinoma (HR: 1.83, 95% CI 
[1.29, 2.59]), and thyroid carcinoma (HR 4.83, 95% CI 
[1.33, 17.47]) (Fig.  5). Four groups of tumor clusters 
were generated by combining the immune and angio-
genic hot and cold classification (Additional file 2: Fig-
ure S13A). Significantly differential survival outcomes 
were observed in clear cell renal cell carcinoma, thy-
roid carcinoma, stomach carcinoma, and cervical car-
cinoma across four clusters (Additional file  2: Figure 
S13B). The UMAPs demonstrated explicit tumor clus-
tering by immune and angiogenic hot and cold sub-
types (Fig. 6).

According to recent immunogenomic landscape 
analyses that leveraged multi-component genome-scale 
data sets, TCGA tumors were classified into six major 
immune subtypes, i.e., C1: wound healing, C2: IFN-γ 
dominant, C3: inflammatory, C4: lymphocyte depleted, 
C5: immunologically quiet, C6: TGF-β dominant [30]. 
HiTIMED deconvolution showed the lowest levels of 
immune cells in the C4: lymphocyte depleted and C5: 
immunologically quiet tumors and the highest levels 
of immune cells in C2: IFN-γ dominant and C6: TGF-β 
dominant. (Additional file  2: Figure S14A). A Higher 
resolution deconvolution with HiTIMED revealed a 
significantly higher DC proportion (p-value = 1.81e-
08) and lower CD8mem proportion in C6 TGF-β 

dominant compared to C2 IFN-γ dominant tumors 
(p-value = 0.016, Additional file 2: Figure S14B).

Cell‑independent tumor DNA methylation alterations 
with HiTIMED cell projection in colon cancer
Epigenome-wide association studies (EWAS) have been 
widely employed on cancer to identify altered methyla-
tion patterns between cancerous and normal tissues [31–
34]. However, with the lack of high-resolution profiling of 
cell composition, current studies were incapable of iden-
tifying cell type independent methylation alteration in 
cancer. Now with HiTIMED, we investigated how a com-
plete adjustment for TME cell composition impacts the 
identification of DNA methylation alterations in tumors 
compared with normal adjacent tissue. We tested models 
comparing methylation profiles between colon adenocar-
cinoma and adjacent-normal samples with adjustment 
for age and gender and with or without adjusting for 
HiTIMED-projected cell proportions. Adjusting for age, 
gender, and eight of the most prevalent cell types resulted 
in a dramatic attenuation of identified CpGs with sig-
nificant differential methylation in tumor versus normal 
tissue (Δ > 0.3, FDR < 0.01) (Fig.  7A). Interestingly, the 
cell-type independent differentially methylated CpGs 
(DMCs) appeared to be more agnostic to the colon can-
cer CIMP subtypes than the DMCs identified from the 

Fig. 3 Tumor microenvironment heterogeneity measured by HiTIMED impacts 5-year survival in cancer patients. Kaplan–Meier survival curves 
with statistically significant hazard ratios from Cox proportion hazard models with age, gender, tumor stage, tumor proportion, and other cell-type 
proportions adjusted by comparing survival in higher than median value (High) to lower than or equal to median group (Low) for B memory, CD8T 
memory, dendritic cell, Tregs, epithelial, endothelial, and stromal cells in pan-cancer survival analyses
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unadjusted models (Fig. 7B). These results provide clear 
utility for isolating tumor-specific DNA methylation 
alterations, which has implications for basic cancer biol-
ogy and developing treatment strategies.

HiTIMED deconvolution and treatment response
To investigate how the TME is associated with treatment 
response, we applied HiTIMED to two publicly available 
data sets. One includes first-line chemotherapy drug-
sensitive and -resistant metastatic colorectal cancers 
(mCRC). The other contains triple-negative breast cancer 
(TNBC) patients with and without recurrence in chem-
otherapy-treated and nonchemotherapy-treated arms 
after locoregional therapy (Additional file  1: Table  S2). 
In mCRC, we observed significant lower levels of den-
dritic cell (Δ = 2.26%, p-value = 0.02), NK cell (Δ = 1.19%, 
p-value = 0.04), basophil (Δ = 0.53%, p-value = 0.01), 
neutrophil (Δ = 1.25%, p-value = 0.03), and a significantly 
higher tumor proportion (Δ = 7.74%, p-value = 0.03), in 
FOLFOX or FOLFIRI drug-sensitive patients compared 

