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Abstract of the Dissertation

Estimation and Inference for Self-Exciting Point

Processes with Applications to Social Networks

and Earthquake Seismology

by

Eric Warren Fox

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2015

Professor Frederic Paik Schoenberg, Chair

Self-exciting point processes describe random sequences of events where the oc-

currence of an event increases the likelihood that subsequent events occur nearby

in time and space. Models for self-exciting point processes have many important

applications to diverse topics such as earthquake and crime forecasting, epidemi-

ology, invasive species, and social networks.

The first part of this dissertation discusses a new application of self-exciting

point processes to modeling the times when e-mails are sent by individuals in a

social network. The proposed models are fit to datasets from West Point Military

Academy and the Enron Corporation, and the resulting parameter estimates char-

acterize communication behaviors and leadership roles for users in each network.

We argue that the self-exciting models adequately capture major temporal clus-

tering features in the data and perform better than traditional stationary Poisson

models.

The second part of this dissertation discusses the nonparametric method of

Marsan and Lengliné (2008) for estimating space-time Hawkes point process mod-

els of earthquake occurrences. Their method provides an estimate of a station-
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ary background rate for mainshocks, and a histogram estimate of the triggering

function for the rate of aftershocks following an earthquake. At each step of the

procedure the model estimates rely on computing the probability each earthquake

is a mainshock or aftershock of a previous event. We focus on improving Marsan

and Lengliné’s method by proposing novel ways to incorporate a non-stationary

background rate, and adding error bars to the histogram estimates which cap-

ture the sampling variability and bias in the estimation of the underlying seismic

process. A simulation study is designed to validate and assess new methodology.

An application to earthquake data from the Tohoku District in Japan is also dis-

cussed, and the results are compared to a well established parametric model of

seismicity for this region.
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CHAPTER 1

Introduction

1.1 Background

A spatial-temporal point process is a random process where any realization con-

sists of a collection of points {(ti, si) : i = 1, · · · , N} representing the times and

locations of events. The number of points N that occur in the process is not known

in advance and is random. Examples of events include earthquakes, incidents of

diseases, volcanic eruptions, or burglaries. Typically the spatial locations are ob-

served in two or three spatial coordinates. However, in this dissertation, only two

spatial coordinates si = (xi, yi) are considered, often representing the longitude

and latitude of an event. Any additional information associated with a point is

called a mark. Examples of marks include the earthquake moment magnitude,

type of crime (theft, assault, homicide), or volcanic explosivity index.

The conditional intensity for a spatial-temporal point process is defined as

the as the infinitesimal expected rate at which events occur around a time and

location (t, x, y) given the history of the process:

λ(t, x, y|Ht)

= lim
∆t,∆x,∆y↓0

E[N{(t, t+ ∆t)× (x, x+ ∆x)× (y, y + ∆y)}|Ht]

∆t∆x∆y
. (1.1)

Here the history Ht = {(ti, xi, yi,mi) : ti < t} denotes the times, locations, and

marks of all events occurring before time t. Conditional intensities are a natural

way to model point processes as all finite-dimensional distributions of a simple

1
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Figure 1.1. Simulated realization of the Poisson process with (a) stationary rate

λ(x, y) = 75 , and (b) non-stationary rate λ(x, y) = 300(x2 + y2).

point process are uniquely determined by its condition intensity (Daley and Vere-

Jones, 2003). Note, a point process is simple if all points occur at unique locations

with probability 1.

For the Poisson process the conditional intensity function does not depend on

the history, i.e. λ(t, x, y|Ht) = λ(t, x, y). A Poisson process is stationary if the

intensity function is constant at all times and locations: λ(t, x, y) = c, where c is a

constant representing the expected number of points per unit time per unit area.

For example, Figure 1.1(a) shows a realization a purely spatial stationary Poisson

process with λ(x, y) = 75. A Poisson process is non-stationary if the intensity

function depends on (t, x, y) in some way. For example, Figure 1.1(b) shows a

realization of a purely spatial Poisson process with λ(x, y) = 300(x2 + y2). For a

Poisson process, the expected number of points occurring during the time interval

[0, T ] and in region A is given by:∫ T

0

∫ ∫
A

λ(t, x, y)dxdydt

2



Self-exciting point processes describe random sequences of events where the

occurrence of one event increases the likelihood that subsequent events occur

nearby in time and space. Earthquakes are an example since the occurrence of an

earthquake may trigger nearby aftershocks. As opposed to the Poisson process, the

conditional intensity of a self-exciting point process depends on the past history

Ht.

Many parametric models for the conditional intensity of a self-exciting point

process have been proposed in the literature. The Hawkes process (Hawkes, 1971)

is an important temporal model:

λ(t|Ht) = µ(t) +
∑
ti<t

g(t− ti). (1.2)

This model classifies events into two types: background and triggered. The rate

of background events at time t is modeled by the Poisson process µ(t). The rate

at which an event at time ti triggers additional events at time t is modeled by

the triggering function g(t− ti), which is often assumed exponential: g(t− ti) =

αeω(t−ti). The summation term gives the contribution of all previous events to the

overall intensity at time t. Note, if ti > t then g(t− ti) = 0.

The temporal Hawkes process can be easily extended to the marked spatial-

temporal case:

λ(t, x, y|Ht) = µ(t, x, y) +
∑
{i:ti<t}

g(t− ti, x− xi, y − yi;mi). (1.3)

In an application to seismology, Ogata (1998) considered many parametric forms

of this model, collectively referred to as Epidemic Type Aftershock Sequences

(ETAS) models. For example, one such parametrization is given by:

λ(t, x, y|Ht) = µ+
∑
{i:ti<t}

K

(t− ti + c)p
· eα(m−mc)

((x− xi)2 + (y − yi)2 + d)q
,

where (µ,K, α, p, c, q, d) are parameters to be estimated, and mc is the fixed mag-

nitude cut-off for the earthquake catalogue.

3



The parameters of model (1.3) can be estimated by maximizing the log-

likelihood function (Ogata, 1998) with respect to the parameters of the model:

log(L) =
N∑
i=1

log(λ(ti, xi, yi|Ht))−
∫ T

0

∫ ∫
S

λ(t, x, y|Ht)dxdydt, (1.4)

where S×[0, T ] is the space-time observation window over which the process is ob-

served. The first term of the log-likelihood is easily computed. The integral in the

second term often does not have a closed form solution and must be numerically

approximated (Schoenberg, 2013). Standard errors for the parameter estimates

can be derived using asymptotic properties of the maximum likelihood estimators

(Rathbun and Cressie, 1994). More recently, nonparametric techniques have been

considered for estimating model (1.3) (see Marsan and Lengliné (2008); Mohler

et al. (2011)); such methods will be described in great detail in Chapter 3.

1.2 Motivation

There is extensive application of self-exciting point processes to modeling and

forecasting earthquake occurrences. Current models of the triggering function

perform remarkably well at estimating and predicting properties of aftershock

sequences, such such as the shape and spatial-temporal decay rate (Ogata, 1988,

1998). Estimates of the background rate and overall intensity are also useful for

identifying regions with a high incidence of large seismic events, and may help

guide construction regulation.

Self-exciting models have gained recent popularity due to the multitude of new

and important applications to diverse areas such as criminology, epidemiology,

plant ecology, finance, and social networks. The self-exciting crime models, in

particular, fit the data well and have been used to improve crime forecasting with

hotspot maps (Mohler et al., 2011), and infer unknown gang affiliation for acts

of retaliatory violence in a gang network (Stomakhin et al., 2011). One proposed
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explanation for the successful implementation of these models is that crimes spur

local revenge crimes much as earthquakes trigger aftershocks.

In Chapter 2, we discuss a new application of self-exciting point processes to

modeling e-mail traffic on a social network. The parameter estimates from the

proposed models may be used to characterize important e-mail communication

behaviors such as the baseline sending rates, average reply rates, and average

response times. We also investigate the problem of using these features to infer the

underlying leadership status of users in a social network. In Chapter 3, we assess

and suggest ways to improve the nonparametric method of Marsan and Lengliné

(2008) for estimating a space-time Hawkes process model (1.3) for earthquake

occurrences. The advantage of this approach over traditional parametric models

is that the shape of the triggering function does not need to specified a-priori, and

a data-driven estimate is provided instead. The methods in this chapter may lead

to improvements in earthquake forecasting techniques and model diagnostics.
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CHAPTER 2

Point Process Analysis of E-mail Networks

Several studies on e-mail communication have shown that the times when indi-

viduals send e-mails deviate from a stationary Poisson process (Barabási, 2005;

Malmgren et al., 2008). Two important properties of the stationary Poisson pro-

cess are that the mean number of events per unit time is constant, and the time

intervals between consecutive events (inter-event or waiting times) follows an ex-

ponential distribution. Barabási (2005) provided empirical evidence showing that

the inter-event times for e-mails are better approximated by a heavy-tailed power

law distribution. Essentially, this means the sending times for a typical e-mail

user are highly clustered: short periods with lots of activity are separated by long

periods when no messages are sent.

To account for the clustering and uneven waiting times observed in e-mail

traffic Barabási (2005) proposed a priority queue model, in which high priority e-

mails are responded to more quickly than low priority e-mails. We take a different

approach by considering self-exciting point process models for e-mail traffic. In

general, self-exciting point processes describe random collections of events where

the occurrence of one event increases the likelihood that another event occurs

shortly thereafter. E-mail traffic may be viewed as a self-exciting point process

since each e-mail received by an individual increases the likelihood that reply e-

mails are sent shortly thereafter. In other words, sending an e-mail can trigger a

chain of messages sent between individuals in rapid succession.

The application of self-exciting point processes to modeling and characterizing
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social networks is a relatively new research topic. Some recent work includes self-

exciting models for retaliatory acts of violence in a Los Angeles gang networks

(Stomakhin et al., 2011; Hegemann et al., 2012) and face-to-face conversation

sequences in a company (Masuda et al., 2012). As in these previous works, we

model event times (e-mails) on a social network as a multivariate Hawkes process

(Hawkes, 1971; Hawkes and Oakes, 1974) with an exponential triggering function.

This work is primarily focused on describing, modeling, and analyzing two

interesting e-mail network datasets: the IkeNet dataset collected from the log files

of e-mail transactions between 22 officers attending West Point Military Academy

over a one-year period, and the Enron dataset collected from 151 employees over a

three-year period before the company’s demise. The IkeNet dataset offers a unique

opportunity to study e-mail communication on a small and relatively flat social

network, in which all officers in the network are enrolled in the same academic

program. The Enron dataset, on the other hand, is much larger and users in this

network exhibit a complex and rich corporate hierarchy. Moreover, it is perhaps

the only corporate e-mail corpus freely available to the public for research. Using

these datasets we seek to address the following questions:

(a) Do the estimated self-exciting models perform significantly better than sta-

tionary Poisson models and account for the observed temporal clustering in

e-mail network traffic?

(b) Does the incorporation of diurnal and weekly trends into the baseline (back-

ground) rate at which e-mail conversations are initiated provide an overall

better fit to the observed network data?

(c) How can the estimated parameters be used to characterize important com-

munication behaviors, such as the average reply rate and response time, for

individuals in the network and the network as a whole?
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(d) How can various features of e-mail communication, estimated from the self-

exciting models, be used to predict and rank leaders within a social network?

The prediction of network leadership from communication patterns is an impor-

tant question. Many methods have been proposed in the literature to address this

issue (Shetty and Adibi, 2005; Tyler et al., 2005; Creamer et al., 2009). Our contri-

bution is to show that a point process analysis provides additional insight into the

leadership roles and hierarchy underlying a communication network. A distinc-

tive aspect of both the IkeNet and Enron datasets is that ground-truth about the

actual leadership status of individuals in these networks is readily available, and

provides a means to evaluate and validate our proposed covariates for inferring

leadership.

This chapter is organized as follows: In Section 2.1 we provide some descriptive

statistics for the IkeNet dataset. In Section 2.2 we propose various self-exciting

models for e-mail communication networks and fit these to the IkeNet data using

an EM-type procedure. In Section 2.3 we describe how to use our parameter

estimates to characterize communication behaviors and predict leadership for the

IkeNet social network. In Section 2.3 we also discuss model comparisons and

diagnostics. In Section 2.4 we compare the models fit to the Enron and IkeNet

datasets and use parameter estimates for the Enron e-mail network to describe

and discriminate leadership roles within the corporate hierarchy. In the Discussion

Section we summarize and speculate about our results and suggest possible future

directions for this research. In Appendix A we spell out the simulation algorithm

we use to generate realizations of the IkeNet e-mail network from the fitted self-

exciting models.
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2.1 IkeNet Dataset and Descriptive Statistics

The IkeNet dataset contains the sender, receiver, timestamp, and identification for

each message sent between 22 officers in a closed network over a one-year period

beginning in May 2010. E-mails were sent with Blackberries, which were given

to the officers as incentive for their participation in the study. The officers were

anonymized in the data for privacy, therefore we will refer to them by number

(1–22) instead of name. Only 3.3% of e-mails sent in the IkeNet dataset have

more than one recipient; thus for simplicity we treat each sender-recipient pair

as an e-mail (e.g. one e-mail sent to three recipients is coded as three separate

e-mails). After removing duplicates and instances when officers sent messages to

themselves, we are left with a total of approximately 8400 e-mails.

Each officer was asked in a questionnaire to list the officers, within the network,

whom they considered strong team and military leaders. This supplementary

survey data, provided with the IkeNet e-mail data, allows for a particularly unique

opportunity to make connections between e-mail communication behaviors and

leadership attributes. Many previous studies of e-mail activity have only focused

on describing and modeling temporal communication patterns (e.g. Barabási

(2005); Malmgren et al. (2008)), and have not looked at the relationships between

those communication patterns and the attributes and perceptions of users in the

network. Questions such as how one might predict perceived leadership status

using only observations of network communication are addressed in Section 2.3.

Descriptive statistics for the IkeNet dataset reveal daily, weekly and seasonal

trends in e-mail traffic. Figure 2.1 is a histogram of the number of e-mails sent

in the network each hour of the day, over the yearlong observation window. This

plot reveals a clear diurnal rhythm: e-mails were most frequently sent mid-day

and activity diminished during the night. Decreased activity during lunch and

dinner is also visible, around noon and seven p.m. Figure 2.2 is a bar plot of the
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number of e-mails sent each day of the week. The e-mail activity among these

officers was evidently substantially greater during weekdays (Mon.–Fri.) than on

the weekend.

Figure 2.3 is a time series plot of the number of e-mails sent in the network

each day. The smoother curve helps reveal monthly trends. For instance, there

was a drop in network activity in January; this was probably due to the holidays

and officers being out of town. The time series plot exposes two days with an

unusually high amount of e-mail traffic. The first peak occurred on 02 February

2011 (162 e-mails sent) and coincided with escalating violence in the Egyptian

revolution. The second peak occurred on 02 May 2011 (166 e-mails sent) and

coincided with the assassination of Osama bin Laden. These outliers are also

present in Figure 2.4, a right skewed histogram which shows that on a typical day,

fewer than thirty e-mails are sent within the network.

Also of interest are descriptive statistics for the number of e-mails sent between

officers in the network. Figure 2.5 is a graphical representation of a matrix whose

entries are the number of e-mails sent from officer i (column) to j (row). Notice

that this matrix is not symmetric, since the number of e-mails sent from officer

i to j may be different from the number of e-mails sent from j to i. The e-mail

network itself is shown in Figure 2.6 with node sizes proportional to the number

of e-mails sent by each officer, and edge widths proportional to the number of

messages sent between officers. Officers 9, 18, and 13 stand out in this plot for

sending the highest number of e-mails in the network. The matrix and network

plots reveal pairs of officers that communicate frequently with each other, as well

as those officers that communicate infrequently with the network as a whole. For

instance, officer pair (9,18) particularly stands out as being most prolific, as these

officers sent a total of 1042 e-mails to each other. In contrast, officers 1 and 21 are

distant from the network and have very few e-mail interactions. Both plots also

illustrate the overall sparsity in e-mail communication on this closed network.
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Figure 2.1. Histogram density of the number of e-mails sent each hour of the

day over the one-year observation window. The smoother curve was formed using

kernel density estimation with a fixed bandwidth (Scott, 1992).
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Figure 2.2. Proportion of e-mails sent each day of the week over the one-year

observation window.
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Figure 2.4. Histogram of the number of daily e-mails.
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Figure 2.5. Matrix plot of the logarithm of the number of e-mails sent from officer

i (column) to j (row) for the IkeNet dataset. The red and orange cells indicate

pairs of officers that communicate frequently through e-mail. Likewise, the yellow

and green cells indicates moderate to low communication between officer pairs.
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Figure 2.6. Plot of the IkeNet e-mail network with node sizes proportional to

the number of e-mails sent by each officer, and edge widths proportional to the

number of e-mails sent between officers.

