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Microbial community analysis experiments to assess the effect of a treatment intervention (or environmental
change) on the relative abundance levels of multiple related microbial species (or operational taxonomic
units) simultaneously using high throughput genomics are becoming increasingly common. Within the frame-
work of the evolutionary phylogeny of all species considered in the experiment, this translates to a statistical
need to identify the phylogenetic branches that exhibit a significant consensus response (in terms of operational
taxonomic unit abundance) to the intervention. We present the R software package SigTree, a collection of
flexible tools that make use of meta-analysis methods and regular expressions to identify and visualize signifi-
cantly responsive branches in a phylogenetic tree, while appropriately adjusting for multiple comparisons.

© 2017 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The 16S rRNA gene is found in all bacteria, and 16S rRNA sequencing
is one of the high-throughput genomic methods that can be used to
both identify bacteria found in a sample, as well as quantify the abun-
dance levels of individual bacterial species [1]. This is a critical element
of microbial community analysis, and can shed light on complex bacte-
rial community membership under various environmental conditions.
Each bacterial species can be identified by its operational taxonomic
unit (OTU) identifier, and evolutionary relationships among OTUs can
be visualized in a phylogenetic tree.

It is becoming increasingly common to examine the effect of a treat-
ment intervention (or change in environmental conditions) on the
relative abundance levels of hundreds or even thousands of OTUs simul-
taneously in a given system. Recently published examples in the field of
environmental microbiology include a study of hundreds of OTUs at
each of four sites corresponding to four time points since deglaciation
[2], and a study of hundreds of OTUs in soil sediment samples under
different levels of aerobic methane oxidation [3]. Rather than only
considering the treatment effect on the relative abundance levels of in-
dividual OTUs, it is frequently of interest to identify (and subsequently
visualize) branches of a phylogenetic tree whose member OTUs exhibit
h State University, Logan, UT
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a significant consensus abundance response to the treatment. That is,
branches can be identified where there is sufficient statistical evidence
that the overall OTU abundance response to the treatment is in the
same direction (up or down) for the OTUs in the branch, even if some
OTUs in the branch show the opposite (or no) direction response. The
tree visualization tools available in FigTree [4], among others, can be
enhanced using the significance results obtained with the software
package SigTree, written for the R environment [5], which we present
in this article.We briefly present two examples as case studies, focusing
on their general demonstrative nature rather than specific biological
conclusions.

The first example involves the mouse gut microbiome. Ten mice
were randomly assigned to two diets (whole wheat or refined wheat),
and the abundance of each of over 500 OTUs of interest was measured
using 16S rRNA sequencing. (All animal procedures were performed
with strict adherence to animal welfare guidelines and with oversight
and approval by the Institutional Animal Care and Use Committee
at Utah State University; see Methods Section 2.3 for additional study
details). For each OTU, a Wilcoxon rank-sum test [6] compared the
OTU's abundance in the two diets.

The second example involves cheese microbial ecology. In a re-
peated measures design (across 4 time points), two replicates were ob-
tained under eachof two growing conditions (the presence or absence of
the probiotic bacteria Bif-6), with replicates taken from one of two
cheese batches. In each replicate, the abundance of each of nearly 8700
OTUs was measured using the G2 PhyloChip; approximately 1450 of
omputational and Structural Biotechnology. This is an open access article under the CC BY
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these were of interest. For each OTU, a repeated measures model was fit
using the R package limma [7], with a contrast testing the mean abun-
dance difference between the presence and absence of Bif-6.

2. Methods

2.1. Statistical Methods

When multiple studies of the same effect have been conducted, the
field of meta-analysis [8] provides statistical methods to combine the
results of those studies to arrive at a clearer understanding of the effect
in question. In microbial community analysis experiments such as the
mouse and cheese examples considered here, the same treatment effect
has been tested in multiple OTUs, and so meta-analytic tools can be
applied to the OTU-level results to arrive at a clearer understanding of
the treatment effect in specific families of OTUs (or branches of the phy-
logenetic tree). For purposes of generalizability and flexibility, we focus
on meta-analytic methods that combine the significance results (or
p-values) from theOTUs [9].Meta-analyticmethods that employ results
other than p-values (such as effect size estimates) could be applied, but
their applicationwould requiremodification for each experiment, while
methods using only p-values allow for an approach fully generalizable
to any experimental design, as will be shown.

