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Abstract

Aspects of Supersymmetric Surface Defects

by

Nathan Haouzi

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Mina Aganagic, Chair

Starting from type IIB string theory on an ADE singularity, the N = (2, 0) little string
arises when one takes the string coupling gs to 0. We compactify the little string on the cylinder
with punctures, which we fully characterize, for any simple Lie algebra g. Geometrically, these
punctures are codimension two defects that are D5 branes wrapping 2-cycles of the singularity.
Equivalently, the defects are specified by a certain set of weights of Lg, the Langlands dual of
g. As a first application of our formalism, we show that at low energies, the defects have a
description as a g-type quiver gauge theory. We compute its partition function, and prove
that it is equal to a conformal block of g-type q-deformed Toda theory on the cylinder, in
the Coulomb gas formalism. After taking the string scale limit ms → ∞, the little string
becomes a (2, 0) superconformal field theory (SCFT). As a second application, we study how
this limit affects the codimension two defects of the SCFT: we show that the Coulomb branch
of a given defect flows to a nilpotent orbit of g, and that all nilpotent orbits of g arise in this
way. We give a physical realization of the Bala–Carter labels that classify nilpotent orbits
of simple Lie algebras, and we interpret our results in the context of g-type Toda. Finally,
after compactifying our setup on a torus T 2, we make contact with the description of surface
defects of 4d N = 4 Super Yang-Mills theory due to Gukov and Witten [1].
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8.5 All Punctures of the En Little String and CFT Limit . . . . . . . . . . . . . 102

9 Conclusions and Future Directions 119

A ADE Classification of Surface Singularities 121
A.1 Discrete Subgroups of SU(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.2 McKay Correspondence and String Theory . . . . . . . . . . . . . . . . . . . 122

B Null Weight Multiplicity 124

C Explicit Construction of An Little String Defects as Weighted Dynkin
Diagrams 126

Bibliography 129



iv

List of Figures

2.1 The vanishing cycles of An singularity Sa (in black) and the dual non-compact
cycles S∗a (in blue). S∗a is constructed as the fiber of the cotangent bundle T ∗Sa
over a generic point on Sa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Example of a 5d gauge theory describing the E6 little string on the cylinder with
a full puncture defect. The numbers in the nodes denote the ranks of the unitary
gauge groups, while the numbers outside the nodes simply label the nodes of the
Dynkin diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The action of the outer automorphism group A on the simply-laced Lie algebras.
In the case of D4, the outer automorphism can be either Z2 (resulting in B3) or
Z3 (resulting in G2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 D5 branes in classes α∨a and −w∨a bind to a brane in class −w∨a + α∨a . . . . . . . 15
2.5 Example of a 5d gauge theory describing the D4 little string with on the cylinder

with a full puncture defect. The full puncture is determined by the set of weights
WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Left: two “minimal” punctures of A3. The two punctures indicate that there
are two subsets of weights in WS that add up to zero. Note that the second set
of weights, made up of [1,−1, 0] and [−1, 1, 0], can be turned into the first set
by applying a Weyl reflection about the first simple root of A3. Right: two E6

punctures. the first of these is the so-called minimal puncture, denoted by the zero
weight in the 6-th fundamental representation, and is unpolarized. The second
puncture is polarized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 D3 brane quiver for a full puncture of the An little string. . . . . . . . . . . . . 23

4.1 From the distinguished set of weights WS , we obtain the parabolic subalgebra p∅
of A3 in the CFT limit (in this case, the choice of weights is unique up to global Z2

action on the set). Reinterpreting each weight as a sum of “minus a fundamental
weight plus simple roots,” we obtain the 5d quiver gauge theory shown on the
right. The white arrow implies we take the CFT limit on the left. . . . . . . . . 40



v

4.2 From the two distinguished sets of weightsWS , we read off the parabolic subalgebra
p{α3,α4} of D4 when we flow to the CFT limit. Reinterpreting each weight as a
sum of “minus a fundamental weight plus simple roots,” we obtain two different
5d quiver gauge theories shown on the right. The white arrows imply we take the
CFT limit on the left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Two distinguished sets of weights WS which spell out the same quiver, but flow
to two different defects in the CFT limit; we therefore see it is really the weights,
and not quivers, that define a defect. . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 This diagram represents the inclusion relations between the nilpotent orbits of A3. 44
4.5 Given a distinguished set of coweights defining a defect T 5d, we immediately

read off the Bala–Carter of the theory T 4d, in the CFT limit. Featured here are
examples of polarized defects. Note that the Bala–Cater label forms a “subquiver”
(shown in red) of the little string quiver. . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Bala–Carter labels for unpolarized defects. The subscript next to the coweights
is necessary to fully specify the defects; it indicates which representation the
coweights are taken in. This extra data is in one-to-one correspondence with an
extra “simple root label” (written as [ai]) for the Bala–Carter label. . . . . . . . 48

5.1 One starts with the (1, 1) little string theory on T 2 × C × C. After doing two
T-dualities in the torus directions, we get the (1, 1) little string theory on the
T-dual torus; in the low energy limit, the pair of (1, 1) theories gives an S-dual
pair of N = 4 SYM theories. D3 branes at a point on T 2 map to D4 branes in
either (1, 1) theory, while D5 branes wrapping T 2 map to another set of D4 branes. 57

7.1 How to read off weights from a system of D3, D5, and NS5 branes. . . . . . . . 68
7.2 Example of a move on the Higgs branch of a defect: starting from the theory in

the middle, we wrote all the theories one can obtain by replacing the weight on
node 2 by a sum of two weights in fundamental representations. The top picture
shows the brane realization of all the “new” defect. These all have a low-energy
quiver gauge theory description (the ones shown below). At the root of the Higgs
branch, the partition functions of all 5 theories is the same. . . . . . . . . . . . . 70

7.3 The zero weight [0, 0, 0, 0] of the D4 algebra is the simplest example of how one
constructs an unpolarized defect of the little string; on the left is pictured the
type IIB brane engineering of the weight. NS5 branes are vertical black lines,
D5 branes are red crosses, and D3 branes are horizontal red lines. The green
dotted line produces a Z2-orbifold of an A7 theory, realizing the D4 theory. The
resulting defect will be unpolarized because [0, 0, 0, 0] belongs in the [0, 1, 0, 0]
representation, but is not in the Weyl group orbit of that weight. . . . . . . . . 71



vi

7.4 The weight [−1, 0, 0, 0, 0] of D5, with the corresponding type IIB brane engineering
on the left, obtained from Z2-orbifolding of a A9 theory. The weight [−1, 0, 0, 0, 0]
can be written in two ways. First, by placing a D5 brane between the two leftmost
NS5 branes (top), the weight is written appropriately to characterize a polarized
defect. This is so because [−1, 0, 0, 0, 0] not only belongs in the [1, 0, 0, 0, 0]
representation, it is also in the Weyl group orbit of that weight. By placing the
D5 brane between a different set of NS5 branes (bottom), we will obtain instead
an unpolarized defect. This is so because [−1, 0, 0, 0, 0] belongs in the [0, 0, 1, 0, 0]
representation, but is not in the Weyl group orbit of that weight. An additional
subscript is added to the weight in this case, denoting (minus) the representation
it belongs in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.5 The brane picture for the null weight of D4 (top of the figure), which makes up an
unpolarized theory at low energies. It is obtained after Z2-orbifolding of A7. The
D5 branes sit on top of the D3 branes, and all the D3 branes are stacked together.
After a Hannany–Witten transition, we end up with a polarized theory, but with
the two masses equal to each other. . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.1 Cylinder with a full An puncture: 5d theory T 5d and 3d theory G3d resulting from
WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.2 Cylinder with a full Dn puncture: 5d theory T 5d and 3d theory G3d resulting from
WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.3 Cylinder with a full E6 puncture: 5d theory T 5d and 3d theory G3d resulting from
WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.4 Cylinder with a full E7 puncture: 5d theory T 5d and 3d theory G3d resulting from
WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.5 Cylinder with a full E8 puncture: 5d theory T 5d and 3d theory G3d resulting from
WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.6 Cylinder with a full G2 puncture: 5d theory T 5d and 3d theory G3d resulting from
WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.7 Cylinder with a full F4 puncture: 5d theory T 5d and 3d theory G3d resulting from
WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.8 Cylinder with a full Bn puncture: 5d theory T 5d and 3d theory G3d resulting from
WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.9 Cylinder with a full Cn puncture: 5d theory T 5d and 3d theory G3d resulting from
WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.10 Defects of the G2 Little String . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.11 Folding of a E6 little string defect and the resulting F4 defect. The 3d theory at

the triality locus is shown on the right. . . . . . . . . . . . . . . . . . . . . . . . 101



vii

A.1 The McKay graph for Zk+1 is the Dynkin diagram of the Âk affine Lie algebra.
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Chapter 1

Introduction

String theory has led to remarkable insights into quantum field theories in various dimensions
and many areas of mathematics. Recently, a prolific array of conjectures about properties of
gauge theories was obtained from studying the 6d (2, 0) superconformal field theory, whose
existence is implied by string and M-theory. The 6d theory seems poised to play an important
role in mathematics as well, see e.g. [3, 4, 5, 6, 7]. An important example, as well as a main
motivation for this thesis, is a conjectured relation between a 4d N = 2 theory whose origin
is the 6d (2, 0) SCFT compactified on a punctured Riemann surface C, and a 2d conformal
field theory on the surface, of Toda type, with W(g)-algebra symmetry. In particular, the
partition function of the 4d theory is predicted to equal the conformal block of the 2d theory;
this is known as the Alday-Gaiotto-Tachikawa (AGT) correspondence [8]. The conjecture
was proven when g = A1 in [9, 10]. The generalization of the correspondence to other groups
was studied in many papers, see for example [11, 12, 13], and [14] for a recent review. For
pure gauge theories of ADE type, the relation between the gauge theory partition function
and the norm of a Whittaker vector of the W-algebra was proven not long ago in [15].

However, an obstacle to extending the correspondence to groups other than A1 is that
compactification of the 6d (2, 0) SCFT on a Riemann surface does not in general lead to a
theory with a Lagrangian description: without it, the partition function of the theory is not
computable either, so there is nothing to compare to the Toda conformal block. Another
obstacle is that, for g 6= A1, the general Toda conformal blocks are known only if they admit
a free field representation. One of the main motivations for this thesis is an attempt at a
proof and generalization of the correspondence. We therefore find it worthwhile to study a
deformation of the SCFT, called the (2, 0) little string theory. The little string setup enables
one to state a precise and more general version of the AGT relation, and then prove it.

To truly appreciate why the (2, 0) SCFT is hard to work with directly, we begin with a
review of its main features. We then proceed to introduce the (2, 0) little string, which will
be the main actor in this work.
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1.1 6d N = (2, 0) Superconformal Field Theories

In the landscape of quantum field theories, six-dimensional SCFTs hold a privileged place: six
is the highest number of dimensions where a conformal field theory with supersymmetry can
exist [16]. Those SCFTs are truly exotic in many regards: in Physics, the theories with (1, 0)
and (2, 0) supersymmetry, for instance, have no description in terms of an action functional.

To truly appreciate this point, let us be more explicit about the field content of such
theories. First recall that a theory is said to have N = (nl, nr) supersymmetry when it
has nl chiral and nr antichiral supersymmetries. The R-symmetry group of such a theory
is Sp(nl)× Sp(nr). In six dimensions, a theory with a minimal amount of supersymmetry
is then denoted as being a N = (1, 0) theory; it has 8 supercharges and a R-symmetry of
Sp(1) ≡ SU(2). The massless content of such a theory is as follows:

A vector multiplet contains a gauge field and a right-handed Weyl spinor field. Note that
there is no scalar present, so in particular one cannot speak of the Coulomb branch of a (1, 0)
theory.

A hypermultiplet contains four real scalars φi and a left-handed Weyl spinor. Accordingly,
giving a vev to the φi fields describes the Higgs branch of the theory.

Additionally, we find a tensor multiplet, which contains a self-dual two-form B[µν], a
single real scalar φ, and one left-handed Majorana spinor. Giving a vev to this scalar φ then
parameterizes a tensor branch of the theory.

Our main focus in this thesis will be on six-dimensional theories that have a higher amount
supersymmetry and no gravity. The only two candidates are N = (1, 1) and N = (2, 0)
theories. Let us first look at what the field content of the former theory looks like. The
only multiplet is a vector multiplet, which is made up of a N = (1, 0) vector multiplet and
hypermultiplet. Therefore, the (1, 1) multiplet contains in the bosonic sector one vector field
Aµ and four real scalar fields φi, for a total of 4+4=8 degrees of freedom. The fermionic sector
contains one Dirac spinor, that is to say one Weyl left-handed spinor and one Weyl-handed
right spinor, for a total of 4+4=8 degrees of freedom, as it should be. The R-symmetry is
Sp(1)× Sp(1) ≡ SO(4). Each spinor is a doublet under one of the two Sp(1) groups, and
the scalars transform under the SO(4) symmetry. It is not hard to write an action functional
for this theory:

S =

∫
d6x

1

g2
6d

F a
µνF

aµν + . . . , (1.1.1)

where the dots stand for terms including the fermions to make the action supersymmetric.
The greek indices are spacetime indices, while the a index labels the generators of the Lie
algebra of the gauge group G. The theory is simply the maximally supersymmetric Yang-Mills
in six dimensions, which is IR free; note that the coupling has dimension [g2

6d] = (length)2,
which means the theory is non-renormalizable.

Let us repeat this exercise for a N = (2, 0) theory, and we will see why this case is
much more interesting. The basic multiplet is no longer a vector multiplet, but a tensor
multiplet, made up of a N = (1, 0) tensor multiplet and hypermultiplet. The bosonic sector
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now comprises a self-dual two-form field B[µν] and five real scalar fields φi, for a total of
3+5=8 degrees of freedom. The fermionic sector contains two left Weyl spinors, again giving
8 degrees of freedom. The R-symmetry is Sp(2) ≡ SO(5). The group Sp(2) acts non-trivially
on the fermions, while SO(5) rotates the scalars. The presence of the tensor B[µν] is surprising,
because it suggests that some of the degrees of freedom of the (2, 0) theory are described by
strings instead of the usual particles we find in quantum field theories. The strings couple to
the tensor fields via the interaction:

qi

∫
Bi
µν dσ

µν + . . . , (1.1.2)

where qi is a charge, dσµν is the surface element on the worldsheet, and once again the dots
stand for fermionic terms required by supersymmetry. No scale can be present in a conformal
theory, so in particular, the tension of these strings has to vanish at the superconformal point.
For this reason, we say that the (2, 0) theories contain so-called tensionless strings.

We can attempt to write an action functional for the theory; a natural guess is

S =

∫
d6x

1

g2
6d

F a
µνρF

aµνρ + . . . , (1.1.3)

where Fµνρ = ∂[µBνρ]. Note that this time, the coupling g2
6d is dimensionless. The self-duality

of the tensor implies that Fµνρ = 1
6
εσλτµνρFσλτ . But then we obtain F a

µνρF
aµνρ = 0, so the action

we wrote down does not make sense. It turns out to be possible to write a sensible action for a
free field (2, 0) theory, in which case a necessary condition for the tensor self-duality condition
to be satisfied is to set g2

6d = 1. However, an interacting theory action functional cannot be
written down. Another way to phrase this is that the field strength of a gauge field can be
written as F a

µν = ∂[µA
a
ν] +f

a
bcA

b
µA

c
ν , where fabc is a structure constant, but no similar expression

seems to exist for the tensor field strength: one could guess that F a
µνρ = ∂[µB

a
νρ] + . . . , but

nobody knows how one could fill the dots.
The (2, 0) theories have a beautiful classification, based on the following observation:

First note that the self-duality of the tensor imposes (qei , q
m
i ) = (qi, qi) for the dyonic charge

or the string that couples to it. One can show that Dirac quantization implies −→q · −→q ′ ∈ Z,
while anomaly cancellation of the string worldsheet [17] imposes ~q · ~q = 2. Therefore, one
can identify the string charges with the roots of a simply-laced Lie algebra (recall that a
root α of such an algebra satisfies |α|2 = 2). That is to say, the (2, 0) theories have an ADE
classification.

By now, it should be apparent that analyzing the (2, 0) SCFT directly is excessively hard,
due to the lack of a good definition of the theory. We therefore turn our attention to a
certain “mass deformation” of the SCFT, the so-called (2, 0) little string theory, which in
many regards will be easier to study.
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1.2 6d N = (2, 0) Little Strings

String dynamics become particularly rich near impurities. Perhaps the most notable example
is the local excitations felt by open strings that end on D-branes. In this case, the states
localized on a D-brane couple to the bulk, since open strings ending on a brane can combine
into a closed string that is allowed to leave the brane. One typically decouples the D-brane
physics from the bulk by keeping the string coupling gs constant and taking a low energy
limit E/ms → 0, where ms is the string mass, related to the fundamental string tension by
T = m2

s (we neglect 2π factors here and in the rest of this thesis). Then, if one obtains an
interacting theory in the limit, it will be a local quantum field theory; this is exactly what
happens in the case of D-branes, where at low energies, the theory becomes a non-abelian
gauge theory.

Does the situation differ at all if the spacetime impurities are NS5 branes instead of
D-branes? It turns out that surprisingly, the dynamics of NS5 branes can be decoupled
from the bulk physics without the need to take the low energy limit ms →∞. Instead, bulk
physics is decoupled from the branes by considering a different limit: one takes the string
coupling gs → 0, while keeping E/ms fixed. The resulting theory on the NS5 branes is called
little string theory1. It is not a local quantum field theory, but instead an honest (noncritical)
theory of strings in six dimensions. Indeed, it exhibits T-duality upon compactification, and
has a Hagedorn spectrum at high energies for the density of states. Gravity is decoupled
from the onset, since we took gs → 0, and the only parameter left is ms. Note that had we
considered this limit for D-branes, we would have ended up with a free theory, since gs is a
coupling for both open and closed strings.

Suppose we have k parallel and overlapping NS5 branes in type II string theory, and we
send gs → 0. The branes break half of the supersymmetry and 16 supercharges survive. If
one considers type IIA, the surviving six-dimensional supersymmetry on the branes is (2, 0)
(while it is (1, 1) in type IIB). We call the resulting theory a (2, 0) little string of type Ak−1.
Different constructions of the theory exist after making use of various dualities. For instance,
the duality between type IIA and M-theory implies that the (2, 0) Ak−1 little string can be
obtained from considering k M5 branes with a transverse circle of radius R, when R→ 0 and
MP →∞ so that we can keep M3

P R = m2
s constant. Using orientifold planes, we can also

engineer Dk theories in the same fashion.
The setup we will be most interested in produces more general theories than presented so

far, and can be obtained by yet another duality: recall that k NS5 branes with a transverse
circle in type IIA is T-dual to an Ak−1 surface singularity with a circle that only affects the
bulk physics (and therefore decouples in the gs → 0 limit relevant to us) in type IIB. we
therefore compactify type IIB string theory on a surface X, which is a hyperkähler manifold,
obtained by resolving a C2/Γ singularity, with Γ a given discrete subgroup of SU(2). This has

1Little strings were originally discovered in [18, 19, 20]. For a self-contained review of the theory’s
basic features, see [21]. Recently, there has been a renewed interest in its study, in a variety of contexts
[22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33].
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the advantage of not only producing the Ak−1 little string theory, but also Dk and Ek theories,
since discrete subgroups of SU(2) have an ADE classification, by the McKay correspondence;
see the appendix A for details on this.

After we take the limit ms →∞ in the little string, no parameter survives (apart from
the discrete parameter k that labels the theory) and we recover the (2, 0) SCFT of section 1.1.
One could ask how the tensionless strings of the SCFT come about in the different setups we
described. In the type IIA picture, we can consider D2 branes stretching between different
fivebranes. The separation between the NS5 branes corresponds to giving a vev to the scalars
of the tensor multiplets, thereby probing the tensor branch of the theory. The ends of the D2
branes are strings on the fivebranes. At the superconformal point, the NS5 branes are put
on top of each other. The D2 brane ends therefore become tensionless strings of the (2, 0)
SCFT of type Ak−1. In the M-theory picture, we instead consider putting the k M5 branes
on top of each other, and an analogous effect happens to the “M-strings” [34], which are
the ends of M2 branes stretching between the fivebranes. Also note that in this picture, the
SO(5) R-symmetry of the SCFT is easily visible as a rotation in the directions perpendicular
to the stack of fivebranes. Finally, in the IIB setup, the strings are D3 branes wrapping
compact 2-cycles (these are topologically 2-spheres) that blow up the ADE singularity; when
the 2-cycles shrink to zero size, the strings become tensionless.

Finally, we discuss the moduli space of the (2, 0) little string, which is

M = (R4 × S1)n/W . (1.2.4)

In the above, n is the rank and W the Weyl group of g. In our type IIB setup, the scalar
fields parameterizing M come from the moduli of the metric on the resolved singularity X;
they are encoded in the periods of a triplet of self-dual two-forms ωI,J,K and the NS and RR
B-fields, along the 2-cycles Sa generating H2(X,Z). Their natural normalizations are∫

Sa

m4
s ωI,J,K/gs,

∫
Sa

m2
s BNS/gs,

∫
Sa

m2
s BRR. (1.2.5)

A power of gs accompanies NS sector fields but not the RR sector ones, since this is how
they enter the low energy action of the IIB string. The canonical mass dimension of scalars
in a two-form theory is two. In taking gs to zero, we tune the moduli of IIB so that the above
combinations are kept fixed. The compact directions in M come from periods of the RR
B-field and have radius m2

s. In the low energy limit, when we send ms to infinity, the moduli
space becomes simply (R5)n/W , since periodicity of the scalars coming from BRR becomes
infinite. The periodicity of scalars coming from BNS would have been m2

s/gs; it is lost at the
outset since gs is taken to zero.

The perturbative string theory description is good away from the singularity at the origin
of the moduli space M. We are taking gs to zero, in addition, so from IIB string perspective,
the theory is under excellent control.
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1.3 Outline of the Thesis

The thesis is organized as follows:
In Chapter 2, we start with type IIB string theory on a resolved singularity X, take the

limit gs → 0, and compactify the resulting (2, 0) little string theory on a Riemann surface C,
which we will take to be the cylinder. D5 branes are introduced as points on C. They are
codimension 2 defects of the (2, 0) little string. We give a geometric description of the defects,
for g a simple Lie algebra, and give the 5d N = 1 quiver gauge theory that describes them at
low energies. The defects will turn out to have an elegant group theoretical interpretation, in
terms of certain (co)weights of g. These coweights carry the charge of D5 branes, and will be
divided in two categories: polarized and unpolarized. This Chapter is based on [27, 35, 36].

In Chapter 3, we compute the 5d supersymmetric partition function of the little string
on C × R4, with R4 regulated by Ω-background, using techniques of [37, 38, 39, 40, 41, 42].
we show that the partition function equals the q-deformed conformal block of g-type Toda
CFT on C. The q-deformed vertex operator insertions are in one to one correspondence with
the defect D5 branes. The q-deformed conformal blocks have a Wq,t(g) algebra symmetry
developed by Frenkel and Reshetikhin [43]. They are written as integrals over positions of
screening currents, with an integrand that is a correlator in a free theory. We show that,
computing the integrals by residues, one recovers the partition function of the little string.
The numbers of screening charge integrals are related to the values of the Coulomb moduli.
In establishing the correspondence between Toda CFT and the (2, 0) theory, the central role
is played by strings, obtained by wrapping D3 branes on compact 2-cycles in X, and at points
on C. The D3 branes are finite tension excitations – they are vortices on the Higgs branch of
little string theory on C. The theory on D3 branes, derived by a perturbative IIB computation,
is a 3d g-type quiver gauge theory compactified on an S1, which in presence of defect D5
branes has N = 2 supersymmetry. The 3d theory turns out to have a manifest relation to
Toda CFT: its partition function, expressed as an integral over Coulomb moduli, is identical
to the q-Toda CFT conformal block – D3 branes are the screening charges. Interpreting the
partition function instead in terms of the Higgs branch of the 3d gauge theory, it equals
the 5d partition function, at integer values of Coulomb moduli. The physics at play is the
gauge/vortex duality which originates from two different, yet equivalent ways to describe
vortices: from the perspective of the theory on the D3 branes, or from the perspective of the
bulk theory with fluxes. In the latter description, the vortex flux is responsible for shifting
the Coulomb moduli by integer values in Ω-background. This results in a triality of relations
between three different classes of theories: a 5d theory on D5 branes, a 3d theory on D3
branes, and q-deformed Toda. Lastly, we make contact with the representation theory of
quantum affine algebras Uq(ĝ). This Chapter is based on [44, 45, 27, 36].

In Chapter 4, we take the string mass ms to infinity in the little string to obtain the
(2, 0) CFT on C. We show that the Coulomb branch of the 5d quiver gauge theory on D5
branes flows to a nilpotent orbit of g in the limit. The fact that codimension 2 defects
of a (2, 0) CFT are characterized by nilpotent orbits was analyzed by different means in
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[46, 47, 48, 49, 50, 51, 52, 53]. In our setup, we show that the coweight data of the D5
branes encodes the Bala–Carter labels of the nilpotent orbits. Furthermore, we analyze
the relation of our defects to parabolic subalgebras of g. Finally, we point out a surprising
relation between the D5 brane quivers of the little string and the so-called weighted Dynkin
diagrams of g. This Chapter is based on [54, 35, 36].

In Chapter 5, we first review how Gukov and Witten analyze surface defects of 4d N = 4
SYM from a gauge theory perspective. This is done by studying the singular behavior of the
gauge and Higgs fields in SYM near the defect [1, 55]. We provide the origin of these defects
using the (2, 0) little string on C, compactified on an additional torus T 2. At energies below
the Kaluza–Klein scale of compactification and the string scale, the little string becomes the
4d N = 4 SYM theory. The defects come from D5 branes wrapping the T 2, or equivalently,
from D3 branes at points on T 2. In particular, the S-duality of 4d SYM theory with defects
is realized in little string theory as T-duality on the torus; the case without defects was
studied already some time ago in [56]. In the CFT limit, the resolution [57, 58, 59] of the
(singular) Coulomb branch of the theory on the D3 branes is in fact described by the cotangent
bundle T ∗(G/P), where P is a parabolic subgroup of the gauge group G. This space already
appeared in [1] as an alternate way to describe surface defects. It comes about as a moduli
space of solutions to Hitchin’s equations. By compactifying our setup on an additional circle,
and using T-duality to relate D5 branes to monopoles on R× T 2, studied in [41, 42], we show
that the Seiberg–Witten curve of the brane defects reduces in the CFT limit to the spectral
curve of the Hitchin integrable system. The occurrence of the space T ∗(G/P) therefore has
a geometric interpretation. Indeed, a given set of D5 branes wrapping 2-cycles of X will
determine a unique parabolic subalgebra of g at low energies. This Chapter is based on [54].

In Chapter 6, we study the Toda side of the ms → ∞ limit. There, the q-deformation
disappears and one recovers ordinary Toda CFT, with W(g) algebra symmetry. In particular,
the codimension-two defects of the 6d (2, 0) CFT are expected to be classified from the
perspective of the 2d Toda theory. This can be done by studying the Seiberg-Witten curve of
the quiver gauge theory on the D5 branes. At the root of the Higgs branch, and in the ms

to infinity limit, the curve develops poles at the puncture locations. The residues at each
pole obey relations which describe the level 1 null states of the Toda CFT. We argue that
this characterization of defects as null states of the CFT naturally gives the same parabolic
subalgebra classification obtained in chapter 4. This chapter is based on [54, 35].

In Chapter 7, we give other realizations of the little string defects, at finite ms. Most
notably, when g = An or Dn, we engineer a T-dual setup for the defects using a web of
branes in type IIB [2]. We point out that the coweight formalism generalizes Hanany–Witten
transitions, and we engineer both polarized and unpolarized weights. This Chapter is based
on [54, 35].

In chapter 8, we provide a plethora of examples to illustrate the results of the thesis. This
Chapter is based on [54, 36].

Finally, in Chapter 9, we conclude and briefly describe various ideas that would be worth
pursuing in the future.
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Chapter 2

Surface Defects as D5 branes in Little
String Theory

As explained in the previous chapter, we start with type IIB string theory compactified on
a resolved ADE singularity X, and send gs → 0 to obtain (2, 0) little strings. We further
compactify the little string theory on a Riemann surface C; in this thesis, the Riemann surface
will be the cylinder C = R × S1(R̂). Note that X × C is a solution of the type IIB string
theory, since the cylinder has a flat metric. We now introduce defects in the setup.

2.1 ADE-type Defects

We would like to introduce codimension two defects in the little string theory, which are
at points on C and fill the remaining 4 directions. In the little string limit, type IIB string
theory essentially has a unique candidate for such an object: these are D5 branes that wrap
non-compact 2-cycles in X, are points on C, and fill the rest of the spacetime1.

We choose a class [S∗] in the coweight lattice2 Λ∨∗ of g. Each coweight then specifies the
charge of a D5 brane wrapping some non-compact 2-cycle of X. We can expand a given set of
coweights, identified here with a non-compact homology class [S∗], in terms of fundamental
coweights:

[S∗] = −
n∑
a=1

maw
∨
a ∈ Λ∨∗ , (2.1.1)

with ma non-negative integers and n = rank(g). The w∨a are the n fundamental coweights of
g. Each fundamental coweight is conveniently written with Dynkin labels as a vector of size n,

1String-like defects in 6d SCFTs were given an analogous description in [60], replacing D5 with D3 branes.
This leads to degenerate vertex operators of Wq,t(g) algebra; see for instance [31].

2In this section, g is simply-laced, so the coweight lattice (respectively coroot lattice) is the same as the
weight lattice (respectively root lattice). However, we will consider non simply-laced defects next, where the
distinction will matter, so we write this section in a language appropriate to any simple Lie algebra.
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with a 1 in the a-th entry and 0 everywhere else. For instance, w∨2 = [ 0, 1, 0, 0, . . . , 0].
In what follows, all coweights will be written in this fundamental coweight basis.

Though in principle a very generic assortment of D5 branes can be studied in this setup
(with the only requirement that the branes preserve the same supersymmetry), a beautiful
structure will emerge when one imposes a “conformality” constraint on the coweights. In
brane language, we want to impose that the total flux due to the D5 branes vanishes at
infinity. We therefore need to add some D5 branes wrapping a compact homology class [S] in
the coroot lattice of g; we have the following expansion in terms of simple positive coroots:

[S] =
n∑
a=1

da α
∨
a ∈ Λ∨ , (2.1.2)

with da non-negative integers. The vanishing flux condition takes the form:

[S + S∗] = 0 . (2.1.3)

Now, if S+S∗ vanishes in homology, then #(Sa∩ (S+S∗)) also vanishes, for all a = 1, . . . , n,
and [Sa] the homology class corresponding to the simple root αa. After a little algebra, and
making use of the fact that

Sa ∩ S∗b = δab (2.1.4)

in homology, we can rewrite (2.1.3) as

n∑
b=1

Cab db = ma , (2.1.5)

with Cab ≡ 〈αa, α∨b 〉 the Cartan matrix of g. In 4d N = 2 language, equation (2.1.5) is
nothing but a vanishing beta function condition, which justifies why we dubbed this constraint
a “conformality” condition.

A single D5 brane will brake half of the supersymmetry, leaving only 8 supercharges; since
we will ultimately be considering a collection of many D5 branes, it is important that they
preserve the same supersymmetry. To this end, it is not enough to choose the class of S∗,
and we must choose the actual cycles inside it. D5 branes wrapping different components
of S∗ preserve the same supersymmetry if their central charges are aligned. These, in turn,
are determined by the periods of the triplet of self-dual two forms ~ω = (ωI , ωJ , ωk) on the
non-compact cycles S∗a. Supersymmetry is preserved if they determine a collection of vectors,∫
S∗b
~ω, which point in the same direction for all b, corresponding to all the central charges being

aligned. Then, all the non-compact D5 branes preserve the same half of supersymmetries of
the (2, 0) theory. Up to a rotation under which ~ω is a vector, we can choose∫

S∗a

ωI > 0,

∫
S∗a

ωJ,K = 0.

Next, we pick a metric on X by picking periods of ωI,J,K through the compact cycles Sa. The
choice we make will affect the supersymmetry that D5 branes wrapping compact 2-cycles
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Figure 2.1: The vanishing cycles of An singularity Sa (in black) and the dual non-compact
cycles S∗a (in blue). S∗a is constructed as the fiber of the cotangent bundle T ∗Sa over a generic
point on Sa.

preserve. It does not affect the non-compact D5 branes, which extend to infinity in X, as it
only affects the data of X near the singularity. We will begin by setting∫

Sa

ωJ,K = 0,

∫
Sa

BNS = 0, (2.1.6)

for all a’s and letting

τa =

∫
Sa

(m2
s ωI/gs + i BRR) (2.1.7)

be arbitrary complex numbers with Re(τa) > 0. Recall that X has a sphere’s worth of
choices of complex structure. In the complex structure in which ωI is a (1, 1) form, and
having chosen (2.1.6), (2.1.7), both [S∗b ] and [Sa] have holomorphic 2-cycles representatives,
and the D5 branes wrapping both the compact and the non-compact 2-cycles preserve the
same supersymmetry. The fact that all the D5 branes preserve the same supersymmetry is
important, as it leads to a quiver gauge theory description at low energies, with the quiver
diagram based on the Dynkin diagram of g. Note that relaxing (2.1.6) to generic values
corresponds to turning triplets of Fayet-Iliopolous parameters.

