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EPIGRAPH

If we lived on a planet where nothing ever changed, there would be little to do. There

would be nothing to figure out. There would be no impetus for science. And if we lived in

an unpredictable world, where things changed in random or very complex ways, we

would not be able to figure things out. Again, there would be no such thing as science.

But we live in an in-between universe, where things change, but according to patterns

. . . so it becomes possible to figure things out. We can do science, and with it we can

improve our lives.

—Carl Sagan

It is a good sea, a good edge. It is what I need now. To sit and think at my own pace for a

while.

—Vernor Vinge, “A Fire Upon the Deep”
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by
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Professor Eli Berman, Co-Chair

Climate change is expected to have large, negative effects on the global economy.

Adaptation by individuals and firms will determine, in part, how much damage ultimately

occurs. Estimating adaptation is challenging, leading to increased uncertainty about

climate damages and, therefore, the optimal aggressiveness of climate policy. This study

clarifies the theoretical conditions under which the private benefit of adaptation can be

identified and makes progress toward estimating policy-relevant adaptation and climate

damages. The theoretical results give conditions under which adaptation can be identified.

In one case, the value of adaptation can be identified from weather realizations given a
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measure of firm or consumer welfare. If such a measure is not available, then additional

data is needed. For instance, changes in expectations about the weather can be used to

identify the value of forward-looking adaptation if firm revenue is available instead of

profit. The empirical results apply this method. For the first empirical study, I build a

novel dataset of El Niño/Southern Oscillation (ENSO) forecasts and estimate adaptation

by North Pacific albacore harvesters to ENSO-driven climate variation. The results show

that, in this setting, nearly all of the effect of climate variation can be controlled through

adaptation. Detailed, firm-level data allows for exploration of mechanisms, showing that

vessels primarily adapt by timing entry into the fishery.
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Chapter 1

Introduction

Climate change is predicted to have substantial negative impacts on the global

economy. The ultimate amount of damage will depend on both public policy to reduce

emissions of greenhouse gases and on actions taken by individuals and society to adapt

to a changing climate. Despite the role that adaptation plays in determining climate

change outcomes, little is known about the total adaptation potential of climate-exposed

industries or the economy. Moreover, much of what is known comes from analysis

of ex post adaptation to experienced weather rather than ex ante adjustments made

in expectation of climate change. Forward-looking adaptation is especially important

because it helps individuals avoid damages before they occur. Moreover, studying this

type of adaptation provides insight into the role of beliefs in determining behavior in

environmental contexts. Changes in expectations about the climate suggest that such

behavior will be an increasingly large part of the response to climate change going

forward.

Estimating the costs and benefits of adaptation is challenging. Many individual

mechanisms—such as choosing different inputs or altering consumption—might help

reduce damage from a changing environment, and an extensive literature has shown that

1
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individuals and firms do adapt to environmental changes along a number of dimensions.1

The policy-relevant parameters, however, are the damage that results from changes in the

environment net of all adaptation mechanisms and the costs of adaptation. Identification

of these quantities either requires a priori knowledge of each adaptation mechanism

available to agents and suitable exogenous variation for each one, or it involves finding

a way to identify the overall effect of adaptation without reference to the underlying

mechanisms. Following the work of Dell, Jones, and Olken (2009), a recent literature

has used average weather to estimate environmental effects gross of adaptation and used

high frequency variation in weather to measure effects net of adaptation. Comparison

of these estimates provides a measure of overall adaptation under the assumption that

adaptation is completely limited (or that weather is completely unexpected) in the short

run and is fully flexible in the long run.2 Surprisingly, given the evidence on individual

adaptation mechanisms, these studies have generally found that total adaptation has little

to no effect on output losses from weather.3

In this study, I propose a formal definition of adaptation and use that definition to

derive econometric identification results and new methods for estimating the value or

benefit of adaptation for a firm. To get a sense for the theory and method, one can start

with an informal definition of adaptation mechanisms as the actions taken by individuals

1For some recent examples, see Greenstone and Gallagher (2008), Neidell (2009), Graff Zivin and
Neidell (2014), Graff Zivin, Neidell, and Schlenker (2011), Deschênes and Greenstone (2011), Taraz
(2015), and Barreca, Clay, Deschênes, Greenstone, and Shapiro (2016).

2These papers generally fall into one of two groups: those using short-run variation in the weather to get
net-of-adaptation estimates and cross-sectional average weather to get gross-of-adaptation estimates, as in
Dell, Jones, and Olken (2009), Hsiang and Narita (2012), Butler and Huybers (2013), Schlenker, Roberts,
and Lobell (2013), and Moore and Lobell (2014), and an approach that compares short-run variation to
sub-sample average weather as in Dell, Jones, and Olken (2012) and Burke and Emerick (2016). For a
review, see Dell, Jones, and Olken (2014).

3Dell, Jones, and Olken (2009) find evidence for substantial adaptation in the gross domestic product–
temperature relationship when comparing rich countries to poor countries. Over the last 50 years, however,
Dell, Jones, and Olken (2012) shows that temperature effects on GDP have not weakened within income
groups, a point reinforced by Burke, Hsiang, and Miguel (2015). Also, it should be noted that a large
adaptation effect has been detected for mortality, where the mechanisms are increasing use of indoor
climate control and a reduced reliance on local agricultural production for sustenance (Burgess, Deschênes,
Donaldson, and Greenstone 2011; Barreca, Clay, Deschênes, Greenstone, and Shapiro 2016).
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or groups of individuals to prepare for or adjust to changes in the environment. Thinking

about this definition in the context of a single firm, adaptation is choices of inputs and

production technologies that allow the firm to either avoid damage from an environmental

change or to reduce the damage from a change that has already occurred. The value or

benefit of adaptation for the firm is the revenue gained by the firm when engaging in

these adaptation mechanisms, relative to a world where the firm did not adapt. The costs

of adaptation are the costs paid for each of these adaptation mechanisms.

Econometric identification of adaptation is relatively straightforward once adapta-

tion has been defined. Evidence for adaptation itself can be generated by simply looking

at how firm inputs change with respect to expected or realized weather. Many studies,

detailed in Chapter 2, have found that firms and individuals do adapt to the weather and

environmental conditions. Along with an assumption that inputs are strictly increasing

revenue and that inputs and weather are complements, this observation is sufficient to

declare that positive-value adaptation is occurring. Estimating the magnitude of this

value, however, is challenging. One key challenge is that adaptation, in general, involves

forward-looking behavior, so estimating the value of adaptation and correctly identifying

the direct effect of weather on profit requires a good measure of firm expectations about

weather conditions.

In this study, I use variation in individual expectations induced by public forecasts

to identify total, ex ante adaptation.4 This method contrasts with previous studies of

total adaptation both in terms of the object of study and in the assumptions necessary for

identification. Forecasts identify forward-looking adaptation rather than actions taken

after an event occurs. Adaptation that occurs in advance of a change in the environment

4A small but growing literature in environmental economics is using forecasts to study forward-looking
behavior. Neidell (2009) looks at the effect of pollution forecasts and public announcements on consumer
behavior, Rosenzweig and Udry (2013) use monsoon forecasts to study optimal weather insurance for
farmers, and Severen, Costello, and Deschênes (2016) ask whether farm land values have incorporated
information from long-run climate forecasts.
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could be particularly important in many environmental contexts including climate change

where disaster can result from a failure to avoid the bad state. Some researchers have

questioned whether individuals will perform substantial ex ante adaptation in real-world

settings (Mendelsohn 2000). The method presented here allows for quantification of

the degree of ex ante adaptation, and the empirical results show that such adaptation is

practically important.

Intuitively, identification comes from an assumption that expectations about the

weather only affect firm profit through input decisions—that there is no direct effect

of information. Conditional on realizations of weather, then, forecasts contain only

information available to firms before an event occurs, so the change in revenue with

respect to a change in this information identifies the overall benefit of ex ante decisions.

Under an additional assumption that the firms set all inputs before the state realizes,

forward-looking adaptation is equal to total adaptation, and the method also identifies

the direct effect of weather via weather realizations conditional on forecasts. Under

these assumptions, the two estimates provide a complete picture of the damages a firm

experiences due to weather.

The method shares the benefit of the work following Dell, Jones, and Olken (2009)

that the researcher need not know the full suite of adaptation mechanisms available to

an agent. In practice, this is because the estimation strategy regresses firm revenue on a

forecast of a weather process and realizations of that process, and the forecast captures

the “reduced form” or aggregate effect that forward-looking-input changes have on firm

revenue. The method also has some unique benefits. First, by allowing the researcher

to use firm revenue as the dependent variable, data requirements are reduced relative to

envelope theorem-based methods that require profit (Hsiang 2016). Second, the method

allows for straightforward generalization to cases with discrete adaptation mechanisms,

with the intuition again being that the reduced form effect averages over both continuous
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and discrete inputs. Third, by using a time varying measure of expectations, this strategy

allows for empirical methods that alleviate omitted variable bias concerns. For instance,

fixed characteristics of individuals or locations can readily be controlled for.

Based on the definition of adaptation, one can also begin to assess welfare effects

of adaptation. Classic economic models have a firm investing in an input until the

marginal cost of the input equals the marginal benefit. Similarly in the case of adaptation,

if changes in the environment are very small, then one should expect that the marginal

benefit of adaptation will be equal to the marginal cost—in other words, that marginal

adaptation is welfare neutral. The formal theory in Chapter 3 will allow for a more

thorough exploration of this result, highlighting cases, as in Guo and Costello (2013),

where adaptation is first-order welfare improving.

Beyond the context of a single firm, adaptation mechanisms, the value of adap-

tation, and the cost of adaptation can be similarly defined. Consumer choices like

purchasing air conditioners or staying indoors on hot days are adaptations. The value

is the gain in utility relative to a the case where an individual experienced the same

change in the environment but did not purchase the air conditioner or did not stay indoors.

Generalizing the theory presented in Mendelsohn (2000), adaptation can also be defined

for groups of individuals, bearing in mind that adaptation mechanisms that involve public

goods will have different welfare consequences than adaptations that are purely private.

I apply the method to estimate forward-looking adaptation in the context of

albacore tuna fishing in the North Pacific Ocean during El Niño/Southern Oscillation

(ENSO) events in Section 5.1. The empirical setting is particularly suitable for using

forecasts to estimate adaptation. ENSO, a major source of global climate variation

stemming from periodic but stochastic warming and cooling of the equatorial Pacific

Ocean, was thought to be unforecastable as recently as the mid 1980s. Within the

decade, however, breakthroughs in modeling, computing, and data collection allowed
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climatologists to create accurate forecasts of ENSO months in advance of adverse

events. Concurrent with these developments, the National Oceanic and Atmospheric

Administration (NOAA) began a program to disseminate these forecasts to ENSO-

exposed fisheries. The albacore fishery, historically a setting where output and profit

declined substantially during ENSO, was one such fishery. Because the fishery is spatially

distant from the area where ENSO forms, these forecasts and attendant NOAA reports

on ocean conditions were plausibly the only source of ENSO information available to

albacore harvesters over the sample period.

Estimates show that the information in the forecasts is important to the fishery.

The forecast has more than four times as large of an effect on revenue as does the

realization of ENSO. Interpreting this through the lens of the model, the estimates

suggest that forward-looking adaptation is large and effective in this setting. Harvesters

are able to reduce the direct effect of ENSO to nearly zero, almost eliminating observable

profit losses from this event. The results also show that if adaptation were ignored,

estimates of the effect of ENSO on the fishery would be biased in two ways. First,

the direct effect of ENSO on output and profit would be overstated because correlation

between beliefs and outcomes causes some of the adaptation effect to be attributed to the

direct effect. Overstatement of the direct damage from an environmental process when

adaptation is ignored is a central concern when setting appropriate mitigation policy

Mendelsohn, Nordhaus, and Shaw (1994). Second, the total effect of ENSO would be

understated because realizations of ENSO do not capture the adaptation effect that is

only operating through expectations. This understatement, in a case where adaptation is

costly, could lead to smaller than optimal policy responses.

Exploiting the richness of the spatially explicit, high-frequency, firm-level data,

secondary results examine mechanisms by which the vessels use the forecasts to adapt.

Overall, vessels respond to the forecasts by reducing their fishing effort during adverse
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periods. On the intensive margin, in anticipation of changes in ENSO vessels move

closer to areas where albacore are expected to congregate given the weather change. This

behavior suggests that ENSO mainly affects the fishery by increasing the uncertainty

about where optimal fishing grounds will be located.

Similarly, within a month that the vessel chooses to go fishing, vessels fish

for fewer days and take slightly fewer trips per month if they anticipate that climate

conditions will be bad. Across months, vessels choose to actively participate in the

fishery much less often if ENSO is forecasted to be extreme. In contrast, the effect of

realized ENSO conditional on the forecasts causes little or no change in behavior. Overall,

the mechanism analysis supports the primary result. Revenue falls when the forecast

of ENSO is high, but the behaviors engaged in by the firm are generally cost-saving

measures, so the firms insulate themselves from negative profit shocks.

Finally, the model can be extended to study firm risk tolerance and learning. I

adopt the reduced form of the model from Rosenzweig and Udry (2013) to determine

whether the firms in this setting are risk averse. Intuitively, a risk-averse firm should

care both about the level of the forecast and its ex ante uncertainty. In this setting, firms

do appear to be risk averse, since the past accuracy of ENSO forecasts (as measured by

recent, historical mean squared forecast error) and a narrowing of the dispersion of the

members of the forecast ensemble both cause higher levels of adaptation. Second, firms

with more ENSO experience are better able to adapt than novice firms. Together with the

headline estimates, these results highlight both the opportunity and limitations of using

information as a public policy response to environmental changes.

ENSO is an important, global driver of medium-term climate that, in addition

to fisheries, also affects health, civil conflict, agricultural productivity, worldwide com-

modity markets, and many other outcomes (Kovats, Bouma, Hajat, Worrall, and Haines

2003; Hsiang, Meng, and Cane 2011; Solow et al. 1998; Brunner 2002). The results from
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this study show that economic agents can manage their risk from this climate process by

making ex ante adaptation decisions. In the context of broader, global climate change, if

vessels are able to adapt to changing ocean temperatures due to climate change in a way

that is similar to how they have adapted to ENSO, then the the results suggest that realized

climate change damages might be greatly reduced. Caution should be exercised, however,

since adaptation dynamics will certainly play an important role when extrapolating from

the medium-term, cyclical variation considered in this study to the longer-term changes

caused by global climate change. Moving beyond the particular setting, the empirical

method from this study can be use to estimate adaptation in a number of industries to

better inform impacts from ENSO and other weather phenomena. The novel dataset of

ENSO forecasts created for the project can be used to assess adaptation to this climate

process across the globe, and use of routine weather forecasts can help understand the

scope for weather adaptation more generally.

Outside the context of environmental adaptation, the method discussed in this

study also illustrates the contribution that analysis of forecasts of environmental processes

can make to understanding long-standing problems in firm and consumer theory. For

instance, the theory of adaptation shares a formal similarity with theories of firm flexibility

introduced by Stigler (1939). Such theories are generally difficult to test due to a lack of

data on expectations. Using environmental forecasts will allow for investigation of firm

trade-offs in stochastic settings. Forecasts of environmental processes are well suited

to study these issues not only because they are routinely used by firms and are easily

observable by the researcher, but also because the processes about which the forecasts

are being made are generally exogenous. This feature contrasts with other settings like

finance where forecasts have the potential to endogenously change the state, complicating

empirical analyses. Studying forward-looking behavior will likely become even more

important in the future. Going forward, growing bodies of data and falling costs of data
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analysis imply that more firms will be making expectation-driven investments, increasing

the need and opportunity to study such behavior.
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Chapter 2

Literature review

The possible economic consequences of climate change and the optimal policies

to address it have been discussed by economists since at least the 1970s (Nordhaus,

Houthakker, and Solow 1973). Early in this line of research, the importance of adaptation

was recognized. For instance, reviews by Callaway (1982), Carbon Dioxide Assess-

ment (1983), and National Academy of Sciences (1992) contain extensive conceptual

discussions of the role that adaptation plays in determining climate change damages.

These reviews highlighted that adaptation is especially important in the context of cli-

mate change because damage are expected to occur over decades and because many

adaptations—in contrast to greenhouse gas mitigation policies—are private to the firm or

individual carrying out the adaptive action.

Before summarizing the literature on adaptation, it is helpful to clarify the epis-

temology of adaptation analysis. Adaptation itself, as will be formally described in

Chapter 3, refers to the actions taken by an individual or group of individuals to respond

to changes or expected changes in the environment. To show that climate adaptation

is occurring, it is sufficient to show that an individual is taking at least one action in

response to climate change. The converse proposition is much harder to prove. To

13
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argue that climate adaptation is not occurring, one would need to enumerate all possible

actions that could be taken in response to climate change and show that none of these

actions are being taken. An extensive body of research, whether explicitly concerned

with climate change or more generally concerned with responses to the environment,

has examined this question. A set of recent results gives a sense of the range of ar-

eas where environmental adaptation has been demonstrated: Greenstone and Gallagher

(2008) shows that individuals buy and sell houses in response to hazardous pollution,

Neidell (2009) shows that consumer demand for outdoor recreation changes in response

to forecasts and realizations of air pollution, Graff Zivin and Neidell (2014) shows that

labor supply responds to temperature, Graff Zivin, Neidell, and Schlenker (2011) shows

that bottled water purchases respond to water quality violations, and Taraz (2015) shows

that farmers adjust their irrigation and crop planting in response to monsoon rainfall. Of

course, much of empirical economics is concerned with estimating responses to changes

in exogenous parameters. These analyses can also be taken as evidence in support of

adaptation, assuming that responses to weather and climate are similar to responses to

changes in price, characteristics of goods, the introduction of technology, etc. Overall,

then, there is strong support for the conclusion that people adapt to the environment, and

it has been shown that individuals adapt explicitly to weather in at least some contexts.

A second, related question is whether and to what extent these adaptations

improve welfare—in other words, what is the value of adaptation? This question is

important for estimating the damages that might result from climate change, and it does

not have the same epistemological imbalance as the question of whether any adaptation

actions are being taken. Indeed, adaptation might be occurring and yet have very little

value, even in a neoclassical model, because the costs of adaptation might be high,

because the uncertainty about the future might be sufficiently high that individuals are

engaging in large amounts of ex post maladaptation, or because structural relationships
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between temperature and welfare are sufficiently flat. For these reasons and because

recent evidence, detailed below, has estimated that the value of adaptation is near zero, it

remains an open question whether adaptation value is substantially greater than zero in

sectors of the economic that are important from the perspective of climate policy.

Early empirical research was primarily concerned with estimating damages from

temperature and other environmental conditions in the absence of adaptation. A century-

old empirical literature has examined the effect of weather on agricultural yields, initially

using experimental variation of crop exposure to weather (Fisher 1921). Fisher’s early

work in this area was focused on understanding the role of weather in determining

agricultural yields with the goal of creating weather insurance products:

Of the industrial applications of such knowledge it is unnecessary to speak
here in detail. It is sufficient to indicate that the present system of Life Insur-
ance, which safeguards the economic stability of many thousands of families
and occupies the activities of many of the greatest financial corporations,
was made possible by the studies of statistics of human mortality by the
mathematicians of the eighteenth and nineteenth centuries, and that on the
basis of adequate knowledge similar economic-stability with its attendant
security of capital should be within the reach of the industrial farmer. (Fisher
1925)

Weather insurance is a form of in situ climate adaptation, in the sense that it

reduces individual damages from bad weather realizations. It can also substitute with

other adaptation strategies Annan and Schlenker (2015). To the extent to which climate

change represents a systemic shift in weather distributions and to which individuals

are well adapted to the current climate, however, insurance will not be a successful

macroeconomic adaptation strategy. The question of how well adapted society is to the

current climate is an important one that requires comprehensive analysis to answer. In

the context of global agricultural production, it appears that the world is currently quite

well adapted (Schlenker and Roberts 2009). On an evolutionary time scale, humans are

well adapted to warm climates relative to other animals (Carrier 1984).
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Other empirical analysis of agricultural impacts from climate change conducted

prior to the 1990s did not account for adaptation. Such analyses estimated the effect of

temperature on farm yield using a fixed production function and then extrapolated that

relationship under expected climate changes, assuming that adaptation would not occur.

This approach was used in Callaway (1982), Decker, Jones, and Achutuni (1986), and

Rosenzweig and Parry (1994) among others. Reviews by Carbon Dioxide Assessment

(1983) and National Academy of Sciences (1992) noted that the assumption of no

adaptation was potentially unrealistic, but empirical analysis of the value of adaptation

was not conducted at that time.

Mendelsohn, Nordhaus, and Shaw (1994) estimated climate change damages

on the agricultural sector in the United States using the so-called Ricardian method,

which involves estimating a cross sectional regression of average temperature on land

values to estimate climate effects. This estimate is assumed to be net of all adaptation

strategies under the key theoretical assumption that land markets capitalize the net present

value of all uses of the land, so that even if the current farmland becomes unsuitable for

growing any crops due to high temperature, it might still be suitable for recreation or

retirement homes, for instance. Using this method, Mendelsohn, Nordhaus, and Shaw

(1994) estimated much lower damages from climate change than previous work. In fact,

the central estimates suggested that climate change would improve land values slightly,

evidence of current maladaptation relative to a global optimum.

Econometrically, the Ricardian method rests on a cross-sectional identification

assumption and might be susceptible to omitted variable bias. For instance, work by

Schlenker, Hanemann, and Fisher (2005) showed that controlling for irrigation substan-

tially changes the results in Mendelsohn, Nordhaus, and Shaw (1994), reversing the

conclusion. In a similar spirit to the empirical application of the current study, Severen,

Costello, and Deschênes (2016) argue that the Ricardian method is also sensitive to
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whether agents expect that the climate will change in the future. Severen, Costello, and

Deschênes (2016) show that failing to account for expectations can lead, theoretically, to

either over or under estimates of climate damages. Empirically, they find that for U.S.

agriculture, accounting for expectations increases damage estimates relative to estimates

where expectations are not taken into account. Intuition for this result is comes from

imagining that markets can either respond in advance of a change in the climate or after

such a change. If markets respond in advance, then an estimate of the effect of realized

climate change on prices will return a zero value. This could be interpreted as the climate

having no effect on markets, but in reality, the researcher has mistaken the timing of

market responses. Since market participants have incentive to act in a forward-looking

way, one might expect this result to hold more generally. This claim is important to

interrogate, both from a policy perspective and because of skepticism about finding

widespread ex ante adaptation in practice.1

In response to the omitted variable bias concerns in the Ricardian method, De-

schênes and Greenstone (2007) estimated the effect of annual temperature variation on

farm profit using a fixed effects specification. Using this specification but correcting

for data coding errors in the original study, Fisher, Hanemann, Roberts, and Schlenker

2012 estimated that climate change will substantially reduce profit for American farms.