to drug-resistant patients (Additional file  2: Figure 
S15). In TNBC, significantly lower levels of B memory 
cells and CD8T memory cells were observed in relaps-
ing tumors in both the chemotherapy treatment arm 
(Bmem: Δ = 0.99%, p-value = 0.04; CD8mem: Δ = 2.18%, 
p-value = 0.04) and the nonchemotherapy treatment arm 
(Bmem: Δ = 1.92%, p-value = 0.004; CD8mem: Δ = 2.64%, 
p-value = 0.01) (Additional file 2: Figure S16).

Discussion
Previous gene expression and DNA methylation-based 
deconvolution approaches for TME cell composition 
have had some success for major cell types [16, 17, 35]. 
However, due to the across-tumor-type diversity and 
within-tumor-type heterogeneity of the TME, substantial 
gaps still exist in tumor type specificity, cell projection 
accuracy, and cell-type resolution for TME deconvolu-
tion. Here, we present HiTIMED, optimized to more 
accurately, specifically, and exhaustively deconvolve the 
TME. HiTIMED has three major advantages compared to 

Fig. 4 Immune/angiogenic hot and cold tumors are distinguished using HiTIMED-based PAM clustering. Panel A. Immune hot and cold subtype 
proportions by TCGA tumor type and comparisons of major HiTIMED-projected cells between immune hot and cold tumors. Panel B. Angiogenic 
hot and cold subtype proportions by TCGA tumor type and comparisons of major HiTIMED-projected cells between angiogenic hot and cold 
tumors. Please refer to the Abbreviations section for acronyms
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the existing algorithms: high cell-type resolution, tumor-
specific libraries, and cell-projection accuracy optimiza-
tion. Firstly, HiTIMED provides high-resolution profiling 
of the cell types in TMEs. Seventeen cell types in total 
among 3 TME components (tumor, immune, angiogenic) 
are projected by HiTIMED. In the immune microenvi-
ronment, closely related lymphocyte subtypes, including 
subtypes of CD4T and CD8T cells, and granulocyte sub-
types are captured by HiTIMED. In the angiogenic/non-
immune microenvironment, epithelial, endothelial, and 
stromal cells are profiled by HiTIMED separately as their 
roles in TME could be functionally very different. Fur-
thermore, numerous variables from HiTIMED predicted 
cell types offer more opportunities to study the associa-
tions between TMEs and clinically relevant outcomes. 
For instance, studies have demonstrated CD8mem to 
Treg ratio as an indicator of the immune balance between 
cytotoxic and regulatory immunity, corresponding to the 
immunotherapy response [36–38]. Also, DC to NK ratio 
was studied in a mouse colon cancer model to enhance 
the antitumor effect as DC plays a crucial role in NK cell 

activation [39]. The high resolution of HiTIMED projec-
tion provides novel opportunities to exploit the cellular 
composition of the TME to discern patient prognosis 
and response to therapy. Although it can be argued that 
single-cell RNA sequencing technologies can offer a simi-
lar resolution of cell profiling in TME, DNA methylation-
based deconvolution is immensely more cost-effective, 
less laborious, and is amenable to archival biospecimens 
where cells are no longer intact. Secondly, HiTIMED 
uses DNA methylation signatures that are specific to 
tumor type. Most of the existing methods developed 
a universal reference library for all types of tumors [16, 
40]. Although, it is possible to estimate tumor purity 
with a signature that captures generalizable DNA meth-
ylation changes across all tumor types. The use of tumor-
specific DNA methylation signatures maximizes the 
power of detecting most differentially methylated CpGs 
as tumors are genetically and epigenetically very differ-
ent by tumor type. Although one algorithm has devel-
oped multiple libraries based on tumor type, cell lines 
were used rather than primary tumors [17]. Studies have 

