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ABSTRACT OF THE DISSERTATION 

 

Nonreciprocal Parametric Amplification of Elastic Waves Applications in Radio Frequency 
Front Ends 

by 

Mahsa Zakeri 

Doctor of Philosophy in Mechanical Engineering 

University of California, Los Angeles, 2022 

Professor Christopher S. Lynch, Chair 

Parametric amplification of bulk and surface elastic waves, along with a framework for using 

elastic waves that could enable a new generation of high performance, low noise acoustic 

amplifiers, mixers and circulators are presented. Nonlinear electromechanical materials are 

studied for the application. Using a novel approach with nonlinear materials produces highly 

desirable non-reciprocal characteristics. Parametric amplification of a weak elastic signal wave is 

achieved by an elastic pump wave of higher intensity. By careful selection of material orientation 

together with precise excitation of signal and pump waves, ‘up frequency conversion’ is 

suppressed and selective amplification of the elastic signal wave occurs at its original frequency. 

In addition, a general mathematical framework is developed and used for analytical studies of 

coupled wave equations in nonlinear anisotropic materials. The results obtained from the 

analytical studies are verified using a finite element implementation. Further, Lamb wave 

properties are analyzed and potential advantages of using Lamb waves for parametric 

amplification are demonstrated and discussed. 
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Introduction 

Motivation 

Communicating information is a key part of human life. As new technologies have advanced, 

almost every aspect of our life has been affected. Radio Frequency (RF) devices and wireless 

technology are the basis of these developments. The need for reliable and accessible 

communication with low cost and fast speed is increasing over time. This rapid increase mandates 

further developments of such systems. Information in the form of analogue voice, digital data or 

some type of control signal can be carried from one point to another using an RF signal. Radio 

frequency ranges from 3 KHz, the lowest part of the electromagnetic wave spectrum, to 300 GHz. 

In RF communication, a transmitter antenna using an AC current creates an Electromagnetic 

wave that can be detected by the receiver’s antenna. The size of an antenna is proportional to the 

wavelength. Propagating in the same medium, lower frequencies have longer wavelength and 

therefore they need a larger size antenna to be transmitted.  The information to be transferred, 

which is at lower frequency, is transmitted via a signal at much higher frequency, in the RF range. 

This high frequency wave is called the carrier signal. This carrier signal builds the connection 

between the two ends. This process is 

called modulation. Some property of 

the carrier signal is changed based on 

the information signal. If the 

amplitude of the carrier signal 

changes based on the data signal, it is 

called Amplitude Modulation or AM. 

If the change is on the frequency of the carrier signal, it is called Frequency Modulation or FM. 

For example, when the data signal has its maximum magnitude, the carrier frequency gets higher 

and when the data signal is at its minimum value the carrier frequency gets lower.  

Figure  1. Schematics of a transceiver in RF applications 
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Transceivers, transmitters (TX) and receivers (RX), are the interfaces between the wireless system 

and the propagation media. As shown in figure 1, filtering, amplification, modulation, and 

demodulation are the main functions in a transceiver. One significant problem with amplification 

is that an amplifier not only amplifies the signal but also any noise that is present. Therefore, a 

high Q, low passband loss and small bandwidth filter is required to be placed in front of the 

amplifier. The amplifier at this stage needs to exhibit very low noise and hence it should work in 

the linear region as much as possible. However, increasing the input power pushes the 

functionality into the nonlinear region. Based on these design issues, a high-gain amplifier cannot 

be used in the first stage and a Low Noise Amplifier (LNA) is required. The quality factor required 

for a filter to be effective is proportional to the center frequency. Lower frequency requires a lower 

Q. Therefore, in many applications, the signal is passed through a downconverter to an 

Intermediate Frequency, (IF), typically in the MHz range.  

Significant improvements in lithography techniques have resulted in the feature size of silicon-

based transistors being reduced dramatically. With smaller transistors, their number on a same 

size silicon wafer increases, thus higher performance and lower cost has been achieved. Metal 

Oxide Semiconductor Field Effect Transducers (MOSFET) are used extensively in amplifier 

applications. Despite their significant improvements in the last couple decades, further reducing 

their size without sacrificing their functionality has been challenging.  

Parametric Amplifiers, (PAMP) provide good alternatives to field effect amplifiers. In MOSFET 

amplifiers the gain is transferred to the output terminal from a DC power supply. The applied 

voltage controls the amount of current by changing the conductance of the medium that the 

current is traveling in. This approach intrinsically generates thermal noise. In contrast, in a 

parametric process AC power is transferred to the signal through temporal modulation of the 

capacitance of the system. For instance, a nonlinear variable capacitor, varactor, is used to 

produce a time-varying signal without significant effect on the noise floor.  
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 Surface and bulk acoustic wave (SAW, BAW) filters, delay lines and oscillators are used 

extensively in RF transceivers. These provide the advantage of small size due to slower wave 

velocity at RF frequencies relative to electromagnetic waves, and high efficiency due to reduction 

of resistive losses compared with similar purely electronic devices. Despite their extensive use for 

filtering applications, these types of devices have not yet been used as active components, such as 

low noise amplifiers or mixers. With parametric amplification, SAW and BAW can be utilized for 

these applications, especially in the IF region where the range of frequency is on the order of MHz.  

 

Objective  

Parametric amplification of a weak signal can be achieved using the nonlinear properties of elastic 

materials, such as their stiffness. The objective of this research has been to investigate nonlinear 

elastic waves as a tool to achieve parametric amplification. Here, the framework to enable the 

investigation of such devices is derived. A general derivation of the coupled-wave formalism for 

both bulk and surface elastic waves of different frequencies is presented. This is used to identify 

the requirements for parametric amplification and the associated phase matching conditions. No 

restrictions are made on material anisotropy or direction of wave propagation. The methodologies 

used to derive the coupled wave equations are adopted from the field of nonlinear photonics[2]. 

The coupled wave equations are simplified to provide an analytical solution for collinear 

propagation of pump and signal waves to investigate the process of parametric difference (down) 

frequency conversion. The theory predicts parametric amplification of an elastic signal wave 

through difference frequency conversion. The numerical results and conclusions arrived at in the 

analytical theory are further investigated using a Finite Element Method (FEM) model to simulate 

the propagation and interaction of bulk and surface elastic waves in a nonlinear anisotropic 

medium. The analytical solutions and numerical simulations are in good agreement and provide 

validation of the approaches used.  

 



 4 

Literature review 

Parametric amplification was studied during 1947 to 1970. The interest in this topic, however, 

diminished with the development of Metal Oxide semiconductors (MOS). Hitting the limits to 

further reducing the size of MOS based devices and the need for reducing the noise generated by 

devices has created renewed interest in parametric amplification. An important step was made by 

Suhl who proposed that a ferrite could be used as a variable reactance[3]. In 1958, Suhl and Tien 

published a paper on a traveling–wave ferromagnetic amplifier showing that the motion of the 

magnetization provides the nonlinearities needed for wave mixing[4]. In 1987, Hanna and 

Murphy[5], showed a positive gain associated with surface acoustic wave (SAW) propagation in 

magnetic garnet films experimentally. In more recent studies, the topic of investigating 

parametric systems has been applied to nonreciprocal wave propagation. Creation of non-

reciprocity has been achieved with three approaches[6]. Spatiotemporal modulation of some 

elements of the system, applying an external symmetry breaking field such as an applied magnetic 

field, and utilizing non-linear behavior of the system. Time and space modulation can be applied 

to material properties or boundary conditions of the system to break reciprocity. In 2015, 

Swinteck et al.[7] applied a light source with time and space variant intensity to a material with a 

large photo-elastic coupling to modulate its elastic properties. Spatiotemporal modulation of the 

elastic constants of the material produced a time dependent superlattice which demonstrated 

nonreciprocal propagation of a bulk elastic wave. Non-reciprocal propagation of an elastic wave 

in a beam with spatiotemporal modulation of its Young’s modulus and density was investigated 

by Trainiti et al.[8] It was shown with both time and space modulation, that the dispersion 

diagrams for this system were no longer symmetric with respect to the frequency axis and 

directional band gaps were created. Croenne et al.[9] used spatiotemporal modulation of the 

electrical boundary conditions applied to a periodically repeated assembly of piezoelectric 

material sandwiched between thin metallic electrode layers. They showed nonreciprocal 

transmission of an input longitudinal acoustic wave. Their results showed scattering effects such 
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as frequency conversion and generation of harmonics. Several recent works have also reported 

experimental realization of reciprocity breaking in a time modulated system[9],[10]. Another 

approach to produce non-reciprocal behavior is to apply an external symmetry breaking bias field. 

External magnetic bias fields  are commonly used for symmetry breaking[12]–[15],  although 

similar methods have  been demonstrated in a linear acoustic device with a circulating fluid that 

creates an angular-momentum bias[16] and by using magneto-elastic coupling to create a 

gyrator[17] . Wang et al. [18] demonstrated breaking time reversal symmetry using gyroscopic 

inertial effects that creates an apparent external force. Adding a spinning gyroscope to each lattice 

site, they showed additional topological bands are created that enables multimode propagation of 

an elastic wave on the edge of the material. While external field biasing has been theoretically and 

experimentally shown to be effective in some applications, it may not be desirable in terms of 

physical packaging, fabrication, and increased dimensionality of the system.  

Another prolific area, seen frequently in Phononics and metamaterials research, uses material 

nonlinearity and asymmetry to break reciprocity[19]–[23]. Liang et al. [19], [20]demonstrated 

acoustic rectification by asymmetrically coupling a super lattice to a nonlinear medium. The 

nonlinear mechanism, however, did not break reciprocity at the fundamental frequency. Non-

reciprocity is realized in the total acoustic flux at the boundaries. Non-reciprocal acoustic 

propagation in which the frequency of the incident wave was preserved has been demonstrated 

experimentally in a system composed of a granular chain and a conical rod at low frequencies 

[24]. Other works have investigated nonlinear material with hierarchal asymmetry[25]–[27]. 

Moore et al.[26] showed breaking reciprocity within a unit cell featuring a hierarchical internal 

nonlinearity imposing directional transfer of energy from larger to smaller scale.  Fronk et al. 

[27]extended this asymmetry in a lattice of non-reciprocal unit cells and showed the non-

reciprocity at global scale. The general concept of using nonlinearity and asymmetry to break 

reciprocity is a common theme in the cited references; however, the source of nonlinearity and 

the asymmetry elements vary. 
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Each of the methods used to produce non-reciprocity has various strengths and weakness and 

therefore tend to be applied to specific application areas. For example, much of the work to date 

has focused on photonic devices or macroscale acoustic devices but has not addressed RF range 

applications. Other approaches rely on coupled resonators or construction techniques that are not 

compatible with current IC fabrication techniques. While many works have reported on the study 

of wave propagation in isotropic or anisotropic nonlinear elastic materials[28]–[30], to the 

author’s knowledge, none have shown potential for parametric amplification in a nonreciprocal 

RF application. Due to the high-quality factor possible with mechanical resonance, development 

of non-reciprocal amplification devices operating at RF frequencies based on elastic materials 

may prove to be a revolutionary concept and represents the focus of this dissertation. Here the 

framework to enable the investigation of such devices is developed.  

Surface Acoustic Wave devices have been present in wireless communications for more than 4 

decades. An important step in utilizing SAW in small devices was taken by White and Voltmer in 

1965 by introducing the interdigital transducer as a means to launch and detect SAW[31]. The 

first mass production of SAW filters was for bandpass filters in TVs in the  Intermediate Frequency 

(IF) range  in early 1980[32]. They have been extensively used in digital mobile phones since the 

1990’s as filters, duplexers and delay lines[33]–[36]. The application of the acoustic waves in RF 

devices is in the linear region. To extend their use to active elements, their nonlinear properties 

must be considered. 

Early observation of nonlinear elastic surface waves dates back to late 1960’s. Second harmonic 

generation was first reported on - Quartz by Lopen[37]. Lean et al. reported on first observation 

of sum and difference frequency generation on - Quartz[38] Theoretical studies of nonlinear 

surface acoustic waves were mainly influenced by two methodologies developed by 

Kalyanasundram in 1981[39] and Zabolotskaya in 1991[40]. Multiple scale analysis introduced by 

Kalyanasundram was utilized and extended by many others including Planat[41] who developed 

the theoretical analysis of nonlinear surface acoustic waves in anisotropic crystals. The method 
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introduced by Zabolotskaya and followed by many authors applies a Hamiltonian formalism 

where the stress-free boundary conditions are included in the formalism. This enables one to 

avoid dealing with nonlinear boundary conditions. Zabolotskaya’s derivations was extended for 

anisotropic crystals by Hamilton et al.[42]. More recent focus on the applications of nonlinear 

wave propagation has been attributed to nonlinear ultrasonic measurements for detection of 

fatigue and plastic deformation in early stages that is more sensitive than the conventional linear 

nondestructive testing techniques[43]. In this method measurements of third order material 

constants are used as an indication of the level of plastic strain or fatigue damage. Most of the 

studies have been conducted by sending a monochromatic wave into the nonlinear material and 

measuring the amplitude of the second harmonic generation[44]. These studies have been 

extended to investigation of noncolinear wave mixing[45]. W. Li et al.[46], showed mixing of two 

Lamb waves in Aluminum. The up and down frequency conversion and generation of the second 

harmonics were studied numerically and demonstrated experimentally.  

The problem of wave mixing in nonlinear elastic media, especially for materials with general 

anisotropy and electromechanical coupling, requires numerical studies. This is done primarily in 

the time domain, which can be extremely computer time and memory consuming. In our work, 

the analytical and numerical frameworks are developed to solve the nonlinear wave mixing 

problem in the frequency domain, which can reduce the computational cost and time, 

dramatically.  

Scope 

Chapter 1 covers transformation of coordinate systems, chapter 2 and 3 discuses propagation of 

elastic waves in linear and nonlinear materials, respectively to provide a foundation for the later 

chapters. Chapter 4 shows parametric amplification of bulk elastic waves and discusses the 

requirements to achieve it. Chapter 5 discusses frequency mixing for surface waves in nonlinear 

electromechanical material and chapter 6 looks at the use of guided Lamb waves for potential 

improvements in parametric amplification devices. 
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Chapter 1 Crystals Properties in a Rotated Coordinate System 

Unlike electromagnetic waves that can propagate through vacuum, propagation of elastic waves 

is the result of forces between atoms in a solid material. Energy of a propagating wave decays 

rapidly in an amorphous material because in this material, the atomic interactions are not purely 

elastic. This can be avoided by choosing single crystal media for propagation. The lattice 

symmetry of a crystal indicates the geometrical arrangement of the atoms or groups of atoms 

within the crystal. The characteristics of the propagating waves, their bulk modes and phase 

velocities, are functions of the direction in which the wave is propagating. Elastic waves 

propagating in different directions in a crystal have different physical characteristic unless the 

two directions align with certain crystal lattice symmetry directions. In an isotropic material for 

instance all the directions show the same macroscopic behavior. In this case, rotating the 

coordinate system or the material in any direction does not impact the propagating wave; 

however, in a crystal with less lattice symmetry, rotating the coordinate system and the 

corresponding wave propagation direction, without adjusting the materials constants, results in 

a different final solution and must be taken into consideration.  

The coordinate system in which the axes are aligned along the edge of a cell of the crystal lattice, 

defines crystal axes that are represented by capital 

letters in figure 1.1 (for cubic symmetry for 

instance)[47]. In many cases, it is easier to solve the 

problem in a local coordinate system, which can have an 

arbitrary orientation with respect to the crystal axes. In 

this chapter, the local (spatial) coordinate system is 

represented by lower case letters.   

Figure 1. 1. The crystal and local coordinate 
axes, represented by upper-case and lower-
case letters, respectively. 
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As an example, consider the coordinate system transformation for Y-Cut LiNbO3.  

In this terminology, Y-cut means that the normal to the top free surface is the Y axis. Assume the 

wave is propagating in the X direction. There are two ways of looking at the problem. Either keep 

the material orientation constant and rotate the local coordinate system, Figure 1.2(a) or keep the 

local coordinate constant and rotate the material, Figure 1.2.(b).  

To transform material constants of the crystal the transformation matrix must be defined between 

the crystal and local coordinates. Depending on the rank of each material property tensor, the 

transformation matrix is applied to the tensor to obtain the coefficients in the new coordinate  

 

system. A rigorous derivation can be found in Ref. [47], and for the most general forms of 

transformation of any of the material constants a numerical code in mathematic was implemented 

as represented in Appendix A.  

In this code, the material is assumed to be nonlinear electromechanical, and the material 

constants are defined using the volume energy expanded approximately as in eq. 1.1.  

Φ =
1

2
𝐶𝑖𝑗𝑘𝑙𝑆𝑖𝑗𝑆𝑘𝑙 +

1

6
𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝑆𝑖𝑗𝑆𝑘𝑙𝑆𝑚𝑛 − 𝑒𝑚𝑖𝑗𝐸𝑚𝑆𝑖𝑗 −

1

2
𝑒𝑚𝑖𝑗𝑘𝑙𝐸𝑚𝑆𝑖𝑗𝑆𝑘𝑙 −

1

2
𝜀𝑚𝑛𝐸𝑚𝐸𝑛 −

1

6
𝜀𝑚𝑛𝑝𝐸𝑚𝐸𝑛𝐸𝑝 −

1

2
𝑙𝑚𝑛𝑖𝑗𝐸𝑚𝐸𝑛𝑆𝑖𝑗 + ℎ. 𝑜. 𝑡 .                                                                                           (1.1) 

In this expansion, 𝐶𝑖𝑗𝑘𝑙 and 𝐶𝑖𝑗𝑘𝑙𝑚𝑛 are the elasticity, i.e. stiffness constants, 𝑆𝑖𝑗 is strain, 𝑒𝑚𝑖𝑗 is 

the piezoelectricity tensor,  𝐸𝑚 is the electric field, 𝑒𝑚𝑖𝑗𝑘𝑙 is the electro elasticity constants,  𝜀𝑚𝑛 

a) b) 

Figure 1. 2. a) rotating the local coordinate system, b) rotating the material 
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and 𝜀𝑚𝑛𝑝 are the tensors of dielectric constants, 𝑙𝑚𝑛𝑖𝑗 is the tensor of electrostriction constants, 

and h.o.t. is higher order terms. Each are defined in the equations below[30].  

𝐶𝑖𝑗𝑘𝑙 =
𝜕2Φ

𝜕𝑆𝑖𝑗𝜕𝑆𝑘𝑙
                                 (1.2) 

𝐶𝑖𝑗𝑘𝑙𝑚𝑛 =
𝜕3Φ

𝜕𝑆𝑖𝑗𝜕𝑆𝑘𝑙𝜕𝑆𝑚𝑛
=

𝜕𝐶𝑖𝑗𝑘𝑙

𝜕𝑆𝑚𝑛
                 (1.3) 

𝑒𝑚𝑖𝑗 = −
𝜕2Φ

𝜕𝑆𝑖𝑗𝜕𝐸𝑚
                      (1.4) 

𝑒𝑚𝑖𝑗𝑘𝑙 =
𝜕𝑒𝑚𝑖𝑗

𝜕𝑆𝑘𝑙
                                           (1.5) 

𝑙𝑚𝑛𝑖𝑗 =
𝜕𝑒𝑚𝑖𝑗

𝜕𝐸𝑛
                 (1.6) 

𝜀𝑚𝑛 =
𝜕2Φ

𝜕𝐸𝑚𝜕𝐸𝑛
                                                              (1.7) 

𝜀𝑚𝑛𝑝 =
𝜕𝑒𝑚𝑛

𝜕𝐸𝑝
                            (1.8) 
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Chapter 2 Propagation of Linear Elastic Waves in Anisotropic 

Materials 

In this chapter propagation of elastic waves in a linear medium is discussed. The medium is 

assumed to be crystals with general anisotropy. The equations of motion and constitutive 

equations are used in deriving the wave formulations. The material properties of the crystals 

define the phase velocity of the wave and its bulk modes. In a bounded medium, such as is the 

case with surface waves, in addition to material properties the necessary boundary conditions 

determine the type of the wave and its final solution. In this chapter propagation of an elastic wave 

is studied for plane waves and expanded for surface elastic waves.  

 

2.1. Plane Elastic Waves with General Anisotropy 

This section begins with a review of the linear theory of elastic plane 

waves propagating in a bulk anisotropic material. The modal 

expansion of plane wave solutions derived in this section are 

utilized in development of the nonlinear theory. The term “plane 

waves” indicates that the properties of the wave are the same 

everywhere on planes perpendicular to the direction of propagation, figure 2.1. 

2.1. 1. Elastic Materials  

In the absence of body forces, the equations of motion and small strain-displacement relations for 

a mechanical system are represented by eqs. (2.1.1) and (2.1.2), respectively.  

𝕋ij,j = ρ
∂2𝕦i

∂t2                                                                                                                                                 (2.1.1) 

𝕊ij =
1

2
(𝕦i,j + 𝕦j,i)                                                                                                                                     (2.1.2) 

Figure 2. 1. Propagation of 
plane waves 
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The mechanical fields defined in the above relations are real quantities. 𝕋̿ is the symmetric Cauchy 

stress tensor, ρ is the material density, 𝕦̅ is the displacement vector and 𝕊̿ is the small strain 

tensor. They are represented in complex form, eq. (2.1.3). 

ℤ(x̅, t) =
1

2
(Z(x̅, t) + Z∗(x̅, t))                                                                                                              (2.1.3) 

Here ℤ(x̅, t) represents any of the stress, strain, or displacement fields. Substituting Eq. (2.1.3) 

into eqs. (2.1.1) and (2.1.2) leads to eqs. (2.1.4), (2.1.5), and a similar pair of conjugate equations, 

respectively. 

Tij,j = ρ
∂2ui

∂t2                                                                                                                                                  (2.1.4) 

Sij =
1

2
(ui,j + uj,i)                                                                                                                                      (2.1.5) 

Assuming material properties are instantaneous in time and local in space, the stiffness tensor 

Cijkl can be written as eq. (2.1.6),  

Cijkl(r̅ − r̅′, t − t′) = Cijkl δ(r̅ − r̅′)δ(t − t′)                                                                                          (2.1.6)  

where δ is the Dirac delta function. This allows the linear stress-strain constitutive relations to be 

expressed in time domain as eq. (2.1.7), 

𝕋ij(x̅, t) = Cijkl𝕊kl(x̅, t).                                                                                                                             (2.1.7) 

Substituting the complex representation of stress and strain tensors, eq. (2.1.3), in eq. (2.1.7) 

results in eq. (2.1.8) 

Tij(x̅, t) = CijklSkl(x̅, t).                                                                                                                             (2.1.8) 

Using the definition of small strain, eq. (2.1.5), in eq. (2.1.8) together with use of the symmetry of 

the stiffness tensor, where Cijkl = Cijlk, eq. (2.1.9) is obtained.  

Tij(x̅, t) = Cijkluk,l                                                                                                                                      (2.1.9) 

Substituting for Tij(x̅, t) from eq. (2.1.9) into eq. (2.1.4) results in the wave equation for elastic 

waves as in eq. (2.1.10) 

Cijkluk,lj = ρ
∂2ui

∂t2                                                                                                                                       (2.1.10) 
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Following the methodology described in Ref.[30] solutions of the above equation are expressed 

as eq. (2.1.11).  

uk(x̅, t) = Uk eIω(
p̅.x̅

c
−t)

                                                                                                                             (2.1.11) 

where, I = √−1, Uk is the amplitude, p̅ = (p1, p2, p3) is a unit vector in the direction of propagation 

and c is the wave speed. Substituting eq. (2.1.11) into eq. (2.1.10) results in eq. (2.1.12). 

(Γik −  ρc2δki)Uk = 0                                                                                                                              (2.1.12)        

where 

 Γik = Cijklpjpl                                                                                                                                          (2.1.13) 

is a symmetric tensor called the Christoffel acoustic tensor. Eq. (2.1.12) is an eigenvalue problem 

in U̅ and for non-trivial solutions the determinant of the multiplying matrix must be zero 

det|Γik − ρc2δki| = 0.                                                                                                                             (2.1.14) 

This gives a cubic polynomial in terms of ρc2. For each eigenvalue cα, determined from the 

solution of eq. (2.1.14), the corresponding eigenvectors U̅α are found from eq. (2.1.12). Unit vectors 

lα̅ are defined by normalizing U̅α in eq. (2.1.15) and are called eigen modes. 

lj
α =

Uj
α

√Um
(α)

Um
(α)

                                                                                                                                              (2.1.15) 

Parentheses on repeated indices, e.g. (α), are used to indicate no Einstein summation. 

Unlike in isotropic materials, anisotropic materials generally have three distinct eigenvalues or 

phase velocities associated with three eigenvectors. This means waves propagating in the same 

direction with different eigenvectors, have different wave velocities. This phenomenon is called 

“Birefringence” or “Trirefringence” [47], depending on number of different wave velocities 

present in the system. Additionally, the modes lα̅ are not necessarily purely longitudinal or purely 

transverse with respect to the propagation direction. However, one of the modes has particle 

velocity predominately in the direction of propagation and is called the quasi-longitudinal mode 

and the two others have particle velocities predominately transverse to the direction of 
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propagation and are called the quasi-shear modes. Any wave with polarization, (particle 

displacement vector) other than the orthonormal eigenvectors does not have a single value for its 

propagation velocity and its displacement vector can be expanded in its modal form, eq. (2.1.16), 

with each of its components having the velocity of the corresponding modal displacement.  

 uj(x̅, t) = (U1e(Ik1ξ)lj
1 + U2e(Ik2ξ)lj

2 + U3e(Ik3ξ)lj
3)e−Iωt                                                                   (2.1.16) 

As an example, the elastic constants of a common crystal, LiNbO3, are used to find and discuss 

the phase velocities for different propagation directions. In this section, piezoelectric properties 

of LiNbO3, are neglected since only non-piezo constitutive relations are presented up to this point. 

Figure 2.2 refers the direction of the wave propagation vector p̅ relative to the crystal axes in 

LiNbO3, with each propagation direction determined by two angles θ and φ with respect to the 

positive Z and X axes, respectively. Figure 2.3 (a-c) shows the phase velocity for the quasi-

longitudinal and the two quasi-shear modes, associated with the propagation direction in 3D 

space. Every point on the surface corresponds to a 

(θ, φ) pair that defines the propagation direction 

and the distance from the origin is the magnitude 

of the modes’ wave speed. In addition, the speed 

values are color coded as indicated in the bar-

legend attached. Figure 2.3(d) shows the wave 

speed of all three modes overlayed. In LiNbO3, for 

θ = 0°, that is propagation in the Z direction, the 

two shear velocities are equal. This indicates the isotropic behavior of shear modes oriented in the 

X-Y plane. Figure 2.3(d) shows that the two quasi-shear modes have approximately half the 

longitudinal wave speed. 

 

Figure 2. 2. Definition of the propagation vector 
with respect to the crystal axes in LiNbO3. 
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The above figures were plotted using a code in Mathematica, Appendix A. To find the solutions, 

eq. (2.1.14) is solved with different propagating vector defined as eq. (2.1.17) 

p̅ = (Sin(𝜃) Cos(∅), Sin(𝜃) Sin(∅), Cos(θ))                                                                    (2.1.17) 

Note that same results can be achieved by assuming a constant propagating vector, a fixed spatial 

coordinate and rotating the material, transforming the elastic tensor.  

2.1. 2. Piezoelectric Material  

Constitutive equations with piezo electric coupling are presented in eqs. (2.1.18) and (2.1.19) 

𝕋𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝕦𝑘,𝑙 + 𝑒𝑚𝑖𝑗𝜙,𝑚                       (2.1.18) 

𝔻𝑖 = 𝑒𝑖𝑙𝑘𝕦𝑘,𝑙 − 𝜖𝑖𝑗𝜙,𝑗                              (2.1.19) 

The field equations with electrostatic assumption are written as eqs. (2.1.20) and (2.1.21) 

𝜌0 (
𝜕2𝕦𝑖

𝜕𝑡2 ) = 𝕋𝑗𝑖,𝑗                                                  (2.1.20) 

𝔻𝑖,𝑖 = 0            (2.1.21) 

In these equations, 𝕋̿ , 𝔻̅, 𝕦̅ and 𝜙 are stress, electric displacement field, mechanical displacement 

field and electric potential, respectively. 𝐶𝑖𝑗𝑘𝑙, 𝑒𝑚𝑖𝑗, 𝜖𝑖𝑗 are the stiffness components, piezoelectric 

3500

3600

3700

3800

3900

3600

3700

3800

3900

4000

6400

6600

6800

7000

a) b) c) 

d) 
Figure 2. 3. Phase velocity of the first (a), second(b) and third(c) 
mode as function of propagation direction. (d) Plot of the three 
phase velocities, the faster quasi-longitudinal mode and the two 
quasi-shear modes 
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coupling coefficients and electric permittivity constants of the material, respectively. Free charge 

density within the material is assumed to be zero.  Substituting eqs (2.1.18) and (2.1.19) in eqs. 

(2.1.20) and (2.1.21), gives the equation of motion for electric displacement and stress, 

represented in eq. (2.1.22) and eq. (2.1.22), respectively.  

𝔻𝑖,𝑖 = 𝑒𝑖𝑙𝑘𝕦𝑘,𝑙𝑖 − 𝜖𝑖𝑗𝜙,𝑗𝑖 = 0                                                 (2.1.22) 

𝜌0 (
𝜕2𝕦𝑖

𝜕𝑡2 ) = 𝐶𝑖𝑗𝑘𝑙𝕦𝑘,𝑙𝑗 + 𝑒𝑚𝑖𝑗𝜙,𝑚𝑗                            (2.1.23) 

Using the same methodology described in section 2.1.1, the field variable can be written as a 

summation of a complex variable plus its complex conjugate, (eq. (2.1.3)), eqs. (2.1.22) and 

(2.1.23) become as eqs. (2.1.24) and  (2.1.25), respectively.  

𝑒𝑖𝑙𝑘  u𝑘,𝑙𝑖 − 𝜖𝑖𝑗𝜙,𝑗𝑖 = 0                                              (2.1.24) 

𝜌0 (
𝜕2𝑢𝑖

𝜕𝑡2 ) = 𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑙𝑗 + 𝑒𝑚𝑖𝑗𝜙,𝑚𝑗                                                                                                          (2.1.25) 

Assuming a solution for the displacement field and the electric potential as represented in eq. 

(2.1.23),  

(u𝑘(𝑥̅, t), 𝜙) = (𝑈𝑘  , 𝜙)eIω(
p̅.x̅

c
−t)

                                (2.1.26) 

and substituting eq. (2.1.26) in eqs. (2.1.22) and (2.1.23), results in eqs. (2.1.27) and (2.1.28), 

respectively.   

𝑒𝑖𝑙𝑘  p𝑙 p𝑖𝑈𝑘 − 𝜙𝜖𝑖𝑗 p𝑗  p𝑖 = 0                                                                                                                 (2.1.27) 

𝜌0𝑐2𝑈𝑖 = 𝐶𝑖𝑗𝑘𝑙 p𝑙  p𝑗𝑈𝑘 + 𝑒𝑚𝑖𝑗 p𝑚 p𝑗𝜙                            (2.1.28) 

Equation (2.1.24) is a scalar equation that allows to write 𝜙 in terms of 𝑈𝑘, shown in eq. (2.1.26) 

𝜙 =
𝑒𝑖𝑙𝑘 p𝑙 p𝑖𝑈𝑘

𝜖𝑖𝑗 p𝑗 p𝑖
                               (2.1.29) 

The i and j in the denominator are dummy and can be replaced by any character for convenience. 

Substituting eq. (2.1.29) in eq. (2.1.28) and gives eq. (2.1.30) 

𝜌0𝑐2𝑈𝑖 = 𝐶𝑖𝑗𝑘𝑙 p𝑙  p𝑗𝑈𝑘 + 𝑒𝑚𝑖𝑗 p𝑚 p𝑗(
𝑒𝑛𝑙𝑘 p𝑙 p𝑛

𝜖𝑓𝑔 p𝑓 p𝑔
 )𝑈𝑘 or  
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(𝜌0𝑐2𝛿𝑖𝑘 − 𝐶𝑖𝑗𝑘𝑙  p𝑙  p𝑗 − 𝑒𝑚𝑖𝑗 p𝑚 p𝑗 (
𝑒𝑛𝑙𝑘 p𝑙 p𝑛

𝜖𝑓𝑔 p𝑓 p𝑔
 )) 𝑈𝑘 = 0                      (2.1.30) 

Similar to the non-piezoelectric case we define 

Γ̂ik = (Cijkl + (
𝑒𝑛𝑙𝑘 p𝑛𝑒𝑚𝑖𝑗 p𝑚

𝜖𝑓𝑔 p𝑓 p𝑔
 ))plpj                                                                                                        (2.1.31)                                                                              

Ĉijkl = Cijkl + (
𝑒𝑛𝑙𝑘 p𝑛𝑒𝑚𝑖𝑗 p𝑚

𝜖𝑓𝑔 p𝑓 p𝑔
 )  is called the stiffened elastic tensor. Using this definition, eq.  

(2.1.31) looks the same as eq. (2.1.12).  

In this case the three values found for 𝑐 are different than the non-piezo, however, for most 

crystals this difference is not significant. To compare, the phase velocities of plane waves for 

LiNbO3 are shown in figure 2.4, where the piezoelectric effects are considered. 

  

Figure 2. 4. Phase velocity for different direction of propagation in Y-Z plane -LiNbO3 

The numerical code, in Mathematica, to find the above solutions is presented in Appendix A.   
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2.2. Surface Elastic Waves with General Anisotropy 

Surface waves travel mainly on a very thin layer of the surface. The amplitude of the wave drops 

rapidly away from the free surface. This causes the most part of the wave’s energy stays near the 

surface which makes the wave have higher Intensity in comparison to of the bulk propagation and 

act as a waveguide.  

 

2.2.1. Surface Elastic Wave  

In this section, it is assumed the wave is propagating in the x direction with no variation in the y 

direction. With this assumption, the wave appears as a plane wave in y direction, figure. 2.5.  

The wave equation is the same as eq. (2.1.10), except in the 

case of surface waves, the boundary conditions are to be 

implemented as well. The boundary conditions are 

represented in eq. (2.2.1) (a) and (b). The displacement 

field must go to zero when 𝑥3 → ∞  the top surface must be 

traction free.  

Lim
𝑥3→∞ 

u → 0                             

               (2.2.1) (a) 

𝑇3𝑘𝑛3 = 0                                                                                                                                            (2.2.1) (b) 

where 𝑛3 is the normal to the free surface.  

The solution to the surface wave equation is assumed to have the form represented in eq. (2.2.2) 

with propagation in 𝑥1and decay in 𝑥3 directions, respectively. 

𝑢𝑖(𝑥̅, 𝑡) = 𝑎𝑖 𝑒−𝐼𝑠𝑘 𝑥3𝑒𝐼𝑘 𝑥1𝑒−𝐼𝜔𝑡        (To have decay in  𝑥3 direction 𝐼𝑚(s) < 0)                                     (2.2.2) 

Expanding the derivative indices, only for derivatives with respect to 𝑥1and 𝑥3 (i.e. derivatives 

with respect 𝑥2 are zero), of the wave equation, eq. (2.1.10), results in eq. (2.2.3) 

𝐶𝑖1𝑘1𝑢𝑘,11 + 𝐶𝑖3𝑘1𝑢𝑘,13 + 𝐶𝑖1𝑘3𝑢𝑘,31 + 𝐶3𝑖𝑘3𝑢𝑘,33 = − 𝜌𝜔2𝑢𝑖                                                               (2.2.3) 

Figure 2. 5. Surface Elastic wave 
propagating in x direction and decay in 
x3 
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Substituting eq. (2.2.2) in eq. (2.2.3), gives an eigenvalue equation, eq. (2.2.4), with ρc2 being the 

eigenvalues and ak the eigenvectors.  

(𝛤𝑖𝑘 −  𝜌𝑐2𝛿𝑘𝑖)𝑎𝑘 = 0                                                       (2.2.4)                                                                        

where, 

𝛤𝑖𝑘 = 𝐶𝑖1𝑘1 − 2 𝑠𝐶𝑖3𝑘1 + 𝑠2𝐶3𝑖𝑘3                                                (2.2.5) 

One major difference that makes the solution of surface waves more complicated is that the 

coefficient matrix, Γik, contains an unknown value, s. This causes one not to be able to find an 

analytic solution for the surface waves. The two unknowns, s, and c are solved for iteratively using 

the above equation and one with the boundary condition that is discussed below.  

Although the value of s cannot be found directly, the value of 𝑐2 is assumed in eq. (2.2.4), and the 

corresponding determinant is solved to find values of s.  Given that the Γik matrix is 3 by 3 and 

second order in s, one expects 6 solutions for s which will be conjugate pairs. Keeping the values 

of s which have negative imaginary magnitude satisfies the boundary condition eq. (2.2.1) (a).  The 

displacement field can then be expanded as the summation of three eigenvectors, as shown in eq. 

(2.2.6), 

u𝑖(𝑥̅) = ∑ 𝛼𝜇a𝑖
𝜇

 𝑒−𝐼𝑠𝜇𝑘 𝑥3𝑒−𝐼𝑘 𝑥13
𝜇=1                                                                                                   (2.2.6) 

where 𝛼𝜇 are yet undetermined weighting coefficients for the total solution and the a𝑖
𝜇

 are the 

eigenvectors with assumed eigenvalue 𝑐2. To be a solution, eq. (2.2.6) must still satisfy the other 

boundary condition, eq. (2.2.1) (b). 

To satisfy this boundary condition, eq. (2.2.6) is substituted in eq. (2.2.1) (b) and eq. (2.2.7) is  

obtained after some algebraic manipulation and extraction of the exponential terms.  

∑ (C3ji1 + C3ji3 𝑠𝜇) 𝛼𝜇 a𝑖
𝜇

 3
𝜇=1 = ∑ 𝐵𝜇𝑗  𝛼𝜇  3

𝜇=1 = 0 at 𝑥3 = 0                                                                           (2.2.7) 

after defining, 𝐵𝜇𝑗 = (C3ji1 + C3ji3 𝑠(𝜇)) a𝑖
(𝜇)

 . For eq. (2.2.7) to hold for non-trivial 𝛼𝜇, eq. (2.2.8) 

must be fulfilled, i.e.  

