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Abstract Soil organic nitrogen (N) is a critical

resource for plants and microbes, but the processes

that govern its cycle are not well-described. To

promote a holistic understanding of soil N dynamics,

we need an integrated model that links soil organic

matter (SOM) cycling to bioavailable N in both

unmanaged and managed landscapes, including agroe-

cosystems. We present a framework that unifies recent

conceptual advances in our understanding of three

critical steps in bioavailable N cycling: organic N

(ON) depolymerization and solubilization; bioavail-

able N sorption and desorption on mineral surfaces;

and microbial ON turnover including assimilation,

mineralization, and the recycling of microbial prod-

ucts. Consideration of the balance between these

processes provides insight into the sources, sinks, and

flux rates of bioavailable N. By accounting for

interactions among the biological, physical, and

chemical controls over ON and its availability to

plants and microbes, our conceptual model unifies

complex mechanisms of ON transformation in a

concrete conceptual framework that is amenable to

experimental testing and translates into ideas for new

management practices. This framework will allow

researchers and practitioners to use common mea-

surements of particulate organic matter (POM) and

mineral-associated organic matter (MAOM) to design

strategic organic N-cycle interventions that optimize

ecosystem productivity and minimize environmental

N loss.
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Abbreviations

AA Amino acid

C Carbon

CUE Carbon use efficiency

MAOM Mineral associated organic matter

N Nitrogen

NUE Nitrogen use efficiency

ON Organic nitrogen

POM Particulate organic matter

SOC Soil organic carbon

SOM Soil organic matter

SON Soil organic nitrogen

Introduction

Nitrogen (N) is essential for life as a key constituent of

biomolecules including DNA, RNA, chlorophyll, and

enzymes. In soil, bioavailable N is comprised of

dissolved inorganic and organic N—including small

polymers and monomers—that can be assimilated by

plants and/or microbes. Supplies of bioavailable soil N

sometimes exceed plant requirements, but often fail to

meet them, resulting in N asynchrony that constrains

ecosystem productivity and exacerbates environmen-

tal nutrient losses, which are expected to intensify

under climate change (Sinha et al. 2017; Bowles et al.

2018; Houlton et al. 2019; Dai et al. 2020). This ‘‘N

problem’’ arises in part because of nitrogen’s change-

able nature: as a reactive element found in multiple

forms and seven oxidation states, N is difficult to track

and manage.

Unresolved issues in intensively managed agroe-

cosystems epitomize our incomplete understanding of

bioavailable N. In these systems, the persistent

challenge of minimizing N losses and improving the

spatial and temporal match between N availability and

plant N demand (i.e. N synchrony) derives in part from

a historical focus on the inorganic N pool. Even with

high synthetic N inputs, however, a substantial

fraction of inorganic N is derived from the soil organic

matter pool (Yan et al. 2020). Yet, we remain without

a universal and accurate assay or model that can

predict organic N (ON) conversion to plant-available

inorganic N, despite the long-acknowledged need for

one (e.g. Vitousek 1982; Schimel and Bennett 2004)

and continuing efforts to develop a suitable N avail-

ability index (Ros 2012; Curtin et al. 2017; Clivot et al.

2017; McDaniel et al. 2020).

A focus on inorganic N pools overlooks the

important mechanisms occurring in soil that determine

how much ON feeds into and supplies the inorganic N

pool. Moreover, the ON component of the bioavail-

able N pool is itself a critical N source to plants and

microbes. Estimates of bioavailable N that do include

ON usually represent it as the short-term potentially

mineralizable N pool. However, this pool is opera-

tionally defined; in measuring net changes in inorganic

N under optimized conditions and in the absence of

live plant roots, potentially mineralizable N often

poorly explains the variability in outcomes such as

crop yields, estimated or actual crop N availability,

and fertilizer needs (Fox and Piekielek 1984; Thicke

et al. 1993; Curtin and McCallum 2004; Dessureault-

Rompré et al. 2014; McDaniel et al. 2020). Agricul-

tural practitioners currently rely on N-credit calcula-

tors that do not explicitly consider soil processes and

interactions (Lory et al. 1995) and are prone to

uncertainty, bias, and error (Sharma and Bali 2018).

The struggle to quantify the pool of plant- and

microbe-accessible N arises from conceptual gaps in

current explanations about the fundamental mecha-

nisms that drive N bioavailability; these stem in large

part from failing to accurately account for the organic

component of the soil N cycle and its biogeochemical

drivers.

The need to emphasize organic N is reminiscent of

the impetus that led to developments in how the soil

organic carbon (SOC) cycle is conceptualized. In the

twentieth century, researchers theorized that the

inherent chemical recalcitrance of carbon (C) to
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decomposition controlled SOC turnover, but evidence

from the last two or more decades reveals that

microbes can degrade even the most complex

molecules (Gleixner et al. 2001, 2002; Rasse et al.

2006) and that, in the context of overall soil organic

matter (SOM) dynamics, recalcitrance only temporar-

ily controls microbial SOC processing rates. Instead,

SOC persistence largely emerges from constraints that

the soil mineral matrix imposes on microbial access to

substrates (Kleber et al. 2011; Schimel and Schaeffer

2012) and SOC dynamics are better predicted by

biological and physical controls on C transfer between

different SOC pools (Six et al. 2006; Grandy and Neff

2008), motivating several recent soil C cycling models

to explicitly incorporate soil physical fractions (Sul-

man et al. 2014; Wieder et al. 2015; Abramoff et al.

2018; Kyker-Snowman et al. 2019). The fate of ON

similarly relies on how associations with minerals

regulate access to N-containing molecules (Lavallee

et al. 2020) which are in turn regulated by biologically

mediated chemical and physical processes that have

yet to be integrated into the soil N paradigm

(Darrouzet-Nardi and Weintraub 2014).

Here, we aim to unify advances in the understand-

ing of N transformations by developing a new,

testable conceptual model of organic bioavailable N

in soil. We ground our model in two commonly

measured SOM pools: particulate organic matter

(POM) and mineral-associated organic matter

(MAOM), capturing the importance of both the

depolymerization of N-containing molecules (Schimel

and Bennett 2004) and mineral sorption-desorption

(Sollins et al. 1996; Jilling et al. 2018). We highlight

how microbial physiological traits shape the fate of N

once it is taken up by microbes. Finally, consistent

with Drinkwater and Snapp’s (2007) agroecosystem N

model and insights into priming mechanisms (e.g.