Fig. 5 Angiogenic hot and cold tumors impact 5-year survival curves in head and neck squamous cell carcinoma, thyroid carcinoma, and stomach 
carcinoma. Hazard ratios are from Cox models adjusting for age, gender, and tumor stage
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shown consistently differential DNA methylation profiles 
between cancer cell lines and primary tumor samples [18, 
41]. Finally, HiTIMED optimizes cell projection accuracy 
by employing a novel hierarchical model for deconvolu-
tion. With the high resolution of cell mixture deconvolu-
tion, bias can be generated with inevitable noise for cells 
under similar or the same lineage. The hierarchical model 
enhances the projection of the primary cell types in the 
specific lineage niche in a stepwise manner. For example, 
Library L3A in HiTIMED was designed to target angio-
genic microenvironment deconvolution. As a result, the 
library collapsed all immune cells into one group but 
separated epithelial, endothelial, and stromal cells for 
optimal discernment. Although tumor purity and major 
immune cells were validated for accuracy in the previ-
ously existing methods, unlike HiTIMED, extensive 
deconvolution of immune cell types has not been vali-
dated in other methods [16, 17].

Understanding the TME with a standardized and cost-
effective approach enables precision medicine. Studies 
have demonstrated TME’s association with chemo- and 
immunotherapy responses and prognosis [1, 42, 43]. 
The balance between cytotoxic and regulatory immunity 
dictates tumor behavior in the immune microenviron-
ment [36]. When the balance favors cytotoxic immunity, 
tumor elimination is promoted. On the contrary, tumor 
escape is facilitated when the balance tips toward regu-
latory immunity. CD8T cells are one of the cytotoxic 
representatives, whereas Tregs are a proxy for regula-
tory immunity [36]. Studies have shown the CD8T to 
Treg ratio as a significant biomarker for chemo- and 
immunotherapy responses [36, 38]. Our analyses with 
HiTIMED on TCGA showed better 5-year survival rates 
with higher CD8T memory cell levels in lung adenocarci-
noma and better long-term survival in liver hepatocellu-
lar carcinoma, head and neck squamous cell carcinoma, 

Fig. 6 Independently of the tumor type TCGA samples can be classified by HiTIMED immune hot and cold subtypes, angiogenic hot and cold 
subtypes, and immune and angiogenic hot and cold subtypes. Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) 
clustering was used to classify the samples based on the HiTIMED TME cell composition, colored by tumor type and the angiogenic/immune 
classification. Please refer to the Abbreviations section for acronyms
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Fig. 7 EWAS output comparisons across three models. Panel A. Model 1 adjusted for age and gender. Model 2 adjusted for age, gender, and 
HiTIMED-projected tumor purity. Model 3 adjusted for age, gender, HiTIMED-projected tumor purity, DC, CD8mem, Bmem, Treg, epithelial, 
endothelial, and stromal cell proportions. Delta betas larger than 0.3 and FDR smaller than 0.01 were used as the cut-off for statistically significant 
DMC identification. Panel B. Heatmap with Manhattan distance clustering and colon cancer CIMP subtypes colored were generated per model
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and endocervical adenocarcinoma, which are consistent 
with its cytotoxic role in anti-tumoral activities. In kid-
ney clear cell renal cell carcinoma, a higher level of Treg 
is associated with a worse survival outcome, indicat-
ing its role in immunosuppression [36]. Interestingly, in 
endometrial carcinoma, we observed significantly better 
survival with a higher level of Treg. This finding is con-
sistent with a previous report on Treg being beneficial 
for survival in endometrial carcinoma [44]. The impact 
of Treg in cancer survival varies greatly by tumor site, 
suggesting differential physiological functions and roles 
of Tregs in different tumor types [45]. Based on TME 
composition, immune hot tumors are defined as tumors 
with a high level of immune cell infiltration and, thus, 
more likely to respond to immunotherapy [6, 42]. In our 
analysis, the unsupervised dichotomous classification of 
TCGA tumors by HiTIMED immune projection dem-
onstrated the potential identification of immune hot and 
cold tumors. Future supervised training on paired data 
on immunotherapy response with HiTIMED immune 
projection promises a potential on systematically rating a 
tumor for immunotherapy response rate.