In both themouse and cheese examples, interest lies in determining
which OTUs (and their member branches in the phylogenetic tree)
are specifically more abundant or less abundant in the treatment
group (T: whole wheat diet or Bif-6 presence) than in the control
group (C: refined wheat diet or Bif-6 absence), rather than just calling
OTUs (and member branches) differentially abundant. For this reason,
in testing the null hypothesis μT= μC (where μx is themean abundance
of the OTU in group x), the alternative hypothesis is of the form μT N μC,
thus producing a one-sided p-value from the respective test (for each
OTU). As a result, very small p-values (close to 0) represent evidence
that treatment induces greater abundance than does control, while
very large p-values (close to 1) indicate less abundance in treatment
versus control.

The use of one-sided p-values is less common than two-sided, and
deserves an additional note here regarding interpretation. Let Yx be
the sample mean abundance for a given OTU in group x. If a one-sided
test of null μT = μC vs alternative μT N μC produced a p-value of 0.01,
then the corresponding two-sided test of μT = μC vs alternative μT ≠
μC would produce a p-value of 0.02 (with YTNYC ). Similarly, a one-
sided p-value of 0.99 also corresponds to a two-sided p-value of 0.02
(but with YT b YC). For this reason, to control the type I error rate at
α = 0.05, the one-sided test requires a p-value less than 0.025 to con-
clude significant evidence of “μT N μC”, and a p-value greater than
0.975 to conclude significant evidence of “μT b μC”. This is equivalent
to performing a two-tailed test, and (when the p-value is less than
0.05) concluding “μT N μC” when YTNYC , and “μT b μC” when YT b YC .
In addition, within the one-sided test framework, if the direction of
the alternative hypothesis μT N μC were switched to μT b μC, the one-
sided p-value of 0.01 would simply be transformed to 0.99, and the
conclusion (regarding direction of effect) would be unchanged. The
SigTree package function p2.p1 converts two-sided p-values to one-
sided p-values, given the corresponding YT−YC difference (or its sign).

The most meaningful meta-analytic method to combine the one-
sided p-values of all OTUs in a given branch is Stouffer's method
[9,10], which converts the one-sided p-values to standard normal vari-
ates, the weighted sum of which is taken as a standard normal test
statistic. Briefly, if one-sided p-values p1, …, pk correspond to k OTUs
in a given branch, these are transformed to standard normal deviates
Z1, …, Zk, where Zi is the value in the standard normal distribution

with upper-tail area pi. Then a statistic ZS ¼ ∑k
i¼1Zi=

ffiffiffi
k

p
is calculated,

and the Stouffer method's p-value is the upper-tail area from ZS in the
standard normal distribution [10].
Stouffer's method thus produces a single one-sided p-value for the
entire branch, essentially corresponding to a test of H0: “the OTUs in
the branch have no consensus of differential abundance” vs. Ha: “there
is a consensus (in a particular direction) of differential abundance in
the branch.” The same directional interpretation as in the single-OTU
p-value applies to this branch-level p-value (i.e., a p-value close to
0 suggests branch consensus of greater abundance in treatment, while
a p-value close to 1 suggests branch consensus of less abundance
in treatment). Among meta-analytic p-value combination methods,
Stouffer's method has been shown to have the most meaningful
“consensus” biological interpretation [11], and also favorable statistical
properties (appropriate Type I error rate control, with higher power
and better precision than competing methods) [12].

An implicit assumption of Stouffer's method is the independence of
p-values to be combined within a given set of tests (such as a branch of
the phylogenetic tree). While it could be argued that this assumption
might be reasonable in some sense (as the p-value for a given OTU is
obtained using only the abundance data for that OTU), there is the po-
tential for some biologically-based dependence. Specifically, it is possi-
ble (and in some cases, perhaps to be expected) that more closely
related OTUs will respondmore similarly to the treatment intervention,
resulting in more similar p-values for more closely related OTUs. We
test for this type of dependence with permutational multivariate
analysis of variance using distancematrices [13,14], based on the adonis
test of the R package vegan [15]. Briefly, this approach as implemented
in the SigTree package uses a permutation test to evaluate whether
the OTU p-values are independent, or whether differences among the
OTU p-values are associated with between-OTU distances. “Distance”
here is phylogenetic distance as represented in the corresponding
phylogenetic tree.