Cheng and Coleman 1990; Dijkstra and Cheng 2007;

Phillips et al. 2012; Zhu et al. 2014), we explicitly

address the role of plants and their interactions with

minerals and microbes in mobilizing N. Below we

outline our new model, synthesize relevant new data,

and examine some implications of our model in

fertilized agroecosystems, aggrading and degrading

soils, and under a changing global climate.

Bioavailable nitrogen: conceptual model

As with previous conceptual frameworks, our model

(Fig. 1) traces the flow of N from SOM through

bioavailable ON (via depolymerization; Schimel and

Bennett 2004) to microbial biomass and finally into

inorganic N via mineralization. While depolymeriza-

tion can limit the overall rate of SON cycling, here we

focus on its role in supplying N directly to MAOM and

indirectly to MAOM through microbes. Importantly,

our model separately considers POM andMAOM; this

establishes sorption and desorption as an important

sink and source of bioavailable N. MAOM forms

through associations with the mineral matrix where

mineral properties: (i) determine the chemistry and

stability of these organo-mineral interactions (e.g.

Parfitt et al. 1997; Baldock and Skjemstad 2000; Krull

et al. 2004; Grandy et al. 2009; Abelenda et al. 2011;

Buurman and Roscoe 2011); (ii) dictate each soil’s

potential to accumulate SOM; and (iii) regulate the

sorption/desorption dynamics that govern the supply

of bioavailable N from MAOM. Nitrogen from

microbial biomass can recycle back into bioavailable

N and SOM, providing a mechanism for soil N

retention and reuse.We thus detail how the physiology

of soil microbial communities shapes the amount and

partitioning of N flow between bioavailable N,

microbial biomass, MAOM, and inorganic N through

uptake, assimilation, recycling, and mineralization.

The proportion of bioavailable N derived from

POM orMAOM (Fig. 2) depends on the ratio between

N mobilized from POM, via depolymerization and

solubilization, versus the potential for mineral sorp-

tion. The latter arises from the properties of soil

colloids, soil texture, and the overall chemistry and

quantity of MAOM and N in the soil solution (Rillig

et al. 2007; Dippold et al. 2014). This framework

emphasizes the role of minerals in intercepting,

immobilizing, and releasing bioavailable N via sorp-

tion and desorption processes. When mineral sorption

potential is high relative to the rate of POM deposition,

much of the mobile N entering MAOM associates

strongly with minerals and thus is less able to desorb

and become available to plants and microbes. In these

conditions, the mineral sorptive potential principally

establishes the equilibrium of sorbed vs. dissolved N.

As the POM-N supply increases relative to mineral

sorption potential, the MAOM pool’s likelihood of

exchange with the bulk solution increases. At this
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stage, MAOM will also include more organic

molecules that associate loosely with mineral surfaces

or other MAOM and are therefore more accessible to

microbes (and, in N-limited systems, plants; e.g.

Kleber et al. 2007; Jilling et al. 2018). When high

levels of N supply from POM greatly exceed mineral

sorption potential, high concentrations of bioavailable

N from POM result. Some bioavailable MAOM-N

exists as a result of exchange with POM-N in solution,

but the high concentration of POM-derived bioavail-

able N should slow MAOM desorption.

It is worth noting that these bioavailable N dynam-

ics will be modified by stoichiometry-driven processes

like co-metabolism and priming in which, for exam-

ple, microbes might degrade POM for its C but

MAOM for its N, or might liberate N from MAOM as

a side effect of mining for phosphorus or micronutri-

ents (Blagodatsky et al. 2010; Di Lonardo et al. 2017;

Čapek et al. 2018). Our model also incorporates the

understanding that plants are not passive players

gathering up the leftovers of microbial mineralization;

rather, through direct actions and by triggering

microbes to act, plants can shape N cycling (see

discussion in Model details: Monomer sorption-

desorption). Thus, superimposed on the source-sink

dynamics of the POM-N supply and mineral sorption

potential, the plant-microbe system can increase

MAOM-N provisioning in the rhizosphere (Fig. 2, N

from MAOM in the rhizosphere).

How differences in POM and MAOM alter

bioavailable N can be hypothetically illustrated by

comparing the contrasting properties of Mollisols and

Aridisols. Tallgrass prairie Mollisols of the Central US

are characterized by high mineral sorption capacity

and a high rate of N supply from POM (Liu et al. 2012;

Fig. 2: POM N supply&Mineral sorption potential).

In these soils, our framework suggests that incoming

POM-N will become MAOM, but as bioavailable N

supply increases that organic N will form loose, easily

exchangeable associations with other MAOM; while a

small portion of POM-derived N will remain in

solution, most bioavailable N will still come from

the more labile fraction of the large MAOM pool. In

soils with very high POM inputs or very low sorptive

capacity, POM will directly supply the majority of

bioavailable N (Fig. 2: POM N supply[[Mineral

sorption potential). On the other end of the spectrum

(Fig. 2: POM N supply\\Mineral sorption

Fig. 1 Conceptual models

illustrating current and

emerging frameworks of

soil bioavailable N cycling.

The emerging model

emphasizes three major

compartments: (1)

depolymerization and

solubilization, in grey; (2)

interactions between

bioavailable organic N and

minerals, in orange, and (3)

microbial assimilation,

recycling, and

mineralization of organic N,

in blue. Black arrows

represent the direction of N

flow between pools. Green

arrows indicate the direction

of plant root exudate C flow.

This model does not attempt

to capture all steps in the

process (see Future
Directions). The ‘‘current
view’’ is adapted from

Schimel and Bennett 2004.

(Color figure online)
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potential), some Aridisols supply little N from POM;

this leaves unfulfilled mineral sorptive capacity and

results in meager amounts of bioavailable N. An

individual soil’s mineral sorption potential can also

shift over time asMAOMpools accrete or degrade as a

function of variation in POM-N inputs and removal of

bioavailable N from the system by plants, microbes,

and environmental losses. We further discuss MAOM

and POM dynamics during soil degradation and

regeneration in the Applications section of this article.

Model details

Depolymerization and solubilization

N from POM first enters the bioavailable pool when its

N-containing polymers break down into soluble

organic N oligomers and monomers, including amino

acids (AAs, Fig. 1, grey box). Traditionally, the

primary control on N supply to plants was thought to

be the derivation of ammonium (NH4
?) from ON, i.e.