The angiogenic microenvironment supports tumor 
proliferation and metastasis [46]. The formation of new 
blood vessels relies heavily on endothelial and stro-
mal cell proliferation [7]. In our study, a higher level of 
endothelial and stromal cells identified by HiTIMED was 
associated with worse survival rates in multiple cancers. 
Interestingly, in kidney clear cell renal cell carcinoma, a 
higher level of endothelial cells is beneficial for survival. 
This result is consistent with a single-cell analysis on kid-
ney clear cell carcinoma, showing a better survival out-
come in tumors with more endothelium [47]. A unique 
role of endothelial cells in prognostication of survival and 
immunotherapy response in kidney clear cell renal cell 
carcinoma patients has been hypothesized [47]. Worse 
5-year survival outcomes were observed in multiple can-
cers for angiogenic hot tumors compared to angiogenic 
cold tumors in our analyses. Interestingly, immune hot 
and cold tumors were not significantly associated with 
5-year survival after adjusting for age, gender, and tumor 
stage. Taken together, these data lead us to hypothesize 
that there is a closer relationship between the angiogenic 
microenvironment in TME with prognosis.

The cell type heterogeneity in TME complicates epide-
miological analyses of TME and clinical outcomes. The 
association between cell type prevalence in TME and 
patient survival has previously been studied primarily 
by counting certain cells in TME using immunohisto-
chemical quantification [29]. However, the cells in TME 
are dynamically interactive, making such analysis sus-
ceptible to other cell type confounders. The high resolu-
tion of HiTIMED makes it possible to adjust for such cell 

type confounders. Further, traditional EWAS analyses 
are susceptible to the cell type heterogeneity confound-
ing. For instance, EWAS can identify valuable epigenetic 
biomarkers for early cancer detection and prognosis 
[52]. However, the sensitivity and precision of identify-
ing such biomarkers are compromised when the tissue 
cell heterogeneity is ignored [53]. HiTIMED-projected 
cell composition in TME provides new opportunities for 
EWAS studies to unveil cell-type independent epigenetic 
biomarkers in cancer. Our results clearly show that much 
of the vast DNA methylation dysregulation previously 
observed in tumors is attributable to cell heterogeneity. 
Further application of HiTIMED cell estimates to models 
that identify tumor-specific DNA methylation is poised 
to enable a clearer understanding of early DNA meth-
ylation drivers alterations in carcinogenesis and disease 
progression.

While HiTIMED points to a valid method for estimat-
ing cell proportions in TME and the potential applica-
tion to cancer research, we recognize some limitations. 
First, HiTIMED shows modest over-prediction for 
CD8T cells and under-prediction for CD4T cells, espe-
cially Tregs, in artificial mixtures. The HiTIMED librar-
ies were developed to optimize the deconvolution in 
specific tumor microenvironments. We posited that the 
bias we observed in artificial mixtures would be mini-
mized in specifically targeted tumor types. However, 
the hypothesis is hard to examine without known cell 
composition in TME. When collapsing the subtypes of 
T cells, HiTIMED is highly accurate, even in artificial 
mixtures. Also, immune cells are possibly reprogrammed 
by interaction with the TME. Thus using normal cells 
as a reference may generate noise. Second, the stomach 
adenocarcinoma showed least methylation distinction 
between tumor versus normal tissues compared to other 
carcinomas. This may attribute to the heterogeneity of 
stomach tumor cell subtypes. Future work on stomach 
cancer subtype specific libraries may be necessary for 
stomach TME deconvolution. Third, macrophages were 
not included in HiTIMED. Macrophage is a highly het-
erogeneous cell type in TME [48, 49]. Our initial effort 
on including macrophage generates substantial noise 
that confounds other mononuclear cells. Future effort 
on epigenetically defining tumor specific macrophages 
may help to address the issue. Fourth, only carcinomas 
are currently included in HiTIMED, and future work is 
needed to add other complex tumor types. Fifth, tumor 
subclones were not captured in all existing deconvolu-
tion methods. Future epigenetic data on tumor subclones 
guarantee a more extensive deconvolution of TME. 
Finally, the angiogenic/non-immune microenvironment 
profiled by HiTIMED cannot distinguish normal and 
tumor-impacted epithelial, endothelial, and stromal cells. 
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However, our HiTIMED-profiled angiogenic microen-
vironment reflects angiogenesis globally, providing rel-
evant information. Differentiating TME affected cells and 
normal cells may provide additional research avenues 
beyond the scope of this method.