14



2.2 Self-Exciting Models for IkeNet E-mail Activity

In this section we extend the temporal Hawkes process (1.2) to model e-mail

activity on a social network, and fit these models to the IkeNet dataset. Like

earthquakes, e-mail communications may be viewed as a branching processes.

The ‘mainshocks’ are the times when an officer initiates e-mail conversations; the

‘aftershocks’ are the reply e-mails, which are sent in response to e-mails received

from other officers in the network. Our approach is similar to that of Halpin and

De Boeck (2013), though we model e-mail traffic on a network, not just between

two people, and propose ways to account for circadian and weekly trends.

We primarily consider models of e-mail activity from an egocentric point of

view, with the self-exciting point processes placed on the nodes (users) of the

network to model the rate of sending e-mails. Other relational views as considered

in Perry and Wolfe (2013) and Zipkin et al. (2015) include, for instance, the

modeling of dyadic interactions whereby the point processes are placed on the

edges of the network to measure the rate of e-mail communication between pairs

of users. The dyadic models of Zipkin et al. (2015) are fit to the IkeNet dataset

and applied to the problem of filling in missing communication data on this social

network.

For a thorough introduction to point processes, conditional intensities, and

closely related constructs, see Daley and Vere-Jones (2003). Here we briefly review

a few necessary preliminaries.

A point process is a random collection of points, with each point falling in

some observed metric space, S. Here, as in many applications, the observed

space is a portion of the real time line, [0, T ], and our observations of the e-

mail network may be considered a sequence of 22 point patterns, or equivalently

a single multivariate point pattern. Point processes are typically modeled by

specifying their associated conditional intensity processes, as all finite-dimensional
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distributions of a simple point process are uniquely characterized by its conditional

intensity process, assuming it exists. For a temporal point process on a closed

time interval [0, T ], the conditional intensity may be defined as the infinitesimal

expected rate at which points occur around time t, given the entire history, Ht,

of the point process up to time t:

λ(t) = lim
∆t↓0

E[N(t, t+ ∆t)|Ht]

∆t
.

The Hawkes process given by (1.2) is an important conditional intensity model

for a self-exciting point process. It may readily be extended to model the rate

at which each IkeNet officer i sends e-mails at time t (hours) given all messages

received by i at times rik < t:

λi(t) = µi +
∑
rik<t

gi(t− rik)

= µi + θi
∑
rik<t

ωie
−ωi(t−rik). (2.1)

In the context of e-mails, the background rate µi can be interpreted as that rate

at which officer i sends e-mails that are not replies to e-mails received from other

officers. In other words, µi is the baseline rate at which i initiates new e-mail

threads. Each message received by officer i at time rik elevates the overall rate of

sending e-mails at time t > rik, through the triggering function gi(t − rik), which

is assumed to be exponential. Time t is expressed continuously as hours since

midnight on the day when the first e-mail was sent in the network.

In model (2.1), the background rate µi is assumed to be constant over the

observation window [0, T ]. This is unrealistic in light of the diurnal and weekly

non-stationarities suggested in Figures 2.1 and 2.2. Non-stationary forms for the

background rate will be discussed subsequently in Section 2.2.1.

The exponential triggering function is perhaps not unreasonable. For instance,

Figure 2.7 shows that the survival function of the inter-event times for the ob-

served e-mails sent by each officer in the network falls reasonably close to the 95%
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confidence envelope formed from 100 simulated realizations of the IkeNet e-mail

network (Appendix A) using estimated model (2.1). This plot indicates that the

inter-event time distribution for the estimated model closely resembles that of the

observed data.

As an illustration of model (2.1), the top panel in Figure 2.8 shows the es-

timated conditional intensity for officer 13, λ̂13(t), over a three-day time period.

The clustering in the times when e-mails are sent and received are easily discerned

in this plot, and are characteristic of Hawkes point processes.

The parameters of model (2.1) characterize general e-mail communication

habits of each officer. For instance, θi can be interpreted as the reply rate for

officer i, since it is the expected number of reply e-mails1 sent by officer i per

e-mail received from another officer in the network, as

lim
T→∞

∫ T

rki

θiωie
−ωi(t−rik)dt = lim

T→∞
θi(1− e−ωi(T−r

i
k)) = θi.

The integrated triggering function over a finite time period will be slightly less

than θi, but for the IkeNet data, where T = 8640 hours and ω−1 << T (see

Table 2.1), θi will be extremely close to the expected number of replies per e-mail

received for officer i. The speed at which officer i replies to e-mails is governed

by the parameter ωi, with larger values of ωi indicating faster response times for

officer i. Indeed, ω−1
i is the expected number of hours it takes for officer i to reply

to a typical e-mail.

1Note, in this work, a ‘reply e-mail’ is directed towards the network, and is not necessary sent
directly back to the user that sent the original e-mail which triggered the reply. The distinction
between a ‘reply’ and ‘non-reply’ e-mail is that a reply e-mail is triggered by and sent in response
to a previously received e-mail, while a non-reply e-mail is not provoked by a received e-mail
and indicates the initiation of a discussion thread.
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Figure 2.7. Survivor plot of the inter-event times for e-mails sent by each officer

in the network (black line). A 95% confidence envelope was formed by simulating

the network 100 times from the fitted model (2.1) and computing the survivor

function for each realization. The pointwise 0.025 and 0.975 quantiles of the

simulated survivor functions are plotted in gray.
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Figure 2.8. Top panel shows the estimated conditional intensity for officer 13 over

a three-day period using the Hawkes model with the stationary background rate

(2.1). The bottom panel shows the estimated conditional intensity for officer 15

over the same three-day period using the Hawkes model with the non-stationary

background rate (2.2). The downward triangles represent the times when messages

are received, while the upward triangles represent the times when messages are

sent.
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2.2.1 Non-stationary Background Rate

Model (2.1) makes the assumption that the background rate is a stationary Poisson

process, which means in this context that the rate of creating new e-mail threads

is constant at all times. This is not realistic due to the presence of circadian and

weekly trends in e-mail traffic (see Figures 2.1 and 2.2). Malmgren et al. (2008)

argued that the clustering and heavy-tails in the inter-event distribution of times

when e-mails are sent is partially a consequence of rhythms in human activity

(e.g. sleep, meals, work, etc.), and the authors explicitly modeled periodicities

in e-mail communication as a non-stationary Poisson process. We take a similar

approach by considering a non-stationary background rate for our Hawkes process

model (2.1) of e-mail traffic:

λi(t) = νiµ(t) +
∑
rik<t

gi(t− rik)

= νiµ(t) + θi
∑
rik<t

ωie
−ωi(t−rik), (2.2)

where νi is a user specific parameter and µ(t) is a shared baseline density function

that accounts for daily and weekly rhythms in e-mail activity. We define the

integral of µ(t) to equal 1 over the observation window [0, T ]. Our estimate of µ(t),

denoted µ̂(t), is found nonparametrically by a weighted kernel smoothing estimate

over the e-mails sent by all officers (Figure 2.9); the details of this estimation

procedure are given subsequently. Since
∫ T

0
νiµ(t)dt = νi, the parameter νi can be

interpreted as the expected number of background events, or non-reply e-mails,

sent by officer i over the time interval [0, T ].

If we let m ∈ {0, · · · , 59} be the minute, h ∈ {0, · · · , 23} the hour, and

d ∈ {0, · · · , 6} the day (Mon = 0, · · · , Sun = 6) corresponding to time t ∈ [0, T ],
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then our estimate of µ(t) is given by µ̂(t) = Z · f̂(h+m/60)w(d), where

f̂(h+m/60) =
1

σ

N∑
k=1

PkK

(
h+m/60− hk

σ

)

=
1

σ

N∑
k=1

Pk
1√
2π
e−

(h+m/60−hk)
2

2σ2 , (2.3)

w(d) =
N∑
k=1

PkI(dk = d), (2.4)

and Pk is a probability weight that sums to one over k ∈ {1, · · · , N}, where N

is the total number of observed messages sent in the network. The notation hk

and dk denote the hour after midnight and day of week for the kth e-mail sent

in the network. The constant of proportionality Z is chosen to ensure that µ̂(t)

integrates to 1 over [0, T ]. An accurate approximation of Z can be found using a

Riemann sum.

To get an initial estimate of µ̂(t) we select equal probability weights Pk = 1/N ,

making (2.3) the standard kernel density estimate of the histogram of the number

of e-mails sent by hour of day (Figure 2.1). For this kernel smoothing we choose a

gaussian kernel K(·) with bandwidth σ set to the default value suggested by Scott

(1992). To account for weekly trends f̂(·) is multiplied by a weight w(d), which

is simply the proportion of all observed messages sent in the network on day d

when Pk = 1/N (Figure 2.2). Our initial estimate of the background rate density

µ̂(t), with equal probability weights, is plotted as the dashed curve in Figure 2.9.

Note that µ̂(t) is periodic, with period equal to one week (7 days / 168 hours), i.e

µ̂(t+ 168) = µ̂(t), and one period of µ̂(t) is shown in this figure. In Section 2.2.3,

we will explain how to improve our estimate of µ̂(t) by using the probabilities

each e-mail is either a non-reply (background event) or reply (offspring event)

to simultaneously estimate the model parameters and nonparametric background

rate density.

To illustrate the fitted model, the lower panel of Figure 2.8 shows the estimated
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conditional intensity for officer 15 under model (2.2). The troughs in the estimated

conditional intensity in Figure 2.8 correspond to times when few e-mails are sent

and received.

2.2.2 Alternative Model

One shortcoming of models (2.1) and (2.2) is that the reply rate θi for officer i does

not depend on who sends an e-mail to i. According to this model, officer i sends

the same expected number of reply messages to each e-mail received, regardless of

the sender j. In order to incorporate some pairwise interactions between officers

we consider the following alternative Hawkes process model for the rate at which

officer i sends e-mails at time t:

λi(t) = νiµ(t) +
∑
j

∑
rijk <t

gij(t− rijk )

= νiµ(t) +
∑
j

∑
rijk <t

θijωie
−ωi(t−rijk ). (2.5)

The triggering function, gij(t − rijk ), gives the contribution of the kth message

officer i receives from j at time rijk to the conditional intensity at time t. The

inner summation is over all messages officer i receives from j at times rijk < t,

and the outer summation is over all officers j in the network. Note that one

may also model each officer pair (dyad) so that a distinct ωij and νij is estimated

for each receiver i and sender j, however with the current dataset this may not

be advisable due to the sparsity in the number of e-mails sent between certain

pairs of individuals (Figure 2.5) and the large number of additional parameters

to estimate.

The parameters of model (2.5) help characterize e-mail communication behav-

iors between officers. For each officer i, there are twenty-one parameters θij, each

of which may be interpreted as the expected number of replies i sends per e-mail

received from j. This additional information is gained at the expense of adding
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twenty more parameters per network member than model (2.2). (Instances when

officers send e-mails to themselves have been removed, so the reply rate θii is not

included in model (2.5).) A more in-depth comparison between models (2.2) and

(2.5) is provided in Section 2.3.

2.2.3 Parameter Estimation

The parameters of models (2.1), (2.2), and (2.5) can be estimated by an expectation-

maximization type of algorithm (Veen and Schoenberg, 2008; Marsan and Lengliné,

2008). Recall that for a self-exciting point process each event is either a back-

ground event or an offspring event (i.e. triggered by a previous event). This

classification of events as background or offspring is referred to as the branching

structure of the process. In most applications the branching structure is an un-

observed or latent variable. For instance, it is not known whether an earthquake

is an aftershock or mainshock, or in the case of IkeNet e-mail traffic, whether a

message is a reply or non-reply. The EM algorithm works iteratively by first esti-

mating the branching structure of a self-exciting point process (E-step), and then

estimating model parameters (M-step) by maximizing the expected log-likelihood

function, given the current estimate of the branching structure. Marsan proposed

the EM algorithm as a way to estimate the conditional intensity nonparametri-

cally, using a histogram estimator for the triggering function. Many authors have

since applied the EM algorithm to parametric Hawkes process models (Lewis and

Mohler, 2010; Hegemann et al., 2012), yielding closed form estimators for model

parameters.

For the remainder of this section we will describe how to use an EM-type

procedure to estimate the parameters of model (2.2). Models (2.1) and (2.5) can

be estimated similarly. In particular, model (2.1) is just a special case of model

(2.2) with µ(t) = 1/T , where T is the length of the observation window in hours.
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For the IkeNet dataset let sil be the time when the lth e-mail was sent by officer

i, rik be the time when the kth e-mail was received by i, and N send
i and N rec

i be

the number of messages sent and received by i. We may define the true branching

structure for the e-mail network using the following random variables:

ψil =


1 if sil is a non-reply message (background event)

0 otherwise,

(2.6)

χikl =


1 if sil is a reply to message rik, where sil > rik

0 otherwise.

(2.7)

The log-likelihood function (Ogata, 1978) for the conditional intensity defined

in model (2.2) is given by

li(Ωi) = logLi(Ωi) =

Nsend
i∑
k=1

log(λi(s
i
k))−

∫ T

0

λi(t)dt (2.8)

=

Nsend
i∑
k=1

log(λi(s
i
k))−

νi + θi

Nrec
i∑
k=1

[1− e−ωi(T−rik)]

 ,

where Ωi = {νi, θi, ωi} is the parameter space for officer i. Recall that
∫ T

0
νiµ(t)dt =

νi since µ(t) is a density function over [0, T ]. In order to find the parameters Ω̂i

that maximize (2.8) directly, numerical optimization techniques must be used.

However, when incorporating information about the branching structure we in-

stead work with the complete data log-likelihood function, which is more tractable

for maximization, and decomposes additively into a likelihood function for the

background process and a likelihood function for the triggering processes:

lci (Ωi) =

Nsend
i∑
l=1

ψil log(νiµ(sil))−
∫ T

0

νiµ(t)dt︸ ︷︷ ︸
lµi

+

Nrec
i∑
k=1

 ∑
{l:sil>r

i
k}

χikllog(gi(s
i
l − rik))−

∫ T

rik

gi(t− rik)dt


︸ ︷︷ ︸

lgi

. (2.9)
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Since the true branching structure is unobserved, we estimate model parame-

ters by maximizing the expected complete data log-likelihood, which is found by

replacing ψil and χikl in (2.9) with the estimated probabilities each event is either

background or offspring:

Bi
l = probability sent message sil is background =

ν̂iµ̂(sil)

λ̂i(sil)
, (2.10)

Oi
kl = probability receiving message rik triggers sending message sil

=


ĝi(s

i
l − rik)
λ̂i(sil)

sil > rik

0 otherwise.

(2.11)

Moreover, these probabilities can also be used to get a more accurate estimate of

the non-stationary background rate µ̂(t) using weighted kernel density estimation

(2.3 and 2.4). This leads to the EM-type algorithm for estimating model (2.2):

Step 1. Initialize parameters estimates (ν̂
(0)
i , θ̂

(0)
i , ω̂

(0)
i ) for each officer i. Initialize

the background rate density µ̂(0)(t) using equal probability weights P
(0)
k =

1/N for each event k ∈ {1, · · · , N} in (2.3) and (2.4). Set the iteration

index m = 0.

Step 2. For each officer i, find B
i(m+1)
l and O

i(m+1)
kl using the parameter estimates

and background density from iteration m.

Step 3. Estimate the background rate density, µ̂(m+1)(t), using the weighted KDE

defined in (2.3) and (2.4), setting P
(m+1)
k = B

(m+1)
k /

∑N
k=1B

(m+1)
k where

Bk is the probability that e-mail k ∈ {1, · · · , N} is non-reply (back-

ground) at iteration m+ 1. The bandwidth σ is found using the estimate

from Scott (1992).

Step 4. Estimate parameters by maximizing the expected complete data log-
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likelihood using the probability estimates from Step 2:

ν̂
(m+1)
i =

Nsend
i∑
l=1

B
i(m+1)
l

θ̂
(m+1)
i =

∑Nrec
i

k=1

∑
{l:sil>r

i
k}
O
i(m+1)
kl

N rec
i −

∑Nrec
i

k=1 e
−ω̂(m)

i ∆rik

ω̂
(m+1)
i =

∑Nrec
i

k=1

∑
{l:sil>r

i
k}
O
i(m+1)
kl∑Nrec

i
k=1

∑
{l:sil>r

i
k}
O
i(m+1)
kl (sil − rik) +

∑Nrec
i

k=1 θ̂
(m+1)
i ∆rike

−ω̂(m)
i ∆rik

where ∆rik = T − rik.