N mineralization, a stance dating to as far back as the

late 1800s (Russell and Russell 1950; Harmsen and

Van Schreven 1955). In 2004, Schimel and Bennet

articulated an emerging consensus that considered

depolymerization, rather than inorganic N production,

as the rate-limiting step for N bioavailability (see also

Ladd and Paul 1973). In fact 50–75% of dissolved ON

Fig. 2 Conceptual illustration of how soil bioavailable N and its

source (POM vs. MAOM) depend on the ratio of the incoming

supply of POM-N to mineral sorption potential, defined as net

sorption (i.e. greater gross sorption than gross desorption) of

organic N. Stacked curves depict the amount of bioavailable N

derived from POM sources (gray), MAOM sources in bulk soil

(orange), and MAOM sources under the influence of plant-

microbe interactions in the rhizosphere (turquoise). Low POM

N supply relative to mineral sorption potential (POM N

supply\\Mineral sorption potential) will favor sorption and

result in low N bioavailability. Bioavailable N from MAOM

peaks in soils where POM N supply and mineral sorption

potential are in relative balance and overall N bioavailability is

moderate-to-high (POM N supply & Mineral sorption poten-

tial). High relative POM N supply makes POM the principal

source of bioavailable N and results in high N bioavailability

(POM N supply[[Mineral sorption potential). The specific

dynamics of bioavailable N will vary depending on the physical

and chemical properties of POM and MAOM, total SOM

content, soil mineralogy, and the specific nature of microbial

communities and plant-soil interactions. (Color figure online)
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in soil solution is composed of small, bioavailable

peptides and amino acids (Yu et al. 2002). With a half-

life of only minutes to hours, free amino acids form a

small but very dynamic pool of ON in soils and plant

litter that are quickly taken up by plants and microbes

or sorbed to minerals (Kielland et al. 2007; Jones et al.

2009; Wanek et al. 2010; Mooshammer et al. 2012).

Microbes consumed free amino acids at a rate[ 8

times greater than ammonium and nitrate during leaf

litter decomposition, as measured by a 15N-AA pool

dilution technique for quantifying gross rates of

protein depolymerization and amino acid uptake

(Wanek et al. 2010). Other ON monomers, oligomers,

and small peptides have similarly rapid turnover (Hill

et al. 2012; Farrell et al. 2013; Hu et al. 2018; Warren

2019; Ma et al. 2020).

New lines of research are exploring the major

controls over protein depolymerization and amino

acid cycling. Substrate availability limits protein

depolymerization in subsoil and plant litter

(Mooshammer et al. 2012; Ma et al. 2020), and

explained 60–70% of variation in gross protein

depolymerization across several land uses (Noll

et al. 2019b). Depolymerization is one strategy by

which microbes may acquire N in response to N

limitation or C excess: nutrient scarcity induces

microbes to preferentially decompose N-bearing poly-

mers from leaf litter (Reuter et al. 2020), and labile C

additions increased gross depolymerization rates (Noll

Fig. 3 Potential fertilizer impacts on bioavailable N supply

from MAOM in soils with adequate MAOM-N (i.e. Figure 2,

POM N supply & Mineral sorption potential). Left: Modest,

economical fertilizer application (lighter green gradient) incen-

tivizes plants to invest in root production and associations with

mycorrhizae (pink). Resulting plant-microbe-mineral interac-

tions in minimally fertilized soils (1) liberate more bioavailable

N from MAOM (orange); (2) increase microbial biomass; (3)

produce less microbial ammonium waste and contribute less to

N losses; and (4) increase necromass inputs that can replenish

MAOM-N pools. Right: Heavy fertilizer application (darker

green gradient) disrupts these plant-microbe-mineral interac-

tions. (Color figure online)
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et al. 2019b). Alternately, depolymerization could be a

C acquisition strategy: in some studies, excess C

lowered amino acid and peptide uptake (Farrell et al.

2014; Yang et al. 2020) and increasing litter C:N was

associated with lower rates of gross depolymerization

(Mooshammer et al. 2012).

Other evidence contradicts the hypothesis that

substrate or nutrient scarcity should increase depoly-

merization. Substrate concentration was not found to

influence breakdown of amino sugar polymers (Hu

et al. 2018) or other N-containing polymers in topsoil

or incubated forest soil (Wild et al. 2019; Ma et al.

2020). Many studies have found no effect of organic or

inorganic N additions on gross soil peptide or amino

acid cycling (Farrell et al. 2014; Wild et al. 2019; Noll

et al. 2019a; Yang et al. 2020). Inconsistent observa-

tions about how stoichiometry relates to depolymer-

ization could be due to the fact that depolymerization

products supply microbes with both C and N, or due to

system level microbial community adaptations that

alleviate nutrient constraints (Kaiser et al. 2014).

The identity of the decomposers may also influence

protein depolymerization. Saprotrophic fungi may

degrade N polymers faster than bacteria (Hobbie and

Hobbie 2012) and mycorrhizal fungi can influence

decomposition dynamics (Frey 2019). Microbial

communities may differ in extracellular protease

expression (Puissant et al. 2019), amino acid scav-

enging (Moe 2013), and cellular peptide transport (Li

et al. 2020a). Tight microbial recycling of microbial

necromass N could also maintain depolymerization

rates regardless of fluctuations in inputs of new

substrate (Cissé et al. 2020). Further, the turnover of

ON may depend on which forms and chemical

structures of ON are available for microbial decom-

position (Geisseler and Horwath 2014) and the extent

to which interactions with minerals protect substrates

from enzymatic attack (Rillig et al. 2007; Wang et al.

2020a). Soil mineral composition has been found to

influence gross depolymerization and amino acid

cycling rates (Noll et al. 2019b; Hu et al. 2020), and

soil physiochemical properties that influence substrate

entrapment in small pores and aggregate structures

will also regulate the breakdown of N polymers into

bioavailable N (Six et al. 2000; Grandy and Robertson

2007; Smith et al. 2017).