Conclusions
In summary, we developed HiTIMED, a DNA-meth-
ylation-based method to deconvolve the TME. This 
approach employs a novel tumor-type-specific hierar-
chical model with optimized libraries for each layer of 
deconvolution in each tumor type. HiTIMED provides 
higher cell type resolution compared to other methods, 
providing new opportunities to study the relation of the 
TME with etiologic factors, disease progression, and 
response to therapy.

Methods
Discovery data sets
For the discovery of our tumor TME deconvolution librar-
ies, we used nine publicly available data sets from TCGA, 
Gene Expression Omnibus (GEO), and ArrayExpress, and 
two data sets from our laboratories available through GEO 
(GSE193297, GSE167998) that contain DNA methyla-
tion microarray data on 20 types of carcinomas and their 
matched normal, 12 types of purified immune cell, and 
three types of angiogenic cell (Additional file 1: Table S1) 
[50–53]. Purified basophils, eosinophils, neutrophils, 
monocytes, B naïve cells, B memory cells, CD4 naïve cells, 
CD4 memory cells, T regulatory cells, CD8 naïve cells, 
CD8 memory cells were cytometric and magnetic-sorted 
and flow confirmed. The artificial mixtures were gener-
ated from MACS-isolated and FACS-verified cells. The 
cells were purchased from AllCells® corporation (Alam-
eda, CA, USA), StemExpress (Folsom, CA), and STEM-
CELL Technologies (Vancouver, BC, Canada). The donors 
included 41 males and 15 females, with a mean age of 
32.2  years (sd = 12.2) and multiple ethnicities including 
African-Americans, East-Asian, Indo-European, and mul-
tiple/admixed. The donors were anonymous and healthy. 
For more details on sample information and preparation, 
please refer to our previous publication [12]. Dendritic 
cells used in this study were monocyte-derived dendritic 
cells from healthy human blood donors. Firstly, the PBMCs 
were isolated from buffy coat cells by Fiscoll density gra-
dient centrifugation. Next, the CD14 cells were purified 
using immunomagnetic purification. Finally, 5-day incu-
bation with 500 U/ml human granulocyte-macrophage 
colony-stimulating factor (hGM-CSF) (PeproTech, Rocky 
Hill, NJ) and 1,000 U/ml human interleukin 4 (hIL-4) 
(PeproTech, Rocky Hill, NJ) completed the procedure. 
More details on the protocol and procedure can be found 
at [54] and [55]. Although the discovery data sets contain 

Illumina HumanMethylation450k or HumanMethylatio-
nEPIC array data, to ensure the applicability of the library, 
we retained CpGs that were common to both platforms. 
Furthermore, cross-reactive probes, SNP-related probes, 
sex chromosome probes, and non-CpG probes were 
masked in the analysis. 384,640 CpGs were retained after 
this process. The SeSAMe pipeline from Bioconductor was 
used to preprocess the data, including data normalization 
and quality control [56]. The probes that contained over 
20% of low-quality data (pOOBHA > 0.05) across samples 
per tissue type were removed for quality control.