We will now determine the low energy description of the compactified (2, 0) little string
with defects. For generic τ ’s, at energies below the string scale, the entire system can be
described in terms of a 5d N = 1 gauge theory which originates from the D5 branes. In the
rest of this thesis, we call this gauge theory T 5d.

At long distances, if τ ’s are not zero, the bulk theory is a theory of abelian self-dual
2-forms. The 2-forms are non-dynamical from the perspective of the compactified theory,
since they propagate in all six dimensions. At the same time, τ ’s determine the inverse gauge
couplings of the D5 brane gauge theory. As long as they are non-zero, the theory on the D5
branes has a gauge theory description at low energies3. Thus, for non-zero τ and below the

3The 1/g2YM in five dimensions has units of mass. The τ is the dimensionless combination τ ∼ 1/(g2YMms).
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string scale, the dynamics of the (2, 0) little string theory on C with defects can be described
by the gauge theory on the D5 branes.

String theory allows us to determine the gauge theory on the branes: it was in fact worked
out in [61]. It is an ADE quiver gauge theory, with gauge group

n∏
a=1

U(da), (2.1.8)

and Iab hypermultiplets in the bifundamental (da, db) representation for each pair of nodes
a and b. The theory has N = 2 supersymmetry in four dimensions, since D5 branes break
half the supersymmetry of IIB on X. The rank da of the gauge group associated to the a-th
node of the quiver is the number of D5 branes wrapping the 2-cycle Sa. The hypermultiplets
come from the intersections of cycles Sa with Sb. This follows from a computation we can
do locally, near an intersection point. A non-zero intersection number Iab of Sa with Sb,
for distinct a and b, means that they intersect transversally at Iab points. At a transversal
intersection of 2 holomorphic 2-cycles in a 4-manifold, there are 4 directions in which open
strings with endpoints on the branes have DN boundary conditions, leading to a massless
bifundamental hypermultiplet. The U(1) gauge groups of the D5 branes wrapping cycles are
actually massive, by Green-Schwarz mechanism [61], so the gauge groups are SU(da) not
U(da). Correspondingly, the Coulomb moduli associated with the U(1) centers are parameters
of the theory, not moduli. Nevertheless, the effects of these U(1)’s remain: for example, due
to stringy effects [62], the partition function is that of a U(da) theory. For this reason, we will
write the gauge group with U(1) factors included, trusting the reader can keep in mind the
subtle point (the issue of the U(1)’s was discussed in [63, 64], from a related perspective.) The
D5 branes on S∗ do not contribute to the gauge group, since the cycle is non-compact, but
they do contribute matter fields: The intersections of non-compact cycles with compact cycles
lead to additional fundamental matter hypermultiplets. Since S∗a correspond to fundamental
weights wa, they do not intersect Sb for b 6= a, see equation (2.1.4). Thus, with S∗ as in
(2.1.1), there are ma fundamental hypermultiplets on the a’th node. In section 8, we will
work out examples of 5d quiver gauge theories that describe the corresponding little string
theory on a cylinder with one arbitrary puncture4.

While the theory has the super-Poincare invariance of a 4d N = 2 theory, it is a 5d
N = 1 theory compactified on a circle of radius R. Recall that D5 branes are points on
C = R× S1(R̂), and we are keeping ms finite. The zero modes of strings that wind around
S1(R̂) lead to a Kaluza-Klein tower of states on the T-dual circle of radius

R =
1

m2
sR̂
. (2.1.9)

The gauge theory description is applicable for energies E/ms � 1, and the theory is weakly coupled for
E/ms � τ . When we study the partition function, exp(−τ) will be the instanton expansion parameter, and
we will want this to be less than 1, so we only need Re(τ) > 0.

4Note that when one takes the limit ms → ∞, and only then, conformal invariance of the theory is
recovered, and one can equivalently think of the cylinder as a sphere with two full punctures.
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Figure 2.2: Example of a 5d gauge theory describing the E6 little string on the cylinder with
a full puncture defect. The numbers in the nodes denote the ranks of the unitary gauge
groups, while the numbers outside the nodes simply label the nodes of the Dynkin diagram.

The resulting tower of states affects the low energy physics [65]. For example, the super-
symmetric partition function of the theory depends on R, as we will review in section 3.1.
Another way to see this it to do T-duality on the circle. This relates D5 branes which are
points on S1(R̂) to D6 branes wrapping S1(R). In the D6 brane description, the fact that
the low energy theory is a five dimensional theory on a circle of radius R is manifest.

The moduli of the (2, 0) theory in six dimensions become parameters in five dimensions,
and they determine the couplings of the D5 brane gauge theory. The dictionary from geometry
to gauge theory data is as follows: The complex combinations of the moduli which we called

τa =
∫
Sa

(m
2
s

gs
ωI + iBRR) are the gauge couplings of the effective gauge theory on the D5 branes.

The triplets of N = 2 Fayet-Iliopolous parameters, one for each node of the quiver, come
from the remaining 6d moduli,

∫
Sa
m2
s ωJ,K/gs and

∫
Sa
BNS/gs. The only other parameters in

the theory are the masses of the fundamental hypermultiplets. These come from the positions
of the non-compact D5 branes on C: the non-compactness of the cycles in X renders these
non-dynamical as well. Finally, since the U(1) centers of the gauge group are not dynamical,
the Coulomb moduli associated with them are parameters of the theory as well.

2.2 BCFG-type Defects

Let g′ be a simply-laced Lie algebra. We call g a subalgebra of g′ invariant under the outer
automorphism group action of g′. It is well known that such outer automorphisms of g′ are
in one-to-one correspondence with the automorphisms of the Dynkin diagram of g′. The
resulting subalgebras g are called non simply-laced. Let A be an outer automorphism group
of g′. Then either A = Z2 or A = Z3, where the precise group action is shown in Figure 2.3
below:
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𝑫𝟒 𝑮𝟐

𝑩𝒏𝑫𝒏+𝟏

𝑨𝟐𝒏−𝟏 𝑪𝒏

𝑭𝟒𝑬𝟔

Figure 2.3: The action of the outer automorphism group A on the simply-laced Lie algebras.
In the case of D4, the outer automorphism can be either Z2 (resulting in B3) or Z3 (resulting
in G2).

It should then be clear how one can engineer non-simply laced theories in the little string
context [56]. Namely, consider the following nontrivial fibration of X over C2 × C: as one
goes around the origin of one of the complex planes C wrapped by the D5 branes, we require
that X goes back to itself, up to the action of the group A. This action will permute some of
the compact two-cycles, according to Figure 2.3, and there is a corresponding action on the
root lattice of g′. Let a ∈ A. If the set of simple roots of g′ is denoted ∆, then the simple
roots of g are grouped into two sets:

∆l = {α /α ∈ ∆, α = a(α)} (2.2.10)

is the set of roots of g′ invariant under the action of A. They are called the long roots of g,
and we set them to have length squared 2. The remaining simple roots of g are constructed
as follows:

If A = Z2, ∆s = {1

2
(α + a(α)) /α ∈ ∆, α 6= a(α)} (2.2.11)

If A = Z3, ∆s = {1

3

(
α + a(α) + a2(α)

)
/α ∈ ∆, α 6= a(α)} (2.2.12)
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They are called the short roots of g, and have length squared 2/r, with r the lacing number
of g (r = 2 if A = Z2 and r = 3 if A = Z3).

Denoting the Cartan-Killing form by 〈·, ·〉, note we have assumed that the length squared
〈αa, αa〉 of the simple root αa in g′ is equal to 2. The simple coroots of g are defined by
α∨a = 2αa/〈αa, αa〉, and recall that the Cartan matrix of g is defined as Cab = 〈αa, α∨b 〉.

Not all D5 brane configurations we described in the previous section 2.1 represent defects
in the nontrivial fibration of X over C2 × C; only the D5 branes that wrap 2-cycles left
invariant under A-action are allowed. This implies the following for the quiver theory T 5d

on the D5 branes: starting with a simply-laced quiver theory, the ranks of the flavor and
gauge groups which lie in a given orbit of A must be equal. A non simply-laced defect is then
well-defined.

A fundamental coweight w∨a of g is in fact a sum of fundamental weights of g′, all belonging
in the same A orbit. Therefore, fundamental coweights are appropriate to label the D5 branes
wrapping non-compact 2-cycles of the fibered geometry. They are defined by 〈w∨a , αb〉 = δab,
with αb a simple root of g, and a, b = 1, . . . , rank(g). Furthermore, the simple coroots are the
adequate objects to label the D5 branes wrapping compact 2-cycles of the geometry. Note
the fundamental coweights of g are the fundamental weights of Lg, and the simple coroots of
g are the simple roots of Lg. We can therefore equally well label the D5 brane defects using
the fundamental weights and simple roots of Lg if we wish to do so, but we will refrain from
doing so in most of this work.

2.3 Defects as a Set of Coweights

It turns out to be very fruitful to study the theory on the Higgs branch, where the gauge
group

∏n
a=1 U(da) is broken to its U(1) centers, one for each node. We force the theory onto

the Higgs branch by turning on the remaining moduli of the (2, 0) theory
∫
Sa
ωJ,K ,

∫
Sa
BNS

(see [66] for a detailed analysis from gauge theory perspective); these are the FI parameters
in the D5 brane gauge theory (2.1.6). The deformation is normalizable, affecting only the
geometry of X near the singularity.

On the Higgs branch, the compact and non-compact D5 branes must recombine: the
deformation changes the supersymmetries preserved by the compact D5 branes (it changes
their central charges via (2.1.6)), but not the supersymmetries preserved by the non-compact
ones (these can be detected at infinity in X). As a consequence, the branes on S in (2.1.2)
and on S∗ in (2.1.1) are no longer mutually supersymmetric. Correspondingly, we reshuffle
the branes and arrange them in a configuration wrapping a set of non-compact cycles S∗i ;
their homology classes ωi now live in the coweight lattice Λ∨∗ :

ωi = [S∗i ] ∈ Λ∨∗ . (2.3.13)

Therefore, we end up with a set of coweights ωi, all taken in fundamental representations
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of Lg. They can be decomposed as:

ωi = −w∨a +
n∑
b=1

hib α
∨
b , (2.3.14)

where −w∨a is the negative of the a-th fundamental coweight, hib are non-negative integers,
and α∨b is a positive simple coroot. Geometrically, the above decomposition of ωi has the
interpretation of having different D5 branes bind together. For the branes to bind, the
positions of compact branes must coincide with the position of at least one of the non-
compact D5 branes on C. The positions of non-compact D5 branes are mass parameters
of the quiver gauge theory, the positions of compact D5 branes on C are Coulomb moduli;
when a Coulomb modulus coincides with one of the masses, the corresponding fundamental
hypermultiplet becomes massless and can get expectation values. This, in turn, describes the
D5 branes binding (see [67] for a similar example), and allows supersymmetry to be preserved
in presence of non-zero FI terms. We denote the set of coweights ωi as:

WS = {ωi} . (2.3.15)

Figure 2.4: D5 branes in classes α∨a and −w∨a bind to a brane in class −w∨a + α∨a .

Then, the number of coweights ωi’s is the total rank of the flavor group of T 5d:
∑n

a=1 ma.
One can easily show that the constraint (2.1.3) is equvalent to:∑

ωi∈WS

ωi = 0 , (2.3.16)

which is also equivalent to (2.1.5).
In what follows, we will limit our analysis to sets of size:

1 ≤ |WS | ≤ n+ 1 ,

since the most generic defect of the g-type little string can always be described by at most
n+ 1 coweights satisfying equation 2.3.16.
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Example 2.3.1. Let WS be the following set of weights of D4:

ω1 = [ 1, 0, 0, 0] = −w1 + 2α1 + 2α2 + α3 + α4,

ω2 = [−1, 1, 0, 0] = −w1 + α1 + 2α2 + α3 + α4,

ω3 = [ 0,−1, 1, 1] = −w1 + α1 + α2 + α3 + α4,

ω4 = [ 0, 0,−1, 0] = −w3,

ω5 = [ 0, 0, 0,−1] = −w4.

Note that these weights add up to zero. Written as above, these weights define a 5d quiver
gauge theory, shown below in Figure 2.5.

4 5

3

3

3
1

1

Figure 2.5: Example of a 5d gauge theory describing the D4 little string with on the cylinder
with a full puncture defect. The full puncture is determined by the set of weights WS .

All in all, by choosing distinct sets of coweights WS , we get an explicit realization of all
the defects of the little string satisfying (2.1.5). However, it would be nice to have a finer
classification of the defects. It turns out that there is an elegant answer to this problem,
which we now present.

2.4 Polarized and Unpolarized Defects

D5 brane defects are divided into two groups, as follows: Pick a coweight ω of g in a
representation of Lg generated by (minus) some fundamental coweight −w∨a for some a. If ω
is in the Weyl group orbit of −w∨a , and if all coweights of WS satisfy this condition, we call
the resulting defect polarized5.

If a defect is not polarized, we call it unpolarized. The unpolarized defects of the little
string theory fall into one of the two following categories:

• The set WS only contains the zero coweight ω = [ 0, 0, . . . , 0] (with multiplicity
one or possibly more).

• The set WS contains a nonzero coweight ω in a representation of Lg generated by
(minus) some fundamental coweight −w∨a , but ω itself is not in the Weyl orbit of the
coweight −w∨a .

5The terminology will be explained in Section 4.2, and is directly related to the definition of the parabolic
subalgebras of g.
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To fully characterize such an unpolarized defect, it is necessary and sufficient to also specify
the representation ω belongs in6.

Example 2.4.1. – Consider the following set of coweights of G2:

WS = {ω1 = [ 0, 1], ω2 = [ 0,−1]} ,

written here in the fundamental coweights basis. One can check at once that both coweights
satisfy the condition to make WS a polarized defect.

– Consider now the following set with a single coweight of F4:

WS = {ω = [ 0, 0, 0, 0]1} .

This is an unploarized defect of the F4 little string theory. Note that the null coweight is
present in all four of the fundamental representations of F4, and each one of these designates
a distinct defect, so we added an extra label to specify which null coweight we are considering.
In the present case, [ 0, 0, 0, 0]1 means that ω = −w∨1 + # simple positive coroots, with
# a positive integer.

– As a final example, consider the following set of (co)weights of D5:

WS = {ω1 = [ 1, 0, 0, 0, 0], ω2 = [−1, 0, 0, 0, 0]3} ,

The weight ω1 belongs in the Weyl group orbit of −w1, and we take it in (minus) the first
fundamental representation of D5; it is a good candidate to make up a polarized defect.
However, the weight ω2 is taken in (minus) the third fundamental representation: ω2 =
−w3 + # simple positive roots (hence the extra label “3”), while it is obviously in the Weyl
group orbit of −w1. The set WS therefore contains at least one weight (that is, ω2) which
satisfies the unpolarized condition, and we call the resulting defect as a whole unpolarized.

Then, given a set of coweights WS defining a polarized defect, the dimension of the
Coulomb branch of T 5d can be computed in two different ways:

n∑
a=1

da =
∑

〈eγ ,ωi〉<0

|〈eγ, ωi〉| , (2.4.17)

where the integers da on the left-hand side are the ranks7 of the unitary gauge groups in
the quiver T 5d. The sum on the right-hand side runs over all positive roots eγ of g, and
the coweights ωi summed over must satisfy 〈eγ, ωi〉 < 0. The fact that the Coulomb branch

6The only unpolarized cases where one does not need to provide this additional data are the so-called
simple punctures of B2, B3, C2, D4 and D5 theories: these defects are uniquely specified by the zero coweight,
which belongs in only one of the fundamental representations of Lg.

7In fact, a U(1) in each of the n gauge groups is technically frozen, so one should really subtract n to this
sum to get the number of normalizable Coulomb moduli. We will keep this subtlety in mind but it will have
no incidence on our results.
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dimension of the quiver theory T 5d is equal to the left sum is obvious, and the equality with
the right sum side follows from rewriting the positive simple roots that occur in terms of
positive roots.

If WS defines an unpolarized defect, the left-hand side of (2.4.17) is still a valid way to
evaluate its Coulomb branch dimension, but the right-hand side is no longer applicable. We
will have more to say about these defects after explaining the physics of triality in the next
chapter.

We want to stress that many distinct sets WS often result in one and the same quiver
gauge theory T 5d; the quivers are simply not a good definition of a defect. Crucial information
is contained in the set WS that is absent from T 5d: namely, the coweights tell us which
2-cycles are wrapped by the D5 branes, and this data is crucial to characterizes a defect.

Finally, note that even though we will focus in this thesis on a single arbitrary puncture
on C, the formalism we introduced is automatically suited to study an arbitrary number of
defects. Indeed, simply choose a set of coweights WS , as done before. If there are k subsets
of coweights which add up to zero in WS , then the resulting quiver gauge theory describes k
“elementary” punctures on C. This just follows from linearity of equation (2.1.5). For some
examples of composite defects, see below in Figure 2.6.

Thought the above argument is true at finite string mass ms, the linearity of defects is
lost in the CFT limit. Indeed, notable counterexamples arise for instance when describing a
few of the defects of the E7 and E8 little string; for specific details, refer to the appendix B.

2 2 2

2 2

3 6 9 6 3

6

3

ω1 : [−1, 0, 0]
ω2 : [ 1, 0, 0]

ω3 : [ 1,−1, 0]
ω4 : [−1, 1, 0]

ω1 : [ 0, 0, 0, 0, 0, 0]

ω2 : [ 0, 0, 0, 0, 0,−1]
ω3 : [ 0, 0, 0, 0, 0, 1]

Figure 2.6: Left: two “minimal” punctures of A3. The two punctures indicate that there are
two subsets of weights in WS that add up to zero. Note that the second set of weights, made
up of [1,−1, 0] and [−1, 1, 0], can be turned into the first set by applying a Weyl reflection
about the first simple root of A3. Right: two E6 punctures. the first of these is the so-called
minimal puncture, denoted by the zero weight in the 6-th fundamental representation, and is
unpolarized. The second puncture is polarized.
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Chapter 3

g-type Triality

In this chapter, we show that the instanton partition function of the 5d g quiver gauge theory
on C2 × S1 with N = 1 supersymmetry is equal to the partition function of its vortices
(which are themselves codimension 2, so a 3d theory) at the point of its moduli space where
the Coulomb branch meets the Higgs branch. Furthermore, the 3d vortex partition function
is nothing but the integral representation of the q-deformed g-type Toda conformal blocks
with Wq,t(g) algebra.

3.1 5d Gauge Theory Partition Function

We now compute the supersymmetric partition function of the (2, 0) little string theory on
C × C2 with a collection of defects at points of C. As we argued above, this is the partition
function of a 5d quiver theory on a circle with twisted boundary conditions, Z5d (S1 × C2)
[37, 68]. When g = ADE, as we go around the circle S1, we rotate different C’s by different
angles, ε1 and ε2:

z1 7→ eiε1z1 ≡ q z1, z2 7→ eiε2z2 ≡ t−1 z2. (3.1.1)

The partition function for such ADE-type quiver gauge theories compactified on a circle
was computed in [69], lifting the 4d computation from [70]. For the simply laced quivers,
all nodes in the quiver designate simple roots that are on an equal footing. However, if the
quiver is given by a non simply-laced Lie algebra g, the nodes label either short or long roots
of g. In [71], the partition function for quivers that are not of finite-type Dynkin diagrams is
computed by using equivariant localization. Such quivers are called fractional, and quivers
of non-simply laced type fall into this category. An integer ra is assigned to each node a
to distinguish its relative length squared from the other nodes’. In particular, the partition
function will reduce to the simply-laced case when all ra’s are equal to one. It was argued that
the action of only one of the rotation generators is modified to account for the contribution
of a given node a:

z1 7→ eiraε1z1 ≡ qra z1, z2 7→ eiε2z2 ≡ t−1 z2. (3.1.2)
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The partition function is an index

Z5d (S1 × C2) = tr (−1)F g ,

where g = qra(S1−SR)t−S2+SR ; S1 and S2 are the generators of the two rotations around the
complex planes in C2 defined above. F is the fermion number. Finally, SR is the generator of
the U(1)R ⊂ SU(2)R charge of the R-symmetry1. We twist by this R-symmetry to preserve
supersymmetry.

This index can be computed using equivariant integration, and written as a sum over
fixed point contributions on the instanton moduli space labeled by Young diagrams:

Z5d = r5d

∑
{µ}

I5d,{µ}(q, t; a,m, τ). (3.1.3)

The normalization factor r5d contains the tree level and the one loop contributions to the
partition function. We have used the following shorthand notation for Young diagrams to
express the fixed points:

{µ} = {µaI,i}a=1,...n; I=1,...da; i=1,...,∞, (3.1.4)

where the number of nodes in the quiver is given by n. The rank of the gauge groups is
da. Although only finitely many rows of the Young diagrams are non-zero, we let i to run
to infinity keeping in mind after a finite value of i, µaI,i’s vanish. Sometimes we prefer to
suppress one or both subscripts to avoid cumbersome notation and hope that our notation
will be clear from the context. The gauge theory partition function will depend on more
parameters than just q and t; as we reviewed in Section 2.1, there are gauge couplings
τ ’s, which come from certain moduli of the (2, 0) theory in six dimensions; there are also
fundamental hypermultiplets masses, which originate from the positions of non-compact D5
branes on C, and Coulomb moduli, which are the positions of the compact D5 branes on C.

In [71], it is shown that the contributions for different multiplets at the node a depend
also on the integer ra. For our purposes, we assign the integer ra = 1, 2, or 3 at every gauge
node a in the quiver. The fixed point contributions I5d,{µ} generically have the following form:

I5d,{µ} = eτ ·µ ·
n∏
a=1

z5d
Va,~µa z

5d
Ha,~µa z

5d
CS,~µa ·

n∏
a,b=1

z5d
Hab,~µa,~µb

, (3.1.5)

where z5d
Va,~µa

and z5d
Ha,~µa

are the contributions of the vector and hypermultiplets for node a at
fixed points labeled by representations {~µa}, respectively. zCS,~µa stands for the topological
Chern-Simons factors. We also have bifundamental matter multiplets charged under two
distinct nodes, say a and b, and we label them with z5d

Hab,~µa,~µb
. We assume that z5d

Hab,~µa,~µb
is 1

if there is no bifundamental hypermultiplet between nodes a and b.

1When considering type IIB string theory on the surface X, recall that an SO(5)R R-symmetry is
preserved. The D5 branes will only preserve an SU(2)R subgroup of this R-symmetry, and only a U(1)R
subset is relevant here.
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Similar to the simply-laced quivers, the fixed point contributions for all multiplets are
written in terms of the same function which is usually referred to as Nekrasov function.
However, for the fractional quivers, the Nekrasov functions are modified according to the
change in equivariant parameters at different nodes: (q, t) 7→ (qra , t). The most general of
Nekrasov function we will need is given by

Nµaµb(Q; qrab) =
∞∏

i,j=1

(
Qqraµ

a
i−rbµbj tj−i+1; qrab

)
∞(

Qqraµ
a
i−rbµbj tj−i; qrab

)
∞

(
Qtj−i; qrab

)
∞(

Qtj−i+1; qrab
)
∞
. (3.1.6)

where rab is a positive integer divisor of ra and rb for now, and (x; q)∞ =
∏∞

i=0(1− x qi) is
the q-Pochhammer symbol2. Let us summarize the contributions from the different multiplets.
At each node a, we have a U(da) gauge group. The vector multiplets contribute at a fixed
point:

z5d
Va,~µa =

∏
1≤I,J≤da

[NµaIµ
a
J
(ea,I/ea,J ; qra)]−1. (3.1.7)

Here, ea,I = exp(R aa,I) encode the da exponentiated Coulomb branch parameters of the
U(da) gauge group at the node a. At each node a, we can also couple ma hypermultiplets
charged in fundamental representation of the U(da) gauge group with masses βa’s. They
contribute to the partition function:

z5d
Ha,~µa =

∏
1≤α≤ma

∏
1≤I≤da

N∅µaI (v
2
a fa,α/ea,I ; q

ra). (3.1.8)

The exponentiated masses of the hypermultiplets are encoded in fa,α = exp(Rβa,α), where

α takes ma values, and va ≡
√
qra/t. Note that

∑n
a=1 ma = |WS |. For every pair of nodes

a, b connected by an edge in the Dynkin diagram, we get a bifundamental hypermultiplet.
Its contribution to the partition function is:

z5d
Hab,~µa,~µb

=
∏

1≤I≤da

∏
1≤J≤db

[NµaIµ
b
J
(ea,I/eb,J ; qrab)]∆ab . (3.1.9)

where ∆ is a matrix whose entries ∆ab are equal to either 1 or 0, depending on whether the
a’th and the b’th nodes are connected or not. There is an important subtlety arising for
fractional quivers: the bifundamental matter can be coupled to gauge nodes corresponding to
different length roots. For those multiplets, we have rab = gcd(ra, rb), the greatest common
divisor of ra and rb.

2We suppress the explict dependence on ra and rb to avoid clutter in our notation, and refer only to rab
since they determine the type of the q-Pochhammer symbol. Moreover, we keep rab generic for now; rab will
be specialized when we introduce the bifundamental contributions.
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In a 5d theory, we can turn on a Chern-Simons term of kCSa units, and its contribution to
node a reads

z5d
CS,~µa =

∏
1≤I≤da

(
TµaI
)kCSa (3.1.10)

Here, Tµ is defined as Tµ = (−1)|µ|q‖µ‖
2/2t−‖µ

t‖2/2. The 5d N = 1 Chern-Simons terms can
be determined by conformal invariance; with the rest of the partition function as written,
kCSa on the a-the node is the difference between the ranks of the gauge group on that node
and the following node(s). The gauge couplings keep track of the total instanton charge, via
the combination

τ · µ =
n∑
a=1

da∑
I=1

τa |µaI |. (3.1.11)

3.2 3d Gauge Theory

On the Higgs branch of the little string theory, the bulk theory is abelianized, and the D5
branes are all non-compact. At the same time, there is a new class of branes that plays
an important role: these are D3 branes which are at points on C and which wrap compact
2-cycles in X3. The D3 branes survive the little string limit, for the same reason D5 branes
did: their tensions remain finite.

D3 Branes are Vortices

The D3 branes realize vortices in the D5 brane gauge theory. Vortices are codimension two
solutions of gauge theories on the Higgs branch, where the vortex charge is the magnetic
flux in two directions traverse to the vortex. A generic collection of vortices in 5d N = 1
gauge theories are BPS if the 5d FI parameters are aligned. At each node, the triplet of
FI terms transform as a vector under the SU(2)R symmetry rotations. The orientation of
this vector determines the supersymmetry preserved by the vortex. In our setting, the 5d
FI parameters are the moduli of the little string in (2.1.6). The background we consider
has

∫
Sa
m2
sωJ/gs > 0 as the only non-zero FI terms in (2.1.6). The vortices are in fact the

supersymmetric vacua of the theory on the D3 branes. Due to non-zero 3d FI terms (recall
that Re(τa) > 0) in a supersymmetric vacuum, the chiral multiplets from the D3-D5 strings
need to get expectation values. This describes D3 branes ending on the D5 branes. As is
well known, this turns on magnetic flux on the D5 brane, transverse to the D3 branes [2],
consistent with the vortex interpretation.

3The D3 branes wrapping non-compact 2-cycles are also important; they are codimension 4 defects of the
little string; see for instance [31].
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Figure 3.1: D3 brane quiver for a full puncture of the An little string.

The Higgs branch of the theory on the D3 branes is the moduli space of vortices. We
have thus derived, from string theory, the description of the moduli spaces of vortices in a
large class of g-type N = 2 quiver theories. As far as we are aware, the result is novel, except
in some special cases4.

3d Gauge Theory Partition Function

Again, we can wrap D3 branes on compact or non-compact two cycles on X. The ones on
compact cycles are dynamical, whereas the branes on non-compact cycles are not. The quiver
gauge theory living on the branes was again constructed by Douglas and Moore, and we will
call it G3d. It is a 3d theory with N = 4 supersymmetry5. In the N = 2 language, each
vector multiplet has an adjoint chiral multiplet. There is also a cubic superpotential. Let Na

be the number of D3 branes wrapping the a-th compact two cycle belonging to the second
homology isomorphic to the coroot lattice of g. Then we have a quiver theory of g type with
unitary gauge nodes, U(Na). We obtain bifundamental matter hypermultiplets by quantizing
strings stretched between adjacent nodes in the associated Dynkin diagram, described by the
previously defined matrix ∆ab.

In addition to the D3 branes, we have D5 branes wrapping cycles in X. As previously
mentioned, on the Higgs branch, the D5 branes wrap non-compact two cycles which are
described by a collection of coweights WS. We need to quantize the strings strechted

4In mathematical literature, the moduli space of vortices is called the moduli space of quasi-maps; see for
example [72], where the quiver in Figure 3.1 appeared before, precisely for this purpose.

5Similar to the D5 branes, the D3 branes too feel the stringy effects due to the presence of the transverse
circle in C and the tower of states resulting from it. Therefore, the theory is really three-dimensional at low
energies.
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between D3 and D5 branes too, which give rise to chiral and anti-chiral multiplets of N = 2
supersymmetry at the intersection points of compact cycles wrapped by D3 branes and non-
compact cycles with D5 branes. The presence of D5 branes break half of the supersymmetry
and we end up with a 3d theory of N = 2 supersymmetry.

From the D5 brane point of view, the D3 branes realize vortices. Their charge gives the
magnetic flux in the remaining directions transverse to D3 branes. For an arbitrary collection
of vortices to be BPS, the FI parameters which are the moduli of little string need to be
aligned at each node of the 5d quiver theory. This requirement is satisfied with our choice
of parameters (see [27] for details). The chiral multiplets coming from D3-D5 strings get
expectation values due to non-zero 3d FI parameters in the supersymmetric vacua.

We can subject the 3d theory to Ω-background as well to compute the partition function
on the vortices using localization [73, 74, 75, 76]. Note that we are probing the 5d theory
on its Higgs branch; in other words, it is the theory living on the D5 branes wrapping
non-compact two cycles. The equivariant action that we used to compute the 5d partition
function can be used for the 3d one too. We choose the D3 brane to extend in the plane
rotated by the parameter q, and to be transverse to the plane rotated by t. The partition
function is again given as an index:

Z3d(S
1 × C) = tr (−1)F g , (3.2.12)

where g = qra(S1−SR)t−S2+SR consists of rotations S1,2 acting on the different planes, and SR
are the R-symmetry rotations. We placed the D3 branes such that S2 acts on the transverse
plane to the branes, and is therefore an R-symmetry generator from the 3d theory perspective.
The theory can have at most U(1)R symmetry, so SR− S2 is a global symmetry. Localization
allows us to write the 3d partition function as a sum over Young diagram just as in the
case of the 5d theory. This form will be crucial to see the connection between T 5d and G3d.
However, there also exists an integral representation of the 3d partition function. The two
representations of the partition functions are ultimately related by picking up integration
contours and computing the integral via residues. The partition function can be computed as
an integral of the Coulomb branch in 3d,

Z3d =

∫
dx I3d(x) , (3.2.13)

where the integrand I3d(x) can easily be read off from the quiver description of the theory.
It is given by the product of individual contributions coming from vector multiplets and
different types of matter multiplets coupled to the gauge groups on the nodes. Generically, it
has the following form,

I3d(x) = r3d

n∏
a=1

z3d
Va(xa) z

3d
Ha(xa, f)

∏
a<b

z3d
Hab

(xa, xb). (3.2.14)

r3d is again a normalization factor whose precise form is not important for our purposes. The
contributions of each type of multiplet is known, and we collect them here for completeness.
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The N = 4 vector multiplet for a unitary gauge group U(Na) is given by

z3d
Va(xa) = e

∑Na
I=1 τaxa,I

∏
1≤I 6=J≤Na

(exa,I−xa,J ; qra)∞
(t exa,I−xa,J ; qra)∞

, (3.2.15)

where as before, ra ≡ r 〈αa, α∨a 〉/2 for each node a, with r be the highest number of arrows
linking two adjacent nodes in the Dynkin diagram of g (and 〈αa, α∨a 〉 = 2 for long roots, in our
normalization). The numerator consist of contribution coming from the gauge bosons, and
the denominator takes into account the adjoint chiral multiplets within the vector multiplet.
The bifundamental hypermultiplets give a similar contribution to the 5d case,

z3d
Hab

(xa, xb) =
∏

1≤I≤Na

∏
1≤J≤Nb

[
(vabt e

xa,I−xb,J ; qrab)∞
(vab exa,I−xb,J ; qrab)∞

]∆ab

, (3.2.16)

where again ∆ describes how the nodes are connected to each other. rab is the greatest
common divisor of ra and rb for neighboring nodes a and b. The factor vab is a modified refined
factor for non simply-laced Lie algebras: vab =

√
qab/t with qab = qra if both nodes a and b

correspond to long roots; otherwise, vab = v =
√
q/t. Chiral multiplets in the fundamental

representation of the a-th gauge group, with SR R-charge −r/2 (not to be confused with the
lacing number of g), contribute

∏
1≤I≤Na(v

r
a fa,ie

−xa,I ; qra)−1
∞ to the partition function, while

anti-chiral multiplets contribute
∏

1≤I≤Na(v
r
a fa,ie

−xa,I ; qra)∞, with fa,i the associated flavor.
The integral runs over all the Coulomb branch moduli of the n gauge groups in the quiver.