Sorption-desorption of bioavailable organic N

The majority of total soil N resides in mineral-

associated organic matter fractions (Fig. 1, orange

box), which are defined based on particle size (\ 53

um) and/or density (\ 1.7 g cm3). MAOM was long

considered inaccessible to microbes and plants

because radiocarbon data indicate it has very slow

average turnover times (centuries to millennia;

Fabrizzi et al. 2003; Denef et al. 2013; Paul 2016);

therefore, MAOM has been broadly characterized as a

sink, and POM as source, of bioavailable N. However,

POM fractions store only a small proportion (\ 20%)

of total ON in mineral soils and POM can even act as a

sink for N in early stages of decomposition due to its

relatively high C:N ratio (Whalen et al. 2000; Fornara

et al. 2011; St. Luce et al. 2011). In contrast, MAOM is

enriched in microbial products (Schmidt et al. 2011;

Miltner et al. 2012; Kopittke et al. 2018) and low-

molecular-weight plant compounds (Haddix et al.

2016) and thus possesses a low C:N ratio (Sollins et al.

2006), which generally promotes N mineralization via

microbial N mining (Sollins et al. 1984; Whalen et al.

2000; Jilling et al. 2018).

Incubations of SOM fractions show higher rates of

N mineralization from MAOM than POM (Bimüller

et al. 2014), supporting recent evidence that MAOM is

heterogeneous in chemistry and function, and some

MAOM is relatively accessible (Mikutta and Kaiser

2011; Torn et al. 2013). Mineral-associated fractions

can exhibit short-term (\ 5 years) changes in C and N

content (Heckman et al. 2013; von Haden et al. 2019;

Jilling et al. 2020), indicating a fraction of this pool

cycles on relatively rapid time scales. Soil capacity to

accumulate MAOM has also been linked to above-

ground productivity: Cates and Ruark (2017) observed

a positive association between the non-aggregated silt

and clay fraction and crop yield. Similarly, both POM

and MAOM have been positively associated with

select measures of N availability and crop perfor-

mance (Wade et al. 2018; Jilling et al. 2020). Because

MAOM includes both easily exchangeable and highly

persistent fractions, minerals can retain organic com-

pounds—building SOM—while also supplying

bioavailable N.

MAOM formation from POM can be fast: minerals

quickly stabilize POM-derived N, as demonstrated by

the rapid transfer of 15 N-labelled residues into

MAOM fractions (Kölbl et al. 2006; Bosshard et al.
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2008; Poirier et al. 2020; T.M. Bowles, unpublished

data). N associated with minerals can be remobilized,

in part because MAOM often accrues not as a

continuous layer but rather as patches that vertically

extend outward from mineral surfaces (Vogel et al.

2014) or bind only via weak bonds and may thus be

more likely to exchange or interact with the soil

solution (Kleber et al. 2007; Gao et al. 2020).

Desorption potential of ON also differs between clay

mineral types due to their variation in surface area and

charge characteristics. Yet microbes are able to access

some ON associated with minerals—even from iron

and aluminum oxides that bind ONmore strongly than

most phyllosilicate clays (Kaiser and Zech 2000;

Kleber et al. 2005; Mikutta et al. 2005).

In recent years, evidence has emerged that rhizo-

sphere processes mobilize MAOM-N (Jilling et al.

2018; Fig. 2: N from MAOM in the rhizosphere). Root

C inputs and the release of H? and OH- during cation

or anion uptake cause dramatic, localized shifts in both

pH and soil solution chemistry that alter organic

matter sorption onto, or mobilization from, mineral

surfaces (Avena and Koopal 1998; Rashad et al. 2010;

Kleber et al. 2015; Singh et al. 2016). Strong ligands

such as oxalate and citrate released by roots can

mobilize MAOM-N by exchanging for organic com-

pounds held in metal–organic complexes (Kleber et al.

2015) or by dissolving minerals such as iron and

aluminum (hydr)oxides (Xyla et al. 1992; Vempati

et al. 1995). Plant roots can secrete enzymes including

extracellular proteases to break large N polymers into

bioavailable N (Tornkvist et al. 2019). Plant rhizode-

posits include large amounts of photosynthetically

fixed carbon (e.g. Litton et al. 2007) and simple, low

molecular weight exudates (Dennis et al. 2010) that

influence mineral solubility (Hinsinger and Courch-

esne 2007; Calvaruso et al. 2014; Keiluweit et al.

2015).

In addition to these direct effects, rhizodeposition

can indirectly undermine the stability of mineral-SOM

associations (Keiluweit et al. 2015; Jilling et al. 2018).

Root inputs can ‘‘prime’’ MAOM- N mobilization

indirectly by stimulating microbial activity, which

generates acidity and depletes oxygen. This can alter

the redox state of metals, causing MAOM-N to be

released (Fischer et al. 1989; Grybos et al. 2009;

Husson 2013; Buettner et al. 2014). These root

deposits can also stimulate microbes to produce

extracellular enzymes, notably oxidases that are

effective at destabilizing SOM (Sinsabaugh 2009;

Phillips et al. 2011; Zhu et al. 2014; Partavian et al.

2015; Kieloaho et al. 2016; Wang et al. 2020b).

Microbial organic N turnover: uptake,

assimilation, recycling, mineralization

The physiological traits of microbes shape how N

flows through the microbial compartment (Fig. 1, blue

box) by affecting extracellular depolymerization,

cellular uptake, metabolic and biosynthetic allocation,

and finally plant uptake or environmental losses in

inorganic and organic forms. First, microbes acquire

ON at rates that depend on the characteristics of (a) the

extracellular enzymes that produce small peptides and

N monomers from larger substrates, and (b) the

membrane transport proteins that move the resulting

bioavailable ON into microbial cells. These two

classes of proteins can vary between microbes in

functionally relevant characteristics including abun-

dance, specificity, efficiency, inducibility, and the

energetic costs required for microbes to build and

operate them. If microbes take up peptides rather than

monomers they can invest less in ON decomposition

(Hobbie and Hobbie 2012) though this could also

require more specialized and expensive transporters

(Davis et al. 2005). Microbes can assimilate ON more

efficiently if they have traits that confer stoichiometric

or metabolic flexibility, for example by responding to

molecule or element limitation by switching to

alternative energy or biosynthesis pathways that use

more favorable substrate molecules (Smith and Chap-

man 2010). Adaptive traits like luxury N consumption

and storage can accrue N in cellular biomass (Frost

et al. 2005), while competitive or cooperative traits

can release N into the soil environment in compounds

like antibiotics and the protein components of extra-

cellular polymeric substances (Allison 2005; Ren et al.

2015; Estrela et al. 2019; Cai et al. 2019; Garcia-

Garcera and Rocha 2020). Microbes can lose N

passively as concentration gradients drive reverse

diffusion through permease sites (Krämer 1994;

Button 1998) to an extent that likely varies between

microbes with different N uptake systems. Physiolog-

ical traits that confer stress resistance may limit

microbial ON loss by reducing membrane disruptions.