𝐷𝑒𝑡[𝐵𝜇𝑗] = 0.                 (2.2.8) 
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To solve the eigen value problem above, the surface wave velocity had to be assumed, since there 

is no direct way of calculating it from the analytical solution, up to this point. The process followed  

 

is to guess an initial value for velocity and solve the eigenvalue equation in eq. (2.24). Assembling  

the calculated eigenvalues and eigenvectors in eq. (2.27), the determinant of the boundary 

condition matrix, 𝐵𝜇𝑗 is calculated. A non-zero determinant 𝐵𝜇𝑗 represents an error term due to 

an incorrect value selected for 𝑐2. By using a “Shooting Method”, this process can be iterated to 

find the correct surface velocity that makes the determinate of 𝐵𝜇𝑗 go to zero. Once the 

determinant of 𝐵𝜇𝑗 is equal to zero, the values of 𝛼𝜇 can be determined, to within an arbitrary 

factor of one of the components. The voltage component is usually selected as the arbitrary 

component. Figure 2.6 provides a general flowchart of the process used. Once values of 𝛼𝜇, 𝑐2 𝑎𝑛𝑑  

 𝑠𝜇  are found, eqs. (2.26) and (2.2.2) are used to assemble the solution for  𝑢𝑖(𝑥̅, 𝑡). Adding the 

Figure 2. 6. The flowchart to solve for the 
surface wave velocity iteratively. 
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complex conjugate 𝑢𝑖(𝑥̅, 𝑡) to itself provides the complete solution. The numerical code, in 

Mathematica, can be found in Appendix A.  

 

2.2.2. Surface Waves in Piezoelectric Materials 

Constitutive equations and piezo electric field equations with electrostatic assumption are 

represented in Section 2.1.2, eqs. (2.1.18-21).   

Using the four-dimensional notation used by Taylor and Crampin[48], the piezoelectric field 

equations can be written as a single equation represented in eq. (2.2.9).  

𝜌0𝜂𝛼𝛽 (
𝜕2𝕦𝛼

𝜕𝑡2 ) = 𝕋𝑘𝛽,𝑘              𝛼 = 1,2,3,4                                                                                                  (2.2.9) 

Where, 𝜂𝛼𝛽 = 𝛿𝛼𝛽 − 𝛿𝛼4𝛿𝛽4 , 𝕦𝑘 is the mechanical displacement field (where 𝑘 = 1,2,3), 𝕦4 = 𝜙 is 

the electric potential and  𝕋𝑘4 are the electric displacement field components, represented in eq. 

(2.2.10).  

𝕦𝛼 = 𝕦𝑘 (𝑘 = 1,2,3), 𝕦4 = 𝜙                           (2.2.10) 

𝔻𝑘 = 𝕋𝑘4  

The constitutive relations can also be written in a single equation represented in eq. (2.2.11), 

𝕋𝑘𝛽 = 𝐶𝛽𝑘𝛾𝑛𝕦𝛾,𝑛           (2.2.11) 

where,  

𝐶𝛽𝑘𝛾𝑛 = 𝐶𝑙𝑘𝑚𝑛    𝛽, 𝛾 = 1,2,3  

𝐶4𝑘𝛾𝑛 = 𝑒𝑛𝑙𝑘 = 𝐶𝛽𝑘4𝑛                                                 (2.2.12)                          

𝐶4𝑘4𝑛 = −𝜖𝑘𝑛    

Traction free and charge free1 boundary conditions can be written as in eq. (2.2.13) 

𝕋3𝛽𝑛3 = 0        (2.2.13) 

where 𝑛3 is the normal to the free surface. 

 
1 In vacuum, no electrodes or open circuit and negligible gradients over IDT width 
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Using the same methodology described in Section 2.1.1, the field variable can be written as a 

summation of a complex variable plus its complex conjugate. Similar to eq. (2.1.3), eq. (2.2.9) can 

be written as eq. (2.2.14) 

𝜌0𝜂𝛼𝛽(u𝛼(𝑥̅, t)),𝑡𝑡 = 𝐶𝛽𝑘𝛾𝑛u𝛾,𝑛𝑘(𝑥̅, t)    (2.2.14) 

and a corresponding equation for the complex conjugate term. Assuming a monochromatic wave 

propagation (single frequency), the displacement field can be represented as eq. (2.2.15). 

u𝛾(𝑥̅, t) = u𝛾(𝑥̅)𝑒−𝐼𝜔𝑡   (2.2.15) 

Substituting eq. (2.2.15) in eq. (2.2.14), results eq. (2.2.16).  

−𝜌0𝜂𝛼𝛽𝜔2u𝛼(𝑥̅) = 𝐶𝛽𝑘𝛾𝑛u𝛾,𝑛𝑘    (2.2.16) 

The solution to the surface wave can be assumed to have the form represented in eq. (2.2.2) with 

propagation in 𝑥1and decay in 𝑥3 directions, respectively. 

u𝛾(𝑥̅) = a𝛾𝑒−𝐼s 𝑘𝑥3𝑒𝐼𝑘𝑥1     (To have decay in  𝑥3 direction 𝐼𝑚(𝑠) < 0)    (2.2.17) 

Substituting eq. (2.2.17) in eq. (2.2.16), results in eq. (2.2.18) 

(𝜌0𝜂𝛾𝛽𝑐2 − Γ𝛾𝛽)a𝛾 = 0                                                                                                                         (2.2.18) 

Where 

Γ𝛾𝛽 = 𝐶𝛽3𝛾3𝑠2 − (𝐶𝛽1𝛾3 + 𝐶𝛽3𝛾1)𝑠 + 𝐶𝛽1𝛾1                                                                                         (2.2.19) 

 

2.2.3. Analytic Results for Surface Waves in Piezoelectric Materials 

In the same manner as the elastic surface wave formulation in Section 2.21, eq. (2.2.19) becomes 

an eigenvalue problem in 𝑠. In this case, there are eight roots, labelled 𝑠𝜇, that form four complex 

conjugate pairs. To satisfy the decay condition, only the four roots with negative imaginary 

magnitude will have the desired physical meaning. Similar to the previous Section 2.1, the 

displacement field can be expanded as the summation of four eigen vectors, i.e., modes, of the 

problem eigensystem as in eq. (2.2.20).  
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u𝛾(𝑥3) = ∑ 𝛼𝜇𝑎𝛾
𝜇

𝑒−𝐼s k 𝑥34
𝜇=1                                                                                                                  (2.2.20) 

Substituting eq. (2.2.20) in eq. (2.2.13) to satisfy the boundary condition, eq. (2.2.21) is obtained.  

∑ 𝐵𝜇𝛾  𝛼𝜇 4
𝜇=1 = 0                         (2.2.21) 

where 𝐵𝜇𝛾 = (C3𝛾𝛼1 + C3𝛾𝛼3 𝑠𝜇) a𝛼
𝜇

 . For eq. (2.2.21) to hold true for nontrivial 𝛼𝜇 , eq. (2.2.22) must 

be fulfilled  

𝐷𝑒𝑡[𝐵𝜇𝛾] = 0            (2.222) 

The same iterative process explained in section 2.2.1 is implemented to find the surface wave 

velocity and the four unknowns 𝑠𝜇 coefficients. Once these are obtained, eqs. (2.2.20), (2.2.17) 

and (2.2.15) are used to assemble the solution for u𝛾(𝑥̅, t). Adding the complex conjugate of u𝛾(𝑥̅, t) 

to itself provides the total solution 𝕦𝛾which can be decomposed into its displacement and voltage 

components (i.e. 𝕦𝑘 (𝑘 = 1,2,3), 𝕦4 = 𝜙).  

Solutions were obtained, using the numerical code in Appendix A, for 128 Y-Cut, X propagating 

LiNbO3. The surface wave velocity obtained for this cut is 3986.5 [m/s]. Figure 2.7. shows the 

stress values on the top surface. The values for 𝕋3𝛽 are zero as expected. Figures 2.8. and 2.9 show 

displacement field components 

and the voltage along the 𝑥3 =Z 

direction, respectively. As the 

results show in figures 2.8 and 

2.9, the amplitude of the wave 

approaches to zero very rapidly 

into the depth of the bulk 

material. These three figures 

show that the boundary 

conditions are satisfied, and the waves have the expected surface propagation characteristics.  

 

Figure 2. 7. The stress value son the top surface verses the direction of 
propagation. The values for Ti3 are zero, which shows the boundary 
conditions are satisfied 
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Figure 2. 9. Voltage in the z direction 

 

2.2.2. Finite Element Analysis Results  

To further investigate surface elastic waves, a finite element simulation, using COMSOL 

Multiphysics platform for implementation was developed and is presented in this section. The 

model has a 3D geometry with Interdigital Transducer (IDT) on the top surface that creates a 

surface wave as shown in figure 2.10.  

Figure 2. 8. Displacement field in the z direction 



 25 

 

 

 

 

 

 

 

 

 

 

 

Since it is assumed that there is no variation in the y direction, it is computationally economical 

to have only one element in the y direction as shown in figure 2.11.  

 

 

 

 

 

 

 

 

 

 

 

 

 

IDT 

Figure 2. 11. One element in the y direction with continuity condition on the sides. 

Figure 2. 10. Surface elastic wave generated on 128 Y-Cut LiNbO3 
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Table 1- The properties used in COMSOL simulation 

 

 

 

 

 

 

 

 

 

The material constants for 128 Y-Cut LiNbO3 are calculated using the code developed for 

coordinate rotation, discussed in chapter 1.  Figures 2.12 and 2.13 show the results obtained for 

electric potential and the 

displacement, respectively, with 

propagation in the x direction. It is 

evident in this figures that most of 

the wave’s energy is confined to the 

top surface and the amplitude of the 

waves decrease in the z direction, 

which validates the obtained results. 

The finite element results are 

compared with the quasi-analytical 

solution obtained in the 

Mathematica code. Figure 2.14 (a) and (b) show the stress component in the x direction, 𝕋11, 

obtained from COMSOL model and the Mathematica code. The difference of amplitudes in the 

EXPRESSION VALUE 

SIGNAL FREQUENCY 2 [GHz] 

SURFACE WAVE VELOCITY 3986.5[m/s] 

WAVELENGTH OF SIGNAL WAVE   
(𝝀) 

1.9 E-6 m 

LENGTH 19*𝜆 

WIDTH Mesh size 

HIGHT 8*𝜆 

MESH SIZE 𝜆/32 

Figure 2. 12. The electric potential, u_4 in eq. 2.2.10, propagating 
in the x direction and decaying in the z direction 
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propagating region between the two methods is approximately 6%, showing very good agreement 

between the two.  

 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

a) b) 

Figure 2.14.  The stress component in the x direction, 𝕋11, obtained form a) COMSOL model and b) the 
Mathematica code 

Figure 2. 13. Displacement in the x direction, u_1 in eq. 2.2.10, 
propagating in propagating on the x direction and decaying in the z 
direction 
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Chapter 3 Propagation of Nonlinear Elastic Waves 

In this chapter, the study of waves is extended to nonlinear materials with finite strain. This is 

utilized to model waving mixing effects that will be used to produce parametric amplification. 

 

3.1.  Coupled Wave Equations for Plane Elastic Waves 

Nonlinear terms are the result of either material nonlinearities, i.e., higher order terms in the 

constitutive equations, or geometric nonlinearity which appears when small strain 

approximations are exceeded. Starting with the nonlinear constitutive equations, the second 

Piola-Kirchoff stress tensor is approximated as a series expansion of the strain energy with respect 

to the Lagrangian strain, 𝕊𝑖𝑗, in eq. (3.1.1), which is the same as eq. (1.1) without the piezoelectric 

effect.  

𝕋𝑖𝑗 =
𝜕Φ

𝜕𝕊𝑖𝑗
= 𝐶𝑖𝑗𝑘𝑙𝕊𝑘𝑙 +

1

2
𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝕊𝑘𝑙𝕊𝑚𝑛 + ⋯                                                                                        (3.1.1) 

where Φ is the elastic energy function, 𝐶𝑖𝑗𝑘𝑙 is the rank four stiffness tensor, that is associated with 

linear behavior,  𝐶𝑖𝑗𝑘𝑙𝑚𝑛 is the rank six stiffness tensor that represents quadratic nonlinearity and 

the Lagrangian strain, 𝕊𝑖𝑗, which is given in eq. (3.1.2)  

𝕊𝑖𝑗 =
1

2
(𝕦𝑖,𝑗 + 𝕦𝑗,𝑖 + 𝕦𝑘,𝑖𝕦𝑘,𝑗)                                                                                                                 (3.1.2) 

Where 𝕦̅(𝑋̅, 𝑡) = 𝑋̅ − 𝑥̅(𝑋̅, 𝑡), is the displacement field, the vectors 𝑥̅ and 𝑋̅ describe the material 

position in the deformed and undeformed states, respectively, while  𝕦𝑖,𝑗 =
𝜕𝕦𝑖

𝜕𝑋𝑗
 , is the derivative 

of the displacement with respect to the undeformed coordinate. 

Lagrangian strain can be divided into linear and geometrically nonlinear terms as in eq. (3.1.3) 

𝕊𝑖𝑗 = 𝕊𝑖𝑗
𝐿 + 𝕊𝑖𝑗

𝑁𝐿                                                                                                                                          (3.1.3) 

Substituting eq. (3.1.3) in eq. (3.1.1), results in eq. (3.1.4).  
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𝕋𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙(𝕊𝑘𝑙
𝐿 + 𝕊𝑘𝑙

𝑁𝐿) +
1

2
𝐶𝑖𝑗𝑘𝑙𝑚𝑛(𝕊𝑘𝑙

𝐿 𝕊𝑚𝑛
𝐿 + 𝕊𝑘𝑙

𝐿 𝕊𝑚𝑛
𝑁𝐿 + 𝕊𝑘𝑙

𝑁𝐿𝕊𝑚𝑛
𝐿 + 𝕊𝑘𝑙

𝑁𝐿𝕊𝑚𝑛
𝑁𝐿 )                                 (3.1.4) 

keeping the terms up to the second order in displacement gradients, the nonlinear constitutive 

equations is written in eq. (3.1.5). 

𝕋𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙(𝕊𝑘𝑙
𝐿 + 𝕊𝑘𝑙

𝑁𝐿) +
1

2
𝐶𝑖𝑗𝑘𝑙𝑚𝑛(𝕊𝑘𝑙

𝐿 𝕊𝑚𝑛
𝐿 )                                                                                         (3.1.5)  

Substituting for 𝕊𝑖𝑗
𝐿 and 𝕊𝑖𝑗

𝑁𝐿 from eq. (3.1.2), eq. (3.1.5) becomes 

𝕋𝑖𝑗 =
1

2
𝐶𝑖𝑗𝑘𝑙(𝕦𝑘,𝑙 + 𝕦𝑙,𝑘)  +

1

2
𝐶𝑖𝑗𝑘𝑙𝕦𝑝,𝑘𝕦𝑝,𝑙 +

1

2
𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝕦𝑘,𝑙𝕦𝑚,𝑛                                                         (3.1.6) 

The equation of motion is written in terms of first Piola-Kirchoff stress as shown in eq. (3.1.7)  

𝜕𝜎̅𝑗𝑖

𝜕𝑋𝑗
= 𝜌0

𝜕2𝕦𝑖

𝜕𝑡2                                                                                                                                               (3.1.7) 

Here 𝜌0 is the density of the matrial represented in the undeformed coordinate system.  

The first Piola-Kirchoff stress is related to the second Piola-Kirchoff stress by eq. (3.1.8),  

𝜎̅𝑗𝑖 = 𝕋𝑗𝑙
𝜕x𝑖

𝜕𝑋𝑙
= 𝕋𝑗𝑙 (𝛿𝑖𝑙 +

𝜕𝕦𝑖

𝜕𝑋𝑙
) = 𝕋𝑗𝑖 + 𝕋𝑗𝑙

𝜕𝕦𝑖

𝜕𝑋𝑙
                                                                                        (3.1.8) 

Substituting for 𝕋𝑖𝑗 from eq (3.1.6), and, keeping the terms up to the second order in displacement 

gradients, the term 𝕋𝑗𝑙
𝜕𝕦𝑖

𝜕𝑋𝑙
 in eq. (3.1.8) is found in eq. (3.1.9) 

𝕋𝑗𝑙
𝜕𝕦𝑖

𝜕𝑋𝑙
= 𝐶𝑗𝑛𝑘𝑙𝕦𝑘,𝑙𝕦𝑖,𝑛 = 𝐶𝑗𝑛𝑘𝑙𝛿𝑖𝑚𝕦𝑘,𝑙𝕦𝑚,𝑛.                                                                                           (3.1.9) 

Considering symmetry properties of the rank four and six tensors, and by substituting from eqs. 

(3.1.6) and (3.1.9), into eq. (3.1.8), the first Piola-Kirchoff stress can be found in terms of 

displacement gradients in eq. (3.1.10). 

𝜎̅𝑗𝑖 = 𝐶𝑖𝑗𝑘𝑙𝕦𝑘,𝑙 +
1

2
𝐶𝑖𝑗𝑘𝑙𝑚𝑛

(𝑒)
𝕦𝑘,𝑙𝕦𝑚,𝑛                                                                                                        (3.1.10) 

where  

𝐶𝑖𝑗𝑘𝑙𝑚𝑛
(𝑒)

= 𝐶𝑗𝑖𝑘𝑙𝑚𝑛 + 2𝐶𝑗𝑛𝑘𝑙𝛿𝑖𝑚 + 𝐶𝑗𝑖𝑛𝑙𝛿𝑘𝑚                                                                                            (3.1.11) 

is the effective rank six tensor. Substituting for 𝜎̅𝑗𝑖 from eq. (3.1.10) into the equation of motion, 

eq. (3.1.7), eq. (3.1.12) is derived.  
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(𝐶𝑖𝑗𝑘𝑙𝕦𝑘,𝑙 +
1

2
𝐶𝑖𝑗𝑘𝑙𝑚𝑛

(𝑒)
𝕦𝑘,𝑙𝕦𝑚,𝑛 ),𝑗 = 𝜌0

𝜕2𝕦𝑖

𝜕𝑡2  .                                                                                        (3.1.12) 

As in Chapter 2 the definition of eq. (2.1.3) is used to introduce the complex displacement 

field 𝑢̅(𝑥̅, t) which transforms eq. (3.1.12) into eq. (3.1.13). 

(𝐶𝑖𝑗𝑘𝑙(u𝑘,𝑙 + u𝑘,𝑙
∗ ) +

1

4
𝐶𝑖𝑗𝑘𝑙𝑚𝑛

(𝑒)
(u𝑘,𝑙u𝑚,𝑛 + u𝑘,𝑙u𝑚,𝑛

∗ + u𝑘,𝑙
∗ u𝑚,𝑛 + u𝑘,𝑙

∗ u𝑚,𝑛
∗ )),𝑗 = 𝜌0 (

𝜕2(u𝑖+u𝑖
∗)

𝜕𝑡2 )       (3.1.13)                  

The previous expression contains product terms of u̅(𝑥̅, t) and u̅∗(𝑥̅, t) in addition to those of u̅(𝑥̅, t) 

making the expression more complicated than the linear equation.  

The nonlinear effects are approximated as a perturbation of the linear system when the nonlinear 

terms are small. This is shown in eq. (3.1.14), where each 𝑢̅𝑞 term is at frequency 𝜔𝑞. 

u𝑗(𝑥̅, t) = ∑ 𝑢𝑗
𝑞

(𝑥̅)𝑞 𝑒−𝐼𝜔𝑞𝑡                                                                                                                         (3.1.14) 

Substituting eq. (3.1.14) in eq. (3.1.13) and using the notational convention described in eq. 3.1.15 

(a) and 3.1.15 (b) 

𝑢𝑖
𝑞

(𝑥̅) = 𝑢𝑖(𝜔𝑞)                                                                                                                                    3.1.15 (a) 

𝑢𝑖
∗𝑞

(𝑥̅) = 𝑢𝑖
∗(𝜔𝑞) = 𝑢𝑖(−𝜔𝑞)                                                                                                             3.1.15 (b) 

leads to eq. (3.1.16). 

[𝐶𝑖𝑗𝑘𝑙 ∑ (𝑢𝑘,𝑙(𝜔𝑞)𝑒−𝐼𝜔𝑞𝑡 + 𝑢𝑘,𝑙(−𝜔𝑞)𝑒𝐼𝜔𝑞𝑡)𝑞 =
1

4
∑ 𝐶𝑖𝑗𝑘𝑙𝑚𝑛

(𝑒)
(𝑢𝑘,𝑙(𝜔𝑟)𝑢𝑚,𝑛(𝜔𝑠) 𝑒−𝐼(𝜔𝑟+𝜔𝑠)𝑡

𝑟,𝑠 +

𝑢𝑘,𝑙(𝜔𝑟)𝑢𝑚,𝑛(−𝜔𝑠)𝑒−𝐼(𝜔𝑟−𝜔𝑠)𝑡 + 𝑢𝑘,𝑙(−𝜔𝑟)𝑢𝑚,𝑛(𝜔𝑠)𝑒−𝐼(−𝜔𝑟+𝜔𝑠)𝑡 +

𝑢𝑘,𝑙(−𝜔𝑟)𝑢𝑚,𝑛(−𝜔𝑠)𝑒−𝐼(−𝜔𝑟−𝜔𝑠)𝑡)],𝑗 = −𝜌0 ∑ 𝜔𝑞
2 (𝑢𝑖(𝜔𝑞)𝑒−𝐼𝜔𝑞𝑡 + 𝑢𝑖(−𝜔𝑞)𝑒𝐼𝜔𝑞𝑡)𝑞                      (3.1.16) 

The exponential terms are collected so that the same frequency exists in each summand. This 

requires 𝜔𝑞 = 𝜔𝑟 + 𝜔𝑠 where 𝑟, 𝑞, and 𝑠 can take on negative values as appropriate to satisfy the 

conjugate frequency notation of eq. 3.1.15 (b). This implies: 

(𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑙(𝜔𝑞) +
1

2
∑ 𝐶𝑖𝑗𝑘𝑙𝑚𝑛

(𝑒)
𝑢𝑘,𝑙(𝜔𝑟)𝑢𝑚,𝑛(𝑟,𝑠) (𝜔𝑠)),𝑗 = −𝜌0𝜔𝑞

2𝑢𝑖(𝜔𝑞)                                             (3.1.17) 

The summation in eq. (3.1.17) is over all frequency combinations that satisfy the constraint 𝜔𝑞 =

𝜔𝑟 + 𝜔𝑠 for each 𝜔𝑞 independently. The notation (𝑟, 𝑠) here is used to represent pairs that satisfies 
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this constraint 𝜔𝑞 = 𝜔𝑟 + 𝜔𝑠 for r, s, and q; hence, they are not independent of each other. 

Distributing the derivatives in eq. (3.1.17) leads to eq. (3.1.18). 

𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑙𝑗(𝜔𝑞) +
1

2
∑ 𝐶𝑖𝑗𝑘𝑙𝑚𝑛

(𝑒)
(𝑢𝑘,𝑙𝑗(𝜔𝑟)𝑢𝑚,𝑛(𝜔𝑠) + 𝑢𝑘,𝑙(𝜔𝑟)𝑢𝑚,𝑛𝑗(𝜔𝑠))(𝑟,𝑠) = −𝜌0𝜔𝑞

2𝑢𝑖(𝜔𝑞)         (3.1.18)                            

If waves at different frequencies have the same propagation direction, i.e., 𝑢𝑗
𝑞

(𝑥̅) are collinear, the 

eigen basis of eq. (2.1.15) can be used to expand all of them.  Projecting these displacement fields 

on the eigen basis results in eq. (3.1.19)  

𝑢𝑖(𝜔𝑞) = ∑ 𝑢𝛼(𝜔𝑞)𝑙𝑖
𝛼

𝛼                                                                                                                                    (3.1.19) 

In this equation, the component  𝑢𝛼 is the amplitude of the 𝛼 mode and defines the component of 

“particle” displacement (for example quasi-longitudinal, shear, etc.) in the  𝑙𝛼̅ direction. If we 

assume the displacement field at frequency 𝜔𝑞 is composed of only one mode, i.e., its particle 

displacements are aligned with only one of the eigen basis vectors, we can simplify eq. (3.1.19) to 

eq. (3.1.20) 

𝑢𝑖(𝜔𝑞) = 𝑢(𝛼)(𝜔𝑞)𝑙𝑖
(𝛼)

.                                                                                                                                 (3.1.20)  

This is referred to as a mono-mode assumption.   

The scalar quantity ξ is defined to be the inner product of the p̅ and x̅ vectors as shown in eq. 

(3.1.21) 

ξ = p̅. x̅                                                                                                                                                           (3.1.21) 

Where p̅ in this equation is the unit vector representing the direction of propagation. The 

derivative of ξ with respect to x̅ is represented in eq. (3.1.22).     

∂ξ

∂xi
= pi .                                                                                                                                                        (3.1.22) 

If the variation of the amplitude of a wave over its wavelength is small, the slowly varying 

amplitude assumption (SVA) applies. The SVA assumes the spatial dependence of the amplitude 

function for a wave can be decomposed into the product of a slowly varying envelope term, or 

amplitude, and a harmonic function capturing its oscillations. Under the SVA assumption the 
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wave components at different frequencies, 𝑢𝛼(𝜔𝑞), propagating in direction 𝑝̅, i.e. along 𝜉, have 

the form of eq. (3.1.23), 

𝑢(𝛼)(𝜔𝑞) = 𝓊(𝛼)(𝑥̅) 𝑒𝐼𝑘𝑞
(𝛼)

𝜉 = 𝓊(𝛼)(𝜔𝑞)𝑒𝐼𝑘𝑞
(𝛼)

𝜉                                                                                        (3.1.23) 

where 𝓊(𝛼) is the slowly varying amplitude term and  𝑘𝑞
(𝛼)

 is the magnitude of the wave vector for 

the wave component at frequency 𝜔𝑞 in mode 𝛼.  

Taking the first and the second derivatives of displacement in eq. (3.1.20) with respect to x, in 

addition to use of the chain rule results in eqs. (3.1.24) and (3.1.25), respectively.  

𝑢𝑘,𝑙(𝜔𝑞) = 𝑢,𝜉
(𝛼)

(𝜔𝑞) 𝑝𝑙𝑙𝑘
𝛼,                                                                                                                        (3.1.24)                                                                                             

and 

𝑢𝑘,𝑙𝑗(𝜔𝑞) = 𝑢,𝜉𝜉
(𝛼)

(𝜔𝑞) 𝑝𝑙  𝑝𝑗𝑙𝑘
𝛼                                                          (3.1.25) 

Substituting eqs. (3.1.24) and (3.1.25) into eq. (3.1.18) gives eq. (3.1.26). 

𝐶𝑖𝑗𝑘𝑙  𝑝𝑙𝑝𝑗𝑙𝑘
𝛼𝑢,𝜉𝜉

(𝛼)
(𝜔𝑞) +

1

2
∑ 𝐶𝑖𝑗𝑘𝑙𝑚𝑛

(𝑒)
𝑝𝑗𝑝𝑙𝑝𝑛𝑙𝑘

(𝛽)
𝑙𝑚

(𝛾)
( 𝑢,𝜉𝜉

(𝛽)
(𝜔𝑟)𝑢,𝜉

(𝛾)
(𝜔𝑠) + 𝑢,𝜉

(𝛽)
(𝜔𝑟) 𝑢,𝜉𝜉

(𝛾)
(𝜔𝑠))(𝑟,𝑠) =

−𝜌0𝜔𝑞
2𝑙𝑖

𝛼𝑢(𝛼)(𝜔𝑞)                                                                       (3.1.26) 

Using the definition of Γ𝑖𝑘 = 𝐶𝑖𝑗𝑘𝑙𝑝𝑗𝑝𝑙 in eq. (2.1.13) also defining Λ𝑖𝑘𝑚 in eq. (3.1.27) 

Λ𝑖𝑘𝑚 = 𝐶𝑖𝑗𝑘𝑙𝑚𝑛
(𝑒)

𝑝𝑗𝑝𝑙𝑝𝑛                                                                                                                               (3.1.27) 

eq. (3.1.26) is rewritten as eq. (3.1.28). 

 Γ𝑖𝑘𝑙𝑘
𝛼𝑢,𝜉𝜉

(𝛼)
(𝜔𝑞) +

1

2
∑ Λ𝑖𝑘𝑚𝑙𝑘

(𝛽)
𝑙𝑚

(𝛾)
(𝑢,𝜉𝜉

(𝛽)(𝜔𝑟)𝑢,𝜉
(𝛾)(𝜔𝑠) + 𝑢,𝜉

(𝛽)(𝜔𝑟)𝑢,𝜉𝜉
(𝛾)(𝜔𝑠))(𝑟,𝑠) = −𝜌0𝜔𝑞

2𝑙𝑖
𝛼𝑢(𝛼)(𝜔𝑞)                                                                               

(3.1.28)     

With eq. (3.1.23), the first and second derivatives of 𝑢(𝛼)(𝜔𝑞) with respect to 𝜉 are presented in 

eq. (3.1.29) and (3.1.30), respectively.  

𝑢,𝜉
(𝛼)

(𝜔𝑞) = [𝓊,𝜉
(𝛼)

(𝜔𝑞) + 𝐼𝑘𝑞
(𝛼)

𝓊(𝛼)(𝜔𝑞)] 𝑒𝐼𝑘𝑞
(𝛼)

𝜉                                                                     (3.1.29)   

𝑢,𝜉𝜉
(𝛼)

(𝜔𝑞) = [𝓊,𝜉𝜉
(𝛼)

(𝜔𝑞) + 2𝐼𝑘𝑞
(𝛼)

𝓊,𝜉
(𝛼)

(𝜔𝑞) − (𝑘𝑞
(𝛼)

)2𝓊(𝛼)(𝜔𝑞)] 𝑒𝐼𝑘𝑞
(𝛼)

𝜉                                             (3.1.30) 

With the assumption of SVA, the inequalities in (3.1.31) hold 
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𝓊,𝜉𝜉
(𝛼)

(𝜔𝑞) ≪ 𝑘𝑞
(𝛼)

𝓊,𝜉
(𝛼)

(𝜔𝑞) ≪ (𝑘𝑞
(𝛼)

)2𝓊(𝛼)(𝜔𝑞)                                                                                 (3.1.31) 

and eq. (3.1.30) simplifies to  

𝑢,𝜉𝜉
(𝛼)

(𝜔𝑞) = [2𝐼𝑘𝑞
(𝛼)

𝓊,𝜉
(𝛼)

(𝜔𝑞) − (𝑘𝑞
(𝛼)

)2𝓊(𝛼)(𝜔𝑞)] 𝑒𝐼𝑘𝑞
(𝛼)

𝜉                                                                  (3.1.32) 

Substituting eqs. (3.1.29) and (3.1.30) into eq. (3.1.26) and discarding the low order terms in 

inequalities (3.1.31), eq. (3.1.33) is obtained. 

[Γ𝑖𝑘2𝐼𝑘𝑞
(𝛼)

𝑙𝑘
(𝛼)

𝓊,𝜉
(𝛼)

(𝜔𝑞) − (Γ𝑖𝑘(𝑘𝑞
(𝛼)

)2𝑙𝑘
(𝛼)

− 𝜌0𝜔𝑞
2𝑙𝑖

(𝛼)
) 𝓊(𝛼)(𝜔𝑞)] 𝑒𝐼𝑘𝑞

(𝛼)
𝜉 −

1

2
∑ Λ𝑖𝑘𝑚 ∑ [𝐼𝑘𝑟

(𝛽)
𝑘𝑆

(𝛾)
(𝑘𝑟

(𝛽)
+ 𝑘𝑆

(𝛾)
) 𝑙𝑘

(𝛽)
𝑙𝑚

(𝛾)
𝓊(𝛽)(𝜔𝑟)𝓊(𝛾)(𝜔𝑠)]𝛽,𝛾(𝑟,𝑠) 𝑒𝐼(𝑘𝑟

(𝛽)
+𝑘𝑆

(𝛾)
)𝜉 = 0                (3.1.33)         

In chapter 2.1 it is shown, ∑ (Γ𝑖𝑘(𝑘𝑞
𝛼)2𝑙𝑘

𝛼 − 𝜌0𝜔𝑞
2𝑙𝑖

𝛼)𝓊𝛼(𝜔𝑞)𝛼 = 0, and eq. (3.1.33) simplifies to eq. 

(3.1.34).  

[Γ𝑖𝑘𝑘𝑞
(𝛼)

𝑙𝑘
(𝛼)

𝓊,𝜉
(𝛼)

(𝜔𝑞)] 𝑒𝐼𝑘𝑞
(𝛼)

𝜉 −
1

4
∑ Λ𝑖𝑘𝑚 ∑ [𝑘𝑟

(𝛽)
𝑘𝑆

(𝛾)
(𝑘𝑟

(𝛽)
+𝛽,𝛾(𝑟,𝑠)

𝑘𝑆
(𝛾)

) 𝑙𝑘
(𝛽)

𝑙𝑚
(𝛾)

𝓊(𝛽)(𝜔𝑟)𝓊(𝛾)(𝜔𝑠)] 𝑒𝐼(𝑘𝑟
(𝛽)

+𝑘𝑆
(𝛾)

)𝜉 = 0                                                                    (3.1.34) 

Multiplying both sides of eq. (3.1.34) by 𝑙𝑖
(𝛼)

,  

[Γ𝑖𝑘𝑘𝑞
(𝛼)

𝑙𝑘
(𝛼)

𝓊(,𝜉
𝛼)

(𝜔𝑞)] 𝑒𝐼𝑘𝑞
(𝛼)

𝜉 =
1

4
∑ Λ𝑖𝑘𝑚𝑙𝑖

(𝛼)
𝑙𝑘

(𝛽)
𝑙𝑚

(𝛾)
[𝑘𝑟

(𝛽)
𝑘𝑆

(𝛾)
(𝑘𝑟

(𝛽)
+(𝑟,𝑠)

𝑘𝑆
(𝛾)

) 𝓊(𝛽)(𝜔𝑟)𝓊(𝛾)(𝜔𝑠)] 𝑒𝐼(𝑘𝑟
(𝛽)

+𝑘𝑆
(𝛾)

)𝜉                                                                                                      (3.1.35) 

With the definitions, 𝐺𝛼𝛼 = Γ𝑖𝑘𝑙𝑖
(𝛼)

𝑙𝑘
𝛼 and 𝐻𝛼𝛽𝛾 = Λ𝑖𝑘𝑚𝑙𝑖

𝛼𝑙𝑘
𝛽

𝑙𝑚
𝛾

, and 𝐾𝑟𝑠
𝛽𝛾

= 𝑘𝑟
(𝛽)

𝑘𝑆
(𝛾)

(𝑘𝑟
(𝛽)

+ 𝑘𝑆
(𝛾)

) eq. 

(3.1.35) can be rewritten as eq. (3.1.36) 

[𝐺𝛼𝛼𝑘𝑞
(𝛼)

𝓊,𝜉
(𝛼)

(𝜔𝑞)] =
1

4
∑ 𝐻𝛼𝛽𝛾 [𝐾𝑟𝑠

𝛽𝛾
𝓊(𝛽)(𝜔𝑟)𝓊(𝛾)(𝜔𝑠)](𝑟,𝑠) 𝑒𝐼(𝑘𝑟

(𝛽)
+𝑘𝑆

(𝛾)
−𝑘𝑞

(𝛼)
)𝜉                                   (3.1.36) 

In a second order process involving two distinct frequencies 𝜔𝑟 and 𝜔𝑠 that satisfy 𝜔𝑞 = 𝜔𝑟 + 𝜔𝑠, 

𝜔𝑞 = 𝜔𝑠 + 𝜔𝑟 also needs to be considered. Equation (3.1.36) for a pair of 𝜔𝑟 and 𝜔𝑠 becomes, 

𝐺𝛼𝛼𝑘𝑞
(𝛼)

𝓊,𝜉
(𝛼)

(𝜔𝑞) =
1

4
(𝐻𝛼𝛽𝛾 + 𝐻𝛼𝛽𝛾) [𝐾𝑟𝑠

𝛽𝛾
𝓊(𝛽)(𝜔𝑟)𝓊(𝛾)(𝜔𝑠)] 𝑒𝐼(𝑘𝑟

(𝛽)
+𝑘𝑆

(𝛾)
−𝑘𝑞

(𝛼)
)𝜉                        (3.1.37) 

Further simplifying  
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𝓊,𝜉
(𝛼)

(𝜔𝑞) =
1

4

(𝐻𝛿𝛽𝛾+𝐻𝛿𝛽𝛾)

𝐺𝛼𝛼 [
𝐾𝑟𝑠

𝛽𝛾

𝑘𝑞
(𝛼) 𝓊(𝛽)(𝜔𝑟)𝓊(𝛾)(𝜔𝑠)] 𝑒𝐼(∆𝑘𝑟𝑠𝑞)𝜉                                                               (3.1.38)      

where ∆𝑘𝑟𝑠𝑞 = 𝑘𝑟
𝛽

+ 𝑘𝑠
𝛾

− 𝑘𝑞
𝛼                                            (3.1.39) 

Equation (3.1.38) is the most general form of the coupled wave equations for a frequency mixing 

process in a nonlinear elastic material under the mono-mode and slowly varying amplitude 

assumptions, regardless of the number of frequencies involved. In general, analytic solutions of 

eq. (3.1.38) do not exist and numerical methods must be applied for a specific frequency mixing 

process. In Section 4.3 analytic solutions of eq. (3.1.38) for the process of Difference Frequency 

Generation (DFG) involving three frequency components is given and its application to 

parametric amplification process is discussed.  

 

3.2.  Coupled Wave Equations for Piezoelectric Surface Elastic Waves  

To design an electromechanical device, the piezoelectric characteristic of the material must be 

considered to transfer electrical energy into strain energy.  