To perform this integral, one needs to select a vacuum and pick a contour. We will not
attempt to give a precise contour prescription in this thesis, but we conjecture what they
should be based on the input from the 5d theory.

3.3 g-type Toda and its q-deformation

We now review a last important piece of physics that is needed to establish a triality, the
Toda conformal field theory on the Riemann surface C. The partition function of the gauge
theory on D3 branes presented above is in fact equal to a certain canonical “q-deformation”
of the Toda CFT conformal block on C. This CFT has a vertex algebra symmetry called
Wq,t(g) symmetry, and was first described in [77]. Let us remind the reader of the various
objects that enter in Toda theory, for g a simple Lie algebra.

Free Field Toda CFT

Let g be a simple Lie algebra. g-type Toda field theory can be written in terms of n = rk(g)
free bosons in two dimensions; there is a background charge contribution, and an exponential
potential that couples the bosons to that charge:

SToda =

∫
dzdz̄

√
g gzz̄[〈∂zϕ, ∂z̄ϕ〉+ 〈ρ, ϕ〉QR +

n∑
a=1

e〈α
∨
a ,ϕ〉/b]. (3.3.17)
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The bosonic field ϕ is a vector in the n-dimensional coweight space, whose modes obey a
Heisenberg algebra. ρ is the Weyl vector of g, the bracket 〈·, ·〉 is the Cartan-Killing form on
the Cartan subalgebra of g, and Q = b+ 1/b is the background charge. As before, α∨a label
the simple positive coroots of g.

The Toda CFT has a W(g) algebra symmetry (see [78] for a review). When g = su(2),
the CFT is called Liouville theory, with Virasoro symmetry. The W(g) symmetry of Toda is
generated by the spin 2 Virasoro stress energy tensor, and additional higher spin currents.

The free field formalism of the Toda CFT was first introduced in [79]. It was then studied
in our context in [80, 81, 82, 83, 84]. We label the primary vertex operators of the W(g)
algebra by an n-dimensional vector of momenta β, and given by:

V ∨β (z) = e〈β,ϕ(z)〉. (3.3.18)

The conformal blocks of the Toda CFT in free field formalism take the following form:

〈V ∨β1(z1) . . . V ∨βk(zk)
n∏
a=1

(Q∨a )Na〉free . (3.3.19)

In the above, we have defined the screening charges

Q∨a ≡
∮
dxS∨a (x) .

These n charges are integrals over the n screening current operators S∨a (x):

S∨a (z) = e〈α
∨
a ,φ(z)〉/b . (3.3.20)

The W(g) algebra can then be defined as a complete set of currents that will commute with
the screening charges. For a derivation of the conformal block expression (3.3.19), we refer
the reader to [85].

Momentum conservation imposes the following constraint:

k∑
i=1

βi +
n∑
a=1

Naα
∨
a/b = 2Q. (3.3.21)

The last term comes from the background charge on a sphere, induced by the curvature
term in (3.3.17). Thus, the above constraint tells us that one of the momenta, say β∞,
corresponding to a vertex operator insertion at z =∞, is fixed in terms of the momenta βi
of the other vertex operators, and the number of screening charges Na.

The correlators of the theory can be computed by Wick contractions, and the conformal
block (3.3.19) takes the form of an integral over the positions x of the Na screening currents:

ZToda =

∫
dx IToda(x) . (3.3.22)
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The integrand IToda(x, z) is a product over various two-point functions:

IToda(x, z) =
n∏
a=1

ITodaa (xa) · Ia,V (xa, z) ·
∏
a<b

ITodaab (xa, xb) (3.3.23)

The two-point functions of screening currents with themselves at a given node of the Dynkin
diagram of g give:

ITodaa =
∏

1≤I 6=J≤Na

〈S∨a (xa,I)S
∨
a (xa,J)〉free. (3.3.24)

These are the vector multiplet contributions at node a. The two-point functions of screening
currents between two distinct nodes a and b is in turn given by:

ITodaab =
∏

1≤I≤Na

∏
1≤J≤Nb

〈S∨a (xa,I)S
∨
b (xb,J)〉free. (3.3.25)

These are the bifundamental hypermultiplet contributions. Finally, the two-point functions
of screening currents at a given node with all the vertex operators.

ITodaa,V =
k∏
i=1

∏
1≤I≤Na

〈S∨a (xa,I)V
∨
βi

(zi)〉free, (3.3.26)

will correspond to chiral matter contributions. The two-point functions are readily evaluated
to be:

〈S∨a (x)S∨b (x′)〉free = (x− x′)b2〈α∨a ,α∨b 〉 (3.3.27)

〈S∨a (x)V ∨β (z)〉free = (x− z)−〈α
∨
a ,β〉 (3.3.28)

After q-deformation, the above conformal block has an interpretation as a 3d partition
function.

q-deformed Toda CFT

In [77], a deformation of the W(g) algebra was given by deforming the screening currents.
Starting with the definition of the quantum number

[n]q =
qn − q−n

q − q−1
, (3.3.29)

and the incidence matrix Iab = 2 δab − Cab, one defines the (q, t)-deformed Cartan matrix,
Cab(q, t) = (qrat−1 + q−rat) δab− [Iab]q. The number ra is defined as before: ra ≡ r 〈αa, α∨a 〉/2,
with r the lacing number of g.

If the Lie algebra g is non-simply laced, its Cartan matrix Cab is not symmetric. Then,
we first need to introduce the matrix Bab(q, t), which is the symmetrization of Cab(q, t). It is
obtained as follows; the symmetrized Cartan matrix is then given by:

Bab = raCab .
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Its (q, t)-deformation is simply:

Bab(q, t) = [ra]q Cab(q, t) .

We are now able to construct a q-deformed Heisenberg algebra, generated by n simple
root generators αa, and satisfying:

[αa[k], αb[m]] =
1

k
(q

k
2 − q−

k
2 )(t

k
2 − t−

k
2 )Bab(q

k
2 , t

k
2 )δk,−m . (3.3.30)

The Fock space representation of the Heisenberg algebra is given by acting on a vacuum
state |λ〉 with “simple root” generators:

αa[0]|λ〉 = 〈λ, αa〉|λ〉
αa[k]|λ〉 = 0 , for k > 0. (3.3.31)

From these generators, one can define the (magnetic) screening charge operators:

S∨a (x) = x−αa[0]/ra : exp
(∑
k 6=0

αa[k]

q
k ra
2 − q− k ra

2

ekx
)

: . (3.3.32)

The Wq,t(g) algebra is then defined as a set of the operators commuting with the screen-
ing charges6. Next, one introduces “fundamental weight” generators wa[m], through the
commutation relation:

[αa[k], wb[m]] =
1

k
(q

k ra
2 − q−

k ra
2 )(t

k
2 − t−

k
2 ) δab δk,−m , (3.3.33)

such that

αa[k] =
n∑
b=1

Cab(q
k, tk)wb[k] . (3.3.34)

Correspondingly, we define (magnetic) degenerate vertex operators:

V ∨a (x) = xwa[0]/ra : exp
(
−
∑
k 6=0

wa[k]

q
k ra
2 − q− k ra

2

ekx
)

: . (3.3.35)

Using the notation 〈. . .〉 for a vacuum expectation value, and making use of the theta
function definition θqra (x) = (x ; qra)∞ (qra/x ; qra)∞, we obtain the following two-point
functions:

For a given node a,

〈S∨a (x)S∨a (x′)〉free =
(ex−x

′
; qra)∞

(t ex−x′ ; qra)∞

(ex
′−x; qra)∞

(t ex′−x; qra)∞

θqra (t ex−x
′
)

θqra (ex−x′)
. (3.3.36)

6One can also define a set of “electric” screenings [77], in the parameter t instead of q, but they will not
be needed here.
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When a and b are distinct nodes connected by a link,

〈S∨a (x)S∨b (x′)〉free =
(t vab e

x−x′ ; qrab)∞
(vab ex−x

′ ; qrab)∞
. (3.3.37)

The two-point of a screening with a “fundamental” vector operator is given by:

〈S∨a (x)V ∨b (x′)〉free =
(t va e

x′−x; qra)∞
(va ex

′−x; qra)∞
. (3.3.38)

In the above, we have va ≡
√
qra/t and vab ≡

√
qrab/t. Recall that if either node a or

node b denotes a short root, then rab = 1, while both nodes denote long roots, then rab = r.
The vertex operators that are relevant to us are not exactly the operators Va(x

′) introduced
above in (3.3.35). Rather, each vertex operator, labeled as Vωi(xi), is a normal ordered product
of rescaled “fundamental coweight” operators,

Wa(x) =: exp
(∑
k 6=0

wa[k]

(q
k ra
2 − q− k ra

2 )(t
k
2 − t− k

2 )
ekx
)

: , (3.3.39)

and rescaled “simple coroot” operators,

Ea(x) =: exp
(∑
k 6=0

αa[k]

(q
k ra
2 − q− k ra

2 )(t
k
2 − t− k

2 )
ekx
)

: , (3.3.40)

where we dropped the zero mode contributions in the above definitions, since we will not
need them in what follows. The fundamental vertex operators Wa

±1(f vra x) have two point
functions with the screening currents S∨a (x′) that are equal to the contributions of either
chiral or anti-chiral multiplets of R-charge −r/2 as described in Section 3.2.

We now consider a setWS of coweights ωi in the coweight space of g, taken in fundamental
representations of Lg and satisfying

∑|WS |
i=1 ωi = 0; to this set WS, we associate a primary

vertex operator:

:

|WS |∏
i=1

Vωi(xi) : , (3.3.41)

where each Vωi(xi) is constructed out of the fundamental coweight and simple coroot vertex
operators.

To fully specify the conformal block, we also need to make a choice of contour in (3.3.22).
In particular, it is worth noting that for a given theory, the number of contours generically
increases after q-deformation, when g 6= An. This is because the number of contours in the
undeformed case is equal to the number of solutions to certain hypergeometric equations
satisfied by the conformal blocks, while the number of countours in the q-deformed theory is
instead the number of solutions to q-hypergeometric equations, which is generically bigger.
Giving a prescription for the integration contours when g 6= An is an open problem in matrix
models, and we will not address this question here.
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Recovering the undeformed theory is straightforward: we let q = exp(Rε1), t = exp(−Rε2),
and take the R to zero limit. In this limit, q and t tend to 1. The individual Vωi(xi) do not
have a good conformal limit, but the products in (3.3.41) do:

:

|WS |∏
i=1

Vωi(xi) : → V ∨β (z).

The momentum β carried by V ∨β (z) is:

β =

|WS |∑
i=1

βi ωi . (3.3.42)

Then, we set the argument of the vertex operators to be:

exi = z q−βi . (3.3.43)

Then the two-point function

〈S∨a (x) :

|WS |∏
i=1

Vωi(xi) :〉free (3.3.44)

becomes the undeformed two-point (3.3.28) of the vertex operator with the a-th screening
current: (1 − ex/z)−〈α

∨
a ,β〉, withβ defined above. In this way, one is able to realize the

insertion of any number of primary vertex operators, and have complete control over how the
insertion scales in the undeformed limit. Any collection of primary vertex operators with
either arbitrary or (partially) degenerate momenta can be analyzed in this way.

3.4 Proof of Triality

In this section, we give the proof of triality. The proof can be divided into two parts: the first
part consists of showing that the 5d theory partition function reduces to the 3d partition
function of vortices once we tune the Coulomb branch parameters such that we probe the
point on the moduli space where the Coulomb branch meets the Higgs branch. The second
part is to show that the integral representation of the 3d partition function is nothing but
the Coulomb gas representation of the conformal blocks in q-deformed Toda theory.

Gauge/Vortex Duality

The relationship between the 5d N = 1 gauge theory T 5d, and the 3d N = 2 gauge theory
G3d, is called gauge/vortex duality. The duality comes from two different, yet equivalent
descriptions of vortices in the theory: one from the perspective of 5d theory with vortices,
and the other from the perspective of the 3d theory on the vortex. The fact that the theory
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on vortices captures aspects of dynamics of the ”parent” gauge theory was noticed early on
in [86] at the level of BPS spectra. Turning on Ω-background transverse to the vortex, the
correspondence becomes more extensive [87, 88]: it is a gauge/vortex duality [89].

The 2d Ω-background transverse to the vortex (with parameter ε2) is necessary. It
ensures that the super-Poincare symmetries preserved by the 5d and the 3d theories are the
same, since the Ω-background is a form of compactification [90, 91, 92] and breaks half the
supersymmetry: after turning it on, both theories are 3d N = 2 theories on a circle. The
duality should hold at the level of F-type terms – the Kahler potentials are not protected,
and we don’t claim to specify them. The duality is the little string analogue [89] of large
N dualities in topological string [93, 94, 95, 96]. The D3 brane gauge theory lives in the
Higgs phase of the bulk theory. From the bulk perspective, the theory starts out on the
Higgs branch, but ends up pushed onto the Coulomb branch due to the vortex flux. In
the Higgs phase, the Coulomb moduli are frozen to points where the hypermultiplets can
get expectation values. Turning on N units of vortex flux in a U(1) gauge group shifts
the corresponding Coulomb modulus a to a + Nε2, where ε2 is the parameter of the Ω in
background rotating the complex plane transverse to the vortex. This is a consequence [89] of
how Ω-background deforms the Lagrangian of the 5d theory [40, 97]. Once we have a pair of
dual theories, one expects that their partition functions in the full Ω-background, depending
on ε1,2, agree as well. We now show this explicitly.

3d-5d Partition functions

For the first part of the proof, the integral representation of the 3d partition function is not
very useful. Instead, we would like to explicitly perform the integrals. Once the appropriate
contour is chosen, the contributing poles turn out to be labeled by Young diagrams. Therefore,
the 3d partition function can also be expressed as a sum over Young diagrams:

Z3d =

∫
dx I3d(x) =

∑
{µ}

res{µ} I3d(x). (3.4.45)

The summand can be easily computed after normalizing it by the residue of the pole at {∅}:

res{µ}I3d(x)/res{∅}I3d(x) = I3d(x{µ})/I3d(x{∅}), (3.4.46)

where x{µ} denote µ dependent substitution for the Coulomb branch parameters:

{exµ} = {ea,I qµ
a
I,itρi v#aq#′a}. (3.4.47)

The equivalence of the partition functions of G3d and T 5d is observed when we move to
the special point on the moduli space of the 5d theory where its Coulomb branch meets its
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Higgs branch. To this end, we tune the Coulomb branch parameters to equate some of the
masses of the hypermultiplets:

ea,I = fi t
Na,Iv#a,i,Iq#′a,i,I . (3.4.48)

Here, Na,I are positive integers that can be interpreted as integer units of vortex flux, which
we turn on. Effectively, then, one can get off the root of the Higgs branch, but only to probe
the Coulomb branch of T 5d on an integer-valued lattice.

This identification results in the truncation of Young diagrams. Let us assume that one
of the representations, say µ, labeling the generalized Nekrasov factor Nµν(Q; qrµν ), has at
most N rows. If we set Q = qrν t−(M+1), one can then show that the Nekrasov factor vanishes
unless the length of ν is bounded by N +M , i.e. `(ν) ≤ N +M . Furthermore, we make use
of the identity below, which following from the properties of the q-Pochhammer symbol:

Nµν(Q; q) =

rµν−1∏
a=0

Nµν(q
aQ; qrµν ) (3.4.49)

We previously mentioned that the fixed points of the equivariant action used in computing
5d instantons are labeled by Young diagrams, and these Young diagrams are allowed to be
of any size. At this point of the moduli space, it is not hard to show that the non-zero
contributions to the partition function come from Young diagrams which have less than or
equal to Na rows, otherwise their contribution vanish. We can find a truncation pattern, and
easily deduce that each Young diagram is limited in length by an integer. This truncation
behavior can be checked directly by studying the generalized Nekrasov factors Nµν(Q; qrµν ).

Once we know that the Young diagrams µ and ν are truncated such that `(µ) ≤ Nµ and
`(ν) ≤ Nν , one is able to show that the generalized Nekrasov factor can be rewritten as

Nµν(Q; qrµν ) =

Nµ∏
i=1

Nν∏
j=1

(Qqrµµi−rννj tj−i+1; qrµν )∞(Qtj−i; qrµν )∞
(Qqrµµi−rννj tj−i; qr)∞(Qtj−i+1; qr)∞

×Nµ∅(QtNν ; qrµν )N∅ν(Qt
−Nµ , qrµν ). (3.4.50)

This identity is crucial in establishing the equivalence between the 3d and 5d partition
functions. Now, for definiteness, suppose that T 5d is engineered from a given polarized set
WS of coweights of g, in the sense of Section 2.4. We then look at the decomposition of the
various multiplet contributions after imposing (3.4.48). The 5d vector multiplets become

n∏
a=1

z5d
Va,µa =

n∏
a=1

z3d
Va

(xµa)

z3d
Va

(x∅)
· Vvect, (3.4.51)

where the first factor is nothing but the vector multiplet contribution for 3d theory. Vvect is
all the remaining factors from 5d vector multiplet. Similarly, we can also reduce and isolate
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factors from bifundamental multiplets that make up 3d bifundamental contribution and a
leftover factor Vbifund:∏

a<b

z5d
Hab,µa,µb

=
∏
a<b

[
z3d
Hab

(xµa , xµb)

z3d
Hab

(x∅, x∅)

]∆ab

· Vbifund . (3.4.52)

We write the following for the contributions of the fundamental hypermultiplets and Chern-
Simons term:

n∏
a=1

z5d
Ha,µa = Vfund, (3.4.53)

n∏
a=1

z5d
CS,µa = VCS. (3.4.54)

We now collect all the leftover factors from the above reduction. After many cancellations,
one can show that these factors make up a 3d hypermultiplet contribution,

VvectVbifundVfundVCS =
n∏
a=1

z3d
Ha

(xµa)

z3d
Ha

(x∅)
, (3.4.55)

where z3d
Ha

(xµa) can be written compactly as:

z3d
Ha(xa, fa,i) =

∏
1≤I≤Na

|WS |∏
j=1

[
(v#a,I
a ex

(a)
I /fj; q

ra)∞

]ωj,a
(3.4.56)

Here, ωj,a is the a’th Dynkin label of the j’th coweight in WS , with the coweights expanded
in terms of fundamental coweights. For example, the g = B3 coweight ω1 = [−1, 1, 0]
has ω1,1 = −1, ω1,2 = 1, ω1,3 = 0, and is to be understood as minus the first fundamental
coweight plus the second fundamental coweight of B3. The requirement that the sum of the
coweights in WS add up to zero implies that the matter contribution (3.4.56) is in fact a

ratio of q-Pochhammer’s. From the point of view of G3d, the various v
#a,I
a factors are fixed by

R-charge conservation. In the end, the summand of the 5d gauge theory partition function
becomes the summand of the 3d partition function, establishing the first half of triality.

q-deformed Toda Conformal Block and 3d Partition Function

The second part of the proof is more straightforward, as it simply consists in comparing the
integrands on both sides. The q-deformed conformal block is then equal to the partition func-
tion of G3d: the two-point functions of screenings in (3.3.36), (3.3.37), are the contributions
of the N = 4 vector and bifundamental multiplets in (3.2.15) and (3.2.16) to the D3 brane
partition function, respectively. The number Na of D3 branes on the a-th node maps to the
number of screening charge insertions. The evaluation of the two-point of a screening and a
vertex operator (3.3.44) becomes the 3d hypermultiplet contribution (3.4.56). This finishes
the proof.
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3.5 Quantum Affine Algebras and Defects

The above proof of triality was technically only written for the case of polarized defects of
the little string theory. A natural question to ask, then, is whether triality still works for
unpolarized defects. The answer is affirmative, and addressing this question in full generality
turns out to have important implications for the (co)weights of g. Indeed, already in the case
where WS characterizes a polarized defect, the matter content on node a of the 3d theory is
given by (3.4.56):

z3d
Ha(xa, fa,i) =

∏
1≤I≤Na

|WS |∏
j=1

[
(v#a,I
a ex

(a)
I /fj; q

ra)∞

]ωj,a
, (3.5.57)

meaning the coweight ωj appears in a “refined” fashion. Going back to unpolarized (co)weights
of the little string, they too will get refined in the triality picture, and the matter content of
G3d gives an explicit formula for them (though in that case, we do not have a general closed-
form formula such as (3.4.56)). Does this refinement have a mathematical interpretation?
The answer is given in [77]: the authors point out the existence of a deep relation between the
deformed W-algebra Wq,t(g) and the representation ring of the quantum affine algebra Uq(ĝ),
for g a simple Lie algebra. Specifically, one would like to construct the generators ofWq,t(g) as
the commutant of the screening charges of the algebra. The construction of these generators is
similar to the construction of irreducible finite dimensional representations V (Λ) of g, where
Λ is some highest weight of an irrep. However, the number of terms in a generator of Wq,t(g)
is in general bigger than the dimension of V (Λ). The correct statement is that the weights
appearing in the generators of Wq,t(g) are the weights of some irreducible finite dimensional
representation V(Λ) of the quantum affine algebra Uq(ĝ); this representation decomposes
under Uq(g) as V(Λ) ∼= V (Λ)⊕ . . ., where the dots are smaller irreducible representations.

The weights in the finite dimensional representations of Uq(ĝ) (or equivalently, appearing
in the generators of Wq,t(g)) are generically of the form:

: WΛEi1
(
z qa1 vb1

)−1
Ei2
(
z qa2 vb2

)−1
. . . Eik

(
z qak vbk

)−1
: ,

where Eil are simple (co)root operators, and ai, bi are integers7.
It turns out that all the weights of Uq(ĝ) are explicitly realized as little string defects. As

an instructive example, let us look at g = D4.

Example 3.5.1. Note that the representation theory of the four fundamental representations

7Some of the terms appearing in the generators of Wq,t(g) also sometimes feature derivatives, which come
from the fusion of certain vertex operators at a given position z. It would be important to understand exactly
how they arise in our context.
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of Uq(D̂4), interpreted as representations of Uq(D4), gives:

V(ω1) ∼= V (ω1)

V(ω2) ∼= V (ω2)⊕ C
V(ω3) ∼= V (ω3)

V(ω4) ∼= V (ω4) .

See for instance [98] for the derivation. In particular, the quantum affine algebra and Lie
algebra vector and spinor representations are isomorphic, but the second fundamental repre-
sentation of Uq(D̂4) is bigger than that of D4: it also contains an extra trivial representation
(denoted by C).

This matches exactly the representation theory: the null weight appears 4 times in V (ω2)
(this is just the rank of D4, as it should be), and then once again in C. Using triality, we can
engineer these weights explicitly, with five distinct truncations of T 5d’s partition function that
produce a distinct potential for the matter content of G3d. The recent work of [71] shows that
one can equivalently recover these potentials from the computation of qq-characters of D4.
We will be more quantitative in Chapter 8.
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Chapter 4

(2,0) CFT Limit and Nilpotent Orbits
Classification

Because it has a scale ms, the (2, 0) little string theory on C is not conformal. To recover the
(2, 0) 6d CFT theory on C, we take this string scale ms to infinity, while keeping all moduli of
the (2, 0) theory fixed in the process. Furthermore, if we denote by ∆x the relative position
of the |WS | D5 branes on C, we then take the product ∆x ms to zero.

4.1 Description of the Defects

The quiver gauge theory description of the defects is only valid at finite ms. Taking the (2, 0)
CFT limit ms → ∞ has drastic effects on the physics; most notably, the radius of the 5d
circle S1(R) = 1/m2

sS
1(R̂) vanishes in the limit, so the theory becomes four-dimensional. We

call the resulting theory T 5d
ms→∞ ≡ T 4d. The 4d inverse gauge couplings τa vanishes as well,

because the combinations τam
2
s turn out to be moduli of the (2, 0) CFT, which are fixed in

the limit. In other words, there is no longer a Lagrangian describing the theory on the D5
branes1. Though an effective description as a quiver gauge theory is no longer available, a lot
can be deduced about the resulting 4d theory in that limit, as we now explain.

Most notably, we conjecture that when ms → ∞, the Coulomb branch of the defect
theory T 4d becomes a nilpotent orbit of g. In the next sections, we will perform extensive
checks of this claim, such as dimension counting of the Coulomb branch, matching of the
Bala-Carter labeling of nilpotent orbits, and computation of Seiberg–Witten curves. To arrive
at nilpotent orbits, however, we first show a beautiful connection that exists between the
coweights defining a little string defects and the so-called parabolic subalgebras of g.

1Note this is not the 4d limit described in [70]; there, one obtains a 4d quiver gauge theory, with the
same quiver as for T 5d, by keeping the inverse gauge couplings τa finite. This does not decribe the (2, 0)
theory on C, since the moduli τam

2
s then become infinite.
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4.2 Parabolic Subalgebras

We will need two facts from representation theory: First, a Borel subalgebra of a Lie algebra
g is a maximal solvable subalgebra. We note that the Borel subalgebra can always be written
as the direct sum b = h⊕m; here, h is a Cartan subalgebra of g, and m =

∑
α∈Φ+ gα, with

gα the root spaces associated to a given set of positive roots Φ+. We fix the set Φ+, which in
turn fixes the Borel subalgebra b, for a given Lie algebra g.

Second, a parabolic subalgebra pΘ is defined as a subalgebra of g which contains the Borel
subalgebra b. More precisely, let us denote the set of positive simple roots by ∆. Take an
arbitrary subset Θ ⊂ ∆. We define pΘ to be the subalgebra of g generated by b and all of the
root spaces gα, with α ∈ ∆ or −α ∈ Θ. Then pΘ is a parabolic subalgebra of g containing b,
and every parabolic subalgebra of g containing b is of the form pΘ for some Θ ⊂ ∆. In fact,
every parabolic subalgebra of g is conjugate to one of the form pΘ for some Θ ⊂ ∆.

A parabolic subalgebra also obeys a direct sum decomposition:

pΘ = lΘ ⊕ nΘ . (4.2.1)

We introduced nΘ =
∑

α∈Φ+\〈Θ〉+ gα, which is called the nilradical of pΘ, while lΘ = h ⊕∑
α∈〈Θ〉 gα is called a Levi subalgebra; the subroot system 〈Θ〉 is generated by the simple roots

in Θ, while 〈Θ〉+ is built out of the positive roots of 〈Θ〉. Then, it follows that nΘ
∼= g/pΘ.

Furthermore, all Levi subalgebras of a given parabolic subalgebra are conjugate to each
other [99]. We illustrate the above statements in the examples below:

Example 4.2.1. Consider g = A2 in the fundamental, three-dimensional representation.
Then the elements in the Cartan subalgebra have the form

h =

∗ 0 0
0 ∗ 0
0 0 ∗

 . (4.2.2)

We associate to a root αij = hi − hj the space CEij, where Eij is the matrix that has a 1 in
the i-th row and j-th column, and zeroes everywhere else. Thus, we see that

b =

∗ ∗ ∗0 ∗ ∗
0 0 ∗

 , (4.2.3)
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and the parabolic subalgebras are

p∅ = b =

∗ ∗ ∗0 ∗ ∗
0 0 ∗

 , (4.2.4)

p{α1} =

∗ ∗ ∗∗ ∗ ∗
0 0 ∗

 , (4.2.5)

p{α2} =

∗ ∗ ∗0 ∗ ∗
0 ∗ ∗

 , (4.2.6)

p{α1,α2} = g =

∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 . (4.2.7)

Let us look at the Levi decompositions of the above:

Example 4.2.2. For g = A2, we get the following decompositions:

p∅ =

∗ ∗ ∗0 ∗ ∗
0 0 ∗

 =

∗ 0 0
0 ∗ 0
0 0 ∗

⊕
0 ∗ ∗

0 0 ∗
0 0 0

 = l∅ ⊕ n∅, (4.2.8)

p{α1} =

∗ ∗ ∗∗ ∗ ∗
0 0 ∗

 =

∗ ∗ 0
∗ ∗ 0
0 0 ∗

⊕
0 0 ∗

0 0 ∗
0 0 0

 = l{α1} ⊕ n{α1}, (4.2.9)

p{α2} =

∗ ∗ ∗0 ∗ ∗
0 ∗ ∗

 =

∗ 0 0
0 ∗ ∗
0 ∗ ∗

⊕
0 ∗ ∗

0 0 0
0 0 0

 = l{α2} ⊕ n{α2}, (4.2.10)

p{α1,α2} =

∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 =

∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

⊕
0 0 0

0 0 0
0 0 0

 = l{α1,α2} ⊕ n{α1,α2}. (4.2.11)
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Example 4.2.3. In table 4.1, we show the root spaces that the Borel subalgebra of A3 is
made of.

Θ pΘ lΘ nΘ

∅


∗ * * *

0 ∗ * *

0 0 ∗ *

0 0 0 ∗



∗ 0 0 0

0 ∗ 0 0

0 0 ∗ 0

0 0 0 ∗




0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗
0 0 0 0


: α1 : (α1 + α2) :(α1 + α2 + α3)

: α2 : (α2 + α3)

: α3

Table 4.1: This table illustrates the Levi decomposition of pΘ, when Θ is the empty set and
g = A3. pΘ consists of all the matrices in A3 with zeroes in the indicated places and the
other entries are arbitrary. The color code shows which positive root is denoted by which
nonzero entry.

Parabolic Subalgebras from Brane Defects

We can now explain how parabolic subalgebras of g arise from noncompact D5 branes:
Consider a set of coweights defining a puncture,

WS = {ωi} .

As we explained in Section 2.3, each coweight ωi represents a distinct D5 brane. A set of
simple roots Θ, as defined in the previous paragraph, is constructed as the subset of all simple
roots of g that have a zero inner product with every coweight of WS .

Among the many possible sets of coweights, we look in particular for a set in the Weyl
group orbit of g for which |Θ| is the biggest. We call such a set of coweights distinguished. In
the rest of this thesis, the sets of coweights WS we consider are all taken to be distinguished.
If a given set is not distinguished, acting simultaneously on all its coweights with the Weyl
group of g will always turn it into a distinguished set. We provide many examples below.

Example 4.2.4. Let us consider the following set of F4 coweights, expanded in terms of
fundamental coweights as:

WS = {ω1 = [ 0, 0, 1,−1], ω2 = [ 0, 0,−1, 1]}.

Both coweights have a zero inner product with α1, α2, so |Θ| = 2. A Weyl relfection about the
simple root α4 turns the set into:

W ′S = {ω1 = [ 0, 0, 0, 1], ω2 = [ 0, 0, 0,−1]}
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Note that this time, |Θ| = 3, and that is the maximal size of Θ for this choice of defect.
Therefore, we call the set W ′S distinguished.

Θ = ∅

ω1 : [−1, 0, 0]
ω2 : [ 1,−1, 0]
ω3 : [ 0, 1,−1]
ω4 : [ 0, 0, 1]

3 2 1

4

Simple root
subset of T 4d

Weights Gauge Theory T 5d

Figure 4.1: From the distinguished set of weights WS , we obtain the parabolic subalgebra p∅
of A3 in the CFT limit (in this case, the choice of weights is unique up to global Z2 action on
the set). Reinterpreting each weight as a sum of “minus a fundamental weight plus simple
roots,” we obtain the 5d quiver gauge theory shown on the right. The white arrow implies
we take the CFT limit on the left.

Θ = {α3, α4}

ω1 : [−1, 0, 0, 0]
ω2 : [ 1,−1, 0, 0]
ω3 : [ 0, 1, 0, 0]

3 4

2

2

2 1

ω1 : [ 1, 0, 0, 0]
ω2 : [ 1, 0, 0, 0]
ω3 : [−2, 1, 0, 0]
ω4 : [ 0,−1, 0, 0]

4 6

3

3

2 2

Simple root
subset of T 4d

Weights Gauge Theory T 5d

Figure 4.2: From the two distinguished sets of weights WS , we read off the parabolic
subalgebra p{α3,α4} of D4 when we flow to the CFT limit. Reinterpreting each weight as a
sum of “minus a fundamental weight plus simple roots,” we obtain two different 5d quiver
gauge theories shown on the right. The white arrows imply we take the CFT limit on the left.
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Θ = ∅

ω1 : [ 0, 1, 0, 0]
ω2 : [ 1,−2, 1, 1]
ω3 : [−1, 1, 0,−1]
ω4 : [ 0, 0,−1, 0]

Θ = {α1, α4}

ω1 : [ 0, 1, 0, 0]
ω2 : [ 0,−1, 2, 0]
ω3 : [ 0, 0,−1, 0]
ω4 : [ 0, 0,−1, 0]

3 6

3

4

2

2

Simple root
subset of T 4d

Weights Gauge Theory T 5d

Figure 4.3: Two distinguished sets of weights WS which spell out the same quiver, but flow
to two different defects in the CFT limit; we therefore see it is really the weights, and not
quivers, that define a defect.