SON recycling and MAOM-N accumulation will

arise in part from the outcome of microbial N-alloca-

tion to biomass, excreted biomolecular products, and
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mineralized N. Initial evidence suggests that greater

recycling of microbial N within the soil environment

lessens inorganic N waste excretion by microbes

(Zhang et al. 2019). Fast microbial growth provides

more opportunities for recycling of microbial N within

the soil as microbial lysates, necromass, and

biomolecular products are re-incorporated into micro-

bial biomass or sorbed to soil minerals. External

factors that accelerate microbial biomass turnover and

release microbial N into the soil environment include

seasonal changes in temperature and moisture; preda-

tion by micro- and mesofauna and viruses; and the

chemistry, amount, and variability of plant root inputs

(Clarholm 1985; Singh et al. 1989; Lipson et al. 1999;

Scheu 2002; Kuzyakov and Mason-Jones 2018;

Emerson 2019). Greater microbial carbon use effi-

ciency (CUE) accelerates the accumulation of N-rich

microbial products and necromass in soil (Kallenbach

et al. 2016, 2019) by increasing the amount of

microbial biomass produced per unit of substrate

(Manzoni et al. 2012; Geyer et al. 2019) and may itself

be driven by microbial community composition (Kal-

lenbach et al. 2019; Domeignoz-Horta et al. 2020).

The soil environment can modify microbial N alloca-

tion. For example, the proportion of assimilated ON

that microbes released as waste NH4
? decreased in

suboxic conditions but increased with temperature

(Zhang et al. 2019), and was moderately greater under

long-term warming and drought (Wild et al. 2018).

Further elucidating how microbial physiology

responds to environmental controls will be critical in

predicting when N will be mineralized versus recycled

within SON pools.

Microbial release of N waste also depends on the

elemental imbalance between microbial biomass and

substrate resources (Sterner and Elser 2002; Li et al.

2020b). Soil microbial biomass has a relatively fixed

average biomass C:N ratio of 8:1 (Cleveland and

Liptzin 2007; Kallenbach and Grandy 2011); stoi-

chiometric theory predicts microbes achieve this by

offloading excess substrate C or N as CO2 or NH4
?

waste (Mooshammer et al. 2014b). Meanwhile,

microbial substrates in soil environments range from

very N-rich (C:N ratio of e.g.\ 5:1) to N-poor

containing little N (e.g.[ 100:1) or no N (e.g.

cellulose; Sinsabaugh et al. 2016), leading to a wide

range in the intensity of the stoichiometric imbalance

betweenmicrobes and SOM resources. Across soil and

litter samples, Mooshammer et al. (2014a) noted much

greater release of inorganic N waste when resource

C:N was similar to microbial C:N, which decreased as

the gap between resource and microbial C:N widened,

approaching minimum release of inorganic N at a

microbe-resource stoichiometric imbalance of about

four-fold. These observations suggest that a higher

proportion of N will be mineralized fromMAOM than

from POM substrates due to MAOM’s lower average

C:N ratio.

Applications and future directions

Our model can be applied to consider the delivery of

bioavailable N from POM and MAOM in fertilized

agroecosystems and disturbed systems (main text) as

well as across seasons and in response to changes in

soil moisture (Online Appendix).

POM andMAOM in degrading and aggrading soils

In the terms of our conceptual model, a degrading soil

is one in which MAOM-N desorption rates exceed

MAOM-N sorption rates; consequently, mineral sorp-

tion potential increases, and the soil shifts left along

the x-axis in Fig. 2. MAOM depletion could occur due

to increased desorption rates, for example from

N-mining by plants, microbes, and plant–microbe

consortia, or due to decreased sorption rates due to

decreasing POM inputs. Indeed, in many degrading

soils including those undergoing desertification or

conversion to intensive agriculture, POM reserves are

expected to decline, leaving MAOM as the primary

source of bioavailable N without resupply, further

depleting MAOM-N in an accelerating process of soil

degradation. As disturbance continues to empty the

MAOM pool and the mineral sink strengthens, we

expect MAOM-N to become increasingly inaccessi-

ble. Soils with low sorption potential often rely

primarily on POM to supply bioavailable N and are

vulnerable to degradation due to the speed at which

POM decomposes, particularly when new POM inputs

also decline.

Refilling POM pools by restoring productive

aboveground plant communities—for example

through reforestation, perennialization, or cover crop-

ping—can regenerate the ability of soils with low

sorption potential to supply bioavailable N. Over time,

large and consistent POM inputs can also replenish the
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degraded MAOM pools of soils with high mineral

sorption potential. However, building MAOM pools

requires a large amount of N per C because of its low

C:N ratio (Cotrufo et al. 2019), perhaps in part because

the nitrogenous moieties in ON are particularly

reactive with mineral sorption sites (Omoike and

Chorover 2006; Lambert 2008) and seem to play an

important role in forming organo-mineral complexes

(Kleber et al. 2007). Therefore, MAOM may accrue

more quickly from materials that are highly processed

by microbes, from low C:N materials, and from higher

C:Nmaterials that are deposited simultaneously with a

source of inorganic and/or organic N. For example,

recent studies observed that manure had a greater

capacity to build MAOM than crop residue (Samson

et al. 2020), and that inorganic N, manure, and

soybean additions each increased microbial conver-

sion of maize residues to MAOM (Gillespie et al.

2014). Inputs that improve plant and microbial uptake

of ON monomers (Ma et al. 2018) could increase

recycling and retention of ON within soil, and

particularly MAOM, pools. The ability to regenerate

MAOM will also depend on whether soil conditions

support the conversion of plant litter or exogenous

organic inputs to MAOM, for example whether new

ON inputs are in physical contact with minerals or

accessible to microbial enzymes.

Accounting for MAOM-N in agroecosystem

nutrient management

In agroecosystems, global fertilizer nitrogen use

efficiency (NUE) remains stubbornly low at around

40%, and must nearly double by 2050 to meet

predicted food and environmental demands (Zhang

et al. 2015). The modest success of technological

solutions focused on fertilizer management (Xia et al.

2017; Norton and Ouyang 2019) reveals the short-

comings of a narrow focus on managing inorganic N.