Similarly, Schlenker and Roberts 2009 estimated that global agricultural yields will fall

dramatically under unchecked climate change.2

These panel method studies opened the way for a series of analyses of climate

damages and adaptation in agriculture and other settings. The stated goal of Deschênes

1For instance, Mendelsohn (2000) writes, “Although it is easy to believe that ex-post adaptations will
be undertaken, it is less clear whether ex-ante efforts will be widespread.”

2The predictions in these studies share some conceptual similarities to the production function estimates
produced prior to 1994, but the estimation strategies and outcome variables differ in important ways.
Schlenker and Roberts (2009) and Deschênes and Greenstone 2007 use location and time fixed effects to
account for potential confounders, and the use of profit nets out some forms of adaptation. As pointed out
by McIntosh and Schlenker 2006, however, the nonlinear estimates in these papers might not account for
farm-specific omitted variables.
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and Greenstone (2007) was to estimate the effect of long-run climate change, and the

authors argued that this was plausible by noting that their analysis using year-to-year

variation in weather was likely shutting down some forms of adaptation but leaving open

others:

This paper’s empirical strategy relies on year-to-year variation in weather and
thus it is unlikely that farmers are able to switch crops upon a year’s weather
realization. The import for the subsequent analysis is that our estimates
of the impact of climate change may be downward-biased, relative to the
preferred long-run effect that allows for all economic substitutions. If the
degree of climate change is “small,” however, our estimates are equal to the
preferred long-run effect. One final note is that in response to year-to-year
fluctuations, farmers are able to adjust their mix of inputs (e.g., fertilizer
and irrigated water usage), so the subsequent estimates are preferable to
production function estimates that do not allow for any adaptation.

Work beginning with Dell, Jones, and Olken (2009) argued that short-run esti-

mates using high frequency weather variation could be compared with cross-sectional

estimates of the effect of average weather to infer adaptation. The logic is stronger form

of the notion from Deschênes and Greenstone (2007) that adaptation is unlikely to occur

in response to quick changes in weather, so short-run, panel estimates will return the

effect of temperature without adaptation while the long-run, cross-sectional estimate will

be net of all adaptations. Dell, Jones, and Olken (2009) and Dell, Jones, and Olken (2012)

used this logic to estimate macroeconomic adaptation to temperature and found mixed

effects. Poorer countries experience much stronger damages from high temperatures

than richer countries, but over the time span of the data, countries have not reduced their

own vulnerability to temperature. So, income-based adaptation might be occurring, but

evidence of adaptation using the short-run versus long-run comparison does not appear

in the data.

Follow-up studies using this time-based method for detecting adaptation have

generally reached a similar conclusion for macroeconomic and agricultural effects of
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temperature. Burke, Hsiang, and Miguel (2015) echoed the conclusion of Dell, Jones, and

Olken (2012) that countries do not appear to be adapting to the climate over time. Burke

and Emerick (2016) used a long-differences approach to estimate the value of adaptation

in U.S. agriculture, finding little evidence in support of a substantial effect. The long-

differences approach replaces the cross sectional regression with a panel estimate where

the dependent and independent variables are differences in averages of those variables

over some sub-sample time period. For instance, the long difference for variable x

between time period 1 given by t = 1 . . .T1 and time period 2 given by t = (T1 +1) . . .T

is

∆x̄i = x̄i2− x̄i1 =
1

(T −T1)

T

∑
j=T1+1

xi j−
1
T1

T1

∑
j=1

xi j

The length of the subsample can be varied between 1 and T/2 depending on how long a

time period the researcher believes is needed to capture all adaptation strategies. This

method allows for the inclusion of fixed effects, so the identification assumption is similar

to that of the year-by-year panel estimates used to generate estimates without adaptation.

Exceptions to the general finding of little or no adaptation have also been reported.

Butler and Huybers (2013) and Moore and Lobell (2014) gave evidence for adaptation

in agriculture in the United States and Europe, respectively. The conclusions of Butler

and Huybers (2013) have been questioned by Schlenker, Roberts, and Lobell (2013),

as discussed below. Barreca, Clay, Deschênes, Greenstone, and Shapiro (2016) show

that mortality effects from high temperature have declined substantially over the last

century, largely due to the introduction and adoption of air conditioning. This reduction

has occurred despite a general migration to the hotter southern areas of the country

(Deschênes and Greenstone 2011). The conclusion that adaptation has substantially

reduced mortality also holds across countries, as comparison between mortality effects
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from heat in the U.S., as reported in Barreca, Clay, Deschênes, Greenstone, and Shapiro

(2016), and in India, as reported in Burgess, Deschênes, Donaldson, and Greenstone

(2011), reveals. Weather deaths in India are largely driven by agricultural losses, an issue

that is obviated in the more connected markets of the U.S. Finally, Severen, Costello, and

Deschênes (2016) and Rosenzweig and Udry (2013) find evidence for forward-looking

adaptation that leads to welfare improvements. For a review of research on estimating

damages from and adaptation to the weather, see Dell, Jones, and Olken (2014).

In general, existing methods exploit some variation on the difference between

short-run and long-run effects to identify the value of adaptation. Currently, many studies

use the cross-section comparison method employed by Butler and Huybers (2013) to

estimate adaptation (Park 2015; Auffhammer 2015; Heutel, Miller, and Molitor 2017).

This method involves first estimating temperature or pollution effects in multiple different

geographic regions. Second, the estimates are compared, with support for adaptation

being inferred if the effect of temperature on outcomes is less strong in areas with

higher average temperatures. The logic is that an area that is routinely affected by high

temperatures will adapt to such a state of the world, thereby reducing damages. This

logic can be interpreted as a reduced-form version of the expectation-driven ex ante

adaptation derived in Section 3.2.1. As with any cross-sectional method, this strategy will

susceptible to omitted variable bias concerns. For instance, in the critique by Schlenker,

Roberts, and Lobell (2013) of Butler and Huybers (2013), it is noted that although

temperatures are generally higher in the South of the United States compared to other

regions of the country and the effect of temperature on agriculture is also generally

smaller in the South than in other regions, this reduced effect is due to higher average

humidity rather than active adaptations engaged in by farmers.

Bento, Mookerjee, and Severnini (2017) uses the Clean Air Act regulation of

ozone to identify adaptation by firms in the United States. Because ozone levels are
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affected by temperature, firms have incentive to adapt to reduce ozone precursors if

the climate is warming. In this case, ozone precursor avoidance is adaptation, and

by comparing the effect of temperature on ozone in attainment versus non-attainment

counties, Bento, Mookerjee, and Severnini (2017) can infer adaptation. This method

does not provide estimates of the value of adaptation, but it has the advantage of being

able to separately identify adaptation that is induced by regulation versus adaptation that

is pursued organically by firms. The Paris Agreement calls for substantial financing and

support for adaptation, so the question of how much adaptation can be induced through

policy is important. Bento, Mookerjee, and Severnini (2017) also uses a moving average

of weather to estimate climate adaptation. This method can be extended to a full rational

expectations framework, using the method, for instance, of Scott (2014).

Adaptation is discussed in this study in the context of climate change, but behav-

ioral responses to pollution or changes in the environment have been studied in many

contexts, as mentioned at the beginning of this chapter.3 Conceptually related to the

current study, Graff Zivin and Neidell (2013) summarizes the literature on environmental

effects on health and also provides a model of adaptation in the context of health that

distinguishes between ex ante avoidance and ex post amelioration behavior. Three other

studies have explicitly studied expectation-driven responses to the environment, the focus

of the fishing application in this paper: Neidell (2009) examined demand for outdoor

recreation in response to forecasts and realizations of pollution in Los Angeles showing

that consumers take action the day before bad pollution events to limit their exposure,

Davis (2004) examined house price effects of beliefs about cancer-causing power lines,

and Gallagher (2014) examined take-up of insurance as a function of beliefs about flood

risk. Relatedly, the question of how individuals form and update beliefs about climate

change bears on the issue of forward-looking adaptation to the climate (Deryugina 2013;

3More broadly still, the idea of adaptation and can be thought of as one of the bases for the bi-
directionality of externalities highlighted by Coase (1960).



22

Egan and Mullin 2014; Ndamani and Watanabe 2015). To fully vet the method of using

public forecasts that is proposed in this study, it would be helpful to understand how

individuals get their information about the weather and how much heterogeneity exists in

these beliefs. To this end, efforts like Easterling (1986) to understand how weather and

climate forecasts are consumed in practice will be useful.

To summarize the state of the empirical literature, it has been well established

that individuals respond to environmental changes by altering their actions. Estimates of

the overall effect of these responses on output and welfare, however, have so far shown

that very little or no welfare loss has been avoided in agricultural and macroeconomic

settings. Therefore, the primary open questions related to adaptation are: first, has

adaptation to climate change improved firm or consumer welfare? Second, to what extent

has adaptation affected climate change losses? Third, how costly has adaptation been?

For policy, the second and third questions—the magnitude of the costs and benefits of

adaptation—are the most important. The first question is of importance in the context

of prior literature that finds seemingly contradictory results when analyzing individual

behavior versus overall effects. Once these questions have been answered empirically,

the results can be used to inform predictions of future climate change damages. Such

estimates can be combined with estimates of climate change policy costs from Meng

(2017) and others to conduct overall cost-benefit analysis of climate change policy.

Theoretically, adaptation involves studying firm and individual decisions in re-

sponse to a, generally, exogenous variable.4 A key feature of climate change and weather

is also that future states are uncertain. Therefore, classic models of choice and investment

under uncertainty are applicable. Particular motivations for slow or incomplete adaptation

might come from market frictions or fixed costs, as in Dixit (1989) and Carlsson (1989).

The theory in this paper will largely be concerned, for reasons of tractability, with the

4For a discussion of cases where this exogeneity can break down, see Allen, Graff Zivin, and Shrader
(2016).
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case where weather and inputs are multiplicatively separable and firm decisions are

considered in only one period. Therefore, the theory proceeds along the lines of Sandmo

(1971). A richer model involving non-separability could be based on the analysis of

Chambers and Quiggin (2000), and welfare analysis in the case where climate change is

discrete can be analyzed using the extended envelope theorems developed in Milgrom

and Segal (2002).

Adaptation theory also shares a formal relationship to models of firm flexibility

going back to Stigler (1939). In that work, Stigler argues that a firm is more flexible if

it faces lower costs of production over a wider range of production levels than another

firm that is more specialized to a single level of production. This definition of flexibility

is similar to both ideas of adaptation to the climate and to resilience, a related notion

that is not the focus of the current study. Stigler points out that one should not expect

that flexibility comes for free—instead, it is likely the case that the more flexible firm

gains that flexibility by by sacrificing some output under more benign market conditions.

The willingness to pay for adaptation or flexibility by firms is something that should be

incorporated into future adaptation analyses. Finally, Stigler makes a prescient point

about whether timing alone can be used to define fixed versus variable costs. His answer

is no:

[O]ne cannot uniquely define fixed and variable costs with reference only
to time periods. At least two additional circumstances must be considered,
the existing cost-price relationships and the anticipated movements of prices
and outputs.

This statement applies equally well to the study of adaptation, as the theory presented in

the next section makes clear.
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Chapter 3

Theory

Throughout the preceding chapters, economic adaptation has been informally

defined as the actions taken by an individual or group of individuals to help prepare for

or adjust to changes in the environment.1 Formalizing this notion of adaptation helps

one understand how to estimate both adaptation and direct impacts from changes in the

environment. In particular, a formal definition of adaptation will generalize from the

single adaptation strategies or mechanisms that much of the economics literature has

focused on—staying indoors on hot or polluted days (Neidell 2009; Graff Zivin and

Neidell 2009), changing the mix of crops or the use of agricultural inputs (Rosenzweig

and Udry 2013; Hornbeck and Keskin 2014), air conditioning (Barreca, Clay, Deschênes,

Greenstone, and Shapiro 2016), or migrating (Deschênes and Moretti 2009)—to the

overall effect of adaptation on agent welfare.

The total effect of adaptation incorporates the effects of all adaptation mechanisms

and identifying it is necessary for decomposing impacts into the effect that an agent

chooses to control—the adaptation effect—and the residual portion that the agent chooses

1For examples of such a definition, see the Environmental Protection Agency’s climate change website
(www3.epa.gov/climatechange/adaptation/) or IPCC (2014). This study will primarily focus on individual
consumer and firm adaptation.
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not to adapt away—the direct effect. This decomposition is important for understanding

optimal public policy. If the scope for adaptation is small, then mitigation can have large,

first order effects on the outcomes of agents. Moreover, if adaptation is done in response

to a pollutant, then even if adaptation potential is high, the costs of adapting should enter

into the calculation of the pollution externality.

3.1 A non-stochastic model of firm adaptation

One of the key challenges facing firms, individuals, and policy makers when

responding to climate change is the uncertainty about how the future climate will evolve.

Climate change has already and is expected to continue to increase the variability of

weather (Program 2014). Climate and weather stochasticity affects the choice of optimal

policy (Weitzman 1974) and implies that firm and consumer behavior under uncertainty

are important for accurately predicting adaptation. Moreover, the empirical method

presented in this study uses forecasts to identify forward-looking adaptation, so there

must be some uncertainty about weather at the time of some of the firm’s input decisions

for the method to work. One can still gain intuition for adaptation definitions and welfare

impacts, however, by examining a non-stochastic version of the firm’s decision problem.

The theory is developed in the context of firms, but nothing is conceptually

Consider, first, a profit maximization problem where the firm chooses a single

input, x, which enters a revenue function, f (x,z), which is also a function of weather, z,

known at the time of the input decision. Normalize output price to 1 and let costs, denoted

c(x), be convex in inputs. Assume that f is at least twice continuously differentiable in x,

at least once continuously differentiable in z, and that costs are at least once continuously
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differentiable in x.2 Therefore, the firm’s problem is

v(z) = max
x

f (x,z)− c(x)

The first order condition is the usual equality between marginal product and marginal

cost, f1(x,z) = c1(x), and applying the implicit function to this condition gives

∂x∗

∂ z
=− f12(x∗,z)

f11(x∗,z)− c11(x∗)
. (3.1)

This term is adaptation, as consideration of the informal definition makes clear. Infor-

mally, adaptation is actions taken by an individual to adjust to changes in the environment.

In the context of a firm, actions are choices of inputs, and changes in the environment are

changes in z. Therefore, we have the following definition

Definition 3.1.1. Adaptation for a firm is the change in inputs with respect to a change

in the environment.

Denoting revenue as y and suppressing arguments of functions from here on, we

can define the benefit or value of adaptation as

Definition 3.1.2. The benefit or value of adaptation for a firm is the marginal revenue

effect of adaptation. Formally,

V (A) =
∂y
∂x∗

∂x∗

∂ z
=− f1

f12

f11− c11
(3.2)

Dividing this by the total derivative of output with respect to weather, f1(∂x∗/∂ z)+

f2, to get

Definition 3.1.3. The normalized value of adaptation is the change in revenue due to

2These differentiability assumptions are made here for simplicity. Section 3.2.4 relaxes this assumption.
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adaptation normalized by the total change in revenue with respect to weather. Formally,

Vn(A) =
− f1

f12
f11−c11

− f1
f12

f11−c11
+ f2

=
f1 f12

f1 f12− f2( f11− c11)
(3.3)

.

This term measures the degree to which adaptation accounts for the overall

revenue effect of weather. It approaches 1 as the marginal productivity of the input

becomes large and is zero if the marginal productivity is zero. The complementarity

between inputs and weather acts the same way. This measure is convenient for providing

a summary measure of how effective adaptation is across multiple different settings. This

measure does not, however, give a sense for the welfare impact of adaptation, as Section

3.1.1 shows.

In the case where weather and inputs are multiplicatively separable, signing the

normalized benefit of adaptation is simplified. In that case, ∂ 2y/∂x∂ z=(∂y/∂x)(∂y/∂ z),

so the sign of the cross partial derivative will equal the sign of the change in output with

respect to weather. The second order condition requires that f11− c11 < 0. The f2 term

can be canceled out, so the denominator will always be strictly greater than the numerator,

and the whole Vn(A) term will be greater than or equal to zero. If inputs and weather

are q-substitutes Seidman (1989), it is assumed that f2 > 0, and | f1 f12|> | f2( f11− c11)|,

then super-adaptation, or normalized adaptation greater than 1 could be achieved.

Maladaptation is indicated by Vn(A)< 0. Examining Equation (3.3), one can see

that this can occur whenever

f2( f11− c11)

f1 f12
> 1

. Either f2 > 0 and f12 < 0 or f2 < 0 and f12 > 0 are necessary for this condition to hold.
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In either case, the firm needs to be gaining something from the increase in weather—

higher marginal product of weather or higher return on inputs—for maladaptation to

make sense from the firm’s perspective.

Finally, adaptation is, in general, costly, and these costs are important inputs for

policy in the case where individuals are adapting to an anthropogenic pollutant.

Definition 3.1.4. The cost of adaptation is marginal cost of adaptations. Formally,

C(A) = c1(x∗) (3.4)

Using this model, one can gain graphical intuition for intensive-margin adaptation.

These models are similar to models where firms face exogenous price changes, except

that weather likely enters non-linearly into most climate exposed production processes.

Figure 3.2 shows the profit surface as a function of both weather, z, and the

univariate input, x, where output is given by y = a1 ln(x)(a2 + a3z− a4(z− a5)
2). All

a j are parameters chosen in this case to make the figure easy to graph. This figure

illustrates that even in the case where output is simply a quadratic function of weather,

a relatively complex relationship between the firm’s input choices, weather, and profit

emerges. Because the firm cannot optimize over weather, the constrained optimum for

the firm is often far from the global maximum of profit.

This feature is even more apparent in Figure 3.2. Here, output is given by

a1 ln(x)exp(a2 +a3z−a4(z−a5)
2), so the nonlinearity is heightened. The firm would

prefer to be up on the ridge where weather is moderate, but short of choosing the climate

or production process, it cannot achieve this outcome.

The model presented here is helpful for gaining graphical intuition, but it does

not provide the full picture when distributions of weather are incorporated. Analysis of

climate change necessarily involves decisions in the face of stochastic weather, so the
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input (x)

weather (
z)

P
rofit

Figure 3.1: Profit when output is a quadratic function of weather

Notes: The profit function is π = a1 ln(x)(a2 + a3z− a4(z− a5)
2)− px.

The solid, blue line is the optimal choice.

next section introduces uncertainty about weather into a single-period model.

3.1.1 Welfare in the non-stochastic model

Having defined the costs and benefits of adaptation, welfare can be assessed. A

result that will be seen throughout this study is that if inputs are continuous and one

only considers marginal changes in weather or climate, then adaptation is welfare neutral

from the perspective of the firm. Intuition from this result comes from the same logic

underlying the envelope theorem. If an agent is optimizing, then for a small change in

weather conditions, the optimal input choices with respect to the previous weather are

very close to optimal after the change.
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input (x)

weather (
z)

P
rofit

Figure 3.2: Profit when output is an exponential-quadratic function of weather

Notes: The parametric profit function used for this analysis is π =
a1 ln(x)exp(a2+a3z−a4(z−a5)

2)− px. The solid, blue line is the optimal
choice.

Stated more formally, if profit is differentiable in inputs and weather changes are

marginal, then marginal adaptation is welfare neutral for the firm. This result can be seen

as follows: the marginal change in profit for the firm with respect to a marginal change in

weather is

dv(z)
dz

=

(
f2(x∗,z)+ f1(x∗,z)

∂x∗

∂ z

)
− c1(x∗)

∂x∗

∂ z

where arguments of x∗ have bee suppressed. From the first order condition, one has that
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f1(x∗,z) = c1(x∗), so this expression reduces to

dv(z)
dz

= f2(x∗,z).

In other words, only the direct effect of weather matters for firm welfare, conditional on

adaptation. This envelope-theorem based argument underlies the identification results

in support of panel estimation methods of climate damages presented in Hsiang 2016.

Under the conditions of the formal statement (differentiable inputs, marginal changes in

weather) panel estimates of weather damages capture the full effect of climate on the firm,

net of adaptation. It is important to note that this statement requires that the estimation

be done using the value function for the firm (maximized profit in the one-period model

presented here, for instance).

This welfare statement assumes that all adaptation is “intensive” or continuous.

From Figures 3.2 and 3.2, one can see that when considering intensive-margin adaptation

with a fixed production technology, the direct effect of changes in weather can either be

positive or negative. The firm that is well adapted in this sense might prefer that climate

change occur. A stronger form of adaptation occurs if the firm can either choose their

production technology from a sufficiently rich set or can choose their climate (possibly

by relocating). A model of the latter type is considered in Section 3.3.1. When a firm is

strongly well adapted, climate change is always bad for the firm. Therefore, a central

question for assessing the economic damages from climate change is to answer whether

firms and individuals are currently well adapted to the climate, and if so, whether they

are well adapted in the strong or weak sense.

One can also see that the only first-order welfare improving adaptation in the

differentiable case will be adoption of new technology that affects f2(x∗,z). Welfare can

be improved if adaptation leads to the adoption of a new production function, g with
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g2(x∗,z) > f2(x∗,z). Detection of this type of change is the implicit focus of analysis

like that of Hornbeck and Keskin (2014) which looks at changes in the direct effect of

weather or the environment on profit over time. It should be noted, however, that finding

first-order welfare improving adaptation is a stronger hurdle than the question of whether

firms are engaging in valuable adaptation. A firm with a fixed production function would

still prefer to adapt via changes in inputs if there is a belief that weather changes will be

non-marginal.