Going back to eq. (1.1), the volume energy is expanded approximately as 

Φ =
1

2
𝐶𝑖𝑗𝑘𝑙𝕊𝑖𝑗𝕊𝑘𝑙 +

1

6
𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝕊𝑖𝑗𝕊𝑘𝑙𝕊𝑚𝑛 − 𝑒𝑚𝑖𝑗𝔼𝑚𝕊𝑖𝑗 −

1

2
𝑒𝑚𝑖𝑗𝑘𝑙𝔼𝑚𝕊𝑖𝑗𝕊𝑘𝑙 −

1

2
𝜀𝑚𝑛𝔼𝑚𝔼𝑛 −

1

6
𝜀𝑚𝑛𝑝𝔼𝑚𝔼𝑛𝔼𝑝 −

1

2
𝑙𝑚𝑛𝑖𝑗𝔼𝑚𝔼𝑛𝕊𝑖𝑗 + ℎ. 𝑜. 𝑡 .                                                                                                    (1.1) 

 
And the stress term is derived in eq. (3.2.1).  

𝕋𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝕊𝑘𝑙 +
1

2
𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝕊𝑘𝑙𝕊𝑚𝑛 − 𝑒𝑚𝑖𝑗𝔼𝑚 − 𝑒𝑚𝑖𝑗𝑘𝑙𝔼𝑚𝕊𝑘𝑙 −

1

2
𝑙𝑚𝑛𝑖𝑗𝔼𝑚𝔼𝑛             (3.2.1) 

In comparison to eq. (3.1.1), two more nonlinear terms are present. The electroelastic term is 

𝑒𝑚𝑖𝑗𝑘𝑙𝔼𝑚𝕊𝑘𝑙  and electrostriction is represented by 𝑙𝑚𝑛𝑖𝑗𝔼𝑚𝔼𝑛. In addition, eq. (3.2.2) 

𝔻𝑖 = 𝜀𝑖𝑗𝔼𝑗 +
1

2
𝜀𝑖𝑛𝑝𝔼𝑛𝔼𝑝 + 𝑒𝑖𝑝𝑞𝕊𝑝𝑞 +

1

2
𝑒𝑖𝑚𝑛𝑝𝑞𝕊𝑚𝑛𝕊𝑝𝑞 + 𝑙𝑖𝑗𝑝𝑞𝔼𝑗𝕊𝑝𝑞                                                (3.2.2) 

represents the electric displacement field in the presence of higher order terms.  
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As discussed in section 3.1, the equations of motion are written for the first Piola-Kirchoff stress 

terms. The stress terms obtained from the volume energy are the symmetric second Piola-Kirchoff 

stresses. To convert the stress terms in eq (3.2.3) to the first Piola-Kirchoff stress terms, the same 

equation as in eq (3.1.8), is utilized  

𝜎̅𝑗𝑖 = 𝕋𝑗𝑙
𝜕𝑥𝑖

𝜕𝑋𝑙
= 𝕋𝑗𝑙 (𝛿𝑖𝑙 +

𝜕𝕦𝑖

𝜕𝑋𝑙
) = 𝕋𝑗𝑖 + 𝕋𝑗𝑙

𝜕𝕦𝑖

𝜕𝑋𝑙
                                                                                       (3.1.8)      

Substituting eq. (3.1.2) in eqs. (3.2.1) and (3.2.2) for the strain terms and with electrostatic 

assumption, 𝔼𝑗 = 𝜙,𝑗, eqs. (3.2.3) and (3.2.4) are derived.  

𝜎̅𝑗𝑖 = 𝐶𝑖𝑗𝑘𝑙  𝕦𝑘,𝑙 +
1

2
𝐶𝑖𝑗𝑘𝑙𝑚𝑛

(𝑒)
𝕦𝑘,𝑙𝕦𝑚,𝑛 + 𝑒𝑚𝑖𝑗𝜙,𝑚 + 𝑒𝑚𝑗𝑖𝑘𝑙

(𝑒)
𝜙,𝑚𝕦𝑘,𝑙 −

1

2
𝑙𝑚𝑛𝑗𝑖

(𝑒)
𝜙,𝑚𝜙,𝑛                              (3.2.3) 

𝔻𝑖 = −𝜀𝑖𝑗𝜙,𝑗 +
1

2
𝜖𝑖𝑛𝑝𝜙,𝑛𝜙,𝑝 + 𝑒𝑖𝑝𝑞𝕦𝑝,𝑞 +

1

2
e𝑖𝑚𝑛𝑝𝑞

−(𝑒)
𝕦𝑚,𝑛𝕦𝑝,𝑞 −

1

2
𝑙𝑖𝑛𝑝𝑞

(𝑒)
𝜙,𝑛𝕦𝑝,𝑞                                      (3.2.4)     

  where, from previous section, eq. (3.1.11) we have 

𝐶𝑖𝑗𝑘𝑙𝑚𝑛
(𝑒)

= 𝐶𝑗𝑖𝑘𝑙𝑚𝑛 + 2𝐶𝑗𝑛𝑘𝑙𝛿𝑖𝑚 + 𝐶𝑗𝑖𝑛𝑙𝛿𝑘𝑚                                                                                            (3.1.11) 

𝑒𝑚𝑗𝑖𝑘𝑙
(𝑒)

= 𝑒𝑚𝑖𝑗𝑘𝑙 + 𝑒𝑚𝑗𝑙𝛿𝑘𝑖                                                                                                                          (3.2.5) 

𝑙𝑚𝑛𝑗𝑖
(𝑒)

= 𝑙𝑚𝑛𝑖𝑗 + 𝛿𝑚𝑛𝛿𝑗𝑖 − 𝛿𝑗𝑚𝛿𝑖𝑛 − 𝛿𝑗𝑛𝛿𝑖𝑚                                                         (3.2.6) 

Using the four-dimensional notation of Taylor and Crampin[48], the piezoelectric field equations 

can be written as a single equation represented in eq. (3.2.7). Definition of the field variables, 𝕦𝛼 

and 𝔻𝑘 are the same as section 2.2. eq. (2.2.10). 

𝕦𝛼 = (𝕦𝑘, 𝕦4 = 𝜙)    𝛼 = 1,2,3,4 

𝔻𝑘 = 𝕋𝑘4  

𝜂𝛼𝛽 = 𝛿𝛼𝛽 − 𝛿𝛼4𝛿𝛽4                     (2.2.10) 

𝜌0𝜂𝛼𝛽 (
𝜕2𝕦𝛼

𝜕𝑡2 ) = (𝕋𝑘𝛽 ),𝑘                                                                                                                          (3.2.7) 

𝕋𝑘𝛽 = 𝐶𝛽𝑘𝛾𝑛𝕦𝛾,𝑛 + 𝛾𝛽𝑘𝛾𝑙𝛿𝑛𝕦𝛾,𝑙𝕦𝛿,𝑛                                                                                                        (3.2.8)                                                                 

In eq. (3.2.8), 𝐶𝛽𝑘𝛾𝑛 are the same as eq. (2.2.12) and the nonlinear constants are defined in eq. 

3.2.9 (a-d).  
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𝛾𝑖𝑘𝑗𝑙𝑚𝑛 =
1

2
𝐶𝑖𝑘𝑗𝑙𝑚𝑛

(𝑒)
                                                              (3.2.9) (a) 

𝛾𝑖𝑘𝑗𝑙4𝑛 = 𝛾𝑖𝑘4𝑛𝑗𝑙 = 𝑒𝑚𝑖𝑘𝑗𝑙
(𝑒)

                          (3.2.9) (b) 

𝛾𝑖𝑘4𝑙4𝑛 = −
1

2
𝑙𝑙𝑛𝑖𝑘

(𝑒)
                                                      (3.2.9) (c) 

𝛾4𝑘4𝑙4𝑛 =
1

2
𝜖𝑘𝑙𝑛                           (3.2.9) (d) 

In the case of a nonlinear surface wave, the nonlinear boundary condition, given in eq. (3.2.10) 

must be satisfied.  

𝕋3𝛼𝑛3 = 𝐶𝛽3𝛾𝑛𝕦𝛾,𝑛 + 𝛾𝛽3𝛾𝑙𝛿𝑛𝕦𝛾,𝑙𝕦𝛿,𝑛 = 0       at 𝑥3 = 0                                    (3.2.10) 

where, 𝑛3 is the normal to the free surface.  

Integrating from both sides of the eq. (3.2.7) with respect to 𝑥3, leads to eq. 3.2.11 (a). 

∫ 𝜌0𝜂𝛼𝛽 (
𝜕2𝕦𝛼

𝜕𝑡2 ) 𝑑𝑥3
∞

0
= ∫ (𝕋𝑘𝛽 ),𝑘𝑑𝑥3

∞

0
                                     3.2.11 (a) 

Expanding the right-hand side of eq. (3.2.10), gives eq. (3.2.11 b). 

∫ (𝕋𝑘𝛽 ),𝑘𝑑𝑥3
∞

0
= ∫ (𝕋1𝛽 ),1𝑑𝑥3

∞

0
+ ∫ (𝕋3𝛽 ),3𝑑𝑥3

∞

0
                     (3.2.11) (b) 

The last term in eq. (3.2.11) can be integrated to produce eq. (3.2.12). 

∫ (𝕋3𝛽 ),3𝑑𝑥3
∞

0
= 𝕋3𝛽(𝑥3 → ∞) − 𝕋3𝛽(𝑥3 → 0)                       (3.2.12) 

Stress terms go to zero as 𝑥3 goes to infinity, and the stress-free boundary condition on 𝑥3 = 0, 

makes the second term of eq. (3.2.12) go to zero, equation (3.2.10) simplifies to eq. (3.2.13). 

∫ 𝜌0𝜂𝛼𝛽 (
𝜕2𝕦𝛼

𝜕𝑡2 ) 𝑑𝑥3
∞

0
= ∫ ((𝕋1𝛽 ),1)𝑑𝑥3

∞

0
                                              (3.2.13) 

Using the same methodology described in the chapter 2, the definition of eq. (2.1.3) that 

introduces the complex displacement field 𝑢̅(𝑥̅, t) eq. (3.2.13) is transformed into eq. (3.2.14). 

∫ 𝜌0𝜂𝛼𝛽(u𝛼(𝑥̅, t) + u𝛼
∗ (𝑥̅, t)),𝑡𝑡 𝑑𝑥3

∞

0
= ∫ [𝐶𝛽1𝛾𝑛 (u𝛾,𝑛(𝑥̅, t) + u𝛾,𝑛

∗ (𝑥̅, t)) +
∞

0

1

2
𝛾𝛽1𝛾𝑙𝛿𝑛 (u𝛾,𝑙(𝑥̅, t)u𝛿,𝑛(𝑥̅, t) + u𝛾,𝑙(𝑥̅, t)u𝛿,𝑛

∗ (𝑥̅, t) + u𝛾,𝑙
∗ (𝑥̅, t)u𝛿,𝑛(𝑥̅, t) + u𝛾,𝑙

∗ (𝑥̅, t)u𝛿,𝑛
∗ (𝑥̅, t))]

,1
𝑑𝑥3 

(3.2.14) 

Assuming u𝛾 is superposition of monochromatic harmonic waves, it can be written as eq. (3.2.15) 
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u𝛾(𝑥̅, t) = ∑ 𝑢𝛾
𝑞

(𝑥̅)𝑞 𝑒−𝐼𝜔𝑞𝑡                                  (3.2.15) 

Substituting eq. (3.2.15) in eq. (3.2.14), for every pair of (𝑟, 𝑠) that satisfies 𝜔𝑞 = 𝜔𝑟 + 𝜔𝑠, eq. 

(3.2.16) is obtained.  

∫ −𝜌0𝜔𝑞
2 𝜂𝛼𝛽𝑢𝛼

𝑞
(𝑥̅) 𝑑𝑥3

∞

0
= ∫ [𝐶𝛽1𝛾𝑛 𝑢𝛾,𝑛1

𝑞 (𝑥̅) +
1

2
 𝛾𝛽1𝛾𝑙𝛿𝑛 (𝑢𝛾,𝑙1

𝑟 (𝑥̅)𝑢𝛿,𝑛
𝑠 (𝑥̅) + 𝑢𝛾,𝑙

𝑟 (𝑥̅)𝑢𝛿,𝑛1
𝑠 (𝑥̅) +

∞

0

𝑢𝛾,𝑙1
𝑠 (𝑥̅)𝑢𝛿,𝑛

𝑟 (𝑥̅) + 𝑢𝛾,𝑙
𝑠 (𝑥̅)𝑢𝛿,𝑛1

𝑟 (𝑥̅))] 𝑑𝑥3                     (3.2.16) 

Due to symmetry of 𝛾𝛽1𝛾𝑙𝛿𝑛 for (𝑛, 𝑙)and (𝛿, 𝛾) in above equation, and as explained in chapter 2, 

eq. (3.2.16) can be written as eq. (3.2.17).  

∫ −𝜌0𝜔𝑞
2 𝜂𝛼𝛽𝑢𝛼

𝑞
(𝑥̅)𝑑𝑥3

∞

0
= ∫ 𝐶𝛽1𝛾𝑛 𝑢𝛾,𝑛1

𝑞
(𝑥̅) + 𝛾𝛽1𝛾𝑙𝛿𝑛(𝑢𝛾,𝑙1

𝑟 (𝑥̅)𝑢𝛿,𝑛
𝑠 (𝑥̅) + 𝑢𝛾,𝑙

𝑟 (𝑥̅)𝑢𝛿,𝑛1
𝑠 (𝑥̅))𝑑𝑥3

∞

0
 

(3.2.17) 

With the slowly varying amplitude assumption, explained in section, 3.1, the solution to the 

nonlinear surface wave is expanded in the basis of the linear problem, with the envelope of each 

mode being the function of 𝑥1.  

𝑢𝛾
𝑞(𝑥̅) = ∑ 𝛼𝑞𝜇(𝑥1) 𝑎𝛾

𝜇
 𝑒−𝐼𝑠𝜇𝑘𝑞𝑥3𝑒𝐼𝑘𝑞𝑥1

𝜇                                                                                                (3.2.18) 

Taking the derivatives of the 𝑢𝛾
𝑞

(𝑥̅) terms in eq. (3.2.18),  

𝑢𝛾,1
𝑞 (𝑥̅) = ∑ (𝛼,1

𝑞𝜇(𝑥1) + 𝐼𝑘𝑞𝛼𝑞𝜇(𝑥1)) 𝑎𝛾
𝜇

 𝑒−𝐼𝑠𝜇𝑘𝑞𝑥3𝑒𝐼𝑘𝑞𝑥1
𝜇               (3.2.19) (a) 

𝑢𝛾,11
𝑞 (𝑥̅) = ∑ (𝛼,11

𝑞𝜇(𝑥1) + 2 𝐼𝑘𝑞𝛼,1
𝑞𝜇(𝑥1) − 𝑘𝑞

2𝛼𝑞𝜇(𝑥1)) 𝑎𝛾
𝜇

 𝑒−𝐼𝑠𝜇𝑘𝑞𝑥3𝑒𝐼𝑘𝑞𝑥1
𝜇                       (3.2.19) (b) 

𝑢𝛾,13
𝑞 (𝑥̅) = ∑ (−𝐼𝑠𝜇𝑘𝑞 𝛼,1

𝑞𝜇(𝑥1) + (𝑠𝜇𝑘𝑞
2)𝛼𝑞𝜇(𝑥1)) 𝑎𝛾

𝜇
 𝑒−𝐼𝑠𝜇𝑘𝑞𝑥3𝑒𝐼𝑘𝑞𝑥1

𝜇                                     (3.2.19) (c) 

𝑢𝛾,3
𝑞 (𝑥̅) = ∑ −𝐼𝑠𝜇𝑘𝑞𝛼𝑞𝜇(𝑥1) 𝑎𝛾

𝜇
 𝑒−𝐼𝑠𝜇𝑘𝑞𝑥3𝑒𝐼𝑘𝑞𝑥1

𝜇                                                                (3.2.19) (d) 

𝑢𝛾,33
𝑞 (𝑥̅) = ∑ −𝑠𝜇

2𝑘𝑞
2𝛼𝑞𝜇(𝑥1) 𝑎𝛾

𝜇
 𝑒−𝐼𝑠𝜇𝑘𝑞𝑥3𝑒𝐼𝑘𝑞𝑥1

𝜇                                                                (3.2.19) (e) 

Expanding the terms inside the integral in eq. (3.2.17), leads to eq. (3.2.20) 

𝐶𝛽1𝛾𝑛 𝑢𝛾,𝑛1
𝑞

(𝑥̅) + 𝛾𝛽1𝛾𝑙𝛿𝑛(𝑢𝛾,𝑙1
𝑟 (𝑥̅)𝑢𝛿,𝑛

𝑠 (𝑥̅) + 𝑢𝛾,𝑙
𝑟 (𝑥̅)𝑢𝛿,𝑛1

𝑠 (𝑥̅)) = 𝐶𝛽1𝛾1 𝑢𝛾,11
𝑞 (𝑥̅) + 𝐶𝛽1𝛾3𝑢𝛾,13

𝑞 (𝑥̅) +

[𝛾𝛽1𝛾1𝛿1 (𝑢𝛾,11
𝑟 (𝑥̅)𝑢𝛿,1

𝑠 (𝑥̅) + 𝑢𝛾,1
𝑟 (𝑥̅)𝑢𝛿,11

𝑠 (𝑥̅)) + 𝛾𝛽1𝛾1𝛿3 (𝑢𝛾,11
𝑟 (𝑥̅)𝑢𝛿,3

𝑠 (𝑥̅) + 𝑢𝛾,1
𝑟 (𝑥̅)𝑢𝛿,13

𝑠 (𝑥̅) +

𝑢𝛾,13
𝑟 (𝑥̅)𝑢𝛿,1

𝑠 (𝑥̅) + 𝑢𝛾,3
𝑟 (𝑥̅)𝑢𝛿,11

𝑠 (𝑥̅)) + 𝛾𝛽1𝛾3𝛿3(𝑢𝛾,13
𝑟 (𝑥̅)𝑢𝛿,3

𝑠 (𝑥̅) + 𝑢𝛾,3
𝑟 (𝑥̅)𝑢𝛿,13

𝑠 (𝑥̅))]                     (3.2.20)      
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Substituting the derivatives calculated in eqs. (3.2.19 a-e) in eq. (3.2.20) and with the inequalities 

that are the results of SVA from eq. (3.1.21) (a), eq. (3.2.21) ( b) is obtained. 

𝓊,𝜉𝜉
(𝛼)

(𝜔𝑞) ≪ 𝑘𝑞
(𝛼)

𝓊,𝜉
(𝛼)

(𝜔𝑞) ≪ (𝑘𝑞
(𝛼)

)2𝓊(𝛼)(𝜔𝑞)                                                                            (3.1.21) (a) 

∫ 𝜌0𝜔𝑞
2 𝜂𝛼𝛽 ∑ 𝛼𝑞𝜇 𝑎𝛼

𝜇
 𝑒−𝐼𝑠𝜇𝑘𝑞𝑥3𝑒𝐼𝑘𝑞𝑥1

𝜇 𝑑𝑥3
∞

0
= ∫ ∑ (𝐶𝛽1𝛾1(2 𝐼𝑘𝑞𝛼,1

𝑞𝜇
− 𝑘𝑞

2𝛼𝑞𝜇) +𝜇
∞

0

(𝐶𝛽1𝛾3)(−𝐼𝑠𝜇𝑘𝑞 𝛼,1
𝑞𝜇

+ (𝑠𝜇𝑘𝑞
2)𝛼𝑞𝜇)) 𝑎𝛾

𝜇
 𝑒−𝐼𝑠𝜇𝑘𝑞𝑥3𝑒𝐼𝑘𝑞𝑥1 + ∑ [𝛾𝛽1𝛾1𝛿1(−𝑘𝑟

2 𝐼𝑘𝑠 − 𝑘𝑠
2 𝐼𝑘𝑟) +4

𝜂,𝜃=1

𝛾𝛽1𝛾1𝛿3 (𝑘𝑟
2 (𝐼𝑠𝜃𝑘𝑠) + 𝑘𝑠

2 (𝐼𝑠𝜂𝑘𝑟) + (𝑠𝜂𝑘𝑟
2)𝐼𝑘𝑠 + (𝑠𝜃𝑘𝑠

2)𝐼𝑘𝑟) − 𝛾𝛽1𝛾3𝛿3((𝑠𝜂𝑘𝑟
2)𝐼𝑠𝜃𝑘𝑠 +

(𝑠𝜃𝑘𝑠
2)𝐼𝑠𝜂𝑘𝑟)]𝑎𝛾

𝜂
 𝑎𝛿

𝜃𝛼𝑠𝜃𝛼𝑟𝜂𝑒−𝐼(𝑠𝜂𝑘𝑟+𝑠𝜃𝑘𝑠)𝑥3𝑒𝐼(𝑘𝑟+𝑘𝑠)𝑥1 𝑑𝑥3                                                        (3.2.21) (b) 

In the above equations, for conciseness, 𝛼𝑞𝜇(𝑥1) is substituted with 𝛼𝑞𝜇  , but it is still a function 

of 𝑥1.  

Recalling the linear propagation of the surface wave, eq. (2.2.9) 

𝜌0𝜂𝛼𝛽 (
𝜕2𝕦𝑖

𝜕𝑡2 ) = 𝕋𝑘𝛽,𝑘                          (2.2.9) 

the 𝕋𝑘𝛽,𝑘 term is expanded and taking the integral with respect to 𝑥3 gives eq. (3.2.22) 

∫ 𝜌0𝜂𝛼𝛽 (
𝜕2𝕦𝑖

𝜕𝑡2 )  𝑑𝑥3
∞

0
= ∫ 𝕋𝑘𝛽,𝑘 𝑑𝑥3

∞

0
= ∫ 𝕋1𝛽,1𝑑𝑥3

∞

0
+ ∫ 𝕋3𝛽,3𝑑𝑥3

∞

0
                           (3.2.22) 

The ∫ 𝕋3𝛽,3𝑑𝑥3
∞

0
 term vanishes as in eq. (3.2.12), and eq. (3.2.22) becomes eq. (3.2.23). 

∫ 𝜌0𝜂𝛼𝛽 (
𝜕2𝕦𝑖

𝜕𝑡2 )  𝑑𝑥3
∞

0
= ∫ 𝕋1𝛽,1𝑑𝑥3

∞

0
                                                                                                   (3.2.23) 

Substituting the linear surface wave solution eq. (2.2.20), in eq. (3.2.23), eq. (3.2.24) is obtained. 

∫ −𝜌0𝜔𝑞
2 𝜂𝛼𝛽 ∑ 𝛼𝑞𝜇 𝑎𝛼

𝜇
 𝑒−𝐼𝑠𝜇𝑘𝑞𝑥3𝑒𝐼𝑘𝑞𝑥1

𝜇 𝑑𝑥3
∞

0
= ∫  ∑ (−𝐶𝛽1𝛾1𝑘𝑞

2𝛼𝑞𝜇 −𝜇
∞

0

𝐶𝛽1𝛾3(𝑠𝜇𝑘𝑞
2)𝛼𝑞𝜇) 𝑎𝛾

𝜇
 𝑒−𝐼𝑠𝜇𝑘𝑞𝑥3𝑒𝐼𝑘𝑞𝑥1  𝑑𝑥3                                         (3.2.24) 

Based on this equation, eq. (3.2.21), simplifies to eq. (3.2.25). 

∫ ∑ (𝐶𝛽1𝛾1(2 𝑘𝑞𝛼,1
𝑞𝜇

) − (𝐶𝛽1𝛾3)(𝑠𝜇𝑘𝑞 𝛼,1
𝑞𝜇

)) 𝑎𝛾
𝜇

 𝑒−𝐼𝑠𝜇𝑘𝑞𝑥3𝑒𝐼𝑘𝑞𝑥1
𝜇 + ∑ [𝛾𝛽1𝛾1𝛿1(𝑘𝑟

2 𝑘𝑠 + 𝑘𝑠
2 𝑘𝑟) −4

𝜂,𝜃=1
∞

0

𝛾𝛽1𝛾1𝛿3 (𝑘𝑟
2 (𝑠𝜃𝑘𝑠) + 𝑘𝑠

2 (𝑠𝜂𝑘𝑟) + (𝑠𝜂𝑘𝑟
2)𝑘𝑠 + (𝑠𝜃𝑘𝑠

2)𝑘𝑟) + 𝛾𝛽1𝛾3𝛿3 ((𝑠𝜂𝑘𝑟
2)𝑠𝜃𝑘𝑠 +

(𝑠𝜃𝑘𝑠
2) 𝑠𝜂𝑘𝑟)] 𝑎𝛾

𝜂
 𝑎𝛿

𝜃 𝛼𝑠𝜃𝛼𝑟𝜂𝑒−𝐼(𝑠𝜂𝑘𝑟+𝑠𝜃𝑘𝑠)𝑥3𝑒𝐼(𝑘𝑟+𝑘𝑠)𝑥1 𝑑𝑥3 = 0                                                              (3.2.25) 
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Since 𝑘𝑞 = 𝑘𝑟 + 𝑘𝑠 , and after some algebraic simplifications, eq. (3.2.25) can be further reduced 

to eq. (3.2.25). 

∫ ∑ (2 𝐶𝛽1𝛾1 − 𝐶𝛽1𝛾3𝑠𝜇)𝑘𝑞𝛼,1
𝑞𝜇

 𝑎𝛾
𝜇

 𝑒−𝐼𝑠𝜇𝑘𝑞𝑥3
𝜇 + 𝑘𝑠𝑘𝑟  ∑ [𝛾𝛽1𝛾1𝛿1(𝑘𝑟 + 𝑘𝑠 ) − 𝛾𝛽1𝛾1𝛿3 (𝑘𝑟𝑠𝜃 +4

𝜂,𝜃=1
∞

0

𝑘𝑠 𝑠𝜂 + 𝑘𝑟𝑠𝜂  + 𝑘𝑠 𝑠𝜃) + 𝑠𝜂𝑠𝜃 𝛾𝛽1𝛾3𝛿3(𝑘𝑟 + 𝑘𝑠)]𝑎𝛾
𝜂

 𝑎𝛿
𝜃 𝛼𝑠𝜃𝛼𝑟𝜂𝑒−𝐼(𝑠𝜂𝑘𝑟+𝑠𝜃𝑘𝑠)𝑥3 𝑑𝑥3 = 0             (3.2.26) 

Evaluating the integral of eq. (3.2.26) yields eq. (3.2.27) 

∑
1

𝑠𝜇
 (2 𝐶𝛽1𝛾1 − 𝐶𝛽1𝛾3𝑠𝜇)𝛼,1

𝑞𝜇
 𝑎𝛾

𝜇
 𝜇 + 𝑘𝑠𝑘𝑟  ∑

1

(𝑠𝜂𝑘𝑟+𝑠𝜃𝑘𝑠)
  [𝛾𝛽1𝛾1𝛿1(𝑘𝑟 + 𝑘𝑠 ) − 𝛾𝛽1𝛾1𝛿3 (𝑘𝑟𝑠𝜃 +4

𝜂,𝜃=1

𝑘𝑠 𝑠𝜂 + 𝑘𝑟𝑠𝜂  + 𝑘𝑠 𝑠𝜃) + 𝑠𝜂𝑠𝜃 𝛾𝛽1𝛾3𝛿3(𝑘𝑟 + 𝑘𝑠)]𝑎𝛾
𝜂

 𝑎𝛿
𝜃 𝛼𝑠𝜃𝛼𝑟𝜂 = 0                         (3.2.27) 

Define,  

𝐻𝜇𝛽 =
1

𝑠𝜇
 (2 𝐶𝛽1𝛾1 − 𝐶𝛽1𝛾3𝑠𝜇) 𝑎𝛾

𝜇
                                                 (3.2.28) 

Ε𝜂𝜃𝛽 =
𝑘𝑠𝑘𝑟

(𝑠𝜂𝑘𝑟+𝑠𝜃𝑘𝑠)
  [𝛾𝛽1𝛾1𝛿1(𝑘𝑟 + 𝑘𝑠 ) − 𝛾𝛽1𝛾1𝛿3 (𝑘𝑟𝑠𝜃 + 𝑘𝑠 𝑠𝜂 + 𝑘𝑟𝑠𝜂  + 𝑘𝑠 𝑠𝜃) + 𝑠𝜂𝑠𝜃 𝛾𝛽1𝛾3𝛿3(𝑘𝑟 +

𝑘𝑠)]𝑎𝛾
𝜂

 𝑎𝛿
𝜃                                         (3.2.29) 

Eq. (3.2.27) becomes  

∑ 𝐻𝜇𝛽𝛼,1
𝑞𝜇

𝜇 = − ∑ Ε𝜂𝜃𝛽
4
𝜂,𝜃=1 𝛼𝛾

𝑟𝜂
 𝛼𝛿

𝑠𝜃                                (3.2.30) 

The above relation represents 4 equations. For each frequency triplet, i.e. q,r,s combination, this 

set of 4 equations will be written 3 times. This results in 12 nonlinear equations for the 12 

unknown values of 𝛼.  

To evaluate the magnitude of the nonlinear terms and their significant verses the linear terms, the 

linear and nonlinear stress terms are calculated by substituting the values of linear displacement 

field and electric potential achieved by solving the linear problem, eqs. (3.2.31) and (3.2.32).  

𝑒𝑖𝑙𝑘  u𝑘,𝑙𝑖 − 𝜖𝑖𝑗𝜙,𝑗𝑖 = 0                                                                                (3.2.31) 

𝜌0 (
𝜕2𝑢𝑖

𝜕𝑡2 ) = 𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑙𝑗 + 𝑒𝑚𝑖𝑗𝜙,𝑚𝑗                                                                                                          (3.2.32) 
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In this example, it is assumed that 

the wave is propagating along the z 

axis in LiNbO3 and there is an 

applied voltage, 𝑉 = 4.9 [𝑉]. Using 

the Mathematica code developed for 

the linear case, the displacement 

components are obtained and 

plotted in figure. 3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 1. Bulk wave propagation of linear elastic wave 

Figure 3. 2. Linear and nonlinear stress terms 
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Figure 3.2. shows the six components of the stress. The three nonlinear stress terms, 

1

2
𝐶𝑖𝑗𝑘𝑙𝑚𝑛𝕦𝑘,𝑙𝕦𝑚,𝑛, 𝑒𝑚𝑖𝑗𝑘𝑙𝜙,𝑚𝕦𝑘,𝑙, 𝑙𝑚𝑛𝑖𝑗𝜙,𝑚𝜙,𝑛,  are shown separately to show the significance of each 

of them.  The nonlinear term seems very small and appears to have no effect. However, figure 3.3 

and 3.4  show by increasing the frequency of the propagating wave, from 1.5 [GHz] to 3.5 [GHz], 

the amplitude of the nonlinear terms increase to where they can have impact.  

 

 

 

 

 

This section indicates that a requirement to see a tangible effect from nonlinear terms is to operate 

at higher frequencies, e.g., 3 [GHz] in case of LiNbO3

Figure 3. 4. T13 calculated at two frequencies 
Figure 3. 3. linear and nonlinear stress terms at 
frequency 3.5 [GHz] 
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Chapter 4 Parametric Amplification of Bulk Elastic Waves 

Parametric frequency mixing or frequency conversion, in a second order nonlinear process 

involving three frequencies can be classified into three categories. Sum frequency generation 

(SFG) or up conversion, second harmonic generation (SHG), and difference frequency generation 

(DFG) or down conversion. In SFG, two input waves, say ω1 and ω2, generate a third higher 

frequency wave ωSFG = ω1 + ω2. In SHG, the input waves are at the same frequency ω1 = ω2 and 

generate an output at ωSHG = 2ω1. With DFG, the inputs interact to generate a wave at ωDFG =

ω3 − ω2, the difference frequency.  

 

Parametric amplification uses the process of DFG to amplify the input signal and generates a 

byproduct wave component at frequency ωDFG, i.e., ωDFG is not the target of the amplification 

process. In the process of parametric amplification, it is common to refer to the three interacting 

frequency components as the idler, pump, and signal such that ωi = ωp − ωsig. The higher 

frequency component is the pump wave which gets its name from the fact it supplies energy, 

pumping up the amplitude of the lower frequency signal wave, ωsig and  ωi.   

 

4.1. Phase Matching Condition and Intensity of the Involving Waves  

In general, when signal ωsig and pump ωp waves are supplied to the medium, conservation of 

elastic energy, with ωSFG = ωp + ωsig, implies that with SFG, one phonon at signal frequency and 

another at pump frequency must annihilate simultaneously (combine) to generate a phonon at 

SFG. In difference frequency generation, ωsig = ωp − ωi, a phonon at signal and idler frequencies 

are generated when a phonon at pump frequency annihilates. Both these processes can happen 

simultaneously when the pump and signal waves are input at the boundary. When parametric 
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amplification of the signal wave is of interest, generation of a sum frequency wave reduces the 

intensity of both pump and signal waves, which results in an overall reduction in the intensity of 

the signal wave instead of amplifying it. Therefore, it is significant to know what are the conditions 

that allow a frequency mixing process to happen. This section provides an investigation of these 

effects. 

In a process involving only three wave components such that ωq = ωr + ωs, the change in 

intensity of a wave at frequency ωq with respect to ξ, has the form of eq. (4.1.1),  

 
dIq

dξ
= 𝒜(r,s) Cos(ψrsq)                                                                                                                  (4.1.1) 

where 𝒜(r,s) is a positive quantity that depends on the material properties, the wave intensities. 

ψrsq = ∆krsqξ + ϕc + ϕr + ϕs − ϕq.                                                                                      (4.1.2) 

In this equation, ϕc is a function of the effective material properties and is either 0 or π. ∆krsq is 

the phase mismatch in eq. (3.1.39), and ϕr, ϕs and ϕq are the phases of the wave envelopes at 

frequencies ωr, ωs and ωq, respectively. The phasor of the wave envelope is represented by 

𝓊(ω) = |𝓊(ω)| eIϕ.  

Equation (4.1.1) shows that the derivative of the intensity with respect to the propagation distance 

ξ changes sign periodically, with periodicity 
π

ψ 
. While Cos(ψ) > 0, the frequency mixing process 

transfers energy from the wave components at frequencies ωr and  ωs to the ωq wave and reverses 

energy flow when Cos(ψ) changes sign. Hence, elastic energy flows back and forth among different 

frequency components over a distance 
 π

ψ
 . The interaction distance before the frequency 

conversion process is reversed is called the coherence length. 

lcoh =
 π

ψ
                                                                                                                                   (4.1.3) 

In general, to maximize the coherence length, ψ should be minimized. ψ  is composed of two parts, 

the sum of the wave envelope phases and the phase mismatch factor ∆krsq. For the first part, ϕc +

ϕr + ϕs − ϕq is determined by the material properties and the relative phases of the two input 
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waves at frequency ωr and ωs. In practice, these can be adjusted at the boundary, ξ = 0, such that 

ϕc + ϕr + ϕs − ϕq = 0. Consequently, the more significant factor to consider is ∆krsq.  

From eqs. (4.1.2) and (4.1.3), it is seen that with a smaller phase mismatch, larger coherence 

length is achieved. The ideal situation happens when the ∆krsq term goes to zero; this is called the 

phase matching condition.  

In a second order, nonlinear frequency conversion process involving three frequencies such that 

𝜔𝑞 = 𝜔𝑟 + 𝜔𝑠, the phase matching condition is written as eq. (4.1.4). 

𝑘̅𝑞 = 𝑘̅𝑟 + 𝑘̅𝑠                                                                                                                  (4.1.4) 

Under the assumption that all three waves are collinear, the phase matching condition, eq. (4.1.4), 

turns into a scalar relation among the magnitude of the wave vectors as eq. (4.1.5) (a), 

|𝑘̅𝑞| = |𝑘̅𝑟| + |𝑘̅𝑠|                                                                                                                               (4.1.5) (a) 

or in terms of phase velocities, 𝑐 =
𝜔

𝑘
 , with mono-mode assumption, as eq. (4.1.5) (b). 

 
𝜔𝑞

𝑐𝑞
 =

𝜔𝑟

𝑐𝑟
+

𝜔𝑠

𝑐𝑠
                                                                                                                    (4.1.5) (b) 

Once the pump and signal waves are launched in a nonlinear media, both SFG and DFG occur 

simultaneously. Considering 𝜔𝑞 to be the signal wave at frequency 𝜔𝑠𝑖𝑔, such that 𝜔𝑠𝑖𝑔 = 𝜔𝑝 − 𝜔𝑖 

and 𝜔𝑠𝑖𝑔 = 𝜔𝑆𝐹𝐺 − 𝜔𝑝, eq. (C.21a) gives the general form in eq. (4.1.6), 

𝑑𝐼𝑠𝑖𝑔

𝑑𝜉
= 𝒜𝐷𝐹𝐺  𝐶𝑜𝑠(𝜓𝐷𝐹𝐺) +  𝒜𝑆𝐹𝐺  𝐶𝑜𝑠(𝜓𝑆𝐹𝐺)                                                                                      (4.1.6) 

where 𝒜𝐷𝐹𝐺 and 𝒜𝑆𝐹𝐺 are two positive numbers that can be obtained from eq. (C.22) in Appendix 

C. Initially, at 𝜉 = 0, the energy transfer from the signal to the sum frequency wave, reduces the 

intensity of the signal wave until 𝐶𝑜𝑠(𝜓𝑆𝐹𝐺) changes sign and the process is reversed. However, if 

the phase mismatch term is large for the process of SFG, the coherence length of this process will 

be small, and its effect can be negligible on the propagation of the signal wave.  

If we assume the effect of SFG is negligible, eq. (4.1.6) reduces to eq. (4.1.7).  

 
𝑑𝐼𝑠𝑖𝑔

𝑑𝜉
= 𝒜𝐷𝐹𝐺  𝐶𝑜𝑠(𝜓𝐷𝐹𝐺)                                                                                                                         (4.1.7) 
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For 𝜓𝐷𝐹𝐺 → 0 at input 𝜉 = 0, the signal wave can be supplied such that 𝜙𝑠𝑖𝑔 = 𝜙𝑝 + 𝜙𝑐 − 𝜙𝑖 . A 

smaller value for ∆𝑘𝐷𝐹𝐺 is desired so that the 
𝑑𝐼𝑠𝑖𝑔

𝑑𝜉
 term changes sign at a larger distance from the 

origin, i.e. the amplification process has larger coherence length.  