Our model adds to calls for active management of

SON (Gardner and Drinkwater 2009; Lin et al. 2016;

Yan et al. 2020) and suggests that future agronomic

research should seek to develop ways to enhance N

supply from POM and MAOM when plant demand is

high, but equally, to rebuild those SON pools during

non-growing or fallow seasons.

Sites will require management practices tailored to

their specific mineralogical properties and POM and

MAOM concentrations. Sites with high mineral

sorption capacity but low POM (Fig. 2, POM N

supply\\Mineral sorption potential) will supply

little bioavailable N to crops, but have great potential

to provide MAOM-N if management can increase

POM inputs and their conversion to MAOM. Sites

where POM-N supply and mineral sorption potential

are balanced will need practices aimed toward main-

tenance of the POM andMAOMpools. Soils with very

low mineral sorption potential or very high POM-N

supply are prone to sizeable N losses (Fig. 2, POM N

supply[[Mineral sorption potential), and will ben-

efit most from strategies that can absorb excess

bioavailable N by increasing soil charge potential or

metal cation concentrations to enhance MAOM-N

storage, and by enlarging microbial biomass pools.

We expect inorganic N applications will substan-

tially alter MAOM-N mobilization (Fig. 3, right) by

suppressing the biological mechanisms that mobilize

MAOM. Inorganic N can decrease plant-microbe

mobilization of MAOM in the rhizosphere by select-

ing for microbes that are poorer decomposers or that

are less responsive to root inputs; by shifting microbial

communities to have fewer fungi; or by lowering

overall microbial biomass (Treseder 2008; Fierer et al.

2012; Morrison et al. 2018; Jia et al. 2020). N fertilizer

reduces mycorrhizal fungi that extend root surface

area (Phillips et al. 2012; Morrison et al. 2016); N

fertilizer can also accelerate the activity of hydrolytic

enzymes such as beta-1,4-glucosidase, while reducing

the activity of oxidative enzymes that mobilize

MAOM (Grandy et al. 2008; Jilling et al. 2018; Chen

et al. 2020). The acidifying effect of nitrification has

also been theorized to reduce MAOM pools (Averill

andWaring 2018). Thus, our framework is in line with

Drinkwater and Snapp’s (2007) argument that it is

critical to recouple C and N cycles in agroecosystems

to maximize yields while minimizing economic and

environmental costs of N excess. For example, it

suggests that MAOM pools can be best enriched by

organic fertilizers like animal manure, crop residues,

or compost (Leinweber and Reuter 1992; Chen et al.

2019; Huang et al. 2019; Xu et al. 2020), and that

green manures and cover crops can convert inorganic

N into POM inputs that both supply bioavailable N and

build MAOM.

In addition to ongoing agronomic research that

seeks to minimize inorganic N inputs, our model

encourages development of strategies to engage the

plant-microbe-soil interactions that accelerate N
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provisioning when and where N demand is high, such

as during rapid vegetative growth phases and in the

rhizosphere. For instance, crop breeding can select for

plants with greater or better timed exudation of

organic acids and root-secreted proteases; increased

ability to interact with soil microbes like mycorrhizal

fungi and to induce rhizosphere microbes to mine N

from MAOM; more active amino acid importer

proteins and a greater capacity to alter root growth

phenotypes in response to changes in soil amino acid

concentrations; and increased plant use of soil pep-

tides (Forsum et al. 2008; Moe 2013; Moreau et al.

2019; Tornkvist et al. 2019; Preece and Peñuelas

2020). Agroecologists can also seek to develop

management regimes that select for soil microbial

communities that respond more to plant inputs, and are

less influenced by soil inorganic N concentrations.

For managed ecosystems, we suggest seeking

strategies that prioritize building MAOM pools and

that re-conceptualize POM pools as a more secondary

concern whose main import is to feed the microbes

that generate MAOM. Soil management regimes

should also select for microbes that can efficiently

convert POM-N—and even excess organic and inor-

ganic fertilizer N—into microbial products that build

MAOM-N. At the same time, these ideal soil microbes

should readily depolymerize ON substrates and

mobilize ON from minerals to generate bioavailable

N. We posit that these microbial communities should

be highly active to further increase the turnover and

exchange of MAOM-N. A better understanding of soil

microbial physiology related to ON cycling can ensure

that the balance between these microbial effects will

supply N but not deplete MAOM (Janzen 2006). Such

developments in agronomic tools will lead to more

tightly coupled plant-soil N cycling in which bioavail-

able N supply better coincides with plant N demand

(Bowles et al. 2015).

Future directions

Our conceptual model of bioavailable N suggests that

we need to address important knowledge gaps and

increase research effort in several areas. Very little is

known about the controls on gross protein depoly-

merization, and even less is known about how

microbial taxa differ in their contributions to these

controls. Insights in this area will also improve our

understanding of bioavailable N dynamics in organic

soils, such as histosols, which fall outside the scope of

our model. Upstream of depolymerization, soil biota

including soil meso- and microfauna physically frag-

ment litter into POM and deposit N-rich feces

(Wickings and Grandy 2011). How these animals

influence MAOM formation and turnover remains to

be determined (David 2014). Leachate from fresh litter

is a direct and potentially large source of bioavailable

N (Rinkes et al. 2014), and it may differ in its

chemistry from compounds originating in POM or

microbial products in ways that influence its associ-

ations with minerals. Insoluble macromolecules of

plant and microbial origin also associate with minerals

(Lehmann and Kleber 2015) and, because they are

subject to both desorption and depolymerization,

likely have multiple controls. Aggregation and other

types of physical occlusion (e.g. low pore connectivity

or soil moisture) may further modify the dynamics of

MAOM turnover and ON bioavailability. Finally,

plants are both sinks for bioavailable N and sources of

ON in the form of litter deposits, and differences in

plant-microbe-soil interactions could cause plants to

vary in how they influence bioavailable N cycling

across environments, especially in ecosystems where

plants also assimilate especially large amounts of

organic N such as the Arctic (Sorensen et al. 2008).

Our model recognizes the importance of microbial

physiology in partitioning N between SOM and

inorganic pools. There is much to learn about how

the flow of ON through the microbial pool is shaped by

microbial identity and genomic potential, community

structure and interactions, and constraints of the soil

environment. Do different microbes or consortia vary

in their expression of ON degrading and uptake

transport proteins, in their growth rates and efficien-

cies, or in their metabolic flexibility and how they

allocate N from organic sources? How does recycling

of bioavailable N between MAOM and microbes alter

its chemistry and future bioavailability? How do

microbes alter their use of ON in response to stress,

particularly the types of stress they will increasingly

face in a changing climate? Use of appropriate

measures of microbial growth efficiency (Frey et al.