3.2 Adaptation to stochastic weather

In this study’s empirical example, I will use expectations of agents to estimate

the value of total, forward looking adaptation. This is the benefit to the firm of all

behavioral responses that occur in advance of a change in the future state of the envi-

ronment. Expectations drive such changes, as a consideration of the link between the

adaptation mechanisms listed at the beginning of this chapter makes clear. In making

investment decisions or decisions like migration that involve high fixed costs, it is natural

to characterize behavior as stemming from an expectation that conditions will warrant

that investment in the future. For behaviors that take time to set up or realize, expectations

also play an obvious role. Even for short-run behavior, however, expectations are still im-

portant. This link is drawn explicitly by Neidell (2009). In the setting of that paper, public

warnings are issued each day if pollution levels are forecasted to surpass a threshold.

These forecasts are shown to have effects on how people choose their outdoor activities

that day, highlighting the importance of expectations to even near-term decisions.

Formalizing this notion in a standard model makes the centrality of beliefs to

total, forward-looking adaptation explicit and will lay the framework for econometric

identification results. Consider a firm producing a univariate output at time t which is a
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function of weather as well as inputs that are chosen by the firm manager. Assume that

the firm’s production function is multiplicatively separable in terms of weather and inputs,

so that at the beginning of each period, the firm’s problem is to maximize expected profit3

vt = max
x

pt f (xt)Et−1[g(Zt)]− c′txt (3.5)

Output price are denoted by by p, c is the J element vector of input prices, x is the J

dimensional vector of inputs, and Z is a stochastic weather variable with at least one finite

moment.4 Further assume that f (x) is twice continuously differentiable and concave.5

As is standard, a subscript on an expectation operator denotes the information set on

which the expectation is conditioned, so Et−1[g(Zt)] is the expected weather this period

conditional on information about the weather in all time periods up to and including

period t− 1. To emphasize the uncertain effect of weather on the production process,

assume that the firm must choose each x jt before the weather in period t is realized and

that all x j’s are non-separable from Z.6 Denote realized revenue by yt = p f (xt)g(zt) and

ex ante revenue as the expectation of this term with respect to information at t−1. Prices

are assumed to be constant. In a more general discussion of climate change impacts, it

might be appropriate to consider prices that are a function of the climate. The estimator

of total adaptation used here will be unaffected by allowing for climate-driven output

price changes under additional assumptions on the elasticity of demand for the firm’s

3Multiplicative separability is not a necessary assumption, but it improves the clarity of presentation
and simplifies the estimating equation. For an extension of the model to non-separable weather, see Section
3.2.3. I test the separability assumption empirically in Section 5.1.

4The model is presented with a single weather variable, Z, but nothing prevents the inclusion of a vector
of weather variables. In that case, the vectors of derivatives given below would simply be replaced by
Jacobian matrices.

5See Section 3.2.4 for the extension to discontinuous inputs. Identification remains unchanged, but the
welfare conclusions discussed below will change. The function g need not be differentiable since the firm
is not directly choosing Z.

6Additively separable inputs would not change in response to expected weather and are therefore not
adaptations under my definition. For the more general model considering inputs chosen after weather has
realized, see Section 3.2.5.
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output that would rule out extra risk taking during adverse events (Allen, Graff Zivin,

and Shrader 2016).7

An optimizing firm chooses inputs to maximize the value of Equation (3.5).

Aside from the weather variable, the problem is a standard one, as indicated by the

representative first order condition.

ptEt−1[g(Zit)]
∂ f (xit)

∂x jit
= c jt . (3.6)

Adaptation, as per the above definition, is the response of agents to anticipated changes

in environmental conditions. In the context of the model, the agent chooses inputs, and

environmental conditions are determined by the distribution of weather.

As in the case of the non-stochastic model, the first order condition allows for a

number of formalizations. First, adaptation or adaptive actions are similar in a stochastic,

multi-dimensional model as in the non-stochastic model presented previously. Denote

optimized inputs, implicitly defined by Equation (3.6), as x∗jt(p,c,Et−1[g(Zt)]) for all j

and t. Like before, Adaptation is the change in inputs with respect to changes in expected

weather. Formally,

A =

(
∂x∗1t(p,c,Et−1[g(Zt)])

∂Et−1[g(Zt)]
, . . . ,

∂x∗Jt(p,c,Et−1[g(Zt)])

∂Et−1[g(Zt)]

)′
=

∂x∗t
∂Et−1[g(Zt)]

(3.7)

Compared to the single input version of this definition, the current definition makes clear

that firms will adapt by changing all inputs that are not strictly separable from weather.

Second, in the continuous case, it is still the case that optimal adaptation is

determined by an equivalence between the marginal cost of adapting and the marginal

benefit of adapting. The nominal return is a function of the marginal productivity of

7In the empirical setting, the assumption of prices being uncorrelated with weather is testable and
appears to hold. See Section 5.1.2.
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each input as well as the expectation of the firm about the future state. This equivalence

suggests that, in principle, estimates of adaptation could come from exogenous changes

in any of these variables. To estimate total adaptation, however, one would need to have

prices for all adaptation mechanisms or shocks to all marginal products. Aside from

the high data hurdle, such a procedure requires the researcher to know the full set of

available adaptation mechanisms a priori. Using expectations, in contrast, allows the

researcher to be agnostic about the set of available mechanisms since expectations will

fully capture the reduced form effect of all forward-looking adaptation. The downside

to using expectations is that one cannot analyze the contribution of each adaptation

mechanism to the overall level of adaptation; one would need an instrument for each

input in order to do this. Relatedly, the first order conditions suggest that adaptation

could be inferred from reductions in the direct effect of weather on profit over time. If

adaptation potential increases, for instance, due to increasing productivity or decreased

costs, then the direct effect of weather on profit should decrease. This is the empirical

strategy pursued by Hornbeck and Keskin (2014).

Third, the continuity assumption is not necessary for the definition of adaptation.

For discrete adaptations like technology adoption or changes in land use, the derivatives

in Equation (3.7) can be replaced by differences. In this case, adaptation is the change in

inputs, broadly defined, in response to changes in the environment. Handling the case of

discrete inputs is an important feature of any empirical method for studying adaptation in

light of the dramatically different welfare implications of the continuous versus discrete

cases. Continuous adaptation is, in classical models, welfare neutral (a direct result of the

envelope theorem) while discrete adaptations are potentially welfare improving as shown

by Guo and Costello (2013). Estimates of the value of adaptation using expectations and

revenue are robust to discrete inputs, as will be discussed below.

Continuing the formalization within the continuous model, the value or benefit
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of adaptation can also be defined. The benefit of adaptation is the revenue change

experienced by the firm due to adaptation. Formally,

V (A) =
∂Et−1[y∗t ]

∂x∗t
· ∂x∗t

∂Et−1[g(Zt)]
(3.8)

where arguments of the maximized output and choice variables have been suppressed for

clarity.

Estimating this value is the primary goal of this study. Such an estimate is

important for many reasons. Under the assumption of continuous adaptation, the value

of adaptation provides information on adaptation costs, it provides information on how

much adaptation contributes to revenue for the firm, and it is crucial, in general, for

estimating the total effect of weather on the firm.

Also important for policy is the direct effect of weather. In the context of the

model, the direct effect of weather is

∂Et−1[y∗t ]
∂Et−1[g(Zt)]

. (3.9)

Under the assumption that all adaptations are forward looking, the direct effect of weather

on revenue is equal to the direct effect of weather on profit. This assumption rules out

amelioration behavior which happens after the state realizes (Graff Zivin and Neidell

2013). In a more general model, discussed in Section 3.2.5, that incorporates choices

made after the state realizes, it can be seen that both expectations and realizations of

weather enter a more general adaptation term.

From the model, one can see that if a researcher observes the expectations of

agents and has access to ex ante data, then both the value of adaptation and the direct

effect of weather can be estimated. In general, neither of these conditions is likely to

hold. The next two sections show that identification can still be achieved with ex post
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data and a well-chosen proxy for agent beliefs.

3.2.1 Identifying ex ante adaptation with observed data

One of the key benefits of explicitly modeling choice with respect to stochastic

weather is that it leads to a method that can simultaneously identify forward-looking

adaptation and direct effects of weather. This section formalizes identification of the

value of adaptation and the direct effect of weather using ex post observable data. It is

assumed that the researcher has access to accurate measures of agent expectations about

the weather. This assumption is relaxed in the next section. Here, I show parametric

identification results with a known functional form for the function of weather, g, and I

assume that weather is multiplicatively separable from inputs. For the more general case

with non-separable inputs and non-parametric identification, see Section 3.2.3.

Intuitively, identification is driven primarily by the assumption that, conditional

on expectations, realized weather does not influence the input decisions made by firms

at the beginning of each period. Under this assumption, holding expectations fixed also

holds inputs (adaptation) fixed. Varying the realization of weather in this case traces out

the direct effect of weather on revenue. Changes in expectations holding realizations

fixed have a complementary effect. Only forward-looking inputs are varied in this case,

identifying the output effect of adaptation.

More formally, inputs are a function of expected weather and not realized weather,

so Et−1[ f (x∗)] = f (x∗). Thus, the direct effect is identified exactly by ex post data

because ∂yt/∂g(zt) = p f (x∗) = ∂Et−1[yt ]/∂Et−1[g(Zt)].

For identification of the adaptation effect, note first that with respect to the

information at time t − 1, ∂x∗/∂Et−1[g(Zt)] is known, so Et−1[∂x∗/∂Et−1[g(Zt)]] =

∂x∗/∂Et−1[g(Zt)]. Showing that Et−1[∂yt/∂Et−1[g(Zt)]] = ∂Et−1[yt ]/∂Et−1[g(Zt)] re-

quires an interchange of integration and differentiation. The assumption of monotonicity
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of output with respect to x allows for the application of the dominated convergence

theorem, so this interchange is valid. Together, then, these two results show that the

expectation of the derivative of ex post output with respect to expected weather recovers

the partial derivative of ex ante output with respect to expected weather. For estimation,

a regression of revenue on g(zt) and Et−1[g(Zt)] will return unconditional averages of

these derivatives. These averages identify the derivatives of interest after an application

of the law of iterated expectations.

3.2.2 Using public forecasts to measure beliefs

Given the identification argument presented above, the ideal estimating equation

to measure adaptation and direct effects from weather would be

yt = α0 +α1g(zt)+α2Ep
t−1[g(Zt)]+νt , (3.10)

where Ep
t−1[g(Zt)] is the private expectation that the agent holds about the weather next

period.

Observing these private expectations is usually not possible in practice, and

finding good proxies for agent beliefs is challenging in general. Researchers studying

weather effects, however, are well positioned to employ a method with many good

theoretical properties—using professional forecasts of the relevant weather process as

the measure of agent beliefs. Modern weather forecasts are formal statements of the

expectations of the forecaster about future conditions, and many individuals and firms

rely on these forecasts to make weather-contingent plans. Therefore the forecasts have

the potential to capture some or all of the expectations of private agents in a way that is

amenable to estimation.

Professional forecasts will provide a good measure of agent beliefs under the
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assumptions that the forecasts are public, that agents are maximizing expected profit, and

to the degree to which the forecasts capture the full information available to agents. Under

these conditions, it can be shown that forecasts are good proxies for agent expectations.

To see this, denote the public forecast as ĝ(z), and consider the public forecast as

a proxy for the private expectation Wooldridge 2010, ch.4. The first condition for a good

proxy is that it is redundant with the variable being proxied for. In this case, redundant

means that if the true expectations of the agent were observed, then the public forecast

would not be helpful in explaining revenue. Formally, that E
[
y|g(z),Ep[g(Z)], ĝ(z)

]
=

E
[
y|g(z),Ep[g(Z)]

]
. Optimization ensures that this condition will be satisfied. Private

beliefs should always be either equal to or sufficient for the public forecast (if not, then

the agent is losing profit by ignoring information), so conditioning on public forecast

will not add any information relative to conditioning on private forecasts.

The second condition for a forecast to be a good proxy is, informally, that it

removes the endogeneity of realized weather that occurs if agent expectations are not

taken into account in Equation (3.10). Writing public forecast as a linear projection of

private beliefs

Ep
t−1[g(Zt)] = θ0 +θ1ĝ(zt)+ξt (3.11)

this condition can be formalized as saying that if the researcher estimates

yt = α0 +α2θ0 + α̃1g(zt)+θ1α2ĝ(zt)+α2ξt +νt .

then the covariance between realized weather and the error term from Equation (3.11)

needs to be zero. In other words, one needs E[g(zt)ξt ] = 0, assuming that exogeneity

holds for the true Equation (3.10). Under this condition, the estimate of the direct effect,

α1, will be consistent by the usual arguments for the consistency of the ordinary least
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squares estimator. A sufficient condition for this to hold is that the public forecaster has a

weakly larger information set than the private agent. Elaboration on this condition can be

found in Section 3.2.6.

The adaptation effect, α2, can be identified under a substantially weaker assump-

tion. To get correct inference on this parameter, the researcher only needs that θ1 be equal

to 1. A sufficient condition for this to hold is that the private and public forecasts are both

unbiased estimates of g(zt). In that case, ĝ(zt) will be an unbiased estimate of Ep
t−1[g(Zt)]

as well, so θ1 = 1 and θ0 = 0. Section 4.1.1 provides evidence that unbiasedness is the

stated goal of forecasters in the empirical setting.

An alternative approach to measuring agent expectations is to use average weather.

When studying climate adaptation, using average weather might not provide good in-

ference. First, climate change implies that the distribution of weather is shifting over

time, so if agents are updating their beliefs about the climate, then historical averages

will not be perfectly accurate proxies for agent beliefs.8 In cases where the relevant

stochastic variable is stationary and agents have unchanging beliefs, then adaptation

as defined by Equation (3.7) will be zero, and the appropriate way to study adaptation

would be through changes in returns to or prices for adaptation mechanisms. On the

other hand, using contemporary averages makes the assumption that agents have and

act on perfect foresight about the average temperature. This will lead to attenuation

of adaptation estimates in cases where agent beliefs do not perfectly match realized

changes in climate. This method also assumes that the period over which weather is

averaged is equal to the period over which beliefs about the weather are fixed. Finally,

average weather cannot be used in cases where the relevant climate shifts are measured

8The error in this approximation can be bad in extreme cases. For instance, if agents have perfect
foresight and the mean of the climate process is drawn from a stochastic process with no serial correlation,
then the historical average weather will have zero correlation with the expected weather this period.
In general, by measuring true beliefs with error, average weather will provide attenuated estimates of
adaptation and exaggerated estimates of direct effects.
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in terms of anomalies (as in the empirical setting of this study). The expected value of

the process over any sufficiently long period in this case will be zero by construction, so

no identifying variation in average weather will exist.

Violations of forecast proxy conditions

In many cases where the forecast proxy conditions are violated, the adaptation

estimate will be attenuated and the direct effect will be larger in magnitude—both leading

to underestimates of the relative degree of adaptation. Thus, the method presented here

provides a conservative estimate of adaptation under plausible assumptions.

Maintaining the assumptions that forecasts are public and that agents are fully

sophisticated but making no assumption about the relationship between the public and

private forecasts, an optimizing firm’s private forecast will only differ from the public

forecast if there is additional predictive power in the private forecast. In that case

one should expect that E[g(zt)ξt ] > 0, so the usual omitted variable bias formula can

be applied to find that plim |α̃1| =
∣∣∣α1 +α2

Cov(ξ ,g(z))
V(g(z))

∣∣∣ > |α1|. The magnitude of the

coefficient is larger because the sign of α1 should be the same as the sign of α2 and

because of the positive covariance between ξ and g(z). Therefore, the direct effect will

be over-estimated, leading to downward bias on the relative degree of adaptation.

Perhaps due to ensemble averaging considerations following Stein (1956) and

Efron and Morris (1975), a firm or the forecaster might prefer a biased estimator. If

the level of bias is constant, the bias will enter θ0, and the estimate of the adaptation

effect will still be consistent for the true adaptation effect. The covariance between ξt

and realized weather will no longer be zero, and the inconsistency will depend on the

sign of the bias of the estimator employed by the forecaster or agent.

If the firm and forecaster information sets are partly disjoint or if the firm creates

its own forecasts but with a smaller information set than the public forecaster, then one
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could see bias in α2. For instance, if the firm consumes its own forecast even though it

is inferior to the public forecast, then the public forecast would possess measurement

error when used in the estimating equation. In general, so long as the public forecast is

positively correlated with the realized state, then unless the private agent has a reason to

construct a negatively correlated forecast, using the public forecast for estimation will

return the correct sign on the adaptation effect and will help reduce the omitted variable

bias from ignoring adaptation.

Measurement error in both the forecast and realization of ENSO could also

cause inconsistency in the estimates, and this inconsistency need not be in the form of

attenuation for the usual reasons that measurement error in a multivariate regression

need not lead to attenuation. Consider a case where only one of either the forecasts or

the realizations have an effect on output, but where both forecasts and realizations are

measured with error. I will consider the case where the true realization is positively,

causally related to output, but the alternative case is symmetric. Because a skillful forecast

will be positively correlated with the realization, this will lead to a positive coefficient

estimate for both the realization and forecast, even asymptotically. I will formalize

the moments governing the size of this bias below, but intuitively, the problem is that

Frisch-Waugh-Lovell breaks down in this case because running an initial regression of

either observed forecasts on observed realizations or vice versa will yield biased estimates

where the bias is of the classical measurement error form. This bias will then feed into

the regression of the marginalized regressors on marginalized output.

This argument can be formalized as follows: let the true model be y = αx+ ε ,

where x is assumed to be mean zero. We observe z1 = β1x+ν1 and z2 = β2x+ν2, where

ν1 and ν2 are mean zero error terms with variance greater than or equal to zero (zero

variance means no measurement error). Assume that all error terms have zero covariance.

If one estimates the model y = γ1z1 + γ2z2 + ε2, then algebra yields OLS coeffi-
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cients. Start with the usual two variable formula for the OLS coefficient

γ̂1 =
Σz2

2Σz1y−Σz1z2Σz2y

Σz2
1Σz2

2− (Σz1z2)
2

Taking expectations, one has

E[γ̂1] =
αβ1E[x2]E[ν2

2 ]

β 2
1E[x2]E[ν2

2 ]+β 2
2E[x2]E[ν2

1 ]+E[ν2
1 ]E[ν2

2 ]

and

E[γ̂2] =
αβ2E[x2]E[ν2

1 ]

β 2
1E[x2]E[ν2

2 ]+β 2
2E[x2]E[ν2

1 ]+E[ν2
1 ]E[ν2

2 ]

In the case from this study, we know the signs of β1 and β2, the bias can be signed.

In particular, if forecasts are positively correlated with outcomes and measurements of

outcomes are positively correlated with the outcomes, then β1 ≥ 0 and β2 ≥ 0. Then γ1

and γ2 will both have the same sign as the structural parameter, α , with the degree of

measurement error determining which of the two β coefficients better matches α . This

case is a specialization of the typical two-variable measurement error model.

3.2.3 Non-separable stochastic weather

The model in Section 3.2 assumed that weather and inputs were multiplicatively

separable. Without assuming this separability, the definition of adaptation and estimation

strategy still hold, but the relatively simple dependence of adaptation on a single function

of weather will no longer hold.

For simplicity, consider a single input model but without the separability assump-
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tion. Formally, let the firm solve

vt = max
x

Et−1[p1tEt−1[ f (xit ,Zit)]− p2txit ] = . (3.12)

Suppressing time subscripts and using subscripts on equations to denote partial deriva-

tives, the first order condition will be

p1E[ f1(xit ,Zit)]− p2 = 0 (3.13)

Formal identification of this model comes from application of recent results in identifica-

tion of nonparametic instrumental variables models with non-separable error.

Let the optimal input choice be

x∗t = argmax
x
{p1tE[ f (xt ,Zt)|ẑt|t−1]− p2txt}, (3.14)

where ẑt|t−1 is the vector of forecasts of moments of the distribution of Zt that the agent

forms based on the information set Gt−1.9 This problem yields an optimal choice for x

denoted x∗t = h(ẑt|t−1,ηt) where η contains everything that shifts factor demand other

than expectations about the weather. Finally, denote deviations from expected weather

by εn,t = E[Zn
t ]− ẑn,t|t−1, where n indexes the moments of the weather distribution, and

collect these deviations in the vector εt .

Assuming that xt is strictly monotonic in ηt and that ẑt|t−1 is independent of ηt

and εt , the results from Imbens and Newey (2009) can be applied to identify f . Two of

these assumptions are natural in this setting. In the model, η contains prices, so the law

of demand gives monotonicity. A sophisticated forecaster will ensure that ẑ is exogenous

with respect to εt .10 Finally, a maintained assumption is that prices are independent of

9Under loss functions discussed in Section 3.2.6, this vector is simply the conditional expectation of Zt .
10More details on this can be found below.



50

expected weather, leading to independence of η and ẑ.

This more general identification reinforces the intuition from the separable case

presented in the body of this study. Forecasts errors are useful for identifying direct

effects of weather, and under the assumption that forecasts only affect inputs, the factor

demand can be fully recovered even if prices are not observed.

3.2.4 Discrete adaptation

The model presented in Section 3.2 assumed that all adaptation inputs were

continuous and that the production function was differentiable in all inputs. These

assumptions are not necessary for the formal definition of adaptation, and the estimation

strategy presented in the text easily extends to the case of discrete adaptations. Continuity

and differentiability does help to derive exact expressions for the adaptation decision rule

through the implicit function theorem.

In the presence of discrete adaptations, denote adaptation as the vector of changes

in inputs with respect to changes in expected weather, or

A =

(
∆x∗1(p,r,E[g(Z)])

∆E[g(Z)]
, . . . ,

∆x∗J(p,r,E[g(Z)])
∆E[g(Z)]

)′
.

The value and normalized value of adaptation can be defined analogously.

In this case, estimation proceeds as in Section 4.2. For a single input, estimating

adaptation can be thought of as estimating the reduced form of an instrumental variables

(IV) regression where the first stage is a regression of weather expectations on inputs

and the second stage is a regression of inputs on output conditional on realized weather.