Step 5. Update m← m+ 1 and repeat Steps 2–5 until convergence when∣∣∣∑i

[
li(Ω̂

(m+1)
i )− li(Ω̂(m)

i )
]∣∣∣ < ε for some small value ε (in practice we set

ε = 10−3).

The estimators in Step 4 are found by setting the partial derivates of the ex-

pected complete data log-likelihood (2.9), with respect to each of the parameters,

equal to zero. The convergence criteria in Step 5 is in terms of the log-likelihood

function in (2.8). The convergence of this EM-type algorithm for the self-exciting

models is apparent in Figure 2.10.

Parameter estimates, standard errors, and maximum log-likelihood values (2.8)

for the Hawkes process models (2.1, 2.2, and 2.5) are given in Tables 2.1, 2.2, and

2.3. Since estimated model (2.5) contains twenty-one reply rates θ̂ij we instead

present the average reply rate ˆ̄θi =
∑

j θ̂ij · N rec
ij /N

rec
i , where N rec

ij is the number

of messages officer i received from j, for each officer in Table 2.3. Notice that

the parameter estimates for models (2.2) and (2.5) presented in these tables are

similar. This result is consistent with model (2.2) being contained within model

(2.5) (it is the case with θij = θi for each sender j and recipient i pair).
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The standard errors in Tables 2.1, 2.2, and 2.3 are found by simulating each

model 100 times (Appendix A) using the EM parameter estimates from the ob-

served data. For each simulated realization of the network, the parameters are

then re-estimated, resulting in 100 sets of re-estimated parameters for each model.

Standard errors are computed by taking the root-mean-square deviation between

the parameter re-estimates from the simulation and the parameter estimate from

the observed data.

By simulating the network repeatedly, one can also form 95% confidence en-

velopes for the non-stationary background rate density µ̂(t) (Figure 2.9). The

gray error bound in this figure is formed by simulating fitted model (2.5) 100

times (Appendix A) and re-estimating the background rate for each simulated re-

alization of the e-mail network. Note that the background rate from the observed

network (solid black curve) falls reasonably within the 95% confidence bands, in-

dicating that the estimated background rate for the model is consistent with the

estimate from the observed data.

Inspection of Tables 2.1 and 2.2 reveals that model (2.2) outperforms model

(2.1) since it has larger maximum log-likelihood values for every officer. This

suggests that inclusion of the non-stationary background rate provides an overall

better fit to the network data. The maximum log-likelihood values for model

(2.5) (see Table 2.3) are greater than model (2.2) for each officer; however, due

to the large number of parameters, model (2.5) does not outperform model (2.2)

typically (as well as overall) by a statistically significant margin according to the

Akaike Information Criterion (AIC) of Akaike (1974). Diagnostic comparisons

between each model are discussed in greater detail in Section 2.3.4.

27



0 50 100 150

t (hours)

µ̂
(t)

0.
00
00

0.
00
02

0.
00
04 initial

converged

Figure 2.9. Estimated background rate density µ̂(t) for the IkeNet e-mail network

(solid black curve) using model (2.5) after convergence of the EM-type algorithm.

The dashed curve is the initial estimate of the background rate density using equal

probability weights. This figure only shows one period (i.e. one week, Mon.–

Sun.) of µ̂(t). A 95% simulation confidence envelope was formed by re-estimating

the background rate for 100 simulated realizations of fitted model (2.5), and the

pointwise 0.025 and 0.975 quantiles are plotted in gray.
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Figure 2.10. Scatter plots showing the convergence of the EM-type algorithm, in

terms of log-likelihood, for estimating the self-exciting models (2.1, 2.2, and 2.5,

respectively).
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Table 2.1. Parameter estimates, standard errors, and maximum log-likelihood

values for model (2.1). Standard errors are computed by the root-mean-square

deviation from 100 simulations of the estimated model.

i N send
i µ̂i θ̂i ω̂i li(Ω̂i)

1 94 0.009 (0.0010) 0.17 (0.04) 8.64 (2.54) -464.2

2 260 0.014 (0.0013) 0.58 (0.05) 3.64 (0.39) -732.8

3 301 0.021 (0.0017) 0.49 (0.05) 1.38 (0.19) -1089.4

4 316 0.024 (0.0017) 0.43 (0.05) 2.93 (0.40) -1126.4

5 179 0.012 (0.0013) 0.35 (0.04) 1.64 (0.25) -702.9

6 207 0.014 (0.0013) 0.34 (0.04) 3.10 (0.40) -752.5

7 276 0.016 (0.0015) 0.51 (0.04) 0.80 (0.10) -989.0

8 355 0.025 (0.0014) 0.40 (0.04) 4.71 (0.49) -1125.6

9 868 0.044 (0.0024) 0.54 (0.02) 6.68 (0.41) -1620.0

10 155 0.012 (0.0012) 0.33 (0.05) 3.29 (0.54) -635.4

11 687 0.034 (0.0020) 0.55 (0.03) 2.19 (0.15) -1647.9

12 277 0.018 (0.0016) 0.43 (0.05) 1.35 (0.19) -1018.5

13 876 0.038 (0.0024) 0.45 (0.02) 2.21 (0.14) -2029.1

14 296 0.016 (0.0016) 0.57 (0.04) 2.87 (0.32) -871.4

15 558 0.040 (0.0023) 0.53 (0.04) 1.75 (0.17) -1717.8

16 181 0.014 (0.0012) 0.41 (0.06) 6.44 (1.09) -683.6

17 295 0.019 (0.0015) 0.26 (0.02) 2.87 (0.38) -1023.1

18 1181 0.059 (0.0028) 0.64 (0.03) 6.91 (0.32) -1853.8

19 247 0.019 (0.0016) 0.53 (0.07) 0.83 (0.14) -992.8

20 73 0.006 (0.0008) 0.26 (0.06) 3.17 (0.83) -360.2

21 26 0.002 (0.0005) 0.21 (0.08) 0.73 (0.67) -158.7

22 689 0.030 (0.0018) 0.73 (0.04) 3.52 (0.23) -1223.4
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Table 2.2. Parameter estimates, standard errors, and maximum log-likelihood

values for model (2.2). Standard errors are computed by the root-mean-square

deviation from 100 simulations of the estimated model.

i N send
i ν̂i/N

send
i θ̂i ω̂i li(Ω̂i)

1 94 0.83 (0.05) 0.16 (0.05) 9.82 (6.47) -430.1

2 260 0.47 (0.04) 0.56 (0.05) 4.06 (0.42) -682.1

3 301 0.65 (0.04) 0.45 (0.05) 1.62 (0.23) -1017.8

4 316 0.71 (0.03) 0.37 (0.04) 4.41 (0.64) -1021.1

5 179 0.57 (0.05) 0.34 (0.04) 1.65 (0.28) -690.7

6 207 0.59 (0.04) 0.32 (0.04) 3.50 (0.48) -717.9

7 276 0.53 (0.05) 0.47 (0.05) 0.90 (0.11) -932.6

8 355 0.63 (0.03) 0.38 (0.03) 5.52 (0.65) -1060.1

9 868 0.50 (0.02) 0.49 (0.03) 10.18 (0.58) -1464.4

10 155 0.70 (0.04) 0.31 (0.05) 4.63 (0.90) -598.9

11 687 0.48 (0.03) 0.50 (0.03) 2.73 (0.24) -1541.5

12 277 0.63 (0.04) 0.38 (0.04) 1.99 (0.29) -973.4

13 876 0.44 (0.02) 0.40 (0.02) 2.76 (0.22) -1908.7

14 296 0.50 (0.04) 0.54 (0.05) 3.31 (0.34) -802.0

15 558 0.68 (0.03) 0.46 (0.04) 2.52 (0.25) -1614.9

16 181 0.69 (0.04) 0.39 (0.05) 7.52 (1.27) -640.2

17 295 0.61 (0.04) 0.23 (0.03) 4.17 (0.49) -954.5

18 1181 0.48 (0.02) 0.59 (0.02) 9.80 (0.57) -1629.8

19 247 0.71 (0.04) 0.46 (0.06) 1.25 (0.24) -938.8

20 73 0.73 (0.05) 0.25 (0.06) 3.41 (1.14) -341.6

21 26 0.72 (0.09) 0.20 (0.07) 0.75 (0.80) -149.9

22 689 0.42 (0.02) 0.68 (0.04) 4.39 (0.29) -1128.5
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Table 2.3. Parameter estimates, standard errors, and maximum log-likelihood

values for model (2.5) . The column labeled ˆ̄θi gives the estimated average reply

rate for each officer ˆ̄θi =
∑

j θ̂ij ·N rec
ij /N

rec
i . Standard errors are computed by the

root-mean-square deviation from 100 simulations of the estimated model.

i N send
i ν̂i/N

send
i

ˆ̄θi ω̂i li(Ω̂i)

1 94 0.82 (0.04) 0.16 (0.04) 9.62 (2.94) -421.4

2 260 0.47 (0.04) 0.56 (0.05) 4.09 (0.41) -668.1

3 301 0.65 (0.04) 0.44 (0.05) 1.74 (0.23) -1003.9

4 316 0.71 (0.03) 0.37 (0.04) 4.53 (0.62) -1013.9

5 179 0.56 (0.05) 0.35 (0.05) 1.50 (0.26) -678.1

6 207 0.59 (0.04) 0.32 (0.04) 3.64 (0.55) -703.3

7 276 0.53 (0.04) 0.47 (0.05) 0.91 (0.13) -924.5

8 355 0.63 (0.03) 0.38 (0.04) 5.59 (0.54) -1043.3

9 868 0.49 (0.02) 0.49 (0.03) 9.81 (0.61) -1453.9

10 155 0.69 (0.05) 0.32 (0.05) 4.17 (0.73) -586.8

11 687 0.48 (0.03) 0.50 (0.03) 2.76 (0.20) -1522.4

12 277 0.64 (0.03) 0.37 (0.04) 2.21 (0.30) -954.1

13 876 0.45 (0.03) 0.40 (0.02) 2.83 (0.22) -1885.4

14 296 0.50 (0.03) 0.54 (0.04) 3.23 (0.35) -793.1

15 558 0.69 (0.03) 0.43 (0.04) 2.90 (0.34) -1594.5

16 181 0.68 (0.04) 0.39 (0.06) 7.40 (1.13) -633.1

17 295 0.61 (0.03) 0.23 (0.02) 4.09 (0.53) -935.2

18 1181 0.48 (0.02) 0.59 (0.02) 9.67 (0.47) -1600.9

19 247 0.71 (0.04) 0.46 (0.07) 1.26 (0.22) -931.6

20 73 0.72 (0.07) 0.26 (0.07) 3.17 (1.10) -333.8

21 26 0.71 (0.11) 0.21 (0.09) 0.69 (0.53) -143.0

22 689 0.42 (0.02) 0.68 (0.04) 4.60 (0.30) -1095.8
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2.3 IkeNet Analysis

2.3.1 Characterizing E-mail Communication Behavior

The parameter estimates in Table 2.2 provide insight into the communication

habits of officers in the network. For instance, the estimated proportion of e-mails

sent by officer i that are not replies (background events) is given by ν̂i/N
send
i . In

other words, ν̂i can be thought of as the estimated number of e-mail threads officer

i initiated over the one-year observation period. For example, according to the

fitted model (2.2), approximately 68% of e-mails sent by officer 15 are not replies

and 48% of e-mails sent by officer 18 are not replies. Over the entire network,

ν̂i/N
send
i ranges between 42% and 83%, and the estimated overall percentage of

e-mails sent in the network that are not replies is
∑22

i=1 ν̂i/N ≈ 55%, where N is

the total number of observed messages for the network.

The estimated mean number of replies officer i sends in response to a typical

e-mail received is given by θ̂i in Table 2.2. For example, officer 18 sends approx-

imately 59 replies per 100 e-mails received, while officer 15 sends approximately

46 replies per 100 e-mails received. Note also that the estimated proportion of

sent e-mails that are not replies (ν̂i/N
send
i ) is higher for officer 15 than 18. This

suggests that officer 15 has a higher tendency to initiate e-mail conversations

than officer 18, while officer 18 has a higher tendency to respond to e-mails than

officer 15. Over the entire network, θ̂i ranges between 16% and 68%, and the

estimated overall percentage of e-mails sent in the network that are replies is∑22
i=1 θ̂i ·N rec

i /N ≈ 45%.

The speed at which officers send e-mails is governed by ω̂−1
i , which can be

interpreted as the estimated mean time it takes officer i to reply to an e-mail. By

examining Table 2.2 we see that officers 18 and 9 are estimated to take about 6

minutes to reply to an e-mail. This is much faster than many of the other officers,

such as officer 13, who takes an estimated 21 minutes, on average, to reply. The
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matrix plot (Figure 2.5) shows that officers 9 and 18 communicate frequently with

each other, which may account for their similar and speedy response times. The

estimated mean response times for officers in the network ranges from about 6

to 80 minutes, and the estimated overall mean time it takes an officer to reply is∑22
i=1 N

send
i · ω̂−1

i /N ≈ 0.307 hours or 18.4 minutes.

2.3.2 Inferring Network Leadership

An important question is what properties of an e-mail network can best identify

and rank the perceived leaders of that network. As mentioned in Section 2.1, each

officer in the IkeNet dataset was asked in a survey to list up to five officers they

considered to be strong team leaders, and up to five officers they considered to

be strong military leaders. The distinction made in the survey was that a team

leader is someone who is perceived as confident leading a business or research

project, while a military leader is someone who is perceived as confident leading

soldiers in combat. Figures 2.11 and 2.12 are scatter plots of the total number of

e-mails sent versus the aggregate number of team and military leadership votes,

respectively. The correlations in these scatter plots are weak to moderate, and

an inspection reveals that sending a relatively large number of e-mails does not

necessarily indicate that an officer is a top leader. For instance, officer 15 stands

out for having the most votes for both team and military leadership, though this

officer ranks below the 80th percentile in terms of the total number of e-mails sent

(officers 18, 13, 9, 22, and 11 all sent more messages than officer 15). Moreover,

officer 9 sent a large number of e-mails in the network, but ranks low in terms

of team and military leadership votes. Clearly, total number of e-mails sent is a

poor predictor of one’s perceived leadership status within the network.
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Figure 2.11. Plot of the total number of e-mails sent versus the aggregate number

of votes each officer received for perceived team leadership (r = 0.52). Votes are

based on a survey which asked each officer to list up to five other officers in the

network that he or she considered to be a strong team leader.
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Figure 2.12. Plot of the total number of e-mails sent versus the aggregate number

of votes each officer received for perceived military leadership (r = 0.13). Votes

are based on a survey which asked each officer to list up to five other officers in

the network that he or she considered to be a strong military leader.
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Fortunately, the parameter estimates from the Hawkes process models quan-

tify other features of e-mail communication which may be predictive of network

leadership. Two particularly important features which we consider are the rate at

which a user initiates e-mail threads (background rate), and the responsiveness of

a user to e-mails received (reply rate). We capture these features in a potential

predictor Y , which is defined for each officer i as the total number of other officers

j for which officer i has an estimated mean reply rate (θ̂ij) above threshold c1, and

sent an estimated number of non-reply e-mails (ν̂iN
send
ij /N send

i ) above threshold

c2. That is

Yi(c1, c2) =
∑
j

I(θ̂ij > c1, ν̂iN
send
ij /N send

i > c2), (2.12)

where I denotes the indicator function, N send
ij is the number of e-mails sent from

officer i to j, and all fitted parameters are from model (2.5). Intuitively, officers

that initiate many e-mail threads and are very response to e-mails received obtain

a high value for predictor Y , and are therefore considered potential leaders.

For our analysis we consider four sets of thresholds for the predictor defined

in (2.12), denoted by Y (1), Y (2), Y (3), and Y (4). Let A = {θ̂ij|i 6= j} be the the

set of estimated reply rates from officers i to j, B = {ν̂iN send
ij /N send

i |i 6= j} be

the set containing the estimates for the number of non-reply e-mails (background

events) sent from officers i to j, and θ̄ = 1
N

∑
i

∑
j N

rec
ij θ̂ij be the estimated mean

percentage of reply e-mails sent in the entire network. For covariate Y (1), threshold

c1 = θ̄ = 0.45 and threshold c2 = 4.79 is the median of set B. For covariate Y (2),

threshold c1 = θ̄ = 0.45 and threshold c2 = 9.92 is the mean of set B. The

thresholds (c1, c2) = (0.33, 4.79) selected for Y (3) are the respective medians of

sets A and B. The thresholds (c1, c2) = (0.52, 9.91) selected for Y (4) are the

respective third quartiles of sets A and B. Of course, many other thresholds are

possible, and the selected thresholds are just simple, easily computed candidates.