A generalized version of Stouffer's method that allows for depen-
dence of p-values was constructed by Hartung [16]. Briefly, and
using the same notation as above for the summary of the Stouffer
method, the Hartung method calculates ρ̂� ¼ maxf−1

k−1 ; ρ̂g, where ρ̂
is one minus the sample variance of the Z1, …, Zk. Then a statistic

ZH ¼ ∑k
i¼1Ziffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþðk2−kÞðρ̂�
þ0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1−ρ̂�

Þ=ðkþ1Þ
p

Þ
q is calculated, and the Hartung

method's p-value is the upper-tail area from ZH in the standard nor-
mal distribution [16].

While Hartung's method assumes a constant correlation among all
pairs of p-values, its results have been shown to be stable even in the
presence of a non-constant correlation [16], which would be the case
in the event of a significant adonis test. Accordingly, when the adonis
test indicates significant dependence among p-values in the phyloge-
netic tree, we recommend employing Hartung's meta-analytic method
to obtain a p-value for each branch.

Because of the potentially thousands of OTUs and branches being
tested simultaneously, adjustments for multiple comparisons are in-
cluded in SigTree. The default is to control the strong family-wise error
rate (FWER) using the Hommel p-value adjustment method [17], but
other options exist, including p-value adjustment for false discovery
rate (FDR) control while allowing positive dependence among the
many tests [18]. For both error rates, the SigTree package converts
the one-sided p-values to two-sided p-values, applies the p-value
correction, and converts back to one-sided adjusted p-values so that
directional interpretation is preserved.

Once the (usually error-rate-adjusted) branch-level p-values have
been obtained, the SigTree package assigns a color (based on p-value
range) to each branch and tip in the phylogenetic tree to aid in visuali-
zation. To make this visualization flexible, SigTree can take user-defined
colors and p-value thresholds, and also export the phylogenetic tree in a
Nexus format file [19], with branch colors and p-values embedded via
regular expressions [20] since this format is simply a structured text
file. This Nexus file is then read by tree visualization programs such as
FigTree [4]. SigTree can also send the p-value and OTU members for
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each branch to a spreadsheet file so that significant changes in the com-
munitymembership can be noted and connected to the community and
the treatments in a causal association.

2.2. Simulation Study

A simulation study was conducted to evaluate the performance of
the SigTree approach. No simulation could reasonably cover all possible
scenarios of tree structure and treatment effects, and the underlying
meta-analytic and statistical methods employed by SigTree have been
previously validated in the literature [8,10–14,16]. Instead, the purpose
of this simulation was to serve as a proof of principle that the SigTree
approach achieves its intent within the context of phylogenetic trees,
and that its results behave as expected in terms of power and type I
error rate control.

Fig. 1 shows the basic tree outline considered in this simulation
study. There are four main subtrees (or branches) – subtree A includes
OTUs with a positive response to the treatment, subtree C includes
OTUs with a negative response to the treatment, and subtrees B and D
include OTUs with no response to the treatment. The numbers of
OTUs in subtrees A and C were set at 20 and 10, respectively, and the
numbers of OTUs in subtrees B and D varied from 2 to 100 (but with
the same numbers of OTUs in both B and D). Fig. 1 only shows two
OTUs in each subtree, just for convenience in visualization.

This simulation study assumed the relative abundance of each OTU
wasmeasured on each of 20 subjects, under both treatment and control
conditions. For all OTUs, abundances in control conditions were simu-
lated from a standard Normal(0,1) distribution. For each OTU exhibiting
a response to treatment (as in subtrees A and C of Fig. 1), themagnitude
of responsewas randomly chosen as a uniform value between 0.1 and δ,
and OTU abundance in the treatment condition was simulated as a
normal variate with that magnitude mean, and variance 1. The value δ
varied (in ten steps) from 0.1 to 2, and the number of OTUs in subtree
B (nB, same as the number of OTUs in subtree D) varied (also in ten
steps) from2 to 100. At each of the 100 combinations of δ and nB values,
over 500 trees (with corresponding subject-level data) were simulated,
and a t-test was used to obtain a raw one-sided p-value for each OTU in
each simulation. The SigTreemethodwas applied to each tree, obtaining
Fig. 1. Tree outline used in simulation study.
Stouffer-combined and Hommel-adjusted p-values for each of the la-
beled nodes A–G in Fig. 1. The power and type I error rates (at each com-
bination of δ and nB values) were assessed by taking the proportions
(across simulations) of significant resulting p-values. (Here “significance”
includes the appropriate direction, up or down, in subtrees A and C,
respectively. The same direction could be detected in subtree E as in
subtree A, and in subtree F as in subtree C, depending on the relative
sizes of the subtrees and magnitude of possible treatment effect.) The
type I error rate was assessed by the proportion of significant p-values
in subtrees B and D, where there was no true treatment response.