A nilradical nΘ of g occuring in the direct sum decomposition (4.2.1) always specifies
the Coulomb branch of some defect T 4d. Starting from the weight data of the defect, the
nilradical is extracted as follows: it is the direct sum of the root spaces associated to a set of
positive roots {eγ} in g, such that

〈eγ, ωi〉 < 0 (4.2.12)

for at least one coweight ωi of WS . The bracket 〈·, ·〉 is the Cartan-Killing form of g. In
particular, the size of this set gives the complex dimension of the Coulomb branch of T 4d. It
is important to note that the Coulomb branch is generically smaller than at finite ms, for
T 5d, where we had (2.4.17): ∑

〈eγ ,ωi〉<0

|〈eγ, ωi〉| .

Indeed, in the little string formula above, positive roots are counted with multiplicity, while
this is not the case in the CFT limit. As a consequence, the Coulomb branch dimension of
T 4d is at most the number of all positive roots of g. This decrease of the Coulomb branch is
directly related to an effect we pointed out in Toda theory 3.3: there, the number of contours
in the evaluation of conformal blocks was conjectured to be bigger in q-deformed Toda, as
opposed to the undeformed case.

Though we do not have a direct proof of the above prescription for computing the Coulomb
branch dimension of T 4d, we checked it explicitly for the defects of all exceptional algebras,
and up to a high rank for the classical algebras.
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Example 4.2.5. We will explicitly calculate the Coulomb branch dimension of the full
puncture theory of example 2.3.1, both for T 5d in the little string and T 4d in the CFT limit.
Recall that the little string defect was defined by the following set of weights WS :

ω1 = [ 1, 0, 0, 0] = −w1 + 2α1 + 2α2 + α3 + α4,

ω2 = [−1, 1, 0, 0] = −w1 + α1 + 2α2 + α3 + α4,

ω3 = [ 0,−1, 1, 1] = −w1 + α1 + α2 + α3 + α4,

ω4 = [ 0, 0,−1, 0] = −w3,

ω5 = [ 0, 0, 0,−1] = −w4.

We record the negative inner products of each of the positive roots with the weights in WS.
We write the results in the following table, where all positive inner products are replaced by 0:

〈Φ+, ω1〉 → ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

〈Φ+, ω2〉 → ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1),

〈Φ+, ω3〉 → ( 0, 0, 0, 0, 0, 0, 0,−1,−1, 0, 0, 0),

〈Φ+, ω4〉 → (−1,−1,−1, 0,−1, 0,−1, 0, 0, 0,−1, 0),

〈Φ+, ω5〉 → (−1,−1,−1,−1, 0,−1, 0, 0, 0,−1, 0, 0).

Adding the absolute value of all these entries gives 15, the dimension of the Coulomb branch
of T 5d. Comparing this to the quiver in Figure 2.5, this is indeed correct.

Furthermore, we see that all 12 positive roots have a negative inner product with at least
one of the weights. Thus, the Coulomb branch of T 4d has (complex) dimension 12.

The set WS is distinguished, and one can see immediately that Θ = ∅. So the parabolic
subalgebra associated to this defect is all of D4.

Example 4.2.6. As another example, let us look at the F4 defect:

WS = {ω1 = [ 0, 0, 0, 1], ω2 = [ 0, 0, 0,−1]}
First, let us compute the Coulomb branch dimension of T 5d in the little string and of T 4d in
the CFT limit. ω1 has no negative inner product with any of the positive roots, so it does not
contribute to the Coulomb branch counting.

ω2 has an inner product equal to -2 with 7 of the positive roots, and an inner product equal
to -1 with 8 of the positive roots. Summing up the absolute value of these inner products, we
deduce that the complex Coulomb branch dimension of T 5d is 22. Writing down the quiver
engineered by WS, the Coulomb content from the gauge nodes is indeed 4 + 8 + 6 + 4 = 22.
Furthermore, we can conclude that 15 of the positive roots have a negative inner product with
at least one of the weights. Thus, the Coulomb branch of T 4d has complex dimension 15.

The set WS is distinguished, and ω1 and ω2 both clearly have a zero inner product with
the three simple roots α1, α2, α3 (they have common zeros for their first three Dynkin labels).
We conclude at once that Θ = {α1, α2, α3}. Therefore, the parabolic subalgebra associated to
this defect is p{α1,α2,α3}.

The above discussion leads us straight to the consideration of nilpotent orbits.
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4.3 Surface defects and Nilpotent Orbits

The characterization of a puncture as studied in the 6d (2, 0) CFT literature [46] is given
in terms of a nilpotent orbit of the algebra: An element X ∈ g is nilpotent if the matrix
representative (in some faithful representation) is a nilpotent matrix. If X is nilpotent, then
the whole orbit OX of X under the adjoint action of G is nilpotent – we call this a nilpotent
orbit2. For readers interested in details and applications, the textbook [100] serves as an
excellent introduction.

A short review

For a simple Lie algebra, the number of nilpotent orbits is finite, and studying their properties
leads to many connections to different branches of representation theory. For instance, for
g = An, these orbits are labeled by Young diagrams with n+ 1 boxes.

An important fact is that for any nilpotent orbit O, the closureO is always a union of
nilpotent orbits. Furthermore, there is a maximal orbit Omax whose union contains all other
nilpotent orbits of g. This allows us to define an ordering on these orbits:

Given two nilpotent orbits O1,O2 ⊂ g, we define the relation

O1 � O2 :⇔ O1 ⊆O2 , (4.3.13)

whereO is the closure in the Zariski topology. This turns the set of all nilpotent orbits into
a partially ordered set.

For classical Lie algebras, this order corresponds to the dominance order of the Young
diagrams used to label the orbits.

Example 4.3.1 (A3). For an An nilpotent orbit labeled by a partition [d1, . . . , dk], a matrix
representative is given by k Jordan blocks of size di × di. Taking the example of n = 3, there
are five different nilpotent orbits. Their Hasse diagram can be found below in Figure 4.4. For
instance, the sub-dominant diagram [3, 1] labels the orbit of

X[3,1] =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 . (4.3.14)

In [46], boundary conditions of the 6d (2, 0) CFT are determined by solutions to Nahm’s
equations. These equations admit singular solutions near a puncture which are labeled by
embeddings ρ : sl2 → g. Since σ+ ∈ sl2 is nilpotent, its image ρ(σ+) is as well, and defines a
nilpotent orbit. By the Jacobson–Morozov theorem, this gives a one-to-one correspondence
between such embeddings and nilpotent orbits.

2Note it is the adjoint Lie group action that is used here, not the Lie algebra.
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Figure 4.4: This diagram represents the inclusion relations between the nilpotent orbits of
A3.

Nilpotent orbits from Levi subalgebras

Since we now have two different constructions of surface defects, we should explain how we
can relate them:

Given a parabolic subalgebra p = l ⊕ n, the nilpotent orbit Op associated to it is the
maximal orbit that has a representative X ∈ Op for which X ∈ n. This induced orbit agrees
with what is referred to as the Richardson orbit of p.

If g is a classical Lie algebra, this map can be most easily described using the semi-simple
pole of the Higgs field. We represent the pole in the first fundamental representation, and
assign a Young diagram to it by counting the multiplicities of the eigenvalues. For An, these
Young diagrams are given by the sizes of the blocks making up the Levi subalgebra l.

To this Young diagram, we can apply a duality map, called the Spaltenstein map [101],
and obtain another Young diagram. The map is many-to-one for all algebras except g = An,
where the map is just the transposition of a Young diagram3. This Young diagram labels the
nilpotent orbit describing a defect, according to [46]; adding the resulting nilpotent element
to the Higgs field describes moving on the Coulomb branch of the theory T 4d, meaning we
are no longer at the root of the Higgs branch. We will revisit this statement in detail when
considering the explicit Seiberg–Witten curves of our defects in section 6.2.

Example 4.3.2. Let us show how to get the nilpotent orbits of A3 in Figure 4.4 from parabolic

3Since the defects of the little string live in the weight lattice of Lg, one can also choose to work with a
slightly different map, the Spaltenstein-Barbasch-Vogan map, which sends nilpotent orbits of g to orbits of
Lg. Ultimately, there is no difference in the resulting physics, so we choose to work with the Spaltenstein
map instead, denoting defects as living in the coweight lattice of g, as we have done in the rest of this thesis.
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subalgebras. To assign the right nilpotent orbit to them, we take the transpose of the partition
describing the Levi subalgebra. The resulting Young diagram labels a nilpotent orbit, which
describes a Coulomb deformation of the theory. Since this partition is the same one that is
assigned to the pole of the Higgs field (in the first fundamental representation), we can also
directly get the nilpotent orbit from the Higgs field data.

The correspondence we get can be read off from Table 4.2 below.

Θ O
∅ [4]

{αi} i=1,2,3 [3,1]

{α1, α2} [2,2]

{α1, α3} [2,1,1]

{α1, α2, α3} [1,1,1,1]

Table 4.2: In this table, we read off which parabolic subalgebras of A3 (labeled by a subset Θ
of positive simple roots) induce which nilpotent orbits O (labeled by Young diagrams).

There are two issues with the above description of the Coulomb branch of T 4d as a
nilpotent orbit. The first one is that for algebras of high rank, it quickly becomes cumbersome
to extract a nilpotent orbit by assigning a Young diagram to a Higgs field as we described.
Second, Young diagrams are not available to represent nilpotent orbits of exceptional Lie
algebras. We remedy both problems in this next Section.

Bala–Carter Labeling of Nilpotent Orbits

The characterization of nilpotent orbits that turns out to arise naturally in the little string
context was developed by Bala and Carter, and is applicable to any semi-simple Lie algebra
[102, 103]. We only need the result of their analysis, so we will be brief in describing their
construction. It relies once again on the use of the Levi subalgebras of g.

The Bala–Carter prescription is to label a nilpotent orbitO by the smallest Levi subalgebra
l ⊂ g that contains some representative of that orbit. When g 6= An, it can happen that this
Levi subalgebra does not specify uniquely O, so extra data is needed. The prescription is
as follows: suppose a parabolic subalgebra p has the usual direct sum decompostion into
Levi and nilradical parts, p = l′ ⊕ u. We say p is distinguished if dim l′ = dim (u/[u, u]) (an
example of such a p is the Borel subalgebra of l.) Then, one can show that a nilpotent orbit O
is uniquely determined by the Levi subalgebra l and by a distinguished parabolic subalgebra
of [l, l].

If l is sufficient to uniquely specify a nilpotent orbit O, meaning l contains a unique
distinguished parabolic subalgebra, then O is said to have Bala–Carter label l. The orbit O
is called the principal nilpotent orbit of l. If the orbit O is not uniquely determined by l, an
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additional label specifying a distinguished parabolic subalgebra of [l, l] is needed (it is usually
given as the number of simple roots in a Levi subalgebra of p).

It is remarkable that one can read off the Bala–Carter label of a nilpotent orbit just from
the Dynkin labels of the coweights specifying a D5 brane defect in little string theory. To be
precise, we find the following general result, for WS a distinguished set of coweights of g, and
Θ its associated set of simple roots, as defined in the previous section:

• If WS denotes a polarized defect of the little string, then one can identify the set Θ
with the Bala–Carter label of the defect. Specifically, the union of all elements of the
set Θ is a subquiver of g, called the Bala–Carter label of this defect, written as lΘ. The
Coulomb branch of T 4d is then a resolution of the Spaltenstein dual of O, where O is
the nilpotent orbit labeled by the Bala–Carter label lΘ. The orbit O is the principal
nilpotent orbit of the Levi subalgebra lΘ.

• If WS denotes an unpolarized defect of the little string and g is simply-laced, then
one can identify the set Θ with part of the Bala–Carter label of the defect. To fully
characterize the defect, one must also indicate which fundamental representation the
coweights of WS belong in. This additional prescription is in one-to-one correspondence
with specifying the extra data needed to denote the Bala–Carter label of a non-principal
nilpotent orbit. Furthermore, the Coulomb branch of T 4d is not in general in the image
of the Spaltenstein map.

When g is non simply-laced, it can happen that an unpolarized defectWS has no relation
to the labeling of nilpotent orbits predicted by Bala and Carter (the nilpotent orbit is
still realized physically as a Coulomb branch of some theory T 4d, but the Bala–Carter
label for it is not readable from the simple roots set Θ of WS).

We present a few Bala–Carter labels for polarized defects in Figure 4.5, and for unpolarized
defects in Figure 4.6.

Example 4.3.3. For g = A3, consider the orbit of the element

X =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .

The algebra sl4 has five different (conjugacy classes of) Levi subalgebras, corresponding to the
five integer partitions of 4. X itself obviously is an element of the Levi subalgebra l{α1,α3} :

l{α1,α3} =


∗ ∗ 0 0
∗ ∗ 0 0
0 0 ∗ ∗
0 0 ∗ ∗

 .
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Figure 4.5: Given a distinguished set of coweights defining a defect T 5d, we immediately
read off the Bala–Carter of the theory T 4d, in the CFT limit. Featured here are examples of
polarized defects. Note that the Bala–Cater label forms a “subquiver” (shown in red) of the
little string quiver.

This algebra contains

l{α1} =


∗ ∗ 0 0
∗ ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

 .

Since every element in any conjugacy class of l{α1} has at most one non-trivial Jordan block,
X can never be contained in any of them; thus, the orbit of X is associated to l{α1,α3} and
has the Bala–Carter label 2A1.

Example 4.3.4. Let us consider again our F4 defect,

WS = {ω1 = [ 0, 0, 0, 1], ω2 = [ 0, 0, 0,−1]}.

One can easily check that the defect is polarized. Furthermore, we identified in the previous
example that Θ = {α1, α2, α3}. Therefore, the Bala–Carter label for the defect is B3, and
the Coulomb branch of the defect in the CFT limit is the Spaltenstein dual of the nilpotent
orbit B3, which is the orbit A2s. The orbit A2s has complex dimension 15, which confirms
our previous computation of the dimension from a different method.

Some comments are in order: First, the above points imply that all nilpotent orbits are
realized as the ms to infinity limit of the Coulomb branch of some Dynkin-shaped quiver
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Figure 4.6: Bala–Carter labels for unpolarized defects. The subscript next to the coweights
is necessary to fully specify the defects; it indicates which representation the coweights are
taken in. This extra data is in one-to-one correspondence with an extra “simple root label”
(written as [ai]) for the Bala–Carter label.

gauge theory, with unitary gauge groups. Second, the coweight data of the D5 branes defining
those quivers almost always provides a physical realization of the Bala–Carter classification
of nilpotent orbits, with a few exceptions: for some non simply-laced unpolarized defects, the
labeling predicted by Mathematics is sometimes not the same as the prediction obtained from
little string Physics. We will illustrate this feature in detail for g = G2 in the Examples 8.2.

4.4 Weighted Dynkin Diagrams

There is yet another way to classify nilpotent orbits of g, known as the so-called weighted
Dynkin diagrams. We now show how to derive them, and make the surprising observation
that all weighted Dynkin diagrams can be interpreted as physical quiver theories of the little
string.

Mathematical construction

Weighted Dynkin diagrams are vectors of integers ri ∈ {0, 1, 2}, where i = 1, . . . , rkg; thus,
we get one number for each node in the Dynkin diagram of g. We can associate such a vector
to each nilpotent orbit of g, and each nilpotent orbit has a unique weighted Dynkin diagram.
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Note, however, that not all such labellings of the Dynkin diagram also have a nilpotent orbit
corresponding to it.

To construct such a weighted Dynkin diagram, we use the following theorem by Jacobson
and Morozov [104].

Remember that sl2 is the algebra generated by X, Y and H with the relations

[H,X] = 2X, [H,Y ] = −2Y, [X, Y ] = H. (4.4.15)

Every nilpotent orbit in g arises as the orbit of the image of X in an embedding ρ : sl2 → g.
In other words, for any embedding ρ : sl2 → g, the element ρ(X) always is a nilpotent

element of g. The Jacobson–Morozov theorem tells us that any nilpotent orbit uniquely arises
(up to conjugation) as the orbit of such an element.

This means in particular that any nilpotent orbit also determines an element ρ(H), which
is semi-simple (we assume it to be diagonal). For simplicity, we’ll just write ρ(H) as H. The
(diagonal) entries of H are always integers, and allow us to read off the weighted Dynkin
diagram; the entry of the i-th node is defined to be ri = αi(H), where αi is the i-th simple
root of g. It turns out that these numbers are always 0, 1 or 2.

Example 4.4.1. We illustrate the above construction for the nilpotent orbit of

X =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


in sl4. One first constructs H; we won’t do this explicitly here (see [100] for details), but

the result is

H =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 .

The next step is to reorder the elements in the diagonal of H in a monotonically decreasing
order. The quadruple we get is (h1, h2, h3, h4) = (1, 1,−1,−1).

The nodes of the Dynkin diagram are labelled by the consecutive differences of these
numbers, so ri = hi − hi+1. This gives us (r1, r2, r3) = (0, 2, 0). So the weighted Dynkin
diagram in this example looks as follows:

0 2 0

One can generalize the above construction to all simple Lie algebras, with minor modifi-
cations.
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From Weighted Dynkin Diagrams to Little String Defects

We make the following observations:
All weighted Dynkin diagrams can be interpreted as physical quiver theories: the label

on each node of the weighted Dynkin diagram should be understood as the rank of a flavor
symmetry group in a quiver. The quivers one reads in this way are always superconformal
(in a 4d sense), and the flavor symmetry on each node is either nothing, a U(1) group, or
a U(2) group. For instance, the full puncture, or maximal nilpotent orbit, denoted by the
weighted Dynkin diagram (2, 2, . . . , 2, 2), can be understood as a quiver gauge theory with a
U(2) flavor attached to each node, for all semi-simple Lie algebras (see also [106]). Pushing
this idea further, we find, surprisingly, that these quivers are little string defect theories T 5d,
at finite ms.

In the case of g = An, this correspondence between weighted Dynkin diagrams and defect
theories T 5d can be made explicit. Indeed, all An weighted Dynkin diagrams are invariant
under the Z2 outer automorphism action of the algebra; in other words, the quivers are all
symmetric. For low dimensional defects, these quivers are precisely the little string quivers
T 5d studied in this note. For instance, consider the simple puncture of An, generated by the
set of weights WS = {[1, 0, . . . , 0] , [−1, 0, . . . , 0]}, with Bala-Carter label An−1; the weighted
Dynkin diagram with this Bala-Carter label can be shown to be (1, 0, . . . , 0, 1), in standard
notation. This is precisely the little string quiver T 5d for the simple puncture! It has a U(1)
flavor symmetry on the first node, and a U(1) flavor symmetry on the last node, as it should.
Many of the little string quivers T 5d of An, however, are not weighted Dynkin diagrams.
They are the quivers not invariant under Z2 reflection. We claim that such theories T 5d can
however uniquely be turned into the correct weighted Dynkin diagrams, by moving on the
Higgs branch of the theory. Detailed examples are given in Appendix C.

This map between little string quivers and weighted Dynkin diagrams is one-to-one for
g = An, but many-to-one for the other algebras, as a large number of different little string
quivers typically describe one and the same defect in those cases. Nevertheless, the map
always exists.

We now come to another important result about weighted Dynkin diagrams, motivated
by their apparent connection to little string defects: the dimension of a nilpotent orbit can
be easily computed from its weighted Dynkin diagram.

Dimension Formula

Recall that the “flavor symmetry rank” of a weighted Dynkin diagram never exceeds 2 (as
the flavor symmetry is always a product of U(1) and U(2) groups only). This is a claim
about the hypermultiplets of the quiver theory. There exists a “vector multiplet” counterpart
to this statement, which is given by the following mathematical statement:

We interpret the weighted Dynkin diagram of a nilpotent orbit O as a coweight ω, written
down in fundamental coweight basis. We then compute the sum of the inner products of
all the positive roots of g with this coweight. This gives a vector of non-negative integers.
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Truncating the entries of this vector at 2 and taking the sum of the entries gives the (real)
dimension of O.

This result can be derived from the following dimension formula for nilpotent orbits4 (see
for instance [100]):

dimO = dim g− dim g0 − dim g1, (4.4.16)

where
gi = {Z ∈ g|[H,Z] = i · Z}, (4.4.17)

and where H is the semisimple element in the sl2 triple corresponding to O.
Note that whenever Z ∈ gβ for a root β, [H,Z] = β(H)Z. So

gi =
⊕
β∈Φ,
β(H)=i

gβ.

On the other hand, the inner product of the weighted Dynkin diagram coweight ω with a
root β is just 〈

n∑
i=1

αi(H)ωi, β

〉
=

n∑
i=1

αi(H)〈ωi, β〉 = β(H),

where αi and ωi are the simple roots and fundamental coweights of g, respectively. Thus, the
above inner products just give us the grading 4.4.17.

The prescription we give is therefore equivalent to the dimension formula 4.4.16; namely,

dim(g1) + 2
∑
i≥2

dim(gi) = dim(g1) +
∑
i≥2

dim(gi) +
∑
i≤−2

dim(gi)

= dim(g1) + dim(g)−
∑
−1≤i≤1

dim(gi)

= dim(g1) + dim(g)− 2 dim(g1)− dim(g0)

= dim(g)− dim(g0)− dim(g1).

(4.4.18)

Example 4.4.2. Let us take the example of the weighted Dynkin diagram (2,1,1,2) in the
algebra g = A4. We write ω = [2, 1, 1, 2] as a weight in Dynkin basis. The positive roots Φ+

of A4, written here in Euclidean basis, are

(h1 − h5, h2 − h5, h1 − h4, h2 − h4, h3 − h5, h1 − h3, h2 − h3, h3 − h4, h4 − h5, h1 − h2)

Calculating the inner product of all of these positive roots with ω gives the numbers

〈Φ+, ω〉 = (6, 4, 4, 2, 3, 3, 1, 1, 2, 2).

Truncating at multiplicity 2, the sum of the inner products is 2× 8 + 1× 2 = 18, which is
indeed the dimension of the nilpotent orbit denoted by the diagram (2, 1, 1, 2).

4We thank Axel Kleinschmidt for pointing out this proof to us.
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Example 4.4.3. Let us look at the weighted Dynkin diagram (0,0,0,2) in the algebra g = F4.
We therefore consider the coweight ω = [0, 0, 0, 2], which happens to be twice the fourth
fundamental coweight of F4. Let Φ+∨ be the set of the 24 positive roots of F4. Calculating
the inner product of all of these positive roots with ω gives:

〈Φ+∨, ω〉 = (4, 4, 4, 4, 2, 4, 2, 4, 4, 0, 2, 2, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 2, 0).

Truncating at multiplicity 2, the sum of the inner products is 2× 7 + 2× 8 = 30, which is
the correct real dimension of the nilpotent orbit denoted by the diagram (0, 0, 0, 2). It is quite
amazing that at finite ms, in the little string, the gauge theory whose Coulomb branch flows
to this orbit in the CFT limit is precisely the quiver with mass content (0, 0, 0, 2). This is just
the quiver engineered in the previous examples, from the set:

WS = {ω1 = [ 0, 0, 0, 1], ω2 = [ 0, 0, 0,−1]}.

Note that these results can be interpreted in the context of 3d N = 4 theories. It is
then interesting to compare this formula to the dimension of the Coulomb branch of a 3d
N = 4 quiver theory [107], which is given by a slice in the affine Grassmannian [108]. In
that setup, the dimension can be calculated by the exact same procedure, coming from
a monopole formula [109], but without truncating the inner products at the value 2. For
conformal theories, this is simply the sum of the ranks of the gauge groups.

Lastly, we want to emphasize that the above formula we gave does not compute the
Coulomb branch dimension of the defect theory T 4d denoted by the weighted Dynkin diagram.
Instead, the Coulomb branch dimension is given by the dimension of the diagram’s image
under the Spaltenstein map. Since not all nilpotent orbits are in the image of the Spaltenstein
map, so in many cases, it is unclear what the physical interpretation of the dimension formula
should be.
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Chapter 5

Little String Origin of 4d SYM
Surface Defects

We now show how the description of two-dimensional surface defects in 4d N = 4 SYM due
to Gukov and Witten [1] originates from brane defects of the (2, 0) little string theory. Let
us first remind ourselves of their results (in this chapter, we will limit ourselves to the case
where g = ADE, though it should be straightforward to generalize to the non simply-laced
case, using the orbifold arguments of [56]).

5.1 Gukov–Witten Description of Defects

Surface defects of N = 4 SYM are 1
2
-BPS operators; to describe them, one starts with a

four-dimensional manifold M , which is locally M = D×D′, where D is two-dimensional, and
D′ is a fiber to the normal bundle to D. Surface defects are then codimension two objects
living on D, and located at a point on D′; they are introduced by specifying the singular
behavior of the gauge field near this defect. A surface operator naturally breaks the gauge
group G to a subgroup L ⊂ G, called a Levi subgroup.

The story so far is in fact valid for N = 2 SUSY, but N = 4 SUSY has additional
parameters ~β and ~γ, which describe the singular behavior of the Higgs field φ near the surface
operator; choosing D′ = C with coordinate z = reiθ = x2 + ix3, we have:

A = ~αdθ + . . . , (5.1.1)

φ =
1

2

(
~β + i~γ

) dz
z

+ . . . , (5.1.2)

which solve the Hitchin equations [110]:

F = [φ, φ], (5.1.3)

Dzφ = 0 = Dzφ. (5.1.4)
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As written above, we have chosen a complex structure which depends holomorphically on
β + iγ, while the Kähler structure depends on α. Quantum mechanics also requires the
consideration of the Theta angle, denoted by η; by supersymmetry, it will complexify the
Kähler parameter α.

S-duality is the statement that this theory is equivalent to N = 4 gauge theory with a
dual gauge group and coupling constant

g′4d = 1/g4d.

The action of S-duality on the surface defect parameters is a rescaling of the Higgs field
residue

(β, γ)→
(

4π

g2
4d

)
(β, γ), (5.1.5)

and an exchange of the gauge field and Theta angle parameters:

(α, η)→ (η,−α). (5.1.6)

The analysis of [1] gives a second description of the surface operators of N = 4 SYM,
which will be of great relevance to us; one couples the 4d theory to a 2d non-linear sigma
model on D. In the N = 4 case, the 2d theory is a sigma model to T ∗(G/P), where P ⊂ G is
a parabolic subgroup of the gauge group. The quotient describes a partial flag manifold when
the Lie algebra g is An. In the case of a general Lie algebra, the quotient is a generalized flag
variety. This target space is in fact the moduli space of solutions to the Hitchin equations
(5.1.3).

Then, to describe a surface operator, one can either specify the parameters (β, γ, α) for
the singular Higgs and gauge fields, or spell out the sigma model T ∗(G/P). It turns out that
both of these descriptions have an origin in the (2, 0) little string theory, and we will now
show this explicitly.

5.2 Integrable Systems, Bogomolny and Hitchin

Equations

The integrable system associated to the (2, 0) little string theory on C has two descriptions.
The first is in terms of the moduli space of g-monopoles on R× T 2. The second is in terms of
a Hitchin-type system on C. These integrable systems and their relation to 5d quiver gauge
theories were studied recently in [41, 42, 111], so we can focus here on the new aspect, namely,
the relation to the (2, 0) little string theory. The connection to integrable systems emerges
upon compactifying the theory on an additional circle, which we take to have the radius R1,
so we study (2, 0) little string on C × S1(R1), with defects at points on C, as before.

To be more quantitative, we fist note that the brane defects are solutions to Bogomolny
equations on C × S1(R1):

Dφ = ∗F. (5.2.7)
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As mentioned in Section 1.2, little string theory enjoys T-duality, so in particular, the (2, 0)
ADE Little String of type IIB compatified on S1(R1) is dual to the (1,1) ADE Little String of
type IIA compatified on S1(R̂1) of radius R̂1 = 1/m2

sR1. The defects are then D4 branes after
T-dualizing, and are points on C × S1(R̂1). These are the g-monopoles, magnetically charged
under the gauge field coming from the (1,1) little string. The n scalars are φa =

∫
S2
a
m3
sω

I/g′s,

where g′s is the IIA string coupling, related to the IIB one by 1/g′s = R1ms/gs. F is the
curvature of the gauge field coming from the (1,1) little string.

If we want to recover the original description of the defects as D5 branes, we can take the
dual circle size R̂1 to be very small; the upshot is that the Bogomolny equations simplify and
we recover the Hitchin equations (5.1.3) we considered previously:

F = [φ, φ], (5.2.8)

Dzφ = 0 = Dzφ. (5.2.9)

A subtlety here is that the field φ got complexified in passing from D4 branes back to D5
branes. The imaginary part of φ is the holonomy of the (1,1) gauge field around S1(R̂1);
this comes from the fact that the D4 branes are magnetically charged under the RR 3-form:
R1

∫
S2
a×S1(R1)

m2
s C

(3)
RR. In type IIB language, after T-duality, the D5 branes are charged

under the RR 2-form instead: 1/R̂1

∫
S2
a
BRR. All in all, the Higgs field is then written in IIB

variables as

φa = (αa, φ) = 1/R̂1

∫
S2
a

(m2
sωI/gs + iBRR) = τa/R̂1. (5.2.10)

The Seiberg–Witten curve of the quiver gauge theory on the D5 branes arises as the
spectral curve of the Higgs field φ, taken in some representation R of g:

det R(eR̂1φ − eR̂1p) = 0. (5.2.11)

In the absence of monopoles, φ is constant: the vacuum expectation value of the Higgs field
is R̂1φ = τ .

By construction, then, the Coulomb branch of the ADE quiver theory on the D5 branes
is the moduli space of monopoles on C × S1(R̂1). The D4 branes wrapping the compact
2-cycles are non-abelian monopoles, while the D4 branes wrapping non-compact cycles, are
singular, Dirac monopoles [112, 113]. This is consistent with our coroot and coweight lattice
interpretation of section . Now, at the root of the Higgs branch of the theory, recall that
we get a description of the defects as a set of weights WS in g; there, all the non-abelian
monopoles reduce to Dirac monopoles. The effect on φ of adding a Dirac monopole of charge
ωi, at a point xi = R̂1β̂i on C, is to shift:

eR̂1φ → eR̂1φ · (1− z e−R̂1β̂i)−wi . (5.2.12)

Here, z is the complex coordinate on C = C. Thus, the Higgs field solving the Hitchin
equations at the point where the Higgs and the Coulomb branches meet is

eR̂1φ(x) = eτ
∏

ωVi ∈WS

(1− z e−R̂1β̂i)−ωi . (5.2.13)
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To take the string mass ms to infinity, we relabel eR̂1β̂i = zP e
R̂1βi,P . We can then safely take

the limit R̂1 → 0; the imaginary part of φ decompactifies, and equation (5.2.11) becomes the
spectral curve of the Hitchin integrable system [5]:

det R(φ− p) = 0. (5.2.14)

In this limit, the Higgs field near a puncture of C has a pole of order one, and takes the form

φ(z) =
β0

z
+
∑
P

∑
ωi∈WP

βi,P ωi
zP − z

, (5.2.15)

with β0 = τ/R̂1 and P the set of punctures. Therefore, in the (2, 0) CFT, we have poles on C
at z = zP , with residues

βP =
∑

ωi∈WP

βi,P ωi .

These residues are what we called β + iγ in the N = 4 SYM setup of eq. (5.1.2).

5.3 S-Duality of Surface Defects

To provide evidence that the surface defects of N = 4 SYM really are branes at points on
C in the (2, 0) little string, we now derive four-dimensional S-duality from T-duality of the
string theory, compactified on an additional torus T 2. Here, T 2 is the product of two S1’s,
one from each of the two complex planes C2. We label those circles as S1(R1) and S1(R2), of
radius R1 and R2 respectively.

First, without any D5 branes, S-duality was derived in [56], and the line of reasoning
went as follows: suppose we first compactify on, say, S1(R1); this is what we just did in
the previous section to make contact with D4 branes as magnetic monopoles. Then, we are
equivalently studying the (1,1) little string on S1(R̂1). Compactifying further on S1(R2),
this theory is the same as the (1,1) little string on S1(R1)× S1(R̂2), by T 2-duality. 4d SYM
S-duality then naturally follows from the T 2-duality of this pair of (1,1) theories. Indeed,
at low energies, both (1, 1) little string theories become the maximally supersymmetric 6d
SYM, with gauge group dictated by g and gauge coupling 1/g2

6d = m2
s. We wish to take the

string scale ms to infinity; in the case of the (1, 1) string on S1(R̂1), since m2
sR̂1 = 1/R1, the

radius R̂1 goes to 0 in that limit. The theory then becomes 5d N = 2 SYM, with inverse
gauge coupling 1/g2

5d = 1/R1. After the further compactification on S1(R2), we obtain at low
energies 4d N = 4 SYM, with inverse gauge coupling 1/g2

4d = R2/g
2
5d = R2/R1. Now, the

same reasoning applied to the T 2-dual theory S1(R1)× S1(R̂2) gives 4d N = 4 SYM in the
ms to infinity limit, with inverse gauge coupling 1/g′24d = R1/R2.

Note that 1/g′4d = g4d. This is just the action of S-duality on the gauge coupling of
N = 4 SYM. Writing R2/R1 ≡ Im(τ ′), with τ ′ the modular parameter of the T 2, we see
that S-duality is a consequence of T 2-duality for the pair of (1, 1) little string theories. An
illustration of the dualities is shown in Figure 5.1.
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(1, 1) string on S1(R̂1)× S1(R2)× C× C with (D4,D4) branes

T1-duality

(2, 0) string on S1(R1)× S1(R2)× C× C with (D3,D5) branes

T2-duality

(1, 1) string on S1(R1)× S1(R̂2)× C× C with (D4,D4) branes

Figure 5.1: One starts with the (1, 1) little string theory on T 2 × C × C. After doing two
T-dualities in the torus directions, we get the (1, 1) little string theory on the T-dual torus;
in the low energy limit, the pair of (1, 1) theories gives an S-dual pair of N = 4 SYM theories.
D3 branes at a point on T 2 map to D4 branes in either (1, 1) theory, while D5 branes wrapping
T 2 map to another set of D4 branes.