Tables 2.4 and 2.5 lists several predictors of network leadership and the Pear-
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son, Spearman, and Kendall correlations between these predictors and the survey

votes for team and military leadership. The Pearson correlation is between the

predictor of interest and the total number of team or military leadership votes

(Figures 2.11 and 2.12). The Spearman and Kendall correlations compare the

predicted rankings with the rankings from the leadership survey votes. A value

of 1 for Kendall’s coefficient indicates that the rankings are perfectly concordant,

0 indicates that the rankings are independent, and -1 indicates the rankings are

perfectly discordant (in reverse order). The last column in both tables gives the

top four leaders identified by each predictor.

Tables 2.4 and 2.5 show that predictor Y , for the 4 selected sets of thresholds,

is much more highly correlated with team and military leadership votes than the

total number of messages sent (N send) or received (N rec) by each officer. Predictor

Y also does a better job at identifying the top leaders than N send and N rec. For

instance, Y (1), Y (2), and Y (4) all correctly identify the top 4 team leaders (13, 15,

22, and 18). Moreover, officer 15, the highest ranked officer in terms of team and

military leadership votes, is identified by predictor Y as a top leader, while N send

and N rec do not recover the importance of this officer.

The points in Figure 2.13 represent the Pearson (rp), Spearman (rs), and

Kendall (τ) correlations between the predictors (Y , N send, and N rec) and the

leadership survey votes. The plot labeled (a) gives the correlations with the team

leadership votes, and the plot labeled (b) gives the correlations with the military

leadership votes. The correlations corresponding to predictor Y are plotted in

blue for the 4 sets of thresholds (Y (1), Y (2), Y (3), and Y (4)), while the correlations

corresponding to the naive predictors (N send and N rec) are plotted in red. Plot (a)

shows that predictor Y has higher correlations than the naive predictors (N send

and N rec) for all sets of thresholds considered. In this plot, predictor Y (1) performs

the best overall at predicting and ranking team leaders; Y (3) also does compara-

bly well at ranking team leaders even though it has a lower Pearson correlation.
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Plot (b) also shows that predictor Y has higher correlations than N send and N rec;

this is true for all sets of thresholds considered, with Y (4) the only exception since

it has approximately the same Spearman correlation as N send. In this plot, Y (1)

and Y (2) perform the best overall at predicting and ranking military leaders.

2.3.3 Sensitivity to Thresholds

The correlations between predictor Y (c1, c2) and the leadership survey votes de-

pend on the choice of thresholds c1 and c2. Figure 2.13 shows that for very rea-

sonable threshold selections (i.e. means, medians, and third quartiles as discussed

in Section 2.3.2), predictor Y performs much better at ranking and estimating

leadership scores than the naive predictors N send and N rec. Table 2.4 also shows

that Y is generally able to identify the top 4 teams leaders with slight variations

in order. For all threshold values considered in Tables 2.4 and 2.5, Y does a better

job than N send or N rec at identifying the top leaders.

In Figure 2.14 we further assess the sensitivity of Y (c1, c2) to the threshold

values. In each panel, the blue lines give the correlations (Pearson, Spearman,

or Kendall, as indicated) between Y (c1, c2) and the leadership votes as c1 varies

continuously between 0 and 0.52, and c2 takes fixed values at the first quartile

(1.8), median (4.8), and third quartile (9.9) for the number of background events

(non-reply e-mails) sent between officers in the network. The upper three panels

give the correlations between Y and the team leadership votes, and the lower three

panels give the correlations between Y and the military leadership votes. The red

horizontal line in each panel is the respective correlation between predictor N send

and the leadership votes.

In Figure 2.14 the blue lines typically fall above the red horizontal line in each

panel; this indicates that, for a wide variety of thresholds, predictor Y (c1, c2) is

associated more strongly with the leadership votes than N send. In the top three
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panels, threshold c2 = 4.8 (median) performs the best overall at ranking network

officers, as indicated by the relatively high Spearman and Kendall correlations

when this threshold value is chosen. In bottom three panels, there appears to

be a peak when threshold c1 is approximately 0.45, which is the estimated mean

percentage of reply e-mails sent in the entire network (θ̄). Conclusively, in all

panels it is apparent that for a wide variety of choices for thresholds we obtain

quantitatively similar results.
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Table 2.4. Predictors of team leadership.

Predictor rp rs τ Estimated top 4 leaders

N send 0.52∗ 0.40· 0.29· 18, 13, 9, 22

N rec 0.49∗ 0.39· 0.29· 13, 18, 9, 11

Y (1) 0.68∗∗ 0.66∗∗ 0.52∗∗ 15, 18, 13, 22

Y (2) 0.64∗∗ 0.50∗ 0.40∗ 13, 15, 18, 22

Y (3) 0.53∗ 0.60∗∗ 0.47∗∗ 13, 18, 9, 15

Y (4) 0.66∗∗ 0.45∗ 0.36∗ 13, 18, 22, 15
The significance values testing whether each correlation is different from zero are denoted by

(·) at the 0.1 level, (*) at the 0.05 level, and (**) at the 0.01 level. In the event of ties in Y

the tiebreaker is the number of e-mails sent in determining the top 4 leaders. The actual top

4 team leaders from the survey votes are officers 13, 15, 22, and 18.

Table 2.5. Predictors of military leadership.

Predictor rp rs τ Estimated top 4 leaders

N send 0.13 0.29 0.21 18, 13, 9, 22

N rec 0.02 0.20 0.15 13, 18, 9, 11

Y (1) 0.48∗ 0.44∗ 0.34∗ 15, 18, 13, 22

Y (2) 0.45∗ 0.45∗ 0.37∗ 13, 15, 18, 22

Y (3) 0.36· 0.41· 0.32∗ 13, 18, 9, 15

Y (4) 0.32 0.27 0.24 13, 18, 22, 15
The significance values testing whether each correlation is different from zero are denoted by

(·) at the 0.1 level, (*) at the 0.05 level, and (**) at the 0.01 level. In the event of ties in Y

the tiebreaker is the number of e-mails sent in determining the top 4 leaders. The actual top

4 military leaders from the survey votes are officers 15, 19, 5, and 22.
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Figure 2.13. The points in each plot represent the Pearson (rp), Spearman (rs),

and Kendall (τ) correlations between the predictor variables and the team (panel

a) and military (panel b) leadership votes. The correlations corresponding to

the naive predictors N send (number of e-mails sent) and N rec (the number of e-

mail received) are plotted in red. The correlations corresponding to predictor

Y (c1, c2), defined in (2.12), are plotted in blue for various threshold selections c1

and c2. The specific thresholds chosen for Y (1), Y (2), Y (3), and Y (4) are discussed

in Section 2.3.2.
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Figure 2.14. Sensitivity plots for the Spearman, Pearson, and Kendall correlations

between predictor Y (c1, c2) and the team leadership votes (upper three panels)

and military leadership votes (lower three panels) for different values of thresholds

c1 and c2. The lines in each plot give the correlations between Y (c1, c2) and

the leadership votes as c1 varies continuously between 0 and 0.52, and c2 takes

fixed values at the first quartile (1.8), median (4.8), and third quartile (9.9) for

the number of background events (non-reply e-mails) sent between officers in the

network. The red horizontal line in each plot is the respective correlation between

N send (total number of e-mails sent by each officer) and the leadership survey

votes. This plot shows that for a wide variety threshold values predictor Y (c1, c2)

is more strongly correlated with the leadership votes than the naive predictor

N send.
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2.3.4 Model Comparison and Diagnostics

The maximized log-likelihoods for the network and corresponding AIC values are

provided in Table 2.6. The first row gives these values for a stationary Poisson

model of e-mail network traffic, where the rate at which each officer sends e-mails is

constant and given by λi(t) = µi. This model only has twenty-two parameters (the

constant rate for each officer). The other three rows of this table are for the Hakwes

process models (2.1, 2.2, and 2.5) described in Section 2.2. The Hawkes process

model (2.1) fits the data significantly better than the stationary Poisson model

according to the AIC. Additionally, the maximum log-likelihood value for the

model with non-stationary background rate (2.2) is higher than the model with the

stationary background rate (2.1). This indicates that taking diurnal and weekly

trends into account provides an overall better fit to the network data. While the

increase in maximum log-likelihood is noteworthy, it is not entirely justifiable to

use the AIC to compare the models that include the nonparametrically estimated

background density µ̂(t) (2.2 and 2.5) with the completely parametric model (2.1).

The Hawkes process model (2.5), which incorporates pairwise interactions between

officers, fits the data slightly more closely than model (2.2) as measured by the

maximum log-likelihood, but scores worse in terms of AIC. This is because the

AIC penalizes for the large number of parameters in (2.5). Although, due to

the overall sparsity in the IkeNet e-mail network (Figure 2.5), about 15% of the

estimated parameters in (2.5) are equal to zero. Comparison of models (2.2) and

(2.5) suggests that e-mail traffic is well modeled by few parameters, and adding

in extra parameters to capture the differences in reply rates between officer pairs

does not provide a significantly better fit to the data. However, the utility of

model (2.5) to predict and rank network leaders was shown in Section 2.3.2.

The simulation procedure described in Appendix A can be used to evaluate

how well the estimated Hawkes process models capture aspects of the observed

data. For instance, one test of predictive performance is to split the data into a
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Table 2.6. Number of parameters (ρ), AIC and maximum log-likelihood values for

the Poisson and Hawkes process models of the IkeNet e-mail network. The value

KS is the Kolmogorov-Smirnov test statistics comparing the transformed time to

the uniform distribution.

ρ l(Ω̂) AIC KS

Stationary Poisson 22 -32347.4 64738.9 0.39

Hawkes model (2.1) 66 -22818.5 45769.0 0.17

Hawkes model (2.2) 66 -21239.5 42611.0 0.15

Hawkes model (2.5) 506 -20920.2 42852.5 0.14

training and validation set and assess how well each model simulated many times

from the parameters estimated from the training set is able to reproduce some

characteristic of the validation set. For this diagnostic, the selected training set is

the first 11 months (T = 7920 hours) of e-mail data, and the selected validation

set is the last month (720 hours, between 13 April 2011 and 12 May 2011) of

e-mail data. Here, we choose the portion of all e-mails sent attributed to each

individual officer as our metric for the predictive performance of each model on

the validation set. We have chosen to inspect each officer’s portion of all e-mails

sent rather than each officer’s raw sent e-mail count since the overall rate of e-

mail exchanges appears to be much higher during the final month of our dataset

(the validation set) than is typical of the previous months, and our model cannot

account for this change. This unusual spike in activity, occurring during the

beginning of May, can be seen clearly in the time series plot (Figure 2.3).

Using the first 11 months (T = 7920 hours) of e-mail data in the training set

we estimate models (2.1), (2.2), and (2.5) with the EM-type algorithm described

in Section 2.2.3. To estimate the non-stationary background rate density, µ̂(t), in

Step 2 of the EM-type algorithm we use the weighted kernel density estimate in
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(2.3) and (2.4) evaluated over the e-mail events occurring in the training set. For

each self-exciting model, we use the parameters estimated from the training data

to simulate the IkeNet e-mail network 100 times over a period of T = 720 hours (1

month). For the simulation procedure for the non-stationary background process

(Appendix A, Algorithm A), the estimate µ̂(t), from the training set, is evaluated

over a 720 hour period that starts and ends on the same days as the validation

set (only the start and end days matter since µ̂(t) is periodic).

In Figure 2.15, the 0.025 an 0.975 quartiles for the simulated proportions

of e-mails sent by each officer in the network under each model are plotted as

gray vertical lines. The observed proportion of e-mails sent by each officer in

the validation set is also plotted in this figure as black horizontal lines. Most of

these observed proportions are either contained within or fall near the simulated

intervals for each officer. Only officers 10, 13, and 22 deviate significantly from

the simulated outcomes. There also does not appear to be any major differences

between the predictive performances of the considered models. However, this is

not surprising since the the non-stationary background rates in models (2.2) and

(2.5) only accounts for daily and weekly trends, and since we are simulating over

a period of one month there should not be any major differences in the simulated

number of messages for these models when compared to model (2.1) with the

stationary background term. Moreover, the similarity between the performances

of models (2.2) and (2.5) in this diagnostic is consistent with the log-likelihood

analysis for these models.

Another goodness-of-fit diagnostic considered in Ogata (1988) is the trans-

formed time {τ ik}, which may be defined for each officer i as

τ ik = Λ(sik) =

∫ sik

0

λi(t)dt. (2.13)

If the model used in their construction is correct, then the transformed times

should form a Poisson process with rate 1 (Meyer, 1971), and similarly the inter-
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event times τ ik− τ ik−1 between the transformed times should follow an exponential

distribution; hence U i
k = 1 − exp{−(τ ik − τ ik−1)} should be uniformly distributed

over [0, 1). Thus, as suggested e.g. in Ogata (1988), if the main features of the data

are well captured by the estimated model, a plot of U i
k+1 versus U i

k should look

like a uniform scatter of points. These plots are presented in Figure 2.16 for the

stationary Poisson process model and all Hawkes process models (2.1, 2.2, and 2.5)

of e-mail network traffic considered in this chapter. A comparison of these plots

reveals much less clustering around the perimeter for the Hawkes process models,

indicating that while the Poisson model clearly fails to account for the clustering

in the data, this feature is noticeably less pronounced for the self-exciting models.

Furthermore, there appears to be slightly less clustering in the plot for model (2.2)

than the plot for model (2.1), and likewise when comparing models (2.5) and (2.2).

This claim is supported by the decreasing values of the Kolmogrov-Smirnov test

statistics in Table 2.6, which compare the transformation {Uk} for each network

model with the uniform distribution.

45



1 3 5 7 9 11 13 15 17 19 21

0.
00

0.
05

0.
10

0.
15

Officer

R
el

at
iv

e 
fre

qu
en

cy

Model 3
Model 4
Model 7

Figure 2.15. Comparison of the simulated and observed proportion of e-mails sent

by each officer over a period of one month (720 hours). The gray vertical lines

are the pointwise 0.025 and 0.975 quartiles for the proportions generated from

100 simulations of the IkeNet e-mail network using the models estimated from the

training set (first 11 months of e-mail data). The black horizontal lines are the

observed proportions from the validation set.
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Figure 2.16. (a-d) Plot of Uk+1 versus Uk for the stationary Poisson process model

and Hawkes process models (2.1, 2.2, and 2.5) of e-mail activity on the network,

respectively.
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2.4 Comparative Analysis Using the Enron E-mail Dataset

E-mail datasets are difficult to find due to the many privacy concerns involved

when making such data publicly available. The Enron e-mail corpus is one of

the few large e-mail communication datasets readily available for public research.

The corpus was originally released in 2002 by the Federal Energy Regulatory

Commission (FERC) during the scandal. William Cohen (CMU) distributed a

version of the original corpus containing about 517,430 e-mails from 151 users on

3500 folders (Cohen, 2009). Shetty and Adibi (USC) cleaned Cohen’s versions of

the dataset and organized the corpus in a MySQL database containing 252,759

messages collected from 151 users (Shetty and Adibi, 2004).

We consider the sender, recipient, and timestamp of each message in a closed

version of the Enron e-mail network of Shetty and Adibi (2004) containing mes-

sages sent between the 151 users. Once duplicates and messages individuals sent to

themselves are removed, the corpus is reduced to 14,959 sent messages and 24,705

received messages. Approximately 27.7% of e-mails sent in the closed network

have multiple recipients. Each sent message is coded as a single sent message,

regardless of the number of recipients, and in this way the number of receiving

and sending messages are allowed to vary for each user. When defining N send
i and∑

j N
send
ij for the Enron dataset, a multicast e-mail sent by i to 10 recipients, for

example, would contribute 1 to N send
i and 10 to

∑
j N

send
ij .