2013; Geyer et al. 2016) and the increasing power of

functional omics and meta-omics technologies (Ser-

gaki et al. 2018; Pinu et al. 2019; Nannipieri et al.

2020; Ichihashi et al. 2020; Tang and Aristilde 2020;

Naylor et al. 2020) are advancing this exciting new

theme in soil biogeochemical research.
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Given that soil mineral composition likely drives at

least part of the site specificity so often found in

studies of SON, we need to clarify the ways in which

minerals affect bioavailable N cycling. There remain

uncertainties around the most basic interactions

between various bioavailable N species and different

minerals, the strength of these interactions, and their

vulnerability to disruption (Schulten and Schnitzer

1997; Kleber et al. 2015). We will require more

detailed characterization of the ways different ON

polymers and monomers interact chemically with one

another, with inorganic N and other solutes including

metallic ions, and with enzymes and redox processes.

Researchers have gained new insights into the 3-D

architecture of organo-mineral interactions (Mueller

et al. 2013) and how organic compounds fractionate

between soil mineral pools (Heckman et al. 2013);

they have learned that some minerals preferentially

sorb dissolved ON over compounds lacking N. How

these insights relate to bioavailable N deserves more

detailed inquiry. At the same time, we recognize that

‘‘MAOM’’ originated as an operational term for

organic matter attached to dense and/or small (typi-

cally\ 53 lm) particles (Cambardella and Elliott

1992; Jastrow 1996), but that this fraction can

incidentally include very small POM fragments and

insoluble ON (Lavallee et al. 2020). The emerging

conceptual understanding of MAOM as a pool of

potentially soluble ON of diverse chemical makeup

calls for more sophisticated characterization of this

soil fraction.

Conclusion

We present a new framework of bioavailable N

cycling based on the interactions between organic N

depolymerization, mineral sorption-desorption

dynamics, and the actions of plants and microbes.

New research, enabled by methodological advances of

the last decade, has revealed depolymerization to be a

dynamic process that drives substantial fluxes of

bioavailable N from POM; this organic N subse-

quently associates with soil minerals to form MAOM,

a large and heterogeneous pool of SOM enriched in

nutrients that roots and microbes can actively mine.

Our framework suggests that the flow of bioavailable

N from MAOM is based on the relative balance

between POM-N inputs and the soil’s mineral sorption

potential, further shaped by plant-microbe interactions

and environmental conditions. Microbial physiologi-

cal traits substantially impact the entire bioavailable N

cycle. By accounting for MAOM-N dynamics, we can

develop agricultural management strategies that better

minimize N pollution while reaching crop yield goals.

As the SON paradigm is reshaped—the way SOC

paradigm has been reshaped over the last two

decades—new avenues will open to understanding

the cycling of bioavailable N.
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Rillig MC, Caldwell BA,Wösten HAB, Sollins P (2007) Role of

proteins in soil carbon and nitrogen storage: controls on

persistence. Biogeochemistry 85:25–44. https://doi.org/10.

1007/s10533-007-9102-6

Rinkes ZL, DeForest JL, Grandy AS et al (2014) Interactions

between leaf litter quality, particle size, and microbial

community during the earliest stage of decay. Biogeo-

chemistry 117:153–168. https://doi.org/10.1007/s10533-

013-9872-y

Ros GH (2012) Predicting soil N mineralization using organic

matter fractions and soil properties: a re-analysis of liter-

ature data. Soil Biol Biochem 45:132–135. https://doi.org/

10.1016/j.soilbio.2011.10.015

Russell EJ, Russell EW (1950) Soil conditions and plant growth.

Longmans, Green London

Samson M-E, Chantigny MH, Vanasse A et al (2020) Man-

agement practices differently affect particulate and min-

eral-associated organic matter and their precursors in

arable soils. Soil Biol Biochem 148:107867. https://doi.

org/10.1016/j.soilbio.2020.107867

Scheu S (2002) The soil food web: structure and perspectives.

Eur J Soil Biol 38:11–20. https://doi.org/10.1016/S1164-

5563(01)01117-7

Schimel JP, Bennett J (2004) Nitrogen mineralization: chal-

lenges of a changing paradigm. Ecology 85:591–602.

https://doi.org/10.1890/03-8002

Schimel J, Schaeffer SM (2012) Microbial control over carbon

cycling in soil. Front Microbiol. https://doi.org/10.3389/

fmicb.2012.00348

Schmidt MWI, Torn MS, Abiven S et al (2011) Persistence of

soil organic matter as an ecosystem property. Nature

478:49–56. https://doi.org/10.1038/nature10386

Schulten HR, Schnitzer M (1997) The chemistry of soil organic

nitrogen: a review. Biol Fertil Soils 26:1–15. https://doi.

org/10.1007/s003740050335

Sergaki C, Lagunas B, Lidbury I et al (2018) Challenges and

approaches in microbiome research: from fundamental to

applied. Front Plant Sci. https://doi.org/10.3389/fpls.2018.

01205

Sharma LK, Bali SK (2018) A review of methods to improve

nitrogen use efficiency in agriculture. Sustainability 10:51.

https://doi.org/10.3390/su10010051

Singh JS, Raghubanshi AS, Singh RS, Srivastava SC (1989)

Microbial biomass acts as a source of plant nutrients in dry

tropical forest and savanna. Nature 338:499–500. https://

doi.org/10.1038/338499a0

SinghM, Sarkar B, Biswas B et al (2016) Adsorption-desorption

behavior of dissolved organic carbon by soil clay fractions

of varying mineralogy. Geoderma 280:47–56. https://doi.

org/10.1016/j.geoderma.2016.06.005

Sinha E, Michalak AM, Balaji V (2017) Eutrophication will

increase during the 21st century as a result of precipitation

changes. Science 357:405. https://doi.org/10.1126/science.

aan2409

Sinsabaugh RL (2009) Phenol oxidase, peroxidase and organic

matter dynamics of soil. Soil Biol Biochem 42:391

Sinsabaugh RL, Turner BL, Talbot JM et al (2016) Stoichiom-

etry of microbial carbon use efficiency in soils. Ecol

Monogr 86:172–189

Six J, Elliott ET, Paustian K (2000) Soil structure and soil

organic matter: II. A normalized stability index and the

effect of mineralogy. Soil Sci Soc Am J 64:1042–1049

Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and

fungal contributions to carbon sequestration in agroe-

cosystems. Soil Sci Soc Am J 70:555–569. https://doi.org/

10.2136/sssaj2004.0347

Smith DR, Chapman MR (2010) Economical evolution:

microbes reduce the synthetic cost of extracellular proteins.