Now, we extend this argument and introduce the D5 brane defects; since the D5 branes
were initially wrapping T 2 × C, note that we can equivalently consider the defects to be D3
branes at a point on T 2. We now argue that the S-duality action on the half BPS surface
defects of SYM has its origin in the same T 2-duality of (1, 1) theories we presented in the
previous paragraph.

First, recall that after S1(R1) compactification, the D5 branes are charged magnetically,
with period:

φa = 1/R̂1

∫
Sa

(m2
sωI/gs + iBRR).

In type IIB variables, we call this period β + iγ. By T-dualizing along S1(R1) we obtain
D4 branes wrapping S1(R2) in the (1, 1) little string. Now suppose we T-dualize the D5
branes along S1(R2) instead; then we have D4 branes wrapping S1(R1), in the T 2-dual (1, 1)
little string. The D4 brane tensions in both (1, 1) theories are proportional to each other,
with factor R2/R1. But then (β, γ) → R2/R1 (β, γ) after T 2-duality. The D4 branes are
then heavy, magnetic objects in one (1, 1) theory, while they are light, electric objects in the
other. In the ms →∞ limit, (β, γ) are the parameters of the Higgs field in 4d SYM. This is
precisely the action of S-duality for the Higgs field data: (β, γ)→ Im(τ ′)(β, γ) (5.1.5).

Second, after T 2 compactification, the D3 branes, which are points on T 2, are charged

under the RR 4-form:
∫
Sa×S̃1×S1(R1)

C
(4)
RR, where S̃1 is a circle around the point defect on C.

As before, S1(R1) is one of the 1-cycles of T 2, and Sa is a compact 2-cycle in the ALE space

X. We call this period α. The D3 branes are also charged under
∫
Sa×S̃1×S1(R2)

C
(4)
RR, where

S1(R2) is the other 1-cycle of T 2; we call this period η.
Suppose we T-dualize in the S1(R1) direction. Then α becomes the period of the RR

3-form on Sa×S̃1; this period is in fact an electric coupling for the holonomy of the (1, 1) gauge

field around S̃1. Also, η becomes the period of the RR 5-form on Sa× S̃1× S1(R2)× S1(R̂1);
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this period is in fact a magnetic coupling for the holonomy of the (1, 1) gauge field around S̃1.
T-dualizing on S1(R2) instead, we reach the T 2-dual (1, 1) theory. We see that α gets mapped
to η, while η gets mapped to −α (the minus sign arises because the 5-form is antisymmetric).
So in the end, under T 2-duality, the periods change as (α, η)→ (η,−α).

Note that because the 1-cycles generating the T 2 appear explicitly in the definition of
these periods, T 2-duality does not amount to a simple rescaling of (α, η), as was the case for
(β, γ). In the low energy limit, we recover the S-duality of the gauge field and Theta angle
parameters of 4d SYM α and η in the presence of a defect (5.1.6).

5.4 T ∗(G/P) Sigma Model and Coulomb Branch of

Defects

We made contact with the surface defects of Gukov and Witten after compactifying the (2, 0)
little string on T 2 and T-dualizing the D5 branes to D3 branes.

Now, Gukov and Witten showed that surface operators of N = 4 SYM can also be
described by a 2d sigma model T ∗(G/P), which is a moduli space of solutions to the Hitchin
equations (5.1.3). After taking the CFT limit of the little string theory, we saw that this
moduli space is also the Coulomb branch of the (2, 0) CFT theory on the Riemann surface C
times a circle S1(R1) (the radius R1 here being very big). As an algebraic variety, this Coulomb
branch is singular, while T ∗(G/P) is smooth. The statement is then that the (resolution of
the) Coulomb branch of the quiver gauge theories on the D3 branes we presented, in the
appropriate ms to infinity limit, is expected to be the sigma model to T ∗(G/P). In other
terms, the Coulomb branch of T 4d, after compactification on T 2 and below the Kaluza Klein
scale of compactification, can be identified with T ∗(G/P).

Quite beautifully, we recover in the space T ∗(G/P) the parabolic subalgebras that we
had identified earlier using coweights in Section 4.21.

As a side note, it is known ([46, 114, 115, 116]) that T ∗(G/P) is the resolution of the
Higgs branch of different theories from the ones we have been considering. In the little string
setup, as we reviewed, the moduli space of monopoles naturally arises as a Coulomb branch
instead of a Higgs branch. A natural guess is that those two descriptions could be related
by mirror symmetry, and this is indeed the case in all the cases we could explicitly checked
at low rank (see also [106]). We will not investigate this point further in this thesis, but it
would be important to get a clear understanding of the mirror map, when it exists.

We conclude this chapter by showing yet another way to extract a parabolic subalgebra,
which relies on identifying a Levi subalgebra of g from the Seiberg–Witten curve. This Levi
subalgebra appears in the Levi decomposition of pΘ as pΘ = lΘ ⊕ nΘ.

Recall that the Seiberg–Witten curve of the quiver gauge theory on the D5 branes is the
spectral curve of the Higgs field φ, taken in some representation R of g ([70, 69, 117]). We

1the Higgs field we introduced is valued in the Lie algebra g, so we speak here of parabolic subalgebras
rather than parabolic subgroups.



CHAPTER 5. LITTLE STRING ORIGIN OF 4D SYM SURFACE DEFECTS 59

described the ms to infinity limit after which the Seiberg–Witten curve of the theory becomes
the spectral curve of the Hitchin integrable system

det R(φ− p) = 0.

At the root of the Higgs branch, where the Coulomb and Higgs branches meet, this expression
simplifies: the Higgs field near a puncture of C has a pole of order one. After shifting this
pole to z = 0, we get

0 = det

(
p · 1−

∑
ωi∈WS βiωi

z
+ reg.

)
, (5.4.16)

where WS is a set of coweights (taken in fundamental representations) that adds up to zero.
The βi are mass parameters of the gauge theory, which correspond to insertion points of the
D5 branes on C.

Thus, the residue at the pole diagonalizes, and the diagonal entries can be interpreted as
hypermultiplet masses. So at the root of the Higgs branch, the Higgs field is described by an
honest semi-simple element of g. From this semi-simple element, we can once again recover a
parabolic subalgebra p. Indeed, given a semi-simple (diagonalizable) element S (in our cases,
we’ll always have S ∈ h), its centralizer

gS ≡ {X ∈ g
∣∣ [X,S] = 0} (5.4.17)

is reductive and is in fact a Levi subalgebra lS of some parabolic subalgebra pS.
Since the Higgs field at a puncture of C has a pole with semi-simple residue, we can use this

construction to associate a Levi subalgebra l to a defect. The smallest parabolic subalgebra
containing l is then the parabolic subalgebra defining the theory. Thus, we achieved our goal
of building a parabolic subalgebra, starting from a given Higgs field.

Example 5.4.1. For g = A2, assume that the Higgs field has a pole with semi-simple residue
φ = S

z
near z = 0. In the fundamental representation of sl3, a possible choice for S is

S =

β 0 0
0 β 0
0 0 −2β

 . (5.4.18)

The Levi subalgebra of sl3 associated to this semi-simple element is the centralizer of S, which
has the form

gS =

∗ ∗ 0
∗ ∗ 0
0 0 ∗

 = l{α1} (5.4.19)

The parabolic subalgebra associated to this S is then p{α1} from example 4.2.2.
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Chapter 6

Surface Defect Classification and
W(g)-algebras

We now revisit the previous classification of (2, 0) CFT defects and its relation to parabolic
subalgebras from the point of view of the dual g-type Toda CFT.

6.1 Levi subalgebras from level-1 null states of Toda

CFT

in this section, we review how to construct the null states of the g-type Toda CFT, and we
will see that they distinguish the same parabolic subalgebras pΘ of g we encountered before.
As we will explain, the set of simple roots Θ plays a very central role in the W(g)-algebra
null state condition.

Note that semi-degenerate representations of the Toda CFT generated by level one null
states have been studied in [118]. There, the authors studied loop and domain wall operators
in four-dimensional N = 2 theories in, as well as topological defects of Toda theories, and
discussed relations to codimension two defects of the 6d (2,0) CFT.

We can use the vertex operators to construct highest coweight states |β〉 of the W(g)-
algebra by acting on the vacuum, |β〉 = limz→0 e

〈β,φ(z)〉|0〉. These give rise to a Verma module
over |β〉 by acting with W(g)-algebra generators. For some of the |β〉, these representations
are degenerate, because they contain a null state; we say that |χ〉, in the Verma module over
|β〉, is a level k null state of the W(g)-algebra if for all spins s:

W (s)
n |χ〉 = 0, ∀n > 0, (6.1.1)

W
(2)
0 |χ〉 = (Eβ + k)|χ〉, (6.1.2)

where W
(2)
0 |β〉 = Eβ|β〉.
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The Verma module over |β〉 contains such a null state at level k if the Kač determinant
at level k vanishes. For any simple algebra g, this determinant at level k is a non-zero factor
times ∏

α∈Φ
m,n≤k

(
〈(β + α+ρ+ α−ρ

∨), α〉 −
(
〈α, α〉

2
mα+ + nα−

))pN (k−mn)

, (6.1.3)

where pN (l) counts the partitions of l with N colours, Φ is the set of all roots of g, and ρ (resp.
ρ∨) is the Weyl vector of g (resp. the Weyl vector of Lg) [78]. For us, (α+, α−) = (b, 1/b).

Note that this determinant is invariant only under the shifted action of the Weyl group,

β 7→ w(β + α+ρ+ α−ρ
∨)− (α+ρ+ α−ρ

∨), (6.1.4)

where w is the ordinary Weyl action.
If α = αi is a simple root, the condition that this determinant vanishes can be phrased as

〈β, αi〉 = (1−m)α+ + r
〈α, α〉

2
(1− n)α− , (6.1.5)

with r the highest number of arrows between two adjacent nodes in the Dynkin diagram of g.
We see that any β with 〈β, αi〉 = 0 for a simple root αi gives rise to a level 1 null state,

and if Q ≡ (α+ + α−)→ 0, a null state at level 1 occurs if 〈β, αi〉 = 0 for any α ∈ Φ. It is
enough to work in this “semi-classical” limit for our purposes, so we will set Q to 0 in what
follows.

We can explicitly construct these null states: Consider the screening charge operators

Q±i =

∮
dz

2πi
exp(iα±〈αi, φ〉) (6.1.6)

and observe that
[W (k)

n , Q±i ] = 0. (6.1.7)

The level 1 null state is then
S+
i |β − α+αi〉. (6.1.8)

The relation to the parabolic subalgebras introduced in section 4.2 is immediate: we simply
associate a generic null state |β〉 satisfying

〈β, αi〉 = 0 ∀αi ∈ Θ (6.1.9)

with the parabolic subalgebra pΘ, for Θ a subset of simple roots of g. By the state-operator
correspondence, the momentum β carried by the vertex operator V ∨β (z) is simply β =∑|WS |

i=1 βi ωi, as we wrote previously in equation (3.3.42). Note also that this β defines a
semi-simple element in g; this is just the residue of the Higgs field at the puncture, as
explained in Section 5.4.
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It would be interesting to study the q-deformed version of (6.1.9) in the little string
context; the formula for the Kač determinant is then an exponentiated version of (6.1.3) [119].
This implies that the null states can be defined analogously for the q-deformed W(g)-algebra.

We show next that these these null states induce relations in the Seiberg–Witten curve
of the theory T 4d. Indeed, the Seiberg–Witten curve of T 4d (5.4.16) can be obtained from a
free field realization of the W(g)-algebra. We will simply read off the null states as relations
between the curve coefficients. Generically, these relations only involve semi-simple elements
of the algebra g. We will now see these relations are still preserved when one additionally
introduces certain nilpotent deformations.

6.2 Seiberg–Witten curves from W(g)-algebras

In what follows, we fix g = A,D,E. As we reviewed previously, the Seiberg–Witten curve of
T 4d is the spectral curve equation

det R(φ− p) = 0. (6.2.10)

In our case, φ has a simple pole such that the residue is a semi-simple element of g, which
we can write as

β =
∑
ωi∈WS

βiωi. (6.2.11)

To find the curve near the pole, which we assume to be at z = 0, we can just choose some
convenient representation R, where the residue of φ is diagonal, and given by diag(β1, β2, . . .) ≡
M . Then φ = M

z
+ A, with A a generic element in g.

We now expand eq. (6.2.10) and write the curve as

0 = det

(
−p · 1 +

M

z
+ A

)
= (−p)dim(R) +

∑
s

pdim(R)−sϕ(s), (6.2.12)

where ϕ(s) is a meromorphic differential, i.e. ϕ(s) =
s∑

k=0

ϕ
(s)
k

zk
, where the ϕ

(s)
k are regular functions

of βi and aij (the entries of A).
Since M is diagonal, this determinant just picks up the diagonal terms aii of A, which we

identify with the gauge couplings of the quiver theory.
Now, we can also construct the Seiberg–Witten curve of T 4d from the W(g)-algebra

[120, 13]: For this, we need to perform a Drinfeld–Sokolov reduction to obtain explicit W(g)-
algebra generators in the free field realization1. Setting Q = 0 gives us a direct connection
to the defect defined by the semi-simple element β ∈ g (cf. Section 5.4): We can identify

1We thank Kris Thielemans for sending us his OPEDefs.m package [121], which allowed us to do these
calculations.
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the poles of the Seiberg-Witten differentials with expectation values of these W(g) algebra
generators in the state |β〉:

ϕ(s) = 〈β|W (s)|β〉. (6.2.13)

We checked this relation explicitly for An and Dn theories. It would be important to extend
the analysis to non simply-laced algebras as well; we leave this task to future work.

Example 6.2.1. Let us look at the curve describing the full puncture for g = A2:
Take the fundamental three-dimensional representation of sl3 and write

M =

β1 0 0
0 β2 0
0 0 −β1 − β2

 , A =

a11 a12 a13

a21 a22 a23

a31 a32 −a11 − a22

 . (6.2.14)

Then the curve can be expanded, and we read off the differentials. For example, ϕ(2), the
coefficient multiplying p, has the form

ϕ(2) =
ϕ

(2)
2

z2
+
ϕ

(2)
1

z
+ ϕ

(2)
0 , (6.2.15)

where

ϕ
(2)
2 =

1

2

(
β2

1 + β2
2 + (−β1 − β2)2

)
≡ 1

2
β2, (6.2.16)

ϕ
(2)
1 = a11(2β1 + β2) + a22(β1 + 2β2). (6.2.17)

Furthermore,

ϕ
(3)
3 = −β2

1β2 − β2
2β1,

ϕ
(3)
2 = a11(−2β1β2 − β2

2) + a22(−2β1β2 − β2
1).

(6.2.18)

Now from the CFT side, for g = A2, define Xj = i∂φj. In the fundamental representation,
X1 +X2 +X3 = 0. Then the generators are just the energy momentum tensor

T (z) = W (2)(z) =
1

3
(:X1X1: + :X2X2: + :X3X3:− :X1X2:− :X1X3:− :X2X3:)

and the spin 3 operator

W (3)(z) = :

(
2

3
X1 − 1

3
X2 − 1

3
X3

)
·
(
−1

3
X1 +

2

3
X2 − 1

3
X3

)
·

·
(
−1

3
X1 − 1

3
X2 +

2

3
X3

)
: .
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For the full puncture, we find at once that 〈β|L0|β〉 is equal to ϕ
(2)
2 from above, while

〈β|W (3)
0 |β〉 is equal to ϕ

(3)
3 , as expected. For the level 1 modes, one finds

〈β|W (2)
−1 |β〉 = (2β1 + β2)〈β|j1

−1|β〉+ (β1 + 2β2)〈β|j2
−1|β〉, (6.2.19)

〈β|W (3)
−1 |β〉 = (−2β1β2 − β2

2)〈β|j1
−1|β〉+ (−β2

1 − 2β1β2)〈β|j2
−1|β〉, (6.2.20)

where jik denotes the k-th mode of X i.
Observe that this has the form (6.2.18) if we identify 〈β|ji−1|β〉 with the i-th gauge coupling

constant.

For more complicated defects, the W(g)-algebra generators will have terms that are
derivatives of X — these are set to zero in the semiclassical Q→ 0 limit we are considering;
after doing so, the reasoning is as above.

Null state relations

Punctures that are not fully generic are determined by semi-simple elements β ∈ g whose
Verma modules contain null states at level one. Since the eigenvalues of the level one W(g)-
algebra generators appear as coefficients in the curve, the existence of these null states induces
some relations between these coefficients.

For g = An and g = Dn in the fundamental representation, the pattern is easy to
see. The condition 〈β, α〉 = 0 for some simple root α will cause some of the entries of
M = diag(β1, β2, . . .) to be equal to each other; if the entry βi occurs k times, we get null
states by letting the operator ∑

s

βsiW
(dim(R)−s)
−1 , (6.2.21)

and its k − 1 derivatives with respect to βi, act on |β〉. Thus, each theory induces some
characteristic null state relations which are realized in the Seiberg–Witten curve.

We now use this observation to connect these curves to nilpotent orbits: note that all the
curves considered so far were written as

det

(
−p · 1 +

M

z
+ A

)
= 0 (6.2.22)

for some diagonal M and a generic A in g. In the literature, the curves considered in
[47, 48, 50] have the form

det

(
−p · 1 +

X

z
+ A

)
= 0, (6.2.23)

where, again, A is a generic element in g, and X is a representative of a nilpotent orbit OX .
We can now simply combine these two poles and form a curve of the form

det

(
−p · 1 + e

X

z
+
M

z
+ A

)
= 0, (6.2.24)
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where M is semi-simple, X ∈ OX is nilpotent and e is a parameter. We will test the
correspondence between theories defined by nilpotent orbits and theories defined by semi-
simple elements from this vantage point. Recall from section 4.3 that the semi-simple element
M ∈ g induces a nilpotent orbit O. We observe the following facts2:

• Whenever an orbit O′ � O, it is always possible to find an X ∈ O′ such that all the
null state relations of the curve (6.2.22) are still satisfied by the curve (6.2.24).

• Whenever an orbit O′ � O, it is never possible find an X ∈ O′ such that all the null
state relations of the curve (6.2.22) are still satisfied by the curve (6.2.24).

This gives a prescription for allowed deformations; from the perspective of the theory T 4d,
this corresponds to leaving the root of the Higgs branch by turning on certain Coulomb
moduli.

Example 6.2.2. For g = A2, the only interesting state is β = (β1, β1,−2β1); we can get the
level one coefficients of the curve by setting β1 = β2 in example 6.2.1:

φ
(2)
1 = 〈W (2)

−1 〉 = 3β1(a11 + a22),

φ
(3)
2 = 〈W (3)

−1 〉 = −3β2
1(a11 + a22),

(6.2.25)

so we see that
〈W (3)
−1 〉+ β1〈W (2)

−1 〉 = 0. (6.2.26)

If we now add the nilpotent element X =

0 0 1
0 0 0
0 0 0

 , then

φ
(2)
1 = 3β1(a11 + a22) + e a31,

φ
(3)
2 = −3β2

1(a11 + a22)− e β1a31,
(6.2.27)

and the null state relation (6.2.26) is still satisfied.

Example 6.2.3. For g = D4, let M = diag (β1, β1, β2, β2,−β1,−β1,−β2,−β2) in the funda-
mental representation of so(4, 4). The curve associated to this puncture is

0 = det

(
−p · 1 +

M

z
+ A

)
,

with A a generic so(4, 4) matrix. Expanded, this has the form (6.2.12) with nontrivial,
meromorphic coefficients φ(2), φ(4), φ(6) and φ(8). These satisfy the relations

φ
(8)
7 + β2

1φ
(6)
5 + β4

1φ
(4)
3 + β6

1φ
(2)
1 = 0, (6.2.28)

φ
(8)
7 + β2

2φ
(6)
5 + β4

2φ
(4)
3 + β6

2φ
(2)
1 = 0. (6.2.29)

2This observation was checked on the computer for a large class of An and Dn defects.
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A calculation on the computer now shows that the only nilpotent elements we can add to M ,
in the sense of (6.2.24), lie in the orbits [4, 4], [3, 3, 1, 1], [3, 15], [24] and [2, 16]. These are
exactly the orbits lying below [4, 4] in the partial ordering of nilpotent orbits of D4.
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Chapter 7

Other Realizations of Defects

Our main setup to study the little string has been to compactify type IIB on an ADE
singularity. As mentioned in the earlier sections of this work, performing T-duality, we
can trade an An singularity for n + 1 NS5 branes. After additional T-dualities, we can
naturally bring our setup to a familiar one introduced by Witten and Hanany [2]. This has
the advantage of making the coweight description of the defects manifest, and motivates
a new interpretation and generalization of the Hanany–Witten transition as a (co)weight
addition procedure.

7.1 Brane Engineering and Weights

Let us set g = An in this section. We consider a collection of NS5 branes separated in one
direction, and extended along the non-compact direction of our Riemann surface, the cylinder.
Before T-dualizing, we had D5 branes that used to wrap compact 2-cycles of the geometry.
They are now D3 branes that are stretching between two NS5 branes. There were also D5
branes wrapping non-compact 2-cycles of the geometry. These become D3 branes with one
end on an NS5 brane and the other end on a D5 brane, or at infinity.

The D3 brane charge can be conveniently encoded in the weights of the set WS defining a
defect, and in particular, in their Dynkin labels. To see how this works, let us focus on the
i-th Dynkin label of a weight. Then the following holds (see also [2]):

• A D3 brane coming from the left ending on the i − th NS5 contributes −1 to the
weight’s i-th label.

• A D3 brane coming from the right ending on the i-th NS5 contributes +1 to the weight’s
i-th label.

• A D3 brane coming from the left ending on the i + 1-th NS5 contributes +1 to the
weight’s i-th label.
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• A D3 brane coming from the right ending on the i+ 1-th NS5 contributes −1 to the
weight’s i-th label.

• Finally, a D5 brane present between the i-th and i+ 1-th NS5’s contributes −1 to the
weight’s i-th label.

[−1, 1, 0]
−w3 + α2 + α3

[0,−1, 0, 0]
−w2

[−1, 0]
−w1

[−1, 0]
−w1

[0,−1, 1,−1]
−w3 + α3

[0,−1, 0, 1]
−w3 + α3 + α4

Figure 7.1: How to read off weights from a system of D3, D5, and NS5 branes.

All in all, a D3 brane stretching between a D5 brane and an NS5 brane (while possibly going
through some other NS5 branes) produces a weight, whose Dynkin labels are a combination
of 1’s, −1’s, and 0’s. This construction is illustrated in figure 7.1. The map is not injective:
for a given weight, there can be many distinct brane configurations. Therefore, the Dynkin
labels of the weights in the set WS record the total charge of the D3 brane configuration.
We recover here the statement that imposing that the sum of weights to be 0 is a statement
about vanishing of D3 brane flux at infinity.

The configuration of branes spells out a quiver gauge theory at low energies, which is the
expected theory T 5d we would write based on the weight data WS . See Figure 7.2 for some
examples.
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7.2 Weight Addition as Generalized Hanany–Witten

Transition

We now describe an effective and purely group-theoretical way to move on the Higgs branch
of the defect, for any simple g. this makes use of the fact that a weight belonging to a
fundamental representation can always be written as the sum of new weights. Each of them
should be in the orbit of some fundamental weight (but the two orbits do not have to be the
same).

After moving on the Higgs branch of the defect, we obtain a new defect, which reduces to
the previous one at the root of the Higgs branch. When the gauge theory can be engineered
using branes, this phenomenon is known as a Hanany–Witten transition [2]. There, a D5
brane passing an NS5 brane creates or removes D3 branes stretching between the two. When
a brane construction is not available, the weight description we give is still valid, for an
arbitrary simply laced Lie algebra.

Note that this weight addition formalism also gives a generalization of the so-called
S-configuration: In the An case, where we have a brane picture, this statement translates
immediately to the S-rule, which is then automatically satisfied. This argument is however
applicable to any simple Lie algebra as well, so this gives a g-type S-rule.

7.3 Unpolarized Defects and Brane Web

All the fundamental representations of An are minuscule, so by definition, all An codimension-
two defects are polarized; see Section 2.4. However, for the other algebras, it can also happen
that a coweight in WS fails to satistfy the conditions to produce a polarized defect, in which
case the resulting defect will be unpolarized. If such a coweight is picked, additional data
is needed beyond simply specifying the set WS ; we write such coweights with a subscript
denoting (minus) the representation they are taken in1. We show here how we can engineer
unpolarized defects for a Dn theory using a Z2-orbifold of a A2n−1 brane web.

1the ”minus” here is because every coweight we consider is written as ω = −w∨
a + . . .
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[1,−1, 0, 0] + [−1, 0, 0, 0]
−w1 + α1 − w1

[0,−1, 1,−1] + [0, 0,−1, 1]
−w3 + α3 − w4 + α4

[0,−1, 0, 0]
−w2

[0,−1, 1, 0] + [0, 0,−1, 0]
−w4 + α3 + α4 − w3

[0,−1, 0, 1] + [0, 0, 0,−1]
−w3 + α3 + α4 − w4

2 2 2 1

2 1

1 2 3 2

2 1

1 2 2 1

1 1

1 2 3 2

2 1

1 2 3 2

2 1

Figure 7.2: Example of a move on the Higgs branch of a defect: starting from the theory in the
middle, we wrote all the theories one can obtain by replacing the weight on node 2 by a sum
of two weights in fundamental representations. The top picture shows the brane realization
of all the “new” defect. These all have a low-energy quiver gauge theory description (the
ones shown below). At the root of the Higgs branch, the partition functions of all 5 theories
is the same.
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ω1ω1

ω1 : [0, 0, 0, 0] = −w2 + α1 + 2α2 + α3 + α4

Figure 7.3: The zero weight [0, 0, 0, 0] of the D4 algebra is the simplest example of how one
constructs an unpolarized defect of the little string; on the left is pictured the type IIB brane
engineering of the weight. NS5 branes are vertical black lines, D5 branes are red crosses, and
D3 branes are horizontal red lines. The green dotted line produces a Z2-orbifold of an A7

theory, realizing the D4 theory. The resulting defect will be unpolarized because [0, 0, 0, 0]
belongs in the [0, 1, 0, 0] representation, but is not in the Weyl group orbit of that weight.

ω1ω1

ω1ω1

ω1 : [−1, 0, 0, 0, 0] = −w1

ω1 : [−1, 0, 0, 0, 0]3 = −w3+α2+2α3+α4+α5

Figure 7.4: The weight [−1, 0, 0, 0, 0] of D5, with the corresponding type IIB brane engineering
on the left, obtained from Z2-orbifolding of a A9 theory. The weight [−1, 0, 0, 0, 0] can be
written in two ways. First, by placing a D5 brane between the two leftmost NS5 branes (top),
the weight is written appropriately to characterize a polarized defect. This is so because
[−1, 0, 0, 0, 0] not only belongs in the [1, 0, 0, 0, 0] representation, it is also in the Weyl group
orbit of that weight. By placing the D5 brane between a different set of NS5 branes (bottom),
we will obtain instead an unpolarized defect. This is so because [−1, 0, 0, 0, 0] belongs in the
[0, 0, 1, 0, 0] representation, but is not in the Weyl group orbit of that weight. An additional
subscript is added to the weight in this case, denoting (minus) the representation it belongs
in.



CHAPTER 7. OTHER REALIZATIONS OF DEFECTS 72

Note that if we start with an unpolarized theory, it is always possible to move on the
Higgs branch and end up with a theory that is polarized. This resulting polarized theory is
of course highly specialized, since some masses have to be set equal to each other as a result.
An illustration of how one can start with an unpolarized theory and arrive at a polarized
theory is shown in Figure 7.5 below.

ω′
1

ω′′
1

ω′
1

ω′′
1

ω1ω1

1 2

1

1

1

2 2

1

1

2

Unpolarized

Polarized

ω′1 : [−1, 0, 0, 0] = −w1

ω′′1 : [ 1, 0, 0, 0] = −w1+2α1 + 2α2 + α3 + α4

ω1 : [0, 0, 0, 0] = −w2 + α1 + 2α2 + α3 + α4

Figure 7.5: The brane picture for the null weight of D4 (top of the figure), which makes
up an unpolarized theory at low energies. It is obtained after Z2-orbifolding of A7. The
D5 branes sit on top of the D3 branes, and all the D3 branes are stacked together. After a
Hannany–Witten transition, we end up with a polarized theory, but with the two masses
equal to each other.

7.4 6d (1, 0) SCFTs

Consider once again type IIB string theory on the background X × C × R1,3, where X is
a resolution of the orbifold C2/Γ. This time, we choose the Riemann surface C to be the
torus T 2. Introduce a collection of D7 branes in the string background, which further breaks
suspersymmetry by half. The branes wrap a given set of compact and non-compact two-cycles
of X, as well as T 2 × R1,3 (equivalently, by T-duality in both directions of the T 2, this is
a theory of D5 branes that are points on the torus, the exact setup of this thesis). The
worldvolume of the 7-branes supports a six-dimensional supersymmetric gauge theory on the
torus at low energies, with 8 supercharges, that is to say a 6d (1, 0) theory. A novelty here is
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that taking the double limit gs → 0 and ms → 0, one obtains a SCFT that has a Lagrangian
description as a quiver gauge theory. This is because the inverse gauge couplings on the D7
branes

τa,D7 =

∫
Sa×T 2

m4
s

gs
· ωvol.

remain finite in the ms → 0 limit. This is in contrast to the D5 brane case, where no
Lagrangian was available after taking the limit (recall indeed that τa,D7 scales like m2

s τa,D5).
We conjecture that the quiver gauge theories one obtains at low energies are intimately
related to the ones we have been considering in this thesis, but this statement would need to
be analyzed carefully.

Very recently, there has been a renewed interest in the study of 6d superconformal field
theories with minimal supersymmetry, that is 6d N = (1, 0) SCFTs. A classification of
these theories has been proposed, based on F-theory techniques [122, 123, 124] or anomaly
cancellation arguments in gauge theories [125]. Most notably, the SCFTs arise as an elliptically
fibered Calabi-Yau threefold (X → B) over a (non-compact) complex two-dimensional base
B. The self-intersection of a curve gives the minimal gauge symmetry supported over that
curve. For instance, when g = An, one first constructs the 6d SCFT theory whose tensor
branch is:

[SU(n)]
sun
2

sun
2 . . .

sun
2

sun
2 [SU(n)] (7.4.1)

where the label 2 stands for an O(−2) curve on the base of the elliptic fibration. The number
of these compact curves is taken here to be arbitrarily large. There is an SU(n) flavor
symmetry on the left and on the right, with support on a non-compact curve.

For a given n, one can consider the RG flow for this theory, by breaking the flavor
symmetry at the ends of the quiver, to obtain new conformal theories. More precisely, it can
be shown that the flows are induced by nilpotent orbits; these are encoded in the tails of the
quiver, denoted respectively by an orbit µL on the left and the orbit µR on the right. In the
above example, both µR and µL are are the maximal nilpotent orbit of An−1, which stands
for a flavor symmetry SU(n) at the two ends of the quiver. A systematic analysis of these
nilpotent flows was carried out for all simple algebras in [126].

When g = An, the theories obtained by RG flows are precisely the quiver gauge theories
constructed in this thesis (uplifted to 6d). This is no longer the case for other algebras, but
the nilpotent orbit structure of the flow remains, and it would be important to make the
connection to our work precise2.

2A related construction is realized using M-theory on the background C2/ΓG × S1
‖ × S

1
⊥ × R4,1, with N

M5 branes sitting at the singular point of the orbifold and at a point on S1
⊥ while wrapping S1

‖ ×R
4,1. Then,

a reduction along S1
‖ followed by a T-duality along S1

⊥ brings us to a type IIB setup of D5 branes wrapping

R4,1 × Ŝ1
‖ . In perturbative type IIB terms, this should correspond to a fractional D5 brane realization of the

6d theories on a circle.
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Chapter 8

Examples

We will now illustrate the various results of the thesis, for g a simple Lie algebra.

8.1 The g-Type Full Puncture

We start by showcasing the Triality of Section 3.4, for a Riemann surface C which is the
cylinder, with a full puncture on it [4]. In what follows, n ≡ rank (g).

In order to construct a single full puncture defect out of D5 branes, we pick a set WS
of n+ 1 coweight vectors adding up to 0, such that the Bala-Carter label for this set is ∅.
Such a defect is always polarized, in the terminology of Section 2.4. Out of the many sets of
coweights that a priori satisfy this condition, we will present a set WS such that the resulting
Coulomb branch of the defect is the smallest one possible.

The 5d gauge theory T 5d on the D5 branes, the 3d gauge theory G3d on the D3 branes,
and the collection of vertex operators in q-deformed Toda, are related by triality. We will see
explicitly that the partition function of T 5d truncates to a 3-point function in the q-deformed
Toda theory, with 3 primary operator insertions of generic momenta.