Figure 2.17 is a time series plot of the number of e-mails sent each month in

the closed Enron e-mail network over the three year period between May 1999 and

June 2002. There is a pronouced peak in activity between the dates when Jeffery

Skilling abruptly resigned as CEO (August 2001) and Enron filed for bankruptcy

(December 2001). E-mail usage steadily declined to a zero level during the months

after January 2002. The scatter plot in Figure 2.18 (right panel) shows that there

is a strong association (r ≈ 0.72) between the natural logarithms of the number of
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messages sent and received by each user in the closed Enron network. This result

is similar to the IkeNet dataset (left panel), which shows a very high correlation

(r ≈ 0.95) between the raw number of incoming and outgoing messages. We apply

the logarithmic transform to the Enron data since it is more skewed than IkeNet.

We fit the Hawkes process models (2.1, 2.2, and 2.5) to the Enron data using

the EM-type algorithm described in Section 2.2.3. The maximum log-likelihood

and AIC values for the network are provided in Table 2.7. The results presented

in this table are quite similar to IkeNet, indicating that perhaps our models gen-

eralize well to other larger e-mail networks. The self-exciting model (2.1) fits the

Enron network data significantly better than the stationary Poisson model ac-

cording to the AIC. Additionally, there is a substantial increase in the maximum

log-likelihood values for the network with the inclusion of the non-stationary back-

ground rate in model (2.2). Hence, it appears that the modeling of diurnal and

weekly periodicities in e-mail network activity provides a better fit to the Enron

data than the stationary background rate in (2.1). Due to the large number of

parameters, the AIC for model (2.5) is much larger than model (2.2). However,

like IkeNet, the Enron e-mail network is sparse in the number of messages sent

between pairs of individuals. In fact, approximately 94% of the estimated pa-

rameters for model (2.5) of the Enron dataset are equal to zero. Enron e-mail

traffic is well captured by a few parameters for each node in the network, and

incorporating parameters to model pairwise connections between users does not

significantly improve the overall fit to the data. The values of the Kolmogorov-

Smirnov test statistic (Section 2.3.4) indicate the Hawkes process models for the

Enron network are also accounting for the clustering in the times when e-mails

are sent significantly better than the stationary Poisson model.

Table 2.8 displays the mean percentage of reply and non-reply messages esti-

mated from the self-exciting models (2.1, 2.2, and 2.5) of the Enron and IkeNet

e-mail networks. These percentages are quite similar for both networks: model
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(2.1) estimates that approximately half of the e-mails sent in each network are non-

replies, and this percentage increases with the inclusion of the non-statationary

background rate in models (2.2) and (2.5). Table 2.8 also reveals that the esti-

mated reply times are much higher for the Enron dataset than the IkeNet dataset.

For instance, according to estimated model (2.2), the middle 50% of estimated

reply times (ω̂i) are between 13.2 and 28.8 minutes for the IkeNet e-mail network,

and between 1.63 and 60.52 hours for the Enron e-mail network. One explanation

is that IkeNet officers are using mobile devices to send e-mails, and are thus able

to reply to messages quickly, within an hour, while individuals in Enron are using

personal desktops, and therefore take much longer to reply.

2.4.1 Describing and Inferring Enron Leadership Roles

The prediction of the leadership and hierarchy underlying the Enron corporation

from the e-mail corpus data is an important problem, and there are various tech-

niques in the literature proposed for this task. Shetty and Adibi (2005) use a

graph entropy model to find prominent and influential individuals in the Enron

e-mail dataset. Nodes (e-mail users) that cause the greatest change in graph

entropy for the network once removed are ranked highest and regarded as most

important. Creamer et al. (2009) use a SNA (Social Network Analysis) approach

to extracting social hierarchy information from the Enron dataset. These authors

rank and group e-mail users according to a social score, which is defined as a

weighted sum of user specific statistics such as number of messages, number of

cliques, degree and betweenness centrality. McCallum et al. (2007) proposed the

Author-Recipient-Topic model which learns topic distributions conditioned on the

senders and receivers of e-mail messages; the topic distributions estimated from

the Enron e-mail corpus are used to predict the roles of individuals in the network.
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Figure 2.17. Time series plot of number of e-mails sent each month between May

1999 and June 2002 in the Enron dataset.
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Figure 2.18. Left Panel: Scatter plot of the total number of e-mails received (x)

versus the total number of e-mails sent (y) by each officer in the IkeNet dataset.

The scatter plot and regression line show a strong association between the raw

number of e-mails sent and received (r = 0.95). Right Panel: Scatter plot of the

natural logarithm of total number of e-mails received versus the natural logarithm

of the total number of e-mails sent by each user in the Enron dataset. The scatter

plot and regression line show a strong association between the natural logarithm

of number of e-mails sent and received (r = 0.72).
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Table 2.7. Number of parameters (ρ), AIC and maximum log-likelihood values for

the Poisson and Hawkes process models of the Enron e-mail network. The value

KS is the Kolmogorov-Smirnov test statistics comparing the transformed time to

the uniform distribution.

ρ l(Ω̂) AIC KS

Stationary Poisson 151 -85605.0 171512.0 0.42

Hawkes model (2.1) 453 -75031.4 150968.8 0.28

Hawkes model (2.2) 453 -70721.7 142349.4 0.27

Hawkes model (2.5) 22952 -68925.9 183755.9 0.25

Table 2.8. Mean percent non-reply messages (
∑

i ν̂i/N), mean percent reply mes-

sages (
∑

i θ̂i · N rec
i /N), average reply time (

∑
iN

send
i ω̂−1

i /N) in hours, and first

and third quartiles for reply times estimated from the Hawkes process models of

the Enron and IkeNet e-mail networks.

Dataset Model % Non-reply % Reply Mean reply time

IkeNet

Hawkes model (2.1) 50.2% 49.8% 0.4 (0.28, 0.6)

Hawkes model (2.2) 54.4% 45.6% 0.31 (0.22, 0.48)

Hawkes model (2.5) 54.6% 45.4% 0.31 (0.22, 0.43)

Enron

Hawkes model (2.1) 50% 50% 68.47 (1.69, 111.28)

Hawkes model (2.2) 59.5% 40.5% 48.5 (1.63, 60.52)

Hawkes model (2.5) 54.6% 45.4% 61.19 (1.53, 49.16)
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For the actual positions of the users in the Enron e-mail network we draw

from the classification of Shetty and Adibi (2004) of workers into nine categories:

CEO, President, Vice President, Managing Director, Director, Manager, Lawyer,

Trader, and Employee. The position Employee refers to individuals that serve

non-managerial roles such as associates, analysts, and administrative assistants.

In order to fill in the position data missing in Shetty and Adibi’s classification

we cross-referenced Creamer et al. (2009) and the actual legal documents released

during the Enron scandal (Congress, 2003). Using all three sources we determined

the positions of 150 of the 151 users in the Enron e-mail network.

Table 2.9 presents mean counts and standard deviations for the number of

messages sent and received by individuals within each of the nine occupational

categories for Enron’s corporate hierarchy. Inspection of this table reveals that

the Enron CEOs have the lowest average number of messages sent and received

when compared to all other job categories. Lawyers and Vice Presidents stand

out for sending and receiving the highest mean number of e-mails. However, the

standard deviations indicate that there is much variability between individuals

within each group. Hence, the discrimination of user roles within the Enron

corporate hierarchy based purely on the counts for the number of messages sent

and received would be difficult; this motivates looking at additional features of

e-mail users’ communication behaviors supplied by the parameter estimates from

the Hawkes process models.

Table 2.10 presents features of e-mail communication estimated from self-

exciting models (2.2) and (2.5), averaged over the users belonging to each of

the nine occupational categories of Enron’s corporate hierarchy. The features

considered in this table are the estimated mean proportion of sent e-mails that

are not replies (ν̂/N send), the estimated mean reply rate (θ̂), and the predictor Y

(equation 2.12). Three sets of thresholds are considered for Y (c1, c2), denoted by

Y (1), Y (2), and Y (3), which are defined similarly as the threshold selections for the
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IkeNet dataset (Section 2.3.2).2

The features considered in Table 2.10 characterize general communication be-

haviors for each occupational position. For example, an estimated 84% of e-mails

sent by the four Enron CEOs are not replies to e-mails they received from individ-

uals in the network. Moreover, the CEOs have an estimated mean reply rate of

0.1 and thus only send an average of 10 reply messages per 100 messages received.

When compared to all other occupational categories, CEOs send the the highest

estimated percentage of e-mails that are not replies and have the lowest estimated

reply rate. Hence, an interesting feature of CEOs revealed by the self-exciting

models is that, on average, they are not responsive to e-mails received and tend

to initiate e-mail conversations or threads. This is in contrast to the 14 Enron

Managers, who have the highest estimated mean reply rate (0.34) and sent the

lowest estimated mean proportion of e-mails that are not replies (0.26). Individ-

uals with the job title Employee fall in-between CEOs and Managers in terms of

these features. In general, it appears that as we travel down the Enron hierarchy,

the average reply rate increases and the average proportion of sent e-mails that

are not replies decreases. The major exception to this are the Traders which are

more similar to CEOs than Employees in terms of these features.

Predictor Y (c1, c2), which performed well for identifying IkeNet leaders, has

large average values for Presidents and Vice Presidents in the Enron network. The

standard deviations for values of Y are also large, although this is not surprising

since there can be wide disparities in use of e-mails within groups (as seen in

Table 2.9 as well). Lawyers also seem to be a class of their own, having large

values for Y relative to other occupational categories.

One way to infer the leadership status of users in the Enron network is to

2Due to the overall sparsity of the Enron e-mail network the median and third quartiles
for the set of estimated reply rates and set containing the number of background events sent
between officers are zero. Thus Y (3) = Y (4) since both have trivial thresholds c1 = c2 = 0, and
we only consider Y (3) in the subsequent analysis of Enron.
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consider simple binary classification rules. For instance, CEOs send far fewer e-

mails, on average, than other Enron users (Table 2.9). Hence, to infer CEO status

we can consider a cutoff value for N send and classify all users that sent a total

number of e-mails below the cutoff as CEOs, and non-CEOs otherwise. For any

particular cutoff value we can compute the true positive rate (the percentage of

CEOs correctly classified as CEOs) and the false positive rate (the percentage of

non-CEOs that are incorrectly classified as CEOs). Similar binary classification

rules can be constructed using the other predictors (N rec, Y (1), Y (2), Y (3)) as

well. Figure 2.19 panel (a) shows the Receiver Operating Characteristic (ROC)

curves constructed by plotting the true positive versus false positive rates for all

possible cutoff values for each predictor variable for classifying users as CEOs or

non-CEOs. The other panels in Figure 2.19 show the ROC curves generated from

similar binary classification rules for predicting whether or not each user is a Vice

President / President (panel b) and Manager / Director / Managing Director

(panel c).

The ROC curves corresponding to the binary classification of CEO status

(panel a) indicate that the number of e-mails sent and received by each officer

are the main distinguishing features for CEOs. These naive predictors (N send

and N rec) perform generally as well as Y . Thus the additional features of e-mail

communication estimated from the Hawkes process models do not contribute much

to inferring CEO status, beyond what is already provided for by simple messages

count totals. The large amount of variability between the true positive rates

corresponding to each predictor is due to the small sample size of 4 CEOs in the

Enron network.

The ROC curves corresponding to the binary classification of President / Vice

President status (panel b) all perform rather similarly, but Y (3) appears to per-

form the best overall. For example, for a fixed false positive rate of 0.05, the true

positive rates for each predictor are 0.07 for N send, 0.1 for N rec, 0.19 for Y (1), 0.09
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for Y (2), and 0.21 for Y (3). Hence, there is noticeable improvement in predictive

performance when using Y (c1, c2) to distinguish Presidents / Vice Presidents sta-

tus from the rest of the Enron users. However, this improvement only holds for

the thresholds selected for Y (1) and Y (3), while Y (2) performs only as well as the

naive predictors. Thus the ability for Y to distinguish Enron Vice President /

President status is moderately sensitive to threshold selection.

The ROC curves corresponding to the binary classification of Manager / Di-

rector / Managing Director status (panel c) are all very close to the line y = x

(true positive rate equal to false positive rate) for false positive rates less than

0.3. Therefore, the binary classifiers constructed from each predictor variable are

not doing any better than random chance at these values. For larger false positive

rates (greater than 0.3) Y (1) and Y (2) appear to perform better than the other

predictor variables (N send, N rec, Y (3)) at discriminating Manager / Director /

Managing Director status.

2.5 Discussion

Self-exciting point process models for e-mail networks clearly outperform tradi-

tional stationary Poisson models for both the IkeNet and Enron datasets consid-

ered here. These Hawkes process models, which appear to properly account for

the clustering in the times when e-mails are sent and the overall branching struc-

ture of e-mail communication, are improved by accounting for diurnal and weekly

rhythms in e-mail traffic in the background rate component. The estimated pa-

rameters of these models, such as θ̂ and ν̂, are easily interpretable and characterize

important properties of e-mail communication, such as an individual’s tendency

to reply to e-mails and initiate new e-mail threads.

A network leader may possess more qualities than simply sending and receiv-

ing many messages. One attribute of a leader may be his or her responsiveness
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to messages received from others in the network. Furthermore, a leader may

initiate many e-mail conversations, and not rely on others to start projects and

make decisions. The parameters of the Hawkes process model (2.5) quantified

these additional features, which we attempted to combine into a measure Y (c1, c2)

(equation 2.12) for inferring network leadership. The results of our analysis of the

IkeNet social network reveal that predictor Y is much more strongly correlated

with the leadership survey votes and rankings than the naive predictors N send (to-

tal number of e-mails sent) and N rec (total number of e-mails received) for several

reasonable threshold considerations. Moreover, an analysis of the sensitivity of

Y (c1, c2) to thresholds c1 and c2 demonstrates that we get quantitatively similar

results for a wide variety of threshold selections as well (Figure 2.14).

For the Enron dataset we observed that CEOs, the highest ranked individuals

within the network, send and receive far fewer e-mails, on average, than users in

other occupational categories within the Enron hierarchy. Moreover, the estimated

Hawkes process parameters also reveal that CEOs have a much higher tendency

to initiate e-mail conversations (high background rate) than send replies (low

reply rate). One possible explanation is that CEOs may be older than most

other users in Enron and rely more on forms of communication besides e-mail

(e.g. telephone, verbal, mail), or that many of the messages they received were

low priority due to their high status within the organization. Enron Presidents

and Vice Presidents are much more active within the e-mail network than CEOs

since they send and receive a high volume of messages. Moreover, these users

generally have relatively high values for predictor Y . This indicates, perhaps,

that a discriminating feature for Presidents / Vice Presidents is the initiation of

many e-mail threads and responsiveness to messages received from other users

within the corporation. Note that Enron is merely one company, and a troubled

one at that, so we hesitate to generalize our results to communication within other

corporations, and further study is needed to verify if our findings apply to other
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companies as well.

A main difference between the IkeNet and Enron networks is that the IkeNet

social network is relatively flat (all officers in the network have the same military

rank and are enrolled in the same academic program at West Point), while Enron

has a complex leadership hierarchy that spans across multiple departments and

positions. There is also much variability in e-mail usage and behavior between

individuals with roughly the same role and position in the Enron social network.

Therefore, it is a more straightforward process to identify and rank leaders within

the IkeNet social network than to infer Enron leadership roles using various fea-

tures of e-mail communication estimated from sender, recipient, and timestamp

fields of e-mail logs.

In order to infer leadership on the Enron social network we constructed simple

binary classification rules using the same predictor variables (N send, N rec, Y ) con-

sidered in the IkeNet analysis. All predictors performed similarly in this analysis

since the corresponding ROC curves are close together. Our analysis also suggests

that no single predictor variable stands out as being able to best predict all the

different leadership roles. For instance, the number of e-mails sent and received

appears to be the main distinguishing feature for Enron CEOs, while predictor

Y appears to perform slightly better than the naive predictors (N send and N rec)

at distinguishing Vice President / President status. However, the applicability of

Y (c1, c2) to inferring leadership roles in Enron is less robust to threshold selection

than in the IkeNet social network.
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Table 2.9. Mean number of messages sent and received by users at different

positions in Enron’s corporate hierarchy.