2.3. Example Study Designs

The mouse gut microbiome study was approved as IACUC #1423,
and involved individually housed C57BL/6J mice. DNA was isolated
from cecal samples. The V1 + V2 125 region of the bacterial 16S rRNA
gene was amplified using tag-encoded primers for pyrosequencing
(Roche 454 GS FLX, Branford, CT). The V1-forward primer was
5′-AGAGTTTGATCCTGGCTCAG (BSF8) and the V2-reverse primer was
5′-CTGCTGCCTYCCGTA (BSR357). Sequencing was done at the Utah
State University Center for Integrated BioSystems core sequencing
facility. The representative sequences were aligned with PyNAST [21]
and a phylogenetic tree was constructed with FastTree [22] after the
aligned sequences were filtered with the default lanemask file and the
chimeras were removed.

Microbiota sequences were processed through the data analysis
pipeline QIIME [23]. Sequences were clustered into operational taxo-
nomic units (OTUs) at a 97% sequence similarity with UCLUST [24].

In the cheese microbial ecology study, Bif-6 is the trademark name
of a probiotic bacterial culture of Bifidobacterium lactis (Cargill Inc.,
MilwaukeeWI). Sample collection andDNA sequencing followed proto-
cols described inmore detail elsewhere [30] and the same facilities con-
ducted the DNA sequencing on the same equipment. For the Phylochip
data, a phylogenetic tree in Nexus format of the 8700 OTUs was con-
structed from available taxonomical information prior to testing and
visualization inside SigTree.

3. Results

3.1. Simulation Study Results

Fig. 2 shows as a contour plot the proportions of simulations where
the SigTree approach detected significant consensus response in the
lettered subtrees of Fig. 1, when the family-wise error rate was to be
controlled at level α = 0.05. As would be expected, the proportions
(or statistical power) steadily increasewith δ for subtrees A and C, unaf-
fected by nB (the sizes of subtrees B and D).

For subtrees B and D, which have no OTUs with a true response to
treatment, the proportion of simulations where SigTree detects a signif-
icant consensus response would correspond to a type I error rate. Fig. 2
shows this error rate to be less than 0.01 for all combinations of nB and
δ, indicating conservative type I error rate control by SigTree, at least for
this tree structure and treatment effect framework.

For subtrees E–G, the proportions of simulations detecting signifi-
cant consensus response increases with δ (possible magnitude of treat-
ment effect), but less so as nB (the size of subtree B, as well as D)
increases. Essentially, as the sizes of the “null” subtrees (B and D here)
increase, their lack of any response to treatment will eventually
drown out the consensus response in subtrees A and C, so that the
higher-level subtrees E–G are more rarely detected as exhibiting a sig-
nificant consensus response. However, for larger magnitude response
(δ) in subtree A, when subtree A is amore dominant presence in subtree
E (i.e., when nB is smaller), there is greater evidence of a consensus re-
sponse in subtree E. This same pattern is seen in subtree F (regarding
the relative size of subtree C therein), and speaks to the general inter-
pretation of a consensus response.



Fig. 2. Contour plots of proportion of simulations returning significant SigTree results, for each lettered subtree in Fig. 1. nB is the number of OTUs in subtree B (same as number in
subtree D), and δ is the magnitude of maximum possible response in subtrees A and C.
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While limited in scope to this one basic tree structure and treatment
effect framework, this simulation study (as a proof of principle) demon-
strates the expected performance of SigTree – appropriate power in-
crease as the magnitude of treatment response increases (in subtrees
exhibiting a consensus response), and appropriate (though possibly
conservative) control of the type I error rate.

It should be noted that these simulations required nearly 6 days'
worth of computation time, reduced to less than 5 hours real time,
thanks to the batch computing resources of the Center for High Perfor-
mance Computing at the University of Utah.