In this case, the distribution of the input variable is irrelevant to consistent estimation

of the reduced form so long as there is identifying variation in weather expectations

(Wooldridge 2010, pg. 84).
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This result illustrates, however, that the method presented here cannot be used,

in general, to determine the contribution of individual adaptation mechanisms to total

adaptation. In an IV setting, one would need as many instruments as inputs to fully

identify the effect of each input. Expectations only provide a single instrument. Given

particular functional forms for E[g(Z)], more instruments could potentially be generated,

but there is no guarantee that the number of instruments will equal the number of inputs.

More importantly, since expectations enter all non-separable inputs, omitting one input

from the second stage equation would lead to bias.

Finally, a specific example worth highlighting is the case where a firm has the

choice of two possible production functions,

yit =

 f1(xit)g(Z) if E[ f1(xit)]≥ E[ f2(xit)]

f2(xit)g(Z) if E[ f1(xit)]< E[ f2(xit)]

Define the indicator d as d = 1{E[ f1(xit)] ≥ E[ f2(xit)]} and the probability p as p =

P(E[ f1(xit)]≥ E[ f2(xit)]), so output can be written as

E[yit ] = E[d f1(xit)g(Z)+(1−d) f2(xit)g(Z)]

= p f1(xit)E[g(Z)]+(1− p) f2(xit)E[g(Z)].

The partial derivative of output with respect to realized weather will be unaffected by

this set-up since the weather term can be distributed to the front of the output expression.

Moreover, the choice of x is still a function of E[g(Z)] in both f1 and f2, so the reduced

from estimation logic from above applies.
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3.2.5 Mixed input timing decisions

The model presented in Section 3.2 assumed that all inputs were decided before

the random variable Z was realized each period. Here, I relax that assumption.

Consider two inputs, x1 and x2, where x1 is determined before the random variable

realizes (which I will call ex ante) and x2 is determined after the random variable realizes

(ex post). Consider a single firm so that entity subscripts can be dropped and normalize

the output price to 1. The problem can be solved by backward induction. The firm’s ex

post problem is

max
x2t

πt = f (x∗1t ,x2t)g(zt)− p1x∗1t− p2x2t (3.15)

given a fixed x∗1 from the beginning of the period and a realization, z, of Z. The first order

condition is

f2(x∗1t ,x2t)g(zt) = p2

This condition makes clear that x2 will generally be a function of the realized weather

through g(z). In addition, it will be a function of the expected weather through x∗1. For

instance, in a Cobb-Douglas case with equal factor shares, the firm would like to equalize

inputs ex ante, so it would choose x1 assuming that g(z) = E[g(Z)]. Ex post, the firm still

has incentive to equalize inputs, so it will choose x2 closer to the ex ante value than in a

purely ex post case.

The ex ante value of adaptation given in Equation (3.8) will be the same, but

estimation of this value using realized data will no longer capture all adaptation because

∂y
∂g(z)

= f2(x∗1,x
∗
2)

∂x∗2
∂g(z)

+ f (x∗1,x
∗
2).
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The second term is the direct effect, as before, but now part of the value of adaptation,

f2(x∗1,x
∗
2)

∂x∗2
∂g(z) , will be included in the estimate of the direct effect, which will be included

in the magnitude of the coefficient on g(zt). This will serve to attenuate the estimate of

the value of adaptation and increase the magnitude of the estimate of the direct effect.

This set-up is easily amenable to dynamic modeling where x1 is capital and x2 is

consumption or labor. For instance, consider the Euler equation from a standard dynamic,

stochastic growth model where C is consumption, X is investment, A is technology, K is

capital, and u is the utility function of a representative consumer.

Et

[
βu′(Ct+1)(1+At f ′1(Xt+1,Zt+1))

u′(Ct)

]
= 0

The particular functional form through which beliefs about the future environ-

mental process enter utility or output will depend on the context and can still result in all

adaptation being ex ante. For instance, in the Hall (1978) quadratic utility formulation,

consumption in period t is

Ct =

(
r

1+ r

)(
Et

∞

∑
j=0

(
1

1+ r

) j

A f (Zt+ j)+Kt

)

Therefore, consumption is a function of the expected value of the weather process each

period in the future.

Empirically decomposing amelioration behaviors and direct effects is challenging

in general. Formally, one can think of realizations as unbiased, zero variance forecasts,

which allows one to still define all adaptation as “forward looking” in a trivial sense. But,

this will lead to a fundamental identification problem since such a forecast cannot be

distinguished from weather realizations. Thus, all adaptation estimates based on accurate

expectation proxies are, at best, lower bounds on total adaptation in any setting with ex
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post adaptation mechanisms and accurate beliefs about realizations.11 This issue should

not be confused, however, with agents taking actions because weather realizations caused

them to update their belief about future weather. In this case, realizations are driving ex

ante behavior through changes in expectations.

3.2.6 Forecast sufficiency under unbiasedness

In Section 4.2, simple conditions were given for when forecasts will be perfect

proxies for private beliefs. Here, I consider alternative assumptions about the information

sets of private agents and a public forecaster and derive implications for the use of

forecasts as expectation proxies under the assumption of unbiased forecasts. This setting

also allows consideration of forecast dynamics.

To simplify the analysis, consider a weather loss function based on the profit

maximization problem given in Equation (3.5). The function describes the profit or

output loss that results from realizations of the random variable Z. Denote expected loss

as

E[Lp(Zt , Ẑt ,X(Ẑ)t ,pt)|Gt−h] (3.16)

where we now allow inputs to be a vector and expectations about the future weather are

denoted by Ẑ. Gt ∈ F is the information available to the firm at time t, so this function

gives losses due to the h period ahead (or h horizon) forecast. Denote the argument that

minimizes Equation (3.16) in terms of Ẑt by sp
t|t−h, where the superscript p denotes that

11The need for accurate beliefs about realizations leaves open some possibilities. First, in some
forecasting settings, zero-horizon forecasts are issued and do sometimes have errors with respect to
realizations that could be exploited. Second, knowing how people learn about something like the weather
might shed light on discrepancies between even near-term expectations and realizations. One can think of
a poorly calibrated thermometer that is the basis for a firm’s use of air conditioning. This thermometer
allows the AC to run coincident with the realization of the weather state, but the true weather differs from
the inputs to the firm’s decision. In this case, however, a researcher would need access to an unbiased
thermometer, and one might wonder why the firm did not use the better thermometer.
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this is the private firm’s value.

Assume that the firm’s loss function is symmetric about Zt = 0 and either of the

two following conditions hold

1. The first derivative of the function, Lp
1(Zt , Ẑt ,Xt ,pt), is strictly monotonically

increasing over the range of Zt and f̄ (Z) is symmetric about Z = sp where f̄ (Z) is

the conditional distribution of Zt−E[Zt |Gt−h].

2. The distribution of Z, f (Z), is symmetric about Z = sp, is continuous, and is

unimodal.

Under either of these conditions, it can be shown that the optimal forecast is sp
t|t−h =

E[zt |Gt−h] (Granger 1969). Symmetric loss is limiting but allows for greatly simplified

analysis and easier nonparametric identification. The other conditions are more benign.

Condition 1 says that there can be no flat regions in the loss function and that the

unforecastable component of the stochastic process is elliptical. With positive marginal

cost of action or a quadratic loss function, condition 1 will be met. Condition 2 is met by

any elliptical distribution.

Now, consider a professional forecaster that minimizes mean squared error (MSE)

conditional on the information set Ft−h

st|t−h = argmin
ŝ

E[(zt− ŝ)2|Ft−h].

Solving the minimization problem, one finds that the public forecast in this case is

st|t−h = E[zt |Ft−h].

Minimization of MSE loss is used in practice by many weather forecasting agencies

(Katz and Murphy 1997).
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Patton and Timmermann (2012) show that MSE forecasts have the following

properties which will be useful below.

1. Forecasts are unbiased for all h

2. Forecast errors are unpredictable: Cov(st+h|t ,xt) = 0 for all xt ∈Ft

3. Longer lead forecasts are less precise:

V(st+h|t)≤ V(st+H|t) for all h≤ H and

V(εt+h|t)≤V(εt+H|t) for all h≤H where εt+h|t = zt+h−st+h|t is the forecast error

We also need to be able to compare private forecasts to public forecasts. The

lemma below says that variance of forecast error is sufficient for comparing forecast

quality.

Lemma 3.2.1. If Gt ⊇Ft and (Ft)t≥0 is strictly monotonic, then there exists a forecast

sτ|t+k such that V(ετ|t+k) = V(ε p
τ|t) for k ≥ 0.

Proof. Forecast properties gives us that V(ετ|t)≥ V(ε p
τ|t)≥ V(ετ|τ).

Therefore, by continuity there must exist a k ≥ 0 satisfying the condition.

Lemma 3.2.2. For two forecasts s1
t+h|t and s2

t+h|t , an agent with a Granger loss function

will choose the forecast with lower variance.

Proof. For condition one, this result holds due to increasing loss for larger deviations in

Z. For condition two, the higher variance forecast will create a mean-preserving spread

in conditional Z.

Now, we are ready for the first set of results, which are versions of the forecast

sufficiency assumption stated in Section 4.2. Assume that Gt ⊆Ft , or that the public

forecaster has access to more information than the private firm. Then it is intuitive that

the public forecasts are strictly better than the private forecast, and the firm should use

the public forecasts.
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Proposition 3.2.3. If the firm loss function or the data generating process satisfies the

Granger (1969) conditions and Gt ⊆Ft , then sp
t+h|t = st+h|t .

Proof. The Granger conditions imply that sp
t+h|t = E[zt+h|Gt ], so by Lemma 3.2.1 and

MSE-forecast property 3, Gt ⊆Ft implies

V(ε p
t+h|t)≥ V(εt+h|t)

Therefore by lemma 3.2.2, firm loss is minimized by choosing sp
t+h|t = st+h|t .

We will also be interested in what happens as the public forecast becomes arbi-

trarily accurate. Define the skill of the forecast as

Definition 3.2.1. The Brier skill score or skill of a forecast is

1− MSE
MSEC

where MSE is the MSE of the forecast and MSEC is the MSE of a climatological or

reference forecast.

Then a perfectly skillful or accurate forecast has a score of 1.

Now we can show the simple result that if public forecasts are perfectly skillful,

then they will provide a perfect proxy for private beliefs.

Corollary 3.2.4. If the public forecast has perfect ex ante skill, then the private expecta-

tions equal the public forecast.

Proof. An MSE-forecast, st+h|t , is unbiased for all h by forecast property 1. Therefore, a

forecast will have perfect skill iff V(εt+h|t) = 0. Now, assume that Gt ⊃Ft . Then

0≤ V(ε p
t+h|t)< V(εt+h|t) = 0,
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a contradiction. Therefore, Gt ⊆Ft , and Prop. 3.2.3 gives the result.

Now consider the case where the private firm knows more than the public fore-

caster: Gt * Ft

To estimate adaptation, we are interested in dy
dsp . If we observed sp and Gt ⊇Ft ,

the chain rule gives

dy
dsp =

∂y
∂ sp +

∂y
∂ s

∂ s
∂ sp .

The question becomes one of how correlated are changes in the two information

sets. If the new information enters both G and F , then s and sp will both change, and

the change in the public forecast will again provide good inference for the change in the

private forecast. If, however, G grows by gaining information that is already possessed

by the private agent, then ∂ s
∂ sp will equal 0.

The last case is when Gt + Ft and Gt * Ft . Here, since forecasts based on Ft

are public, the firm will incorporate the public forecast with their private information,

leading to s̃p
t|τ = g(sp

t|τ ,st|τ). For instance, with arithmetic mean pooling

s̃p
t|τ = (1/2)(sp

t|τ + st|τ)

⇒∂ s̃p

∂ s
=

1
2

which will generally outperform a non-pooled estimator.

Optimal ensembling by the firm will yield Gt ⊇Ft in all cases where st+h|t is

sufficient for Ft . Therefore, in the event that the public forecasts are not sufficient for

the private beliefs of the agent, the ideal estimation strategy would be to instrument for

agent beliefs using the public forecasts.
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3.3 Specialized models of adaptation

3.3.1 A location choice model of adaptation

One adaptation strategy that has the potential to greatly reduce the damages

from climate change is location choice. Empirical examination of this strategy has been

done in the context of climate shocks in agricultural communities (Feng, Oppenheimer,

and Schlenker 2012), for natural disasters (Kousky 2013), and more generally in the

context of Tiebout sorting (Epple and Sieg 1998; Tiebout 1956; Epple and Sieg 1998;

Banzhaf and Walsh 2008). Location choice and geographic sorting is a potentially

important adaptation mechanism in my empirical context as well, since fishing captains

can relatively easily choose where to locate their firms. Theoretically, location choice

models of climate adaptation are especially interesting because they allow the agent to

endogenously choose their climate, leading to a particularly strong form of adaptation.

Consider a representative firm, i, maximizing profit in each time period t based

on how well they match their location, lit , to a stochastic temperature process, zit . Let

weather enter the production function quadratically and ignore other inputs and alternative

stochastic shocks to profit.12 Then the objective of the firm is to maximize expected

profit, πit

max
lt

E[πit ] = E[αzit−β z2
it ]

s.t. zit = mt lit + εt

where α > 0 and β < 0. The constraint captures climate and weather at a given location

and time. The average, location-specific climate is given by mt lit . In the simplest case,

shown in Figure 3.3, where location is one-dimensional, mt will be negative in the

12Input costs are assumed to be zero for simplicity, so revenue and profit are equal here. Identification
results that hinge on the distinction between these two measures will not be the focus of the model.
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northern hemisphere, indicating that average temperature falls as one moves north and

rises as one moves south.13 Initially, assume that the mt lit portion of weather is known

and that εt is unknown but known to be distributed N(0,σ2
ε ).

In this case, substituting the constraint and maximizing yields the optimal location

choice

l∗it =
α

2βmt

which implies expected temperature and profit of E[zt ] = α/2β and E[πit ] = α2/4β . Ex

post, however, the stochastic portion of weather will result in the realized profit being

πn,it =
α2

4β
−βε

2
t (3.17)

location

tempz

l

l

zu

f

u

profit

tempz zu

r

*

*

**

*π

π

Figure 3.3: Location choice, weather, and profit

Notes: The figure shows the optimal location choice and profit given known mean of weather
but no forecast of the weather anomaly.

13Linearity of w = f (l) implies a unique solution to the location choice decision and allows one to
abstract from movement costs. In the case where w = f (l) is nonlinear, movement costs will lead the
individual to choose the closest location that maximizes profit, and all analysis will be substantively the
same.
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Figure 3.3 illustrates the difference between expected and realized profit in the

one-dimensional case. Knowing the mean of the climate and with a symmetric loss

function in weather, the individual will choose to locate at l∗, expecting to experience

temperature w∗. If the realized temperature anomaly is high, indicated by zu, then realized

profit will be πu. Had the individual known that temperature was going to be high, he or

she would have located at l∗u .

Note that even without any additional structure, that this is already a model of

adaptation. The individual knows mt and locates in each period to maximize expected

profit. Even if mt were itself stochastic, so long as it was known ex ante, then the

individual would move to l∗. Thus, this is a model of intensive adaptation to a continuous

environmental process.

This model matches the empirical setting well. There, albacore locate along

temperature gradients in order to feed, so a harvester looking for fish near the correct

gradient will be more likely to catch fish, while a harvester looking on either side of

the gradient will be less likely to catch fish. These temperature gradients are moved by

temperature fluctuations—in this cased driven by ENSO.

Now, consider what happens when forecasts of εt are introduced. In particular,

assume that the individual receives one signal, st , distributed N(εt ,σ
2
st). Now, the optimal

location choice becomes

l∗f ,it =
α−2β ε̂t

2βmt

where ε̂t is the prediction of εt generated by the individual after viewing the forecast.

For instance, a naïve individual might take ε̂t = st , and a Bayesian updater would set

ε̂t = σ2
ε st/(σ

2
ε +σ2

st) which I define to be ktst . For the remainder of the section, I will

assume that individuals Bayesian update where it is necessary to be explicit.
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Now, the realized profit associated with this location choice is

π f ,it =
α2

4β
−β (ε̂t− εt)

2 (3.18)

Differencing Equations (3.17) and (3.18), one can determine the change in profit associ-

ated with the introduction of the forecasts

∆πit = 2β ε̂tεt−β ε̂
2
t (3.19)

Thus, the individual will do better when the prediction and realization are of the same

sign and when |st− εt |< |εt |(1−2/kt). In expectation, this value is positive.
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Figure 3.4: Forecasts improve expected profit

Notes: The figure shows the optimal location choice and profit given known mean of weather
and a forecast of the weather anomaly.

Figure 3.4 illustrates the changes brought about by the introduction of forecasts.

The firm updates its expected distribution of temperature to be the black solid and dashed

lines in the right panel. Note that in the Bayesian case, this new distribution is inside the

previous distribution, shown in gray. Based on the weather prediction, the firm chooses

location l∗f . If the realized temperature is again at the 95th percentile, the firm will
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experience a loss in profit relative to the optimum given by π∗−π ′u, however the loss

will be smaller in expectation than the case of a 95th percentile temperature realization

without forecasts.

As the figure and Equation (3.18) make clear, when the forecast is perfect, the

vessel will always realize profit π∗. More generally, total potential adaptation to a shock

of magnitude ε is given by

1−
π∗−π f

π∗−πn
=

π f −πn

π∗−πn
(3.20)

conditional on σ2
st = 0, where π f is profit in the presence of the forecast and πn is profit

without the forecast. The case where the forecast distribution is degenerate is of especial

note because the result does not depend on how the individual updates their prediction of

ε . In the case where σ2
st > 0, the specific functional form underlying structural estimation

will depend on the updating process.

This location choice model gives further insight into the identification challenges

inherent in adaptation estimation. First, estimating Equation (2) with temperature will

be consistent even after forecast-driven adaptations. The identifying variation in temper-

ature is the residual error after forecasts have been processed and adaptation has been

undertaken. This error will still trace out the underlying biological relationship between

temperature and profit, since none of the adaptations have changed that relationship. This

means, however, that these estimates will not tell one anything about adaptation.

Second, although the estimates will be consistent, the precision will fall. This re-

sult occurs because the forecasts reduce the variance of w experienced by each individual.

For the complete adaptation case, as the forecasts become perfect, inference will become

unstable because there will be no variation in experienced deviations in temperature.

This might be a real concern for cases like the effect of temperature on performance in
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developed countries with high air-conditioner penetration. In this case, there is the added

issue of attributing ambient temperatures to individuals who are independently setting

their experienced indoor temperature.

Third, estimates using temperature anomalies, εt , without including forecasts

will be biased and inconsistent. Examination of Equation (3.18) makes this clear. The

predicted values, ε̂t , are correlated with εt , so failing to include them in the estimating

equation will result in an omitted variable problem.

3.3.2 Adaptation with a sticky factor of production

Current methods to estimate adaptation based on the duration of weather events

are informally justified by considering some factors to be fixed in the short-run and

flexible in the long-run. The performance of these methods can be assessed with the

following model. Consider a firm in a two-period putty-clay setup. The firm decides

on a single input, then needs to use the production from that single input for τ periods.

For simplicity, consider τ = 2, but as the equations below demonstrate, extensions to

arbitrary τ is trivial.

Revenue is

y = Axα
1 g(z1)+Axα

2 g(z2) (3.21)

subject to the restriction that x = x1 = x2. Further simplification can be gained by

considering constant output and factor prices, so px,1 = px,2 and output prices are p1 =

p2 = 1. Then the ex post profit function is

π = Axα(g(z1)+g(z2))−2pxx (3.22)

Assume that the firm invests in x before z is realized, so all decisions are made

based on information set F0.
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The first order condition gives optimal factor demand as

x∗ =
(

αA(E0[g(z1)]+E0[g(z2)])

2px

)1/(1−α)

(3.23)

which can be rewritten as

x∗ =
(

αAE0[2−1(g(z1)+g(z2))]

px

)1/(1−α)

(3.24)

Therefore, the firm demands inputs in the usual way, with an added term which is

the average of the expected weather. Discounting would drive a wedge between x∗1 and

x∗2 and would weight the expectation, but for short time periods, this is negligible.

The extension to arbitrary fixed input lengths is straightforward, simply by replac-

ing 2 with τ and the sum of expectations with a sum over τ expectations.

x∗ =

(
αAE0[τ

−1
∑

τ
j=1 g(z j)]

px

)1/(1−α)

(3.25)

Treating the τ-length period as a single time step, this problem reduces to a stan-

dard Cobb-Douglas production problem with flexible factors of production. Considering

each τ period separately, this model is one of partial adaptation in each period. Explicitly

label the inputs each period and consider the per-period normalized adaptation given by

Vn(A) =

∂E[y∗]
∂x∗1

∂x∗1
∂E[g(z1)]

dE[y∗]/dE[g(z1)]
(3.26)

where we have chosen j = 1 without loss of generality. Taking these derivatives, we have

Vn(A) =
α

α− τα + τ
(3.27)
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The strengths of this model are that it provides one example of an exact structural rela-

tionship that underlying the long-differences methodology (where the parameterization

of the production function is the only loss of generality) and that it provides a convenient

framework for comparing analytical results with estimation. One can see this latter

feature in the normalized value of adaptation: the measure does not depend on prices or

total factor productivity because weather and x are both multiplied by these parameters.

The only parameters that determine adaptation are the marginal product of inputs and the

period over which inputs must be fixed. One can get a sense for how Vn(A) varies with

these parameters from Figure 3.5
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Figure 3.5: Value of adaptation as a function of τ and α parameters

Figure 3.5 shows how this value varies with α and τ . You can see that adaptation

is always 1 at α = 1 and that increases in τ , the focus of the simulations assessing quality

of different estimation methods, monotonically decrease adaptation.
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Simulating an adaptation data generating process

Simulation of the model will allow for rapid testing of alternative estimation

strategies. For simulation, set g(z) = exp(µ + zσ), with Z ∼ N(0,1). In this case,

E[g(Z)] = eµ+σ2/2. Specific parameters are set in each simulation run, discussed below.

The production function used here is multiplicatively separable.