Position n N send N rec Total

CEO 4 27.5 (39.1) 45.2 (36.4) 72.8 (26.3)

President 4 112 (124.7) 254.5 (195.5) 366.5 (303.8)

Vice President 25 162.1 (206.9) 267 (298.6) 429.1 (456.8)

Managing Director 5 59.6 (40.9) 105.6 (30.7) 165.2 (58.6)

Director 19 112.1 (312.4) 145.2 (130.9) 257.2 (421.3)

Manager 14 62 (58.2) 136.2 (184.7) 198.2 (208.6)

Lawyer 9 315.8 (325) 413.2 (302.4) 729 (520.3)

Trader 36 58.6 (97) 103.7 (94.3) 162.3 (170.8)

Employee 34 61.6 (66.2) 123 (137.3) 184.6 (191.7)
Note: The values for n are the number of individuals belonging to each occupational category. The values

in the other columns are the means of the specified variables evaluated over the users belonging to each

position, with corresponding standard deviations given in parenthesis.
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Table 2.10. Features from the estimated Hawkes process models for describing

e-mail communication behaviors at different positions in Enron’s corporate hier-

archy.

Position n ν̂/N send θ̂ Y (1) Y (2) Y (3)

CEO 4 0.84 (0.36) 0.1 (0.05) 0.8 (1) 0.2 (0.5) 3 (4.8)

President 4 0.6 (0.16) 0.18 (0.13) 5.8 (7.5) 5.2 (6.6) 13.5 (15.2)

V. President 25 0.56 (0.3) 0.27 (0.27) 4.4 (3.3) 2.8 (2.3) 9.7 (6)

M. Director 5 0.65 (0.28) 0.2 (0.14) 2.6 (2.7) 1.6 (2.5) 6.4 (4)

Director 19 0.55 (0.2) 0.34 (0.4) 2.3 (3.8) 1.8 (3.9) 4.5 (4.9)

Manager 14 0.26 (0.34) 0.34 (0.53) 2 (1.8) 1 (0.9) 5.1 (4.1)

Lawyer 9 0.68 (0.12) 0.24 (0.18) 5.2 (3.4) 5 (3.4) 10.1 (4)

Trader 36 0.78 (0.15) 0.13 (0.12) 1.6 (1.9) 1.3 (1.8) 3.2 (3.5)

Employee 34 0.52 (0.28) 0.24 (0.22) 2.2 (2.5) 1.7 (2.2) 4.5 (4.2)
Note: The values in the columns are the estimated means of the specified variables evaluated over the

individuals belonging to each position, and the standard deviations of the estimates for each variable are

given in parenthesis. The table values for ν̂/Nsend and θ̂ are calculated as a weighted average and weighted

standard deviation, with weights proportional to the number of e-mails sent and received by each individual,

respectively. Mean values and standard deviations for Y (1), Y (2). and Y (3) are not weighted. The thresholds

for Y (1), Y (2), and Y (3) are defined similarly for the Enron and IkeNet datasets (Section 2.3.2).
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Figure 2.19. ROC curves corresponding to the binary classification of different

Enron leadership roles. For each predictor of leadership (N send, N rec, Y ) a cut-off

value is chosen to classify each user as either a leader or non-leader. The ROC

curves are constructed by considering all possible cut-off values for each predictor

variable and plotting the corresponding true positive and false positive rates. The

ROC curves in panels (a), (b), and (c) are for the classification rules for predicting

whether or not each user is a CEO, President / Vice President, and Manager /

Director / Managing Director, respectively.
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CHAPTER 3

Nonparametric Methods for Estimating Point

Process Models of Seismicity

Point process models of earthquake seismicity usually rely heavily on paramet-

ric assumptions about the triggering function for the spatial-temporal rate of

aftershock activity following an earthquake. Some important examples are the

parametric forms of the Epidemic Type Aftershock Sequences (ETAS) model of

Ogata (1998). Marsan and Lengliné (2008) proposed a more flexible nonparamet-

ric approach for estimating point process models of seismicity which makes no

a-priori assumptions about the shape of the triggering function, and provides a

data-driven estimate instead. Their method, named Model Independent Stochas-

tic Declustering (MISD), is an iterative algorithm that alternates between first

estimating the probability each earthquake in the catalogue is either a mainshock

or aftershock and second, updating a stationary background rate for mainshock

activity and a probability weighted histogram estimate for the triggering function.

Nonparametric methods for estimating point process models have shown a

wide rage of applications, especially in situations where the form of the inten-

sity function is unknown and difficult to determine. Using wavelets Brillinger

(1998) described a technique for estimating the conditional intensity and sec-

ond order intensity with applications to neurophysiology and seismology. Adelfio

and Chiodi (2013, 2015) considered a semi-parametric estimation procedure that

simultaneously estimates a nonparametric background rate and parametric trig-

gering function for a space-time Hawkes process model of seismicity. Marsan and
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Lengliné (2008) applied the fully nonparametric MISD method to a Southern

California earthquake catalogue to estimate the spatial-temporal rates aftershock

activity following an earthquake of given magnitude. They also demonstrated the

application of their routine for stochastically declustering earthquake catalogues

to isolate mainshocks and remove aftershock clusters. Nichols and Schoenberg

(2014) used MISD as a diagnostic tool to evaluate the dependency between the

magnitude of an earthquake and the magnitudes of its aftershocks. By repeatedly

applying the MISD algorithm to stochastically assign earthquakes as either main-

shocks or aftershocks they created confidence intervals for the average magnitude

of aftershocks following an earthquake of given magnitude. In an application to

criminology, Mohler et al. (2011) developed a Monte-Carlo based nonparametric

method similar to MISD to estimate a space-time point process model for the

occurrence rate of burglaries in a Los Angeles district. They demonstrated that

this approach leads to improved hotspot maps for flagging times and locations

where burglaries are likely to occur. An interesting result of this study is that

crimes spur other crimes nearby in space and time, much as earthquakes trigger

local aftershocks sequences.

The focus of this work is the improvement and assessment of the nonparametric

method of Marsan and Lengliné (2008) for estimating space-time Hawkes point

process models of earthquake occurrences. Along these lines, our primary goals

are,

1. The proposal of novel ways to incorporate a non-stationary background rate

into the MISD algorithm.

2. Adding error bars to the histogram estimates of the triggering function which

quantify the sampling variability and bias in the estimation of the underlying

seismic process.

The original MISD algorithm assumes that the background rate for main-
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shocks is a stationary Poisson process in time and space. While an estimate of

the mean mainshock rate over an observation region is useful, the expansion of

MISD to incorporate a non-stationary background component is an important

next step and improvement by allowing for localized estimates mainshock activ-

ity related to variations in the underlying tectonic field and the locations major

faults. Moreover, an estimate of a spatially varying background rate can be used

to identify regions with a persistent and heightened incidence of large seismic

events, independent of aftershock clustering features which diminish over time.

Nichols and Schoenberg (2014) proposed a way to adjust MISD to incorporate

non-stationarities in the background process by initially kernel smoothing over

all events in the catalogue and weighing each event by its corresponding kernel

estimate. However, a main shortcoming of this approach is that non-stationaries

in the background rate are only defined on the observed data and not at each

pixel of the observation window. Moreover, the authors of this work were pri-

marily interested in applying the method to evaluate the dependence between the

magnitudes of earthquakes and their aftershocks, and the explicit assessment or

validation of the proposed estimation technique was not addressed.

In this work, we propose two novel ways to incorporate a spatially varying

background rate into the MISD method. First, we discuss a histogram estimator

approach, which is a natural extension of the stationary rate estimator of Marsan

and Lengliné (2008). Second, we apply the variable kernel estimator, used by

Zhuang et al. (2002) for semi-parametric estimation, into the context of MISD. We

validate and assess new methodology by simulating earthquake catalogues from a

space-time model (ETAS) and evaluating the ability of each method to recover the

true form of the non-stationary background rate and triggering function governing

the simulations.

Simulation is also a powerful tool for understanding the statistical properties

of the histogram estimators of the triggering function. By repeatedly simulating
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and re-estimating an earthquake model error bars can be computed which capture

the sampling distributions of the estimates. An easily calculated analytic approx-

imation for the error bars found through simulation is discussed at the end of the

chapter.

This chapter is organized as follows: In Section 3.1, we provide an overview

of space-time point process models of seismicity. In Section 3.2, we describe

our modified version of the MISD algorithm, and propose a couple new ways to

incorporate a non-stationary background rate. In Section 3.3, we validate and

assess our methods with simulation studies, and discuss boundary issues. In

Section 3.4, we apply our method to an earthquake catalogue from Japan. In

the Discussion Section we summarize and speculate about our results and suggest

future directions and applications for this research.

3.1 Space-time Point Process Models in Seismology

Consider a marked space-time point processN(t, x, y) representing the times, loca-

tions, and magnitudes, {(ti, xi, yi,mi) : i = 1 · · · , N}, of earthquake occurrences.

In seismology, one typically models the corresponding conditional intensity (1.1)

as a Hawkes-type self-exciting point process taking the following form:

λ(t, x, y,m|Ht) = J(m)λ(t, x, y|Ht)

λ(t, x, y|Ht) = µ(x, y) +
∑
{i:ti<t}

ν(t− ti, x− xi, y − yi;mi). (3.1)

For example, models of this type, referred to as Epidemic Type Aftershock Se-

quences (ETAS) models, were introduced by Ogata (1988) for the description

of earthquake catalogs. Such models categorize earthquake occurrences into two

types: mainshocks and aftershocks. The rate of mainshocks occurring over a spa-

tial region is modeled by the background intensity µ(x, y), which is assumed a

non-stationary Poisson process in space and stationary in time. The rate of af-
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tershock activity following an earthquake occurring at (ti, xi, yi) with magnitude

mi is modeled by the triggering function ν, which is often assumed Gaussian or

power-law in parametric models. The summation term gives the contribution

of all previously occurring events in the catalog to the overall rate of seismicity

at time t and location (x, y). The distribution of earthquake magnitudes J(m)

is typically assumed independent of all other model components, and follows an

exponential distribution according to the well known magnitude frequency law

of Gutenberg and Richter (1944). Note that model (3.1) specifies a space-time

branching process since any earthquake occurrence (including an aftershock) is

capable of triggering its own aftershock sequence.

Ogata (1998) considered many parameterizations of the response function of

(3.1) which take the standard following form:

ν(t− ti, x− xi, y − yi;mi) = κ(mi)g(t− ti)f(x− xi, y − yi;mi). (3.2)

Here κ(mi) is the magnitude productivity function, which gives the expected

number of aftershocks following an earthquake of magnitude mi. The temporal

component g is a probability density function governing the rate of aftershocks

following an earthquake at time ti. The spatial component f is a probability

density function for the spatial distribution of aftershocks occurring around an

earthquake with epicenter (xi, yi). The dependence of the spatial response function

on the magnitude mi is built into some models.

One example of a parametrization of the triggering function for ETAS is given

by:

κ(m) = Aeα(m−mc), (3.3)

g(t) = (p− 1)c(p−1)(t+ c)−p, (3.4)

f(x, y) =
(q − 1)dq−1

π
(x2 + y2 + d)−q, (3.5)

where mc is the magnitude cut-off for the catalogue, t > 0, and (A,α, p, c, q, d) are

parameters to be estimated. Here g corresponds to the modified Omori formula
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(see Utsu et al. (1995) for details), and f is isotropic (rotation invariant) with a

long range power-law decay rate.

The parameters of model (3.1) can be estimated by maximizing the log-

likelihood function (1.4). The non-stationary background component, µ(x, y),

is typically estimated with nonparametric techniques such as bi-cubic B-splines

(Ogata, 1998) or kernel smoothing (Zhuang et al., 2002; Musmeci and Vere-Jones,

1992). The techniques for estimating µ(x, y) are often implemented in conjunction

with a declustering algorithm used to isolate mainshocks.

Marsan and Lengliné (2008) proposed the MISD algorithm to nonparametri-

cally estimate the triggering function ν and stationary background rate µ(x, y) = µ

for the space-time branching process model (3.1). Marsan and Lengliné (2010)

showed that their method is an EM-type algorithm under the assumption that the

background rate is stationary and the triggering function is piecewise constant.

For the E-step, the branching structure of the process is estimated by comput-

ing the probabilities, for each pair (i, j) of earthquakes, of earthquake i having

directly triggered earthquake j, as well as the probability of being a mainshock

for each observed earthquake. For the M-step, the estimated branching structure

is used to update an estimate of the stationary background rate and triggering

function with probability weighted histogram estimators. The two-step procedure

is repeated until the algorithm converges. A similar method is discussed in Mohler

et al. (2011) using a Monte-Carlo based approach that alternates between sam-

pling a realization of the estimated branching structure and updating estimates

of the background rate and triggering function using kernel density estimation on

the sampled data.
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3.2 Nonparametric Methods

This section discusses the nonparametric method of Marsan and Lengliné (2008) to

estimate the space-time Hawkes process model (3.1) using histogram estimators.

We make the following modifications to the original algorithm:

1. We incorporate a non-stationary background rate;

2. We assume the separability of the triggering function into components for

magnitude, time, and distance;

3. We perform histogram density estimation on the temporal and spatial trig-

gering components g(t) and f(r), where r =
√
x2 + y2.

The above modifications make the method consistent with estimating the standard

form of the triggering function in (3.2). As in Marsan and Lengliné (2008), we as-

sume the spatial triggering component is isotropic, that is f(x, y) = f(x2+y2); this

means the rate of aftershock activity following an earthquake only depends on the

distance r from the earthquake’s epicenter and not direction (circular aftershock

regions). Also, to be consistent with model (3.1), the background component

µ(x, y) is assumed non-stationary in space and stationary in time.

3.2.1 Histogram Estimators

Let P be a N ×N lower triangular probability matrix with entries,

pij =


probability earthquake i is an aftershock of j, i > j

probability earthquake i is a mainshock, i = j

0, i < j

(3.6)
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P =



p11 0 0 · · · 0

p21 p22 0 · · · 0

p31 p32 p33 · · · 0
...

...
...

. . . 0

pN1 pN2 pN3 · · · pNN


P (0) =



1 0 0 · · · 0

1/2 1/2 0 · · · 0

1/3 1/3 1/3 · · · 0
...

...
...

. . . 0

1/N 1/N 1/N · · · 1/N



The only constraint for matrix P is
∑N

j=1 pij = 1. The rows must sum to 1 since

each earthquake in the branching process is either a mainshock or an aftershock

of a previously occurring earthquake. P (0) is one possible initialization. For this

matrix,
∑N

i=1 pii can be interpreted as the estimated number of mainshocks, while∑N
i=1

∑i−1
j=1 pij (sum of the non-diagonal elements) is the estimated number of

aftershocks.

Below is the MISD algorithm of Marsan and Lengliné (2008) with the modifica-

tions specified in the beginning of this section. For the spatial component, we spec-

ify a histogram density estimator of h(r) = 2πrf(r) since
∫∞
−∞

∫∞
−∞ f(x, y)dxdy =∫∞

0
2πrf(r)dr = 1; here h(r) represents the underlying probability density func-

tion for the distance r between an earthquake and its aftershock.

Algorithm 1.

1. Initialize P (0), set iteration index v = 0.

2. Estimate non-stationary background rate µ(x, y):

µ
(v)
k,l =

1

T∆x∆y

∑
Dk,l

p
(v)
ii , k = 0, · · · , nbinsx − 1; l = 0, · · · , nbinsy − 1.
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3. Estimate triggering components κ(m), g(t), and h(r):

κ
(v)
k =

∑
Ak
p

(v)
ij

Nmag
k

, k = 0, · · · , nbinsm − 1;

g
(v)
k =

∑
Bk
p

(v)
ij

∆tk
∑N

i=1

∑i−1
j=1 p

(v)
ij

, k = 0, · · · , nbinst − 1;

h
(v)
k =

∑
Ck
p

(v)
ij

∆rk
∑N

i=1

∑i−1
j=1 p

(v)
ij

, k = 0, · · · , nbinsr − 1.

4. Update probabilities P (v+1), letting rij be the epicentral distance between

earthquakes i and j and f (v)(rij) = h(v)(rij)/(2πrij):

p
(v+1)
ij =

κ(v)(mj)g
(v)(ti − tj)f (v)(rij)

µ(v)(xi, yi) +
∑i−1

j=1 κ
(v)(mj)g(v)(ti − tj)f (v)(rij)

for i > j,

p
(v+1)
ii =

µ(v)(xi, yi)

µ(v)(xi, yi) +
∑i−1

j=1 κ
(v)(mj)g(v)(ti − tj)f (v)(rij)

.

5. If maxi,j |p(v+1)
ij − p(v)

ij | < ε, where i ≤ j, then the algorithm has converged

(in practice we take ε = 10−3). Otherwise, set v ← v + 1 and repeat steps

2–5 until convergence.

For step 2 of Algorithm 1, the notation is defined as follows:

• nbinsx and nbinsy are the number of bins along the x and y axis for the 2-

dimensional histogram estimator of µ(x, y) (nbinsx · nbinsy bins total).