3.2. Example Study Results

Fig. 3a visualizes the SigTree package results from the mouse gut
microbiome example, with the FWER across the entire phylogenetic
tree controlled at 0.05. (See Section 2.1′s discussion of one-sided
p-values regarding why the lower and upper thresholds of 0.025 and
0.975 are appropriate here when controlling the error rate at 0.05.)
Hartung's method was used to obtain the branch-level p-values, as the
adonis test showed significant evidence (p-value 0.0012) of distance-
based dependence among the OTU-level p-values. The FWER was con-
trolled across the entire phylogenetic tree using Hommel's p-value
adjustment method. A substantial portion of the phylogenetic tree
(indicated by blue branches) is found to demonstrate a consensus de-
creased abundance in whole wheat diet compared to refined wheat
diet. Because the FWER is controlled at 0.05, the probability of such a
conclusion (for any given branch in the tree) being false is less than 0.05.

In the cheese microbial ecology example, there was also significant
evidence (adonis test p-value 0.0001) of distance-based dependence
among theOTUp-values. UsingHartung's p-value combinationmethod,



Fig. 3. Visualization of significantly responsive branches. SigTree visualization of the (a) mouse gut microbiome and (b) cheese ecology phylogenetic trees, with legend for both trees
showing one-sided p-value ranges on a color scale. Darker red indicates branches of OTUs more abundant in whole wheat diet than refined wheat (a), and more abundant in the
presence of Bif-6 than the absence (b). Darker blue indicates branches less abundant in whole wheat (a). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

376 J.R. Stevens et al. / Computational and Structural Biotechnology Journal 15 (2017) 372–378
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and controlling the FWER with Hommel's p-value adjustment method,
Fig. 3b shows the SigTree package results for this cheese microbial
ecology example. The branch colors here use the same p-value intervals
as in the legend of Fig. 3a, and these colors (and the corresponding
branch p-values) were embedded in a resulting Nexus file. In Fig. 3b,
this Nexus file from SigTree was opened in FigTree [4], where rotation,
highlighting, and tip label suppression were used to facilitate visualiza-
tion. The dark red branches correspond to families of OTUs that exhibit
an overall significant consensus greater abundance in the presence of
Bif-6 than the absence.

While our focus in this presentation is on the general demonstrative
nature of the SigTree package rather than specific biological conclusions,
as one example of biologically relevant outcomes that can be derived
from this approach, we comment briefly on the highlighted red branch
of Fig. 3b. Many OTUs in this branch represent bacteria that metabolize
sulfur in different environments; sulfur metabolism alters cheese flavor
beneficially [29]. Even after controlling the family-wise error rate across
all branches in the entire phylogenetic tree, there is statistically signifi-
cant evidence that the presence of Bif-6 results in a consensus increased
abundance of this family (or phylogenetic branch) of bacteria. This
could in turn induce more sulfur metabolic pathways, and thus provide
beneficial flavor changes to the cheese.

4. Discussion

SigTree provides tools to use results of OTU-level significance
tests (with meaningful one-sided p-values) to identify and visualize
branches in a phylogenetic tree that are significantly responsive to
some treatment intervention or change in environmental conditions.
This functionality is not available in any other software package, and
SigTree does much more than just map data values onto the tree. It pro-
vides a convenient interface to a reliable statistical framework allowing
meaningful statements regarding significance of the response – not just
for the abundance levels of single OTUs, but for entire branches of the
phylogenetic tree.

Two methods in the literature that may appear at least superficially
similar to SigTree are phylofactorization [25] (implemented in R) and
Gneiss [26] (implemented in Python). Phylofactorization identifies
“sub-groups of taxa [in a given phylogenetic tree] which respond differ-
ently to treatment relative to one-another.” [25] This is essentially the
same objective as SigTree, and the corresponding phylofactorization im-
plementation requires the use of raw data (relative abundance of each
tip OTU in each sample) and allows multiple covariates. By comparison,
SigTree uses tip-level p-values corresponding to the test of a single
effect. While this may seem to limit the flexibility of SigTree, the oppo-
site is in fact the case – the phylofactorization method is actually de-
signed to test effects only in a multiple regression model, assuming
normal data (after an automated isometric log-ratio transform), and
not allowing random effects or nesting or repeated measures (which
are important characteristics in many study designs, such as the cheese
microbial ecology example used here). In contrast, the use of SigTree
allows (actually requires) users to select an appropriate model for
their given study design, including accounting for study-specific data
distribution (such as Poisson or negative binomial for count data from
a certain high-throughput technology; or choosing a nonparametric
test as was done for the mouse gut microbiome study here). While
SigTree does only look at one effect at a time in a given model, it can
look at multiple effects (or contrasts) from a complex model, one at a
time. This flexibility in the construction of the SigTree approach is inten-
tional, to allow its application in any experimental design and with any
high-throughput technology.