From the above discussion, it is concluded that parametric amplification is feasible when the 

associated phase matching condition is satisfied and the input waves have the appropriate initial 

phases. 

4.2. Parametric Amplification  

Unlike electromagnetic waves, SAW and BAW are relatively non-dispersive over the typical 

frequency ranges of interest and, for purposes here, the wave velocity 𝑐 is not a function of the 

frequency of the propagating wave. In an anisotropic material where the three waves have the 

same mode, i.e. all displacements are along the same 𝑙𝛼̅ vector, or in an isotropic material when 

the waves are all shear or all longitudinal mode, the velocities of the three traveling waves are 

equal, 𝑐𝑠 = 𝑐𝑟 = 𝑐𝑞, and Eq. (4.1.4) is always satisfied. When this happens, both the DFG and SFG 

wave components are phase matched which leads to poor amplification or decay of the signal 

wave.  

One way to overcome this obstacle is to utilize the birefringent property of anisotropic materials. 

In this case two waves propagating in the same direction but having different displacement modes 

can have different phase velocities. This way by choosing the proper direction of propagation and 

exciting the pump and signal waves in the desired modes, the phase mismatch term can be 

maximized for SFG and minimized for DFG. Consequently, the SFG wave has small coherence 

length and does not interfere significantly with the desired DFG process. 

To find the best propagation direction and modal orientation for the pump and signal waves, we 

start with DFG. Substituting 𝜔𝑖 = 𝜔𝑝 − 𝜔𝑠𝑖𝑔 in eq. (4.1.5 b) for the process of DFG, eq. (4.2.1) is 

obtained.  
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𝜔𝑝 = (
𝑐𝑖−𝑐𝑠𝑖𝑔

𝑐𝑖−𝑐𝑝
)

𝑐𝑝

𝑐𝑠𝑖𝑔
𝜔𝑠𝑖𝑔                                                                                                             (4.2.1) 

Examining eq. (4.2.1), for 𝜔𝑝 to be greater than 𝜔𝑠𝑖𝑔, the phase speeds either must satisfy 

inequality (4.2.2) (a) or (4.2.2) (b) 

𝑐𝑠𝑖𝑔 > 𝑐𝑝 > 𝑐𝑖                                                                                                                      (4.2.2) (a) 

or 

𝑐𝑖 > 𝑐𝑝 > 𝑐𝑠𝑖𝑔.                                                                                                                                      (4.2.2) (b) 

Going through the same procedure for SFG, inequalities (4.2.3) (a) and (4.2.3) (b) are achieved.  

𝜔𝑆𝐹𝐺 = (
𝑐𝑝−𝑐𝑠𝑖𝑔

𝑐𝑝−𝑐𝑆𝐹𝐺
)

𝑐𝑆𝐹𝐺

𝑐𝑠𝑖𝑔
𝜔𝑠𝑖𝑔  

𝑐𝑠𝑖𝑔 > 𝑐𝑆𝐹𝐺 > 𝑐𝑝                                                                                                                     (4.2.3) (a) 

or 

𝑐𝑝 > 𝑐𝑆𝐹𝐺 > 𝑐𝑠𝑖𝑔                                                                                                                                   (4.2.3) (b) 

Considering both inequalities (4.2.2) and inequalities (4.2.3), implies 

𝑐𝑠𝑖𝑔 > 𝑐𝑝 > 𝑐𝑖              and      𝑐𝑠𝑖𝑔 > 𝑐𝑆𝐹𝐺 > 𝑐𝑝                                                                               (4.2.4) (a) 

or  

𝑐𝑖 > 𝑐𝑝 > 𝑐𝑠𝑖𝑔             and        𝑐𝑝 > 𝑐𝑆𝐹𝐺 > 𝑐𝑠𝑖𝑔                                                                             (4.2.4) ( b) 

The set of inequalities in (4.2.4 a) always have smaller phase mismatch for the process of DFG. 

Therefore, solutions satisfying this set of inequalities are the ones sought here.  

Assuming the eigen modes are ranked in order of decreasing phase velocity, the first pair of 

inequalities require the signal and pump waves to be in modes 𝑙1̅ and 𝑙2̅ respectively.  

While the idler wave generates in all modes, for simplicity, under the mono-mode assumption, 

only the mode with largest coherence length is tracked and the other two are neglected. The largest 

coherence for this process occurs when the idler wave is in the 𝑙3̅ mode. For the process of SFG, 

the smallest ∆𝑘𝑆𝐹𝐺 , occurs for its 𝑙2̅ mode, therefore, this mode has the largest coherence length 
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and greatest effect on the system. The other modes are assumed to be negligible. With this, the 

phase mismatch term for the two processes is represented in eqs. (4.2.5) and (4.2.6) 

∆𝑘𝐷𝐹𝐺 =
𝜔𝑝

𝑐2
−

𝜔𝑠𝑖𝑔

𝑐1
−

𝜔𝑖

𝑐3
                                                                                                             (4.2.5) 

∆𝑘𝑆𝐹𝐺 =
𝜔𝑝

𝑐2
+

𝜔𝑠𝑖𝑔

𝑐1
−

𝜔𝑆𝐹𝐺

𝑐2
                                                                                                                        (4.2.6) 

For situations when ∆𝑘𝑆𝐹𝐺 is large and ∆𝑘𝐷𝐹𝐺is small, the sum frequency generation has negligible 

effect on the difference frequency generation and parametric amplification is significant. The 

accuracy of this assumption is further studied in the finite element simulation section. In these 

cases, eq. (3.1.38) can be simplified to account only for signal (𝜔𝑠𝑖𝑔), pump(𝜔𝑝) and idler (𝜔𝑖) 

frequencies resulting in eqs. (4.2.7) -(4.2.9),  

𝓊,𝜉
1 (𝜔𝑠𝑖𝑔) =

−1

8

(𝐻123+𝐻132)

𝐺11 [𝑘𝑝
2𝑘𝑖

3𝓊2(𝜔𝑝)𝓊3∗(𝜔𝑖)]                                                                              (4.2.7) 

𝓊,𝜉
2 (𝜔𝑝) =

1

8

(𝐻213+𝐻231)

𝐺22 [𝑘𝑠
1𝑘𝑖

3𝓊1(𝜔𝑠𝑖𝑔)𝓊3(𝜔𝑖)]                                                                                  (4.2.8) 

𝓊,𝜉
3 (𝜔𝑖) =

−1

8

(𝐻321+𝐻312)

𝐺33 [𝑘𝑝
2𝑘𝑠

1𝓊2(𝜔𝑝)𝓊1∗(𝜔𝑠)]                                                                                  (4.2.9) 

where all the terms in eqs. (4.2.7) -(4.2.9) are as defined in eq. (4.1.22).  

The above system of coupled equations represents three non-linear equations with three 

unknowns. The amplitude of the pump wave is generally much greater than the amplitude of the 

signal wave in envisioned applications; consequently, we assume the magnitude of the pump wave 

to be almost constant throughout the interaction. This will allow us to treat 𝓊2(𝜔𝑝) as a know 

function that factors out of the equations for 𝓊,𝜉
1 (𝜔𝑠𝑖𝑔) and 𝓊,𝜉

3 (𝜔𝑖). The accuracy of this 

assumption is also discussed further in the finite element simulation results section. Under this 

assumption, eqs. (4.2.7) and (4.2.9) can be written as eqs. (4.2.10) and (4.2.11), respectively.  

𝓊,𝜉
1 (𝜔𝑠𝑖𝑔) = 𝜅𝑠𝑖𝓊3∗(𝜔𝑖)                                                                                                                         (4.2.10) 

𝓊,𝜉
3∗(𝜔𝑖) = 𝜅𝑖𝑠𝓊1(𝜔𝑠𝑖𝑔)                                                                                                                          (4.2.11) 

with  
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𝜅𝑠𝑖 =
−1

8

(𝐻123+𝐻132)

𝐺11 𝑘𝑝
2𝑘𝑖

3𝓊2(𝜔𝑝)                                                                                                          (4.2.12)           

𝜅𝑖𝑠 = (
−1

8

(𝐻321+𝐻312)

𝐺33 𝑘𝑝
2𝑘𝑠

1𝓊2(𝜔𝑝))

∗

                                                                                                    (4.2.13) 

By introducing  

𝜅 = √𝜅𝑠𝑖𝜅𝑖𝑠                                                                                                                                              (4.2.14) 

eqs. (4.2.10) and (4.2.11) have the solutions of the form eqs. (4.2.15) and (4.2.16), respectively,  

𝓊1(𝜔s) = 𝓊0
𝛼 (𝑒𝑘𝜉+𝑒−𝑘𝜉)

2
= 𝓊0

1  𝐶𝑜𝑠ℎ(𝑘𝜉)                                                                                              (4.2.15) 

𝓊3∗(𝜔2) = √
𝜅𝑖𝑠

𝜅𝑠𝑖
 𝓊0

1 (𝑒𝑘𝜉−𝑒−𝑘𝜉)

2
= √

𝜅𝑖𝑠

𝜅𝑠𝑖
𝓊0

1  𝑆𝑖𝑛ℎ(𝑘𝜉)                                                                            (4.2.16) 

where 𝓊0
1  is the amplitude of the signal wave at 𝜉 = 0.  

The intensity of the acoustic wave at frequency 𝜔𝑞 in the direction of 𝜉 is calculated as eq. (4.2.17), 

(See Appendix C).  

𝐼𝑞 = 𝜌
𝜔𝑞

3

𝑘𝑞
|𝓊(𝜔𝑞)|

2
                                                                                                                                  (4.2.17) 

Equation (4.2.17) for intensity, combined with equations (4.2.15) and (4.2.16), result in the gain 

for signal intensity of       

𝐺𝑎𝑖𝑛 =
𝐼𝑠(𝑙)

𝐼𝑠(0)
= 𝐶𝑜𝑠ℎ2(𝜅𝑙).                                                                                                                     (4.2.18) 

These equations will be used in the results section for different orientations of LiNbO3 to find 

directions of propagation such that ∆𝑘𝐷𝐹𝐺 is much smaller than ∆𝑘𝑆𝐹𝐺 as needed for parametric 

amplification. After determining the most promising directions, quantitative values for the gain 

in LiNbO3 are provided from Eq. (4.2.18).   

Here, linear, and nonlinear material properties of LiNbO3 (Appendix D), are used as an example 

to show how the concepts and equations discussed can be applied. In the first section, propagation 

directions with small phase mismatch for DFG and large mismatch for SFG are determined. 

Directions with a ratio of  
∆𝑘𝐷𝐹𝐺

∆𝑘𝑆𝐹𝐺
< 0.2, are assumed as plausible candidates for parametric 
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amplification where the effect of SFG is negligible. The gains in directions of propagation with 

∆𝑘𝐷𝐹𝐺

∆𝑘𝑆𝐹𝐺
< 0.2 are calculated considering only the process of DFG. The directions of propagation with 

largest gain are indicated.  

Next, the nonlinear elastic wave equations 

are solved numerically with Finite Element 

Method (FEM) simulations. In these 

simulations, the equations are solved 

considering both DFG and SFG processes 

(i.e., four frequency interaction). Further, in 

the numerical simulations, the SVA and 

mono-mode assumptions are not used. 

These results are compared with the 

analytical solutions, validating previous simplifications and assumptions.  

Figure 4.1. refers the direction of the wave propagation vector 𝑝̅ to the crystal axes in LiNbO3, with 

each propagation direction determined by two angles 𝜃 and 𝜑 with respect to the positive Z and 

X axes, respectively.  

An optimum direction of propagation is the one with 1) minimum phase mismatch for the process 

of DFG, 2) maximum phase mismatch for the process of SFG and 3) maximum gain of 

amplification. Based on the discussion in section IV, the phase mismatch term for the process of 

DFG and SFG are, ∆𝑘𝐷𝐹𝐺 =
𝜔𝑝

𝑐2
−

𝜔𝑠

𝑐1
−

𝜔𝑖

𝑐3
 and ∆𝑘𝑆𝐹𝐺 =

𝜔𝑝

𝑐2
+

𝜔𝑠

𝑐1
−

𝜔𝑆𝐹𝐺

𝑐2
, respectively. As seen in the 

plots of figure 2, in an anisotropic material such as LiNbO3, the wave speeds are a function of 

direction of propagation. In figure 3, the optimum direction of propagation for parametric 

amplification is investigated. To find the direction of propagation with minimum ∆𝑘𝐷𝐹𝐺 and 

maximum ∆𝑘𝑆𝐹𝐺, the ratio, 𝑟 =
∆𝑘𝐷𝐹𝐺

∆𝑘𝑆𝐹𝐺
=

𝑙𝑐𝑜ℎ(𝑆𝐹𝐺)

𝑙𝑐𝑜ℎ(𝐷𝐹𝐺)
 is defined and calculated as a function of direction 

in space with the results shown in figure 4.1 (a) for X-Y plane, i.e. propagation with 𝜃 = 90° and 

Figure 4. 1. Definition of the propagation vector with 
respect to the crystal axes in LiNbO3 
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0 < 𝜑 < 360 , as an example. The magnitude of 𝑟 for each direction is proportional to the distance 

of the point to the origin. The color of each point indicates the value of 𝑟 based on the bar-legend.  

 An “optimum” value for 𝑟 is not shown here since the 𝑟 value does not determine gain. Our 

analytic gain results, being based on three frequency interaction, do not consider the effects of 

SFG. Consequently, higher values of gain can be found in certain directions, but the assumptions 

needed for validity of the three frequency results are violated. By choosing low r values, we are 

considering the gain only in regions where the 3 frequency assumptions reasonably apply. Here 

we have considered the points with 𝑟 < 0.2 as a valid metric for when SFG is negligible. This value 

is verified by the FEM results which show close agreement within this region.  For the directions 

with 𝑟 < 0.2, the signal gain for a DFG process, neglecting SFG, is plotted in figure 4.2 (b) for the 

X-Y plane, and figure 4.3 (c) for the entire space. The signal and pump waves have the frequencies, 

𝜔𝑠 = 200 𝑀𝐻𝑧 and 𝜔𝑝 = 800 𝑀𝐻𝑧, respectively and the initial amplitude of 𝓊0
1 = 10 𝑛𝑚, 𝓊0

2 =

50 𝑛𝑚. The sparse spaces in the gain graph represent the directions that do not satisfy the 

condition for 𝑟 and have been eliminated.  

Table 2 - Direction of propagation with maximum gain 

 

 
 
 
 
 

 
 
 The maximum signal gain over one wavelength is seen to be 16%. This response is observed in 

twelve directions of propagation, see table1, reflecting the crystal symmetry of LiNbO3. The 

eigenvectors for the direction of propagation with (𝜃 = 82°, 𝜑 = 70°), are plotted in figure 4.2. (c) 

as 𝑙1̅, 𝑙2̅ and 𝑙3̅.  

 

𝜃° 𝜑° 

82 70,190,310, 110,230,350 

98 10,130,250, 50,170,290 
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COMSOL Multiphysics finite element software was used to simulate the frequency conversion 

processes. Eq. (4.1.5) is implemented to solve for the four-wave, (pump, signal, idler, and sum 

frequency) interactions. The simulations are done in frequency domain inputting the nonlinear 

terms as an external stress to the linear elastic node of the structural mechanics interface in 

COMSOL. Enabling the geometric nonlinearity in the solution node, nonlinear strains are 

considered. The equations for external stresses are given in Table 4.2. 

Since the spatial gradients are considered to be only in the direction of propagation, the problem 

can be viewed as one dimensional with the other two dimensions being constrained with periodic 

boundary conditions. The geometry of the model consists of a three-dimensional bar that is 

several signal wavelengths long and meshed with a single element across the width in the 

transverse directions. This is implemented by applying a coordinate transformation so that the 
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a) 
 

b) 
 

c) 
 

Figure 4. 2. (a) Value of  𝑟 =
∆𝑘𝐷𝐹𝐺

∆𝑘𝑆𝐹𝐺
=

𝑙𝑐𝑜ℎ(𝑆𝐹𝐺)

𝑙𝑐𝑜ℎ(𝐷𝐹𝐺)
  for 

different directions of propagation in the X-Y 
plane. (b) The gain values where r<0.2, 
overlayed with r, as a function of propagation 
direction.  (c) Gain for directions that satisfy 
the condition 𝑟 < 0.2 in three-dimension space 
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desired propagation direction 𝑝̂ aligns with the 𝑍̂′axis in the FEM coordinate system. The vectors 

𝑝̂ × 𝑍̂ and 𝑝̂ × 𝑍̂ × 𝑝̂ are chosen to form the 𝑌̂′ and 𝑋̂′ axes of the FEM coordinate system, 

respectively. The propagation directions given throughout the results section are referenced to 

the original material axes, not the coordinate system used in the FEM model. As explained in 

chapter 1, The material constants in the transformed coordinate system are obtained using the 

Mathematica code in Appendix A.  

To make sure the results are not influenced by reflection from boundaries, Perfectly Matched 

Layers (PML) are used on both ends and simulate continuous propagation.  The signal and pump 

waves are excited as prescribed displacements at the boundary with initial amplitudes 𝓊0
1 =

10 𝑛𝑚, 𝓊0
2 = 50 𝑛𝑚, and frequencies of, 𝜔𝑠 = 200 𝑀𝐻𝑧, 𝜔𝑝 = 800 𝑀𝐻𝑧, respectively.  

 

Table 3-The external stress terms for the FEM simulations are given by the following where, 𝐶𝑖𝑗𝑘𝑙𝑚𝑛
(𝑒)

=
1

2
𝐶𝑖𝑗𝑘𝑙𝑚𝑛 +

1

2
𝐶𝑖𝑗𝑛𝑙𝛿𝑘𝑚 + 𝐶𝑛𝑗𝑘𝑙𝛿𝑖𝑚 + 𝐶𝑖𝑛𝑘𝑙𝛿𝑗𝑚 − 𝐶𝑖𝑗𝑘𝑙𝛿𝑚𝑛 and 𝐶𝑖𝑗𝑘𝑙 , 𝐶𝑖𝑗𝑘𝑙𝑚𝑛 are the second- and third-order elastic constants 

𝑇𝑒𝑥𝑡(𝜔𝑠) 𝐶𝑖𝑗𝑘𝑙𝑚𝑛
(𝑒)

(𝑢𝑘,𝑙(𝜔𝑝)𝑢𝑚,𝑛(−𝜔𝑖) + 𝑢𝑘,𝑙(𝜔𝑠𝑢𝑚)𝑢𝑚,𝑛(−𝜔𝑝)) 

𝑇𝑒𝑥𝑡(𝜔𝑝) 𝐶𝑖𝑗𝑘𝑙𝑚𝑛
(𝑒)

(𝑢𝑘,𝑙(𝜔𝑠)𝑢𝑚,𝑛(𝜔𝑖) + 𝑢𝑘,𝑙(𝜔𝑠𝑢𝑚)𝑢𝑚,𝑛(−𝜔𝑠))  

𝑇𝑒𝑥𝑡(𝜔𝑖) 𝐶𝑖𝑗𝑘𝑙𝑚𝑛
(𝑒)

𝑢𝑘,𝑙(𝜔𝑝)𝑢𝑚,𝑛(−𝜔𝑠)  

𝑇𝑒𝑥𝑡(𝜔𝑠𝑢𝑚) 𝐶𝑖𝑗𝑘𝑙𝑚𝑛
(𝑒)

𝑢𝑘,𝑙(𝜔𝑝)𝑢𝑚,𝑛(𝜔𝑠)  

  

Three simulations are presented to show the effect of different parameters on the system. In the 

first simulations, the importance of exciting the pump and signal waves in the directions 

suggested by eq. (4.3.4a) are emphasized. In this simulation, pump and signal waves are sent in 

𝑙1̅ and 𝑙3̅ directions, respectively, in contrast to what eq. (4.3.4a) would suggest. It is shown with 

this excitation, the phase matching condition is not favorable for DFG and parametric 

amplification of the signal wave does not occur. In the second simulation, pump and signal waves 

are applied in the 𝑙1̅ and 𝑙2̅ directions, in agreement with eq. (4.3.4a) and parametric amplification  
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of the signal wave is demonstrated. The third simulation shows non-reciprocal propagation of the 

signal. In the third simulation, this is accomplished by taking the model from the second 

simulation and reversing the propagation direction of the signal wave. The resultant magnitude 

of the signal wave is then seen to be quite different from the second simulation.  

a) 

b) 

Figure 4. 3. a) The schematic display of the FE model. In this simulation, signal and pump waves are shown in 
𝑙1̅and 𝑙3̅ modes, respectively. (b) The amplitude of the signal, idler and SFG waves in the direction of 
propagation. In this case, with pump wave having the 3rd mode, the ratio 𝑟 = ∆𝑘𝐷𝐹𝐺/∆𝑘𝑆𝐹𝐺 is large. As 
expected, since the proper phase matching condition is not satisfied for the process of DFG, the amplitude of 
the signal wave is dropped instead of being amplified 
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In the first simulation, the waves propagate in the direction 𝜃 = 82° and 𝜑 = 70° and signal and 

pump waves are exited in 𝑙1̅ and 𝑙3̅ directions, respectively, which are not optimum directions to 

eliminate the generation of a sum frequency wave. Figure 4.3. (b) shows in this case the signal 

wave does not amplify, and its displacement magnitude reduces as it propagates over the first 

wavelength. This agrees with the results predicted in the analytical discussion.  

The analytical coherence lengths, calculated from eq. (4.2.3), for the two processes are 

𝑙𝑐𝑜ℎ(𝐷𝐹𝐺) = 0.3 ∗ 𝜆𝑠 and 𝑙𝑐𝑜ℎ(𝑆𝐹𝐺) = 1.47 ∗ 𝜆𝑠 with 𝑟 =
∆𝑘𝐷𝐹𝐺

∆𝑘𝑆𝐹𝐺
= 4.64. The coherence length 

estimated from the graph of figure 4.3. (b) matches calculated values to within the resolution of 

the plot. As expected, the plot shows that coherence length of the SFG is larger than the DFG since 

∆𝑘𝐷𝐹𝐺 > ∆𝑘𝑆𝐹𝐺.  

In the second simulation, the same geometry and material properties are used, however, a more 

favorable phase matching condition for DFG is applied. Graphical representation of the pump and 

signal waves in figure 4.4. (a) shows the signal and pump waves are launched in the medium with 

modal displacements in  𝑙1̅ and 𝑙2̅ directions, respectively. This choice was made based on the 

inequalities (4.3.4a), derived in section 4.3. The waves propagate in the direction with 𝜃 = 82° and 

𝜑 = 70°, which is the direction of propagation with maximum gain, obtained from the analytical 

results, figure 4.2. (c). Based on the analytical results, eq. (4.2.3), the coherence length calculated 

for SFG is 𝑙𝑐𝑜ℎ(𝑆𝐹𝐺) = 0.81 ∗ 𝜆𝑠. This is in reasonable agreement with the estimate of 0.8 ∗ 𝜆𝑠 

shown on the graph of the figure 4.4. (b). The larger phase mismatch for the SFG, 𝑟 =
∆𝑘𝐷𝐹𝐺

∆𝑘𝑆𝐹𝐺
=

0.16, eliminates its adverse effect on signal amplification and the red plot in figure 4.4. (b) shows 

the increasing signal amplitude as the wave travels. This demonstrates the parametric 

amplification of the wave as the result of energy transfer from the pump wave. It is also seen that 

the amplitude of the pump wave is constant, indicating the approximate, but reasonable, 

assumption of constant amplitude for the pump. Figure 4.4. (c) plots the total intensity of the 

combined waves along with the intensity of each wave component as a function of position in the 
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direction of propagation. It is seen that the total intensity of the waves is conserved, and the 

intensity of the pump wave decreases while the intensity of the signal and idler waves increases. 
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The conservation of the total intensity of the involved waves is due to nature of the problem being 

c) 

d) 
e) 

b) 

a) 

Figure 4. 4. (a) The schematic display of the FE model. In this simulation, signal and pump waves are shown in 
𝑙1̅and 𝑙2̅ modes, respectively. (b) Demonstration of the parametric amplification of the signal wave. The 
amplitude of the signal waves increases as it travels in the media, receiving the energy from the pump wave in the 
DFG process. (c) The total intensity of the combined waves is conserved in the parametric processes. (d) and (e) 
comparison between the plot of the signal and idler waves obtained analytically and numerically. 
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parametric. Figure 4.4. (d) and (e) compare the plot of the signal and idler waves obtained 

analytically and numerically over a distance of four signal wavelengths in the material. This figure 

shows close agreement between analytic and numerical results for about three signal wavelengths, 

demonstrating the approximate range of validity for the slowly varying amplitude assumption.  

4.3. Breaking Reciprocity  

In this section, it is shown in a parametric amplification process when the required phase 

matching condition is satisfied for pump and signal waves traveling in the same direction, the 

signal wave is amplified and when the 

signal wave travels in a direction 

opposite the pump wave, the required 

phase matching condition cannot be 

satisfied. Therefore, the magnitude of 

the signal wave at the destination is 

different depending on its direction of 

propagation. This results in directional 

dependency of the propagation of the 

signal wave. It is concluded that in a nonlinear media with a traveling pump wave in one direction, 

non-reciprocal propagation of an elastic wave can be achieved.  

The phase matching condition for the process of DFG for pump, signal, and idler waves when, 

𝜔𝑝 − 𝜔𝑖 = 𝜔𝑠𝑖𝑔, is written as eq. (4.3.1). 

𝑘̅𝑝 − 𝑘̅𝑖 = 𝑘̅𝑠𝑖𝑔                                                                                                                                             (4.3.1)        

When the pump and signal waves travel in the same direction, figure 4.5. (a), eq. (4.3.1) is 

satisfied. However, when the pump and signal waves travel in opposite direction, figure 4.5. (b), 

the relationship among their wave vectors cannot satisfy the required phase matching condition 

and the frequency conversion process cannot take place in this situation. Therefore, without 

𝑘𝑝 

𝑘𝑠𝑖𝑔 𝑘𝑖 

𝑘𝑝 

(b) 𝑘𝑠𝑖𝑔 𝑘𝑖 

(a) 

𝑘̅𝑝 − 𝑘̅𝑖 = 𝑘̅𝑠𝑖𝑔 

𝑘̅𝑝 − 𝑘̅𝑖 ≠ 𝑘̅𝑠𝑖𝑔 

Figure 4. 5. propagation of two elastic waves (a) in the same 
direction, (b) in the opposite direction. Non-reciprocal 
propagation of the elastic wave can be realized through the 
phase matching condition. 
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energy transfer between the pump and signal waves, the amplitude of the signal wave remains 

constant. This directional bias in amplitude of the signal wave is interpreted as non-reciprocity in 

its propagation. In addition, when the DFG does not happen, the idler frequency does not 

generate. That means comparing the Fourier spectrum of the elastic wave in the forward direction, 

figure 4.5. (a), versus the backward direction, 4.5. (b), the idler frequency is only observed for the 

forward direction and is absent in the backward direction.  

Another simulation with the objective of investigating non-reciprocity in propagation of the signal 

wave is performed. The same model setup as the second simulation was used, except, the signal 

wave was sent in the opposite direction of the pump wave. The results plotted in figure 4.6. (b) 

and (c) show that by reversing the direction of propagation of the signal wave, the pump and signal 

waves do not couple; consequently, the idler wave is not generated. Also seen, there is no energy 

transfer from or to the pump and signal waves.  

Comparing the second and third simulations shows that the amplitude of the signal wave is quite 

different over equivalent distances of travel. For the nonlinear elastic media, the pump wave 

creates a symmetry breaking field, and the signal wave propagation becomes non-reciprocal.  
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a) 

b) 

 

c) 

 

Figure 4. 6. (a) the schematic of the third simulations, in 
this setup the signal wave travels in the opposite direction 
of the pump wave. Amplitude (b) and intensity (c) of the 
signal, pump, and idler waves. This shows the amplitude 
of pump and signal waves are constant and idler wave is 
not generated. Plot of the intensity of the waves at each 
frequency shows no energy transfer to the signal wave. 
Compering this result with the one plotted in Fig. 4(e) 
shows the non-reciprocal behavior of the system for the 
signal wave 
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Chapter 5 Frequency Mixing in Piezoelectric Surface Elastic 

Waves  

In chapter 3, the theoretical framework for coupled wave solutions was derived. In this chapter, 

that framework is applied into a physical model using the Finite Element Method (FEM). The 

model demonstrated uses two sets of Interdigitated Electrodes (IDT)s to excite a nonlinear 

substrate to produce a pump and signal wave. The interaction of the pump with signal creates an 

intermediate idler wave as discussed in chapter 4. This creates an amplification of the signal wave 

and demonstrates the potential to use this parametric amplification for real devices, such as RF 

front ends. 

 To implement the nonlinear propagation model for piezoelectric surface waves, a 3D finite 

element model is set up in COMSOL Multiphysics to take advantage of element generation and 

solvers provided. The equations derived in chapter 3 were programmed directly into COMSOL. 

Like most commercial packages, COMSOL does provide nonlinear capability but can be only used 

for limited materials with specific energy functions i.e., Ramberg-Osgood, Hardin-Drnevich, etc. 

For anisotropic materials in the presence of electromechanical coupling, the nonlinear terms were 

implemented as a piezoelectric material node with external stress terms. eq. (5.1) shows the 

nonlinear wave equation derived, where the nonlinear stress terms are highlighted in eq. (5.2).  

−𝜌0𝜔𝑞
2𝜂𝛼𝛽𝑢𝛼

𝑞
(𝑥̅) = [𝐶𝛽𝑘𝛾𝑛(𝑢𝛾,𝑛

𝑞
(𝑥̅)) +

1

2
𝛾𝛽𝑘𝛾𝑙𝛿𝑛 ∑ 𝑢𝛾,𝑙

𝑟 (𝑥̅)𝑢𝛿,𝑛
𝑠 (𝑥̅)(𝑟,𝑠) ]

,𝑘
                                       (5.1) 

𝑇𝑘𝛽
𝑁𝐿 =  

1

2
𝛾𝛽𝑘𝛾𝑙𝛿𝑛 ∑ 𝑢𝛾,𝑙

𝑟 (𝑥̅)𝑢𝛿,𝑛
𝑠 (𝑥̅)(𝑟,𝑠)                                                                     (5.2) 

The equations are solved for a three-wave frequency mixing application. This requires a pump, 

signal, and idler wave at specific frequencies. The problem, modeled in frequency domain, for the 

first time in the literature, which reduces the computational cost a lot in comparison to time 

domain. Three Multiphysics systems of equations are coupled through the external stress terms 

that are added to each of the piezoelectric modules used.  
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The surface waves from the signal and pump frequencies are excited on the piezoelectric material 

using IDTs. Linear and nonlinear material constants of 128 Y-cut LiNbO3 are used in the 

simulations.  

There is no input wave at the Idler 

frequency. The wave at this 

frequency is generated through the 

process of difference frequency 

generation in the nonlinear medium 

in the presence of the Pump and 

Signal waves. Figure 5.1 shows the 

voltage decay into the depth of the 

substrate for both the pump and 

signal waves, indicating the 

expected SAW characteristics. Figure 5.2 shows the mechanical displacement of the traveling 

waves propagating across the substrate as generated from the IDTs.  

 

 

 

 

 

Figure 5. 1. Decaying Pump and Signal wave in the material's 
depth 

Figure 5. 2. Propagation of the Pump wave generated by sets of IDTs 
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Figure 5. 3. The nonlinear stress terms that are input as external stress for a) Idler and b) Signal 

a) b) 

Figure 5. 4. The Strain Energy for each frequency shows the transfer of 
energy from the pump wave to signal and idler waves 
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Figure 5.3 shows the stresses generated along the top surface of the substrate. All the components 

of stress are plotted in each graph, with Figure 5.3 (a) showing the signal and (b) the idler. As can 

be seen in graph (b), the idler frequency generated by the wave mixing occurs at the frequency  

𝜔𝑝 − 𝜔𝑠. The horizontal axes of the graphs are scaled to the signal wavelength. Of particular note 

is the increase in the signal amplitude between 5 and 13 wavelengths across the top surface. This 

is the parametric amplification desired. After 13 wavelengths, the signal again decreases due to 

coherence length effects discussed in chapter 4. With better tuning of the model, the coherence 

length could be dramatically increased with a corresponding improvement in signal amplification 

performance. 

 

Figure 5. 5. The x component of the displacement field. It shows that Signal and Idler waves are 
amplified, and the direction of the energy flow changes 
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Chapter 6 Parametric Amplification using Lamb Waves 

As discussed in detail in chapter 4, the process of parametric amplification is hampered by sum 

frequency generation. This is due to transfer of the energy from signal wave to the sum frequency 

wave, which in turn leads to smaller distance where the signal is being amplified. In the case of 

surface wave propagation, the phase velocity is not a function of the propagating wave’s frequency. 

In a nonlinear medium with excitation of signal and pump 

frequencies, both sum and difference frequencies are phase 

matched and are generated. Lamb waves, on the other hand, 

have a dispersion curve with phase velocity that varies with 

frequency. This makes them a better option for parametric 

amplification application since this can provide a means to 

increase the coherence length of the difference frequency 

while decreasing the sum frequency. In this chapter, it is 

shown by taking the advantage of dispersive characteristic of Lamb waves, parametric 

amplification of elastic waves is possible.  

As shown in figure 6.1, it is assumed the wave is propagating in the 𝑥1direction and there is no 

variation in the 𝑥2 direction.  The dispersion relation for Lamb waves is shown in eq. (6.1)[49] 

𝜔2

𝑉𝑇
4 = 4𝑘2𝑞2 [1 −

𝑝

𝑞

tan (𝑝ℎ+𝛼)

tan (𝑞ℎ+𝛼)
]                                             (6.1) 

where  

𝑝2 = 𝜔2(
1

𝑉𝐿
2 −

1

𝑉2) ,  𝑞2 = 𝜔2(
1

𝑉𝑇
2 −

1

𝑉2), 𝑉𝐿
2 =

𝑐11

𝜌
 and 𝑉𝑇

2 =
𝑐66

𝜌
. 𝑉𝐿 and 𝑉𝑇 are the phase velocities of 

the bulk longitudinal and shear waves, respectively. 2h is the thickness of the material and 𝛼 = 0 

or  
𝜋

2
, which represents the symmetric and antisymmetric modes of the Lamb wave.  

The material properties of Aluminum, Appendix D, are used to plot the dispersion curve in eq. 

(6.1) using a code in Mathematica. Figure 6.2 shows the phase velocity of the Lamb wave as a 

X1

X3

+h

-h

Figure 6. 1. Direction of propagation and 
geometry of Lamb wave 
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function of frequency. The figure shows wave at frequencies 4 and 8 [MHz] have almost the same 

wave speed, 5489 [m/s], whereas the wave at frequency equal to sum of the two, 12 [MHz] has 

different velocity, 4308 [m/s]. Based on eq. (4.1.5) (a),  

|𝑘̅𝑞| = |𝑘̅𝑟| + |𝑘̅𝑠|                                                                                                                               (4.1.5) (a) 

the difference frequency generation is phased matched, but the sum frequency generation is quasi 

phased matched. Hence, the process of the DFG has longer coherence length and the signal wave 

can be amplified before losing its energy to the wave at the sum frequency.  

 

 

 

 

 

 

 

 

 

 

 

To further investigate the possibility of the parametric amplification, a numerical model was 

developed using COMSOL Multiphysics. Two input Lamb waves, pump and signal are generated 

using prescribed boundary displacement in the 𝑥2 direction, figure 6.3.  

Figure 6. 2. Dispersion curve of the Lamb wave and selected frequencies 
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Figure 6.3 shows the result of numerical simulation. In this figure, as expected from theory, the 

coherence length of the SFG is shorter than the DFG and parametric amplification of the signal 

wave is achieved. 