• Dk,l = {i : k∆x < xi ≤ (k + 1)∆x, l∆y < yi ≤ (l + 1)∆y} where ∆x and

∆y are the fixed bin widths along the x and y axes.

For step 3 of Algorithm 1, the notation is defined as follows:

• nbinsm , nbinst , and nbinsr are the number of bins for the the histogram estimators

of the magnitude κ, temporal g, and spatial h components of the triggering

function.
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• Ak = {(i, j) : δmk < mj ≤ δmk+1, i > j} is the set of indices of all

pairs of earthquakes whose mainshock magnitudes fall within the kth bin

(δmk, δmk+1] of the histogram estimator for κ(m), where ∆mk = δmk+1 −

δmk is the bin width.

• Nmag
k =

∑N
j=1 I(δmk < mj ≤ δmk+1) is the number of earthquakes whose

magnitudes fall within the interval (δmk, δmk+1].

• Bk = {(i, j)|δtk < ti − tj ≤ δtk+1, i > j}, is the set of indices of all pairs of

earthquakes whose time differences fall within the kth bin (δtk, δtk+1] of the

histogram estimator for g(t), where ∆tk = δtk+1 − δtk is the bin width.

• Ck = {(i, j)|δrk < rij ≤ δrk+1, i > j} is the set of indices of all pairs of

earthquakes whose epicentral distances rij fall within the kth bin (δrk, δrk+1]

of the histogram estimator for h(r), where ∆rk = δrk+1 − δrk is the bin

width.

In step 2 of Algorithm 1 the non-stationary background rate is estimated with

a histogram estimator which is a generalization of the stationary estimator in

the original MISD algorithm. In our modified method, the spatial observation

window S is partitioned into equally sized cells of width ∆x and height ∆y. The

estimated rate within each cell is given by the sum of the background probabilities,

pii, corresponding to earthquakes occurring within that cell, and then dividing the

sum by ∆x · ∆y · T to give the rate of mainshocks per unit area per unit time.

Note, the histogram estimator in step 2 reduces to the stationary case in Marsan

and Lengliné (2008) when nbinsx = nbinsy = 1 and ∆x · ∆y = S (i.e. only one cell

equal to the spatial observation window is specified). Also note that the estimator

of g is itself a density since
∑nbinst −1

k=0 ∆tkĝk = 1, and similarly for the histogram

estimator of h.

The assumption of separability allows for robust computation of model compo-

nents by substantially reducing the number of bins needed to estimate the model
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(only a one-dimensional support is needed for the histogram estimator of each

triggering component). Furthermore, since we perform histogram density estima-

tion on g and f the output of Algorithm 1 has meaningful interpretation as in

Ogata (1998). For instance, the histogram estimate of the magnitude productivity

κ̂k(m) has the natural interpretation as the estimated mean number of aftershocks

directly triggered by an earthquake with magnitude m falling in the kth magnitude

bin (δmk, δmk+1].

3.2.2 Variable Kernel Estimation

A shortcoming of the histogram method for estimating the background rate in

Algorithm 1 is the implicit assumption of constancy within each bin. If a large

mainshock occurs, then the contribution of that event to the background seismicity

is limited to the bin in which the event is contained. If a bin does not contain

any earthquake events, then the estimated rate of mainshocks in that bin is zero.

Hence, the method does not allow for the estimate to vary smoothly over the

spatial observation region and is highly dependent on the choice of the partition.

This motivates considering a kernel smoothing approach, where the background

rate estimate only depends on the choice of the smoothing parameter (bandwidth)

and varies continuously over the pixels in the spatial window.

As an alternative to the histogram approach (Algorithm 1, step 2) for estimat-

ing the non-stationary background rate, we adopt the variable bandwidth kernel

estimator used by Zhuang et al. (2002):

µ(x, y) = γτ(x, y), (3.7)

τ(x, y) =
1

T

N∑
i=1

piikdi(x− xi, y − yi). (3.8)

Here the index i runs through all the events in the catalogue, γ is a scaling factor,
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and k is the Gaussian kernel function,

kdi(x, y) =
1

2πd2
i

exp

(
−x

2 + y2

2d2
i

)
.

The kernel is weighted by pii, the probability that event i is a mainshock, and has

a varying bandwidth di specified for each event in the catalogue. The bandwidth

di is computed by finding the radius of the smallest disk centered at (xi, yi) that

contains at least np other events, and is greater than some small value ε represent-

ing the location error. Zhuang et al. (2002) suggest taking np between 15–100 and

ε = 0.02 degrees. A variable bandwidith estimate is preferred since a large fixed

bandwidth over-smooths areas with clustered events, and a small fixed bandwidth

under-smooths areas with sparsely located events.

In Zhuang et al. (2002) the estimate (3.7) is part of a semi-parametric model

for ETAS, with parameters estimated via maximum likelihood. Since our ap-

proach is completely nonparametric, the scaling factor γ for the estimate of the

background rate needs to be carefully defined. This leads to the following algo-

rithm for estimating the space-time Hawkes process model (3.1) with a variable

kernel estimator for the background seismicity:

Algorithm 2.

1. Initialize P (0) and compute di for each event i = 1, · · · , N .

2. Estimate non-stationary background rate µ(x, y):

µ(v)(x, y) =

∑N
i=1 p

(v)
ii

Z(v)
τ (v)(x, y).

3. Follow Steps 3–5 in Algorithm 1.

The normalizing factor Z(v) at iteration v is chosen so that

1

Z(v)

∫ T

0

∫ ∫
S

τ (v)(x, y)dxdydt = 1,
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and consequently, ∫ T

0

∫ ∫
S

µ(v)(x, y)dxdydt =
N∑
i=1

p
(v)
ii ,

where
∑

i p
(v)
ii is the estimated number of mainshocks occurring in the space-time

observation window. In practice, Z(v) can be found by first computing τ (v)(x, y)

as defined in (3.8) at each pixel, and then evaluating the integral of τ (v)(x, y) over

S × [0, T ] with a Reimann sum over those pixels.

3.3 Simulation Results

3.3.1 Histogram Estimator Method

In this section we assess the performance of the nonparametric method described

in Algorithm 1 to recover an earthquake model from synthetic catalogues. For this

study, earthquake occurrences are simulated from the ETAS model with paramet-

ric triggering function given by (3.3, 3.4, 3.5). The parameter values are the max-

imum likelihood estimates (A,α, p, c, d, q) = (0.322, 1.407, 1.121, 0.0353, 0.0159,

1.531) from Table 2, row 8 of Ogata (1998) (parameters estimated from earth-

quake data over a 36 ∼ 42◦N latitude and 141 ∼ 145◦E longitude region off the

east coast of Tohoku District, Japan with time span 1926–1995). Earthquake

magnitudes are generated independently of other model components according

to an exponential density J(m) = βe−β(m−mc) with β = ln(10) (equivalent to a

Gutenberg-Richter b-value equal to 1). The observation window for the simula-

tion is S×T = [0, 4]× [0, 6]× [0, 25000], and the magnitude cut-off is mc = 0. The

non-stationary background rate is specified by partitioning the spatial observation

window S into 4 equally sized cells with the varying rates shown in Figure 3.2(a).

An example of a simulated realization is shown in Figure 3.1. For a description

of the simulation procedure for ETAS please see Algorithm C from Zhuang et al.

(2004).
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Figure 3.1. Simulated realization of ETAS model (3.3–3.5) with background rate

varying in each quadrant; (a) epicentral locations, and (b) space-time plot of

simulated earthquakes.
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Figure 3.2. (a) True background rate for simulation study in Section 3.3.1. (b)

Results for estimating the background rate with Algorithm 1 from 200 simulations

of ETAS. The means of the estimates printed in each cell correspond to the grey

scale levels; the intervals are the 0.025 and 0.975 quantiles for the estimates in

each cell.
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Figure 3.3. Magnitude, temporal, and distance components for triggering function

from the simulation study in Section 3.3.1. The black solid lines are the true model

components from which the data is generated. The light grey horizontal lines in

each bin are the histogram estimates from the 200 simulations of ETAS; the solid

grey boxes are the 95% coverage intervals (error bars) for the estimates in each

bin (i.e. pointwise 0.025 and 0.975 quantiles).

We simulate and re-estimate the ETAS model 200 times to assess the variabil-

ity in the estimates over multiple realizations of earthquake catalogues from the

specified model. The results for the estimation of the non-stationary background

rate are shown in Figure 3.2(b). Each cell in Figure 3.2(b) shows the 0.025 and

0.975 quantiles of the estimates, and the mean of the estimates which correspond

to the cell’s grey scale level. Figure 3.2(b) reveals that the nonparametric method

(Algorithm 1) is able to recover the sharp differences between the rates in each

cell with reasonably small errors. While the means of the estimates are close to

the true rates (Figure 3.2(a)), a bias is apparent, as the 95% coverage intervals

fall consistently above the true values. In the next section we show that this

over-estimation is due to boundary effects induced by excluding aftershocks that

occur outside the space-time observation window.

The results for the estimation of the magnitude, temporal, and distance com-

ponents of the triggering function from the 200 realizations of ETAS are shown in

Figure 3.3. The histogram density estimates of g(t) and h(r) are plotted on log-log
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scales with equally spaced logarithmic bins since the true model components are

power-law. The bins for the histogram estimator of the magnitude productivity

κ(m) are also equally spaced.

The method is able to recover the form of each component of the triggering

function since the true value governing the simulations is contained within the

95% coverage error bars for most bins. The error bars for the estimates of g(t)

and h(r) reveal that the estimation is most accurate in the middle range. The

high variability in the estimates for bins corresponding to small time differences t

and distances r is not surprising since the partition is logarithmically scaled, and

therefore these bin widths are very small. The error bars at the right-tail ends of

the distributions of g(t) and h(r) do not cross and underestimate the true densities.

In the next section we show that this estimation bias is due to boundary issues.

The error bars for the estimates of the magnitude productivity function κ(m)

increase with magnitude, although this is expected since earthquake magnitudes

are exponentially distributed and therefore only a few large magnitude events

occur in each simulation.

3.3.2 Boundary Issues

When simulating earthquake catalogues from the ETAS model the mainshocks are

restricted to occur within the space-time observation window S× [0, T ]. However,

the times and locations of aftershocks, simulated from the triggering function

components g and f , may occur outside of this boundary. In the last section, we

neglected boundary effects, and only used simulated data occurring within the

space-time observation window to estimate the model using Algorithm 1.

To evaluate the boundary effects on the estimation we include simulated af-

tershocks which occur within a distance εr of the spatial boundary and a time

εt of the temporal boundary, i.e. all aftershocks occurring within [−εr, 6 + εr] ×
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[−εr, 4+εr]× [0, 25000+εt]. We then run Algorithm 1 on the expanded simulation

data, and slightly modify step 4 so that µ(xi, yi) = 0 if event (ti, xi, yi,mi) falls

outside of S × [0, T ].

To measure the change in performance of Algorithm 1 on estimating the non-

stationary background rate as we increase εr and εt we use the root-mean-square

deviation (RMSD): √
1

nbinsx nbinsy

∑
i,j

(µ̂ij − µij)2. (3.9)

Here µ̂ij and µij are the estimate and true value for the background rate in the (i, j)

cell respectively. We simulate the ETAS model 10 times using the same parameters

and background rate as in Section 3.3.1, with mainshocks again restricted to

S× [0, T ] = [0, 4]× [0, 6]× [0, 25000], but aftershocks allowed to occur outside that

region. For each simulation, the RMSD is computed for increasing values of εr and

εt. Figure 3.4 shows the mean RMSD from the 10 realizations at selected values

of εr and εt; the vertical lines represent a standard deviation in RMSD above and

below the mean. The incorporation of aftershocks falling outside the space-time

observation window significantly improves the performance of the estimation of

the background rate. The RMSD appears to level off when εr = 100.5 = 3.16 and

εt = 10000.

Figure 3.5 shows the results from simulating and re-estimating ETAS with

Algorithm 1 200 times with a boundary correction of εr = 1000 and εt = 106.

Again, we simulate events with the same parameters and space-time window as

Section 3.3.1. The only difference is that in the estimation we use aftershocks

occurring within a distance εr = 1000 and time εt = 106 of the boundary of the

observation window. Since the temporal and distance components of the triggering

function used to generate the data are power-law it is possible for aftershocks to

occur at very far distances and times from the observation window.

The background rate estimate in Figure 3.5 is a substantial improvement over
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Figure 3.4. RMSD of the background rate, equation (3.9), for increasing values

of εr and εt. RMSDs are averaged from 10 realizations of ETAS; the vertical bars

cover one standard deviation above and below the mean.

the estimate in Figure 3.2, which neglected boundary effects. The true rates are

contained in the 95% coverage intervals for each cell in Figure 3.5. Moreover, the

consistent over-prediction of the rates evident in Figure 3.2 is no longer present,

and the results suggest the bias in the cell means is negligible once the boundary

effects are accounted for. The error bars for the triggering function components in

Figure 3.5 also show substantial improvement when compared to Figure 3.3. The

histogram estimates for g(t) and h(r) contain the true density values (solid line)

for large time differences t and distances r. Moreover, accounting for boundary

effects expands the reach of the estimation (histogram estimates at bins beyond

r = 10 and t = 25000) and reduces the error at the tail ends. Lastly, the error

bars for the estimates of the magnitude productivity κ(m) in Figure 3.5 appear

more centered around the true value than in Figure 3.3.
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Figure 3.5. Estimates of the background rate and triggering function components

from 200 ETAS simulations, with boundary correction for aftershock activity εr =

1000 and εt = 106.
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3.3.3 Variable Kernel Estimation Method

In this section we use simulation to assess the ability of Algorithm 2 to recover the

components of the space-time Hawkes process model (3.1) with a smoothly varying

background rate. Here we simulate from a parametric ETAS model with the same

triggering function and parameter values as Section 3.3.1. However, instead of the

background rate in Figure 3.2(a) with stationary rates in each cell on a 2×2 grid,

we simulate from the smoother background rate shown in Figure 3.7(a). This

non-stationary background rate was generated by performing fixed bandwidth

kernel density estimation over the locations of 883 earthquakes of magnitude 5.0

or greater, longitude 141 ∼ 145◦E, latitude 36 ∼ 42◦N, and time between 16 Jan

2007 to 28 Dec 2014.1 To simulate from the kernel smoothed background rate in

Figure 3.7(a) we use the thinning procedure of Lewis and Shedler (1979) and set

the expected number of background events equal to 2000.

Figure 3.7(b) shows the probability weighted variable kernel estimate (Algo-

rithm 2, step 2) of the non-stationary background rate from a single simulated

realization of the ETAS model. The epicentral location and space-time plots of

the simulated earthquake data used for this estimate are shown in Figure 3.6.

The kernel estimate of the background rate depends on the smoothing parameter

np (Section 3.2.2). Here we choose np = 50, since this value gives the lowest

RMSD (3.9) for np ∈ {10, 15, · · · , 95, 100}. The kernel estimates are evaluated on

a 100× 100 pixel grid (making nbinsx = nbinsy = 100 when evaluating (3.9)).

As discussed in Section 3.2.2, the nonparametric estimation of ETAS is sensi-

tive to boundary effects. As a boundary correction for the estimation with Algo-

rithm 2, we allow for aftershocks occurring within εr = 3 degrees and εt = 3000

days of the space-time boundary S × [0, T ] = [0, 4]× [0, 6]× [0, 25000]. Note that

the selected values, εr = 3 and εt = 3000, correspond to where the RMSD in Fig-

1Data gathered from http://www.quake.geo.berkeley.edu/anss/catalog-search.html

with spatial observation window the same as Ogata (1998).
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ure 3.4 begins to level off. The panels in Figure 3.6 show the boundary (dashed

rectangles) and simulated aftershocks occurring in the specified region outside the

boundary.

This estimate in Figure 3.7(b) resembles the overall form of the true back-

ground intensity Figure 3.7(a) and recovers many of the mainshock hotspots.

However, near location (2.06, 2.33), a hotspot appears to have been erroneously

estimated, i.e. a false positive has been identified. This is due to the large mag-

nitude event (m > 4) that occurred in the simulation at this location, as denoted

by the asterisk in Figure 3.6(a). The mean of 200 estimates of the background

rate from 200 simulated realizations of ETAS is shown in Figure 3.7(c), and ap-

pears to closely resemble the true background rate. Hence, while there may be

discrepancies for estimates from a single realization due to sampling variation,

the variable kernel estimator appears to be unbiased since the mean of the esti-

mates from repeated simulation is close to the true background intensity. More-

over, the pointwise 0.025 and 0.975 quantiles for 200 estimates of the number

of background events, given by (1943.7, 2219.4), contains the true value of 2000

background events specified for the simulation.