First, I will verify the conclusions of Section 3.2.1 that ex post data can be used

to identify ex ante versions of the value of adaptation. Formally, one wants to test that

N−1
N

∑
i=1

V̂ (A)i = N−1
N

∑
i=1

∂y∗it
∂x∗it

∂x∗it
∂E[g(Zit)]

converges to V (A) as N goes to infinity. Equivalently, one could show that V̂n(A) con-

verges to Vn(A). The analytical solution for Vn(A) was given by Equation 3.27, which

shows that this value is not a function of E[g(Z)] except through x∗. Therefore, in this

model, the ex ante and ex post values for Vn(A) are identical.

Second, one can assess the estimator that I propose in Section 3.2.2. There, I

propose an estimating equation of the form

yt = β0 +β1g(zt)+β2Ep
t−1[g(Zt)]+ εt (3.28)

if the researcher knows the private beliefs exactly. If this estimation strategy is valid, then

asymptotically, β2 should equal V (A) and β1 should equal ∂E[y∗]/∂E[g(Z)].

I assess this estimation strategy by estimating over different value of τ and α . For

the fixed-factor period, consider τ ∈ {1 . . .6,8,10,12,15}, with α = .8. The correlation

between the forecast of weather and weather is set to 3/4. The model is simulated 200

times, and figures show the average output of these simulations. Figure 3.6 plots the

estimate of the adaptation term, β2 in Equation 3.28 above, against the analytical value
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Figure 3.6: Adaptation value estimate versus analytical value
Notes: The y-axis shows the estimate of β2 from Equation 3.28. The x-axis
shows the analytical value for V (A), calculated from Equation (3.27). The
gray solid line is a 45◦ line. Both values are measured on log scales.

for this model. One can see that these values track closely. Each point in the figure

is an average value of 200 runs of the model for each level of τ . The value of τ is

decreasing to the right in this figure, since adaptation value goes up as the firm faces less

strict constraints on varying inputs. This plot is reassuring that adaptation value is being

identified well in this setting.

Figure 3.7 shows a similar pattern for estimates of the direct effect, as measured by

estimates of β1 from Equation 3.28. One cannot tell from the figure, but the direct effect

is even better measured than the adaptation effect, since there is more variation in weather

than in expectations about the weather in this model. In general, there should be weakly

more variation in actual weather. In both figures, effects are slightly underestimated



69

●

●

●

●

●

●

●

●

●

●

●28

32

36

40

44

48

30 35 40 45

Analytical value of direct effect

E
st

im
at

e 
of

 w
ea

th
er

 c
oe

ffi
ci

en
t

Figure 3.7: Direct effect estimate versus analytical value
Notes: The y-axis shows the estimate of β1 from Equation 3.28. The x-axis
shows the analytical value for the direct effect. The gray solid line is a 45◦

line. Both values are measured on log scales.

for low levels of τ (upper right quadrant of the figures). This bias is functional form

dependent and is reduced under less steeply curved production functions. The next

section will also explore the relationship of this bias to the sample size. Overall, both of

the theoretically motivated estimates perform well in this setting.

Asymptotics

One can also assess the asymptotic performance of these estimators through

simulation. Because individuals are homogenous, one should expect that the bias at small

values of τ observed in the previous figures might disappear as the time series grows.

Simulation suggests that this is true. For a fixed value of τ = 2, as T goes to infinity, the
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bias in the direct effect estimate disappears.
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Figure 3.8: Asymptotic performance in simulation, T → ∞

Notes: The points show bias in the direct effect estimate for a fixed choice
of τ = 2 and α = 0.7.“Obs” refers to T .

In contrast, adding more individuals does not reduce bias. Similar figures hold

for estimates of the adaptation value. This suggests that the value of adaptation and direct

effects are best estimated with panels that have long time series components, although

this suggestion will likely be data generating process dependent.
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Figure 3.9: Asymptotic performance in simulation, N→ ∞

Notes: The points show bias in the direct effect estimate for a fixed choice
of τ = 2 and α = 0.7.“Obs” refers to N.
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Assessing the performance of long-difference models

Long difference models have recently been used to estimate the value of adapta-

tion. The method used in previous papers like Burke and Emerick (2016) and Dell, Jones,

and Olken (2012) is to estimate weather effects using a panel model and a long-difference

model. The panel estimate is intended to measure total effect under the assumption that

agents cannot adapt to short-run weather, and the long-differences estimate is intended

to measure the net-of-adaptation effect under the assumption that agents can adapt in

the long run. Both of the cited papers use output as their outcome measure (yield in the

case of Burke and Emerick (2016) and GDP growth in the case of Dell, Jones, and Olken

(2012)). Thus, for each simulation the long-differences estimates are generated according

to the regression

∆ȳt̃ = βLD∆ ¯g(z ˜ )t + εLD,t (3.29)

where t̃ is the time measurement of each τ period, so if T = 100 and τ = 5, there will be

20 observations indexed by t̃ = 1 . . .20. Panel estimates are generated according to

ȳt = βFEg(zt)+αi + γt + εFE,t (3.30)

where αi and γt are fixed effects. The estimate of the normalized value of adaptation will

be calculated as (βFE −βLD)/βFE .

The simple data generating process considered here is designed to give long-

difference estimators the best chance of returning the correct inference, because the role

of expectations is in determining inputs for a fixed period. Therefore, knowing the correct

period, one could hypothetically use the average weather in that period to exactly proxy

for expectations. As one will see, however, this estimation strategy fails, and it does so
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Figure 3.10: Relative bias of long-difference estimates versus analytical values for the
direct effect

Notes: The y-axis shows the bias of the long-difference estimate from
Equation 3.29 relative to the analytical value for the direct effect. The bias
is divided by the magnitude of the direct effect to account for changing
sizes of the effect over τ . The x-axis shows values of τ from Equation
(3.27).

for three reasons.

To see the performance of the estimators, Figures 3.10 and 3.11 show bias of the

long-difference and panel estimators, respectively, as τ varies. One can see that there

is severe bias in both estimates. The direct effect is progressively less and less well

estimated by the long-difference estimator as τ increases. The panel estimator performs

better as an estimate of the total effect as τ increases.

The bias of these estimators comes from three sources. First, as has been discussed

throughout this study, estimates of the direct effect can be generated using only weather
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Figure 3.11: Relative bias of fixed effect estimates versus analytical values for the total
effect

Notes: The y-axis shows the bias of the long-difference estimate from
Equation 3.30 relative to the analytical value for the direct effect. The bias
is divided by the magnitude of the direct effect to account for changing
sizes of the effect over τ . The x-axis shows values of τ from Equation
(3.27).

data if all adaptation is continuous and profit is used as the dependent variable. Using

revenue, as is done here, leads to incorrect inference.

Second, the logic underlying the mapping from long-difference estimators and

panel estimators to the direct and total effects is incorrect. As is clear from the theo-

retically motivated estimators, weather variation conditional on average weather, as in

the panel estimator, should provide better inference on the direct effect than the total

effect. Indeed, this is one of the motivations for the estimations strategy in Deschênes

and Greenstone 2007. The long-differences estimator should provide relatively better
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inference on the total effect.

Third, neither the panel estimator nor the long-difference estimator can provide

exact inference on any of the three quantities of interest. The panel estimate does not

completely account for time-varying expectations, so it will be a biased estimator of the

direct effect to the degree to which time varying preferences matter for revenue (in other

words, the stronger is adaptation) and the degree to which expectations are correlated

with weather. Similarly, the long-differences model, even in the best case where the

period of the long difference equals the period over which expectations matter, does not

account full for weather realizations, so it will be biased in a similar manner.

It should also be noted that the panel and long-difference estimators use similar

variation because the long-differences estimator averages over both weather and the

dependent variable. Differences in these estimators can occur if the climate is trending

consistently or if technology adoption is changing the direct effect at specified intervals,

but for the simulation here, the estimates are both similar.

Putting these issues together, the estimate of the normalized value of adaptation

using the long-differences method performs progressively worse as the fixed-factor period

length increases, as shown in Figure 3.12. This bias is reduced but still grows in the same

manner if the estimate of Vn(A) is done using the corrected mapping discussed above.

3.4 Climate damage and adaptation identification redux

The empirical strategy sheds light on some of the challenges that face other

methods that attempt to identify adaptation. First, echoing a point made by Miller (2015),

if adaptation is occurring, neither moments of the climate distribution nor the level of

realized weather are unconditionally exogenous. Both measures must be included in the

same regression (or conditioned on prior to estimation) for consistency. This is a point
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Figure 3.12: Long-difference estimates of Vn(A) as a function of τ

Notes: The figure shows variation in the panel and LD estimators as
normalized adaptation varies. The estimate normalized value of adaptation
follows Burke and Emerick 2016.

that has been widely made in research on the effects of pollution, for instance by Graff

Zivin, Hsiang, and Neidell (2013) and Chay and Greenstone (2005), but it has not been

embraced by empirical researchers estimating climate damages.

In fact, to the degree to which estimation methods can make inference on the value

of adaptation when they do not include direct proxies of agent beliefs, they are relying

on omitted variable bias to transmit some information about the degree of adaptation.

In general, however, omitted variable bias will not be enough to transmit all of the

information on adaptation and will simply result in a biased estimate of the total effect of

weather on output. For instance, in the empirical setting considered below, omitting the

expectation term increases the magnitude of the direct effect estimate by 30%, while to
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capture the true total effect, the coefficient should change be at least 115%. Therefore,

adaptation estimates using existing methods in this setting would understate adaptation

by a factor of 2 or more.

Also, the choice of dependent variable is crucially important when estimating

climate damages as well as adaption costs and benefits. This point was made as early

as Mendelsohn, Nordhaus, and Shaw (1994), who argued that land prices were the

appropriate dependent variable for analyzing climate damages net of adaptation. The

assumption underlying the argument in that paper is based on a dynamic variant of the

envelope theorem conditions considered in Section 3.1.1. Recent work that explicitly

models neoclassical, rational-expecting agents in a dynamic setting shows that this

argument can hold if investments are non-durable, but in general, expectations must be

accounted for even in this case (Severen, Costello, and Deschênes 2016; Lemoine 2017).

In a one-period model, the results from this paper as well as arguments in Hsiang

(2016) show that climate damages can be estimated from measures of the agent’s value

function (profit or utility in neoclassical settings) regressed on weather variation under the

crucial assumption that all adaptation mechanisms are intensive, since this identification

relies on the envelope theorem to cancel out the effect of adaptation. If firm revenue is

used, as in this study, then expectations must be accounted for to return well-identified

measures of climate damages. The bulk of studies that estimate climate damages do so

on a measure that are not the value function or do not account for adaptation. Notably,

estimates of top-down climate damages for use in policy, estimated in Dell, Jones, and

Olken (2012) and Burke, Hsiang, and Miguel (2015), use GDP which is not the value

function measure required by theory.

In the presence of intensive margin adaptation, even value function measures are

not sufficient to identify climate damages if expectations are not accounted for. In this

case, adaptation will have first-order welfare implications, so one is in a model closer in
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spirit to Lemoine (2017). In such a setting, expectations are always crucial to account for.
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Chapter 4

Empirical methods

4.1 Background and data for estimating adaptation in

the North Pacific albacore fishery

4.1.1 Albacore fishing, ENSO, and ENSO forecasting

The first empirical analysis estimates adaptation to ENSO and investigates adap-

tation mechinisms

Three attributes of the North Pacific albacore fishery make it an ideal setting to

study adaptation. First, ENSO has a substantial effect on the fishery both because ENSO

causes substantial changes to the weather and oceanic conditions of the North Pacific

and because albacore are sensitive to those changes. Second, NOAA issues forecasts

directly to albacore harvesters in the fishery, and interviews with harvesters indicate

that these forecasts are utilized. Third, concerns about other confounding effects are

minimal. The fishery does not suffer from congestion, is not subject to catch quotas, and

the albacore population is relatively healthy (Albacore Working Group 2014). Also, the

U.S. harvesters studied here account for a small part of the global albacore tuna output,
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mitigating concerns about aggregate output price effects from ENSO, and the primary

variable cost comes from diesel fuel, a globally traded and produced commodity.
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Figure 4.1: ENSO Cycle

Notes: The ENSO cycle is represented here by the NINO3.4 index, which is the three
month moving average of SST anomalies from the NINO3.4 region of the Pacific. Values
above 0.5 indicate an El Niño and values below -0.5 indicate La Niña, as denoted by the
red and blue shaded regions respectively. For more information on this series, see Section
4.1.

Albacore (Thunnus alalunga) typically follow oceanic fronts with strong temper-

ature gradients and stay in waters with sea surface temperature between 15 and 20◦C

(Childers, Snyder, and Kohin 2011). The temperature preferences of albacore make

them highly responsive to changes in climate. The preferences of the albacore have

led harvesters to develop rules of thumb based on sea surface temperature ranges when

determining where to try to catch fish (Clemens 1961; Laurs, Yuen, and Johnson 1977).

Since the mid-1980s, scientists and harvesters have become increasingly aware of the

influence of other factors in determining albacore location, including water color and
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clarity, but temperature remains an important choice variable for harvesters when deter-

mining fishing location (Laurs, Fiedler, and Montgomery 1984; Childers, Snyder, and

Kohin 2011).

ENSO affects the temperature of the North Pacific (see Figure A.3) and oceanic

structures like temperature gradients. These shifts make it harder for vessels to locate

albacore (Fiedler and Bernard 1987).1 ENSO, therefore, generally entails more intensive

and costly search for fish. In interviews, harvesters indicate that if uncertainty about

optimal fishing location is too high or if expected fishing grounds are too distant from

shore, they respond by temporarily exiting the albacore fishery in order to pursue crabs

and other pelagic species less affected by ENSO conditions (Wise 2011; McGowan,

Cayan, and Dorman 1998).

The average fishing trip is about two weeks long, and trips can last up to three

months. Harvesters generally take between 1 and 2 trips per month. An ideal trip involves

an initial transit to a fishing ground followed by little movement of the vessel as actual

fishing occurs. Because ENSO effects are felt in the fishery as quickly as a week after

equatorial temperature changes (Enfield and Mestas-Nuñez 2000), this strategy can be

disrupted by unanticipated ENSO events. Unfortunately for the harvesters, prior to the

late 1980s, ENSO was not forecastable. In fact, despite the importance of ENSO to

global climate, equatorial temperature anomalies were often not even detectable prior

to the deployment of the Tropical Atmosphere Ocean (TAO) array of weather buoys

between 1984 and 1994 (Hayes, Mangum, Picaut, Sumi, and Takeuchi 1991).2

Skillful forecasts of ENSO were developed starting in the mid 1980s. An early

1Lehodey, Chai, and Hampton (2003) shows that, in addition to spatial dislocation, Pacific albacore
recruitment tends to fall after El Niño periods, indicating that there might be temporal spillovers between
ENSO and catch in the fishery. I check this in Table A.1 and rule it out as an explanation of the short-run
results.

2NOAA’s history of ENSO measurement notes, “Development of the Tropical Atmosphere Ocean (TAO)
array was motivated by the 1982-1983 El Niño event, the strongest of the century up to that time, which was
neither predicted nor detected until nearly at its peak.” http://www.pmel.noaa.gov/tao/proj_over/taohis.html

http://www.pmel.noaa.gov/tao/proj_over/taohis.html
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Figure 4.2: Fishing locations across the North Pacific

Notes: The heat map shows correlation between the one month lag of the Niño 3.4
index and sea surface temperature for each quarter degree latitude-longitude grid cell,
as in Figure A.3. Each point shows a daily observation of either fishing or transiting.

ENSO forecast based only on atmospheric modeling was published by Inoue and O’Brien

(1984). Cane, Zebiak, and Dolan (1986), a group of researchers at the Lamont-Doherty

Earth Observatory (LDEO), published the first coupled ocean-atmosphere forecast,

termed LDEO1. In the late 1980s, NOAA’s Climate Prediction Center (CPC) began to

produce a statistical forecast of ENSO based on Canonical Correlation Analysis (CCA).

A stated goal of the LDEO forecasting group was to produce unbiased forecasts of ENSO

(Chen, Cane, Zebiak, Canizares, and Kaplan 2000).

Starting in June 1989, the LDEO forecast was issued publicly in NOAA’s Climate

Diagnostics Bulletin, a publication of global climate information and medium term

climate forecasts. The Climate Diagnostics Bulletin incorporated additional ENSO

forecasts as they were published, starting with the CCA forecast in November 1989.3

3For examples of these historical Bulletins, one can see the archive going back to 1999 at the following
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Today, the Bulletin publishes 21 ENSO forecasts on a monthly basis. See Section 4.1.2

for more information on the content of the Bulletins. Analyses of forecast accuracy and

performance over time can be found in Barnston et al. (2010) and Barnston, Tippett,

L’Heureux, Li, and DeWitt (2012).

At nearly the same time that ENSO forecasts were being created, NOAA started

a program called CoastWatch, first launched in 1987, to disseminate forecasts, satellite

imagery, and other data to coastal businesses and individuals. ENSO forecasts from

the Climate Diagnostics Bulletin were incorporated in the CoastWatch releases, and

personal correspondence with albacore harvesters indicates that CoastWatch forecasts

were routinely posted at albacore fishing ports along the Pacific coast. Even today,

private companies selling weather forecasts and satellite imagery to the albacore fishery

repackage the NOAA ENSO forecasts.4

For this study, I focus on the effects of the 3-month-ahead ENSO forecast. The use

of this forecast is primarily due to data constraints—it is the only forecasting horizon that

I observe over the full sample period—but it is also because of practical considerations.

The Bulletin forecasts are typically released a month after they have been generated, so a

three month ahead forecast is, practically, a one or two month ahead forecast from the

perspective of the fisher. Given the timing of ENSO effects being felt in the North Pacific

and typical trip length, this forecast horizon is likely to be the relevant one for fishing

decisions.

link: http://www.cpc.ncep.noaa.gov/products/CDB/CDB_Archive_html/CDB_archive.shtml
4For instance, SeaView Fishing, a private firm used by the fishers that I spoke to, simply links to

NOAA’s ENSO forecast website for predictions of El Niño and La Niña. See http://www.seaviewfishing.
com/News.html

http://www.seaviewfishing.com/News.html
http://www.seaviewfishing.com/News.html
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4.1.2 Dataset construction

For estimation, data on equatorial and North Pacific sea surface temperatures,

ENSO forecasts, vessel-level fish catch, and relevant prices need to be combined. Here, I

briefly describe each dataset used in the analysis. Summary statistics for the variables

can be found in Table 4.1 and more details about dataset construction can be found in the

Section.

NOAA’s Climate Prediction Center (CPC) publishes monthly average temperature

anomalies in what is known as the Niño 3.4 region of the Pacific, a rectangular area

ranging from 120◦W-170◦W longitude and 5◦S-5◦N latitude. Anomalies are calculated

with respect the thirty-year average temperature. This study uses the 1971-2000 average.

Following Trenberth (1997) and NOAA, I classify El Niño and La Niña events based on

five consecutive months where the three month moving average of the Niño 3.4 index is

greater than 0.5◦C for El Niño or less than −0.5◦C for La Niña.

Data on ENSO forecasts come from two sources. Public ENSO forecasts have

been issued as part of NOAA’s Climate Diagnostics Bulletin since June 1989. These are

generally point forecasts for the coming few months or seasons, along with observations

of ENSO from recent months. I digitized forecasts from these bulletins for the period

from 1989 until 2002. In 2002, the International Research Institute for Climate and

Society (IRI) began keeping records of publicly issued ENSO forecasts, and Anthony

Barnston at IRI provided me with digital records for the period from 2002 to the present.

More details on the construction of the historical forecast dataset can be found in Section

4.1.2.

The data for the albacore fishery consist of daily, vessel-level logbook obser-

vations of U.S. troll vessels from 1981 to 2010. All fishing days are observed, with

additional information provided for some transiting and port days (these latter data do

not appear to be consistently reported). For each fishing day, the logbooks report the
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Table 4.1: Summary Statistics

Panel A: Pre-forecast sample (1981-May 1989)
Mean St. Dev. Obs.

Catch per month (fish) 163.30 611.15 26,415
Catch weight (pounds) 1,079.31 5,849.68 26,415
Niño 3.4 index 0.01 1.02 26,415
Vessel length (ft) 50.50 9.63 26,385
Diesel price (2001 $) 1.95 0.68 21,710
Albacore price (2001 $) 1.35 0.27 20,061

Panel B: Post-forecast sample (June 1989-2010)
Mean St. Dev. Obs.

Catch per month (fish) 264.92 980.86 69,057
Catch weight (pounds) 3,081.94 12,687.92 69,057
Niño 3.4 index 0.16 0.81 69,057
3 month-ahead Niño 3.4 forecast 0.09 0.58 69,057
Vessel length (ft) 55.01 18.73 66,444
Diesel price (2001 $) 1.72 0.79 67,483
Albacore price (2001 $) 1.08 0.23 62,894

Notes: Averages, standard deviations and number of observations for primary
variables in the dataset are shown for the pre-forecast (panel A) and the post-
forecast (panel B) samples. Between 1981 and 2010, the dataset contains 2,125
unique vessels.

number of fish caught, the weight of fish, a daily location record (latitude and longitude),

the sea surface temperature, the number of hours spent fishing, and the number of troll

lines used. At the trip-level, the logbooks report vessel length, departure and arrival port,

and total weight of catch for the trip. Landing port is matched to the Pacific Fisheries

Information Network (PacFIN) database on annual albacore sale prices for 1981 to 2010.

Only ports in the continental U.S. are in the PacFIN database, so albacore prices are only

available for those landings (about 78% of the primary estimation sample).