Figure 6. 3. Excitation of the s0 
mode of Lamb wave 

Figure 6. 4. Parametric Amplification of the signal wave 
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Conclusions 

This work has shown the derivation and verification of a system of equations that can be used for 

determining amplification effects due to difference frequency generation associated with bulk and 

surface waves. A simplified version of these equations was solved quasi-analytically for the “three 

wave” problem. These idealized equations indicate promising modes of operation for the non-

degenerate eigenvalue case where amplification of the signal wave is achieved. This was verified 

numerically using a FEM model. Without the analytic equations to guide selection of the required 

system characteristics, i.e., which mode to operate the pump, signal, and idler as well as frequency 

determination, it would be very difficult to create an amplifier due the large number of choices 

available in the parameter space and the relatively limited number of combinations that can 

produce parametric amplification. Lamb waves were also analyzed and shown to have 

characteristics that could be favorable to the realization of actual amplifier devices due to the 

ability of controlling coherence length separately for difference and sum frequency generation. 
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Appendix A Mathematica Code Used for Solution of Wave 

Problems 

  



Velocity Plots (VelocityPlots.nb)

Material Properties

Clear[matLiNbO3dens, matLiNbO3C4, matLiNbO3C6]

matLiNbO3dens = 4.7*103;

matLiNbO3C4 = c[1, 1]  203*109, c[2, 2]  203*109, c[3, 3]  242.4*109,

c[1, 2]  57.3*109, c[1, 3]  75.2*109, c[1, 4]  8.5 * 109, c[2, 3]  c[1, 3],

c[4, 4]  59.5*109, c[5, 5]  c[4, 4], c[6, 6] 
1

2
(c[1, 1] - c[1, 2]),

c[2, 4]  -c[1, 4], c[5, 6]  c[1, 4], c[1, 5]  0, c[1, 6]  0, c[2, 5]  0,

c[2, 6]  0, c[3, 4]  0, c[3, 5]  0, c[3, 6]  0, c[4, 5]  0, c[4, 6]  0;

matLiNbO3C6 = c[1, 1, 1]  -512*109, c[1, 1, 2]  454*109, c[1, 1, 3]  728*109,

c[1, 1, 4]  -410*109, c[1, 2, 3]  719*109, c[1, 2, 4]  55 * 109,

c[1, 3, 3]  -34*109, c[1, 3, 4]  -1*109, c[1, 4, 4]  -37*109, c[1, 5, 5]  -599*109,

c[2, 2, 2]  -478*109, c[3, 3, 3]  -363*109, c[3, 4, 4]  -540*109,

c[4, 4, 4]  -41*109, c[1, 2, 2]  c[1, 1, 1] + c[1, 1, 2] - c[2, 2, 2],

c[2, 5, 6] 
1

2
(c[1, 1, 4] - c[1, 2, 4]), c[1, 5, 6] 

1

2
(c[1, 1, 4] + 3 c[1, 2, 4]),

c[1, 6, 6] 
1

2
(-2 c[1, 1, 1] - c[1, 1, 2] + 3 c[2, 2, 2]), c[2, 2, 3]  c[1, 1, 3],

c[2, 2, 4]  -c[1, 1, 4] - 2 c[1, 2, 4], c[2, 3, 3]  c[1, 1, 3],

c[2, 3, 4]  -c[1, 3, 4], c[2, 4, 4]  c[1, 5, 5], c[2, 5, 5]  c[1, 4, 4],

c[4, 6, 6]  c[1, 2, 4], c[4, 5, 5]  -c[4, 4, 4], c[3, 5, 6]  c[1, 3, 4],

c[3, 5, 5]  c[3, 4, 4], c[2, 6, 6] 
1

2
(2 c[1, 1, 1] - c[1, 1, 2] - c[2, 2, 2]),

c[3, 6, 6] 
1

2
(c[1, 1, 3] - c[1, 2, 3]), c[4, 5, 6] 

1

2
(-c[1, 1, 4] + c[1, 5, 5]);

Mapping functions for converting tensor formats

pretty[s_] := {s[lst__]  Subscript[s, FromDigits@{lst}]};
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Clear[m2to1V, m1to2V, f2to1V, f4to2V, f6to3V,

ord, mL2to1V, mL1to2V, fL2to1V, fL6to2V, fL2to6V]

m2to1V = Thread[Rule[

{{1, 1}, {2, 2}, {3, 3}, {2, 3}, {1, 3}, {1, 2}, {3, 2}, {3, 1}, {2, 1}}, Range[9]]];

m1to2V = Thread[Rule[Range[9],

{{1, 1}, {2, 2}, {3, 3}, {2, 3}, {1, 3}, {1, 2}, {3, 2}, {3, 1}, {2, 1}}]];

f2to1V[{i_, j_}] := Sort[{i, j}] /. m2to1V

f2to1V[i_, j_] := f2to1V[{i, j}];

f4to2V[{i_, j_, k_, l_}] := Sort[{f2to1V[i, j], f2to1V[k, l]}];

f4to2V[i_, j_, k_, l_] := f4to2V[{i, j, k, l}]

f6to3V[{i_, j_, k_, l_, m_, n_}] := Sort[{f2to1V[i, j], f2to1V[k, l], f2to1V[m, n]}];

f6to3V[i_, j_, k_, l_, m_, n_] := f6to3V[{i, j, k, l, m, n}]

ord = Flatten[IntegerDigits /@ #, 1] & /@

{{1111}, {2222}, {3333}, {2323}, {1313}, {1212}, {1312}, {2312}, {3312}, {2212}, {1112},

{1113}, {1123}, {1133}, {1122}, {2233}, {3323}, {2313}, {3313}, {2213}, {2223}};

mL2to1V = Thread[Rule[f4to2V /@ ord, Range[21]]];

mL1to2V = Thread[Rule[Range[21], f4to2V /@ ord]];

fL2to1V[b_List] /; Length[b] 2 := b /. mL2to1V

fL2to1V[i_, j_] := fL2to1V[{i, j}]

fL6to2V[{i_, j_, k_, l_, m_, n_}] := {f2to1V[i, j], fL2to1V@f4to2V[k, l, m, n]}

fL6to2V[i_, j_, k_, l_, m_, n_] := fL6to2V[{i, j, k, l, m, n}]

fL2to6V[{i_, j_}] := {i /. m1to2V, j /. mL1to2V /. m1to2V} // Flatten

fL2to6V[i_, j_] := fL2to6V[{i, j}]

The cprime matrix functions

Clear[gamma, cPrime, c4, c6, n]

gamma[i_, j_, k_, l_, m_, n_] := c4 @@ f4to2V[i, m, k, l] KroneckerDelta[j, m]

gamma[i_, j_, {k_, l_, m_, n_}] := gamma[i, j, k, l, m, n]

cPrime[i_, j_, k_, l_, m_, n_] :=

c6 @@ f6to3V[j, i, k, l, m, n] + 2 gamma[i, j, k, l, m, n] + gamma[i, m, n, l, j, k]

Setup

Clear[Γ, Λ, G, L]

Γ[p_][i_, k_] := Sum[c4 @@ f4to2V[i, j, k, l] p〚j〛 p〚l〛, {j, 1, 3}, {l, 1, 3}]

Λ[p_][i_, k_, m_] := Sum[cPrime[j, i, k, l, m, n] p〚j〛 p〚l〛 p〚n〛, {j, 3}, {l, 3}, {n, 3}]

G[p_, l_] := Sum[Γ[p][i, k] l〚i〛 l〚k〛, {i, 3}, {k, 3}];

L[p_, l_] := Sum[Λ[p][i, k, m] l〚i〛 l〚k〛 l〚m〛, {i, 3}, {k, 3}, {m, 3}];
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Plots w Θ

Clear[p, mat, ans, vel]

Clear[l, u3, f1, fi, v, k1, k2, k3, fp]

Clear[k12, k21]

deg = 60;

theta = 70;

makeFunc[theta_, deg_] := Module{θ, ϕ, p, r1, r2, mat, ans,

vel, f1, fp1, fp2, fp, fi, u3, u0, l, v, k1, k2, k3, k12, k21, A1, A},

p = {Sin[θ] Cos[ϕ], Sin[θ] Sin[ϕ], Cos[θ]} /. θ  theta
π

180
, ϕ  deg

π

180
;

p = p/Norm[p] // N;

r1 = {c4[i_, j_]  c[i, j], c6[i_, j_, k_]  c[i, j, k]};

r2 = {c[i_, j_]  0, c[i_, j_, k_]  0};

mat = Table[Γ[p][i, j], {i, 1, 3}, {j, 1, 3}] /. r1 //. matLiNbO3C4;

ans = Eigensystem[mat];

vel = Sqrt@(ans〚1〛/matLiNbO3dens);

f1 = 100×106;

(*fp1[{c2_,c3_,c1_}]:=
c2-c1

c2-c3

c3

c1
; c1=signal vel, c2=pump vel, c3=idler vel *)

fp2[{c1_, c3_, c2_}] := Ifc2 c3, 0,
c2 - c1

c2 - c3

c3

c1
;

fp = fp2[vel] f1;

fi = fp - f1;

u3 = 5×10-8;

u0 = 1*10^-8;

l = ans〚2, 1〛;

v = vel〚1〛;

k1 = 2 π f1/v; k2 = 2 π fi/v; k3 = 2 π fp/v;

k12 :=
-1

4

L[p, l]

G[p, l]
u3 k3 k2 ;

k21 :=
-k3 k1

4

L[p, l]

G[p, l]
u3;

A1 = u0 Cosh[Sqrt[k12 k21] z];

Return[If[fp 0, 0, A = A1 /. r1 //. matLiNbO3C4 //. matLiNbO3C6 /. r2 // Simplify]]


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maxThetaPhi[theta_, deg_] := Module{θ, ϕ, p, r1, r2, mat, ans,

vel, f1, fp1, fp2, fp, fi, u3, u0, l, v, k1, k2, k3, k12, k21, A1, A},

p = {Sin[θ] Cos[ϕ], Sin[θ] Sin[ϕ], Cos[θ]} /. θ  theta
π

180
, ϕ  deg

π

180
;

p = p/Norm[p] // N;

r1 = {c4[i_, j_]  c[i, j], c6[i_, j_, k_]  c[i, j, k]};

r2 = {c[i_, j_]  0, c[i_, j_, k_]  0};

mat = Table[Γ[p][i, j], {i, 1, 3}, {j, 1, 3}] /. r1 //. matLiNbO3C4;

ans = Eigensystem[mat];

vel = Sqrt@(ans〚1〛/matLiNbO3dens);

f1 = 100×106;

(*fp1[{c2_,c3_,c1_}]:=
c2-c1

c2-c3

c3

c1
;*)

fp2[{c1_, c3_, c2_}] := Ifc2 c3, 0,
c2 - c1

c2 - c3

c3

c1
;

fp = fp2[vel] f1;

fi = fp - f1;

u3 = 5×10-8;

u0 = 1*10^-8;

l = ans〚2, 1〛;

v = vel〚1〛;

k1 = 2 π f1/v; k2 = 2 π fi/v; k3 = 2 π fp/v;

k12 :=
-1

4

L[p, l]

G[p, l]
u3 k3 k2 ;

k21 :=
-k3 k1

4

L[p, l]

G[p, l]
u3;

Return[If[fp 0, 0, k12*k21 /. r1 //. matLiNbO3C4 //. matLiNbO3C6 /. r2 // Simplify]]



Maximize[{maxThetaPhi[th, phi], 0 ≤ th ≤ 180, 0 ≤ phi ≤ 360}, {th, phi}]

v[theta_, deg_] := Module{p, r1, mat, ans, θ, ϕ},

p = {Sin[θ] Cos[ϕ], Sin[θ] Sin[ϕ], Cos[θ]} /. θ  theta
π

180
, ϕ  deg

π

180
;

p = p/Norm[p] // N;

r1 = {c4[i_, j_]  c[i, j]};

mat = Table[Γ[p][i, j], {i, 1, 3}, {j, 1, 3}] /. r1 //. matLiNbO3C4;

Return[Sqrt@(Eigensystem[mat]〚1〛/matLiNbO3dens)];



72



(mat1 = Array[c, {6, 6}] /. {c[i_, j_] /; i > j  c[j, i]} //. matLiNbO3C4) // MatrixForm

203 000 000 000 5.73×1010 7.52×1010 8.5×109 0 0

5.73×1010 203 000 000 000 7.52×1010 -8.5×109 0 0

7.52×1010 7.52×1010 2.424×1011 0 0 0

8.5×109 -8.5×109 0 5.95×1010 0 0

0 0 0 0 5.95×1010 8.5×109

0 0 0 0 8.5×109 7.285×1010

p1 =

SphericalPlot3DEvaluatev
θ

π

180,
ϕ

π

180〚1〛, v
θ

π

180,
ϕ

π

180〚2〛, v
θ

π

180,
ϕ

π

180〚3〛,

{θ, 0, π}, ϕ, 32
π

180
, 32

π

180
+ π

FindMaximum[{Evaluate[maxThetaPhi[th, phi]], 0 ≤ th ≤ 180, 0 ≤ phi ≤ 360}, {th, 53}, {phi, 32}]

5.64015×1012, {th  54.006, phi  34.1846}

Linear Waves (Lin_Piezo.nb)

In[ ]:= {α, β, γ} = 3*10-9, 3*10-9, 3*10-9;

torin[θ_, fri_] :=

Module{b, ϵSum, ebSum, Γpiez, ev, eV, matSaw, matM, matK, cra, sol, S, ss11, eb, ϵb,

ϕ1, ϕ2, ϕ3, kp1, kp2, kp3, upiez, dupiez, phi, dphi, a11, amat1, ar1, b22, amat2,

ar2, c33, amat3, ar3, A1, A2, A3, A2n, tlinear, tlinearnel, tnonlin,

tnonlinee, tnonlineel, dlin, dnel, dnonlinee, dnonlin, dnonlineel, σ, λ1,

λ2, λ3, tlineartot, tNlineartot, LElasticity, Piezoelectricity, Ltot,

NLElasticity, Electrostriction, Electroelasticity, NLtot, u1, u2, u3},
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b = {0, Sin[θ], Cos[θ]};

ϵSum =

Sum[ep[f, g]×b〚f〛×b〚g〛, {f, 3}, {g, 3}] /. r3[e] /. r4[c] /. r2[ep] //. matLiNbO3e4 //.

matLiNbO3ϵ4 //. matLiNbO3C4;

ebSum[k_] := Sum[(e[m, n, k]×b〚m〛×b〚n〛), {n, 3}, {m, 3}] /. r3[e] /. r4[c] /. r2[ep] //.

matLiNbO3e4 //. matLiNbO3ϵ4 //. matLiNbO3C4;

Γpiez[i_, k_] := (Sum[(c[i, j, k, l]×b〚l〛×b〚j〛), {j, 3}, {l, 3}]) +
ebSum[i]×ebSum[k]

ϵSum
;

{matM, matK} =

{Table[KroneckerDelta[β, γ] matLiNbO3dens, {β, 1, 3}, {γ, 1, 3}], Table[Γpiez[β, γ],

{β, 1, 3}, {γ, 1, 3}]} /. r3[e] /. r4[c] /.

r2[ep] //. matLiNbO3e4 //. matLiNbO3ϵ4 //. matLiNbO3C4;

{ev, eV} = Eigensystem[{matK, matM}];

eV = (eV/Norm /@ eV);

S = Sqrt[ev];

{A1, A2, A3} = eV;

ss11 = Select[S, # > 0 &];

{kp1, kp2, kp3} = 2 π fri/ss11;

eb = ebSum[#] & /@ Range@3;

{λ1, λ2, λ2} = ss11/fri;

ϕ1 =
eb.A1

ϵSum
;

ϕ2 =
eb.A2

ϵSum
;

ϕ3 =
eb.A3

ϵSum
;

u1[ξ_] := upiez[1][ξ]×A1〚1〛 + upiez[2][ξ]×A1〚2〛 + upiez[3][ξ]×A1〚3〛;

upiez[i_][ξ_] := α A1〚i〛 Exp[I kp1 ξ] + β A2〚i〛 Exp[I kp2 ξ] + γ A3〚i〛 Exp[I kp3 ξ];

dupiez[i_][k_][ξ_] :=

I b〚k〛 (α kp1 A1〚i〛 Exp[I kp1 ξ] + β kp2 A2〚i〛 Exp[I kp2 ξ] + γ kp3 A3〚i〛 Exp[I kp3 ξ]);

phi[ξ_] := α ϕ1 Exp[I kp1 ξ] + β ϕ2 Exp[I kp2 ξ] + γ ϕ3 Exp[I kp3 ξ];

dphi[m_][ξ_] :=

I b〚m〛 (α kp1 ϕ1 Exp[I kp1 ξ] + β kp2 ϕ2 Exp[I kp2 ξ] + γ kp3 ϕ3 Exp[I kp3 ξ]);

(*Return[dupiez[1][3][x]];

Return[dphi[3][x]];*)

u1[ξ_] := upiez[1][ξ]×A1〚1〛 + upiez[2][ξ]×A1〚2〛 + upiez[3][ξ]×A1〚3〛;

u2[ξ_] := upiez[1][ξ]×A2〚1〛 + upiez[2][ξ]×A2〚2〛 + upiez[3][ξ]×A2〚3〛;

u3[ξ_] := upiez[1][ξ]×A3〚1〛 + upiez[2][ξ]×A3〚2〛 + upiez[3][ξ]×A3〚3〛;

LElasticity[i_, j_][x_] :=
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Sum[c[i, j, k, l]×dupiez[k][l][x], {k, 3}, {l, 3}] /. r3[e] /. r4[c] /. r2[ep] //.

matLiNbO3e4 //. matLiNbO3ϵ4 //. matLiNbO3C4;

(*Return[tlinear[1,3][x]];*)

Piezoelectricity[i_, j_][x_] :=

Sum[e[m, i, j]×dphi[m][x], {m, 3}] /. r3[e] /. r4[c] /. r2[ep] //. matLiNbO3e4 //.

matLiNbO3ϵ4 //. matLiNbO3C4;

(*Return[tlinearnel[2,3][x]];*)

Ltot[i_, j_][x_] := LElasticity[i, j][x] + Piezoelectricity[i, j][x];

(*Return[tnonlin[1,3][x]];*)

dlin[m_][x_] :=

(Sum[e[m, i, j]×dupiez[i][j][x], {i, 3}, {j, 3}] /. r3[e] /. r4[c] /. r2[ep] //.

matLiNbO3e4 //. matLiNbO3ϵ4 //. matLiNbO3C4);

(*Return[dlin[3][x]];*)

dnel[m_][x_] :=

-Sum[ep[m, n]×dphi[n][x], {n, 3}] /. r3[e] /. r4[c] /. r2[ep] //. matLiNbO3e4 //.

matLiNbO3ϵ4 //. matLiNbO3C4;

(*Return[dnel[3][x]];*)

NLElasticity[i_, j_][x_] :=

1

2
(Sum[c[i, j, k, l, m, n]×dupiez[k][l][x]×dupiez[m][n][x],

{k, 3}, {l, 3}, {m, 3}, {n, 3}]) /. r6[c] //. matc6 ;

Electrostriction[i_, j_][x_] :=

-
1

2
Sum[q[m, n, j, i]×dphi[m][x]×dphi[n][x], {m, 3}, {n, 3}] /. r3[epn] /. r4NS[q] /.

r5[en] /. r6[c] //. matc6 //. matq6 //. matϵ4 //. matϵ6 //. mate6 ;

(*Return[tnonlinee[1,3][x]];*)

Electroelasticity[i_, j_][x_] :=

Sum[en[m, j, i, k, l]×dphi[m][x]×dupiez[k][l][x], {m, 3}, {k, 3}, {l, 3}] /. r5[en] /.

r3[epn] /. r4NS[q] /. r5[en] /.

r6[c] //. matc6 //. matq6 //. matϵ4 //. matϵ6 //. mate6;

NLtot[i_, j_][x_] :=

NLElasticity[i, j][x] + Electrostriction[i, j][x] + Electroelasticity[i, j][x];

(*Return[tnonlineel[1,3][x]];*)

dnonlinee[m_][x_] :=

Sum
1

2
epn[m, n, p]×dphi[n][x]×dphi[p][x], {n, 3}, {p, 3} /. r3[epn] /. r4NS[q] /.

r5[en] /. r6[c] //. matc6 //. matq6 //. matϵ4 //. matϵ6 //. mate6;

(*Return[dnonlinee[3][{x1,x2,x3}]];*)
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dnonlin[m_][x_] :=

Sum
1

2
en[m, i, j, k, l]×dupiez[i][j][x]×dupiez[k][l][x], {i, 3}, {j, 3},

{k, 3}, {l, 3} /. r3[epn] /. r4NS[q] /. r5[en] /.

r6[c] //. matc6 //. matq6 //. matϵ4 //. matϵ6 //. mate6;

(*Return[dnonlin[3][x]];*)

dnonlineel[m_][x_] :=

Sum[-q[m, n, i, j]×dphi[n][x]×dupiez[i][j][x] , {n, 3}, {i, 3}, {j, 3}] /. r3[e] /.

r4[c] /. r2[ep] /. r3[epn] /. r4NS[q] /. r5[en] /.

r6[c] //. matc6 //. matq6 //. matϵ4 //. matϵ6 //. mate6;

Return[NLElasticity[1, 3][x]/Ltot[1, 3][x]]



In[ ]:= Plot[Evaluate@Re[torin[Pi/2, 250*10^7]], {x, 0, 10^-5},

PlotStyle  {Blue, Magenta, Orange, Red, Green}, PlotLegends 

{"Linear", "NLElasticity", "Electrostriction", "Electroelasticity", "Nonlinear"},

PlotLabel  "T[1,3]", PlotRange  All]

Out[ ]=

2.×10-6 4.×10-6 6.×10-6 8.×10-6 0.00001

-1×108

-5×107

5×107

1×108

T[1,3]

Linear

NLElasticity

Electrostriction

Electroelasticity

Nonlinear

Material Coefficients (NL_Saw.nb)

In[ ]:= Clear[matLiNbO3C6, matLiNbO3q6, matLiNbO3C4, matLiNbO3e4, matLiNbO3ϵ4, matLiNbO3e6]

$MaxExtraPrecision = 100;

Clear[prec, setPrec, x]

prec = 90;

setPrec = {Rule[x_, y_] /; Precision@y < prec  Rule[x, SetPrecision[y, prec]]};

matLiNbO3dens = SetPrecision4.7*103, prec;

matLiNbO3e4 =

{e[1, 1]  0, e[2, 1]  -2.53764, e[3, 1]  0.193644, e[1, 2]  0, e[2, 2]  2.53764,

e[3, 2]  0.193644, e[1, 3]  0, e[2, 3]  0, e[3, 3]  1.30863, e[2, 4]  3.69594,

e[1, 4]  0, e[3, 4]  0, e[1, 5]  3.69594, e[2, 5]  0, e[3, 5]  0,

e[1, 6]  -2.53384, e[2, 6]  0, e[3, 6]  0} /. setPrec;

matLiNbO3ϵ4 = {ep[1, 1]  ϵr*43.6, ep[2, 2]  ϵr*43.6,

ep[3, 3]  ϵr*29.16, ep[1, 2]  0, ep[1, 3]  0, ep[2, 1]  0, ep[2, 3]  0,
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ep[3, 1]  0, ep[3, 2]  0} /. ϵr  8.8542*10-12 /. setPrec;

matLiNbO3C4 =

c[1, 1]  203*109, c[2, 2]  203*109, c[3, 3]  242.4*109, c[1, 2]  57.3*109,

c[1, 3]  75.2*109, c[1, 4]  8.5 * 109, c[2, 3]  c[1, 3], c[4, 4]  59.5*109,

c[5, 5]  c[4, 4], c[6, 6] 
1

2
(c[1, 1] - c[1, 2]), c[2, 4]  -c[1, 4],

c[5, 6]  c[1, 4], c[1, 5]  0, c[1, 6]  0, c[2, 5]  0, c[2, 6]  0,

c[3, 4]  0, c[3, 5]  0, c[3, 6]  0, c[4, 5]  0, c[4, 6]  0 /. setPrec;

matLiNbO3C6 = c[1, 1, 1]  -512*109, c[1, 1, 2]  454*109, c[1, 1, 3]  728*109,

c[1, 1, 4]  -410*109, c[1, 2, 3]  719*109, c[1, 2, 4]  55 * 109,

c[1, 3, 3]  -34*109, c[1, 3, 4]  -1*109, c[1, 4, 4]  -37*109, c[1, 5, 5]  -599*109,

c[2, 2, 2]  -478*109, c[3, 3, 3]  -363*109, c[3, 4, 4]  -540*109,

c[4, 4, 4]  -41*109, c[1, 2, 2]  c[1, 1, 1] + c[1, 1, 2] - c[2, 2, 2],

c[2, 5, 6] 
1

2
(c[1, 1, 4] - c[1, 2, 4]), c[1, 5, 6] 

1

2
(c[1, 1, 4] + 3 c[1, 2, 4]),

c[1, 6, 6] 
1

4
(-2 c[1, 1, 1] - c[1, 1, 2] + 3 c[2, 2, 2]), c[2, 2, 3]  c[1, 1, 3],

c[2, 2, 4]  -c[1, 1, 4] - 2 c[1, 2, 4], c[2, 3, 3]  c[1, 3, 3],

c[2, 3, 4]  -c[1, 3, 4], c[2, 4, 4]  c[1, 5, 5], c[2, 5, 5]  c[1, 4, 4],

c[4, 6, 6]  c[1, 2, 4], c[4, 5, 5]  -c[4, 4, 4], c[3, 5, 6]  c[1, 3, 4],

c[3, 5, 5]  c[3, 4, 4], c[2, 6, 6] 
1

4
(2 c[1, 1, 1] - c[1, 1, 2] - c[2, 2, 2]),

c[3, 6, 6] 
1

2
(c[1, 1, 3] - c[1, 2, 3]), c[4, 5, 6] 

1

2
(-c[1, 4, 4] + c[1, 5, 5]),

c[1, 1, 5]  0, c[1, 1, 6]  0, c[1, 2, 5]  0, c[1, 3, 5]  0, c[1, 4, 5]  0,

c[1, 4, 6]  0, c[2, 2, 5]  0, c[2, 2, 6]  0, c[2, 3, 5]  0, c[2, 3, 6]  0,

c[1, 3, 6]  0, c[2, 4, 5]  0, c[2, 4, 6]  0, c[3, 3, 4]  0, c[3, 3, 5]  0,

c[3, 3, 6]  0, c[3, 4, 5]  0, c[3, 4, 6]  0, c[4, 4, 5]  0, c[4, 4, 6]  0,

c[5, 5, 5]  0, c[5, 5, 6]  0, c[5, 6, 6]  0, c[6, 6, 6]  0, c[1, 2, 6]  0 /. setPrec;

matLiNbO3q6 =

q[1, 1]  1.11*10-9, q[1, 2]  -2.1*10-9, q[1, 3]  2.32*10-9, q[1, 4]  1.51*10-9,

q[3, 1]  0.19*10-9, q[3, 3]  -2.76*10-9, q[4, 1]  1.85*10-9, q[4, 4]  -1.83*10-9,

q[1, 2]  q[2, 1], q[2, 2]  q[1, 1], q[2, 3]  q[1, 3], q[2, 4]  -q[1, 4],

q[6, 5]  q[1, 4], q[3, 2]  q[3, 1], q[6, 6] 
1

2
(q[1, 1] - q[1, 2]),

q[4, 2]  -q[4, 1], q[5, 3]  q[4, 4], q[5, 6]  q[4, 1] /. setPrec;

matLiNbO3e6 = en[1, 1, 5]  17.1, en[1, 1, 6]  -4.7, en[1, 2, 5]  19.9, en[1, 2, 6]  15.9,

en[1, 3, 5]  19.6, en[1, 3, 6]  -0.9, en[1, 3, 5]  19.6, en[1, 4, 5]  20.3,

en[3, 1, 1]  14.7, en[3, 1, 2]  13, en[3, 1, 3]  -10, en[3, 1, 4]  11,

en[3, 3, 3]  -17.3, en[3, 4, 4]  -10.2, en[1, 4, 6] 
1

2
(en[1, 1, 5] - en[1, 2, 5]),
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en[2, 1, 1] 
1

2
(en[1, 1, 6] - 3 en[1, 2, 6]),

en[2, 1, 2] 
1

2
(en[1, 1, 6] - en[1, 2, 6]), en[2, 1, 3]  en[1, 3, 6],

en[2, 1, 4]  en[1, 2, 5], en[2, 2, 2]  -(en[2, 1, 1] + 2 en[1, 2, 2]),

en[2, 2, 3]  -en[1, 3, 6], en[2, 2, 5]  en[1, 4, 5],

en[2, 5, 6] 
1

2
(en[1, 1, 5] - en[1, 2, 5]), en[2, 6, 6]  en[2, 1, 2],

en[3, 2, 2]  en[3, 1, 1], en[3, 2, 3]  en[3, 1, 3], en[3, 2, 4]  -en[3, 1, 4],

en[3, 5, 5]  en[3, 4, 4], en[2, 2, 4]  en[1, 1, 5], en[2, 3, 4]  en[1, 3, 5],

en[2, 4, 4]  -en[1, 4, 5], en[3, 5, 6]  -en[3, 2, 4],

en[3, 6, 6] 
1

2
(en[3, 2, 2] - en[3, 1, 2]) /. setPrec;

matLiNbO3ϵ6 = {epn[1, 1]  (-2.81*10^-19), epn[2, 2]  (-2.×4*10^-19),

epn[3, 3]  (-2.91*10^-19), epn[2, 4]  (4.6*10^-19)} /. setPrec;

Voigt Notation Conversion and Coordinate Transforms

Convert To/From Voigt notation
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In[ ]:= Clear[V, v]

V[{i_ : Integer}] := V[i]

V[i_ : Integer] :=

i /. {1  {1, 1}, 2  {2, 2}, 3  {3, 3}, 4  {2, 3}, 5  {1, 3}, 6  {1, 2}}

V[i_ : Integer, j_ : Integer] :=

Sort[{i, j}] /. {{1, 1}  1, {2, 2}  2, {3, 3}  3, {2, 3}  4, {1, 3}  5, {1, 2}  6}

V[{i_ : Integer, j_ : Integer}] := V[i, j]

v[lst_] := Flatten[V /@ lst]

vr[lst_] := Reverse[V /@ Sort /@ Partition[Reverse[lst], 2]]

r44 = {c[4, j_, 4, l_]  -ep[j, l],

c[i_, j_, 4, l_]  e[l, i, j], c[4, j_, k_, l_]  e[j, k, l]};

rnl = {c[4, k_, 4, l_, 4, n_]  0.5`90*epn[k, l, n],

c[i_, k_, 4, l_, 4, n_]  -0.5`90*q[l, n, i, k], c[4, k_, 4, i_, l_, n_] 

-0.5`90*q[k, i, l, n], c[4, k_, i_, l_, 4, n_]  -0.5`90*q[k, n, i, l],

c[4, n_, i_, k_, j_, l_]  en[n, i, k, j, l],

c[i_, k_, j_, l_, 4, n_]  en[n, i, k, j, l],

c[i_, k_, 4, n_, j_, l_]  en[n, i, k, j, l] ,

c[i_, k_, m_, n_, j_, l_]  0.5`90*c[i, k, m, n, j, l]};

Coordinate Transforms

In[ ]:= Clear[XForm, XForm2, XForm3, XForm4, XForm4NS, XForm5, XForm6]

XForm[mat_, L_, rank_] := Module[{nmat, iLst, jLst},

iLst = Symbol /@ ("i" <> ToString[#] &) /@ Range[rank];

jLst = Symbol /@ ("i" <> ToString[#] &) /@ Range[rank];

Return[nmat];

]

XForm2[mat_, L_] := Module[{pLst, eLst, f, nm, m},

nm = Head@mat〚1, 1〛;

pLst = Union[Sort /@ Tuples[Range[3], {2}]];

f[{i1_, i2_}] := Sum[L〚i1, j1〛 L〚i2, j2〛 nm[j1, j2], {j1, 3}, {j2, 3}] //. mat;

Return[Append[Thread[Rule[Apply[nm, pLst, {1}], f /@ pLst]], Rule[ρ, ρ /. mat]]];

]

XForm3[mat_, L_] := Module[{pLst, eLst, f, nm, m},

nm = Head@mat〚1, 1〛;

pLst = Flatten[Table[{i, j}, {i, 3}, {j, 6}], 1];

eLst = Flatten@{#1, V[#2]} & @@@ pLst;
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f[{i1_, i2_, i3_}] :=

Sum[L〚i1, j1〛 L〚i2, j2〛 L〚i3, j3〛 nm[j1, j2, j3], {j1, 3}, {j2, 3}, {j3, 3}] /.

{nm[i_, j_, k_]  nm @@ {i, V@Sort[{j, k}]}} //. mat;

Return[Append[Thread[Rule[Apply[nm, pLst, {1}], f /@ eLst]], Rule[ρ, ρ /. mat]]];

]

XForm4[mat_, L_] := Module[{pLst, eLst, f, nm, m},

nm = Head@mat〚1, 1〛;

pLst = Union[Sort /@ Tuples[Range[6], {2}]];

eLst = v /@ pLst;

f[{i1_, i2_, i3_, i4_}] :=

Sum[L〚i1, j1〛 L〚i2, j2〛 L〚i3, j3〛 L〚i4, j4〛 nm[j1, j2, j3, j4],

{j1, 3}, {j2, 3}, {j3, 3}, {j4, 3}]

/. {nm[i_, j_, k_, l_]  nm @@ Sort@vr[{i, j, k, l}]} //. mat;

Return[Append[Thread[Rule[Apply[nm, pLst, {1}], f /@ eLst]], Rule[ρ, ρ /. mat]]];

]

XForm4NS[mat_, L_] := Module[{pLst, eLst, f, nm, m},

nm = Head@mat〚1, 1〛;

pLst = Union[Tuples[Range[6], {2}]];

eLst = v /@ pLst;

f[{i1_, i2_, i3_, i4_}] :=

Sum[L〚i1, j1〛 L〚i2, j2〛 L〚i3, j3〛 L〚i4, j4〛 nm[j1, j2, j3, j4],

{j1, 3}, {j2, 3}, {j3, 3}, {j4, 3}]

/. {nm[i_, j_, k_, l_]  nm @@ Sort@vr[{i, j, k, l}]} //. mat;

Return[Append[Thread[Rule[Apply[nm, pLst, {1}], f /@ eLst]], Rule[ρ, ρ /. mat]]];

]

XForm5[mat_, L_] := Module[{pLst, eLst, f, nm, m},

nm = Head@mat〚1, 1〛;

pLst = Flatten[Table[{i, j, k}, {i, 3}, {j, 6}, {k, j, 6}], 2];

eLst = Flatten@{#1, V[#2], V[#3]} & @@@ pLst;

f[{i1_, i2_, i3_, i4_, i5_}] :=

Sum[L〚i1, j1〛 L〚i2, j2〛 L〚i3, j3〛 L〚i4, j4〛 L〚i5, j5〛 nm[j1, j2, j3, j4, j5],

{j1, 3}, {j2, 3}, {j3, 3}, {j4, 3}, {j5, 3}] /.