For each ωi, we pick a point on the Riemann surface C, with coordinate xi = Rβi. This
xi specifies the position of the D5 brane wrapping ωi = [S∗i ] on C, and the masses βi of the
various matter fields in the 5d and 3d gauge theories. In the Toda theory, these parameters
specify the n momenta and the position of the puncture on C. With only 3 punctures present,
we are in fact free to set this position at z = 1. The n 5d gauge couplings τa become the 3d
FI parameters, or equivalently the momentum of the puncture at z = 0 in the Toda picture1.

With only three punctures, no physical quantity will depend on the coordinate z itself,
so we can set it to 1. The vertex operator :

∏
Vωi(x) : is the q-deformation of the primary

operator Vβi(z). The R-charges of the 3d chiral multiplets determine all va =
√
qra/t factors in

1The n non-normalizable Coulomb moduli coming from the U(1) centers in the gauge groups of T 5d

become the ranks Na of the 3d gauge groups of G3d, which is also the number of screening charges in Toda
theory; this specifies the momentum of the puncture located at z =∞.
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the argument of the vertex operators. These multiplets are generated from strings stretching
between a D3 brane and a D5 brane wrapping S∗i .

In the undeformed Toda CFT, the three-point of W-algebra primaries is labeled by three
momenta β0, β, β∞:

〈Vβ0(0)Vβ(1)Vβ∞(∞)〉 . (8.1.1)

If β∞ = −β0 − β −
∑n

a=1 Na α
∨
a/b for positive integers Na (which are the ranks of the gauge

groups of) we can compute the three-point function (8.1.1) in free field formalism: we simply
insert Na screening charge operators Q∨a =

∫
dxS∨a (x):

〈V ∨β0(0)V ∨β (1)V ∨β∞(∞)
n∏
a=1

(Q∨a )Na〉free. (8.1.2)

Once we replace the screening charges and the vertex operators by their q-deformed counter-
parts, we obtain the q-deformed 3-point conformal block of the Wq,t(g) algebra, as described
in Section 3.3.

For definiteness, we will use the following definitions of the Cartan matrices in the
examples:

CBn
ab =



2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0
...

...
...

...
...

. . .

0 . . . −1 2 −1 0
0 . . . 0 −1 2 −2
0 . . . 0 0 −1 2


CCn
ab =



2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0
...

...
...

...
...

. . .

0 . . . −1 2 −1 0
0 . . . 0 −1 2 −1
0 . . . 0 0 −2 2



CG2
ab =

(
2 −1
−3 2

)
CF4
ab =


2 −1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2


When g is simply-laced, we will use the words weights (respectively roots) and coweights
(respectively coroots) interchangeably.
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Figure 8.1: Cylinder with a full An puncture: 5d theory T 5d and 3d theory G3d resulting
from WS .

An Full Puncture

For g = An, a full puncture is realized by the following set WS of n+ 1 coweights:

ω1 = −w∨1
ω2 = −w∨1 + α∨1
...

ωn = −w∨1 + α∨1 + . . .+ α∨n−1

ωn+1 = −w∨1 + α∨1 + . . .+ α∨n−1 + α∨n

(8.1.3)

w∨a is the a-th fundamental coweight, and α∨a is the a-th coroot. Note that the set WS spans
the coweight lattice. Each one of the coweights ωa represents a distinct D5 brane wrapping
a non-compact 2-cycle and some compact 2-cycles. At low energies, one can directly read
off the 5d N = 1 An quiver gauge theory living on the branes: the coefficients of the α∨a
give the rank of the gauge group, while the number of hypermultiplets in the fundamental
representation of the a-th node is given by the number of −wa. The resulting 5d quiver gauge
theory is shown in figure 8.1.

We add D3 branes wrapping compact two-cycles in the homology class. The strings that
stretch between D3 branes realize a 3d N = 4 An quiver gauge theory, with gauge content∏n

a=1 U(Na). Supersymmetry is broken to N = 2 due to the strings stretching between the D3
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and D5 branes, resulting in chiral and anti-chiral multiplets in fundamental representation of
the various gauge groups. The Dynkin labels of the coweights (8.1.3) written in fundamental
coweight basis encode the precise matter content of the 3d theory:

ω1 = [−1, 0, 0, . . . , 0, 0]

ω2 = [ 1,−1, 0, . . . , 0, 0]

...

ωn = [ 0, 0, 0, . . . , 1,−1]

ωn+1 = [ 0, 0, 0, . . . , 0, 1]

(8.1.4)

We obtain a 3d N = 2 quiver gauge theory G3d shown in figure 8.1. Note in passing that the
set WS has no common zeros in the above notation. Acting on this set with the Weyl group
will not change that, so the set is distinguished and the defect is indeed a full puncture.

The q-deformed vertex operator that realizes the full puncture is the product :
∏n+1

i=1 Vωi(xi) :,
where

Vω1(x) = W−1
1 (x),

Vω2(x) =: W−1
1 (x)E1(xv−1) :

...

Vωn(x) =: W−1
1 (x)E1(xv−1)E2(xv−2) . . . En−1(xv1−n) :

Vωn+1(x) =: W−1
1 (x)E1(xv−1)E2(xv−2) . . . En−1(xv1−n)En(xv−n) :

(8.1.5)

The above “fundamental coweight” and “simple coroot” vertex operators were defined in
section 3.3; the expression is a refinement of the relation (8.1.3). The dependence on the v
factors above encodes the value of the Coulomb moduli at the triality point. Namely, let v#a,i

be the various v factors appearing in (8.1.5). Then, the Coulomb moduli of the 5d gauge
theory that truncate the partition function to the An q-deformed conformal block are given
by

ea,i = fi t
Na,i v#a,i v−a , a = 1, . . . , n.

The Coulomb branch of the 5d theory has complex dimension
∑n

a=1 da = n(n+ 1)/2, with
da the ranks of the n gauge groups. This can also be obtained from (2.4.17):∑

〈eγ ,ωi〉<0

|〈eγ, ωi〉| =
n(n+ 1)

2

In the above sum, one counts all positive roots that have a negative inner product with
at least one of the coweights, with multiplicity. Here, all positive roots of An satisfy this
condition, with multiplicity 1, so the right-hand side is simply the number of positive roots of
An. This is also the number of supersymmetric vacua (or equivalently, integration contours) of
the 3d theory, and the number of parameters needed to specify the 3-point of the q-deformed
Wq,t(An) algebra.
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In the CFT limit, when ms → ∞, the counting is done without multiplicity, but since
each positive roots is counted once in the little string, the Coulomb branch dimension does
not change. The Coulomb branch of the resulting theory T 4d is the maximal nilpotent orbit
of An, with Bala-Carter label An. This orbit is in the image by the Spaltenstein map of the
orbit denoted by ∅. This pre-image Bala–Carter label ∅ is identified at once since the set
WS has no common zeros in the Dynkin labels of the different coweights, as we pointed out.

For completeness, we will also explicitly write the parabolic subalgebras in a given
representation; for An, it is customary to do so in the fundamental representation. Therefore,
the matrices will be valued in sl(n+ 1); a star ∗i denotes a nonzero complex number, and
the label “i” stands for the positive root ei. A star ∗−i denotes a nonzero complex number,
and the label “−i” stands for the negative root −ei. The parabolic subalgebra is p∅. It is
denoted by the partition [1n+1], which is immediately readable from the Levi subalgebra with
symmetry S(U(1)n+1).

The Levi decomposition gives:

p∅ =



∗ ∗1 ∗1+2 · · · ∗1+...+(n−1) ∗1+...+n

0 ∗ ∗2 · · · · · · ∗2+...+n
...

. . . . . . . . .
...

...
...

. . . . . . ∗(n−1) ∗(n−1)+n
...

. . . ∗ ∗n
0 · · · · · · · · · 0 ∗


,

with p∅ = l∅ ⊕ n∅, where

l∅ =



∗ 0 · · · · · · · · · 0

0 ∗ . . .
...

...
. . . . . . . . .

...
...

. . . . . . . . .
...

...
. . . ∗ 0

0 · · · · · · · · · 0 ∗
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and

n∅ =



0 ∗1 ∗1+2 · · · ∗1+...+(n−1) ∗1+...+n

0 0 ∗2 · · · · · · ∗2+...+n
...

. . . . . . . . .
...

...
...

. . . . . . ∗(n−1) ∗(n−1)+n
...

. . . 0 ∗n
0 · · · · · · · · · 0 0


.

We see explicitly that the nonzero inner products 〈eγ, ωi〉 make up the i-th line of the nilradical
n∅.

Now, from the Toda CFT perspective, we start from our set WS and recall that β =∑|WS |
i=1 βiwi, WS defines the Toda momentum vector β. We can write this momentum β

explicitly as the semi-simple element diag(β1, β2, . . . , βn+1), where all the entries add up to 0.
One checks at once that the commutant of this element is the Levi subalgebra l∅ written
above.

Dn Full Puncture

We will be more brief for the rest of the simply-laced cases. For WS , we take the following
collection of n+ 1 weights of Dn:

ω1 = −w∨1 + α∨1 + α∨2 + . . .+ α∨n−2 + α∨n−1 + α∨n
ωi = ωi−1 + α∨n−i , i = 2, . . . n− 1

ωn = −w∨n−1

ωn+1 = −w∨n

(8.1.6)

Writing each coweight above in terms of fundamental coweights, it is clear that WS has no
common zeros, and acting on WS with the Weyl group will not change that, so the set is
distinguished and this is indeed a full puncture.

The complex dimension of the Coulomb branch of T 5d (or the number of vacua of G3d) is

n∑
a=1

da =
(n− 1)(3n− 2)

2
=

∑
〈eγ ,ωi〉<0

|〈eγ, ωi〉| .

In the above sum, one counts all positive roots that have a negative inner product with at
least one of the coweights. Here, some of the positive roots of Dn satisfy this condition with
multiplicity 1, while others satisfy it with multiplicity 2, so the answer is necessarily bigger
than the number of positive roots of Dn. This is also the number of supersymmetric vacua
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Figure 8.2: Cylinder with a full Dn puncture: 5d theory T 5d and 3d theory G3d resulting
from WS .

(or equivalently, integration contours) of the 3d theory, and the number of parameters needed
to specify the 3-point of the q-deformed Wq,t(Dn) algebra.

In the CFT limit, when ms →∞, the counting is done without counting the multiplicity 2
of some of the positive roots; the Coulomb branch dimension of the D5 brane theory therefore
decreases and becomes equal to the number of positive roots of Dn, which is n2 − n. The
Coulomb branch of the resulting theory T 4d is therefore the maximal nilpotent orbit of Dn.
The 5d and 3d theories are shown in figure 8.2.

En Full Puncture

In the case of E6, we take the set WS to be the following collection of 7 coweights:

ω1 = −w∨5
ω2 = −w∨5 + α∨5
ω3 = −w∨5 + α∨1 + 2α∨2 + 3α∨3 + 3α∨4 + 2α∨5 + 2α∨6
ω4 = −w∨5 + α∨1 + 2α∨2 + 4α∨3 + 3α∨4 + 2α∨5 + 2α∨6
ω5 = −w∨5 + α∨1 + 3α∨2 + 4α∨3 + 3α∨4 + 2α∨5 + 2α∨6
ω6 = −w∨5 + 2α∨1 + 3α∨2 + 4α∨3 + 3α∨4 + 2α∨5 + 2α∨6
ω7 = −w∨6

(8.1.7)
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Figure 8.3: Cylinder with a full E6 puncture: 5d theory T 5d and 3d theory G3d resulting
from WS .

In the case of E7, we take the set WS to be the following collection of 8 coweights:

ω1 = −w∨1 + 3α∨1 + 5α∨2 + 7α∨3 + 6α∨4 + 4α∨5 + 2α∨6 + 4α∨7
ω2 = −w∨1 + 3α∨1 + 5α∨2 + 8α∨3 + 6α∨4 + 4α∨5 + 2α∨6 + 4α∨7
ω3 = −w∨1 + 3α∨1 + 6α∨2 + 8α∨3 + 6α∨4 + 4α∨5 + 2α∨6 + 4α∨7
ω4 = −w∨1 + 4α∨1 + 6α∨2 + 8α∨3 + 6α∨4 + 4α∨5 + 2α∨6 + 4α∨7
ω5 = −w∨6
ω6 = −w∨6 + α∨6
ω7 = −w∨6 + α∨5 + α∨6
ω8 = −w∨7

(8.1.8)
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Figure 8.4: Cylinder with a full E7 puncture: 5d theory T 5d and 3d theory G3d resulting
from WS .

In the case of E8, we take the set WS to be the following collection of 9 coweights:

ω1 = −w∨1 + 7α∨1 + 13α∨2 + 19α∨3 + 16α∨4 + 12α∨5 + 8α∨6 + 4α∨7 + 10α∨8
ω2 = −w∨1 + 7α∨1 + 13α∨2 + 20α∨3 + 16α∨4 + 12α∨5 + 8α∨6 + 4α∨7 + 10α∨8
ω3 = −w∨1 + 7α∨1 + 14α∨2 + 20α∨3 + 16α∨4 + 12α∨5 + 8α∨6 + 4α∨7 + 10α∨8
ω4 = −w∨1 + 8α∨1 + 14α∨2 + 20α∨3 + 16α∨4 + 12α∨5 + 8α∨6 + 4α∨7 + 10α∨8
ω5 = −w∨7
ω6 = −w∨7 + α∨7
ω7 = −w∨7 + α∨6 + α∨7
ω8 = −w∨7 + α∨5 + α∨6 + α∨7
ω9 = −w∨8

(8.1.9)

Once again, one can check that these sets are distinguished and have no common zeros in
their Dynkin labels, so these are indeed full punctures of En.

The complex dimension of the Coulomb branch of T 5d is

n∑
a=1

da =
∑

〈eγ ,ωi〉<0

|〈eγ, ωi〉| .
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Figure 8.5: Cylinder with a full E8 puncture: 5d theory T 5d and 3d theory G3d resulting
from WS .

For E6, we the find (using either sum) that the Coulomb branch dimension is 59. For E7, we
find that the Coulomb branch dimension is 63. For E8, we find that the Coulomb branch
dimension is 368.

In the CFT limit, when ms →∞, the counting is done without counting the multiplicity
in the sum on the right-hand side; the Coulomb branch dimension therefore decreases and
becomes equal to the number of positive roots of En; for E6, this is 36. For E7, this is 63.
For E8, this is 120. The Coulomb branch of the resulting theory T 4d is the maximal nilpotent
orbit of En. The 5d and 3d theories are shown in figures 8.3, 8.4, and 8.5.

G2 Full Puncture

For G2, we take the set WS to be the following collection of 3 coweights:

ω1 = −w∨1 + 4α∨1 + 6α∨2
ω2 = −w∨2 + α∨2
ω3 = −w∨2

(8.1.10)

The Dynkin labels of the coweights (8.1.10) expanded in terms of fundamental coweights
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Figure 8.6: Cylinder with a full G2 puncture: 5d theory T 5d and 3d theory G3d resulting
from WS .

encode the precise matter content of the 3d theory:

ω1 = [ 1, 0]

ω2 = [−1, 1]

ω3 = [ 0,−1]

(8.1.11)

We obtain the 3d N = 2 quiver gauge theory G3d shown in figure 8.6. The q-deformed vertex
operator that realizes the full puncture is the product :

∏3
i=1 Vωi(xi) :, where

Vω1(x) = : W−1
1 (x)E1(xv−1)E2(xv−2q−1/2)E2(xv−2q−3/2)E2(xv−2q−5/2)E1(xv−3q−1)

E1(xv−3q−2)E2(xv−4q−3/2)E2(xv−4q−5/2)E2(xv−4q−7/2)E1(xv−5q−3) :

Vω2(x) = : W−1
2 (x)E2(xq−1/2) :

Vω3(x) = : W−1
2 (x) :

(8.1.12)
The above “fundamental coweight” and “simple coroot” vertex operators were defined in
section 3.3; the expression is a refinement of the relation (8.1.10). The dependence on the
v and q factors encodes the value of the Coulomb moduli at the triality point. Namely, let
v#a,I q#′a,I be the various v and q factors appearing in the Ea operators of (8.1.12). Then,
the Coulomb moduli of the 5d gauge theory that truncate the partition function to the G2
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q-deformed conformal block are given by:

ea,I = fI t
Na,I v#a,I q#′a,I v2−a q(a−1)/2 , a = 1, 2 .

Recall that in our notation, a = 1 is gauge node designating the short root, while a = 2
designates the long root.

The Coulomb branch of the 5d theory has complex dimension:

2∑
a=1

da = 11 =
∑

〈eγ ,ωi〉<0

|〈eγ, ωi〉| ,

with da the ranks of the 2 gauge groups. In the right-hand sum, one counts all positive roots
that have a negative inner product with at least one of the coweights. This is also the number
of supersymmetric vacua (or equivalently, integration contours) of the 3d theory, and the
number of parameters needed to specify the 3-point of the q-deformed Wq,t(G2) algebra.

In the CFT limit, when ms →∞, the counting is done without multiplicity. The Coulomb
branch dimension therefore decreases and becomes equal to the number of positive roots of
G2, which is 6. The Coulomb branch of the resulting theory T 4d is the maximal nilpotent
orbit of G2, with Bala-Carter label G2. Because the defect is polarized, its Coulomb branch
must be in the image of the Spaltenstein map. In our case, the full puncture Coulomb branch
is the image of the orbit denoted by ∅. This pre-image Bala–Carter label ∅ is identified at
once by acting on WS with the Weyl group and noticing the set never has any common zeros
in the Dynkin labels of the different coweights.

F4 Full Puncture

For F4, we take the set WS to be the following collection of 5 coweights:

ω1 = −w∨4 + 4α∨1 + 8α∨2 + 6α∨3 + 4α∨4
ω2 = −w∨4 + 4α∨1 + 8α∨2 + 6α∨3 + 3α∨4
ω3 = −w∨1 + α∨1 + α∨2
ω4 = −w∨1 + α∨1
ω5 = −w∨1

(8.1.13)

The Dynkin labels of the coweights 8.1.13 expanded in terms of fundamental coweights
encode the precise matter content of the 3d theory:

ω1 = [ 0, 0, 0, 1]

ω2 = [ 0, 0, 1,−1]

ω3 = [ 0, 1,−1, 0]

ω4 = [ 1,−1, 0, 0]

ω5 = [−1, 0, 0, 0]

(8.1.14)
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Figure 8.7: Cylinder with a full F4 puncture: 5d theory T 5d and 3d theory G3d resulting from
WS .

We obtain the quiver gauge theory G3d shown in figure 8.7.
The q-deformed vertex operator that realizes the full puncture is the product :

∏5
i=1 Vωi(xi) :,

where

Vω1(x) = : W−1
4 (x)E4(xv−1)E3(xv−2)E2(xv−3q−1/2)E2(xv−3q−3/2)E1(xv−4q−1)

E3(xv−4q−1)E1(xv−4q−2)E4(xv−5q−1)E2(xv−5q−3/2)E2(xv−5q−5/2)E3(xv−6q−1)

E3(xv−6q−2)E2(xv−7q−3/2)E4(xv−7q−2)E2(xv−7q−5/2)E1(xv−8q−2)E1(xv−8q−3)

E3(xv−8q−3)E2(xv−9q−5/2)E2(xv−9q−7/2)E3(xv−10q−3)E4(xv−11q−3) :

Vω2(x) = : W−1
4 (x)E4(xv−1)E3(xv−2)E2(xv−3q−1/2)E2(xv−3q−3/2)E1(xv−4q−1)

E3(xv−4q−1)E1(xv−4q−2)E4(xv−5q−1)E2(xv−5q−3/2)E2(xv−5q−5/2)E3(xv−6q−1)

E3(xv−6q−2)E2(xv−7q−3/2)E4(xv−7q−2)E2(xv−7q−5/2)E1(xv−8q−2)E1(xv−8q−3)

E3(xv−8q−3)E2(xv−9q−5/2)E2(xv−9q−7/2)E3(xv−10q−3) :

Vω3(x) = : W−1
1 (x)E1(xv−4q−1)E2(xv−5q−3/2) :

Vω4(x) = : W−1
1 (x)E1(xv−4q−1) :

Vω5(x) = : W−1
1 (x) :

(8.1.15)
The above expression is a refinement of the relation (8.1.13). The dependence on the v and q
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factors encodes the value of the Coulomb moduli at the triality point. Namely, let v#a,I q#′a,I

be the various v and q factors appearing in the Ea operators of (8.1.15). Then, the Coulomb
moduli of the 5d gauge theory that truncate the partition function to the F4 q-deformed
conformal block are given by:

ea,I = fI t
Na,I v#a,I q#′a,I v5−a q(3−a)/2 , a = 1, 2

ea,I = fI t
Na,I v#a,I q#′a,I v5−a q(3−a)/2 , a = 3, 4 (8.1.16)

In our notation, a = 1, 2 designate the long roots, while a = 3, 4 designate the short roots.
The Coulomb branch of the 5d theory has complex dimension:

4∑
a=1

da = 46 =
∑

〈eγ ,ωi〉<0

|〈eγ, ωi〉| ,

with da the ranks of the 4 gauge groups. In the right-hand sum, one counts all positive roots
that have a negative inner product with at least one of the coweights. This is also the number
of supersymmetric vacua (or equivalently, integration contours) of the 3d theory, and the
number of parameters needed to specify the 3-point of the q-deformed Wq,t(F4) algebra.

In the CFT limit, when ms →∞, the counting is done without multiplicity. The Coulomb
branch dimension therefore decreases and becomes equal to the number of positive roots of
F4, which is 24. The Coulomb branch of the resulting theory T 4d is the maximal nilpotent
orbit of F4, with Bala–Carter label F4. Because the defect is polarized, its Coulomb branch
must be in the image of the Spaltenstein map. In our case, the full puncture Coulomb branch
is the image of the orbit denoted by ∅. This pre-image Bala–Carter label ∅ is identified at
once by acting on WS with the Weyl group and noticing the set never has any common zeros
in the Dynkin labels of the different coweights.

Bn Full Puncture

For Bn, we take the set WS to be the following collection of n+ 1 coweights:

ω1 = −w∨1 + α∨1 + α∨2 + . . .+ α∨n−1 + α∨n
ωi = ωi−1 + α∨n−i+1 , i = 2, . . . n

ωn+1 = −w∨n
(8.1.17)

The Dynkin labels of the coweights (8.1.17) expanded in terms of fundamental coweights
encode the precise matter content of the 3d theory:
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Figure 8.8: Cylinder with a full Bn puncture: 5d theory T 5d and 3d theory G3d resulting
from WS .

ω1 = [ 0, 0, 0, . . . , 0,−1, 1]

ω2 = [ 0, 0, 0, . . . ,−1, 1, 0]

...

ωn−2 = [ 0,−1, 1, . . . , 0, 0, 0]

ωn−2 = [ 0,−1, 1, . . . , 0, 0, 0]

ωn−1 = [−1, 1, 0, . . . , 0, 0, 0]

ωn+1 = [ 0, 0, 0, . . . , 0, 0,−1]

(8.1.18)

We obtain the quiver gauge theory G3d shown in figure 8.8.
The q-deformed vertex operator that realizes the full puncture is the product :

∏n+1
i=1 Vωi(xi) :,

where

Vω1(x) =: W−1
1 (x)E1(xv−1q−1/2)E2(xv−2q−1) . . . En−1(xv1−nq(−n+1)/2)En(xv−nq(−n+1)/2) :

Vωi(x) =: Vωi−1
(x)En−i+1(xv−n−i+1q(−n−i+3)/2) : i = 2, . . . , n

Vωn+1(x) =: W−1
n (x) :

(8.1.19)
The above expression is a refinement of the relation (8.1.17). The dependence on the v and q
factors encodes the value of the Coulomb moduli at the triality point. Namely, let v#a,I q#′a,I
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be the various v and q factors appearing in the Ea operators of (8.1.19). Then, the Coulomb
moduli of the 5d gauge theory that truncate the partition function to the Bn q-deformed
conformal block are given by:

ea,I = fI t
Na,I v#a,I q#′a,I v2−a q(2−a)/2 , a = 1, . . . , n− 1

en,I = fI t
Nn,I v#n,I q#′n,I v2−n q(3−n)/2 (8.1.20)

In our notation, a = 1, . . . , n− 1 designate the long roots, while a = n designates the short
root.

The Coulomb branch of the 5d theory has complex dimension:

n∑
a=1

da =
n(3n− 1)

2
=

∑
〈eγ ,ωi〉<0

|〈eγ, ωi〉| ,

with da the ranks of the n gauge groups. In the right-hand sum, one counts all positive roots
that have a negative inner product with at least one of the coweights. This is also the number
of supersymmetric vacua (or equivalently, integration contours) of the 3d theory, and the
number of parameters needed to specify the 3-point of the q-deformed Wq,t(Bn) algebra.

In the CFT limit, when ms →∞, the counting is done without multiplicity. The Coulomb
branch dimension therefore decreases and becomes equal to the number of positive roots of
Bn, which is n2. The Coulomb branch of the resulting theory T 4d is the maximal nilpotent
orbit of Bn, with Bala-Carter label Bn. Because the defect is polarized, its Coulomb branch
must be in the image of the Spaltenstein map. In our case, the full puncture Coulomb branch
is the image of the orbit denoted by ∅. This pre-image Bala–Carter label ∅ is identified at
once by acting on WS with the Weyl group and noticing the set never has any common zeros
in the Dynkin labels of the different coweights.

Cn Full Puncture

For Cn, we take the set WS to be the following collection of n+ 1 coweights:

ω1 = −w∨1 + α∨1 + α∨2 + . . .+ α∨n−2 + 2α∨n−1 + 2α∨n
ωi = ωi−1 + α∨n−i , i = 2, . . . n− 1

ωn = −w∨n + α∨n
ωn+1 = −w∨n

(8.1.21)

The Dynkin labels of the coweights (8.1.21) expanded in terms of fundamental coweights
encode the precise matter content of the 3d theory:
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Figure 8.9: Cylinder with a full Cn puncture: 5d theory T 5d and 3d theory G3d resulting
from WS .

ω1 = [ 0, 0, . . . , 0,−1, 1, 0]

ω2 = [ 0, 0, . . . ,−1, 1, 0, 0]

...

ωn−2 = [−1, 1, . . . , 0, 0, 0, 0]

ωn−1 = [ 1, 0, . . . , 0, 0, 0, 0]

ωn = [ 0, 0, . . . , 0, 0,−1, 1]

ωn+1 = [ 0, 0, . . . , 0, 0, 0,−1]

(8.1.22)

We obtain the quiver gauge theory G3d shown in figure 8.9.
The q-deformed vertex operator that realizes the full puncture is the product :

∏n+1
i=1 Vωi(xi) :,

where
Vω1(x) =: W−1

1 (x)E1(xv−1)E2(xv−2) . . . En−1(xv−n)En(xv−n)

En(xv1−nq−1)En−1(xv−n−1q−1) :

Vωi(x) =: Vωi−1
(x)En−i(xv

−n−iq−1) : i = 2, . . . , n− 1

Vωn(x) =: W−1
n (x)En(xv2) :

Vωn+1(x) =: W−1
n (x) :

(8.1.23)
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The above expression is a refinement of the relation (8.1.21). The dependence on the v and q
factors encodes the value of the Coulomb moduli at the triality point. Namely, let v#a,I q#′a,I

be the various v and q factors appearing in the Ea operators of (8.1.23). Then, the Coulomb
moduli of the 5d gauge theory that truncate the partition function to the Cn q-deformed
conformal block are given by:

ea,I = fI t
Na,I v#a,I q#′a,I v2−a , a = 1, . . . , n

In our notation, a = 1, . . . , n− 1 designate the short roots, while a = n designates the long
root.

The Coulomb branch of the 5d theory has complex dimension:

n∑
a=1

da =
n(3n− 1)

2
=

∑
〈eγ ,ωi〉<0

|〈eγ, ωi〉| ,

with da the ranks of the n gauge groups. Note it is the same as for the Bn full puncture. In
the right-hand sum, one counts all positive roots that have a negative inner product with at
least one of the coweights. This is also the number of supersymmetric vacua (or equivalently,
integration contours) of the 3d theory, and the number of parameters needed to specify the
3-point of the q-deformed Wq,t(Cn) algebra.

In the CFT limit, when ms →∞, the counting is done without multiplicity. The Coulomb
branch dimension therefore decreases and becomes equal to the number of positive roots of
Cn, which is n2. The Coulomb branch of the resulting theory T 4d is the maximal nilpotent
orbit of Cn, with Bala-Carter label Cn. Because the defect is polarized, its Coulomb branch
must be in the image of the Spaltenstein map. In our case, the full puncture Coulomb branch
is the image of the orbit denoted by ∅. This pre-image Bala–Carter label ∅ is identified at
once by acting on WS with the Weyl group and noticing the set never has any common zeros
in the Dynkin labels of the different coweights.

8.2 All Punctures of the G2 Little String and CFT

Limit

We present here the classification of defects of the g = G2 little string theory, along with
their conjectured CFT limit. The defects are generated by D5 branes wrapping non-compact
2-cycles of a resolved D4 singularity; more precisely, we consider a nontrivial fibration of the
resolved D4 over C2 × C, and as one goes around the origin of one of the planes C wrapped
by the branes, the singularity goes back to itself, up to Z3 outer automorphism group action.

The resulting defects are labeled by coweights of G2, which are weights of LG2 = G2. We
find that there are exactly two “distinct” unpolarized defects, both generated by the zero
weight [ 0, 0], taken once in each of the two fundamental representations. The Coulomb
branch of each featured quiver gauge theory T5d flows to a nilpotent orbit of G2 in the CFT
limit; all nilpotent orbits of G2 turn out to be physically realized in this way.
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Furthermore, we illustrate G2 triality, by considering the little string on the cylinder with
one of the punctures of figure 8.10.

The ∅ Orbit

The first puncture we study was studied in the previous section, so we will be brief: it is
realized with three D5 branes, labeled by the following set WS :

ω1 = −w∨1 + 4α∨1 + 6α∨2 = [ 1, 0]

ω2 = −w∨2 + α∨2 = [−1, 1]

ω3 = −w∨2 = [ 0,−1]

All the elements of WS are in the Weyl group orbit of the fundamental representation they
belong in, so the defect is polarized. Moreover, the set is distinguished, as can be checked by
acting on all elements of WS simultaneously with the Weyl group of G2. The fundamental
matter content of T 5d is:∏

1≤I≤d1

N∅µ1I (v
2 f1/e1,I ; q)

∏
1≤I≤d2

N∅µ2I (v
2
3 f2/e2,I ; q

3)
∏

1≤I≤d2

N∅µ2I (v
2
3 f3/e2,I ; q

3).

The truncation of T 5d’s partition function to a 3d theory’s partition function is achieved by
setting:

e1,1 = q−0v−0tN1,1 f1 e2,1 = q−0v−2tN2,1 f1

e1,2 = q−1v−2tN1,2 f1 e2,2 = q−1v−2tN2,2 f1

e1,3 = q−2v−2tN1,3 f1 e2,3 = q−2v−2tN2,3 f1

e1,4 = q−3v−4tN1,4 f1 e2,4 = q−1v−4tN2,4 f1

e2,5 = q−2v−4tN2,5 f1

e2,6 = q−3v−4tN2,6 f1

e2,7 = q−0v−0tN2,7 f2

The resulting 3d partition function has fundamental matter content given exactly by (3.4.56).
We now turn to the CFT limit: there are no common zeros in the distinguished setWS , so

the Bala–Carter label associated to this polarized defect is ∅. The Coulomb branch dimension
is then given by the Spaltenstein dual of this orbit, which is G2, of complex dimension 6.
This is confirmed by the fact that all 6 positive roots have a negative inner product with
at least one of the weights. The momentum of the associated vertex operator in G2-Toda
theory is β =

∑3
i=1 βi ωi. Moreover, the weighted Dynkin diagram for the orbit G2 is (2, 2);

this is not the mass content of the quiver T 5d we wrote down (the mass content being (1, 2)),
but can be obtained from ours by generalized Hanany-Witten transitions (see [54] for details
on this procedure).
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The A1 Orbit

Consider two D5 branes labeled by the following set WS :

ω1 = −w∨2 + 2α∨1 + 4α∨2 = [ 0, 1]

ω2 = −w∨2 = [ 0,−1]

All the elements of WS are in the Weyl group orbit of the fundamental representation they
belong in, so the defect is polarized. Moreover, the set is distinguished, as can be checked
easily. The fundamental matter content of T 5d is:∏

1≤I≤d2

N∅µ2I (v
2
3 f1/e2,I ; q

3)
∏

1≤I≤d2

N∅µ2I (v
2
3 f2/e2,I ; q

3).