The vessels in the sample use #2 marine diesel fuel. Where available, the price for

this fuel is used for cost calculation, but the price for this exact fuel type is not available

over the full sample. From 1983 to 1999, monthly, state-level average prices for diesel,

gasoline, or number 2 distillate (the class of fuel containing diesel and heating oil) are

available from the Energy Information Agency “Retailers’ Monthly Petroleum Product
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Sales Report.” Different states have records for diesel fuel prices starting at different

dates, but by 1995, all states in my sample report diesel prices. For periods prior to 1995

when a state does not report diesel prices, number 2 distillate prices are used if they are

available. Over the sample where both diesel and distillate prices are observed, the values

correspond closely. If neither diesel nor distillate prices are available, then gasoline

prices are used after accounting for seasonal differences between gas and diesel. From

1999 to the end of the sample, monthly, port-level prices for marine diesel are available

from the Pacific States Marine Fisheries Commission EFIN database.5 All prices are

pre-tax if possible. See Section 4.1.2 for further details. All prices have been deflated

to 2001 dollars using the monthly core consumer price index from the U.S. Bureau of

Labor Statistics available from the Federal Reserve Bank of St. Louis’ FRED database.

Finally, full costs, expenditures, and revenues for a panel of 35 albacore harvesters

were recorded from 1996 to 1999 in the National Marine Fisheries Service, American

Fisheries Research Foundation (NMFS/AFRF) Cost Expenditure Survey. These are the

best available data for costs in this fishery, and the fraction of costs attributable to fuel is

calculated based on this sample.

ENSO forecast data

Gathering actual contemporary forecast values (what I call “real time” or “histori-

cal” forecasts) was central to the project, because accurate knowledge of the information

sets available to harvesters is crucial for identification. Unfortunately, to my knowledge,

there does not exist a database of real time ENSO forecasts from their initiation in 1989

to the present. Thus, I gathered real time forecasts from the Climate Diagnostics Bulletin

(CDB) and the IRI Niño 3.4 summary. The CDB started releasing forecasts in June 1989

and began incorporating the IRI summaries in April 2003. By the year 2000, the number

5Available online from www.psmfc.org/efin/data/fuel.html.

https://research.stlouisfed.org/fred2/series/CPILFESL
http://www.cpc.ncep.noaa.gov/products/CDB/CDB_Archive_html/bulletin_0403/
www.psmfc.org/efin/data/fuel.html
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of forecasts incorporated into the Bulletin had grown from 1 to 8.

Figure 4.3: Example of forecast issued in the Climate Diagnostics Bulletin

Notes: The figure shows an ENSO forecast issued in the Climate Diagnostics Bulletin
in June of 1989. This figure is typical of the forecasts published between 1989 and
2002. The solid line shows the Niño 3 sea surface temperature anomalies and the X are
forecasts (and back-casts). Whiskers are the historical standard error for the forecast, a
feature present in this but not all models.

To gather the CDB data, I digitized paper records from 1989 to 1999 by scanning

each forecast from the Bulletin and then recording the data using the software Graphclick.

For Bulletins from 1999 to 2002, I used the online archive of CDBs, again digitizing

the figures using Graphclick. For each release, I digitized the CDC CCA, LDEO1,

LDEO2, LDEO3, LIM, and NCEP forecasts. Other forecasts were either issued as maps

or contained idiosyncratic issues that prevented digitization.

For data from 2002 through 2010, I used IRI data helpfully supplied to me by

Anthony Barnston. These IRI data have formed the basis for analyses of ENSO forecast

performance as in Barnston et al. (2010) and Barnston, Tippett, L’Heureux, Li, and

DeWitt (2012).

In all cases, I used the actual ENSO index values reported in subsequent CDB or

IRI reports to calculate forecast accuracy. So, for instance, when digitizing the Climate

Prediction Center Canonical Correlation forecast at a 3 month lead, I used the actual

http://www.arizona-software.ch/graphclick/
http://www.cpc.ncep.noaa.gov/products/CDB/CDB_Archive_html/CDB_archive.shtml
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value reported in the CDB three months later. One could alternatively use a standardized

ENSO index across all forecasts. I chose not to do this for numerous reasons. First, all

forecasts initially, and many forecasts to the present day, use the Niño 3 index rather

than the Niño 3.4 index. Second, the base climatology used to calculate ENSO indices

has changed from the 1980s to the present. Third some forecasting agencies might have

used their own idiosyncratic calculations of an index or used alternative SST measures.

Using the real-time actual values eliminates these sources of noise. On the other hand,

what matters for fishing outcomes is the true climate that realized each time period. Thus,

for estimation, I use the most recently released version of the Niño 3.4 index. For an

alternative method based on scaling alternative index values and visual averaging of

maps, see the IRI ENSO Quick Look.

Albacore prices

Albacore prices come from the PacFIN database and are available from 1981 to

2010 at the annual level for ports in the continental United States. Prices are matched to

catch using the landing port reported by the vessel.

Fuel prices

Monthly port-level fuel prices are available for ports in Washington, California,

and Oregon from 1999 to the present. The prices are gathered using a phone survey

during the first two weeks of each month. The survey respondents are asked to give the

price per gallon or price per 600 gallons for number 2 marine diesel before tax.

From 1983 to until the end of 1993, state level prices for number 2 distillate are

used for Washington, Alaska, and Oregon. From 1994 until the end of 1998, highway

grade number 2 diesel price is used. For Alaska, the state average diesel price is also

used for the 1999 to 2010 period.

http://iri.columbia.edu/our-expertise/climate/forecasts/enso/archive/201312/SST_table.html
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For California, the distillate price series is not available. State average diesel

price is used starting in July of 1995. Prior to July 1995, the gasoline price is used, after

accounting for seasonality. In particular, using all data where I observe both gasoline and

diesel prices (1994 through 2010) I run the regression

dieselt = αmonth + γ0gast + γmonthgast + εt

where diesel is the diesel price, gas is the gasoline price, αmonth is a fixed effect for each

month of the year (1, . . . ,12), and γmonthgast is an interaction between a fixed effect for

each month and the gasoline price. I then predict the diesel price for the pre-1994/5

period using the coefficients from this regression and the observed gasoline price from

1983 to 1995. This procedure should account for intra-year changes in the diesel-gasoline

price gap caused by seasonal demand for heating oil. In practice, the seasonal coefficients

are not important for this sample.

The same procedure is used to estimate diesel prices for Hawaii over the full

sample.

Teleconnection

To quantify the relationship between ENSO and temperatures outside of the Niño

3.4 region—what climatologists call teleconnection—I use monthly 1981-2010 satel-

lite measures of sea surface temperatures at a (1/4)◦ spatial resolution from Reynolds,

Rayner, Smith, Stokes, and Wang (2002). Temperatures from so called “reconstruction

analyses” like this are recommended for use in climate studies by Auffhammer, Hsiang,

Schlenker, and Sobel (2013). I define teleconnection as the correlation between tempera-

ture in a given location and the Niño 3.4 index from the month prior. I calculate separate

teleconnection measures for each month of the year for a given location, reflecting the
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time-varying strength of ENSO within the year. In particular, ENSO events typically

manifest in April or May and last through the beginning of the next year, meaning that

effect of ENSO will generally be more apparent in the latter half of the year (Hsiang,

Meng, and Cane 2011).

Formally, let m be the month, y be the year, x be the location, and L be a lag

length in months. Let ninom,y be the Niño 3.4 index value for month m in year y, Tx,m,y be

the temperature at location x, month m, and year y. Let ρx,m(L) = corr(ninom,y,Tx,m+L,y)

for all y. I define teleconnection as this correlation when L = 1, or telx,m = ρx,m(1). This

definition follows the one used in Hsiang, Meng, and Cane (2011).

The teleconnection value is what is shown in Figures A.3, 4.2, and A.4.

Vessel movement

Vessel movement is calculated from daily latitude and longitude records plus

records of the departure and landing ports. During a fishing trip, movement is cal-

culated as the great circle distance between today’s and yesterday’s reported location.

Calculations were carried out using the geodist package in Stata.

For the date of departure, movement is calculated as the great circle distance

between the departure port location and the location reported in the first logbook record

for the trip. For the final day of the trip, movement is calculated as the great circle

distance between the last location reported in the logbook and the landing port.

Catch weight

Catch weight was not recorded in the logbook records for 63,435 of the 193,561

daily records for the full sample (1981 - 2010). For the missing records, weight was

interpolated in order to obtain complete records for the creation of revenue measures.

The interpolation used two methods. First, if a total weight of fish catch was recorded
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for the trip, then this average weight was used for all fish caught on the trip. Trip weight

records were used for interpolation in 11,396 of the missing cases. For the remaining

cases, a regression of weight on gear type, year, and month was used to estimate weight.

Table 5.6 assesses the effect of this interpolation procedure on the baseline results.

Column 1 reproduces the baseline results from Table 5.1 using only the sub-sample

of observations with recorded catch weight. Inference is nearly identical to baseline

in this case. Columns 2 and 3 show the baseline regression with catch weight as the

dependent variable with and without the interpolation, respectively. One can see that the

interpolation increases the magnitude of the results. This occurs because more positive

catch observations are being added to the dataset. Finally, Column 4 reproduces the

revenue result from the baseline table, again showing slightly larger magnitudes but with

similar qualitative results between the interpolated and non-interpolated versions.

4.2 Method for estimating adaptation in the North Pa-

cific albacore fishery

To estimate the effect of ENSO on the fishery one would ideally regress output

on the forecast and realization of ENSO, both transformed by a known function g, as in

Equation (3.10). Since the function g is unknown in this case, I will first present non-

parametric results, and I will then give regression results with a theoretically motivated

parametric specification.

For the latter case, assuming that vessels are well adapted to “typical” climate

conditions suggests that profit should be highest when ENSO anomalies are neither high

nor low—in other words, when neither a La Niña nor an El Niño is occurring. In that

case, unexpected deviations in either direction will cause loss in profit relative to the

zero-anomaly case, so the relationship between the ENSO, as measured by the Niño
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3.4 index, and profit or revenue should be concave (recall that the model shows that the

direct effect is the same for both profit and revenue). A simplifying assumption is that

this relationship is symmetric for positive or negative ENSO events. This theoretical

relationship suggests that a quadratic function for g is appropriate. The lag between

changes in ENSO in the equatorial Pacific and the effects being felt in the North Pacific

suggests that this function should be in terms of the lag of ENSO. Putting this together,

let

g(zt−1) = γ +β1zt−1−β2z2
t−1, (4.1)

where γ is some positive constant sufficiently large to ensure that vessels would like to

enter the fishery and z is the Niño 3.4 index. Because the Niño 3.4 index is centered

around zero, the assumption that vessels are well adapted to normal conditions implies

that β1 = 0, so a simplified equation could exclude this term.

Given this function of weather, if agents are forming distributional beliefs about

ENSO, then the correct forecast term to include would be ĝ(zt−1) = γ +β1Et−h[Zt−1]−

β2Et−1[Z2
t−1], where h is how far in advance the forecast was issued (at least h > 1 in

this case). In practice, I observe point forecasts of ENSO, so I will use

ĝ(zt−1) = γ +β1Et−h[Zt−1]−β2Et−h[Zt−1]
2 (4.2)

This necessitates one of two additional assumptions. Either one can assume that agents

are not forming time-varying distributional beliefs about ENSO so that the changes in

the point forecast fully capture both linear and nonlinear changes in expectations, or one

can assume constant variance of Z. To see the need for the constant variance assumption,
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assume that agents forecast higher moments of the ENSO distribution. Then

E[g(Z)] = γ +β1Et−h[Zt−1]−β2Et−h[Z2
t−1] (4.3)

The difference between this value and the measure used for estimation is

E[g(Z)]−g(E[Z]) = β2(Et−h[Zt−1]
2−Et−h[Z2

t−1]) = β2Vt−h(Zt) (4.4)

If one assumes that Zt has constant variance over time, then (4.4) is constant so the

difference between the two measures will be absorbed by the intercept term. Then,

despite a difference in levels, changes in the two values will carry the same identifying

information.

Whether these assumptions limit the interpretation of results is context specific.

In Section A Figure A.2, I assess the stability of the variance of ENSO over time. Aside

from a period of high variance in the late 1990s, ENSO appears to have a stable second

moment relative to the movement in the mean. Much of the research on climate change

has focused on uniform shifts in the location of the weather distribution, but climate

change is expected to have effects on higher moments of weather as well. Therefore,

future work would benefit from using distributional forecasts to assess adaptation to

changes in the full distribution of weather.

Putting all elements together, the full estimating equation is

yit = β0 +β1zt−1 +β2z2
t−1 +β3ẑt−1 +β4ẑ2

t−1 +x′itα + εit (4.5)

where yit is output or revenue for vessel i at time t, time is measured in months, zt−1 is

the realized value of the Niño 3.4 index the previous month, ẑt−1 is the forecast of ENSO,

x is a vector of control variables (vessel, year, and month fixed effects in the baseline
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specification), and ε is a stochastic error term. Adaptation is indicated by the slope of the

ẑ terms relative to that of the z terms. This will be considered formally in Section 5.1.3,

but intuitively, the higher the magnitude of β4 relative to β2, the greater the adaptation.
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Chapter 5

Results

5.1 Results for adaptation to ENSO in the North Pacific

albacore fishery

5.1.1 Adaptation, direct effect, and total effect of ENSO

The timing of the release of public ENSO forecasts in 1989 allows for an initial

assessment of adaptation by comparing the effect of ENSO before forecasts were released

to the effect after the release. Under the assumption that ENSO was unforecastable,

agent expectations in this period would be climatological or unchanging over time. In

that case, the effect of ENSO on output captures the effect absent any forward-looking

adaptation. After 1989 and the release of forecasts, the relationship between ENSO and

output should capture an average of the direct effect and the forward-looking adaptation

effect. In this case, one would expect the relationship to be attenuated relative to the

pre-forecast period if adaptation is occurring.1

1The assumption of unforecastability is likely too strong, even in light of evidence presented in Section
4.1.1 that in the 1980s ENSO was not consistently observed, much less predicted. ENSO anomalies exhibit
autocorrelation, so once an ENSO event begins, it is likely that it will last for the rest of the year. Therefore,
this evidence should be considered a lower bound on the effect from adaptation.
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Figure 5.1 gives results from implementing this method. The figure shows local

linear regressions between output (the y-axis) and the one-month lag of the Niño 3.4

index (x-axis) for the period before forecasts were released (1981-May 1989) in red, and

the period after forecasts were released (June 1989 to 2010) in blue. Both the output and

Niño 3.4 index measures are residuals from regressions on month indicators to remove

seasonality.
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Figure 5.1: Output and ENSO before and after forecasts

Notes: Each line shows a local linear regression (Epanechnikov kernel with
bandwidth of 0.38) of catch on the Niño 3.4 index the previous month. Both
variables are residualized on month of year to remove seasonality. The red,
solid line uses the sample from 1981 to May 1989 before ENSO forecasts
were released. The blue, dashed line uses the sample from after forecasts
were released in June 1989 until 2010. Shaded areas give the 95% confidence
intervals.

Before the introduction of forecasts, harvesters experienced large declines in

catch at both high and low levels of ENSO. Average catch in a month during this period

was 155 fish, so going from “normal” conditions (index value of 0) to a moderate El

Niño (index value of 1) was associated with a decrease in catch of about a third. The

losses were even steeper for extreme negative values of the index (La Niña events). This

result shows that ENSO was an important driver, historically, of catch in the fishery.
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In the period after forecasts were released, the relationship between ENSO and

catch flattens substantially and the effect becomes more symmetric about zero. Overall,

catch per month has risen in the fishery between the 1980s and the present for many

reasons. Identification of the adaptation effect comes not from this level shift in catch,

however, but from the change in curvature between the solid and dashed lines. The

reduced curvature after forecasts were released provides initial evidence that adaptation

to ENSO is occurring in the fishery.

This figures does not, however, give a complete measure of adaptation. The

relationship after the release of the forecasts is a combination of the direct effect of

ENSO and the effect of adaptation by the firm. Because realizations of ENSO are

not perfectly correlated with forecasts, this combination will, in general, be attenuated

relative to the true total effect. The formal estimation strategy isolates the direct effect

from ENSO by regressing changes in the Niño 3.4 index on catch, controlling for

expectations, and it isolates the forward-looking adaptation response using forecast

changes holding realizations fixed. The total response by the firm to ENSO is the sum of

these two effects. A more careful analysis of ENSO effects in a regression framework

can perform this decomposition while also including control variables for fixed vessel or

time characteristics.

Table 5.1 gives results from implementing the formal identification strategy. Each

column shows estimates of versions of Equation (4.5) using monthly data. The dependent

variable in the first two columns is the number of fish caught per month by each vessel,

in the third column it is the log of the number of fish caught, and in the fourth column it

is revenue. The primary explanatory variables are listed in the left column and control

variables are indicated below the coefficient estimates. The standard errors in all models

are spatial-temporal heteroskedasticity and autocorrelation robust, using a uniform kernel,

a distance cutoff of 30km, and 2 year lags for autocorrelation (Conley 1999).
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Table 5.1: Effect of ENSO on catch and revenue

(1) (2) (3) (4)
Catch Catch Revenue Catch

if fishing
Niño3.4t−1 103.7*** -3.69 1153.4** 29.8

(36.6) (91.4) (473.0) (22.2)
Niño3.42

t−1 -16.3 -107.6*** -66.4 -32.1***
(15.7) (40.2) (200.9) (11.5)

N̂iño3.4t−1 -97.5*** -132.3 -1435.4***
(31.3) (86.3) (373.4)

N̂iño3.4
2
t−1 -72.5*** 95.6* -745.3**

(27.4) (53.2) (333.9)
Vessel FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Month FE Yes Yes Yes Yes
Observations 69,057 12,430 62,894 69,057
R2 0.079 0.16 0.065 0.077

Notes: The table shows results from estimating equation (4.5) on
monthly data. The dependent variable in each model is indicated at
the top of the column. Catch is the total number of fish caught per month
by a vessel and revenue is the total ex-vessel value of that catch. Catch
if fishing is the sub-sample of observations when vessels are active in
the fishery and engaged in fishing in a given month. Additional controls
are indicated at the bottom and are fixed effects for vessel, year, and
month. In parentheses are spatial-temporal HAC robust standard errors
using a uniform kernel, a distance cutoff of 30km, and 2 year lags for
autocorrelation. Significance indicated by: *** p<0.01, ** p<0.05, *
p<0.1.

For all but the last column, four coefficients are reported, corresponding to β1

through β4 from Equation (4.5). The Niño3.4 and Niño3.42 coefficients give the effect on

catch or revenue of a 1◦C change in the the Niño 3.4 index. The N̂iño3.4 and ̂Niño3.42

coefficients give the effect from a forecasted change in ENSO.

In the last column, only the Niño 3.4 index measure is included. This column

shows the inference that would result from naïvely estimating the effect of ENSO on

the fishery while ignoring expectations. The results indicate that ENSO has a moderate,
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negative effect on catch. A one standard deviation change in the Niño 3.4 index is about

1, so column 4 says that a typical change in the Niño 3.4 index leads to a loss in catch of

about 30 fish per month. Average catch is about 260 fish per month, so this represents a

little more than 10% change in catch.

Without including forecasts, however, this result does not give a complete or

accurate picture of the effects of ENSO in the fishery. Column 1 adds variables for the

forecast of the Niño 3.4 index. One can see that predicted changes in ENSO actually

have a much larger effect on output than realized changes. In particular, changes in

information lead to a change in output more than four times larger than a comparable

change in realized ENSO.

Summing the effects from both realized and forecasted ENSO, moving from

normal conditions to a moderate El Niño (Niño 3.4 index of 1) leads to a 30% decline

in output, on average, for a vessel. The effect from a change in ENSO conditional on

the forecast, however, is reduced substantially. Comparing these results to column 4, the

naïve method overstates the effect of a change in realized ENSO by a factor of 2. This

illustrates the bias in climate damage estimates that can result from ignoring adaptation,

as argued by Mendelsohn, Nordhaus, and Shaw (1994). In addition, the total effect is

underestimated by a factor of 3. Since adaptation is, in general, costly, this high degree

of adaptation also has bearing on welfare analysis from this process.

Column 2 looks at the effect of ENSO on catch conditional on a vessel choosing

to fish in a given month. Vessels typically only choose to fish for albacore one-fifth of

the months that they are in the fishery. One can see that conditional on choosing to go

fishing, forecasts still have a substantial effect on catch—a 1 unit change in the forecast

of ENSO causes about a 20% decline in the number of fish caught in this case—but the

effect of a realized change in ENSO is much greater relative to the full sample results.

Column 3 shows estimates using revenue (in constant 2001 dollars) as the depen-
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dent variable. Revenue information is not available for the full dataset, either because

the logbook record is missing information on the weight of the fish caught or because

the vessel offloads fish at a port outside of California, Washington, or Oregon where

albacore price is observed. The results reported in this table use imputed weight where

weight is missing. The effect of this imputation is assessed in robustness Table 5.6. The

missing values in revenue lead me to prefer the results using number of fish caught, but

comparison between columns 1 and 3 shows that the results are qualitatively similar

between the two samples. This result provides initial evidence that albacore prices are

not changing in response to changes in ENSO, a topic that will be taken up in detail in

Section 5.1.2.

Overall, these estimates provide evidence that beliefs correlated with the public

ENSO forecasts are important for output and revenue in the fishery. Assessing these

estimates in the context of adaptation requires the additional identifying assumptions

laid out in Sections 3.2.1 and 3.2.2. Support for these assumptions is discussed in the

following sections, and formal calculation of the adaptation effect is carried out in Section

5.1.3

5.1.2 Price effects and profit

Measuring adaptation with output and revenue, as is done in the previous section,

is convenient from the standpoint of data availability and as the theory makes clear, it

might also be necessary in cases where a substantial portion of the adaptation mechanisms

are discrete. If profit is continuous in all adaptation mechanisms, then an application

of the envelope theorem shows that the marginal profit value of adaptation is zero. In

this case, estimates using profit as the dependent variable can return the direct effect of

weather but not an explicit measure of adaptation. On the other hand, if some adaptation

mechanisms are discrete, as in Lemoine and Traeger (2014), then the profit effects of
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adaptation will be greater than or equal to zero in an optimizing model (Guo and Costello

2013). In general, using profit as the dependent variable in a regression with only weather

on the right hand side will yield estimates that are an average of the direct effect and the

effect of discrete adaptations.