HiTIMED development
Due to the complexity and cell heterogeneity of TME, 
we propose a novel, tumor-type-specific hierarchical 
model to develop libraries with optimized accuracy for 
cell projection. In each tumor type, six layers of libraries 
were developed to hierarchically project cell proportions 
in first, tumor; second, angiogenic; and third, immune 
microenvironments (Fig.  1). For tumor purity estima-
tion, the InfiniumPurify pipeline was employed to esti-
mate the tumor purity [19]. The method identifies the top 
1000 informative differentially methylated CpG (iDMC) 
sites between tumor and normal samples by rank-sum 
test and require that their variances of beta values are 
greater than 0.005 in tumor samples. The number 1000 
was selected based on the performance of iterations of 
various number of iDMCs (50, 100, 200,500, 1000, 3000, 
5000, 10,000, 15,000, 20,000, 30,000, 40,000). The per-
formance was evaluated by correlating iDMC estimated 
purity and ABSOLUTE purity [25], which is somatic 
copy-number-based tumor purity estimation, in lung 
adenocarcinoma [19]. iDMCs were separated into hyper- 
and hypo-methylated groups based on their mean beta 
values in tumor and normal samples. The beta values 
for hypermethylated iDMCs remain unchanged whereas 
the hypomethylated iDMC beta values were transformed 
to 1-beta. Density estimation with Gaussian kernel was 
applied to the transformed iDMC beta values. The esti-
mated purity is the mode of the density function. More 
details on InfiniumPurify pipeline can be found at [19]. In 
our study, we updated the pipeline by identifying tumor 
type specific iDMCs. Briefly, instead of using a universal 
set of iDMCs for estimating tumor purity for all tumor 
types, for each carcinoma type included in the study, we 
developed iDMCs specifically for that tumor type for 
tumor purity estimation. Epithelial, endothelial, stromal, 
basophil, eosinophil, neutrophil, monocyte, dendritic, B 
naïve, B memory, CD4 naïve, CD4 memory, T regulatory, 
CD8 naïve, CD8 memory cell proportions were estimated 
using the constrained projection/quadratic programming 
approach developed by Houseman et  al. [21]. Libraries 
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for specific cell types were developed using limma lin-
ear regression with empirical Bayes adjustment statistics 
in Meffil [20] to reduce methylation profiles to top 100 
cell-type-specific hyper- and hypo-methylated CpGs. 
The number 100 was selected based on the performance 
of iterations of various number of cell type specific CpGs 
(50, 100, 200, 500, 1000). The performance was evalu-
ated by calculating cell type specific absolute error and 
overall absolute error in colon adenocarcinoma (Addi-
tional file  2: Figure S17). The overall absolute error was 
minimal when using the 50-CpG library, however it had 
the worst performance in CD4 memory cell and eosino-
phils. To balance the performance across all cell types, we 
decided to use the 100-CpG library. The overall absolute 
error for 100-CpG library was only 0.2% lower than the 
50-CpG library, however unlike the top-50 CpG library, 
the 100-CpG library did not have the worst performance 
across any of the cell types. More details on the hierarchi-
cal library construction can be found in the Results sec-
tion and Fig. 1.

Validation of HiTIMED projections
HiTIMED predicted tumor cell proportions were 
compared to the estimated tumor purity from major 
existing methods, including methylation-based 
InfiniumPurify [19], MethylCIBERSORT [17], Meth-
ylResolver [16], LUMP [23], gene expression-based 
ESTIMATE [24], somatic copy-number-based ABSO-
LUTE [25], image stain-based IHC [26], and a con-
sensus measurement of purity estimations (CPE) [26], 
using TCGA tumor data. One additional data sets 
of high-grade serous ovarian cancer was added due 
to the limited ovarian cancer sample size on TCGA 
(Additional file  1: Table  S2) [57]. Tumor type strati-
fied comparison between HiTIMED tumor proportion 
and InfiniumPurify tumor purity was conducted with 
Pearson’s correlation coefficient, and the p-value was 
reported. Method paired pan-cancer tumor projection 
comparison was performed across HiTIMED, Methyl-
CIBERSORT, MethylResolver, CPE, ESTIMATE, LUMP, 
IHC, and ABSOLUTE, with r and p-value reported. We 
applied HiTIMED to 12 artificial mixture samples with 
12 predefined immune cell proportions (Additional 
file  1: Table  S2). RMSE, R, and p-value were calcu-
lated for each of the 12 immune cell types by contrast-
ing the HiTIMED cell estimates versus each sample’s 
known ground truth proportion. To validate the angi-
ogenic/non-immune microenvironment projection, 
HiTIMED was applied to publicly available normal 
human intestinal epithelium [27] and human umbilical 
vein endothelial cells [28] (Additional file 1: Table S2). 
Mean and standard deviation of HiTIMED predicted 

endothelial proportion and epithelial proportion were 
reported for normal human intestinal epithelium and 
human umbilical vein endothelial cells respectively.

HiTIMED deconvolution compared to MethylCIBERSORT 
and MethylResolver
A Venn diagram was used to compare the cell types in 
the tumor microenvironment that can be captured by 
HiTIMED, MethylCIBERSORT and MethylResolver. All 
three methods were employed on the 12 immune cell 
artificial mixture samples for performance comparison. 
For cell types that can be estimated by all three meth-
ods, a performance comparison with operated by cell 
type and with all cells pooled. The error rate was calcu-
lated asPredictedProportion(%)− TrueProportion(%) . 
The absolute error rate was calculated as 
|PredictedProportion(%)− TrueProportion(%)|.