{nm[i_, j_, k_, m_, n_]  nm @@ Flatten@{i, Sort@{V[j, k], V[m, n]}}} //. mat;

Return[Append[Thread[Rule[Apply[nm, pLst, {1}], f /@ eLst]], Rule[ρ, ρ /. mat]]];

]

XForm6[mat_, L_] := Module[{pLst, eLst, f, nm, m},

nm = Head@mat〚1, 1〛;

pLst = Union[Sort /@ Tuples[Range[6], {3}]];

eLst = v /@ pLst;

f[{i1_, i2_, i3_, i4_, i5_, i6_}] :=

Sum[L〚i1, j1〛 L〚i2, j2〛 L〚i3, j3〛 L〚i4, j4〛 L〚i5, j5〛 L〚i6, j6〛

nm[j1, j2, j3, j4, j5, j6], {j1, 3}, {j2, 3}, {j3, 3}, {j4, 3}, {j5, 3}, {j6, 3}]

/. {nm[i_, j_, k_, l_, m_, n_]  nm @@ Sort@vr[{i, j, k, l, m, n}]} //. mat;

Return[Append[Thread[Rule[Apply[nm, pLst, {1}], f /@ eLst]], Rule[ρ, ρ /. mat]]];

]

Rotated Material Properties
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In[ ]:= matc4 = Chop@XForm4[matLiNbO3C4,

{{1, 0, 0}, {0, Cos[(38/180)*Pi] // N[#, prec] &, Sin[(38/180)*Pi] // N[#, prec] &},

{0, -Sin[(38/180)*Pi] // N[#, prec] &, Cos[(38/180)*Pi] // N[#, prec] &}}];

mate4 = XForm3[matLiNbO3e4,

{{1, 0, 0}, {0, Cos[(38/180)*Pi] // N[#, prec] &, Sin[(38/180)*Pi] // N[#, prec] &},

{0, -Sin[(38/180)*Pi] // N[#, prec] &, Cos[(38/180)*Pi] // N[#, prec] &}}];

(*matϵ4i=(XForm2[matϵ4,IdentityMatrix[3]]/.{(x_x_)(x0)})*)

matϵ4 = (XForm2[matLiNbO3ϵ4,

{{1, 0, 0}, {0, Cos[(38/180)*Pi] // N[#, prec] &, Sin[(38/180)*Pi] // N[#, prec] &},

{0, -Sin[(38/180)*Pi] // N[#, prec] &, Cos[(38/180)*Pi] // N[#, prec] &}}]);

matc6 = Chop@XForm6[matLiNbO3C6,

{{1, 0, 0}, {0, Cos[(38/180)*Pi] // N[#, prec] &, Sin[(38/180)*Pi] // N[#, prec] &},

{0, -Sin[(38/180)*Pi] // N[#, prec] &, Cos[(38/180)*Pi] // N[#, prec] &}}];

mate6i = (XForm5[matLiNbO3e6, IdentityMatrix[3]] /. {(x_  x_)  (x  0)});

mate6 = (XForm5[mate6i,

{{1, 0, 0}, {0, Cos[(38/180)*Pi] // N[#, prec] &, Sin[(38/180)*Pi] // N[#, prec] &},

{0, -Sin[(38/180)*Pi] // N[#, prec] &, Cos[(38/180)*Pi] // N[#, prec] &}}]);

matϵ6i = (XForm3[matLiNbO3ϵ6, IdentityMatrix[3]] /. {(x_  x_)  (x  0)});

matϵ6 = (XForm3[matϵ6i,

{{1, 0, 0}, {0, Cos[(38/180)*Pi] // N[#, prec] &, Sin[(38/180)*Pi] // N[#, prec] &},

{0, -Sin[(38/180)*Pi] // N[#, prec] &, Cos[(38/180)*Pi] // N[#, prec] &}}]);

matq6i = (XForm4NS[matLiNbO3q6, IdentityMatrix[3]] /. {(x_  x_)  (x  0)});

matq6 = (XForm4NS[matq6i,

{{1, 0, 0}, {0, Cos[(38/180)*Pi] // N[#, prec] &, Sin[(38/180)*Pi] // N[#, prec] &},

{0, -Sin[(38/180)*Pi] // N[#, prec] &, Cos[(38/180)*Pi] // N[#, prec] &}}]);

trans =

{{1, 0, 0}, {0, Cos[(38/180)*Pi] // N[#, prec] &, Sin[(38/180)*Pi] // N[#, prec] &},

{0, -Sin[(38/180)*Pi] // N[#, prec] &, Cos[(38/180)*Pi] // N[#, prec] &}};
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Utility Functions for Conversion of Full Tensor Indices to Voigt

In[ ]:= Clear[r3, r4, r4NS, r5, r6, voigt]

r2[sym_] := sym[i_, j_]  sym @@ Sort@{i, j}

r3[sym_] := sym[i_, j_, k_]  sym @@ Flatten@{i, voigt[j, k]}

r4[sym_] := sym[i_, j_, k_, l_]  sym @@ Sort@vr[{i, j, k, l}]

r4NS[sym_] := sym[i_, j_, k_, l_]  sym @@ {V[i, j], V[k, l]}

r5[sym_] := sym[i_, j_, k_, l_, m_]  sym @@ Flatten@{i, Sort[{V[j, k], V[l, m]}]}

r6[sym_] :=

sym[i_, j_, k_, l_, m_, n_]  c @@ Sort@{voigt[i, j], voigt[k, l], voigt[m, n]}

voigt[i_, j_] := Block[{pair},

pair = Sort[{i, j}];

Return[pair /. {{1, 1}  1, {2, 2}  2, {3, 3}  3, {2, 3}  4, {1, 3}  5, {1, 2}  6}];

]

voigt[{i_, j_}] := voigt[i, j]

In[ ]:= Clear[ct, et, le, lt, χ]

ct[j_, i_, k_, r_, m_, n_] := c[j , i , k, r, m, n] +

2*c[j, n, k, r] KroneckerDelta[i, m] + c[j, i, n, r] KroneckerDelta[k, m];

et[m_, j_, i_, k_, r_] := en[m, j, i, k, r] + e[m, j, r] KroneckerDelta[k, i];

lT[m_, n_, i_, j_] := q[m, n, i, j];

In[ ]:= Clear[nonlicapt, nonlid]

nonlicapt[k_, r_] := Sum[

0.5*((c[k, r, m, n, p, z]×u1[m][n]×u2[p][z]) - (en[z, k, r, m, n]×es1[z]×u2[m][n]) -

(en[z, k, r, m, n]×es2[z]×u1[m][n])), {m, 3}, {n, 3}, {p, 3}, {z, 3}]

(*nonlicaptp[pr_,rp_]:=Sum[nonlicapt[k,r]trans〚pr,k〛trans〚rp,r〛,{k,3},{r,3}]*)

nonlid[r_] :=

Sum[-0.5*((en[r, m, n, p, z]×u1[m][n]×u2[p][z]) + (lT[r, z, m, n]×es1[z]×u2[m][n]) +

(lT[r, z, m, n]×es2[z]×u1[m][n])), {n, 3}, {p, 3}, {k, 3}, {m, 3}, {z, 3}]

nonlidf2[r_] := Sum[-0.5*((en[r, m, n, p, z]×u1[m][n]×u2[p][z])),

{n, 3}, {p, 3}, {k, 3}, {m, 3}, {z, 3}]

Wave Equations

Clear[torin, k1, fsig, fpump, γ]

fsig = 2*109; fpump = 4*fsig; fid = 3*fsig;

k1[f_] := (2*Pi *f)/3986.5`90;

lam = 2*Pi/k1[fsig];

torin[cra_] :=

Module{tmp, S, ms, matsaw2, Η, B, Γpsaw, matsaw1, sol, ss, as1, as11, as22, as33, as44,

d5, a, err1, vec, matsawtest, ss11, u, u2, ut, α1, tor, ermat, err2, up1, nonlicapt3,
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nonlicapt32, nonlicaptt, up2, up2t, up1t, α2, nonlicapt3p2, nonlicapt3g,

nonlicapt3p1, tlinear, upg, umag, matsaw28, mag, t33, t11, t, n1, ssmid,

cofh2, cofh, nt4h, k1, f, tnonlinear, u2mx1, u2mx3, nonlinearelastic,

nonlinearcoupling, electroelasticity, electrostriction, tabi, p, eq, uθ ,

uη, eqcon, eqs, god, nt4hp, u2p, u2m, uap, pm1, pm4, pm2, pm3, wtp, u2ms, Bnon,

Bno, now, s, aa, eqs1, eqs2, eqs3, eqsT, cr, bc1, bc2, bc3, bcT, res, ans},

k1[f_] := (2*Pi *f)/3986.5`90;

Η[α_, β_] := KroneckerDelta[α , β] - KroneckerDelta[α , 4] KroneckerDelta[β, 4];

Γpsaw[s_][β_, γ_] := (c[β, 3, γ, 3] s^2 - (c[β, 1, γ, 3] + c[β, 3, γ, 1]) s + c[β, 1, γ, 1]);

matsaw1 = TablematLiNbO3dens*cra2*Η[β, γ] - Γpsaw[s][β, γ], {β, 1, 4}, {γ, 1, 4};

matsaw1 = (matsaw1 /. r44 /. r3[e] /. r4[c] /. r2[ep] //. matc4 //. mate4 //. matϵ4);

sol = Solve[Det[(matsaw1)] 0, s];

ss = {s /. sol〚1〛, s /. sol〚2〛, s /. sol〚3〛,

s /. sol〚4〛, s /. sol〚5〛, s /. sol〚6〛, s /. sol〚7〛, s /. sol〚8〛};

(*Print[ss];*)

ss11 = Select[ss, Im[#] < 0 &];

B[β_, μ_] :=

(((c[β, 3, 1, 1] - c[β, 3, 1, 3] ss11〚μ〛) a〚μ, 1〛) + ((c[β, 3, 2, 1] - c[β, 3, 2, 3]

ss11〚μ〛) a〚μ, 2〛) + ((c[β, 3, 3, 1] - c[β, 3, 3, 3] ss11〚μ〛) a〚μ, 3〛) +

((c[β, 3, 4, 1] - c[β, 3, 4, 3] ss11〚μ〛) a〚μ, 4〛)) /. r44 /.

r3[e] /. r4[c] /. r2[ep] //. matc4 //. mate4 //. matϵ4;

as11 = NullSpace[(matsaw1 /. {s  ss11〚1〛})];

as22 = NullSpace[(matsaw1 /. {s  ss11〚2〛})];

as33 = NullSpace[(matsaw1 /. {s  ss11〚3〛})];

as44 = NullSpace[(matsaw1 /. {s  ss11〚4〛})];

a = {(as11) // Flatten, (as22) // Flatten, (as33) // Flatten, (as44) // Flatten};

matsawtest = Table[B[β, μ]

, {β, 1, 4}, {μ, 1, 4}];

err1 = Det[matsawtest];

s[s_, f_] := If[f < 0, Conjugate[s], s];

aa[a_, f_] := If[f < 0, Conjugate[a], a];

(* H term from nonlinear equation final form SAW w Piezo *)

Bnon[β_, μ_][f_] :=

Sum
1

s[ss11〚μ〛, f]
((2 c[β, 1, γ, 1] - c[β, 1, γ, 3]×s[ss11〚μ〛, f]) aa[a〚μ, γ〛, f]),

{γ, 4} /. r44 /. r3[e] /. r4[c] /. r2[ep] //. matc4 //. mate4 //. matϵ4 ;
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(* E term from nonlinear equation final form SAW w Piezo *)

Bno[η_, θ_, β_][f1_, f2_] :=

k1[f1]×k1[f2]

(s[ss11〚η〛, f1]×k1[f1] + s[ss11〚θ〛, f2]×k1[f2])
Sum[((c[β, 1, γ, 1, δ, 1] (k1[f1] +

k1[f2]) - c[β, 1, γ, 1, δ, 3] ((s[ss11〚θ〛, f2] + s[ss11〚η〛, f1])

k1[f1] + (s[ss11〚θ〛, f2] + s[ss11〚η〛, f1]) k1[f2] +

s[ss11〚θ〛, f2]×s[ss11〚η〛, f1]) (k1[f1] + k1[f2])) aa[a〚η, γ〛, f1]×

aa[a〚θ, δ〛, f2]), {γ, 4}, {δ, 4}] /. rnl /. r3[epn] /. r4NS[q] /.

r5[en] /. r6[c] //. matc6 //. matq6 //. matϵ4 //. matϵ6 //. mate6;

cr = {α[f_ /; f < 0][μ_][x_]  Conjugate[α[-f][μ][x]]};

eqs1[β_] := Sum[Bnon[μ, β][q]×D[α[q][μ][x], x], {q, {fsig}}, {μ, 4}]

Sum[Bno[η, θ, β][r, sss] α[r][η][x] α[sss][θ][x],

{r, {-fid}}, {sss, {fpump}}, {η, 4}, {θ, 4}];

eqs2[β_] := Sum[Bnon[μ, β][q]×D[α[q][μ][x], x], {q, {fid}}, {μ, 4}]

Sum[Bno[η, θ, β][r, sss] α[r][η][x] α[sss][θ][x],

{r, {-fsig}}, {sss, {fpump}}, {η, 4}, {θ, 4}];

eqs3[β_] := Sum[Bnon[μ, β][q]×D[α[q][μ][x], x], {q, {fpump}}, {μ, 4}]

Sum[Bno[η, θ, β][r, sss] α[r][η][x] α[sss][θ][x],

{r, {fid}}, {sss, {fsig}}, {η, 4}, {θ, 4}];

eqsT = Table[{eqs1[β], eqs2[β], eqs3[β]}, {β, 4}] // Flatten;

eqsT = eqsT /. cr;

cofh = (matsawtest).{A1, A2, A3, A4};

cofh2 = (NSolve[{cofh〚2〛  0, cofh〚3〛  0, cofh〚4〛  0}, {A1, A2, A3}] /. setPrec);

(*Print[cofh2];

*)

nt4h = ({A1, A2, A3, A4} /. cofh2 // Flatten) /. {A4  1.5`90};

nt4hp = ({A1, A2, A3, A4} /. cofh2 // Flatten) /. {A4  .00000000004`90};

bc1 = Table[α[q][μ][0] nt4h〚μ〛, {q, {fsig}}, {μ, 4}] // Flatten;

bc2 = Table[α[q][μ][0] 0, {q, {fid}}, {μ, 4}] // Flatten;

bc3 = Table[α[q][μ][0] nt4hp〚μ〛, {q, {fpump}}, {μ, 4}] // Flatten;

bcT = Join[{bc1, bc2, bc3}] // Flatten;

res = Table[α[q][μ], {q, {fsig, fpump, fid}}, {μ, 4}] // Flatten;

ans = NDSolve[{eqsT, bcT} // Flatten, res, {x, 0`90, 5 lam}, WorkingPrecision  20];

Return[ans]



Output

In[ ]:= ansSAWNL = torin[3986.5`90]
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Out[ ]= α[2 000 000 000][1]  InterpolatingFunction
Domain: 0, 9.9662500000000000000×10-6
Output: scalar

,

α[2 000 000 000][2]  InterpolatingFunction
Domain: 0, 9.9662500000000000000×10-6
Output: scalar

,

α[2 000 000 000][3]  InterpolatingFunction
Domain: 0, 9.9662500000000000000×10-6
Output: scalar

,

α[2 000 000 000][4]  InterpolatingFunction
Domain: 0, 9.9662500000000000000×10-6
Output: scalar

,

α[8 000 000 000][1]  InterpolatingFunction
Domain: 0, 9.9662500000000000000×10-6
Output: scalar

,

α[8 000 000 000][2]  InterpolatingFunction
Domain: 0, 9.9662500000000000000×10-6
Output: scalar

,

α[8 000 000 000][3]  InterpolatingFunction
Domain: 0, 9.9662500000000000000×10-6
Output: scalar

,

α[8 000 000 000][4]  InterpolatingFunction
Domain: 0, 9.9662500000000000000×10-6
Output: scalar

,

α[6 000 000 000][1]  InterpolatingFunction
Domain: 0, 9.9662500000000000000×10-6
Output: scalar

,

α[6 000 000 000][2]  InterpolatingFunction
Domain: 0, 9.9662500000000000000×10-6
Output: scalar

,

α[6 000 000 000][3]  InterpolatingFunction
Domain: 0, 9.9662500000000000000×10-6
Output: scalar

,

α[6 000 000 000][4]  InterpolatingFunction
Domain: 0, 9.9662500000000000000×10-6
Output: scalar


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In[ ]:= Plot[{Im@α[2 000 000 000][1][x], Im@α[2 000 000 000][2][x], Im@α[2000 000 000][3][x],

Im@α[2 000 000 000][4][x]} /. ansSAWNL〚1〛, {x, 0., .0001 lam}, PlotRange  All]

Plot[{Im@α[8 000 000 000][1][x], Im@α[8 000 000 000][2][x], Im@α[8000 000 000][3][x],

Im@α[8 000 000 000][4][x]} /. ansSAWNL〚1〛, {x, 0., 3 lam}, PlotRange  All]

Plot[{Im@α[6 000 000 000][1][x], Im@α[6 000 000 000][2][x], Im@α[6000 000 000][3][x],

Im@α[6 000 000 000][4][x]} /. ansSAWNL〚1〛, {x, 0., 3 lam}, PlotRange  All]

Out[ ]=

2.×10-11 4.×10-11 6.×10-11 8.×10-11 1.×10-10 1.2×10-10 1.4×10-10

0.2

0.4

0.6

0.8

1.0

1.2

Out[ ]=
2.×10-11 4.×10-11 6.×10-11 8.×10-11

-1.×10-8

-5.×10-9

5.×10-9

Out[ ]=

2.×10-11 4.×10-11 6.×10-11 8.×10-11

-5.×10-9

5.×10-9
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In[ ]:= Export[{"stresses.png"}, Plot[{Evaluate[Re[torin[3986.5`90]〚1〛]],

Evaluate[Re[torin[3986.5`90]〚2〛]], Evaluate[Re[torin[3986.5`90]〚3〛]],

Evaluate[Re[torin[3986.5`90]〚4〛]], Evaluate[Re[torin[3986.5`90]〚5〛]]},

{x1, 0, 3}, PlotRange  All, PlotLegends  {"T13", "T23", "T33", "T34", "T11"},

PlotLabel  "Stress terms", AxesLabel  {"nxλ", ""}]]

Out[ ]= {stresses.png}

In[ ]:= Export[{"stresses.png"}, Plot[Evaluate[Re[torin[3986.5`90]〚5〛]],

{x1, 0, 16*10^-6}, PlotRange  All, PlotLegends  {"T11"}, AxesLabel  {"x1", ""}]]

Out[ ]= {stresses.png}

Out[ ]=

5.×10-6 0.000010 0.000015 0.000020 0.000025

-4.×10-11

-2.×10-11

2.×10-11

4.×10-11

Out[ ]=
5.×10-6 0.000010 0.000015 0.000020 0.000025

-2.×10-10

-1.×10-10

1.×10-10

2.×10-10

Out[ ]=

5.×10-6 0.000010 0.000015 0.000020 0.000025

-1.×10-10

-5.×10-11

5.×10-11

1.×10-10

1.5×10-10
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Out[ ]=

5.×10-6 0.000010 0.000015 0.000020 0.000025

-2

-1

1

2

In[ ]:= new = Plot[{Evaluate[Re[torin[3986.5`90]〚1〛]], Evaluate[Re[torin[3986.5`90]〚2〛]],

Evaluate[Re[torin[3986.5`90]〚3〛]]}, {x1, 0, 0.000002},

PlotLegends  {"elctroelasticity(en)(uu)", "nonlinearelectric(epn)(ϕϕ)",

"electrostriction(q)(uϕ)", "e"}, PlotLabel  "D3", PlotRange  All]

Out[ ]=

5.×10-7 1.×10-6 1.5×10-6 2.×10-6

-0.004

-0.002

0.002

0.004
D3

elctroelasticity(en)(uu)

nonlinearelectric(epn)(ϕϕ)

electrostriction(q)(uϕ)
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In[ ]:= li11 = Plot[{Evaluate[Re[torin[3986.5`90]〚1〛]],

Evaluate[Re[torin[3986.5`90]〚2〛]]}, {x1, 0, 0.000002}]

li22 = Plot[{Evaluate[Re[torin[3986.5`90]〚3〛]],

Evaluate[Re[torin[3986.5`90]〚4〛]]}, {x1, 0, 0.000002}]

li33 = Plot[{Evaluate[Re[torin[3986.5`90]〚5〛]],

Evaluate[Re[torin[3986.5`90]〚6〛]]}, {x1, 0, 0.000002}]

li13 = Plot[{Evaluate[Re[torin[3986.5`90]〚7〛]],

Evaluate[Re[torin[3986.5`90]〚8〛]]}, {x1, 0, 0.000002}]

li23 = Plot[{Evaluate[Re[torin[3986.5`90]〚9〛]],

Evaluate[Re[torin[3986.5`90]〚10〛]]}, {x1, 0, 0.000002}]

li12 = Plot[{Evaluate[Re[torin[3986.5`90]〚11〛]],

Evaluate[Re[torin[3986.5`90]〚12〛]]}, {x1, 0, 0.000002}]

li41 = Plot[{Evaluate[Re[torin[3986.5`90]〚13〛]],

Evaluate[Re[torin[3986.5`90]〚14〛]]}, {x1, 0, 0.000002}]

li42 = Plot[{Evaluate[Re[torin[3986.5`90]〚15〛]],

Evaluate[Re[torin[3986.5`90]〚16〛]]}, {x1, 0, 0.000002}]

li43 = Plot[{Evaluate[Re[torin[3986.5`90]〚17〛]],

Evaluate[Re[torin[3986.5`90]〚18〛]]}, {x1, 0, 0.000002}]

Out[ ]=

5.×10-7 1.×10-6 1.5×10-6 2.×10-6

-2×109

-1×109

1×109

2×109

Out[ ]=

5.×10-7 1.×10-6 1.5×10-6 2.×10-6

-4×108

-2×108

2×108

4×108
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Out[ ]=

5.×10-7 1.×10-6 1.5×10-6 2.×10-6

-1×108

-5×107

5×107

1×108

Out[ ]=

5.×10-7 1.×10-6 1.5×10-6 2.×10-6

-1.5×107

-1.0×107

-5.0×106

5.0×106

1.0×107

1.5×107

Out[ ]=

5.×10-7 1.×10-6 1.5×10-6 2.×10-6

-200000

-100000

100000

200000

Out[ ]=

5.×10-7 1.×10-6 1.5×10-6 2.×10-6

-1×108

-5×107

5×107

1×108
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Out[ ]=

5.×10-7 1.×10-6 1.5×10-6 2.×10-6

-0.04

-0.02

0.02

0.04

Out[ ]=

5.×10-7 1.×10-6 1.5×10-6 2.×10-6

-0.015

-0.010

-0.005

0.005

0.010

0.015

Out[ ]=

5.×10-7 1.×10-6 1.5×10-6 2.×10-6

-0.002

-0.001

0.001

0.002
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In[ ]:= Plot{Evaluate[torin[3986`90]〚1〛], Evaluate[torin[3986`90]〚2〛],

Evaluate[torin[3986`90]〚3〛]}, X1, 0, 10-6, PlotLegends  {"u", "v", "w"}

Out[ ]=

2.×10-7 4.×10-7 6.×10-7 8.×10-7 1.×10-6

-6.×10-10

-4.×10-10

-2.×10-10

2.×10-10

4.×10-10

6.×10-10

u

v

w

In[ ]:= Plot{Evaluate[torin[3986`90]〚4〛],

Evaluate[torin[3986`90]〚5〛], Evaluate[torin[3986`90]〚6〛]},

X3, 0, 7*10-7, PlotLegends  {"u", "v", "w"}, PlotRange  All

Out[ ]=

1.×10-7 2.×10-7 3.×10-7 4.×10-7 5.×10-7 6.×10-7 7.×10-7

-1.×10-10

1.×10-10

2.×10-10

3.×10-10

4.×10-10

5.×10-10

u

v

w

Comsol Code (COMSOL_Code_Generator.nb)

In[ ]:= Clear [tpump, tsig, tidler, tsum, tpumpdif, tpumpsum, tsigdif, tsigsum]
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In[ ]:=

tpumpdif[β_, k_] :=

Sum[c[β, k, γ, l, δ, n]×ur[γ, l]×us[δ, n], {γ, 4}, {l, 3}, {δ, 4}, {n, 3}] /.

{ur[1, 2]  0, ur[2, 2]  0, ur[3, 2]  0, us[1, 2]  0, us[2, 2]  0, us[3, 2] 

0, ur[4, 2]  0, us[4, 2]  0} /. {ur[1, 1]  "d(u,x)", ur[1, 3]  "d(u,z)",

ur[2, 1]  "d(v,x)", ur[2, 3]  "d(v,z)", ur[3, 1]  "d(w,x)",

ur[3, 3]  "d(w,z)", ur[4, 1]  "d(V,x)", ur[4, 3]  "d(V,z)"} /.

{us[1, 1]  "d(u3,x)", us[1, 3]  "d(u3,z)", us[2, 1]  "d(v3,x)",

us[2, 3]  "d(v3,z)", us[3, 1]  "d(w3,x)", us[3, 3]  "d(w3,z)",

us[4, 1]  "d(V3,x)", us[4, 3]  "d(V3,z)"} /. rnl /. r3[epn] /. r4NS[q] /.

r5[en] /. r6[c] //. matc6 //. matq6 //. matϵ4 //. matϵ6 //. mate6

tpumpsum[β_, k_] :=

Sum[c[β, k, γ, l, δ, n]×ur[γ, l]×us[δ, n], {γ, 4}, {l, 3}, {δ, 4}, {n, 3}] /. {ur[1, 2]  0,

ur[2, 2]  0, ur[3, 2]  0, us[1, 2]  0, us[2, 2]  0, us[3, 2]  0, ur[4, 2] 

0, us[4, 2]  0} /. {ur[1, 1]  "d(u4,x)", ur[1, 3]  "d(u4,z)",

ur[2, 1]  "d(v4,x)", ur[2, 3]  "d(v4,z)", ur[3, 1]  "d(w4,x)",

ur[3, 3]  "d(w4,z)", ur[4, 1]  "d(V4,x)", ur[4, 3]  "d(V4,z)"} /.

{us[1, 1]  "conj(d(u,x))", us[1, 3]  "conj(d(u,z))", us[2, 1] 

"conj(d(v,x))", us[2, 3]  "conj(d(v,z))", us[3, 1]  "conj(d(w,x))",

us[3, 3]  "conj(d(w,z))", us[4, 1]  "conj(d(V,x))",

us[4, 3]  "conj(d(V,z))"} /. rnl /. r3[epn] /. r4NS[q] /.

r5[en] /. r6[c] //. matc6 //. matq6 //. matϵ4 //. matϵ6 //. mate6

tpump[β_, k_] := tpumpsum[β, k] + tpumpdif[β, k]

In[ ]:= tsigdif[β_, k_] :=

Sum[c[β, k, γ, l, δ, n]×ur[γ, l]×us[δ, n], {γ, 4}, {l, 3}, {δ, 4}, {n, 3}] /. {ur[1, 2]  0,

ur[2, 2]  0, ur[3, 2]  0, us[1, 2]  0, us[2, 2]  0, us[3, 2]  0, ur[4, 2] 

0, us[4, 2]  0} /. {ur[1, 1]  "d(u2,x)", ur[1, 3]  "d(u2,z)",

ur[2, 1]  "d(v2,x)", ur[2, 3]  "d(v2,z)", ur[3, 1]  "d(w2,x)",

ur[3, 3]  "d(w2,z)", ur[4, 1]  "d(V2,x)", ur[4, 3]  "d(V2,z)"} /.

{us[1, 1]  "conj(d(u3,x))", us[1, 3]  "conj(d(u3,z))", us[2, 1] 

"conj(d(v3,x))", us[2, 3]  "conj(d(v3,z))", us[3, 1]  "conj(d(w3,x))",

us[3, 3]  "conj(d(w3,z))", us[4, 1]  "conj(d(V3,x))",

us[4, 3]  "conj(d(V3,z))"} /. rnl /. r3[epn] /. r4NS[q] /.

r5[en] /. r6[c] //. matc6 //. matq6 //. matϵ4 //. matϵ6 //. mate6

tsigsum[β_, k_] :=

Sum[c[β, k, γ, l, δ, n]×ur[γ, l]×us[δ, n], {γ, 4}, {l, 3}, {δ, 4}, {n, 3}] /. {ur[1, 2]  0,

ur[2, 2]  0, ur[3, 2]  0, us[1, 2]  0, us[2, 2]  0, us[3, 2]  0, ur[4, 2] 

0, us[4, 2]  0} /. {ur[1, 1]  "d(u4,x)", ur[1, 3]  "d(u4,z)",

ur[2, 1]  "d(v4,x)", ur[2, 3]  "d(v4,z)", ur[3, 1]  "d(w4,x)",

ur[3, 3]  "d(w4,z)", ur[4, 1]  "d(V4,x)", ur[4, 3]  "d(V4,z)"} /.

{us[1, 1]  "conj(d(u2,x))", us[1, 3]  "conj(d(u2,z))", us[2, 1] 

"conj(d(v2,x))", us[2, 3]  "conj(d(v2,z))", us[3, 1]  "conj(d(w2,x))",

us[3, 3]  "conj(d(w2,z))", us[4, 1]  "conj(d(V2,x))",

us[4, 3]  "conj(d(V2,z))"} /. rnl /. r3[epn] /. r4NS[q] /.

r5[en] /. r6[c] //. matc6 //. matq6 //. matϵ4 //. matϵ6 //. mate6

tsig[β_, k_] := tsigsum[β, k] + tsigdif[β, k]
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In[ ]:= tidler[β_, k_] :=

Sum[c[β, k, γ, l, δ, n]×ur[γ, l]×us[δ, n], {γ, 4}, {l, 3}, {δ, 4}, {n, 3}] /. {ur[1, 2]  0,

ur[2, 2]  0, ur[3, 2]  0, us[1, 2]  0, us[2, 2]  0, us[3, 2]  0, ur[4, 2] 

0, us[4, 2]  0} /. {ur[1, 1]  "d(u2,x)", ur[1, 3]  "d(u2,z)",

ur[2, 1]  "d(v2,x)", ur[2, 3]  "d(v2,z)", ur[3, 1]  "d(w2,x)",

ur[3, 3]  "d(w2,z)", ur[4, 1]  "d(V2,x)", ur[4, 3]  "d(V2,z)"} /.

{us[1, 1]  "conj(d(u,x))", us[1, 3]  "conj(d(u,z))", us[2, 1] 

"conj(d(v,x))", us[2, 3]  "conj(d(v,z))", us[3, 1]  "conj(d(w,x))",

us[3, 3]  "conj(d(w,z))", us[4, 1]  "conj(d(V,x))",

us[4, 3]  "conj(d(V,z))"} /. rnl /. r3[epn] /. r4NS[q] /.

r5[en] /. r6[c] //. matc6 //. matq6 //. matϵ4 //. matϵ6 //. mate6

In[ ]:= tsum[β_, k_] :=

Sum[c[β, k, γ, l, δ, n]×ur[γ, l]×us[δ, n], {γ, 4}, {l, 3}, {δ, 4}, {n, 3}] /. {ur[1, 2]  0,

ur[2, 2]  0, ur[3, 2]  0, us[1, 2]  0, us[2, 2]  0, us[3, 2]  0, ur[4, 2] 

0, us[4, 2]  0} /. {ur[1, 1]  "d(u2,x)", ur[1, 3]  "d(u2,z)",

ur[2, 1]  "d(v2,x)", ur[2, 3]  "d(v2,z)", ur[3, 1]  "d(w2,x)",

ur[3, 3]  "d(w2,z)", ur[4, 1]  "d(V2,x)", ur[4, 3]  "d(V2,z)"} /.

{us[1, 1]  "d(u,x)", us[1, 3]  "d(u,z)", us[2, 1]  "d(v,x)",

us[2, 3]  "d(v,z)", us[3, 1]  "d(w,x)", us[3, 3]  "d(w,z)",

us[4, 1]  "d(V,x)", us[4, 3]  "d(V,z)"} /. rnl /. r3[epn] /. r4NS[q] /.

r5[en] /. r6[c] //. matc6 //. matq6 //. matϵ4 //. matϵ6 //. mate6

In[ ]:= tpumpdif[1, 1] // N

tpumpdif[1, 2] // N

tpumpdif[1, 3] // N

tpumpdif[2, 2] // N

tpumpdif[2, 3] // N

tpumpdif[3, 3] // N

tpumpdif[4, 1] // N

tpumpdif[4, 2] // N

tpumpdif[4, 3] // N

Out[ ]= 0. - 2.56×1011 d(u3,x) d(u,x) - 1.67483×1011 d(u3,z) d(u,z) -

1.07724×1011 d(u,z) d(v3,x) + 16.3686 d(u,z) d(V3,x) + 1.68713×1010 d(u,x) d(v3,z) +

27.7141 d(u,x) d(V3,z) - 1.07724×1011 d(u3,z) d(v,x) - 2.40017×1011 d(v3,x) d(v,x) +

6.82416 d(V3,x) d(v,x) + 16.3686 d(u3,z) d(V,x) + 6.82416 d(v3,x) d(V,x) -

5.55×10-10 d(V3,x) d(V,x) + 1.68713×1010 d(u3,x) d(v,z) - 1.31459×1011 d(v3,z) d(v,z) -

12.4675 d(V3,z) d(v,z) + 27.7141 d(u3,x) d(V,z) - 12.4675 d(v3,z) d(V,z) +

4.1025×10-10 d(V3,z) d(V,z) - 1.67483×1011 d(u,z) d(w3,x) - 1.07724×1011 d(v,x) d(w3,x) +

16.3686 d(V,x) d(w3,x) + 5.10982×1011 d(u,x) d(w3,z) - 6.59622×1010 d(v,z) d(w3,z) +

5.21447 d(V,z) d(w3,z) - 1.67483×1011 d(u3,z) d(w,x) - 1.07724×1011 d(v3,x) d(w,x) +

16.3686 d(V3,x) d(w,x) - 1.67483×1011 d(w3,x) d(w,x) + 5.10982×1011 d(u3,x) d(w,z) -

6.59622×1010 d(v3,z) d(w,z) + 5.21447 d(V3,z) d(w,z) + 1.55803×1011 d(w3,z) d(w,z)
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Out[ ]= 0. - 1.07724×1011 d(u3,z) d(u,x) - 1.07724×1011 d(u3,x) d(u,z) - 2.40017×1011 d(u,x) d(v3,x) +

6.82416 d(u,x) d(V3,x) - 8.4605×1010 d(u,z) d(v3,z) - 4.99538 d(u,z) d(V3,z) -

2.40017×1011 d(u3,x) d(v,x) + 1.96051×1010 d(v3,z) d(v,x) + 10.554 d(V3,z) d(v,x) +

6.82416 d(u3,x) d(V,x) - 3.75564 d(v3,z) d(V,x) + 1.65553×10-10 d(V3,z) d(V,x) -

8.4605×1010 d(u3,z) d(v,z) + 1.96051×1010 d(v3,x) d(v,z) - 3.75564 d(V3,x) d(v,z) +

3.73297 d(V3,z) d(v,z) - 4.99538 d(u3,z) d(V,z) + 10.554 d(v3,x) d(V,z) +

1.65553×10-10 d(V3,x) d(V,z) + 3.73297 d(v3,z) d(V,z) - 1.07724×1011 d(u,x) d(w3,x) -

8.4605×1010 d(v,z) d(w3,x) - 4.99538 d(V,z) d(w3,x) - 3.68926×1010 d(u,z) d(w3,z) -

2.96481×1010 d(v,x) d(w3,z) + 5.38946 d(V,x) d(w3,z) - 2.91651 d(V,z) d(w3,z) -

1.07724×1011 d(u3,x) d(w,x) - 8.4605×1010 d(v3,z) d(w,x) - 4.99538 d(V3,z) d(w,x) -

3.68926×1010 d(w3,z) d(w,x) - 3.68926×1010 d(u3,z) d(w,z) - 2.96481×1010 d(v3,x) d(w,z) +

5.38946 d(V3,x) d(w,z) - 2.91651 d(V3,z) d(w,z) - 3.68926×1010 d(w3,x) d(w,z)

Out[ ]= 0. - 1.67483×1011 d(u3,z) d(u,x) - 1.67483×1011 d(u3,x) d(u,z) - 1.07724×1011 d(u,x) d(v3,x) +

16.3686 d(u,x) d(V3,x) - 6.82725×1010 d(u,z) d(v3,z) - 11.5806 d(u,z) d(V3,z) -

1.07724×1011 d(u3,x) d(v,x) - 8.4605×1010 d(v3,z) d(v,x) - 4.99538 d(V3,z) d(v,x) +

16.3686 d(u3,x) d(V,x) + 8.9817 d(v3,z) d(V,x) + 5.93345×10-10 d(V3,z) d(V,x) -

6.82725×1010 d(u3,z) d(v,z) - 8.4605×1010 d(v3,x) d(v,z) + 8.9817 d(V3,x) d(v,z) +

4.77798 d(V3,z) d(v,z) - 11.5806 d(u3,z) d(V,z) - 4.99538 d(v3,x) d(V,z) +

5.93345×10-10 d(V3,x) d(V,z) + 4.77798 d(v3,z) d(V,z) - 1.67483×1011 d(u,x) d(w3,x) -

6.82725×1010 d(v,z) d(w3,x) - 11.5806 d(V,z) d(w3,x) - 2.3758×1011 d(u,z) d(w3,z) -

3.68926×1010 d(v,x) d(w3,z) - 4.18951 d(V,x) d(w3,z) - 3.73297 d(V,z) d(w3,z) -

1.67483×1011 d(u3,x) d(w,x) - 6.82725×1010 d(v3,z) d(w,x) - 11.5806 d(V3,z) d(w,x) -

2.3758×1011 d(w3,z) d(w,x) - 2.3758×1011 d(u3,z) d(w,z) - 3.68926×1010 d(v3,x) d(w,z) -

4.18951 d(V3,x) d(w,z) - 3.73297 d(V3,z) d(w,z) - 2.3758×1011 d(w3,x) d(w,z)

Out[ ]= 0. + 8.00177×1010 d(u3,x) d(u,x) + 1.25188×1011 d(u3,z) d(u,z) -

7.1765×1010 d(u,z) d(v3,x) + 26.081 d(u,z) d(V3,x) - 3.76345×1010 d(u,x) d(v3,z) +

4.04498 d(u,x) d(V3,z) - 6.11553 d(u,z) d(V3,z) - 7.1765×1010 d(u3,z) d(v,x) -

2.6921×1011 d(v3,x) d(v,x) + 30.7493 d(V3,x) d(v,x) - 4.77798 d(V3,z) d(v,x) +

26.081 d(u3,z) d(V,x) + 30.7493 d(v3,x) d(V,x) - 5.2025×10-10 d(V3,x) d(V,x) -

3.76345×1010 d(u3,x) d(v,z) - 1.23628×1011 d(v3,z) d(v,z) - 1.71448 d(V3,z) d(v,z) +

4.04498 d(u3,x) d(V,z) - 6.11553 d(u3,z) d(V,z) - 4.77798 d(v3,x) d(V,z) -

1.71448 d(v3,z) d(V,z) - 1.45844×10-9 d(V3,z) d(V,z) + 1.25188×1011 d(u,z) d(w3,x) -

7.1765×1010 d(v,x) d(w3,x) + 26.081 d(V,x) d(w3,x) - 6.11553 d(V,z) d(w3,x) +

2.46541×1011 d(u,x) d(w3,z) - 2.93144×1010 d(v,z) d(w3,z) - 11.2685 d(V,z) d(w3,z) +

1.25188×1011 d(u3,z) d(w,x) - 7.1765×1010 d(v3,x) d(w,x) + 26.081 d(V3,x) d(w,x) -

6.11553 d(V3,z) d(w,x) + 1.25188×1011 d(w3,x) d(w,x) + 2.46541×1011 d(u3,x) d(w,z) -

2.93144×1010 d(v3,z) d(w,z) - 11.2685 d(V3,z) d(w,z) + 2.62661×1011 d(w3,z) d(w,z)

95



Out[ ]= 0. + 1.68713×1010 d(u3,x) d(u,x) - 6.82725×1010 d(u3,z) d(u,z) -

8.4605×1010 d(u,z) d(v3,x) + 8.9817 d(u,z) d(V3,x) - 1.31459×1011 d(u,x) d(v3,z) -

12.4675 d(u,x) d(V3,z) + 4.77798 d(u,z) d(V3,z) - 8.4605×1010 d(u3,z) d(v,x) +

1.96051×1010 d(v3,x) d(v,x) - 3.75564 d(V3,x) d(v,x) + 3.73297 d(V3,z) d(v,x) +

8.9817 d(u3,z) d(V,x) - 3.75564 d(v3,x) d(V,x) - 1.25483×10-9 d(V3,x) d(V,x) -

1.31459×1011 d(u3,x) d(v,z) + 1.64758×1011 d(v3,z) d(v,z) + 1.62595 d(V3,z) d(v,z) -

12.4675 d(u3,x) d(V,z) + 4.77798 d(u3,z) d(V,z) + 3.73297 d(v3,x) d(V,z) +

1.62595 d(v3,z) d(V,z) + 8.63797×10-10 d(V3,z) d(V,z) - 6.82725×1010 d(u,z) d(w3,x) -

8.4605×1010 d(v,x) d(w3,x) + 8.9817 d(V,x) d(w3,x) + 4.77798 d(V,z) d(w3,x) -

6.59622×1010 d(u,x) d(w3,z) - 1.25558×1011 d(v,z) d(w3,z) - 10.2568 d(V,z) d(w3,z) -

6.82725×1010 d(u3,z) d(w,x) - 8.4605×1010 d(v3,x) d(w,x) + 8.9817 d(V3,x) d(w,x) +

4.77798 d(V3,z) d(w,x) - 6.82725×1010 d(w3,x) d(w,x) - 6.59622×1010 d(u3,x) d(w,z) -

1.25558×1011 d(v3,z) d(w,z) - 10.2568 d(V3,z) d(w,z) + 1.2397×1011 d(w3,z) d(w,z)

Out[ ]= 0. + 5.10982×1011 d(u3,x) d(u,x) - 2.3758×1011 d(u3,z) d(u,z) -

3.68926×1010 d(u,z) d(v3,x) - 4.18951 d(u,z) d(V3,x) - 6.59622×1010 d(u,x) d(v3,z) +

5.21447 d(u,x) d(V3,z) - 3.73297 d(u,z) d(V3,z) - 3.68926×1010 d(u3,z) d(v,x) -

2.96481×1010 d(v3,x) d(v,x) + 5.38946 d(V3,x) d(v,x) - 2.91651 d(V3,z) d(v,x) -

4.18951 d(u3,z) d(V,x) + 5.38946 d(v3,x) d(V,x) + 4.1025×10-10 d(V3,x) d(V,x) -

6.59622×1010 d(u3,x) d(v,z) - 1.25558×1011 d(v3,z) d(v,z) - 10.2568 d(V3,z) d(v,z) +