The histogram estimates and corresponding 95% coverage error bars in Fig-

ure 3.8 appear to successfully describe the true triggering components. This

demonstrates the ability of Algorithm 2 to recover the non-stationary background

rate with a variable kernel estimator and triggering function with histogram es-

timators. There are slight discrepancies between the histogram estimates of the

triggering function and the true values due to boundary effects. Most noticeably,

the 95% coverage error bars for the estimates of g(t) and h(r) do not contain the

true density values at the right-tail ends of the distributions. Boundary correction

values larger than εr = 3 and εt = 3000 may result in more accurate estimates,

as in the asymptotic case shown in Figure 3.5. However, the selected values seem

sufficient for estimating the background intensity.
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Figure 3.6. Simulated realization of ETAS model (3.3–3.5) with smooth non-

stationary background rate; (a) epicentral locations, and (b) space-time plot of

simulated earthquakes. The dotted rectangles in each plot are the spatial and

temporal boundaries for the observation window S × [0, T ] = [0, 4] × [0, 6] ×

[0, 25000]. Aftershocks occurring within a distance εr = 3 and time εt = 3000 of

the boundary are plotted outside the rectangle. The asterisks denote events with

magnitudes m > 4.

Figure 3.7. (a) True background rate for simulation study in Section 3.3.2. (b)

Estimate of background rate from one simulated realization of ETAS and, (c)

mean estimate from 200 realizations.
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Figure 3.8. Magnitude, temporal, and distance components for triggering function

from the simulation study in Section 3.3.3. The black solid lines are the true model

components from which the data is generated. The light grey horizontal lines in

each bin are the histogram estimates from the 200 simulations; the solid grey

boxes are the 95% coverage error bars for the estimates.

3.4 Application to Japan Dataset

We apply the MISD algorithm (Algorithm 2) to earthquake data from the ANSS

catalogue http://www.quake.geo.berkeley.edu/anss/catalog-search.html.

The dataset contains 6075 earthquakes of magnitude 4.0 or greater occurring over

a 10 year period between 5 Jan 2005 – 31 Dec 2014. The spatial widow is a 141 ∼

145◦E longitude and 36 ∼ 42◦N latitude region off the east coast of the Tohoku

District in northern Japan. This is the same spatial region analyzed in Ogata

(1998), although the time window in this study is different. An epicentral and

space-time plot of the data is show in Figure 3.9, with the asterisk corresponding

to the 2011 magnitude 9.0 Tohoku earthquake.

The variable kernel estimate of the background rate (Algorithm 2, step 2) is

shown in Figure 3.10. Here we chose the smoothing parameter np = 50, corre-

sponding to the best choice for the simulation study in Section 3.3.3. Figure 3.10

is an important plot for assessing seismic risk since it shows the estimate of the

underlying spatial Poisson processes µ(x, y) for maishock activity which persists

84



(a)

Longitude

La
tit
ud
e

141 143 145

36
38

40
42

0 1000 2000 3000

(b)

Time (days)
La
tit
ud
e

36
38

40
42

Figure 3.9. Epicentral locations (a) and space-time plot (b) of earthquakes, mag-

nitude 4.0 or greater, occurring off the east coast of the Tohoku District, Japan.

The asterisk corresponds to the 2011 Tohoku earthquake of magnitude 9.0.

over time in the region. In total, the algorithm estimated there to have been

809 mainshocks, or 13.3% of the total seismicity; this suggests that most of the

events in the dataset are aftershocks, temporally and spatially linked to previously

occurring earthquakes.

The histogram estimates of the components of the triggering function are

shown in Figure 3.11. The grey error bars approximate±2 standard errors, captur-

ing the sampling variation for the histogram estimates in each bin (see Appendix

B for the derivation of the analytic standard errors). The estimates of g(t) and

h(r) both exhibit power-law type distributions, and the error bars appear similar

to the ones obtained in the simulation study (Section 3.3.3). Note, the estimates

at the right-tail ends of these distributions (t > 1000 days and r > 1 degree)

are perhaps unreliable and underestimate the truth due to boundary effects, as

demonstrated in the simulation study (Section 3.3.2).

85



The estimate of the magnitude productivity function κ(m) appears to follow

an exponential form. The error in the estimation of the productivity increases

with magnitude, as also demonstrated in the simulation study (Section 3.3.3). In

the dataset there are only 3 events of magnitude 7.4 or greater, and hence large

sampling variation for the estimates of the mean productivity for large magnitude

events. The estimate in the last bin was estimated with only one event, namely the

magnitude 9.0 Tohoku earthquake. It appears that the magnitude productivity

for this event is underestimated; perhaps this is due to boundary effects since

many of the aftershocks may have occurred outside the observation window.

Superimposed on Figure 3.11 are the parametric estimates of the ETAS model

(3.3, 3.4, 3.5) for this same region from Table 2, row 11 of Ogata (1998). Amaz-

ingly, the parametric and nonparametric estimates agree closely. This suggests

that seismicity in this region is well captured by an ETAS model with power-law

g(t) and f(r), and exponential κ(m). Since our dataset was gathered over a dif-

ferent time window than Ogata (1998), the results also suggest that properties of

aftershock sequences in this region are rather invariant over time.

Note that in Figure 3.11 the nonparametric estimate of the triggering density

g(t) is slightly higher than what Ogata previously estimated for small time inter-

vals t . This could perhaps be attributable to increased accuracy of seismometers

in this region detecting aftershocks occurring shortly after large earthquakes more

accurately than previously.
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Figure 3.10. Estimate of background rate (Algorithm 2, step 2) for Japan earth-

quake dataset (Section 3.4). Rate values are in events/day/degree2.
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Figure 3.11. Magnitude, temporal, and distance components for triggering func-

tion estimated from the Japan earthquake dataset (Section 3.4). The black solid

horizontal lines are the estimates in each bin. The grey boxes are the error bars

covering ±2 standard errors. The solid black curves are the parametric estimates

from Ogata (1998) in the same region.
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3.5 Discussion

The results of this article demonstrate that the MISD algorithm performs remark-

ably well at nonparametrically estimating space-time Hawkes process models (3.1)

for earthquake occurrences. By repeatedly simulating and re-estimating a known

parametric earthquake model (ETAS), we verified and evaluated novel ways to in-

corporate a non-stationary background rate into the method. Moreover, the error

bars added to the histogram estimates of the triggering function captured the true

values and showed reasonable sampling variation in the estimates over most bins.

While the simulation results showed bias in the estimation of the background rate

and right-tail ends of the triggering function components, this problem became

noticeably less severe once boundary effects were taken into account.

A striking result in the application to earthquake data from the Tohoku region

in Japan is that the nonparametric estimate matched closely with a previously

estimated parametric form of the ETAS model. This further justifies the ETAS

model as an adequate model of seismicity for the selected region in Japan.

The parametric forms for point process models in seismology are the result of

many decades of refinement. However, for any given seismic region, a multitude

of different parameterizations of ETAS may be considered. The nonparamet-

ric methods discussed in this chapter can serve as a diagnostic to assess which

parametrization is a good fit to the data. In other applications of self-exciting

point processes, such as crime or finance, there is a less established literature on

parametric models. In such applications, nonparametric estimation can be a pow-

erful exploratory tool in determining a suitable parameterization of the triggering

function. The error bars on the histograms estimates can be used for statistical

inference, and to identify places where the nonparametric estimate is more or less

reliable as either a diagnostic or exploratory tool.
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CHAPTER 4

Future Directions

4.1 Point Process Models and Inference for E-mail Net-

works

One future direction for this research is to consider different types of point process

models to better account for the observed clustering in e-mail traffic. For instance,

a completely nonparameteric approach, as in Marsan and Lengliné (2008), would

allow for a more flexible and data-driven estimation of the Hawkes process models.

Moreover, the applications of such methods may suggest different types of param-

eterizations for the triggering function than the exponential forms considered in

Chapter 2, and a background rate estimate which incorporates more effects than

the observed hourly and daily periodicities. Also of interest are other types of

parametric point process models, besides the Hawkes process, such as the Cox

multiplicative intensity model considered in Perry and Wolfe (2013), which can

be used to model dyadic and triadic effects, and homophily in e-mail network

activity. Another possibility for future work is using the subject lines of e-mails

to verify how well the latent branching structure of discussion chains are detected

with the EM-type algorithm. Lastly, beyond looking at the temporal statistics

and a point process analysis of e-mail communication networks, one may also

consider using techniques from social network analysis and machine learning to

help build predictors of network leadership using the content of e-mails or texts.

Ultimately, through continuing with such research, we hope to improve methods
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for inferring the leadership and hierarchy of criminal or terrorist organizations

from communication patterns.

4.2 Nonparametric Methods for Point Processes

The simulation study in Chapter 3 demonstrated the ability of the considered

nonparametric methods to recover the components of a space-time Hawkes pro-

cess model. One future direction is to further analyze the statistical properties

of the Marsan-Lengliné histogram estimators of the triggering function, and the

non-stationary background rate estimators from Section 3.2. Such properties as

asymptotic unbiasedness and consistency can be analyzed through simulation or

more rigorous analytic means. Also of interest are considering ways to optimally

select bin widths for equally spaced or adaptive partitions.

A common assumption for ETAS is that the spatial triggering component is

isotropic, i.e. f(x, y) = f(r). However, previous studies have shown that earth-

quake aftershock sequences tend to cluster around faults and have more elliptical

shapes (Utsu, 1970; Wong and Schoenberg, 2009). One possible application of

MISD is to estimate a spatial triggering component with form f(r, θ), where θ is

the angle to the causative earthquake’s fault plane. A nonparametric fit which

incorporates directionality can be used as a diagnostic or exploratory tool for

anisotropic extensions of ETAS.

Lastly, a nonparametrically fit model can be applied towards forecasting earth-

quake occurrences. The Collaboratory for the Study of Earthquake Predictability

(CSEP) provides a framework for evaluating forecasting performance and com-

paring different models of seismicity.
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APPENDIX A

E-mail Network Simulation Algorithm

In this appendix we describe a procedure for simulating IkeNet e-mail network

activity using the estimated Hawkes process models. We start by simulating the

background events, or non-reply e-mails, sent by each officer i over [0, T ]. For

models (2.2) and (2.5) this can be done using the method of Poisson thinning

(Lewis and Shedler, 1979) described in the following algorithm:

Algorithm A

Step 1. Let µ∗ be the maximum of µ̂(t) over [0, T ].

Step 2. Draw N∗b from Pois(v̂iµ
∗T ) (this is an upper bound on the number of

background or non-reply e-mails for network member i).

Step 3. Draw an i.i.d. sample {Zl : l = 1, · · · , N∗b } from Unif(0,1) and set sil =

T · Zl.

Step 4. For each event l = 1, · · · , N∗b at time sil, retain that event within our sim-

ulated background set with probability pl = µ̂(sil)/µ
∗, otherwise remove

it from our background set.

Step 5. LetN send
i (0) denote the number of events selected in step 4 andGsend

i (0) =

{sik : k = 1, · · · , N send
i (0)} be the set of event times selected in step 4,

which we will refer to as generation 0.

Step 6. Choose receivers for the events in Gsend
i (0) by drawing a sample of size

N send
i (0) with replacement from the set {j : j ∈ {1, · · · , 22}, j 6= i} with
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corresponding weights {N send
ij : j ∈ {1, · · · , 22}, j 6= i }, where N send

ij is

the observed number messages sent from i to j.

In order to generate all the non-reply e-mails sent in the entire network Al-

gorithm A is repeated for each officer i = 1, · · · , 22. To simulate the background

process (non-reply e-mail send times) for model (2.1) we simply simulate a sta-

tionary Poisson process with rate µ̂i for each officer, and the receivers of e-mails

are selected the same way as in Algorithm A.

After laying down the background events (non-reply e-mails) we simulate the

reply e-mails. Let Grec
i (v) = {rik : k = 1, · · · , N rec

i (v)} be the set of times when

i received e-mails during generation v and N rec
i (v) be the number of simulated

messages i received during generation v. Each message rik ∈ Grec
i (v) received by

officer i at generation v triggers reply messages on (rik, T ] according to the non-

stationary Poisson process ĝi(t−rik) = θ̂iω̂ie
−ω̂i(t−rik). To generate these reply times

for each officer i, using models (2.1) and (2.2), we apply the following algorithm

(Lewis and Shedler, 1979):

Algorithm B

Step 1. Set k = 1 and η = 0.

Step 2. Draw n
(v+1)
k from Pois(θ̂i), this is the number of reply messages i sends

in response to receiving message rik ∈ Grec
i (v) in the previous generation

v.

Step 3. If n
(v+1)
k = 0 there are no replies and go to step (5), otherwise draw an

i.i.d sample {Zl : l = η + 1, · · · , η + n
(v+1)
k } from Unif(0,1).

Step 4. The reply times {sil : l = η + 1, · · · , η + n
(v+1)
k } for message rik ∈ Grec

i (v)

are given by:

Zl =
1

θ̂i

∫ sil

rik

ĝi(t− rik)dt =⇒ sil =
ln(1− Zl)
−ω̂i

+ rik.
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Step 5. Update η ← η + n
(v+1)
k and k ← k + 1.

Step 6. Repeat steps (2) – (5) until k = N rec
i (v) + 1.

Step 7. Let N send
i (v + 1) =

∑Nrec
i (v)

k=1 n
(v+1)
k denote the number of simulated e-

mails sent by officer i in generation v + 1 and Gsend
i (v + 1) = {sil : l =

1, · · · , N send
i (v+1)} be the corresponding set of times when officer i replies

to messages sent during the previous generation v.

Step 8. Choose receivers for the events in Gsend
i (v+1) by drawing a sample of size

N send
i (v + 1) with replacement from the set {j : j ∈ {1, · · · , 22}, j 6= i}

with corresponding weights {N send
ij : j ∈ {1, · · · , 22}, j 6= i }, where N send

ij

is the observed number messages sent from i to j.

Algorithm B is repeated for each officer i = 1, · · · , 22 to generate all reply

e-mails at generation v. Algorithm B is applied to each generation v ≥ 1 until we

reach a generation v∗ such that N send
i (v∗) = 0 for all officers i. The procedure for

simulating reply e-mails for model (2.5) is similar Algorithm B, essentially we are

substituting rijk and θ̂ij in for rik and θ̂i. In other words, under estimated model

(2.5) the number of replies generated for each e-mail received by i depends on the

sender j.
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APPENDIX B

Analytic Error Bars

Here we provide a derivation of an analytic approximation for computing standard

errors for the histogram estimators of the triggering function components (error

bars in Figure 3.11, Section 3.4). We proceed by first deriving an approximation

of the standard error for the histogram estimator of g(t), and then note that the

standard errors for the histogram estimators of κ(m) and h(r) can be approxi-

mated similarly. Please use Section 2.1 as a reference for much of the notation

in this appendix, and note that pij refers to the triggering probability (3.6) after

Algorithm 2 has converged.

Let t ∈ (δtk, δtk+1] and ĝ(t) = gk be the histogram density estimator of g(t).

Now suppose Sk is a random variable representing the number of triggered events

in bin k, i.e. the number of aftershocks occurring between (δtk, δtk+1] days after the

earthquakes that directly trigger them. Then Sk follows a binomial distribution

with number of trials nt equal to the true number of triggered events (aftershocks)

for the process, and success probability θgk equal to the true probability an after-

shock occurs between (δtk, δtk+1] days after the earthquake that directly triggers

it. Since we do not know the true values for the binomial parameters we estimate

them with n̂t =
∑N

i=1

∑i−1
j=1 pij and θ̂gk =

∑
Bk
pij/n̂t. Hence, an approximation of

the variance of the histogram density estimator gk = Sk/(∆tknt) is given by:

V̂ ar(gk) =
(θ̂gk)(1− θ̂

g
k)

n̂t∆t2k
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Similarly, we can approximate the variances for the other histogram estimators:

V̂ ar(κk) =
n̂t(θ̂

κ
k)(1− θ̂κk)

(Nmag
k )2

V̂ ar(hk) =
(θ̂hk)(1− θ̂hk)

n̂t∆r2
k

where θ̂κk =
∑

Ak
pij/n̂t and θ̂hk =

∑
Ck
pij/n̂t.
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