The Gneiss method is designed to “[understand] species distribu-
tions across different covariates” [26], and, like the phylofactorization
method [25], employs an isometric log-ratio (ILR) transform of the
raw OTU relative abundance data. While the Gneiss framework puta-
tively allows for mixed models with multiple covariates, it is left to
the user to specify the model (among those available in Python),
and Gneiss is constrained by limitations involving the ILR. Specifically,
raw data values of zero are problematic for Gneiss's use of the ILR,
with the only current solutions being to add a pseudocount or drop
certain OTUs. SigTree also requires the user to specify the appropriate
(and possibly mixed) model for their study design and data, but prior
to using the package's functions. This actually allows greater flexibility
than Gneiss, such as when it would be meaningful and appropriate to
choose a model that explicitly allows (possibly an abundance of) zeros
in the raw abundance data, or when a given model is not readily fit
using tools in (Gneiss-required) Python. In addition, Gneiss does not
include convenient tree-level visualization tools, which are a strength
of SigTree.

The default multiplicity correction employed by SigTree is Hommel
[17] (for family-wise error rate control, to allow for stronger conclusion
statements). The package also allows control of the false discovery rate
using the Benjamini-Yekutieli correction [18]. Both of these corrections
were selected for inclusion in SigTree because they allow for general
positive dependence among tests [18,27], and it would be reasonable
to expect such dependence among the many (and sometimes nested)
tests within a tree. However, these corrections do not explicitly account
for the dependence possibly induced by the nested structure of the phy-
logenetic tree. Accounting for dependence amongnested or overlapping
tests has been previously addressed in the context of gene ontology
graphs [28], particularly for false discovery rate control. Adapting such
an approach to the phylogenetic tree structure, and addressing family
wise error rate control within the nested tree structure, are possibilities
for future SigTree-related work.

The context of gene ontology graphs actually raises another perspec-
tive from which to consider the type of testing done by SigTree. The
branches (or their corresponding nodes) within a phylogenetic tree
are essentially pre-defined groups of OTUs, just as nodes within a
gene ontology graph are pre-defined groups of genes.Where the groups
of OTUs are based on (estimated) phylogeny, the groups of genes are
based on (estimated) common roles in terms of biological processes,
molecular functions, or cellular components [31]. The meta-analytic
methods employed by SigTree in the phylogenetic tree context are
similar to those employed by themvGST approach in the gene ontology
context [32,33]. It may be possible to extend or adapt other statistical
methods for testing these structured groups (or sets) of genes such as
GSEA [34] or ROAST [35], and apply them in the context of a phyloge-
netic tree. These are also possibilities for future SigTree-related work.

Both of the example studies presented here demonstrate a strength
of SigTree and the statistically powerful meta-analytic methods it em-
ploys. Aftermultiple comparison adjustments, itmay be that noOTUex-
hibits an individually significant response to the treatment intervention.
For example, all tips are colored grey in Fig. 3, indicating no tip-level
significant response to the treatment interventions when the FWER is
controlled at 0.05. However, overall tendencies within branches can
be detected and legitimately called statistically significant, due to the
power of the meta-analytic p-value combination methods employed
by SigTree. In both of these examples, this statistical power results in
the identification (and subsequent visualization in Fig. 3) of branches
that do exhibit significant consensus response to the corresponding
treatment intervention.

SigTree's reliance on p-values rather than raw data makes this
package flexible for any experimental design and high-throughput
technology, ensuring its long-term utility to microbial community
analysis researchers. SigTree is written for the R environment [5], and re-
sults canbe visualized in R aswell as in other programs (such as FigTree).
SigTree is open source, and freely available (with a tutorial vignette
demonstrating package code usage) at http://cran.r-project.org/web/
packages/SigTree/index.html. The current tutorial vignette is also pro-
vided with this manuscript as Supplemental File S1. SigTree and its tuto-
rial vignette will be maintained and updated by the corresponding
author as future needs evolve.

http://cran.r-project.org/web/packages/SigTree/index.html
http://cran.r-project.org/web/packages/SigTree/index.html
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SigTree can help microbial community researchers efficiently make
and effectively communicate (in visual form) novel discoveries re-
garding how the abundance levels of entire families of OTUs (or branches
in the phylogenetic tree) are affected by treatment interventions or
other environmental changes.

Appendix A. Supplementary Data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.csbj.2017.06.002.
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