5.21447 d(u3,x) d(V,z) - 3.73297 d(u3,z) d(V,z) - 2.91651 d(v3,x) d(V,z) -

10.2568 d(v3,z) d(V,z) + 2.12426×10-10 d(V3,z) d(V,z) - 2.3758×1011 d(u,z) d(w3,x) -

3.68926×1010 d(v,x) d(w3,x) - 4.18951 d(V,x) d(w3,x) - 3.73297 d(V,z) d(w3,x) +

1.55803×1011 d(u,x) d(w3,z) + 1.2397×1011 d(v,z) d(w3,z) + 22.9799 d(V,z) d(w3,z) -

2.3758×1011 d(u3,z) d(w,x) - 3.68926×1010 d(v3,x) d(w,x) - 4.18951 d(V3,x) d(w,x) -

3.73297 d(V3,z) d(w,x) - 2.3758×1011 d(w3,x) d(w,x) + 1.55803×1011 d(u3,x) d(w,z) +

1.2397×1011 d(v3,z) d(w,z) + 22.9799 d(V3,z) d(w,z) - 8.05371×1011 d(w3,z) d(w,z)

Out[ ]= 0. + 16.3686 d(u3,z) d(u,x) + 16.3686 d(u3,x) d(u,z) +

6.82416 d(u,x) d(v3,x) - 5.55×10-10 d(u,x) d(V3,x) + 8.9817 d(u,z) d(v3,z) +

5.93345×10-10 d(u,z) d(V3,z) + 6.82416 d(u3,x) d(v,x) - 3.75564 d(v3,z) d(v,x) +

1.65553×10-10 d(V3,z) d(v,x) - 5.55×10-10 d(u3,x) d(V,x) - 1.405×10-19 d(V3,x) d(V,x) -

1.25483×10-9 d(v3,z) d(V,x) + 8.9817 d(u3,z) d(v,z) - 3.75564 d(v3,x) d(v,z) -

1.25483×10-9 d(V3,x) d(v,z) + 5.93345×10-10 d(u3,z) d(V,z) +

1.65553×10-10 d(v3,x) d(V,z) + 16.3686 d(u,x) d(w3,x) + 8.9817 d(v,z) d(w3,x) +

5.93345×10-10 d(V,z) d(w3,x) - 4.18951 d(u,z) d(w3,z) + 5.38946 d(v,x) d(w3,z) +

4.1025×10-10 d(V,x) d(w3,z) + 16.3686 d(u3,x) d(w,x) + 8.9817 d(v3,z) d(w,x) +

5.93345×10-10 d(V3,z) d(w,x) - 4.18951 d(w3,z) d(w,x) - 4.18951 d(u3,z) d(w,z) +

5.38946 d(v3,x) d(w,z) + 4.1025×10-10 d(V3,x) d(w,z) - 4.18951 d(w3,x) d(w,z)
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Out[ ]= 0. - 11.5957 d(u3,x) d(u,x) - 12.2783 d(u3,z) d(u,z) +

2.00869 d(u,z) d(v3,x) + 1.65553×10-10 d(u,z) d(V3,x) + 2.15588 d(u,x) d(v3,z) -

6.11553 d(u,z) d(v3,z) - 1.25483×10-9 d(u,x) d(V3,z) + 2.00869 d(u3,z) d(v,x) -

1.59468 d(v3,x) d(v,x) - 1.39584×10-9 d(V3,x) d(v,x) - 4.77798 d(v3,z) d(v,x) +

1.65553×10-10 d(u3,z) d(V,x) - 1.39584×10-9 d(v3,x) d(V,x) +

2.15588 d(u3,x) d(v,z) - 6.11553 d(u3,z) d(v,z) - 4.77798 d(v3,x) d(v,z) +

7.79531 d(v3,z) d(v,z) + 6.1656×10-10 d(V3,z) d(v,z) - 1.25483×10-9 d(u3,x) d(V,z) +

6.1656×10-10 d(v3,z) d(V,z) - 3.50958×10-19 d(V3,z) d(V,z) - 12.2783 d(u,z) d(w3,x) +

2.00869 d(v,x) d(w3,x) + 1.65553×10-10 d(V,x) d(w3,x) - 6.11553 d(v,z) d(w3,x) -

26.0929 d(u,x) d(w3,z) + 4.77798 d(u,z) d(w3,z) + 3.73297 d(v,x) d(w3,z) -

3.98158 d(v,z) d(w3,z) + 8.63797×10-10 d(V,z) d(w3,z) - 12.2783 d(u3,z) d(w,x) +

2.00869 d(v3,x) d(w,x) + 1.65553×10-10 d(V3,x) d(w,x) - 6.11553 d(v3,z) d(w,x) -

12.2783 d(w3,x) d(w,x) + 4.77798 d(w3,z) d(w,x) - 26.0929 d(u3,x) d(w,z) +

4.77798 d(u3,z) d(w,z) + 3.73297 d(v3,x) d(w,z) - 3.98158 d(v3,z) d(w,z) +

8.63797×10-10 d(V3,z) d(w,z) + 4.77798 d(w3,x) d(w,z) - 46.9193 d(w3,z) d(w,z)

Out[ ]= 0. + 27.7141 d(u3,x) d(u,x) - 11.5806 d(u3,z) d(u,z) -

4.99538 d(u,z) d(v3,x) + 5.93345×10-10 d(u,z) d(V3,x) - 12.4675 d(u,x) d(v3,z) +

4.77798 d(u,z) d(v3,z) + 4.1025×10-10 d(u,x) d(V3,z) - 4.99538 d(u3,z) d(v,x) +

10.554 d(v3,x) d(v,x) + 1.65553×10-10 d(V3,x) d(v,x) + 3.73297 d(v3,z) d(v,x) +

5.93345×10-10 d(u3,z) d(V,x) + 1.65553×10-10 d(v3,x) d(V,x) -

12.4675 d(u3,x) d(v,z) + 4.77798 d(u3,z) d(v,z) + 3.73297 d(v3,x) d(v,z) +

1.62595 d(v3,z) d(v,z) + 8.63797×10-10 d(V3,z) d(v,z) + 4.1025×10-10 d(u3,x) d(V,z) +

8.63797×10-10 d(v3,z) d(V,z) + 1.59543×10-19 d(V3,z) d(V,z) - 11.5806 d(u,z) d(w3,x) -

4.99538 d(v,x) d(w3,x) + 5.93345×10-10 d(V,x) d(w3,x) + 4.77798 d(v,z) d(w3,x) +

5.21447 d(u,x) d(w3,z) - 3.73297 d(u,z) d(w3,z) - 2.91651 d(v,x) d(w3,z) -

10.2568 d(v,z) d(w3,z) + 2.12426×10-10 d(V,z) d(w3,z) - 11.5806 d(u3,z) d(w,x) -

4.99538 d(v3,x) d(w,x) + 5.93345×10-10 d(V3,x) d(w,x) + 4.77798 d(v3,z) d(w,x) -

11.5806 d(w3,x) d(w,x) - 3.73297 d(w3,z) d(w,x) + 5.21447 d(u3,x) d(w,z) -

3.73297 d(u3,z) d(w,z) - 2.91651 d(v3,x) d(w,z) - 10.2568 d(v3,z) d(w,z) +

2.12426×10-10 d(V3,z) d(w,z) - 3.73297 d(w3,x) d(w,z) + 22.9799 d(w3,z) d(w,z)

In[ ]:= tsigdif[1, 1] // N

tsigdif[1, 2] // N

tsigdif[1, 3] // N

tsigdif[2, 2] // N

tsigdif[2, 3] // N

tsigdif[3, 3] // N

tsigdif[4, 1] // N

tsigdif[4, 2] // N

tsigdif[4, 3] // N
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Out[ ]= 0. - 2.56×1011 conj(d(u3,x)) d(u2,x) + 1.68713×1010 conj(d(v3,z)) d(u2,x) +

27.7141 conj(d(V3,z)) d(u2,x) + 5.10982×1011 conj(d(w3,z)) d(u2,x) -

1.67483×1011 conj(d(u3,z)) d(u2,z) - 1.07724×1011 conj(d(v3,x)) d(u2,z) +

16.3686 conj(d(V3,x)) d(u2,z) - 1.67483×1011 conj(d(w3,x)) d(u2,z) -

1.07724×1011 conj(d(u3,z)) d(v2,x) - 2.40017×1011 conj(d(v3,x)) d(v2,x) +

6.82416 conj(d(V3,x)) d(v2,x) - 1.07724×1011 conj(d(w3,x)) d(v2,x) +

16.3686 conj(d(u3,z)) d(V2,x) + 6.82416 conj(d(v3,x)) d(V2,x) -

5.55×10-10 conj(d(V3,x)) d(V2,x) + 16.3686 conj(d(w3,x)) d(V2,x) +

1.68713×1010 conj(d(u3,x)) d(v2,z) - 1.31459×1011 conj(d(v3,z)) d(v2,z) -

12.4675 conj(d(V3,z)) d(v2,z) - 6.59622×1010 conj(d(w3,z)) d(v2,z) +

27.7141 conj(d(u3,x)) d(V2,z) - 12.4675 conj(d(v3,z)) d(V2,z) +

4.1025×10-10 conj(d(V3,z)) d(V2,z) + 5.21447 conj(d(w3,z)) d(V2,z) -

1.67483×1011 conj(d(u3,z)) d(w2,x) - 1.07724×1011 conj(d(v3,x)) d(w2,x) +

16.3686 conj(d(V3,x)) d(w2,x) - 1.67483×1011 conj(d(w3,x)) d(w2,x) +

5.10982×1011 conj(d(u3,x)) d(w2,z) - 6.59622×1010 conj(d(v3,z)) d(w2,z) +

5.21447 conj(d(V3,z)) d(w2,z) + 1.55803×1011 conj(d(w3,z)) d(w2,z)

Out[ ]= 0. - 1.07724×1011 conj(d(u3,z)) d(u2,x) - 2.40017×1011 conj(d(v3,x)) d(u2,x) +

6.82416 conj(d(V3,x)) d(u2,x) - 1.07724×1011 conj(d(w3,x)) d(u2,x) -

1.07724×1011 conj(d(u3,x)) d(u2,z) - 8.4605×1010 conj(d(v3,z)) d(u2,z) -

4.99538 conj(d(V3,z)) d(u2,z) - 3.68926×1010 conj(d(w3,z)) d(u2,z) -

2.40017×1011 conj(d(u3,x)) d(v2,x) + 1.96051×1010 conj(d(v3,z)) d(v2,x) +

10.554 conj(d(V3,z)) d(v2,x) - 2.96481×1010 conj(d(w3,z)) d(v2,x) +

6.82416 conj(d(u3,x)) d(V2,x) - 3.75564 conj(d(v3,z)) d(V2,x) +

1.65553×10-10 conj(d(V3,z)) d(V2,x) + 5.38946 conj(d(w3,z)) d(V2,x) -

8.4605×1010 conj(d(u3,z)) d(v2,z) + 1.96051×1010 conj(d(v3,x)) d(v2,z) -

3.75564 conj(d(V3,x)) d(v2,z) + 3.73297 conj(d(V3,z)) d(v2,z) -

8.4605×1010 conj(d(w3,x)) d(v2,z) - 4.99538 conj(d(u3,z)) d(V2,z) +

10.554 conj(d(v3,x)) d(V2,z) + 1.65553×10-10 conj(d(V3,x)) d(V2,z) +

3.73297 conj(d(v3,z)) d(V2,z) - 4.99538 conj(d(w3,x)) d(V2,z) -

2.91651 conj(d(w3,z)) d(V2,z) - 1.07724×1011 conj(d(u3,x)) d(w2,x) -

8.4605×1010 conj(d(v3,z)) d(w2,x) - 4.99538 conj(d(V3,z)) d(w2,x) -

3.68926×1010 conj(d(w3,z)) d(w2,x) - 3.68926×1010 conj(d(u3,z)) d(w2,z) -

2.96481×1010 conj(d(v3,x)) d(w2,z) + 5.38946 conj(d(V3,x)) d(w2,z) -

2.91651 conj(d(V3,z)) d(w2,z) - 3.68926×1010 conj(d(w3,x)) d(w2,z)
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Out[ ]= 0. - 1.67483×1011 conj(d(u3,z)) d(u2,x) - 1.07724×1011 conj(d(v3,x)) d(u2,x) +

16.3686 conj(d(V3,x)) d(u2,x) - 1.67483×1011 conj(d(w3,x)) d(u2,x) -

1.67483×1011 conj(d(u3,x)) d(u2,z) - 6.82725×1010 conj(d(v3,z)) d(u2,z) -

11.5806 conj(d(V3,z)) d(u2,z) - 2.3758×1011 conj(d(w3,z)) d(u2,z) -

1.07724×1011 conj(d(u3,x)) d(v2,x) - 8.4605×1010 conj(d(v3,z)) d(v2,x) -

4.99538 conj(d(V3,z)) d(v2,x) - 3.68926×1010 conj(d(w3,z)) d(v2,x) +

16.3686 conj(d(u3,x)) d(V2,x) + 8.9817 conj(d(v3,z)) d(V2,x) +

5.93345×10-10 conj(d(V3,z)) d(V2,x) - 4.18951 conj(d(w3,z)) d(V2,x) -

6.82725×1010 conj(d(u3,z)) d(v2,z) - 8.4605×1010 conj(d(v3,x)) d(v2,z) +

8.9817 conj(d(V3,x)) d(v2,z) + 4.77798 conj(d(V3,z)) d(v2,z) -

6.82725×1010 conj(d(w3,x)) d(v2,z) - 11.5806 conj(d(u3,z)) d(V2,z) -

4.99538 conj(d(v3,x)) d(V2,z) + 5.93345×10-10 conj(d(V3,x)) d(V2,z) +

4.77798 conj(d(v3,z)) d(V2,z) - 11.5806 conj(d(w3,x)) d(V2,z) -

3.73297 conj(d(w3,z)) d(V2,z) - 1.67483×1011 conj(d(u3,x)) d(w2,x) -

6.82725×1010 conj(d(v3,z)) d(w2,x) - 11.5806 conj(d(V3,z)) d(w2,x) -

2.3758×1011 conj(d(w3,z)) d(w2,x) - 2.3758×1011 conj(d(u3,z)) d(w2,z) -

3.68926×1010 conj(d(v3,x)) d(w2,z) - 4.18951 conj(d(V3,x)) d(w2,z) -

3.73297 conj(d(V3,z)) d(w2,z) - 2.3758×1011 conj(d(w3,x)) d(w2,z)

Out[ ]= 0. + 8.00177×1010 conj(d(u3,x)) d(u2,x) - 3.76345×1010 conj(d(v3,z)) d(u2,x) +

4.04498 conj(d(V3,z)) d(u2,x) + 2.46541×1011 conj(d(w3,z)) d(u2,x) +

1.25188×1011 conj(d(u3,z)) d(u2,z) - 7.1765×1010 conj(d(v3,x)) d(u2,z) +

26.081 conj(d(V3,x)) d(u2,z) - 6.11553 conj(d(V3,z)) d(u2,z) +

1.25188×1011 conj(d(w3,x)) d(u2,z) - 7.1765×1010 conj(d(u3,z)) d(v2,x) -

2.6921×1011 conj(d(v3,x)) d(v2,x) + 30.7493 conj(d(V3,x)) d(v2,x) -

4.77798 conj(d(V3,z)) d(v2,x) - 7.1765×1010 conj(d(w3,x)) d(v2,x) +

26.081 conj(d(u3,z)) d(V2,x) + 30.7493 conj(d(v3,x)) d(V2,x) -

5.2025×10-10 conj(d(V3,x)) d(V2,x) + 26.081 conj(d(w3,x)) d(V2,x) -

3.76345×1010 conj(d(u3,x)) d(v2,z) - 1.23628×1011 conj(d(v3,z)) d(v2,z) -

1.71448 conj(d(V3,z)) d(v2,z) - 2.93144×1010 conj(d(w3,z)) d(v2,z) +

4.04498 conj(d(u3,x)) d(V2,z) - 6.11553 conj(d(u3,z)) d(V2,z) -

4.77798 conj(d(v3,x)) d(V2,z) - 1.71448 conj(d(v3,z)) d(V2,z) -

1.45844×10-9 conj(d(V3,z)) d(V2,z) - 6.11553 conj(d(w3,x)) d(V2,z) -

11.2685 conj(d(w3,z)) d(V2,z) + 1.25188×1011 conj(d(u3,z)) d(w2,x) -

7.1765×1010 conj(d(v3,x)) d(w2,x) + 26.081 conj(d(V3,x)) d(w2,x) -

6.11553 conj(d(V3,z)) d(w2,x) + 1.25188×1011 conj(d(w3,x)) d(w2,x) +

2.46541×1011 conj(d(u3,x)) d(w2,z) - 2.93144×1010 conj(d(v3,z)) d(w2,z) -

11.2685 conj(d(V3,z)) d(w2,z) + 2.62661×1011 conj(d(w3,z)) d(w2,z)
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Out[ ]= 0. + 1.68713×1010 conj(d(u3,x)) d(u2,x) - 1.31459×1011 conj(d(v3,z)) d(u2,x) -

12.4675 conj(d(V3,z)) d(u2,x) - 6.59622×1010 conj(d(w3,z)) d(u2,x) -

6.82725×1010 conj(d(u3,z)) d(u2,z) - 8.4605×1010 conj(d(v3,x)) d(u2,z) +

8.9817 conj(d(V3,x)) d(u2,z) + 4.77798 conj(d(V3,z)) d(u2,z) -

6.82725×1010 conj(d(w3,x)) d(u2,z) - 8.4605×1010 conj(d(u3,z)) d(v2,x) +

1.96051×1010 conj(d(v3,x)) d(v2,x) - 3.75564 conj(d(V3,x)) d(v2,x) +

3.73297 conj(d(V3,z)) d(v2,x) - 8.4605×1010 conj(d(w3,x)) d(v2,x) +

8.9817 conj(d(u3,z)) d(V2,x) - 3.75564 conj(d(v3,x)) d(V2,x) -

1.25483×10-9 conj(d(V3,x)) d(V2,x) + 8.9817 conj(d(w3,x)) d(V2,x) -

1.31459×1011 conj(d(u3,x)) d(v2,z) + 1.64758×1011 conj(d(v3,z)) d(v2,z) +

1.62595 conj(d(V3,z)) d(v2,z) - 1.25558×1011 conj(d(w3,z)) d(v2,z) -

12.4675 conj(d(u3,x)) d(V2,z) + 4.77798 conj(d(u3,z)) d(V2,z) +

3.73297 conj(d(v3,x)) d(V2,z) + 1.62595 conj(d(v3,z)) d(V2,z) +

8.63797×10-10 conj(d(V3,z)) d(V2,z) + 4.77798 conj(d(w3,x)) d(V2,z) -

10.2568 conj(d(w3,z)) d(V2,z) - 6.82725×1010 conj(d(u3,z)) d(w2,x) -

8.4605×1010 conj(d(v3,x)) d(w2,x) + 8.9817 conj(d(V3,x)) d(w2,x) +

4.77798 conj(d(V3,z)) d(w2,x) - 6.82725×1010 conj(d(w3,x)) d(w2,x) -

6.59622×1010 conj(d(u3,x)) d(w2,z) - 1.25558×1011 conj(d(v3,z)) d(w2,z) -

10.2568 conj(d(V3,z)) d(w2,z) + 1.2397×1011 conj(d(w3,z)) d(w2,z)

Out[ ]= 0. + 5.10982×1011 conj(d(u3,x)) d(u2,x) - 6.59622×1010 conj(d(v3,z)) d(u2,x) +

5.21447 conj(d(V3,z)) d(u2,x) + 1.55803×1011 conj(d(w3,z)) d(u2,x) -

2.3758×1011 conj(d(u3,z)) d(u2,z) - 3.68926×1010 conj(d(v3,x)) d(u2,z) -

4.18951 conj(d(V3,x)) d(u2,z) - 3.73297 conj(d(V3,z)) d(u2,z) -

2.3758×1011 conj(d(w3,x)) d(u2,z) - 3.68926×1010 conj(d(u3,z)) d(v2,x) -

2.96481×1010 conj(d(v3,x)) d(v2,x) + 5.38946 conj(d(V3,x)) d(v2,x) -

2.91651 conj(d(V3,z)) d(v2,x) - 3.68926×1010 conj(d(w3,x)) d(v2,x) -

4.18951 conj(d(u3,z)) d(V2,x) + 5.38946 conj(d(v3,x)) d(V2,x) +

4.1025×10-10 conj(d(V3,x)) d(V2,x) - 4.18951 conj(d(w3,x)) d(V2,x) -

6.59622×1010 conj(d(u3,x)) d(v2,z) - 1.25558×1011 conj(d(v3,z)) d(v2,z) -

10.2568 conj(d(V3,z)) d(v2,z) + 1.2397×1011 conj(d(w3,z)) d(v2,z) +

5.21447 conj(d(u3,x)) d(V2,z) - 3.73297 conj(d(u3,z)) d(V2,z) -

2.91651 conj(d(v3,x)) d(V2,z) - 10.2568 conj(d(v3,z)) d(V2,z) +

2.12426×10-10 conj(d(V3,z)) d(V2,z) - 3.73297 conj(d(w3,x)) d(V2,z) +

22.9799 conj(d(w3,z)) d(V2,z) - 2.3758×1011 conj(d(u3,z)) d(w2,x) -

3.68926×1010 conj(d(v3,x)) d(w2,x) - 4.18951 conj(d(V3,x)) d(w2,x) -

3.73297 conj(d(V3,z)) d(w2,x) - 2.3758×1011 conj(d(w3,x)) d(w2,x) +

1.55803×1011 conj(d(u3,x)) d(w2,z) + 1.2397×1011 conj(d(v3,z)) d(w2,z) +

22.9799 conj(d(V3,z)) d(w2,z) - 8.05371×1011 conj(d(w3,z)) d(w2,z)
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Out[ ]= 0. + 16.3686 conj(d(u3,z)) d(u2,x) +

6.82416 conj(d(v3,x)) d(u2,x) - 5.55×10-10 conj(d(V3,x)) d(u2,x) +

16.3686 conj(d(w3,x)) d(u2,x) + 16.3686 conj(d(u3,x)) d(u2,z) +

8.9817 conj(d(v3,z)) d(u2,z) + 5.93345×10-10 conj(d(V3,z)) d(u2,z) -

4.18951 conj(d(w3,z)) d(u2,z) + 6.82416 conj(d(u3,x)) d(v2,x) -

3.75564 conj(d(v3,z)) d(v2,x) + 1.65553×10-10 conj(d(V3,z)) d(v2,x) +

5.38946 conj(d(w3,z)) d(v2,x) - 5.55×10-10 conj(d(u3,x)) d(V2,x) -

1.405×10-19 conj(d(V3,x)) d(V2,x) - 1.25483×10-9 conj(d(v3,z)) d(V2,x) +

4.1025×10-10 conj(d(w3,z)) d(V2,x) + 8.9817 conj(d(u3,z)) d(v2,z) -

3.75564 conj(d(v3,x)) d(v2,z) - 1.25483×10-9 conj(d(V3,x)) d(v2,z) +

8.9817 conj(d(w3,x)) d(v2,z) + 5.93345×10-10 conj(d(u3,z)) d(V2,z) +

1.65553×10-10 conj(d(v3,x)) d(V2,z) + 5.93345×10-10 conj(d(w3,x)) d(V2,z) +

16.3686 conj(d(u3,x)) d(w2,x) + 8.9817 conj(d(v3,z)) d(w2,x) +

5.93345×10-10 conj(d(V3,z)) d(w2,x) - 4.18951 conj(d(w3,z)) d(w2,x) -

4.18951 conj(d(u3,z)) d(w2,z) + 5.38946 conj(d(v3,x)) d(w2,z) +

4.1025×10-10 conj(d(V3,x)) d(w2,z) - 4.18951 conj(d(w3,x)) d(w2,z)

Out[ ]= 0. - 11.5957 conj(d(u3,x)) d(u2,x) +

2.15588 conj(d(v3,z)) d(u2,x) - 1.25483×10-9 conj(d(V3,z)) d(u2,x) -

26.0929 conj(d(w3,z)) d(u2,x) - 12.2783 conj(d(u3,z)) d(u2,z) +

2.00869 conj(d(v3,x)) d(u2,z) + 1.65553×10-10 conj(d(V3,x)) d(u2,z) -

6.11553 conj(d(v3,z)) d(u2,z) - 12.2783 conj(d(w3,x)) d(u2,z) +

4.77798 conj(d(w3,z)) d(u2,z) + 2.00869 conj(d(u3,z)) d(v2,x) -

1.59468 conj(d(v3,x)) d(v2,x) - 1.39584×10-9 conj(d(V3,x)) d(v2,x) -

4.77798 conj(d(v3,z)) d(v2,x) + 2.00869 conj(d(w3,x)) d(v2,x) +

3.73297 conj(d(w3,z)) d(v2,x) + 1.65553×10-10 conj(d(u3,z)) d(V2,x) -

1.39584×10-9 conj(d(v3,x)) d(V2,x) + 1.65553×10-10 conj(d(w3,x)) d(V2,x) +

2.15588 conj(d(u3,x)) d(v2,z) - 6.11553 conj(d(u3,z)) d(v2,z) -

4.77798 conj(d(v3,x)) d(v2,z) + 7.79531 conj(d(v3,z)) d(v2,z) +

6.1656×10-10 conj(d(V3,z)) d(v2,z) - 6.11553 conj(d(w3,x)) d(v2,z) -

3.98158 conj(d(w3,z)) d(v2,z) - 1.25483×10-9 conj(d(u3,x)) d(V2,z) +

6.1656×10-10 conj(d(v3,z)) d(V2,z) - 3.50958×10-19 conj(d(V3,z)) d(V2,z) +

8.63797×10-10 conj(d(w3,z)) d(V2,z) - 12.2783 conj(d(u3,z)) d(w2,x) +

2.00869 conj(d(v3,x)) d(w2,x) + 1.65553×10-10 conj(d(V3,x)) d(w2,x) -

6.11553 conj(d(v3,z)) d(w2,x) - 12.2783 conj(d(w3,x)) d(w2,x) +

4.77798 conj(d(w3,z)) d(w2,x) - 26.0929 conj(d(u3,x)) d(w2,z) +

4.77798 conj(d(u3,z)) d(w2,z) + 3.73297 conj(d(v3,x)) d(w2,z) -

3.98158 conj(d(v3,z)) d(w2,z) + 8.63797×10-10 conj(d(V3,z)) d(w2,z) +

4.77798 conj(d(w3,x)) d(w2,z) - 46.9193 conj(d(w3,z)) d(w2,z)
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Out[ ]= 0. + 27.7141 conj(d(u3,x)) d(u2,x) -

12.4675 conj(d(v3,z)) d(u2,x) + 4.1025×10-10 conj(d(V3,z)) d(u2,x) +

5.21447 conj(d(w3,z)) d(u2,x) - 11.5806 conj(d(u3,z)) d(u2,z) -

4.99538 conj(d(v3,x)) d(u2,z) + 5.93345×10-10 conj(d(V3,x)) d(u2,z) +

4.77798 conj(d(v3,z)) d(u2,z) - 11.5806 conj(d(w3,x)) d(u2,z) -

3.73297 conj(d(w3,z)) d(u2,z) - 4.99538 conj(d(u3,z)) d(v2,x) +

10.554 conj(d(v3,x)) d(v2,x) + 1.65553×10-10 conj(d(V3,x)) d(v2,x) +

3.73297 conj(d(v3,z)) d(v2,x) - 4.99538 conj(d(w3,x)) d(v2,x) -

2.91651 conj(d(w3,z)) d(v2,x) + 5.93345×10-10 conj(d(u3,z)) d(V2,x) +

1.65553×10-10 conj(d(v3,x)) d(V2,x) + 5.93345×10-10 conj(d(w3,x)) d(V2,x) -

12.4675 conj(d(u3,x)) d(v2,z) + 4.77798 conj(d(u3,z)) d(v2,z) +

3.73297 conj(d(v3,x)) d(v2,z) + 1.62595 conj(d(v3,z)) d(v2,z) +

8.63797×10-10 conj(d(V3,z)) d(v2,z) + 4.77798 conj(d(w3,x)) d(v2,z) -

10.2568 conj(d(w3,z)) d(v2,z) + 4.1025×10-10 conj(d(u3,x)) d(V2,z) +

8.63797×10-10 conj(d(v3,z)) d(V2,z) + 1.59543×10-19 conj(d(V3,z)) d(V2,z) +

2.12426×10-10 conj(d(w3,z)) d(V2,z) - 11.5806 conj(d(u3,z)) d(w2,x) -

4.99538 conj(d(v3,x)) d(w2,x) + 5.93345×10-10 conj(d(V3,x)) d(w2,x) +

4.77798 conj(d(v3,z)) d(w2,x) - 11.5806 conj(d(w3,x)) d(w2,x) -

3.73297 conj(d(w3,z)) d(w2,x) + 5.21447 conj(d(u3,x)) d(w2,z) -

3.73297 conj(d(u3,z)) d(w2,z) - 2.91651 conj(d(v3,x)) d(w2,z) -

10.2568 conj(d(v3,z)) d(w2,z) + 2.12426×10-10 conj(d(V3,z)) d(w2,z) -

3.73297 conj(d(w3,x)) d(w2,z) + 22.9799 conj(d(w3,z)) d(w2,z)

In[ ]:= tidler[1, 1] // N

tidler[1, 2] // N

tidler[1, 3] // N

tidler[2, 2] // N

tidler[2, 3] // N

tidler[3, 3] // N

tidler[4, 1] // N

tidler[4, 2] // N

tidler[4, 3] // N

Out[ ]= 0. - 2.56×1011 conj(d(u,x)) d(u2,x) + 1.68713×1010 conj(d(v,z)) d(u2,x) +

27.7141 conj(d(V,z)) d(u2,x) + 5.10982×1011 conj(d(w,z)) d(u2,x) -

1.67483×1011 conj(d(u,z)) d(u2,z) - 1.07724×1011 conj(d(v,x)) d(u2,z) +

16.3686 conj(d(V,x)) d(u2,z) - 1.67483×1011 conj(d(w,x)) d(u2,z) -

1.07724×1011 conj(d(u,z)) d(v2,x) - 2.40017×1011 conj(d(v,x)) d(v2,x) +

6.82416 conj(d(V,x)) d(v2,x) - 1.07724×1011 conj(d(w,x)) d(v2,x) +

16.3686 conj(d(u,z)) d(V2,x) + 6.82416 conj(d(v,x)) d(V2,x) -

5.55×10-10 conj(d(V,x)) d(V2,x) + 16.3686 conj(d(w,x)) d(V2,x) +

1.68713×1010 conj(d(u,x)) d(v2,z) - 1.31459×1011 conj(d(v,z)) d(v2,z) -

12.4675 conj(d(V,z)) d(v2,z) - 6.59622×1010 conj(d(w,z)) d(v2,z) +

27.7141 conj(d(u,x)) d(V2,z) - 12.4675 conj(d(v,z)) d(V2,z) +

4.1025×10-10 conj(d(V,z)) d(V2,z) + 5.21447 conj(d(w,z)) d(V2,z) -

1.67483×1011 conj(d(u,z)) d(w2,x) - 1.07724×1011 conj(d(v,x)) d(w2,x) +

16.3686 conj(d(V,x)) d(w2,x) - 1.67483×1011 conj(d(w,x)) d(w2,x) +

5.10982×1011 conj(d(u,x)) d(w2,z) - 6.59622×1010 conj(d(v,z)) d(w2,z) +

5.21447 conj(d(V,z)) d(w2,z) + 1.55803×1011 conj(d(w,z)) d(w2,z)
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Out[ ]= 0. - 1.07724×1011 conj(d(u,z)) d(u2,x) - 2.40017×1011 conj(d(v,x)) d(u2,x) +

6.82416 conj(d(V,x)) d(u2,x) - 1.07724×1011 conj(d(w,x)) d(u2,x) -

1.07724×1011 conj(d(u,x)) d(u2,z) - 8.4605×1010 conj(d(v,z)) d(u2,z) -

4.99538 conj(d(V,z)) d(u2,z) - 3.68926×1010 conj(d(w,z)) d(u2,z) -

2.40017×1011 conj(d(u,x)) d(v2,x) + 1.96051×1010 conj(d(v,z)) d(v2,x) +

10.554 conj(d(V,z)) d(v2,x) - 2.96481×1010 conj(d(w,z)) d(v2,x) +

6.82416 conj(d(u,x)) d(V2,x) - 3.75564 conj(d(v,z)) d(V2,x) +

1.65553×10-10 conj(d(V,z)) d(V2,x) + 5.38946 conj(d(w,z)) d(V2,x) -

8.4605×1010 conj(d(u,z)) d(v2,z) + 1.96051×1010 conj(d(v,x)) d(v2,z) -

3.75564 conj(d(V,x)) d(v2,z) + 3.73297 conj(d(V,z)) d(v2,z) -

8.4605×1010 conj(d(w,x)) d(v2,z) - 4.99538 conj(d(u,z)) d(V2,z) +

10.554 conj(d(v,x)) d(V2,z) + 1.65553×10-10 conj(d(V,x)) d(V2,z) +

3.73297 conj(d(v,z)) d(V2,z) - 4.99538 conj(d(w,x)) d(V2,z) -

2.91651 conj(d(w,z)) d(V2,z) - 1.07724×1011 conj(d(u,x)) d(w2,x) -

8.4605×1010 conj(d(v,z)) d(w2,x) - 4.99538 conj(d(V,z)) d(w2,x) -

3.68926×1010 conj(d(w,z)) d(w2,x) - 3.68926×1010 conj(d(u,z)) d(w2,z) -

2.96481×1010 conj(d(v,x)) d(w2,z) + 5.38946 conj(d(V,x)) d(w2,z) -

2.91651 conj(d(V,z)) d(w2,z) - 3.68926×1010 conj(d(w,x)) d(w2,z)

Out[ ]= 0. - 1.67483×1011 conj(d(u,z)) d(u2,x) - 1.07724×1011 conj(d(v,x)) d(u2,x) +

16.3686 conj(d(V,x)) d(u2,x) - 1.67483×1011 conj(d(w,x)) d(u2,x) -

1.67483×1011 conj(d(u,x)) d(u2,z) - 6.82725×1010 conj(d(v,z)) d(u2,z) -

11.5806 conj(d(V,z)) d(u2,z) - 2.3758×1011 conj(d(w,z)) d(u2,z) -

1.07724×1011 conj(d(u,x)) d(v2,x) - 8.4605×1010 conj(d(v,z)) d(v2,x) -

4.99538 conj(d(V,z)) d(v2,x) - 3.68926×1010 conj(d(w,z)) d(v2,x) +

16.3686 conj(d(u,x)) d(V2,x) + 8.9817 conj(d(v,z)) d(V2,x) +

5.93345×10-10 conj(d(V,z)) d(V2,x) - 4.18951 conj(d(w,z)) d(V2,x) -

6.82725×1010 conj(d(u,z)) d(v2,z) - 8.4605×1010 conj(d(v,x)) d(v2,z) +

8.9817 conj(d(V,x)) d(v2,z) + 4.77798 conj(d(V,z)) d(v2,z) -

6.82725×1010 conj(d(w,x)) d(v2,z) - 11.5806 conj(d(u,z)) d(V2,z) -

4.99538 conj(d(v,x)) d(V2,z) + 5.93345×10-10 conj(d(V,x)) d(V2,z) +

4.77798 conj(d(v,z)) d(V2,z) - 11.5806 conj(d(w,x)) d(V2,z) -

3.73297 conj(d(w,z)) d(V2,z) - 1.67483×1011 conj(d(u,x)) d(w2,x) -

6.82725×1010 conj(d(v,z)) d(w2,x) - 11.5806 conj(d(V,z)) d(w2,x) -

2.3758×1011 conj(d(w,z)) d(w2,x) - 2.3758×1011 conj(d(u,z)) d(w2,z) -

3.68926×1010 conj(d(v,x)) d(w2,z) - 4.18951 conj(d(V,x)) d(w2,z) -

3.73297 conj(d(V,z)) d(w2,z) - 2.3758×1011 conj(d(w,x)) d(w2,z)
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Out[ ]= 0. + 8.00177×1010 conj(d(u,x)) d(u2,x) - 3.76345×1010 conj(d(v,z)) d(u2,x) +

4.04498 conj(d(V,z)) d(u2,x) + 2.46541×1011 conj(d(w,z)) d(u2,x) +

1.25188×1011 conj(d(u,z)) d(u2,z) - 7.1765×1010 conj(d(v,x)) d(u2,z) +

26.081 conj(d(V,x)) d(u2,z) - 6.11553 conj(d(V,z)) d(u2,z) +

1.25188×1011 conj(d(w,x)) d(u2,z) - 7.1765×1010 conj(d(u,z)) d(v2,x) -

2.6921×1011 conj(d(v,x)) d(v2,x) + 30.7493 conj(d(V,x)) d(v2,x) -

4.77798 conj(d(V,z)) d(v2,x) - 7.1765×1010 conj(d(w,x)) d(v2,x) +

26.081 conj(d(u,z)) d(V2,x) + 30.7493 conj(d(v,x)) d(V2,x) -

5.2025×10-10 conj(d(V,x)) d(V2,x) + 26.081 conj(d(w,x)) d(V2,x) -

3.76345×1010 conj(d(u,x)) d(v2,z) - 1.23628×1011 conj(d(v,z)) d(v2,z) -

1.71448 conj(d(V,z)) d(v2,z) - 2.93144×1010 conj(d(w,z)) d(v2,z) +

4.04498 conj(d(u,x)) d(V2,z) - 6.11553 conj(d(u,z)) d(V2,z) -

4.77798 conj(d(v,x)) d(V2,z) - 1.71448 conj(d(v,z)) d(V2,z) -

1.45844×10-9 conj(d(V,z)) d(V2,z) - 6.11553 conj(d(w,x)) d(V2,z) -

11.2685 conj(d(w,z)) d(V2,z) + 1.25188×1011 conj(d(u,z)) d(w2,x) -

7.1765×1010 conj(d(v,x)) d(w2,x) + 26.081 conj(d(V,x)) d(w2,x) -

6.11553 conj(d(V,z)) d(w2,x) + 1.25188×1011 conj(d(w,x)) d(w2,x) +

2.46541×1011 conj(d(u,x)) d(w2,z) - 2.93144×1010 conj(d(v,z)) d(w2,z) -

11.2685 conj(d(V,z)) d(w2,z) + 2.62661×1011 conj(d(w,z)) d(w2,z)