Table 5.2: ENSO effects on partial profit

(1) (2)
Revenue Net revenue

Niño3.4t−1 1171.4** 1003.2***
(473.2) (373.7)

Niño3.42
t−1 -73.0 -85.4

(200.8) (156.0)
N̂iño3.4t−1 -1439.3*** -1089.5***

(373.6) (308.6)

N̂iño3.4
2
t−1 -752.4** -643.8**

(333.5) (262.4)
Baseline FE Yes Yes
Observations 62,868 62,868
R2 0.066 0.042

Notes: The table shows results from estimation using monthly data.
The dependent variable is monthly average profit. Additional controls
are indicated at the bottom and are fixed effects for vessel, year, and
month. In parentheses are spatial-temporal HAC robust standard errors
using a uniform kernel, a distance cutoff of 30km, and 2 year lags for
autocorrelation. Significance indicated by: *** p<0.01, ** p<0.05, *
p<0.1.

The logbook data do not provide details on many of the inputs necessary to

calculate full profit measures in this empirical setting. In particular, there are no measures

of vessel maintenance or the number or wages of crew. The one input that can be

consistently calculated is movement during fishing trips. Section Section 4.1.2 has details

on this measure, but the basic method is to use the latitude and longitude records each

day to calculate day-to-day movement. Such a calculation will miss intra-day movement.

To arrive at movement costs, I multiply movement by the real price of fuel, based on
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port-level records. Vessel engine characteristics are unavailable, but for vessels with

known length, the average fuel consumption per kilometer conditional on vessel size

is calculated from the NMFS/AFRF Cost Expenditure Survey and used to scale the

fuel consumption. Fuel consumption for all other vessels is based on the unconditional

average rate. The Cost Expenditure Survey shows that fuel costs represent 10 to 20% of

the variable cost of running an albacore vessel.

Table 5.2 compares the effect of forecasted and realized ENSO on revenue and

revenue net of movement costs, both for a consistent sub-sample where profit is observed.

As predicted, the magnitude of the effect of forecasted changes in ENSO falls for partial

profit. Theory suggests that since movement is an intensive adaptation mechanism, the

profit effect should be zero for the anticipated component. The results support this

conclusion, with the profit changes due to movement falling by about 15% for anticipated

changes in ENSO. For unanticipated realizations, the linear term also falls by 15% but

the square term increases in magnitude by a similar amount.

These changes in profit are coming primarily through changes in firm behavior

rather than through changes in albacore or fuel prices. The lack of observable change in

albacore price in response to changes in ENSO can be inferred from a comparison of the

revenue and output results. Running a more explicit analysis of changes in ENSO on the

average time series for albacore and fuel prices shows that ENSO is weakly, negatively

associated with both prices. These results can be found in Table A.2.

5.1.3 Quantifying the importance of adaptation

Comparing the value of adaptation with the residual, direct effect helps to deter-

mine whether the magnitude of total adaptation is large and aids in comparisons with

other studies. In particular, the value of adaptation can be normalized by dividing by the
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total derivative of output with respect to a change in climate,

Vn(A) =
V (A)

dEt−1[y∗t ]/dEt−1[g(Zt)]
. (5.1)

The normalization creates an intuitive adaptation index because the total change in output

with respect to a change in climate can be decomposed into the change due to adaptation

and the change due to direct effects.

dEt−1[y∗t ]
dEt−1[g(Zt)]

=
∂Et−1[y∗t ]

∂x∗t
· ∂x∗t

∂Et−1[g(Zt)]
+

∂Et−1[y∗t ]
∂Et−1[g(Zt)]

(5.2)

If the value of adaptation is high relative to the direct effect, then this value will be close

to one. If adaptation is zero, this term will be equal to zero. The normalized value of

adaptation also has a welfare interpretation under the assumption of continuous inputs.

Given a choice over two continuous production technologies with the same costs, a firm

would rather choose the technology with lower ∂Et−1[y∗t ]
∂Et−1[g(Zt)]

relative to ∂Et−1[y∗t ]
∂x∗t

· ∂x∗t
∂Et−1[g(Zt)]

,

because the second term will be zero according to the first order condition and is therefore

profit neutral, while the direct effect influences profit.

Estimating the normalized value of adaptation using the parametric specification

in Equation (4.5) poses a problem, however, because the derivative of g will be zero at

the peak of the quadratic curve. This will cause the mean of the total effect to be zero at

this point, leading to division by zero. Figure 5.1 and the estimates from Table 5.1 show

that the peak of the quadratic occurs near the center of the ENSO distribution, so this

issue is a problem in practice.2

There are a number of possible solutions to the division-by-zero problem, and in

this section, I pursue three of them to compare their effect on the estimated, normalized

value of adaptation. First, one can condition on being away from the point of zero slope

2The value of Vn(A) for all observations of Niño 3.4 can be found in Figure
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Table 5.3: Quantifying the effect of adaptation

(1) (2) (3)
Estimator of Vn(A) Catch Catch Revenue

if active
Average conditional on 0.86 0.40 0.81
|Niño3.4|> 0.5 (0.35,1.37) (-0.05,0.85) (0.10,1.52)

Limit as Niño3.4→ ∞ 0.82 0.47 0.92
(0.47,1.17) (0.12,0.82) (0.43,1.41)

Median 1.01 0.78 1.02
(0.48,1.54) (0.39,1.25) (0.47,1.57)

Notes: The table shows results from three estimators of Equation (5.1) using
monthly data. The dependent variable in each column corresponds to a model from
Table 5.1. 95% confidence intervals are shown in parentheses and are calculated by
the delta method for the limit and by bootstrap in the case of the conditional mean
and the median.

when estimating the expectations in Equation (5.1). This method is convenient, but it

also has interpretability. If the functional form of the relationship between the level of

ENSO and adaptation is such that more extreme events are harder (or, less plausibly,

easier) to adapt to, then conditioning on progressively high values of ENSO will reflect

that change. In practice, I condition on the Niño 3.4 index being greater than 0.5 of less

than -0.5, the cut-off for declaring an El Niño or La Niña, respectively.

Second, one can calculate the median of Vn(A) using the empirical distribution

of ENSO. The median is less subject to outliers caused by division by zero, and even

if the true distribution of ENSO is of the family with no first moment (for instance, the

normal distribution), then the median still exists. For both the conditional mean and the

median, standard errors are calculated by bootstrap over the parameter estimates from

Table 5.1 and the empirical distribution of ENSO given by Niño 3.4 values from 1989 to

2010. Results using 300 bootstrap replications are shown.

Finally, for the parametric specification used in the baseline results, one can take

a limit of the numerator and denominator of Equation (5.1) as Niño 3.4 goes to infinity.
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Because of the parametric assumption used to estimate the baseline results, this limit is

not a function of ENSO, and Vn(A) simplifies to be β2/(β2 +β4), where the coefficients

are those from Equation (4.5). This method has the advantage that standard errors can

be easily calculated using the delta method, under the assumption that β2 6= 0. Given

the quadratic estimating equation and the estimated parameters, the limit-based estimate

of Vn(A) will agree with the conditional average-based estimate for a sufficiently wide

interval of excluded Niño 3.4 values.

In all cases, total adaptation is clearly statistically different from 0, in contrast to

recent studies of adaptation in other settings (Burke and Emerick 2016; Dell, Jones, and

Olken 2012; Schlenker, Roberts, and Lobell 2013). For intensive-margin adaptation, the

conditional average estimate is only marginally statistically different from zero, but for

the other two estimators are highly significant. In none of the full adaptation cases can

100% adaptation be rejected at conventional significance levels.

Three potential sources of bias also suggest that, if anything, these estimates

understate total adaptation. First, if harvesters have private information about ENSO

that is not captured by the public forecasts, then the model in Section 3.2.1 shows that

estimated, forward-looking adaptation will be attenuated. Second, if some adaptation

mechanisms can occur after the effects of ENSO events are known, then forward-looking

adaptation is only part of the total adaptation response, and part of the direct effect would

actually be an ex post adaptive response. I find some evidence for ex post adaptation

in Section 5.2, but the small magnitude of the realized ENSO coefficients in Table 5.1

allows one to infer that there is, at most, only limited adaptation of this type. Third,

because the pre-2002 forecasts had to be digitized from printed records, some (likely

classical) measurement error probably exists. The ENSO index is consistently well

measured over the estimation sample period, since it occurs after the advent of satellite

buoy measurement, so the measurement error in the forecasts should lead to attenuation



110

of the forecast coefficient.

5.1.4 Robustness

Three parametric assumptions underlying the estimates can be assessed. First, the

quadratic functional form chosen for the estimating equation is tested nonparametrically

in Figure 5.1. In both the pre and post-forecast samples, the overall effect of ENSO on

output appears to be quadratic. Second, the constant variance assumption is tested by

calculating a rolling variance of the Niño 3.4 index in Figure A.2. Aside from a period of

high variance in the late 1990s and early 2000s, this assumption appears to roughly hold.

Re-estimation of the baseline specification excluding this period is done in Table 5.5, and

the results are largely unchanged. Finally, the assumption of multiplicative separability

is tested in Table A.1, Column 5 by including an interaction between the forecast and

realization of ENSO. High correlation between the interaction term and the square terms

prevents separate identification of these effects. Note that this term cannot be used to

assess forecast quality under the assumption that production is concave in ENSO. In this

case, firm profit is highest if ENSO always turns out to be at whatever point corresponds

to the peak of this concave function. For instance, if the firm is well adapted to normal

conditions, then profit should be highest at a Niño 3.4 near zero, regardless of whether

the forecast is accurate or not.

Table A.1 also provides checks of robustness to changes in controls and the

method of standard error calculation. In Column 1, the separate vessel and year fixed

effects are replaced by a set of vessel-year fixed effects. These more flexible controls

do not appreciably change inference. Column 2 adds vessel-specific linear trends, again

to negligible effect on inference. Trends could be important since catch is rising, on

average, over time, and forecast quality is also changing over time (Figure A.1). Another

test to rule out trends as spuriously driving these results is reported in Figure A.7, which
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replaces the level of ENSO with the difference in ENSO between the previous month

and the month before that. Output has a concave and symmetric relationship with the

change in ENSO.

Table 5.4: Robustness to clustering and controls

(1) (2) (3) (4) (5)
Catch Catch Catch Catch Catch

Niño3.4t−1 107.5*** 106.8*** 103.7** 87.1** 109.8***
(33.1) (36.6) (49.9) (35.7) (36.6)

Niño3.42
t−1 -18.1 -15.9 -16.3 -14.4 28.6

(14.3) (15.6) (25.2) (15.5) (49.8)
N̂iño3.4t−1 -92.9*** -94.6*** -97.5** -115.6*** -101.9***

(29.6) (31.5) (47.5) (39.3) (31.9)

N̂iño3.4
2
t−1 -74.1*** -76.9*** -72.5** -80.4*** -21.9

(24.5) (27.8) (35.1) (29.9) (36.8)
Vessel trend -101.5***

(30.6)
Niño3.4t−12 61.5***

(21.1)
Niño3.42

t−12 -68.3***
(13.1)

Niño3.4t−1× ̂Niño3.4t−1 -98.4
(93.6)

FEs Vessel-year Baseline Baseline Baseline Baseline
SEs Spatial Spatial Year-month Spatial Spatial

cluster
Observations 69,057 69,057 69,057 69,057 69,057
R2 0.10 0.079 0.10 0.081 0.079

Notes: The table shows results from estimating versions of equation (4.5) on monthly data. The
dependent variable in each model is the monthly catch, where catch is the number of fish caught.
In addition to the listed variables, all models contain vessel, year, and month-of-year fixed effects
unless otherwise noted. In parentheses are spatial-temporal HAC robust standard errors using a
uniform kernel, a distance cutoff of 30km, and 2 year lags for autocorrelation, unless otherwise
noted. Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

Column 3 clusters standard errors at the year-month level. ENSO is a group

shock, and forecasts are released each month, so this level of clustering more closely

matches the level of aggregation of the exogenous shock. Inference is slightly less precise

in this case—two variables go from being significant at the 1% level to being significant

at the 5% level. The spatial standard errors are preferred for the baseline specification,
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however, because ENSO does have local effects on fishing conditions that vary smoothly

over space (see Figure A.3), so year-month clustering is likely to be too conservative.

Lehodey, Chai, and Hampton (2003) raises the possibility that ENSO in one

year might cause a fall in recruitment of fish into the harvestable stock in the next year.

Controlling for a quadratic in the level of the Niño 3.4 index from a year prior to the

current month, however, does not indicate that conditions a year ago have strong bearing

on adaptation to changes in ENSO this year. The conclusion of Lehodey, Chai, and

Hampton (2003) is strongly supported by the data, with year-ago ENSO values having a

comparable effect on catch to the contemporaneous measures.

Table 5.5: Robustness to sample and specification changes

(1) (2) (3) (4)
Catch Catch Catch Catch

Niño3.4t−1 128.7*** 75.1** 71.0**
(36.9) (37.7) (35.0)

Niño3.42
t−1 4.23 -31.8* 9.46 -15.9

(11.9) (16.9) (27.2) (18.8)
N̂iño3.4t−1 -104.5*** -112.9*** -79.0**

(34.4) (36.7) (34.4)

N̂iño3.4
2
t−1 -94.6*** -72.9*** -121.1*** -44.6*

(27.6) (28.1) (22.6) (26.1)
Catcht−1 0.41***

(0.018)
FEs Baseline Baseline Baseline Baseline
Sample Latitude< 46◦ Drop 1997-2001
Observations 69,057 46,608 51,920 57,100
R2 0.078 0.070 0.093 0.22

Notes: The table shows results from estimating versions of equation (4.5) on
monthly data. The dependent variable in each model is the monthly catch, where
catch is the number of fish caught. In addition to the listed variables, all models
contain vessel, year, and month-of-year fixed effects unless otherwise noted. In
parentheses are spatial-temporal HAC robust standard errors using a uniform
kernel, a distance cutoff of 30km, and 2 year lags for autocorrelation, unless
otherwise noted. Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

Table 5.5 contains two more variations in specification and two sample restric-

tions. The specification in Column 1 includes only the square Niño 3.4 terms. The
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theoretical motivation for the quadratic specification discussed in Section 4.2 suggested

that excluding the linear terms could be appropriate. The significant linear terms in the

baseline model show that this conclusion is likely untrue, but the results are qualitatively

similar if the linear terms are forced to be zero. Note that the calculation of Vn(A) is

simplified in this case because the ratio will not be a function of ENSO in this case.

Column 2 excludes observations near Canadian fishing grounds. Congestion in

the fishery is, in general, low. The exception commonly noted during interviews was due

to Canadian vessels near the northern edge of the fishery. Excluding this area, if anything,

strengthens the results. The sample restriction in Column 3 has already been discussed.

Columns 4 adds the one-month lag of catch. The baseline estimates use two year

lags to account for autocorrelation in the residuals. Monthly autocorrelation might also

be important. including this control does not appreciably change the adaptation effect,

although the linear term on the direct effect changes sign.

Table 5.6: Robustness to interpolation of catch weight

(1) (2) (3) (4)
Catch Catch weight Catch weight, interpolated Revenue

Niño3.4t−1 95.9*** 1269.1*** 1542.6*** 1204.6***
(35.2) (477.1) (529.8) (451.5)

Niño3.42
t−1 -14.2 -175.3 -222.0 -66.9

(15.1) (207.0) (227.2) (191.4)
N̂iño3.4t−1 -91.6*** -1250.6*** -1492.5*** -1433.6***

(30.2) (402.0) (452.9) (356.3)

N̂iño3.4
2
t−1 -69.3*** -1006.0*** -1075.1*** -771.7**

(26.3) (348.2) (385.0) (314.5)
FEs Baseline Baseline Baseline Baseline
Weight measure Observed Observed Interpolated Observed
Observations 67,232 67,232 69,057 67,232
R2 0.073 0.066 0.076 0.066

Notes: The table shows results from estimating versions of equation (4.5) on monthly data. The
dependent variable in each model is the monthly catch, where catch is the number of fish caught.
In addition to the listed variables, all models contain vessel, year, and month-of-year fixed effects
unless otherwise noted. In parentheses are spatial-temporal HAC robust standard errors using a
uniform kernel, a distance cutoff of 30km, and 2 year lags for autocorrelation, unless otherwise noted.
Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.
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The revenue calculation is an area where some interpolation was performed to

arrive at near-complete observations. This incompleteness comes from two sources First,

there is limited geographic coverage in albacore prices. Vessels missing albacore price

are simply excluded from the sample when estimating revenue or profit effects since it is

unknown by me whether prices in non-U.S. ports follow the same trends as prices in U.S.

ports. Among the remaining vessels, not all observations contain records of the weight of

fish caught that day. For those observations, I impute weight in one of two ways. First, if

the logbook records the total weight of fish caught during the trip, I multiply the number

of fish caught that day by the average weight of fish for the trip. If trip-level weight is

missing, then I interpolate weight based on catch of other vessels fishing at the same time

as the missing observation. Table 5.6 investigates whether this interpolation procedure

is leading to bias in estimates. Column 1 estimates the baseline regression replacing

the number of fish caught with the weight of fish for vessels with daily records of both

weight and number of fish. The direct effect of ENSO is slightly higher in this case, but

the estimates are, overall, very close to the baseline estimates in Table 5.1 Column 2.

The second column of Table 5.6 uses interpolated weight as the left-hand-side variable.

Results to not change substantially. Finally, column 3 uses revenue with no interpolation,

again showing that results are largely unchanged. Overall, these regressions show that

the interpolation procedure is not leading to substantive changes in estimates.

As a final robustness check, I want to rule out bias in the forecast coefficient due

to variables correlated with expected ENSO but not coming from changes in information.

The estimating equation should isolate variation in information by conditioning the

forecasts on realizations. The way El Niño and La Niña are announced in the United

States offers another way to isolate changes in information. In particular, NOAA declares

that an ENSO event is occurring if the Niño 3.4 index is above 0.5 (El Niño) or below

-0.5 (La Niña) for 5 consecutive months. This discontinuity in ENSO declaration is
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unrelated to the physical processes in the ocean, and any realized phenomena caused by

ENSO should vary smoothly across the threshold since the Niño 3.4 index is simple a

measure of average temperature in the equatorial Pacific, so continuity of Niño 3.4 across

the threshold holds.

This result is consistent with harvesters paying particular attention to ENSO

around the value at which ENSO events are declared. Any technology or behavior that is

always operating, regardless of the Niño 3.4 index value, would not lead to such a jump

in output.3

5.2 Adaptation mechanisms in the albacore fishery

5.2.1 Adaptation mechanisms conditional on fishing

Table 5.7 shows estimates for the effect of anticipated and unanticipated changes

in ENSO on high frequency decisions of fishing vessels. Each of the outcomes listed in

the table are based on daily or intra-trip decisions.

Column 1 of Table 5.7 shows that if harvesters are able to anticipate a change in

ENSO, then they can more accurately target optimal water temperatures, according to the

heuristic that fish congregate most in water around 17 or 18◦C. The dependent variable

in the column is the squared difference between actual water temperature and 17.5◦C. In

contrast, when the change in ENSO is unanticipated, harvesters are moved further away

from the optimal temperature, although this effect is not significant.

Other intensive mechanisms are shown in columns 2 and 3. In response to

anticipated extremes in ENSO, harvesters decrease their hours fished per day slightly.

The number of lines used per day also appears to go down slightly, although the effect is

3Niño 3.4 exceeding 0.5 is necessary but not sufficient for declaring an El Niño, so in practice, this is a
fuzzy regression discontinuity.
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Table 5.7: Intensive margin mechanisms

(1) (2) (3) (4) (5)
Temperature Hours per day Fishing Movement Movement
choice error fishing lines extensive intensive

Niño3.4t−1 -0.60 0.099 0.24 6.93 -1.06
(0.51) (0.24) (0.21) (5.84) (9.93)

Niño3.42
t−1 0.32 0.22 -0.14 2.84 -9.37

(0.42) (0.14) (0.13) (3.94) (6.11)
N̂iño3.4t−1 1.32* 0.0091 -0.30 -0.51 -14.7**

(0.70) (0.27) (0.24) (7.35) (7.50)

N̂iño3.4
2
t−1 -1.74*** -0.64*** -0.31* -35.4*** 4.08

(0.50) (0.22) (0.18) (8.77) (4.49)
Average 0.49 11.34 10.39 157.66 1,433.7
Baseline FE Yes Yes Yes Yes Yes
Observations 12,430 9,534 12,430 69,057 12,430
R2 0.095 0.066 0.030 0.062 0.031

Notes: The table shows results from estimating versions of equation (4.5) on monthly data. The dependent
variable in each model is indicated at the top of each column. Additional controls are indicated at the
bottom and are fixed effects for vessel, year, and month. In parentheses are spatial-temporal HAC robust
standard errors using a uniform kernel, a distance cutoff of 30km, and 2 year lags for autocorrelation.
Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

not strongly significant. The opposite sign responses to realized changes in ENSO for

many of these effects point to potential maladaptation ex post.

Movement costs and associated net revenue was discussed in Section 5.1.2.

Columns 4 and 5 of Table 5.7 show that the net revenue improvement estimated in that

section is coming largely from changes in extensive margin movement. In other words,

vessels are saving fuel costs by sitting out of the albacore fishery.

Many of the adaptations available to albacore harvesters can only be implemented

between trips. In the extreme case, things like characteristics of the boat hull are fixed

once a trip has begun. Crew numbers are also fixed. Crew numbers are not observed in

the logbook data, and hull length (unsurprisingly) does not change in response to ENSO.

One adaptation that is open to the harvesters on a trip-level frequency and does appear to
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change with ENSO is the length of the trip, as shown in Table 5.8.

Table 5.8: Trip length and frequency

(1) (2) (3)
Fishing days Transiting days Trips per month

Niño3.4t−1 0.82* 0.063 0.13***
(0.45) (0.21) (0.034)

Niño3.42
t−1 -0.58** 0.014 -0.030*

(0.24) (0.12) (0.015)
N̂iño3.4t−1 -0.61 0.32 -0.056

(0.50) (0.26) (0.038)

N̂iño3.4
2
t−1 -0.91*** 0.13 -0.071***

(0.32) (0.15) (0.022)
Average 11.1 2.42 1.37
Baseline FE Yes Yes Yes
Observations 12,430 4,730 12,430
R2 0.17 0.024 0.040

Notes: The table shows results from estimating versions of equation (4.5) on monthly
data. The dependent variable in each model is indicated at the top of each column.
Additional controls are indicated at the bottom and are fixed effects for vessel, year, and
month. In parentheses are spatial-temporal HAC robust standard errors using a uniform
kernel, a distance cutoff of 30km, and 2 year lags for autocorrelation. Significance
indicated by: *** p<0.01, ** p<0.05, * p<0.1.