MBio. https://doi.org/10.1128/mBio.00131-10

Smith AP, Bond-Lamberty B, Benscoter BW et al (2017) Shifts

in pore connectivity from precipitation versus groundwater

rewetting increases soil carbon loss after drought. Nat

Commun 8:1335. https://doi.org/10.1038/s41467-017-

01320-x

Sollins P, Spycher G, Glassman CA (1984) Net nitrogen min-

eralization from light- and heavy-fraction forest soil

organic matter. Soil Biol Biochem 16:31–37. https://doi.

org/10.1016/0038-0717(84)90122-6

Sollins P, Homann P, Caldwell BA (1996) Stabilization and

destabilization of soil organic matter: mechanisms and

controls. Geoderma 74:65–105

Sollins P, Swanston C, Kleber M et al (2006) Organic C and N

stabilization in a forest soil: evidence from sequential

density fractionation. Soil Biol Biochem 38:3313–3324

Sorensen PL, Clemmensen KE, Michelsen A et al (2008) Plant

and microbial uptake and allocation of organic and inor-

ganic nitrogen related to plant growth forms and soil con-

ditions at two subarctic tundra sites in Sweden. Arct

Antarct Alp Res 40:171–180. https://doi.org/10.1657/

1523-0430(06-114)[SORENSEN]2.0.CO;2

St. Luce M, Whalen JK, Ziadi N, Zebarth BJ (2011) Chap-

ter two—nitrogen dynamics and indices to predict soil

nitrogen supply in humid temperate soils. In: Sparks DL

(ed) Advances in agronomy. Academic Press, Cambridge,

pp 55–102

Sterner RW, Elser JJ (2002) Ecological stoichiometry: the

biology of elements from molecules to the biosphere.

Princeton University Press, Princeton

Sulman BN, Phillips RP, Oishi AC et al (2014) Microbe-driven

turnover offsets mineral-mediated storage of soil carbon

under elevated CO 2. Nat Clim Change 4:1099–1102.

https://doi.org/10.1038/nclimate2436

Tang YJ, Aristilde L (2020) Editorial overview: Analytical

biotechnology in the era of high-performance omics,

123

228 Biogeochemistry (2021) 154:211–229

https://doi.org/10.1016/j.geoderma.2010.06.007
https://doi.org/10.1016/j.geoderma.2010.06.007
https://doi.org/10.1038/ismej.2014.96
https://doi.org/10.5194/bg-17-499-2020
https://doi.org/10.5194/bg-17-499-2020
https://doi.org/10.1007/s10533-007-9102-6
https://doi.org/10.1007/s10533-007-9102-6
https://doi.org/10.1007/s10533-013-9872-y
https://doi.org/10.1007/s10533-013-9872-y
https://doi.org/10.1016/j.soilbio.2011.10.015
https://doi.org/10.1016/j.soilbio.2011.10.015
https://doi.org/10.1016/j.soilbio.2020.107867
https://doi.org/10.1016/j.soilbio.2020.107867
https://doi.org/10.1016/S1164-5563(01)01117-7
https://doi.org/10.1016/S1164-5563(01)01117-7
https://doi.org/10.1890/03-8002
https://doi.org/10.3389/fmicb.2012.00348
https://doi.org/10.3389/fmicb.2012.00348
https://doi.org/10.1038/nature10386
https://doi.org/10.1007/s003740050335
https://doi.org/10.1007/s003740050335
https://doi.org/10.3389/fpls.2018.01205
https://doi.org/10.3389/fpls.2018.01205
https://doi.org/10.3390/su10010051
https://doi.org/10.1038/338499a0
https://doi.org/10.1038/338499a0
https://doi.org/10.1016/j.geoderma.2016.06.005
https://doi.org/10.1016/j.geoderma.2016.06.005
https://doi.org/10.1126/science.aan2409
https://doi.org/10.1126/science.aan2409
https://doi.org/10.2136/sssaj2004.0347
https://doi.org/10.2136/sssaj2004.0347
https://doi.org/10.1128/mBio.00131-10
https://doi.org/10.1038/s41467-017-01320-x
https://doi.org/10.1038/s41467-017-01320-x
https://doi.org/10.1016/0038-0717(84)90122-6
https://doi.org/10.1016/0038-0717(84)90122-6
https://doi.org/10.1657/1523-0430(06-114)[SORENSEN]2.0.CO;2
https://doi.org/10.1657/1523-0430(06-114)[SORENSEN]2.0.CO;2
https://doi.org/10.1038/nclimate2436


synthetic biology, and machine learning. Curr Opin

Biotechnol 64:iii–vi. https://doi.org/10.1016/j.copbio.

2020.07.009

Thicke FE, Russelle MP, Hesterman OB, Sheaffer CC (1993)

SOIL nitrogen mineralization indexes and corn response in

crop rotations 1. Soil Sci 156:322–335

Torn MS, Kleber M, Zavaleta ES et al (2013) A dual isotope

approach to isolate soil carbon pools of different turnover

times. Biogeosciences 10:8067–8081. https://doi.org/10.

5194/bg-10-8067-2013

Tornkvist A, Liu C, Moschou PN (2019) Proteolysis and

nitrogen: emerging insights. J Exp Bot 70:2009–2019.

https://doi.org/10.1093/jxb/erz024

Treseder KK (2008) Nitrogen additions and microbial biomass:

a meta-analysis of ecosystem studies. Ecol Lett

11:1111–1120. https://doi.org/10.1111/j.1461-0248.2008.

01230.x

Vempati RK, Kollipara KP, Stucki JW, Wilkinson H (1995)

Reduction of structural iron in selected iron-bearing min-

erals by soybean root exudates grown in an in vitro geo-

ponic system. J Plant Nutr 18:343–353. https://doi.org/10.

1080/01904169509364906

Vitousek P (1982) Nutrient cycling and nutrient use efficiency.

Am Nat 119:553–572. https://doi.org/10.1086/283931
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