The truncation of T 5d’s partition function to a 3d theory’s partition function is achieved by
setting:

e1,1 = q−0v−0tN1,1 f1 e2,1 = q−0v−0tN2,1 f1

e1,2 = q−1v−2tN1,2 f1 e2,2 = q−0v−2tN2,2 f1

e2,3 = q−1v−2tN2,3 f1

e2,4 = q−1v−4tN2,4 f1

The resulting 3d partition function has fundamental matter content given exactly by (3.4.56).
We now turn to the CFT limit: there is a common zero in the first Dynkin label of

the distinguished set WS , so the Bala–Carter label associated to this polarized defect is A1.
The Coulomb branch dimension is then given by the Spaltenstein dual of this orbit, which
is G2(a1), of complex dimension 5. This is confirmed by the fact that all but the positive
(simple) root α1 have a negative inner product with ω2, and ω1 does not have a negative
inner product with α1 either, so one of the six positive roots is not counted. The momentum
of the associated vertex operator in G2-Toda theory is β =

∑2
i=1 βi ωi. Note that this defect

characterizes a level 1 null state of G2-Toda:

〈β, α1〉 = 0

Finally, note that the weighted Dynkin diagram for the G2(a1) nilpotent orbit is precisely
the mass content (0, 2) of the little string quiver T 5d we wrote.

The A1s Orbit

Consider two D5 branes labeled by the following set WS :

ω1 = −w∨1 + 4α∨1 + 6α∨2 = [ 1, 0]

ω2 = −w∨1 = [−1, 0]
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All the elements of WS are in the Weyl group orbit of the fundamental representation they
belong in, so the defect is polarized. Moreover, the set is distinguished, as can be checked
easily. The fundamental matter content of T 5d is:∏

1≤I≤d1

N∅µ1I (v
2 f1/e1,I ; q)

∏
1≤I≤d1

N∅µ1I (v
2 f2/e1,I ; q).

The truncation of T 5d’s partition function to a 3d theory’s partition function is achieved by
setting:

e1,1 = q−0v−0tN1,1 f1 e2,1 = q−0v−2tN2,1 f1

e1,2 = q−1v−2tN1,2 f1 e2,2 = q−1v−2tN2,2 f1

e1,3 = q−2v−2tN1,3 f1 e2,3 = q−2v−2tN2,3 f1

e1,4 = q−3v−4tN1,4 f1 e2,4 = q−1v−4tN2,4 f1

e2,5 = q−2v−4tN2,5 f1

e2,6 = q−3v−4tN2,6 f1

The resulting 3d partition function has fundamental matter content given exactly by (3.4.56).
We now turn to the CFT limit: there is a common zero in the second Dynkin label of the

distinguished set WS , so the Bala–Carter label associated to this polarized defect is A1,s. It
is a distinct label from A1 in the previous example, since we must distinguish between the
short and the long root. The Coulomb branch dimension is then given by the Spaltenstein
dual of this orbit, which is G2(a1), of complex dimension 5 (this is the same as in the A1

case.) This is confirmed by the fact that all but the positive (simple) root α2 have a negative
inner product with ω2, and ω1 does not have a negative inner product with α2 either, so one
of the six positive roots is not counted. The momentum of the associated vertex operator in
G2-Toda theory is β =

∑2
i=1 βi ωi. Note that this defect characterizes a level 1 null state of

G2-Toda:
〈β, α2〉 = 0

The G2(a1) Orbit

Consider one D5 brane labeled by the following set WS :

ω1 = −w∨2 + 1α∨1 + 2α∨2 = [ 0, 0]2

The null coweight is in its own Weyl group orbit, so the defect is unpolarized. The fundamental
matter content of T 5d is: ∏

1≤I≤d2

N∅µ2I (v
2
3 f1/e2,I ; q

3).
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The truncation of T 5d’s partition function to a 3d theory’s partition function is achieved by
setting:

e1,1 = q−0v−0tN1,1 f1 e2,1 = q−0v−0tN2,1 f1

e2,2 = q−0v−2tN2,2 f1

A 3d matter contribution survives this truncation, even with WS containing only the zero
coweight. This is because the defect is unpolarized, so refinement due to q and v factors
crucially enter the computation. The resulting potential is precisely a refinement of the
coweight [ 0, 0]2, understood here as [ 0, 0]2 = [ 0, 1] + [ 0,−1], and a potential
survives, as pictured in 8.10; see Section 8.4 below.

We now turn to the CFT limit: the coweight [ 0, 0]2 has only zeros as Dynkin labels,
so part of the Bala–Carter label is G2. The extra label “2” on the coweight, denoting the
fundamental representation of LG2 the coweight is taken in, is in one-to-one correspondence
with an extra simple root label in the Bala–Carter classification. All in all, the label is G2(a1).
Because this is an unpolarized defect, there is no reason to expect that the Coulomb branch
dimension of T 4d should be given by the Spaltenstein dual of this orbit, (namely, G2(a1)
itself), and this is indeed not the case. The Coulomb branch of T 4d is in fact the orbit A1, of
complex dimension 3. This can be argued from the T 5d quiver, which already has complex
Coulomb dimension 3. Since the dimension of the Coulomb branch can only decrease in the
ms →∞ limit, this is the right orbit. Note A1 is not in the image of the Spaltenstein map.
Finally, the weighted Dynkin diagram for this orbit is (0, 1), which is the mass content of the
quiver T 5d we wrote down. For more details on dimension counting for unpolarized defects,
see [35].

Bala–Carter Labels and Unpolarized Classification

From the above discussion, it may seem like one of the nilpotent orbits of G2 is not realized as
the Coulomb branch of some defect theory T 4d; namely, the orbit A1s has complex dimension
4, is not in the image of the Spaltenstein map, and did not appear so far. However, we
conjecture that this orbit is realized as follows:

Consider one D5 brane labeled by the set WS :

ω1 = −w∨1 + 2α∨1 + 3α∨2 = [ 0, 0]1

This is a different way to produce the null coweight, taken this time in the representation
labeled by the first fundamental coweight [ 1, 0]. In our terminology, this defect must be
unpolarized. The fundamental matter content of T 5d is:∏

1≤I≤d1

N∅µ1I (v
2 f1/e1,I ; q).
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The truncation of T 5d’s partition function to a q-deformed conformal block with the appro-
priate vertex operator is achieved by setting:

e1,1 = q−0v−0tN1,1 f1 e2,1 = q−0v−2tN2,1 f1

e1,2 = q−1v−2tN1,2 f1 e2,2 = q−1v−2tN2,2 f1

e2,3 = q−1v−4tN2,3 f1

A potential survives this truncation, even with WS containing only the zero coweight. This
is because the defect is unpolarized, so refinement due to q and v factors crucially enter the
computation. The resulting potential is precisely a refinement of the coweight [ 0, 0]1,
as pictured in 8.10. We predict that this truncation is not unique, however (even up to
permutation of the Coulomb parameters), because two other “null weights” are present in the
[ 1, 0] qq-character of G2. Each of the three null weights is a distinct element in the Uq(Ĝ2)
sense. It would be important to study carefully thte other truncations and study their flow
to the nilpotent orbit A1s . We leave this task to future work. See also Section 8.4 below.

We now turn to the CFT limit: we claim that this defect is distinct from the previous
unpolarized one, which was engineered by [ 0, 0]2. We predict that the Coulomb branch
of T 4d is in fact the orbit A1s , of complex dimension 4. This is consistent with dimension
counting, and the weighted Dynkin diagram for this orbit is (1, 0), which is precisely the mass
content of the quiver theory T 5d. Note this orbit is not in the image of the Spaltenstein map.

8.3 Non-Simply Laced Triality from Folding

Recall that if g′ is a simply-laced Lie algebra, and g a subalgebra of g′ invariant under the
action of the outer automorphism group of g′, then these automorphisms of g′ are in one-to-one
correspondence with the automorphisms of the Dynkin diagram of g′. The resulting non
simply-laced subalgebra g is then obtained by “folding” the Dynkin diagram of g′.

It turns out that this folding procedure carries through algebraically, so one can engineer 5d
non simply-laced quiver gauge theories from their simply-laced counterparts. The truncation
of partitions in the 5d theory is preserved by this folding, so triality to a 3d non simply-laced
gauge theory can be explicitly described as a folding operation. In this section, we illustrate
this fact with a highly non-trivial example: we show that the Z2 folding of a E6 theory leads
to a F4 defect.

Our starting theory will be the following polarized defect WS of E6, engineered by two
D5 branes:

ω1 = −w∨6 + 2α∨1 + 4α∨2 + 6α∨3 + 4α∨4 + 2α∨5 + 4α∨6
ω2 = −w∨6
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Equivalently, decomposed in terms of fundamental coweights, these read:

ω1 = [ 0, 0, 0, 0, 0, 1]

ω2 = [ 0, 0, 0, 0, 0,−1]

The resulting 5d quiver T 5d
E6

is shown in figure 8.11. After Z2 folding, the nodes 3 and 6 now
designate long roots (being invariant under the outer automorphism action) and we obtain
an F4 defect theory T 5d

F4
, with coweights:

ω′1 = −w∨1 + 4α∨1 + 6α∨2 + 4α∨3 + 2α∨4
ω′2 = −w∨1

Equivalently, decomposed in terms of fundamental coweights, these read:

ω1 = [ 1, 0, 0, 0]

ω2 = [−1, 0, 0, 0]

The fundamental matter content of T 5d
E6

is∏
1≤I≤d6

N∅µ6I (v
2 f1/e6,I ; q).

We now show that the truncation scheme of the T 5d
E6

theory at the triality point are
preserved by the folding operation. Namely, we set the Coulomb parameters of T 5d

E6
to:

e1,1 = v−6tN1,1 f1 e2,1 = v−4tN2,1 f1 e3,1 = v−2tN3,1 f1

e1,2 = v−10tN1,2 f1 e2,2 = v−6tN2,2 f1 e3,2 = v−4tN3,2 f1

e2,3 = v−8tN2,3 f1 e3,3 = v−6tN3,3 f1

e2,4 = v−10tN2,4 f1 e3,4 = v−6tN3,4 f1

e3,5 = v−8tN3,5 f1

e3,6 = v−10tN3,6 f1

e4,1 = v−4tN4,1 f1 e5,1 = v−6tN5,1 f1 e6,1 = v−0tN6,1 f1

e4,2 = v−6tN4,2 f1 e5,2 = v−10tN5,2 f1 e6,2 = v−4tN6,2 f1

e4,3 = v−8tN4,3 f1 e6,3 = v−6tN6,3 f1

e4,4 = v−10tN4,4 f1 e6,4 = v−10tN6,4 f1

The resulting 3d theory is shown in the right column of figure 8.11. Now, notice that the
above v factors used in the truncation are identical on nodes 1 and 5, and identical and nodes
2 and 4. These become the v factors of T 5d

F4
for the two short roots. The v factors on nodes 3

and 6 become the v factors of T 5d
F4

for the two long roots.
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There is one slight caveat: a bifundamental hypermultiplet truncating a partition on the
long root 2 starting from the long root 1 is now accompanied by a q−1 factor in the argument
of the Nekrasov factors in the 5d partition function. With this adjustment, we obtain the
following truncation scheme for T 5d

F4
:

e1,1 = q−0v−0tM1,1 f1 e2,1 = q−1v−2tM2,1 f1

e1,2 = q−1v−4tM1,2 f1 e2,2 = q−1v−4tM2,2 f1

e1,3 = q−1v−6tM1,3 f1 e2,3 = q−1v−6tM2,3 f1

e1,4 = q−2v−10tM1,4 f1 e2,4 = q−2v−6tM2,4 f1

e2,5 = q−2v−8tM2,5 f1

e2,6 = q−2v−10tM2,6 f1

e3,1 = q−1v−4tM3,1 f1 e4,1 = q−1v−6tM4,1 f1

e3,2 = q−1v−6tM3,2 f1 e4,2 = q−2v−10tM4,2 f1

e3,3 = q−2v−8tM3,3 f1

e3,4 = q−2v−10tM3,4 f1

The resulting 3d theory G3d is shown in the right column of figure 8.11.

8.4 Unpolarized Defects of G2 and the Quantum

Affine Algebra Uq(Ĝ2)

Here, we illustrate how we can produce of a null coweight of G2 as obtained from the triality
procedure. The null weight we will obtained will naturally be “refined,” and it will appear
in the construction of the generators of Wq,t(G2) . The expression we will obtain can be
recovered from other methods, such as the G2 qq-characters; see [71, 77] for details.

For concreteness, let WS be the set ω = [ 0, 0]2 we studied above, with T 5d the 5d
quiver engineered at the top of figure 8.10. Because the only coweight of WS is the null
coweight, one would naively think that there is no matter left after truncation of the partition
function to the resulting 3d theory, meaning the presence of the D5 brane would not be
felt by the compact D3 branes. This is however not the case: in the little string theory, a
refinement due to q and v factors results in chiral and anti-chiral matter in G3d, and one ends
up with a “refinement” of the coweight [ 0, 0]2. Namely, we perform the truncation of the
5d partition function by setting:

e1,1 = q−0v−0tN1,1 f1 e2,1 = q−0v−0tN2,1 f1

e2,2 = q−0v−2tN2,2 f1 .
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We obtain the partition function of a 3d theoryG3d with fundamental matter z3d
H2

(xµ2)/z
3d
H2

(x∅),
where

z3d
H2

(x2) =
∏

1≤I≤N2

(v2 q ex
(2)
I /f1; q3)∞

(q2 ex
(2)
I /f1; q3)∞

. (8.4.24)

This gives a physical construction of the weight [ 0, 0]2 as it appears in the representation

theory of Uq(Ĝ2). It is of the expected form, after rescaling of q and v, as suggested by the
relevant term in the [ 0, 1] qq-character of G2. Note that we recover the unrefined null
coweight (and therefore a trivial potential) in the limit qv−2 = 1.

In this fashion, one can derive the full representation theory content of any finite-
dimensional integral representation of a quantum affine algebra Uq(ĝ), for any simple Lie
algebra g.
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Figure 8.10: Defects of the G2 Little String
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Figure 8.11: Folding of a E6 little string defect and the resulting F4 defect. The 3d theory at
the triality locus is shown on the right.
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8.5 All Punctures of the En Little String and CFT

Limit

As an application of the Bala–Carter classification, we present a table of the defects of the
En little string. Unpolarized defects are shaded in yellow. For each defect type, we give a set
WS of weights, along with the low energy 5d quiver gauge theory T 5d on the D5 branes that
results from it. The Bala–Carter label that designates the nilpotent orbit in the CFT limit
ms →∞ is written in the left column. Each set WS is a distinguished set, in the sense of
section 4.2; in particular, the (co)weights ωi of WS satisfy

〈β, αi〉 = 0 ∀αi ∈ Θ,

with β =
∑|WS |

i=1 βi ωi. This constraint has an interpretation as a level 1 null state condition
of g-Toda. For unpolarized defects, a subscript is added to the weights, specifying the
representation they are taken in. This corresponds to giving the additional simple root label
ai in the Bala–Carter picture. For polarized defects, no subscript is needed for the weights.

The dual orbit is the orbit describing the Coulomb branch of T 4d; for polarized defects,
this is given by the Spaltenstein dual of the Bala–Carter label. For unpolarized defects, these
dual orbits had to be conjectured based on other approaches, such as dimension counting.
The dimension of this dual orbit describing the Coulomb branch is given by d.

Note the quivers are either literally the weighted Dynkin diagrams as given in the literature,
or are quivers that can be made to be weighted Dynkin diagrams after moving on the Higgs
branch.

Table 8.1: Results for E6

Orbit Weights Quiver Dual orbit d

0

[ 0, 0, 0, 0, 0,−1]
[−1, 0, 0, 0,−1, 1]
[ 1, 0, 0,−1, 0, 1]
[ 0,−1, 0, 0, 1, 1]
[ 0, 1,−1, 1, 0, 0]
[ 0, 0, 1, 0, 0,−1]
[ 0, 0, 0, 0, 0,−1]

7 14 21 14 7

14

7

E6 72

A1

[ 0, 0, 0, 0,−1, 0]
[ 0, 0, 0,−1, 1, 0]
[ 0, 1, 0,−1, 0, 0]
[ 0, 0, 0, 1, 0,−1]
[ 0, 0,−1, 1, 0, 1]
[ 0,−1, 1, 0, 0, 0]

4 8 12 10 8

6 6

E6(a1) 70
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Table 8.1: Results for E6

Orbit Weights Quiver Dual orbit d

2A1

[ 0, 0, 0, 1,−1,−1]
[ 0, 0, 0, 0, 1,−1]
[ 0,−1, 0, 0, 0, 1]
[ 0, 1, 0,−1, 0, 0]
[ 0, 0, 0, 0, 0, 1]

5 8 11 8 5

62 2

1

D5 68

3A1

[ 0,−1, 0, 0, 0, 0]
[ 0, 2, 0,−1, 0,−2]
[ 0,−1, 0, 1, 0, 1]
[ 0, 0, 0, 0, 0, 1]

6 12 17 12 6

91

1

1

1

E6(a3) 66

A2

[ 0, 0, 1,−1, 0,−1]
[ 0, 0, 0, 0,−1, 0]
[ 0, 0, 0,−1, 2, 0]
[ 0, 0,−1, 2,−1, 0]
[ 0, 0, 0, 0, 0, 1]

5 9 13 9 5

81 1

3

E6(a3) 66

A2 + A1

[ 0, 0, 0, 0, 1,−1]
[ 0, 0, 0, 0,−1, 0]
[ 0, 0,−1, 0, 0, 2]
[ 0, 0, 1, 0, 0,−1]

4 7 10 7 4

61 1

2

D5(a1) 64

2A2

[ 0, 0, 0, 0, 0,−1]
[ 0, 0,−1, 0, 0, 2]
[ 0, 0, 1, 0, 0,−1]

3 6 9 6 3

6

3

D4 60

A2 + 2A1

[ 0, 0, 0, 0, 1, 0]
[ 0, 0,−1, 0, 1, 0]
[ 0, 0, 1, 0,−2, 0]

4 7 10 8 4

51 2

A4 + A1 62

A3

[ 0, 0, 0, 0,−1, 0]
[ 0, 0, 0,−1, 1, 0]
[ 0, 0, 0, 1, 0,−1]
[ 0, 0, 0, 0, 0, 1]

3 6 9 7 5

5 3

1

A4 60
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Table 8.1: Results for E6

Orbit Weights Quiver Dual orbit d

2A2 + A1

[ 0, 0,−1, 0, 0, 0]
[ 0, 0, 1, 0, 0, 0]

4 8 12 8 4

6

2
D4(a1) 58

A3 + A1

[ 0, 0, 0,−1, 0, 0]
[ 0, 0, 0, 1, 0,−1]
[ 0, 0, 0, 0, 0, 1]

3 6 9 7 4

5 1 1

1

D4(a1) 58

D4(a1)

[ 0, 0, 0, 0, 1, 0]1
[−1, 0, 0, 0,−1, 0]3
[ 1, 0, 0, 0, 0, 0]5

4 7 10 7 4

51

1

1

2A2 + A1 54

A4

[ 0, 0, 0, 0, 2,−1]
[ 0, 0, 0, 0,−1, 0]
[ 0, 0, 0, 0,−1, 1]

3 6 8 6 4

41 2

A3 52

D4

[ 0, 0, 0, 0,−1, 0]
[−1, 0, 0, 0, 1, 0]
[ 1, 0, 0, 0, 0, 0]

2 4 6 5 4

3 3

2A2 48

A4 + A1

[ 0, 0, 0, 1, 0, 0]
[ 0, 0, 0,−1, 0, 0]

3 6 8 6 3

41 1

A2 + 2A1 50

A5

[ 0, 0, 0, 0, 0,−1]
[ 0, 0, 0, 0, 0, 1]

2 4 6 4 2

4

2

A2 42

D5(a1)
[ 0, 0, 0, 0, 1, 0]1
[ 0, 0, 0, 0,−1, 0]2

3 5 6 4 2

31 1

A2 + A1 46
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Table 8.1: Results for E6

Orbit Weights Quiver Dual orbit d

E6(a3) [ 0, 0, 0, 0, 0, 0]3

2 4 6 4 2

3

1
3A1 40

D5

[ 0, 0, 0, 0, 1, 0]
[ 0, 0, 0, 0,−1, 0]

2 3 4 3 2

21 1

2A1 32

E6(a1) [ 0, 0, 0, 0, 0, 0]7
1 2 3 2 1

2

1

A1 22
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Table 8.2: Results for E7

Orbit Weights Quiver Dual orbit d

0

[−1, 0, 0, 0, 0, 0, 0]
[ 1, 0, 0,−1, 0, 1, 0]
[ 0,−1, 1, 0, 0,−1, 0]
[−1, 1, 0, 0, 0,−1, 0]
[ 0, 0, 0, 0, 0, 1, 0]
[ 0, 0,−1, 1, 0, 0, 1]
[ 1, 0,−1, 1,−1, 0, 0]
[ 0, 0, 1,−1, 1, 0,−1]

13 22 31 24 17 10

164 3

1

E7 126

A1

[−1, 0, 0, 0, 0, 0, 0]
[ 1, 0, 0,−1, 0, 1, 0]
[ 0,−1, 1, 0, 0,−1, 0]
[−1, 1, 0, 0, 0,−1, 0]
[ 0, 0, 0, 0, 0, 1, 0]
[ 0, 0,−1, 1, 0, 0, 1]
[ 1, 0, 0, 0, 0, 0,−1]

10 17 24 19 14 9

123 4

E7(a1) 124

2A1

[−1, 0, 0, 0, 0, 0, 0]
[ 1, 0, 0,−1, 0, 1, 0]
[ 0,−1, 1, 0, 0,−1, 0]
[−1, 1, 0, 0, 0,−1, 0]
[ 1, 0,−1, 1, 0, 0, 0]
[ 0, 0, 0, 0, 0, 1, 0]

8 14 20 16 12 8

102 4

E7(a2) 122

3A1b

[ 0, 0, 0, 0,−1, 0, 0]
[ 0, 0,−1, 0, 1, 0, 0]
[−2, 0, 1, 0, 0, 0, 0]
[ 2,−2, 1, 0, 0, 0, 0]
[ 0, 2,−1, 0, 0, 0, 0]

10 20 30 25 20 10

15 5

E6 120

3A1a

[ 0, 0, 0, 0,−1, 0, 0]
[ 0, 0,−1, 0, 1, 0, 0]
[ 0,−1, 1, 0, 1,−2, 0]
[ 0,−1, 1, 0,−1, 2, 0]
[ 0, 2,−1, 0, 0, 0, 0]

10 20 30 25 20 10

15 5

E7(a3) 120

A2

[ 0, 0, 0, 0, 0,−1, 0]
[ 0, 0, 0, 0,−1, 1, 0]
[ 0, 0, 0, 0, 1, 0,−1]
[ 0, 0,−1, 0, 1, 0, 1]
[ 0, 0, 1,−1, 0, 0, 0]
[ 0, 0, 0, 1,−1, 0, 0]

6 12 18 15 12 9

9 6

E7(a3) 120

4A1

[ 0, 0,−1, 0, 0, 0, 0]
[ 0, 0, 1, 0,−3, 0, 0]
[ 2, 0,−1, 0, 2, 0, 0]
[−2, 0, 1, 0, 1, 0, 0]

16 32 48 36 24 12

24

4
E6(a1) 118

A2 +A1

[ 0, 0, 1,−1, 0,−1, 0]
[ 0, 0,−1, 0, 0, 0, 0]
[ 0, 0,−1, 2,−2, 2, 0]
[ 0, 0, 1,−1, 1,−1, 0]
[ 0, 0, 0, 0, 1, 0, 0]

12 23 34 27 20 10

171

1

3

E6(a1) 118
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Table 8.2: Results for E7

Orbit Weights Quiver Dual orbit d

A2 + 2A1

[ 0, 0, 0, 0, 1,−2, 0]
[ 0, 0,−1, 0, 0, 1, 0]
[ 0, 0, 0, 0, 1, 0, 0]
[ 0, 0, 1, 0,−2, 1, 0]

9 17 25 20 14 7

131 1 1

1

E7(a4) 116

A3

[ 0, 0, 0, 1,−1, 0,−1]
[ 0, 0, 0,−1, 1, 0, 0]
[ 0, 0, 0, 0,−1, 0, 1]
[ 0, 0, 0, 0, 1,−1, 0]
[ 0, 0, 0, 0, 0, 1, 0]

6 11 16 13 10 7

81 4

D6(a1) 114

2A2

[ 0, 0,−1, 1, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0,−1]
[ 0, 0, 0,−1, 0, 0, 2]
[ 0, 0, 1, 0, 0, 0,−1]

7 14 21 16 11 6

12 1

3

D5 +A1 114

A2 + 3A1

[ 0, 0, 0, 0,−1, 0, 0]
[ 0, 0,−1, 0, 2, 0, 0]
[ 0, 0, 1, 0,−1, 0, 0]

6 12 18 15 12 6

9 3

A6 114

A3b+A1b

[−1, 0, 0, 0, 0, 0, 0]
[ 1, 0, 0, 0,−1, 0, 0]
[ 1,−1, 0, 0, 1, 0, 0]
[−1, 1, 0, 0, 0, 0, 0]

8 12 16 12 8 4

84

D5 112

2A2 +A1

[ 0, 0,−1, 0, 0, 0, 0]
[ 0, 0, 1, 0, 0,−1, 0]
[ 0, 0, 0, 0, 0, 1, 0]

8 16 24 19 13 7

12

1

1 1

E7(a5) 112

A3a+A1a

[ 0,−1, 0, 0, 1, 0, 0]
[ 0, 0, 0, 0,−1, 0, 0]
[ 0, 0, 0, 0, 1,−1, 0]
[ 0, 1, 0, 0,−1, 1, 0]

7 13 19 15 11 6

101 1 1

1

E7(a5) 112

D4(a1)

[ 1, 0, 0, 0, 0, 0, 0]1
[−1, 0, 0, 0,−1, 0, 0]3
[ 0, 0, 0, 0, 0, 1, 0]6
[ 0, 0, 0, 0, 1,−1, 0]6

8 15 22 17 12 7

111

1

2

D6(a2) 110
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Table 8.2: Results for E7

Orbit Weights Quiver Dual orbit d

A3 + 2A1

[ 0, 1,−1, 0, 0, 0, 0]
[ 0,−1, 0, 0, 0, 0, 0]
[ 0, 0, 1, 0, 0, 0, 0]

9 17 24 18 12 6

121 1

1
E6(a3) 110

D4

[ 0, 0, 0, 0, 0,−1, 0]
[−1, 0, 0, 0, 0, 1, 0]
[ 1, 0, 0, 0,−1, 1, 0]
[ 0, 0, 0, 0, 1,−1, 0]

4 8 12 10 8 6

6 4

A5b 102

D4(a1)+A1

[ 1, 0, 0, 0, 0, 0, 0]1
[−1, 0, 0, 0,−1, 0, 0]3
[ 0, 0, 0, 0, 1, 0, 0]5

8 15 22 17 12 6

111

1

1

A5a 108

A3 +A2

[ 0, 0, 0,−1, 0, 0, 1]
[ 0, 0, 0, 1, 0, 0,−2]
[ 0, 0, 0, 0, 0, 0, 1]

6 11 16 12 8 4

91

2

D5(a1)+A1 108

A4

[ 0, 0, 0, 0, 0,−1, 0]
[ 0, 0, 0, 0,−1, 1, 0]
[ 0, 0, 0, 0, 1, 0,−1]
[ 0, 0, 0, 0, 0, 0, 1]

5 10 15 12 9 6

8 3

1

D5(a1) 106

A3+A2+A1

[ 0, 0,−1, 0, 0, 0, 0]
[ 0, 0, 1, 0, 0, 0, 0]

8 16 24 18 12 6

12

2
A4 +A2 106

A5b

[−1, 0, 0, 0, 0, 0, 0]
[ 2,−1, 0, 0, 0, 0, 0]
[−1, 1, 0, 0, 0, 0, 0]

6 9 12 9 6 3

63

D4 96

D4 +A1

[−1, 0, 0, 0, 0, 0, 0]
[ 1, 0, 0, 0,−1, 0, 0]
[ 0, 0, 0, 0, 1, 0, 0]

6 10 14 11 8 4

72 1

A4 100
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Table 8.2: Results for E7

Orbit Weights Quiver Dual orbit d

A4 +A1

[ 0, 0, 0, 0,−1, 0, 0]
[ 0, 0, 0, 0, 1, 0,−1]
[ 0, 0, 0, 0, 0, 0, 1]

5 10 15 12 9 5

8 1 1

1

A4 +A1 104

D5(a1)

[ 1, 0, 0, 0, 0, 0, 0]1
[−1, 0, 0, 0, 0,−1, 0]4
[ 0, 0, 0, 0, 0, 1, 0]6

6 11 16 13 9 5

81 1 1

A4 100

A4 +A2

[ 0, 0, 0,−1, 0, 0, 0]
[ 0, 0, 0, 1, 0, 0, 0]

6 12 18 15 10 5

9 2

A3+A2+A1 100

A5a

[ 0, 0, 0, 0, 0, 1,−1]
[ 0, 0, 0, 0, 0,−1, 0]
[ 0, 0, 0, 0, 0, 0, 1]

5 9 13 10 7 4

71 1

1

D4(a1)+A1 96

A5 +A1

[ 0,−1, 0, 0, 0, 0, 0]
[ 0, 1, 0, 0, 0, 0, 0]

6 12 16 12 8 4

82

D4(a1) 94

D5(a1)+A1

[ 0, 0, 0, 0,−1, 0, 0]3
[ 0, 0, 0, 0, 1, 0, 0]5

5 10 14 11 8 4

71 1

A3 +A2 98

D6(a2)
[ 1, 0, 0, 0, 0, 0, 0]1
[−1, 0, 0, 0, 0, 0, 0]3

6 11 16 12 8 4

81

1
A3a+A1a 92

E6(a3)
[ 0, 0, 0, 0, 0,−1, 0]4
[ 0, 0, 0, 0, 0, 1, 0]6

4 8 12 10 7 4

6 1 1

A3 + 2A1 94

D5

[ 0, 0, 0, 0,−1, 0, 0]
[ 0, 0, 0, 0, 1,−1, 0]
[ 0, 0, 0, 0, 0, 1, 0]

4 8 12 10 8 5

6 1 2

A3b+A1b 86
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Table 8.2: Results for E7

Orbit Weights Quiver Dual orbit d

E7(a5)
[ 0, 0, 0, 0, 0, 0, 0]2
[ 0, 0, 0, 0, 0, 0, 0]5

5 10 14 11 8 4

71 1

2A2 +A1 90

A6

[ 0, 0, 0, 0, 0, 0,−1]
[ 0, 0, 0, 0, 0, 0, 1]

4 8 12 9 6 3

7

2

A2 + 3A1 84

D5 +A1

[ 0, 0, 0, 0,−1, 0, 0]
[ 0, 0, 0, 0, 1, 0, 0]

4 8 12 10 8 4

6 2

2A2 84

D6(a1)
[ 1, 0, 0, 0, 0, 0, 0]1
[−1, 0, 0, 0, 0, 0, 0]5

4 7 10 8 6 3

51 1

A3 84

E7(a4) [ 0, 0, 0, 0, 0, 0, 0]3

4 8 12 9 6 3

6

1
A2 + 2A1 82

D6

[−1, 0, 0, 0, 0, 0, 0]
[ 1, 0, 0, 0, 0, 0, 0]

4 6 8 6 4 2

42

A2 66

E6(a1)
[ 0, 0, 0, 0, 0, 1, 0]6
[ 0, 0, 0, 0, 0,−1, 0]7

3 6 9 7 5 3

5 1

1

4A1 70

E6

[ 0, 0, 0, 0, 0,−1, 0]
[ 0, 0, 0, 0, 0, 1, 0]

2 4 6 5 4 3

3 2

3A1b 54

E7(a3) [ 0, 0, 0, 0, 0, 0, 0]2
3 6 8 6 4 2

41

3A1a 64
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Table 8.2: Results for E7

Orbit Weights Quiver Dual orbit d

E7(a2) [ 0, 0, 0, 0, 0, 0, 0]5
2 4 6 5 4 2

3 1

2A1 52

E7(a1) [ 0, 0, 0, 0, 0, 0, 0]1
2 3 4 3 2 1

21

A1 34
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Table 8.3: Results for E8

Orbit Weights Quiver Dual orbit d

0

[−1, 0, 0, 0, 0, 0, 0, 0]
[ 1,−1, 1,−1, 0, 0, 0, 0]
[ 0, 1,−1, 1, 0,−1, 0, 0]
[−1,−1, 1,−1, 0, 1,−1, 0]
[ 1, 2,−2, 1, 0, 0, 1, 0]
[−1, 0, 0, 1,−1, 0, 0,−1]
[ 1,−1, 0, 0, 1, 0, 0, 1]
[ 0, 0, 2,−2, 0, 0, 0,−1]
[ 0, 0,−1, 1, 0, 0, 0, 1]

46 89 130 106 80 54 28

653 2 2 2

E8 240

A1

[−1, 0, 0, 0, 0, 0, 0, 0]
[ 1,−1, 1,−1, 0, 0, 0, 0]
[ 0, 1,−1, 1, 0,−1, 0, 0]
[ 0, 1,−1, 0, 0, 1, 0, 0]
[−1, 0, 0, 1,−1, 0, 0,−1]
[ 1,−1, 0, 0, 1, 0, 0, 1]
[ 0, 0, 2,−2, 0, 0, 0,−1]
[ 0, 0,−1, 1, 0, 0, 0, 1]