Column 1 shows that vessels fish slightly fewer days per month given either an

expected or unexpected change in ENSO, although the magnitude of the effect is larger

in for the expected case. This result is one example of an intensive-margin adaptation

that is similar in spirit to entry or exit from the fishery.

As far as can be discerned from the data, there does not seem to be an effect of

ENSO on transiting days, which are days away from port without any reported fishing.

As indicated by the number of observations, however, transiting days are not recorded

for every observation in the dataset.

Finally, trips per month also slightly fall when more extreme ENSO events occur.

Like the fishing days result, this decrease in the number of trips comes from both the
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forecast and realization of ENSO, with the forecast effect being more than twice as large

as the realization effect.

5.2.2 Entry and exit across months

The main results from Table 5.1 show that much of the adaptation occurring in

the fishery is coming from extensive margin adjustments across months. In particular,

vessels are choosing to sit out of the albacore fishery during many months of the season

rather than risk losses from fish that are too far offshore or that cannot be located. Table

5.9 looks more closely at this decision.

Table 5.9: Entry and exit

(1) (2)
Active in Exit if active

the fishery last month
Niño3.4t−1 0.049 0.15

(0.10) (0.098)
Niño3.42

t−1 0.11* -0.085
(0.062) (0.060)

N̂iño3.4t−1 0.093 0.17
(0.12) (0.15)

N̂iño3.4
2
t−1 -0.53*** -0.088

(0.10) (0.11)
Baseline FE Yes Yes
Observations 60,695 12,430

Notes: The table shows results from estimating logit model versions of
equation (4.5) on monthly data. The dependent variable in each model
is indicated at the top of the column. Additional controls are indicated
at the bottom. In parentheses are standard errors clustered at the vessel
level. Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

The dependent variables in these models are some measures of entry and exit.

Active in fishery is an indicator equal to one if the vessel is both in the fishery and actively

engaged in fishing for albacore. Exit if active last month is equal to 1 the month a vessel
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exits the fishery after having fished the previous month and is 0 otherwise. The estimates

are from logit models with vessel-level clustering of standard errors.

The entry results show that vessels are much less likely to be active in the fishery

if ENSO is forecasted to have extreme values. This result helps explain the drop in output

that occurs during extreme ENSO events and also bolsters the movement results which

indicated that most of the movement cost avoidance was done simply by not entering the

fishery in a given month. Realized changes in ENSO conditional on forecasts do not have

the same effect. If anything, vessels are slightly more likely to enter the fishery during

months with high residual realizations of ENSO, although the effect is small relative to

the anticipatory effect.

In contrast, the vessel exit decision is not strongly related to ENSO. This result

agrees with interviews with fishers indicating that on a normal fishing trip, a captain will

try to continue fishing in order to fill the hold even if the fishing is going poorly. This

type of behavior might make entry into the fishery a “stickier” state that is not then as

responsive to climate shocks.

The vessels are unlikely to be idle during months when they are not actively

participating in the albacore fishery. Wise (2011) reports that many fishers also harvest

crab and other species during non-albacore-fishing months. Under the assumption that

fishing for these other species is not ENSO-sensitive, then welfare calculations based on

the adaptation rates calculated in this study are unaffected.

5.3 Learning and risk in the albacore fishery

5.3.1 Risk aversion

The theoretical model assumes that firms are solely maximizing profit. For many

settings, including small-scale firms like fishing vessels, risk aversion by the vessel owner
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might also play an important role in decision making under uncertainty. Rosenzweig

and Udry (2013) use forecasts of monsoon rain in India to investigate risk aversion

in agriculture and the value of weather insurance. Adopting the reduced form of the

estimating equation from that paper allows for a test of risk aversion in this setting. The

expanded estimating equation becomes

yit = β0+β1zt−1 +β2z2
t−1 +β3ẑt−1 +β4ẑ2

t−1+ (5.3)

β5ẑt−1skillt−1 +β6ẑ2
t−1skillt−1 +x′itα + εit

where the new variable skill is a measure of the ex ante quality of the forecast. For the The

intuition for this estimating equation is that the quality of the forecast matters for a risk

averse agent when he or she is making input decisions because the skill measures how

much uncertainty the forecast resolves. Therefore, if the agent is risk averse, the skill of

the forecast will be a moderating variable for the effect of the forecast on output. Under

the maintained assumption that forecasts only affect inputs, this leads to a modification

of the baseline estimating equation where forecast skill is interacted with the forecast

terms.

I measure ex ante forecast quality in two ways. First, I calculate the normalized

root-mean squared error of the ensemble forecast during the previous two years and

normalize that by dividing by the root-mean squared error of a persistence forecast of the

Niño 3.4 index. I subtract this normalized value from 1 to create what weather forecasters

call the Brier Skill Score (Hamill and Juras 2006). A value of this measure at 1 means

that the forecast is perfectly accurate relative to the naïve persistence forecast. Small or

negative numbers mean that the forecast is inaccurate. The skill measure used in Table

5.10 is the two-year moving average of this measure for all periods prior to the estimation

month, t. One should expect that a risk-averse agent will adapt more if this skill measure
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Table 5.10: Assessing risk aversion

(1) (2)
Catch Catch

Niño3.4t−1 113.4*** 121.3***
(36.9) (37.6)

Niño3.42
t−1 -2.00 -17.8

(17.7) (26.3)
N̂iño3.4t−1 235.1** -67.7

(100.3) (41.7)

N̂iño3.4
2
t−1 -48.0 -150.0***

(58.2) (32.2)
N̂iño3.4t−1× skill -627.2***

(180.6)

N̂iño3.4
2
t−1× skill -222.8**

(113.6)
N̂iño3.4t−1× ens. error -120.7***

(32.0)

N̂iño3.4
2
t−1× ens. error 108.9***

(23.3)
Vessel FE Yes Yes
Year FE Yes Yes
Month FE Yes Yes
Observations 69,057 67,715
R2 0.080 0.081

Notes: The table shows results from estimating equation (5.3) on
monthly data. The dependent variable in each model is total catch
per month. In addition to the listed variables, all models contain vessel,
year, and month-of-year fixed effects. In parentheses are spatial-temporal
HAC robust standard errors using a uniform kernel, a distance cutoff
of 30km, and 2 year lags for autocorrelation. Significance indicated by:
*** p<0.01, ** p<0.05, * p<0.1.

is higher.

The second measure of skill is the standard deviation of the forecast plume each

month, labeled ens. error in the table. Because multiple forecasts are issued beginning in

the 1990s, the standard deviation of the plume gives a summary measure of disagreement

in the different forecasts. This measure is model-dependent and influenced by model

errors, so it does not necessarily represent the full probability distribution of a single

forecast (preventing its use as a perfect measure of the second moment of the forecast),
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but it plausibly affects the confidence that harvesters have in the projections. One should

expect that a risk-averse agent will adapt less if this standard deviation measure is higher.

Table 5.10 shows results from estimating Equation (5.3). The estimates indicate

that risk preferences are a potentially important factor in this context. If the skill of the

forecast has been higher in recent periods, then agents adapt much more strongly, as

shown by the relatively large magnitude of the coefficient on the forecast squared inter-

acted with skill. Similarly, column 2 shows that if the forecast plume is wider, adaptation

falls. Both of these results are consistent with preferences for more certain forecasts. The

results also show that agents are responding to forecast-specific characteristics, lending

support to the assumption that agents are directly consuming these predictions.

5.3.2 Learning about ENSO and forecasts

By using a single public forecast to measure adaptation, the results assume that

all individuals have the same beliefs about ENSO. Differences in ability to understand

forecasts, heterogeneity in risk tolerance, or access to private information could alter

the conclusions.4 Here, I focus on heterogeneity in experience with ENSO. A captain

or vessel owner with more experience fishing during ENSO conditions might be better

equipped to handle the adverse climate, increasing adaptation. In contrast, a captain who

has repeatedly suffered from forecasts that missed the realization by a wide margin might

be less likely to trust the forecast in the future.

Table 5.11 investigates this hypothesis in the context of intensive margin catch.

Previous results showed that harvesters, on average, had a harder time adapting to ENSO

once they had entered the fishery. By including vessel-specific trends that increment

each time a vessel experiences an El Niño or La Niña event, the ability for harvesters

to learn can be assessed. Overall, the results suggest that there is an important learning

4See, for instance, Kala (2015) for recent evidence on behavioral responses to weather risk.
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Table 5.11: Learning about ENSO

Catch
Niño3.4t−1 -5.00

(125.0)
Niño3.42

t−1 -129.1**
(60.2)

Niño3.42
t−1×ENSO experience 8.25

(8.10)
N̂iño3.4t−1 -169.1

(132.6)
̂Niño3.42t−1 50.6

(82.2)

N̂iño3.4
2
t−1×ENSO experience -56.9**

(24.2)
Vn(A), 1 event 0.05

(0.55)
Vn(A), 3 events 0.53**

(0.24)
Vn(A), 6 events 0.79***

(0.17)
Baseline FE Yes
Vessel trend Yes
Observations 12,430
R2 0.14

Notes: The table shows results from estimating a modified version of
equation (4.5) on monthly data. The dependent variable is the log of
catch, where catch is the average number of fish caught per day in the
month. Additional controls are indicated at the bottom and are fixed
effects for vessel, year, and month. In parentheses are spatial-temporal
HAC robust standard errors using a uniform kernel, a distance cutoff
of 30km, and 2 year lags for autocorrelation. Significance indicated by:
*** p<0.01, ** p<0.05, * p<0.1. Standard errors for adaptation are
calculated using the delta method.

effect. Vessels that have been through more ENSO events adapt at a higher rate. For a

novice vessel, adaptation is minimal or non-existent. The average vessel in the dataset has

experienced 3 ENSO events, and for this vessel, intensive margin adaptation is moderate.

For very experienced vessels—only about 20% of vessels have experience with 6 or more

events—intensive margin adaptation is nearly as effective as total extensive and intensive

margin adaptation. Importantly, this adaptation improvement comes both from loading
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more of the ENSO effect onto the forecast and by reducing the direct effect from ENSO.

Results are similar if El Niño and La Niña event are considered separately.

5.4 Discussion of albacore fishery results

In the setting of one large driver of global climate—ENSO—and firms with

flexible production functions, this study assesses the degree of forward-looking adaptation

using an estimating equation informed by a structural model of adaptation to a stochastic

weather process. Detailed panel data and a unique set of real-time historical ENSO

forecasts allow for estimation of the role of information in climate adaptation, showing

that anticipation of ENSO allows harvesters to take action that substantially reduces the

direct effects of ENSO.

Whether these estimates should influence broader discussions of optimal climate

change mitigation policy hinges on extrapolating the results dynamically and across

other firms. The magnitude of the change in temperature caused by ENSO—2 to

4◦C for a complete El Niño to La Niña cycle—is comparable to the average warming

currently being forecast for the coming century (IPCC 2014). Perhaps the more important

difference when extrapolating the effects of ENSO to the effects from global climate

change is that ENSO-driven changes are temporary, rarely lasting for more than two

years. Therefore, attention to dynamics is critical to understanding whether the estimates

presented in this study have any bearing on the effects of long-run climate change.

At least three arguments suggest that short-run adaptation estimates provide lower

bounds for long-run adaptation. First, if an adaptation mechanism is inexhaustible and

it is available in the short run, then it will be available in the long run. Second, if a

firm owner expects a change in the environment to be permanent, then he or she will be

more willing to take adaptive actions that require long-term investments. Third, technical
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change might improve the adaptive capacity of a given production process.

On the other hand, if adaptation mechanisms are exhausted, if agents hit corner

solutions, if the prices of adaptation mechanisms rise too rapidly, or if climate change

causes more extreme weather impacts, then short-run adaptation estimates will not be

as good of a guide for the long run. In the setting of this study, the primary adaptation

mechanism—timing entry and exit from the fishery—cannot be indefinitely maintained.

If climate change permanently pushes fishing grounds so far offshore that entry is never

profitable in expectation, then this adaptation will no longer provide any aid. The question

of dynamics in individual adaptation to a changing climate is an important open questions

in climate economics.

These results are encouraging for the prospects of adaptation by other highly

mobile firms with ready access to non-climate exposed production processes. Caution

should be exercised, however, in over-interpreting the results as indicating that these

settings will be robust to long-term climate change. Indeed, as Hornbeck and Keskin

(2014) shows empirically, long-run adaptation can be perverse in the sense that a relax-

ation of one constraint can allow individuals or firms to place themselves in an even more

precarious long-run position—a return to the Malthusian edge.



126

5.5 References

Burke, Marshall, and Kyle Emerick. 2016. “Adaptation to Climate Change: Evidence
from US Agriculture”. American Economic Journal: Economic Policy 8 (3):
106–140.

Conley, T.G. 1999. “GMM estimation with cross sectional dependence”. Journal of
Econometrics 92 (1): 1–45.

Dell, Melissa, Benjamin Jones, and Benjamin Olken. 2012. “Temperature Shocks and
Economic Growth: Evidence from the Last Half Century”. American Economic
Journal: Macroeconomics 4 (3): 66–95.

Guo, Christopher, and Christopher Costello. 2013. “The value of adaption: Climate
change and timberland management”. Journal of Environmental Economics and
Management 65 (3): 452–468.

Hamill, Thomas M., and Josip Juras. 2006. “Measuring forecast skill: is it real skill or
is it the varying climatology?” Quarterly Journal of the Royal Meteorological
Society 132:2905–2923.

Hornbeck, Richard, and Pinar Keskin. 2014. “The Historically Evolving Impact of
the Ogallala Aquifer: Agricultural Adaptation to Groundwater and Drought”.
American Economic Journal: Applied Economics 6 (1): 190–219.

IPCC. 2014. “Part A: Global and Sectoral Aspects. (Contribution of Working Group
II to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change)”. Ed. by C.B. Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastran-
drea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma,
E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White. Cli-
mate Change 2014: Impacts, Adaptation, and Vulnerability. (Cambridge, United
Kingdom)(New York, NY, USA): 1132.

Kala, Namrata. 2015. “Ambiguity Aversion and Learning in a Changing World: The
Potential Effects of Climate Change from Indian Agriculture”. Working Paper:
1–54.

Lehodey, Patrick, F Chai, and John Hampton. 2003. “Modelling climate-related vari-
ability of tuna populations from a coupled ocean-biogeochemical populations
dynamics model”. Fisheries Oceanography: 483–494.

Lemoine, DM, and CP Traeger. 2014. “Watch Your Step: Optimal Policy in a Tipping
Climate”. American Economic Journal: Economic Policy 6 (1): 137–166.



127

Mendelsohn, R, WD Nordhaus, and Daigee Shaw. 1994. “The impact of global warming
on agriculture: a Ricardian analysis”. The American Economic Review 84 (4):
753–771.

Rosenzweig, Mark, and Christopher R Udry. 2013. “Forecasting Profitability”. NBER
Working Paper 19334:47.

Schlenker, Wolfram, Michael J. Roberts, and David B. Lobell. 2013. “US maize adapt-
ability”. Nature Climate Change 3 (8): 690–691.

Wise, Lisa. 2011. West Coast U.S. Commercial Albacore Fishery: Economic Analysis.
Tech. rep.



Chapter 6

Conclusion

Estimating the size of the greenhouse gas externality is one of the key issues

facing economists. Unchecked, climate change could pose a dire threat to the economy

and the world. Obtaining accurate estimates of how much economic damage climate

change might case is challenging, but the methods provided in this study provide a

starting point for analysis, and the empirical application suggests that these methods hold

promise for estimating climate effects.

The basic theoretical message is simple: if one wants to estimate direct effects of

climate change, one can either assume that adaptation is continuous and that investments

are non-durable, then regress a measure of a value function on weather to estimate direct

effects. Otherwise, one can use a measure of expectations. Using such a measure and

observations from a maximized objective function, one can estimate both direct effects

of weather and the value of adaptation. The value of adaptation provides an upper bound

on the costs of adaptation. Using this method, therefore, provides estimates of the two

main parameters needed to calculate benefits of climate change mitigation.

Empirically, one can see that taking expectations into account is important for

inference. In the setting of the North Pacific albacore fishery, forecasts of climate
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variation are much stronger predictors of revenue and output than is weather. This result

shows that adaptation is important in this setting.

The results also inform the potential effectiveness of information as a climate

adaptation policy. According to the baseline results, forecast provision has been helpful

in mitigating the damage from ENSO in the setting of albacore fishing. It is important to

note that rather than indicating that adaptation is “policy-free” in the sense that it will

occur without intervention, the results here point to the direct value of policy-driven

information provision. Information externalities imply that public provision of forecasts

of weather and climate changes can have a positive welfare impact even if adaptation

mechanisms themselves are private (Grossman and Stiglitz 1980).

Future work can estimate the direct effect of weather and the costs of adaptation

in a variety of settings. It would be natural to start with agriculture. Global estimates

of climate damage can also be generated, although careful attention should be paid to

the dynamic model underlying the interaction between climate and overall economic

production. Work can also start exploring the limits to adaptation. The empirical setting

in this study is one where adaptation potential should be high, but this needn’t be the

case. Irrigation is a prototypical example. In the analysis of Council (1983), irrigation

was highlighted as an important adaptation but also one that is particularly susceptible

to hitting constraints. If adaptation is exhausted as the climate warms, or if adaptation

potential is low in key climate-exposed sectors, then either public mitigation policy

should be stronger or public adaptation programs will need to be funded.
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Appendix A

Additional albacore fishery results
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Figure A.1: Forecast skill

Notes: Forecast skill is indicated by the light gray lines, and the 12 month moving average of skill
is given by the solid blue line. Skill is the exponential of 1 minus the rolling mean squared error of
forecasts normalized by the rolling mean squared error of a naïve persistence forecast. Higher values
indicate that the forecast has less error than a persistence forecast. For details, see Section 3.2.6. El
Niño periods are indicated in red, and La Niña periods are indicated in blue.
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Figure A.2: Moving standard deviation of ENSO

Notes: Moving average and standard deviation of the Niño 3.4 index is shown for the main estimation
sample. Rolling values use a three year window and monthly data.
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Figure A.3: Teleconnection between Niño 3.4 and sea surface temperature

Notes: The heat map shows correlation between the one month lag of the Niño 3.4 index
and sea surface temperature for each quarter degree latitude-longitude grid cell. This
correlation serves as the teleconnection measure in this study. For more information on
this calculation, see Section 4.1.
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Figure A.4: Teleconnection during ENSO events versus not

Notes: Two histograms of daily teleconnection status are shown. The gray is during
ENSO events, and the black outline is not during ENSO events.
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Table A.1: Additional robustness

(1) (2)
Catch Catch

Niño3.4t−1 111.8*** 123.8**
(41.7) (52.7)

Niño3.42
t−1 -5.72 -11.9

(19.1) (24.4)
N̂iño3.4t−1 -81.0* -84.4*

(45.7) (44.8)

N̂iño3.4
2
t−1 -72.0** -69.9**

(31.3) (30.0)
N̂iño3.4t -30.6 -8.14

(61.9) (57.9)

N̂iño3.4
2
t -14.3 -27.1

(36.6) (31.9)
N̂iño3.4t+1 -34.5

(72.0)

N̂iño3.4
2
t+1 19.6

(32.1)
FEs Baseline Baseline
Observations 67,715 67,260
R2 0.079 0.079

Notes: The table shows results from estimating versions of equation (4.5) on monthly data. The
dependent variable in each model is the monthly catch, where catch is the number of fish caught.
In addition to the listed variables, all models contain vessel, year, and month-of-year fixed effects
unless otherwise noted. In parentheses are spatial-temporal HAC robust standard errors using a
uniform kernel, a distance cutoff of 30km, and 2 year lags for autocorrelation, unless otherwise
noted. Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.
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Figure A.5: Normalized value of adaptation as a function of Niño 3.4 values

Notes: The normalized value of adaptation, Vn(A) is shown for the revenue estimates
in Table 5.1. For details on the calculation of this value, see Section 5.1.3.
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Figure A.6: Regression discontinuity of catch with respect to Niño 3.4

Notes: Each point is the average catch in 0.05◦ bins of the Niño 3.4. Local linear
regressions (Epanechnikov kernel with bandwidth of 0.1) are fit to the data that fall
on either side of Niño 3.4= 0.5, the pre-requisite for declaring an El Niño.
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Table A.2: Price effects of ENSO

Albacore price Fuel price
Niño 3.4 -0.069 -0.13*

(0.070) (0.071)
Niño 3.42 -0.039 -0.014

(0.053) (0.045)
Constant 0.97*** 1.99***

(0.074) (0.076)
Observations 31 347

Notes: The table shows results from estimating Newey-West regressions on monthly (fuel prices)
or annual (albacore prices) data. The dependent variable in each model is indicated at the top of the
column. In parentheses are Newey-West standard errors with 2 lags for autocorrelation. Significance
indicated by: *** p<0.01, ** p<0.05, * p<0.1.
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Figure A.7: Output and ENSO before and after forecasts, changes

Notes: Each line shows a local linear regression (Epanechnikov kernel with
bandwidth of 0.18) of catch on the change in the Niño 3.4 index between month
t−1 and t−2. All variables are residualized on month. The red, solid line uses the
sample from 1981 to May 1989 before ENSO forecasts were released. The blue,
dashed line uses the sample from after forecasts were released in June 1989 until
2010. Shaded areas give the 95% confidence intervals.
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Figure A.8: Output and ENSO before and after forecasts, raw data

Notes: Each line shows a local linear regression (Epanechnikov kernel with
bandwidth of 0.38) of catch on the Niño 3.4 index the previous month. The red,
solid line uses the sample from 1981 to May 1989 before ENSO forecasts were
released. The blue, dashed line uses the sample from after forecasts were released
in June 1989 until 2010. Shaded areas give the 95% confidence intervals.
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