Statistical analysis of the variation of TMEs and survival 
in TCGA samples
In TCGA samples, variances of immune and angiogenic 
microenvironments were calculated per tumor type. 
Tumor types were ranked by the variance of the immune 
microenvironment and angiogenic microenvironment, 
respectively, to demonstrate the across-tumor-type vari-
ation of TMEs. Ovarian cancer was removed from this 
analysis due to the limited sample size with survival 
information. Major immune cells (Bmem, CD8mem, 
DC, Tregs) and angiogenic cells (epithelial, endothelial, 
stromal) were investigated for 5-year survival outcomes 
in higher than median value group compared to lower 
than or equal to median value group across tumors using 
Cox proportional hazard models with age, gender, tumor 
proportion, tumor stage, and other cell-type propor-
tions (Treg, Bmem, DC, CD8mem, epithelial, endothelial, 
stromal) adjusted. Two Cox models, with and without 
cell-type adjustment, were compared in clear cell renal 
cell carcinoma as sensitivity analyses. Gender-specific 
and tumor stage information unavailable cancer types 
were excluded from the survival analysis. The Schoen-
feld residuals were used to test the proportional hazard 
assumption for Cox models. To ensure that the propor-
tional hazard assumption was not violated in the Cox 
models, tumor stage was stratified into high stage and 
low stage in lung adenocarcinoma. Age was stratified into 
ten groups in the bladder carcinoma data set.

Classification of immune and angiogenic hot/cold tumors 
and survival in TCGA samples
With the high resolution of HiTIMED predicted cell types, 
immune and hot tumors were classified using the consen-
sus PAM clustering method based on HiTIMED projected 
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granulocyte, mononuclear, T cell, B cell, and NK cell pro-
portions in TCGA samples. Similarly, consensus PAM 
clustering was used to classify angiogenic hot and cold 
tumors based on HiTIMED projected epithelial, endothe-
lial, and stromal cell proportions. Multivariable linear 
regression adjusting for age, gender, and tumor type, was 
used to compare HiTIMED projected cell proportions 
between immune/angiogenic hot and cold tumors. Cox 
proportional hazard models with age, gender, and tumor 
stage-adjusted were applied to investigate the survival out-
comes in immune hot vs. cold tumors and angiogenic hot 
vs. cold tumors. Cancer types gender-specific and with 
tumor stage information unavailable were excluded from 
this analysis. The proportional hazards assumption of all 
models was checked using the Schoenfeld residuals test. 
Log-rank tests were used to test survival differences in four 
groups of tumor clusters that were generated by combin-
ing the immune and angiogenic hot and cold classifica-
tion. The Student’s t-test was used to compare HiTIMED 
immune cells between immune subtyped C2 and C6 
tumors [30].

Models comparing methylation profile between colon 
adenocarcinoma and adjacent normal samples
Three models were generated to identify DMCs between 
colon adenocarcinoma and normal adjacent tissues. Model 
1 adjusted for age and gender. Model 2 adjusted for age, 
gender, and HiTIMED-projected tumor purity. Model 
3 adjusted for age, gender, HiTIMED-projected tumor 
purity, DC, CD8mem, Bmem, Treg, epithelial, endothe-
lial, and stromal cell proportions. Delta betas larger than 
0.3 and FDR smaller than 0.01 were used as the cut-off for 
statistically significant DMC identification. Heatmaps with 
Manhattan distance clustering and colon cancer CIMP 
subtypes colored were generated per model.

Statistical analysis on TMEs in drug‑sensitive and resistant 
mCRC and recurrent TNBC
TMEs in drug-sensitive and resistant mCRC and recur-
rent TNBC were deconvolved using HiTIMED. Student’s 
t-tests were used to compare the means of 17 HiTIMED 
projected cell types between first-line chemotherapy 
drug-sensitive and resistant mCRC tumors. Similarly, 
Student’s t-tests were also used to compare the means 
of 17 HiTIMED projected cell types between recurrent 
and non-recurrent TNBC tumors in the chemotherapy-
treated arm and nonchemotherapy-treated arm after 
locoregional therapy, respectively.
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