33 63 92 75 57 39 21

463 1 1 3

E8(a1) 238

2A1

[−1, 0, 0, 0, 0, 0, 0, 0]
[ 1,−1, 1,−1, 0, 0, 0, 0]
[ 0, 1,−1, 1, 0,−1, 0, 0]
[ 0, 1,−1, 0, 0, 1, 0, 0]
[ 0,−1, 0, 1, 0, 0, 0, 0]
[ 0, 0, 2,−2, 0, 0, 0,−1]
[ 0, 0,−1, 1, 0, 0, 0, 1]

20 37 54 44 34 24 14

273 4

E8(a2) 236

3A1

[−1, 0, 0, 0, 0, 0, 0, 0]
[ 1,−1, 1,−1, 0, 0, 0, 0]
[ 0, 1,−1, 1, 0,−1, 0, 0]
[ 0, 1,−1, 0, 0, 1, 0, 0]
[ 0,−1, 0, 1, 0, 0, 0, 0]
[ 0, 0, 1,−1, 0, 0, 0, 0]

14 27 40 33 26 19 12

201 5

E8(a3) 234

A2

[ 2, 0, 0,−1, 0,−1, 0, 0]
[ 0, 0, 0, 0, 0,−1, 0, 0]
[−1, 0, 0, 0,−1, 3,−1, 0]
[ 0, 0, 0, 0, 2,−2, 0,−1]
[ 0, 0, 0, 0,−1, 1, 0, 1]
[ 0, 0, 0, 0, 0, 0, 1, 0]
[−1, 0, 0, 1, 0, 0, 0, 0]

30 58 85 69 53 37 19

432 1 2 1

1

E8(a3) 234

4A1

[ 0,−1, 0, 0, 0,−1, 0, 1]
[ 0,−1, 0, 0, 0,−1, 0, 1]
[ 0, 3, 0,−1, 0, 1, 0,−3]
[ 0,−1, 0, 1, 0, 1, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0, 1]

29 58 87 72 57 38 19

44 4

1

E8(a4) 232

A2 +A1

[ 0, 0, 0,−1, 0, 0, 0, 0]
[ 0, 0, 0, 0,−1, 1, 0, 0]
[−1, 0, 0, 0, 1,−1, 0, 0]
[ 0, 0, 0, 1,−1, 0, 0, 0]
[ 1, 0, 0, 0, 1, 0, 0,−1]
[ 0, 0, 0, 0, 0, 0, 0, 1]

24 48 72 59 45 31 17

37 1 3

2

E8(a4) 232



CHAPTER 8. EXAMPLES 113

Table 8.3: Results for E8

Orbit Weights Quiver Dual orbit d

A2 + 2A1

[ 0, 0, 1, 0,−3, 0, 0, 0]
[ 0, 0, 0, 0, 1, 0,−1, 0]
[ 0, 0, 0, 0, 1, 0, 0,−1]
[ 0, 0,−1, 0, 1, 0, 0, 1]
[ 0, 0, 0, 0, 0, 0, 1, 0]

20 40 60 49 38 27 15

30

1

1 3

E8(b4) 230

A3

[ 2, 0, 0,−1, 0,−1, 0, 0]
[ 0, 0, 0, 0, 0,−1, 0, 0]
[−1, 0, 0, 0,−1, 3,−1, 0]
[ 0, 0, 0, 0, 1,−1, 0, 0]
[ 0, 0, 0, 0, 0, 0, 1, 0]
[−1, 0, 0, 1, 0, 0, 0, 0]

24 48 71 58 45 32 17

361 2 2

1

E7(a1) 228

A2 + 3A1

[ 0, 0, 0, 0, 0,−1, 0, 0]
[ 0, 1, 0,−2, 0, 2, 0, 0]
[ 0, 0, 0, 1, 0,−1, 0, 0]
[ 0,−1, 0, 1, 0, 0, 0, 0]

14 28 42 35 28 21 11

21 3 1

E8(a5) 228

2A2

[ 0, 0, 0, 0, 0, 0, 0,−1]
[ 0, 0, 0, 0, 0, 0, 0,−1]
[ 0, 0,−2, 0, 0, 2,−1, 3]
[ 0, 0, 1, 0, 0,−2, 1, 0]
[ 0, 0, 1, 0, 0, 0, 0,−1]

25 50 75 60 45 30 15

40

5

E8(a5) 228

2A2 +A1

[ 0, 0,−1, 0, 0, 1, 0, 0]
[ 0, 0, 0, 0, 0, 1, 0, 0]
[ 0, 0, 1, 0, 0,−1, 0,−1]
[ 0, 0, 0, 0, 0,−1, 0, 1]

14 28 42 35 28 20 11

21 1 1 2

E8(b5) 226

A3 +A1

[ 0, 0, 0, 0, 0, 0,−1, 0]
[ 0, 0, 0, 0, 0, 1, 0,−1]
[ 0, 0, 0, 0, 0, 0, 0,−1]
[ 0, 0, 0, 1, 0,−2, 2, 0]
[ 0, 0, 0,−1, 0, 1,−1, 2]

19 38 57 46 35 24 13

30 2

3

E8(b5) 226

D4(a1)

[ 0, 0, 0, 0,−1, 1, 0, 0]3
[ 0, 0, 0, 0, 0, 0, 1, 0]7
[ 0, 0, 0, 0, 0, 1,−1, 0]7
[ 1, 0, 0, 0, 0,−1, 0, 0]7
[−1, 0, 0, 0, 1,−1, 0, 0]7

18 36 54 44 34 24 14

27

1

4

E8(b5) 226

D4

[ 0, 0, 0, 0, 0, 0,−1, 0]
[ 0, 0, 0, 0, 0,−1, 1, 0]
[−1, 0, 0, 0, 0, 1, 0, 0]
[ 1, 0, 0, 0,−1, 1, 0, 0]
[ 0, 0, 0, 0, 1,−1, 0, 0]

10 20 30 25 20 15 10

15 5

E6 216

2A2 + 2A1

[ 0, 0,−1, 0, 0, 1, 0, 0]
[ 0, 0, 1, 0, 0,−2, 0, 0]
[ 0, 0, 0, 0, 0, 1, 0, 0]

14 28 42 35 28 20 10

21 1 2

E8(a6) 224
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Table 8.3: Results for E8

Orbit Weights Quiver Dual orbit d

A3 + 2A1

[ 0, 0, 0, 1, 0, 0, 0,−2]
[ 0, 0, 0, 0, 0,−1, 0, 0]
[ 0, 0, 0,−1, 0, 1, 0, 1]
[ 0, 0, 0, 0, 0, 0, 0, 1]

15 29 43 35 27 19 10

221 1 1

1

E8(a6) 224

D4(a1)+A1

[ 0, 0, 0, 0,−1, 1, 0, 0]3
[ 0, 0, 0, 0, 0, 1, 0, 0]6
[ 1, 0, 0, 0, 0,−1, 0, 0]7
[−1, 0, 0, 0, 1,−1, 0, 0]7

18 36 54 44 34 24 13

27

1

1 2

E8(a6) 224

A3 +A2

[ 0, 0, 0,−1, 0, 0, 0, 1]
[ 0, 0, 0, 1, 0, 0, 0,−2]
[ 0, 0, 0, 0, 0, 0,−1, 1]
[ 0, 0, 0, 0, 0, 0, 1, 0]

14 25 36 29 22 15 8

183 1

D7(a1) 222

A4

[ 0, 0, 0, 0, 0, 0, 0,−1]
[ 0, 0, 0, 0, 1, 0, 0,−2]
[ 0, 0, 0, 0, 1,−1,−2, 1]
[ 0, 0, 0, 0, 0,−2, 3, 1]
[ 0, 0, 0, 0,−2, 3,−1, 1]

25 50 75 60 45 30 15

40

5

E7(a3) 220

A3+A2+A1

[ 0,−1, 0, 0, 0, 0, 0, 0]
[ 0, 2, 0,−1, 0, 0, 0, 0]
[ 0,−1, 0, 1, 0, 0, 0, 0]

15 30 44 36 28 19 10

221 1 1

E8(b6) 220

D4 +A1

[−1, 0, 0, 0, 0, 0, 0, 0]
[ 1, 0, 0, 0,−1, 0, 0, 0]
[ 0, 0, 0, 0, 1, 0,−1, 0]
[ 0, 0, 0, 0, 0, 0, 1, 0]

14 26 38 31 24 17 9

192 1 1

E6(a1) 214

D4(a1)+A2

[ 1, 0, 0, 0, 0, 0, 0, 0]1
[−1, 0, 0, 0, 1, 0, 0, 0]1
[ 0, 0, 0, 0,−1, 0, 0, 0]4

16 30 44 36 27 18 9

222 1

A7 218

A4 +A1

[ 0, 0, 0, 0,−1, 0, 1, 0]
[ 0, 0, 0, 0, 0, 0,−1, 0]
[ 0, 0, 0, 0, 1, 0, 0,−1]
[ 0, 0, 0, 0, 0, 0, 0, 1]

13 26 39 32 25 18 10

20 1 2

1

E6(a1)+A1 218

2A3

[ 0, 0, 0,−1, 0, 0, 0, 1]
[ 0, 0, 0, 1, 0, 0, 0,−2]
[ 0, 0, 0, 0, 0, 0, 0, 1]

13 24 35 28 21 14 7

182

1

D7(a2) 216

D5(a1)

[ 0, 0, 0, 0, 0, 0, 1, 0]2
[ 0, 0, 0, 0,−1, 2,−1, 0]7
[ 0, 0, 0, 0, 1,−1,−1, 0]7
[ 0, 0, 0, 0, 0,−1, 1, 0]7

13 26 38 31 24 17 10

191 3

E6(a1) 214
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Table 8.3: Results for E8

Orbit Weights Quiver Dual orbit d

A4 + 2A1

[ 0, 1,−1, 0, 0, 0, 0, 0]
[ 0,−1, 0, 0, 0, 0, 0, 0]
[ 0, 0, 1, 0, 0, 0, 0, 0]

21 41 60 48 36 24 12

301 1

1
D7(a2) 216

A4 +A2

[ 0, 0, 1, 0, 0, 0, 0,−2]
[ 0, 0,−1, 0, 0, 0, 0, 1]
[ 0, 0, 0, 0, 0, 0, 0, 1]

12 24 36 29 22 15 8

19 1

2

D5 +A2 214

A5

[ 0, 0, 0, 0, 0, 0,−1, 0]
[ 0, 0, 0, 0, 0,−1, 1, 0]
[ 0, 0, 0, 0, 0, 1, 0,−1]
[ 0, 0, 0, 0, 0, 0, 0, 1]

11 22 33 27 21 15 9

17 3

1

D6(a1) 210

D5(a1)+A1

[ 0, 0, 0, 0,−1, 0, 1, 0]3
[ 0, 0, 0, 0, 1, 0, 0, 0]5
[ 0, 0, 0, 0, 0, 0,−1, 0]7

18 36 54 44 34 23 12

27

1

1 1

E7(a4) 212

A4+A2+A1

[ 0, 0,−1, 0, 0, 0, 0, 0]
[ 0, 0, 1, 0, 0, 0, 0, 0]

20 40 60 48 36 24 12

30

2
A6 +A1 212

D4 +A2

[−1, 0, 0, 0, 0, 0, 0, 0]
[ 1, 0, 0, 0,−1, 0, 0, 0]
[ 0, 0, 0, 0, 1, 0, 0, 0]

14 26 38 31 24 16 8

192 1

A6 210

E6(a3)

[ 0, 0, 0, 0, 0,−1,−1, 0]4
[ 0, 0, 0, 0, 0, 1, 0, 0]6
[ 0, 0, 0, 0, 0, 0, 1, 0]7

14 28 42 35 27 19 10

21 1 1 1

D5 +A1 208

D5

[ 0, 0, 0, 0, 0, 0,−1, 0]
[ 0, 0, 0, 0, 1,−2, 1, 0]
[ 0, 0, 0, 0,−1, 1, 1, 0]
[ 0, 0, 0, 0, 0, 1,−1, 0]

8 16 24 20 16 12 8

12 4

D5 200

A4 +A3

[ 0, 0, 0,−1, 0, 0, 0, 0]
[ 0, 0, 0, 1, 0, 0, 0, 0]

16 32 48 40 30 20 10

24 2

E8(a7) 208

A5 +A1

[ 0, 0, 0, 0, 0,−1, 0, 0]
[ 0, 0, 0, 0, 0, 1, 0,−1]
[ 0, 0, 0, 0, 0, 0, 0, 1]

11 22 33 27 21 15 8

17 1 1

1

E8(a7) 208
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Table 8.3: Results for E8

Orbit Weights Quiver Dual orbit d

D5(a1)+A2

[ 0, 0, 0, 0,−1, 0, 0, 0]3
[ 0, 0, 0, 0, 1, 0, 0, 0]5

16 32 48 39 30 20 10

24

1

1

E7(a5) 206

D6(a2)

[ 1, 0, 0, 0, 0, 0, 0, 0]1
[−1, 0, 0, 0, 0, 0,−1, 0]4
[ 0, 0, 0, 0, 0, 0, 1, 0]7

14 27 40 33 25 17 9

201 1 1

D5(a1)+A2 202

E6(a3)+A1

[ 0, 0, 0, 0, 0,−1, 0, 0]3
[ 0, 0, 0, 0, 0, 1, 0, 0]6

14 28 42 34 26 18 9

21

1

1

A5 +A1 202

E7(a5)
[ 0, 0, 0, 0, 0, 0,−1, 0]3
[ 0, 0, 0, 0, 0, 0, 1, 0]7

12 24 36 29 22 15 8

18

1

1

A4 +A3 200

D5 +A1

[ 0, 0, 0, 0,−1, 0, 0, 0]
[ 0, 0, 0, 0, 1, 0,−1, 0]
[ 0, 0, 0, 0, 0, 0, 1, 0]

12 24 36 30 24 17 9

18 1 1 1

E6(a3) 198

E8(a7)
[ 0, 0, 0, 0, 0, 0, 0, 0]4
[ 0, 0, 0, 0, 0, 0, 0, 0]4

16 32 48 40 30 20 10

24 2

E8(a7) 208

A6

[ 0, 0, 0, 0, 0, 0, 1,−1]
[ 0, 0, 0, 0, 0, 0,−1, 0]
[ 0, 0, 0, 0, 0, 0, 0, 1]

11 21 31 25 19 13 7

161 1

1

D4 +A2 198

D6(a1)

[ 1, 0, 0, 0, 0, 0, 0, 0]1
[−1, 0, 0, 0, 0, 0,−1, 0]5
[ 0, 0, 0, 0, 0, 0, 1, 0]7

12 23 34 28 22 15 8

171 1 1

A5 196

A6 +A1

[ 0,−1, 0, 0, 0, 0, 0, 0]
[ 0, 1, 0, 0, 0, 0, 0, 0]

14 28 40 32 24 16 8

202

A4+A2+A1 196

E7(a4)
[ 0, 0, 0, 0, 0, 0,−1, 0]4
[ 0, 0, 0, 0, 0, 0, 1, 0]7

10 20 30 25 19 13 7

15 1 1

D5(a1)+A1 196

E6(a1)

[ 0, 0, 0, 0, 0, 0,−1, 0]2
[ 0, 0, 0, 0, 0, 1, 0, 0]6
[ 0, 0, 0, 0, 0,−1, 1, 0]7

13 26 38 31 24 17 9

191 1 1

D4 +A1 184
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Table 8.3: Results for E8

Orbit Weights Quiver Dual orbit d

D5 +A2

[ 0, 0, 0, 0,−1, 0, 0, 0]
[ 0, 0, 0, 0, 1, 0, 0, 0]

12 24 36 30 24 16 8

18 2

A4 +A2 194

D6

[−1, 0, 0, 0, 0, 0, 0, 0]
[ 1, 0, 0, 0, 0, 0,−1, 0]
[ 0, 0, 0, 0, 0, 0, 1, 0]

8 15 22 18 14 10 6

111 2

A4 180

E6

[ 0, 0, 0, 0, 0,−1, 0, 0]
[ 0, 0, 0, 0, 0, 1,−1, 0]
[ 0, 0, 0, 0, 0, 0, 1, 0]

8 16 24 20 16 12 7

12 1 2

D4 168

D7(a2)
[ 1, 0, 0, 0, 0, 0, 0, 0]1
[−1, 0, 0, 0, 0, 0, 0, 0]4

12 23 34 28 21 14 7

171 1

2A3 188

A7

[ 0, 0, 0, 0, 0, 0, 0,−1]
[ 0, 0, 0, 0, 0, 0, 0, 1]

10 20 30 24 18 12 6

16

2

D4(a1)+A2 184

E6(a1)+A1

[ 0, 0, 0, 0, 0,−1, 0, 0]5
[ 0, 0, 0, 0, 0, 1, 0, 0]6

10 20 30 25 20 14 7

15 1 1

A4 +A1 188

E7(a3)
[ 0, 0, 0, 0, 0, 0,−1, 0]2
[ 0, 0, 0, 0, 0, 0, 1, 0]7

9 18 26 21 16 11 6

131 1

A4 180

E8(b6) [ 0, 0, 0, 0, 0, 0, 0, 0]3

10 20 30 24 18 12 6

15

1
A3+A2+A1 182

D7(a1)
[ 1, 0, 0, 0, 0, 0, 0, 0]1
[−1, 0, 0, 0, 0, 0, 0, 0]5

10 19 28 23 18 12 6

141 1

A3 +A2 178

E6 +A1

[ 0, 0, 0, 0, 0,−1, 0, 0]
[ 0, 0, 0, 0, 0, 1, 0, 0]

8 16 24 20 16 12 6

12 2

D4(A1) 166

E7(a2)
[ 0, 0, 0, 0, 0, 0,−1, 0]5
[ 0, 0, 0, 0, 0, 0, 1, 0]7

10 19 28 23 18 12 6

141 1

A3 +A1 164
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Table 8.3: Results for E8

Orbit Weights Quiver Dual orbit d

E8(a6) [ 0, 0, 0, 0, 0, 0, 0, 0]4
8 16 24 20 15 10 5

12 1

2A2 + 2A1 168

D7

[−1, 0, 0, 0, 0, 0, 0, 0]
[ 1, 0, 0, 0, 0, 0, 0, 0]

8 14 20 16 12 8 4

102

2A2 156

E8(b5)
[ 0, 0, 0, 0, 0, 0, 0, 0]1
[ 0, 0, 0, 0, 0, 0, 0, 0]6

8 15 22 18 14 10 5

111 1

2A2 +A1 162

E7(a1)
[ 0, 0, 0, 0, 0, 0,−1, 0]1
[ 0, 0, 0, 0, 0, 0, 1, 0]7

6 11 16 13 10 7 4

81 1

A3 148

E8(a5) [ 0, 0, 0, 0, 0, 0, 0, 0]2
7 14 20 16 12 8 4

101

A2 + 3A1 154

E8(b4) [ 0, 0, 0, 0, 0, 0, 0, 0]5
6 12 18 15 12 8 4

9 1

A2 + 2A1 146

E7

[ 0, 0, 0, 0, 0, 0,−1, 0]
[ 0, 0, 0, 0, 0, 0, 1, 0]

4 8 12 10 8 6 4

6 2

A2 114

E8(a4) [ 0, 0, 0, 0, 0, 0, 0, 0]8
5 10 15 12 9 6 3

8

1

4A1 128

E8(a3) [ 0, 0, 0, 0, 0, 0, 0, 0]6
4 8 12 10 8 6 3

6 1

3A1 112

E8(a2) [ 0, 0, 0, 0, 0, 0, 0, 0]1
4 7 10 8 6 4 2

51

2A1 92

E8(a1) [ 0, 0, 0, 0, 0, 0, 0, 0]7
2 4 6 5 4 3 2

3 1

A1 58
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Chapter 9

Conclusions and Future Directions

In this thesis, we provided a classification of codimension 2 defects of the (2, 0) little string
theory compactified on a Riemann surface. We showed that the defects are D5 branes
wrapping certain 2-cycles of a resolved singularity in type IIB string theory. They are labeled
by coweights of g, and have a low energy description as a 5d quiver gauge theory of type
g. After going to root of the Higgs branch and introducing D3 branes, we proved that the
partition function of the 5d theory is equal to the 3d partition function of the 3d theory on
the D3 branes. We proved further that the partition function at this point of the moduli
space is equal to a q-deformed conformal block of g-type Toda theory.

Taking the CFT limit ms →∞, we showed that the Coulomb branch of any D5 brane
defect flows to a nilpotent orbit of g, and derived the Bala–Carter classification of these
orbits from Physics. We discussed the implications from the point of view of the Toda CFT.
A related application is the string theory derivation of the description of surface defects due
to Gukov and Witten, and its S-duality.

We think it is worthwhile to use our setup to answer a variety of problems. We list only a
few here.

– As mentioned in 7.4, the introduction of D7 branes should give a perturbative handle
on the description of 6d (1, 0) little string theories and CFTs. It would be crucial to make
that statement precise.

– Introducing D9 branes naturally leads to small E8 instanton physics, as can be shown
by applying various dualities to our setup.

– Introducing D1 branes modifies the 5d partition function on the D5 branes in such a way
that it becomes a qq-character of g, introduced recently in [127]. This is work in progress.

– Elliptic stable envelopes were defined in [30]. The envelopes provide boundary conditions
for the 3d fields living on the D3 branes in the (2, 0) little string. It would be interesting to
study these envelopes in the presence of D5 branes, for generic quiver gauge theories. One
could hope to derive new dualities in the process.

– Related to the above point, let us mention that the results of this thesis are relevant
to a correspondence known as geometric Langlands, which aims to prove an equivalence
between specific categories associated to a connected complex Lie group and its Langlands
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dual. This duality can be phrased in the context of two-dimensional conformal field theories
on a Riemann surface: on one side, one considers the center of the affine Kac-Moody algebra
L̂g at level Lk = −Lh∨; on the other side, one considers the classical W -algebra W∞(g).
Recently, a two-parameter deformation of the geometric Langlands correspondence has been

proposed [31]: the first side of the duality becomes the quantum affine algebra U~(L̂g), a

quantum deformation by the parameter ~ of the universal enveloping algebra of L̂g. The
other side becomes the W -algebra Wq,t(g) mentioned above:

U~(L̂g)←→Wq,t(g)

In particular, evidence was found that the conformal blocks of the two theories should be the
same. A natural and important generalization is to introduce ramifications at points on the
Riemann surface in this picture. These ramifications are nothing but the D5 branes we study
in this thesis, so our results provide an explicit realization of the objects on the right-hand
side of the duality. We leave it to future work to analyze the left-hand side and prove the
correspondence with ramifications.
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Appendix A

ADE Classification of Surface
Singularities

A.1 Discrete Subgroups of SU(2)

Let Γ be a discrete group of SU(2), and (z1, z2) ∈ C2.
The G-invariant polynomial functions make up a subalgebra called the invariant ring. In

the case of Γ, the invariant ring is generated by three elements (X, Y, Z) ∈ C3, which satisfy a
single relation f(X, Y, Z) = 0. The quotient structure of the algebraic ring C/〈f〉 is preserved
by the isomorphism (z1, z2)→ (X(z1, z2), Y (z1, z2), Z(z1, z2)), and we can therefore identify:

C
〈f〉
' C

2

Γ
(A.1.1)

Example A.1.1. We consider the cyclic subgroup of SU(2) of order k + 1. The action
of Zk+1 on C2 can be described by the generator ξk+1 ≡ exp(2πi/(k + 1)), where ξk+1 is a
primitive k + 1-th root of unity. Powers of ξk+1 are irreducible representations of Zk+1; there

Algebra Γ |Γ| f(X, Y, Z) = 0
Ak Zk+1 k + 1 X2 + Y 2 + Zk+1 = 0
Dk Dk−2 4k − 8 X2 + Y 2 Z + Zk−1 = 0
E6 T 24 X2 + Y 3 + Z4 = 0
E7 O 48 X2 + Y 3 + Y Z3 = 0
E8 I 120 X2 + Y 3 + Z5 = 0

Table A.1: Relation between the finite subgroups Γ of SU(2) and the corresponding orbifold
singularity.
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exists a two-dimensional reducible representation written in diagonal form as:(
ξk+1 0

0 ξ−1
k+1

)
(A.1.2)

The orbits of Zk+1 on C2 are (z1, z2) ∼ (ξk+1 z1, ξ−1
k+1 z2). Let us define:

U ≡ zk+1
1 , (A.1.3)

V ≡ zk+1
2 , (A.1.4)

Z ≡ z1 z2 . (A.1.5)

The orbifold C2/Zk+1 can then be described algebraically: we say that U, V, Z are the generators
of the Zk+1-invariant polynomials, related to each other by the following constraint:

U V = Zk+1 . (A.1.6)

With the change of variables U ≡ X + i Y and V ≡ −X + i Y , one obtains the first line
of Table A.1.

A.2 McKay Correspondence and String Theory

As in the last section, let Γ be a finite subgroup of SU(2). Let Ra be the irreducible
representations of Γ, with associated characters χa, a = 1, . . . , k. Let R be the faithful
representation given by the embedding Γ→ SU(2). The McKay graph associated to Γ is a
quiver diagram of k nodes and nab lines from the node Ra to Rb, where nab can be obtained
from the decomposition:

R⊗Ra =
⊕
b

nabRb (A.2.7)

Here, the graph is not oriented and nab = nba, though this is not the case for a more general
finite group.

The McKay correspondence states that there is a one-to-one mapping between the McKay
graph of Γ and the affine Dynkin diagram of the simply-laced Lie algebra labeling the
associated singularity. We will not prove this statement, but choose instead to illustrate it
below in the case of an Ak singularity. For more details, see [128].

Example A.2.1. In the case where Γ = Zk+1, the faithful representation R given by the
embedding Γ→ SU(2) was written in the previous section:

R =

(
ξ 0
0 ξ−1

)
, ξk+1 = 1 . (A.2.8)

The one-dimensional irreducible representations are ξa, with a = 1, . . . , k. To get the McKay
graph, we compute at once:

R⊗ ξa =

(
ξ 0
0 ξ−1

)
⊗ ξa =

(
ξa+1 0

0 ξa−1

)
(A.2.9)
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There are then k nodes in the McKay graph, where the a-th node is connected to the (a− 1)-th
and the (a+ 1)-th ones, see figure A.1 below. We recognize the Dynkin diagram of the affine
Lie Algebra Âk:

Figure A.1: The McKay graph for Zk+1 is the Dynkin diagram of the Âk affine Lie algebra.
The label “1” inside the a-th node denotes the dimension of the a-th irreducible representation,
and the label under node labels the power of ξ. With this convention, the k + 1-th node
denotes the generator ξk+1 = 1, so the corresponding representation attached to this node is
the identity.

So-called Asymptotically Locally Euclidean (ALE) spaces are ubiquitous in string theory.
Indeed, they describe blowups of K3 singularities which are the ADE-orbifolds C2/Γ we
have been considering; these spaces are therefore natural backgrounds to compactify a string
theory on. Most notably, Yang-Mills instantons and the metric can be computed explicitly
on such ALE spaces using an ADHM construction [129].

In the seminal work [61], Douglas and Moore considered the compactification of type IIB
string theory on such ALE spaces, and showed that by introducing D-branes, one obtains
an effective field theory that probes the singular and the resolved geometry (see also [130]).
Remarkably, the world-volume theory on the branes is not a U(k) gauge theory, as one might
have naively guessed, but rather a quiver gauge theory; the shape of the quiver is an ADE
Dynkin diagram, corresponding to the choice of Γ dictated by the McKay correspondence.
The gauge group is then of the form

∏k
a=1 U(ka), with ka the dimension of the irreducible

representation on the a-th node.
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Appendix B

Null Weight Multiplicity

We make a comment about the multiplicity of the zero weight in unpolarized defects. This is
for instance relevant for two of the En defects presented in the previous section 8.5: one has
Bala–Carter label E7(a5) in g = E7, and the other has Bala–Carter label E8(b5) in g = E8.
For both of these, WS is the set of the zero weight only, but appearing twice. In the little
string, at finite ms, defects add up in a linear fashion. If a subset of weights in WS adds
up to zero, then one is simply describing more than one elementary defect. In the case of
polarized defects, where a direct Toda interpretation is available, we would refer to this
situation as a composite defect made up of two elementary defects. We note here that for
the two unpolarized defects we mentioned, this is not the case. In both cases, the zero weight
is required to appear twice and does characterize a single “exotic” defect, with Bala–Carter
label given above. In particular, E7(a5) and E8(b5) are not engineered in the little string as
the sum of two elementary defects with a single zero weight. See Figure B.1 for the example
of E7(a5).
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5 10 14 11 8 4

71 1

ω1 : [0, 0, 0, 0, 0, 0, 0]
ω2 : [0, 0, 0, 0, 0, 0, 0]

Coulomb dim. of T 4d: 45Bala–Carter label: E7(a5)

3 6 8 6 4 2

41

ω1 : [0, 0, 0, 0, 0, 0, 0]

Bala–Carter label: E7(a3) Coulomb dim. of T 4d: 32

2 4 6 5 4 2

3 1

ω2 : [0, 0, 0, 0, 0, 0, 0]

Bala–Carter label: E7(a2) Coulomb dim. of T 4d: 26

Figure B.1: In the little string, at finite ms, defects add up in a linear fashion. For instance,
the E7 defect shown on top is the sum of the two defects shown under it. For polarized
defects, we usually refer to this situation as two punctures on the cylinder, each labeled by
the zero weight. However, in the ms →∞, the defect really should be thought of as a single
“exotic” puncture on the cylinder, given by a combination of the two zero weights, which
cannot be split apart. As a quick check, this is confirmed by noting that the Coulomb branch
dimension of T 4d is not additive.
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Appendix C

Explicit Construction of An Little
String Defects as Weighted Dynkin
Diagrams

Many of the little string quivers T 5d of An are not weighted Dynkin diagrams (and there is
no a priori reason why they should be).

However, as reviewed in Section 7.2, we can use the fact that a weight in a fundamental
representation can always be written as the sum of new weights in possibly different funda-
mental representations. As we argued, in the context of brane engineering of An theories,
this weight addition procedure reproduces Hanany–Witten transitions.

It turns out that all An little string quivers that are not symmetric under Z2 reflection
can in fact be uniquely written as weighted Dynkin diagrams with correct Bala–Carter label
after such a weight addition procedure. For instance, one can show that the full puncture of
An, with Bala–Carter label ∅, can be symmetrized uniquely to give the weighted Dynkin
diagram (2, 2, . . . , 2, 2). See figures C.2 and C.3.



APPENDIX C. EXPLICIT CONSTRUCTION OF An LITTLE STRING DEFECTS AS
WEIGHTED DYNKIN DIAGRAMS 127

ω2

ω1

ω′′2
ω′2

ω1

1 2 1

2
H. W.

ω1 : [ 0, 1, 0] = −w2 + α1 + 2α2 + α3

ω2 : [ 0,−1, 0] = −w2

ω1 : [ 0, 1, 0] = −w2 + α1 + 2α2 + α3

ω′
2 : [−1, 0, 0] = −w1

ω′′
2 : [ 1,−1, 0] = −w1 + α1

+

2 2 1

2 1

Figure C.1: Writing a weight in a fundamental representation of g as a sum of several weights
in (possibly different) fundamental representations results in the same theory at the root
of the Higgs branch of T 5d. In the context of brane engineering, when g = An, this is the
familiar Hanany–Witten transition [2]. In this example, we rewrite [0,−1, 0] as the sum
[−1, 0, 0] + [1,−1, 0]. As a result, the extra Coulomb parameter α1 on the right is frozen to
the value of the mass parameters denoted by ω′2 (and ω′′2).

[−1, 0, 0, 0]

[ 1,−1, 0, 0]

[ 0, 1,−1, 0]

[ 0, 0, 1,−1]

[ 0, 0, 0, 1]

H. W.

[0, 0, 1,−1]

[0, 0, 0, 1]

[−1, 1, 0, 0] + [0,−1, 0, 0]

[1, 0, 0, 0] + [0,−1, 0, 0]

[0, 1, 0, 0] + [0, 0,−1, 0]

4 3 2 1

5
H. W.

(2, 2, 2, 2)4 6 6 4

2 2 2 2

Figure C.2: An example of how one symmetrizes a little string quiver of An using Hanany-
Witten transitions, to end up with a weighted Dynkin diagram. The Coulomb parameters in
red are frozen, and therefore do not increase the Coulomb branch dimension. In this example,
no matter what the details of the transition are, the resulting symmetric quiver is always
(2,2,2,2), the full puncture. Note some of the masses are equal to each other in the resulting
quiver, as they should after the transition.
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1 1 1 1

1 1

(1, 0, 0, 1)1 1 1 1

1 1

1 2 2 1

1 1

(0, 1, 1, 0)1 2 2 1

1 1

2 2 2 1

2 1

(2, 0, 0, 2)
H. W.

2 2 2 2

2 2

2 3 2 1

1 2
H. W.

(1, 1, 1, 1)2 3 3 2

1 1 1 1

3 3 2 1

3 1
H. W.

(2, 1, 1, 2)3 4 4 3

2 1 1 2

4 3 2 1

5
H. W.

(2, 2, 2, 2)4 6 6 4

2 2 2 2

Figure C.3: Either directly, or after Hanany–Witten transitions to symmetrize the theories,
the little string quivers (left) are precisely the weighted Dynkin diagrams of g (right); the
integers 0, 1, 2 then get an interpretation as flavor symmetry ranks. Shown above is the case
g = A4.
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