Out[ ]= 0. + 1.68713×1010 conj(d(u,x)) d(u2,x) - 1.31459×1011 conj(d(v,z)) d(u2,x) -

12.4675 conj(d(V,z)) d(u2,x) - 6.59622×1010 conj(d(w,z)) d(u2,x) -

6.82725×1010 conj(d(u,z)) d(u2,z) - 8.4605×1010 conj(d(v,x)) d(u2,z) +

8.9817 conj(d(V,x)) d(u2,z) + 4.77798 conj(d(V,z)) d(u2,z) -

6.82725×1010 conj(d(w,x)) d(u2,z) - 8.4605×1010 conj(d(u,z)) d(v2,x) +

1.96051×1010 conj(d(v,x)) d(v2,x) - 3.75564 conj(d(V,x)) d(v2,x) +

3.73297 conj(d(V,z)) d(v2,x) - 8.4605×1010 conj(d(w,x)) d(v2,x) +

8.9817 conj(d(u,z)) d(V2,x) - 3.75564 conj(d(v,x)) d(V2,x) -

1.25483×10-9 conj(d(V,x)) d(V2,x) + 8.9817 conj(d(w,x)) d(V2,x) -

1.31459×1011 conj(d(u,x)) d(v2,z) + 1.64758×1011 conj(d(v,z)) d(v2,z) +

1.62595 conj(d(V,z)) d(v2,z) - 1.25558×1011 conj(d(w,z)) d(v2,z) -

12.4675 conj(d(u,x)) d(V2,z) + 4.77798 conj(d(u,z)) d(V2,z) +

3.73297 conj(d(v,x)) d(V2,z) + 1.62595 conj(d(v,z)) d(V2,z) +

8.63797×10-10 conj(d(V,z)) d(V2,z) + 4.77798 conj(d(w,x)) d(V2,z) -

10.2568 conj(d(w,z)) d(V2,z) - 6.82725×1010 conj(d(u,z)) d(w2,x) -

8.4605×1010 conj(d(v,x)) d(w2,x) + 8.9817 conj(d(V,x)) d(w2,x) +

4.77798 conj(d(V,z)) d(w2,x) - 6.82725×1010 conj(d(w,x)) d(w2,x) -

6.59622×1010 conj(d(u,x)) d(w2,z) - 1.25558×1011 conj(d(v,z)) d(w2,z) -

10.2568 conj(d(V,z)) d(w2,z) + 1.2397×1011 conj(d(w,z)) d(w2,z)
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Out[ ]= 0. + 5.10982×1011 conj(d(u,x)) d(u2,x) - 6.59622×1010 conj(d(v,z)) d(u2,x) +

5.21447 conj(d(V,z)) d(u2,x) + 1.55803×1011 conj(d(w,z)) d(u2,x) -

2.3758×1011 conj(d(u,z)) d(u2,z) - 3.68926×1010 conj(d(v,x)) d(u2,z) -

4.18951 conj(d(V,x)) d(u2,z) - 3.73297 conj(d(V,z)) d(u2,z) -

2.3758×1011 conj(d(w,x)) d(u2,z) - 3.68926×1010 conj(d(u,z)) d(v2,x) -

2.96481×1010 conj(d(v,x)) d(v2,x) + 5.38946 conj(d(V,x)) d(v2,x) -

2.91651 conj(d(V,z)) d(v2,x) - 3.68926×1010 conj(d(w,x)) d(v2,x) -

4.18951 conj(d(u,z)) d(V2,x) + 5.38946 conj(d(v,x)) d(V2,x) +

4.1025×10-10 conj(d(V,x)) d(V2,x) - 4.18951 conj(d(w,x)) d(V2,x) -

6.59622×1010 conj(d(u,x)) d(v2,z) - 1.25558×1011 conj(d(v,z)) d(v2,z) -

10.2568 conj(d(V,z)) d(v2,z) + 1.2397×1011 conj(d(w,z)) d(v2,z) +

5.21447 conj(d(u,x)) d(V2,z) - 3.73297 conj(d(u,z)) d(V2,z) -

2.91651 conj(d(v,x)) d(V2,z) - 10.2568 conj(d(v,z)) d(V2,z) +

2.12426×10-10 conj(d(V,z)) d(V2,z) - 3.73297 conj(d(w,x)) d(V2,z) +

22.9799 conj(d(w,z)) d(V2,z) - 2.3758×1011 conj(d(u,z)) d(w2,x) -

3.68926×1010 conj(d(v,x)) d(w2,x) - 4.18951 conj(d(V,x)) d(w2,x) -

3.73297 conj(d(V,z)) d(w2,x) - 2.3758×1011 conj(d(w,x)) d(w2,x) +

1.55803×1011 conj(d(u,x)) d(w2,z) + 1.2397×1011 conj(d(v,z)) d(w2,z) +

22.9799 conj(d(V,z)) d(w2,z) - 8.05371×1011 conj(d(w,z)) d(w2,z)

Out[ ]= 0. + 16.3686 conj(d(u,z)) d(u2,x) + 6.82416 conj(d(v,x)) d(u2,x) -

5.55×10-10 conj(d(V,x)) d(u2,x) + 16.3686 conj(d(w,x)) d(u2,x) +

16.3686 conj(d(u,x)) d(u2,z) + 8.9817 conj(d(v,z)) d(u2,z) +

5.93345×10-10 conj(d(V,z)) d(u2,z) - 4.18951 conj(d(w,z)) d(u2,z) +

6.82416 conj(d(u,x)) d(v2,x) - 3.75564 conj(d(v,z)) d(v2,x) +

1.65553×10-10 conj(d(V,z)) d(v2,x) + 5.38946 conj(d(w,z)) d(v2,x) -

5.55×10-10 conj(d(u,x)) d(V2,x) - 1.405×10-19 conj(d(V,x)) d(V2,x) -

1.25483×10-9 conj(d(v,z)) d(V2,x) + 4.1025×10-10 conj(d(w,z)) d(V2,x) +

8.9817 conj(d(u,z)) d(v2,z) - 3.75564 conj(d(v,x)) d(v2,z) -

1.25483×10-9 conj(d(V,x)) d(v2,z) + 8.9817 conj(d(w,x)) d(v2,z) +

5.93345×10-10 conj(d(u,z)) d(V2,z) + 1.65553×10-10 conj(d(v,x)) d(V2,z) +

5.93345×10-10 conj(d(w,x)) d(V2,z) + 16.3686 conj(d(u,x)) d(w2,x) +

8.9817 conj(d(v,z)) d(w2,x) + 5.93345×10-10 conj(d(V,z)) d(w2,x) -

4.18951 conj(d(w,z)) d(w2,x) - 4.18951 conj(d(u,z)) d(w2,z) + 5.38946 conj(d(v,x)) d(w2,z) +

4.1025×10-10 conj(d(V,x)) d(w2,z) - 4.18951 conj(d(w,x)) d(w2,z)
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Out[ ]= 0. - 11.5957 conj(d(u,x)) d(u2,x) + 2.15588 conj(d(v,z)) d(u2,x) -

1.25483×10-9 conj(d(V,z)) d(u2,x) - 26.0929 conj(d(w,z)) d(u2,x) -

12.2783 conj(d(u,z)) d(u2,z) + 2.00869 conj(d(v,x)) d(u2,z) +

1.65553×10-10 conj(d(V,x)) d(u2,z) - 6.11553 conj(d(v,z)) d(u2,z) -

12.2783 conj(d(w,x)) d(u2,z) + 4.77798 conj(d(w,z)) d(u2,z) + 2.00869 conj(d(u,z)) d(v2,x) -

1.59468 conj(d(v,x)) d(v2,x) - 1.39584×10-9 conj(d(V,x)) d(v2,x) -

4.77798 conj(d(v,z)) d(v2,x) + 2.00869 conj(d(w,x)) d(v2,x) + 3.73297 conj(d(w,z)) d(v2,x) +

1.65553×10-10 conj(d(u,z)) d(V2,x) - 1.39584×10-9 conj(d(v,x)) d(V2,x) +

1.65553×10-10 conj(d(w,x)) d(V2,x) + 2.15588 conj(d(u,x)) d(v2,z) -

6.11553 conj(d(u,z)) d(v2,z) - 4.77798 conj(d(v,x)) d(v2,z) + 7.79531 conj(d(v,z)) d(v2,z) +

6.1656×10-10 conj(d(V,z)) d(v2,z) - 6.11553 conj(d(w,x)) d(v2,z) -

3.98158 conj(d(w,z)) d(v2,z) - 1.25483×10-9 conj(d(u,x)) d(V2,z) +

6.1656×10-10 conj(d(v,z)) d(V2,z) - 3.50958×10-19 conj(d(V,z)) d(V2,z) +

8.63797×10-10 conj(d(w,z)) d(V2,z) - 12.2783 conj(d(u,z)) d(w2,x) +

2.00869 conj(d(v,x)) d(w2,x) + 1.65553×10-10 conj(d(V,x)) d(w2,x) -

6.11553 conj(d(v,z)) d(w2,x) - 12.2783 conj(d(w,x)) d(w2,x) + 4.77798 conj(d(w,z)) d(w2,x) -

26.0929 conj(d(u,x)) d(w2,z) + 4.77798 conj(d(u,z)) d(w2,z) + 3.73297 conj(d(v,x)) d(w2,z) -

3.98158 conj(d(v,z)) d(w2,z) + 8.63797×10-10 conj(d(V,z)) d(w2,z) +

4.77798 conj(d(w,x)) d(w2,z) - 46.9193 conj(d(w,z)) d(w2,z)

Out[ ]= 0. + 27.7141 conj(d(u,x)) d(u2,x) - 12.4675 conj(d(v,z)) d(u2,x) +

4.1025×10-10 conj(d(V,z)) d(u2,x) + 5.21447 conj(d(w,z)) d(u2,x) -

11.5806 conj(d(u,z)) d(u2,z) - 4.99538 conj(d(v,x)) d(u2,z) +

5.93345×10-10 conj(d(V,x)) d(u2,z) + 4.77798 conj(d(v,z)) d(u2,z) -

11.5806 conj(d(w,x)) d(u2,z) - 3.73297 conj(d(w,z)) d(u2,z) - 4.99538 conj(d(u,z)) d(v2,x) +

10.554 conj(d(v,x)) d(v2,x) + 1.65553×10-10 conj(d(V,x)) d(v2,x) +

3.73297 conj(d(v,z)) d(v2,x) - 4.99538 conj(d(w,x)) d(v2,x) - 2.91651 conj(d(w,z)) d(v2,x) +

5.93345×10-10 conj(d(u,z)) d(V2,x) + 1.65553×10-10 conj(d(v,x)) d(V2,x) +

5.93345×10-10 conj(d(w,x)) d(V2,x) - 12.4675 conj(d(u,x)) d(v2,z) +

4.77798 conj(d(u,z)) d(v2,z) + 3.73297 conj(d(v,x)) d(v2,z) + 1.62595 conj(d(v,z)) d(v2,z) +

8.63797×10-10 conj(d(V,z)) d(v2,z) + 4.77798 conj(d(w,x)) d(v2,z) -

10.2568 conj(d(w,z)) d(v2,z) + 4.1025×10-10 conj(d(u,x)) d(V2,z) +

8.63797×10-10 conj(d(v,z)) d(V2,z) + 1.59543×10-19 conj(d(V,z)) d(V2,z) +

2.12426×10-10 conj(d(w,z)) d(V2,z) - 11.5806 conj(d(u,z)) d(w2,x) -

4.99538 conj(d(v,x)) d(w2,x) + 5.93345×10-10 conj(d(V,x)) d(w2,x) +

4.77798 conj(d(v,z)) d(w2,x) - 11.5806 conj(d(w,x)) d(w2,x) - 3.73297 conj(d(w,z)) d(w2,x) +

5.21447 conj(d(u,x)) d(w2,z) - 3.73297 conj(d(u,z)) d(w2,z) - 2.91651 conj(d(v,x)) d(w2,z) -

10.2568 conj(d(v,z)) d(w2,z) + 2.12426×10-10 conj(d(V,z)) d(w2,z) -

3.73297 conj(d(w,x)) d(w2,z) + 22.9799 conj(d(w,z)) d(w2,z)

In[ ]:= tsum[1, 1] // N

tsum[1, 2] // N

tsum[1, 3] // N

tsum[2, 2] // N

tsum[2, 3] // N

tsum[3, 3] // N

tsum[4, 1] // N

tsum[4, 2] // N

tsum[4, 3] // N
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Out[ ]= 0. - 2.56×1011 d(u2,x) d(u,x) - 1.67483×1011 d(u2,z) d(u,z) -

1.07724×1011 d(u,z) d(v2,x) + 16.3686 d(u,z) d(V2,x) + 1.68713×1010 d(u,x) d(v2,z) +

27.7141 d(u,x) d(V2,z) - 1.07724×1011 d(u2,z) d(v,x) - 2.40017×1011 d(v2,x) d(v,x) +

6.82416 d(V2,x) d(v,x) + 16.3686 d(u2,z) d(V,x) + 6.82416 d(v2,x) d(V,x) -

5.55×10-10 d(V2,x) d(V,x) + 1.68713×1010 d(u2,x) d(v,z) - 1.31459×1011 d(v2,z) d(v,z) -

12.4675 d(V2,z) d(v,z) + 27.7141 d(u2,x) d(V,z) - 12.4675 d(v2,z) d(V,z) +

4.1025×10-10 d(V2,z) d(V,z) - 1.67483×1011 d(u,z) d(w2,x) - 1.07724×1011 d(v,x) d(w2,x) +

16.3686 d(V,x) d(w2,x) + 5.10982×1011 d(u,x) d(w2,z) - 6.59622×1010 d(v,z) d(w2,z) +

5.21447 d(V,z) d(w2,z) - 1.67483×1011 d(u2,z) d(w,x) - 1.07724×1011 d(v2,x) d(w,x) +

16.3686 d(V2,x) d(w,x) - 1.67483×1011 d(w2,x) d(w,x) + 5.10982×1011 d(u2,x) d(w,z) -

6.59622×1010 d(v2,z) d(w,z) + 5.21447 d(V2,z) d(w,z) + 1.55803×1011 d(w2,z) d(w,z)

Out[ ]= 0. - 1.07724×1011 d(u2,z) d(u,x) - 1.07724×1011 d(u2,x) d(u,z) - 2.40017×1011 d(u,x) d(v2,x) +

6.82416 d(u,x) d(V2,x) - 8.4605×1010 d(u,z) d(v2,z) - 4.99538 d(u,z) d(V2,z) -

2.40017×1011 d(u2,x) d(v,x) + 1.96051×1010 d(v2,z) d(v,x) + 10.554 d(V2,z) d(v,x) +

6.82416 d(u2,x) d(V,x) - 3.75564 d(v2,z) d(V,x) + 1.65553×10-10 d(V2,z) d(V,x) -

8.4605×1010 d(u2,z) d(v,z) + 1.96051×1010 d(v2,x) d(v,z) - 3.75564 d(V2,x) d(v,z) +

3.73297 d(V2,z) d(v,z) - 4.99538 d(u2,z) d(V,z) + 10.554 d(v2,x) d(V,z) +

1.65553×10-10 d(V2,x) d(V,z) + 3.73297 d(v2,z) d(V,z) - 1.07724×1011 d(u,x) d(w2,x) -

8.4605×1010 d(v,z) d(w2,x) - 4.99538 d(V,z) d(w2,x) - 3.68926×1010 d(u,z) d(w2,z) -

2.96481×1010 d(v,x) d(w2,z) + 5.38946 d(V,x) d(w2,z) - 2.91651 d(V,z) d(w2,z) -

1.07724×1011 d(u2,x) d(w,x) - 8.4605×1010 d(v2,z) d(w,x) - 4.99538 d(V2,z) d(w,x) -

3.68926×1010 d(w2,z) d(w,x) - 3.68926×1010 d(u2,z) d(w,z) - 2.96481×1010 d(v2,x) d(w,z) +

5.38946 d(V2,x) d(w,z) - 2.91651 d(V2,z) d(w,z) - 3.68926×1010 d(w2,x) d(w,z)

Out[ ]= 0. - 1.67483×1011 d(u2,z) d(u,x) - 1.67483×1011 d(u2,x) d(u,z) - 1.07724×1011 d(u,x) d(v2,x) +

16.3686 d(u,x) d(V2,x) - 6.82725×1010 d(u,z) d(v2,z) - 11.5806 d(u,z) d(V2,z) -

1.07724×1011 d(u2,x) d(v,x) - 8.4605×1010 d(v2,z) d(v,x) - 4.99538 d(V2,z) d(v,x) +

16.3686 d(u2,x) d(V,x) + 8.9817 d(v2,z) d(V,x) + 5.93345×10-10 d(V2,z) d(V,x) -

6.82725×1010 d(u2,z) d(v,z) - 8.4605×1010 d(v2,x) d(v,z) + 8.9817 d(V2,x) d(v,z) +

4.77798 d(V2,z) d(v,z) - 11.5806 d(u2,z) d(V,z) - 4.99538 d(v2,x) d(V,z) +

5.93345×10-10 d(V2,x) d(V,z) + 4.77798 d(v2,z) d(V,z) - 1.67483×1011 d(u,x) d(w2,x) -

6.82725×1010 d(v,z) d(w2,x) - 11.5806 d(V,z) d(w2,x) - 2.3758×1011 d(u,z) d(w2,z) -

3.68926×1010 d(v,x) d(w2,z) - 4.18951 d(V,x) d(w2,z) - 3.73297 d(V,z) d(w2,z) -

1.67483×1011 d(u2,x) d(w,x) - 6.82725×1010 d(v2,z) d(w,x) - 11.5806 d(V2,z) d(w,x) -

2.3758×1011 d(w2,z) d(w,x) - 2.3758×1011 d(u2,z) d(w,z) - 3.68926×1010 d(v2,x) d(w,z) -

4.18951 d(V2,x) d(w,z) - 3.73297 d(V2,z) d(w,z) - 2.3758×1011 d(w2,x) d(w,z)

Out[ ]= 0. + 8.00177×1010 d(u2,x) d(u,x) + 1.25188×1011 d(u2,z) d(u,z) -

7.1765×1010 d(u,z) d(v2,x) + 26.081 d(u,z) d(V2,x) - 3.76345×1010 d(u,x) d(v2,z) +

4.04498 d(u,x) d(V2,z) - 6.11553 d(u,z) d(V2,z) - 7.1765×1010 d(u2,z) d(v,x) -

2.6921×1011 d(v2,x) d(v,x) + 30.7493 d(V2,x) d(v,x) - 4.77798 d(V2,z) d(v,x) +

26.081 d(u2,z) d(V,x) + 30.7493 d(v2,x) d(V,x) - 5.2025×10-10 d(V2,x) d(V,x) -

3.76345×1010 d(u2,x) d(v,z) - 1.23628×1011 d(v2,z) d(v,z) - 1.71448 d(V2,z) d(v,z) +

4.04498 d(u2,x) d(V,z) - 6.11553 d(u2,z) d(V,z) - 4.77798 d(v2,x) d(V,z) -

1.71448 d(v2,z) d(V,z) - 1.45844×10-9 d(V2,z) d(V,z) + 1.25188×1011 d(u,z) d(w2,x) -

7.1765×1010 d(v,x) d(w2,x) + 26.081 d(V,x) d(w2,x) - 6.11553 d(V,z) d(w2,x) +

2.46541×1011 d(u,x) d(w2,z) - 2.93144×1010 d(v,z) d(w2,z) - 11.2685 d(V,z) d(w2,z) +

1.25188×1011 d(u2,z) d(w,x) - 7.1765×1010 d(v2,x) d(w,x) + 26.081 d(V2,x) d(w,x) -

6.11553 d(V2,z) d(w,x) + 1.25188×1011 d(w2,x) d(w,x) + 2.46541×1011 d(u2,x) d(w,z) -

2.93144×1010 d(v2,z) d(w,z) - 11.2685 d(V2,z) d(w,z) + 2.62661×1011 d(w2,z) d(w,z)
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Out[ ]= 0. + 1.68713×1010 d(u2,x) d(u,x) - 6.82725×1010 d(u2,z) d(u,z) -

8.4605×1010 d(u,z) d(v2,x) + 8.9817 d(u,z) d(V2,x) - 1.31459×1011 d(u,x) d(v2,z) -

12.4675 d(u,x) d(V2,z) + 4.77798 d(u,z) d(V2,z) - 8.4605×1010 d(u2,z) d(v,x) +

1.96051×1010 d(v2,x) d(v,x) - 3.75564 d(V2,x) d(v,x) + 3.73297 d(V2,z) d(v,x) +

8.9817 d(u2,z) d(V,x) - 3.75564 d(v2,x) d(V,x) - 1.25483×10-9 d(V2,x) d(V,x) -

1.31459×1011 d(u2,x) d(v,z) + 1.64758×1011 d(v2,z) d(v,z) + 1.62595 d(V2,z) d(v,z) -

12.4675 d(u2,x) d(V,z) + 4.77798 d(u2,z) d(V,z) + 3.73297 d(v2,x) d(V,z) +

1.62595 d(v2,z) d(V,z) + 8.63797×10-10 d(V2,z) d(V,z) - 6.82725×1010 d(u,z) d(w2,x) -

8.4605×1010 d(v,x) d(w2,x) + 8.9817 d(V,x) d(w2,x) + 4.77798 d(V,z) d(w2,x) -

6.59622×1010 d(u,x) d(w2,z) - 1.25558×1011 d(v,z) d(w2,z) - 10.2568 d(V,z) d(w2,z) -

6.82725×1010 d(u2,z) d(w,x) - 8.4605×1010 d(v2,x) d(w,x) + 8.9817 d(V2,x) d(w,x) +

4.77798 d(V2,z) d(w,x) - 6.82725×1010 d(w2,x) d(w,x) - 6.59622×1010 d(u2,x) d(w,z) -

1.25558×1011 d(v2,z) d(w,z) - 10.2568 d(V2,z) d(w,z) + 1.2397×1011 d(w2,z) d(w,z)

Out[ ]= 0. + 5.10982×1011 d(u2,x) d(u,x) - 2.3758×1011 d(u2,z) d(u,z) -

3.68926×1010 d(u,z) d(v2,x) - 4.18951 d(u,z) d(V2,x) - 6.59622×1010 d(u,x) d(v2,z) +

5.21447 d(u,x) d(V2,z) - 3.73297 d(u,z) d(V2,z) - 3.68926×1010 d(u2,z) d(v,x) -

2.96481×1010 d(v2,x) d(v,x) + 5.38946 d(V2,x) d(v,x) - 2.91651 d(V2,z) d(v,x) -

4.18951 d(u2,z) d(V,x) + 5.38946 d(v2,x) d(V,x) + 4.1025×10-10 d(V2,x) d(V,x) -

6.59622×1010 d(u2,x) d(v,z) - 1.25558×1011 d(v2,z) d(v,z) - 10.2568 d(V2,z) d(v,z) +

5.21447 d(u2,x) d(V,z) - 3.73297 d(u2,z) d(V,z) - 2.91651 d(v2,x) d(V,z) -

10.2568 d(v2,z) d(V,z) + 2.12426×10-10 d(V2,z) d(V,z) - 2.3758×1011 d(u,z) d(w2,x) -

3.68926×1010 d(v,x) d(w2,x) - 4.18951 d(V,x) d(w2,x) - 3.73297 d(V,z) d(w2,x) +

1.55803×1011 d(u,x) d(w2,z) + 1.2397×1011 d(v,z) d(w2,z) + 22.9799 d(V,z) d(w2,z) -

2.3758×1011 d(u2,z) d(w,x) - 3.68926×1010 d(v2,x) d(w,x) - 4.18951 d(V2,x) d(w,x) -

3.73297 d(V2,z) d(w,x) - 2.3758×1011 d(w2,x) d(w,x) + 1.55803×1011 d(u2,x) d(w,z) +

1.2397×1011 d(v2,z) d(w,z) + 22.9799 d(V2,z) d(w,z) - 8.05371×1011 d(w2,z) d(w,z)

Out[ ]= 0. + 16.3686 d(u2,z) d(u,x) + 16.3686 d(u2,x) d(u,z) +

6.82416 d(u,x) d(v2,x) - 5.55×10-10 d(u,x) d(V2,x) + 8.9817 d(u,z) d(v2,z) +

5.93345×10-10 d(u,z) d(V2,z) + 6.82416 d(u2,x) d(v,x) - 3.75564 d(v2,z) d(v,x) +

1.65553×10-10 d(V2,z) d(v,x) - 5.55×10-10 d(u2,x) d(V,x) - 1.405×10-19 d(V2,x) d(V,x) -

1.25483×10-9 d(v2,z) d(V,x) + 8.9817 d(u2,z) d(v,z) - 3.75564 d(v2,x) d(v,z) -

1.25483×10-9 d(V2,x) d(v,z) + 5.93345×10-10 d(u2,z) d(V,z) +

1.65553×10-10 d(v2,x) d(V,z) + 16.3686 d(u,x) d(w2,x) + 8.9817 d(v,z) d(w2,x) +

5.93345×10-10 d(V,z) d(w2,x) - 4.18951 d(u,z) d(w2,z) + 5.38946 d(v,x) d(w2,z) +

4.1025×10-10 d(V,x) d(w2,z) + 16.3686 d(u2,x) d(w,x) + 8.9817 d(v2,z) d(w,x) +

5.93345×10-10 d(V2,z) d(w,x) - 4.18951 d(w2,z) d(w,x) - 4.18951 d(u2,z) d(w,z) +

5.38946 d(v2,x) d(w,z) + 4.1025×10-10 d(V2,x) d(w,z) - 4.18951 d(w2,x) d(w,z)
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Out[ ]= 0. - 11.5957 d(u2,x) d(u,x) - 12.2783 d(u2,z) d(u,z) +

2.00869 d(u,z) d(v2,x) + 1.65553×10-10 d(u,z) d(V2,x) + 2.15588 d(u,x) d(v2,z) -

6.11553 d(u,z) d(v2,z) - 1.25483×10-9 d(u,x) d(V2,z) + 2.00869 d(u2,z) d(v,x) -

1.59468 d(v2,x) d(v,x) - 1.39584×10-9 d(V2,x) d(v,x) - 4.77798 d(v2,z) d(v,x) +

1.65553×10-10 d(u2,z) d(V,x) - 1.39584×10-9 d(v2,x) d(V,x) +

2.15588 d(u2,x) d(v,z) - 6.11553 d(u2,z) d(v,z) - 4.77798 d(v2,x) d(v,z) +

7.79531 d(v2,z) d(v,z) + 6.1656×10-10 d(V2,z) d(v,z) - 1.25483×10-9 d(u2,x) d(V,z) +

6.1656×10-10 d(v2,z) d(V,z) - 3.50958×10-19 d(V2,z) d(V,z) - 12.2783 d(u,z) d(w2,x) +

2.00869 d(v,x) d(w2,x) + 1.65553×10-10 d(V,x) d(w2,x) - 6.11553 d(v,z) d(w2,x) -

26.0929 d(u,x) d(w2,z) + 4.77798 d(u,z) d(w2,z) + 3.73297 d(v,x) d(w2,z) -

3.98158 d(v,z) d(w2,z) + 8.63797×10-10 d(V,z) d(w2,z) - 12.2783 d(u2,z) d(w,x) +

2.00869 d(v2,x) d(w,x) + 1.65553×10-10 d(V2,x) d(w,x) - 6.11553 d(v2,z) d(w,x) -

12.2783 d(w2,x) d(w,x) + 4.77798 d(w2,z) d(w,x) - 26.0929 d(u2,x) d(w,z) +

4.77798 d(u2,z) d(w,z) + 3.73297 d(v2,x) d(w,z) - 3.98158 d(v2,z) d(w,z) +

8.63797×10-10 d(V2,z) d(w,z) + 4.77798 d(w2,x) d(w,z) - 46.9193 d(w2,z) d(w,z)

Out[ ]= 0. + 27.7141 d(u2,x) d(u,x) - 11.5806 d(u2,z) d(u,z) -

4.99538 d(u,z) d(v2,x) + 5.93345×10-10 d(u,z) d(V2,x) - 12.4675 d(u,x) d(v2,z) +

4.77798 d(u,z) d(v2,z) + 4.1025×10-10 d(u,x) d(V2,z) - 4.99538 d(u2,z) d(v,x) +

10.554 d(v2,x) d(v,x) + 1.65553×10-10 d(V2,x) d(v,x) + 3.73297 d(v2,z) d(v,x) +

5.93345×10-10 d(u2,z) d(V,x) + 1.65553×10-10 d(v2,x) d(V,x) -

12.4675 d(u2,x) d(v,z) + 4.77798 d(u2,z) d(v,z) + 3.73297 d(v2,x) d(v,z) +

1.62595 d(v2,z) d(v,z) + 8.63797×10-10 d(V2,z) d(v,z) + 4.1025×10-10 d(u2,x) d(V,z) +

8.63797×10-10 d(v2,z) d(V,z) + 1.59543×10-19 d(V2,z) d(V,z) - 11.5806 d(u,z) d(w2,x) -

4.99538 d(v,x) d(w2,x) + 5.93345×10-10 d(V,x) d(w2,x) + 4.77798 d(v,z) d(w2,x) +

5.21447 d(u,x) d(w2,z) - 3.73297 d(u,z) d(w2,z) - 2.91651 d(v,x) d(w2,z) -

10.2568 d(v,z) d(w2,z) + 2.12426×10-10 d(V,z) d(w2,z) - 11.5806 d(u2,z) d(w,x) -

4.99538 d(v2,x) d(w,x) + 5.93345×10-10 d(V2,x) d(w,x) + 4.77798 d(v2,z) d(w,x) -

11.5806 d(w2,x) d(w,x) - 3.73297 d(w2,z) d(w,x) + 5.21447 d(u2,x) d(w,z) -

3.73297 d(u2,z) d(w,z) - 2.91651 d(v2,x) d(w,z) - 10.2568 d(v2,z) d(w,z) +

2.12426×10-10 d(V2,z) d(w,z) - 3.73297 d(w2,x) d(w,z) + 22.9799 d(w2,z) d(w,z)
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Appendix B Coupling of the modes of an oscillator 

Modes of an oscillatory system are the patterns of motion that can describe the physical state of 

the system. In a linear system where the superposition principle holds, the total motion of the 

system can be described as summation of all the modes. Mathematically, modes are orthogonal 

to each other, meaning that they can get excited independently and they do not transfer energy 

among them. Depending on the system being continues or discrete it can have different number 

of modes. In a discrete system, number of the total physical modes equals to the number of 

degrees of freedom in the system, whereas a continues 

system can have infinite number of modes.  

Discrete System 

As a simple case consider a spring and mass oscillator. 

The equation of motion in 𝑥1 direction is shown in eq. (B.1). 

𝑚𝑥̈ = −𝑘𝑥                                                                                                  (B.1) 

Assuming a time harmonic solution as 𝑥(𝑡) = 𝑋(𝑡 = 0)𝑒𝐼𝜔𝑡, where 𝑋 and 𝜔 are the amplitude 

and frequency of the oscillation, respectively, and 𝐼 = √−1, eq. (B.2) becomes 

(𝜔2𝑚 − 2𝑘)𝑋 = 0                                                           (B.2) 

The frequency of the oscillation then is  

𝜔 = ±√
𝑘

𝑚
                     (B.3) 

The oscillation of the system can be defined as  

𝑥(𝑡) = 𝑋𝑒
𝐼√

𝑘

𝑚
𝑡

+ 𝑋𝑒
−𝐼√

𝑘

𝑚
𝑡
              (B.4) 

𝑋𝑒
𝐼√

𝑘

𝑚
𝑡
 and 𝑋𝑒

−𝐼√
𝑘

𝑚
𝑡
 are called the normal modes of the system. The physical motion is the real 

part of the solution that can be describe as  

𝑥(𝑡) =
𝑋

2
 𝐶𝑜𝑠 (√

𝑘

𝑚
𝑡)                               (B.5) 

Figure B.1. Spring-Mass System 
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Which is a single mode equal to the 

number of degrees of freedom. 

Now, imagine a system with two degrees 

of freedom, 𝑥1 and 𝑥2. This system is 

consisting of two masses and three 

springs and can be studied as a whole. The equation of motion is shown below 

𝑥̈1 =
−(𝑘+𝑘1)

𝑚1
𝑥1 +

𝑘

𝑚1
𝑥2                                 (B.6) (a) 

𝑥̈2 =
−(𝑘+𝑘2)

𝑚2
𝑥2 +

𝑘

𝑚2
𝑥1                    (B.6) (b)  

This can be viewed as a system that has two degrees of freedom, two physical modes, that are 

“coupled” with an intermediate spring with constant 𝑘.  

Assume a solution to the above equation as  

𝑥1(𝑡) = 𝑋1𝑒𝐼𝜔𝑡                     (B.7) (a) 

𝑥2(𝑡) = 𝑋2 𝑒𝐼𝜔𝑡                     (B.7) (b) 

Substituting eq. (B.7) in eq. (B.6) 

−𝜔2𝑋1𝑒𝐼𝜔𝑡 =
−(𝑘+𝑘1)

𝑚1
𝑋1𝑒𝐼𝜔𝑡 +

𝑘

𝑚1
𝑋2𝑒𝐼𝜔𝑡                    (B.8) (a) 

−𝜔2𝑋2𝑒𝐼𝜔𝑡 =
−(𝑘+𝑘2)

𝑚2
𝑋2𝑒𝐼𝜔𝑡 +

𝑘

𝑚2
𝑋1𝑒𝐼𝜔𝑡                  (B.8) (b) 

Or in a matrix form 

[

−(𝑘+𝑘1)+𝜔2𝑚1

𝑚1

𝑘

𝑚1

𝑘

𝑚2

−(𝑘+𝑘2)+𝜔2𝑚2

𝑚2

] [
𝑋1

𝑋2
] = 0            (B.9) 

To solve the system set Det[

−(𝑘+𝑘1)+𝜔2𝑚1

𝑚1

𝑘

𝑚1

𝑘

𝑚2

−(𝑘+𝑘2)+𝜔2𝑚2

𝑚2

] == 0 

Which is a fourth order in terms of 𝜔 

The four solutions are  

Figure B2. Two coupled Oscillators 
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𝜔𝑐1 → ±√ 𝑘

2 𝑚1
+

𝑘1

2 𝑚1
∓

1

2 
√(

𝑘

 𝑚1
+

𝑘1

 𝑚1
+

𝑘

 𝑚2
+

𝑘2

 𝑚2
)

2
− 4 (

𝑘𝑘1

 𝑚1𝑚2
+

𝑘𝑘2

𝑚1𝑚2
+

𝑘1𝑘2

𝑚1𝑚2
) +

𝑘

2 𝑚2
+

𝑘2

2 𝑚2
   (B.10) 

𝜔𝑐2 → ±√ 𝑘

2 𝑚1
+

𝑘1

2 𝑚1
±

1

2 
√(

𝑘

 𝑚1
+

𝑘1

 𝑚1
+

𝑘

 𝑚2
+

𝑘2

 𝑚2
)

2
− 4 (

𝑘𝑘1

 𝑚1𝑚2
+

𝑘𝑘2

𝑚1𝑚2
+

𝑘1𝑘2

𝑚1𝑚2
) +

𝑘

2 𝑚2
+

𝑘2

2 𝑚2
    (B.11) 

The eigenvectors are   

[𝑋1, 𝑋2] = [
𝑘2𝑚1+𝑘(𝑚1−𝑚2)−𝑘1𝑚2±√𝑘2(𝑚1+𝑚2)2+2𝑘(𝑚1−𝑚2)(𝑘2𝑚1−𝑘1𝑚2)+(𝑘2𝑚1−𝑘1𝑚2)2

2 𝑘 𝑚1
, 1]                 (B.12) 

The solution to the coupled system has four modes. If the coupling coefficient goes to zero, 𝑘 →

0, 𝜔𝑐1,𝑐2 = ±√
𝑘1,2

𝑚1,2
 , which is the frequency of each uncoupled oscillators. This approach is called 

coupling of modes. Note that none of the uncoupled modes exist anymore. The system has two 

physical modes.  

 

Appendix C Calculation of the intensity of an acoustic wave 

The power density or intensity of an acoustic wave, in the direction of propagation 𝑝̅, can be 

calculated from eq. (C.1),  

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
1

2
|𝑝̅. (𝑃̅ + 𝑃̅∗)|                                                                                                                        (C.1) 

where 𝑃̅  is the complex acoustic Poynting vector, represented in eq. (C.2) and 𝑃̅∗ denotes its 

complex conjugate.  

𝑃̅ =
−v̅∗.𝑇̿

2
                                                                                                                                                       (C.2) 

In eq. (C.2) v̅∗ is the complex conjugate of the particle velocity and 𝑇̿ is the symmetric Cauchy 

Stress.  

For a time-harmonic displacement field defined as u𝑘(𝑥̅, t) = 𝑢𝑘(𝑥̅) 𝑒−𝐼𝜔𝑡, where 𝐼 = √−1, it is 

readily seen,  

v𝑘(𝑥̅, t) = −𝐼𝜔 u𝑘(𝑥̅, t)                                                                                                                        (C.3) (a) 
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and, 

 v𝑘
∗ (𝑥̅, t) = 𝐼𝜔 u𝑘

∗ (𝑥̅, t).                                                                                                                         (C.3) (b) 

Substituting from eq. (C.3 b) for v̅∗ and the constitutive equations 𝑇𝑖𝑗(𝑥̅, t) = 𝐶𝑖𝑗𝑘𝑙u𝑘,𝑙(𝑥̅, t), for 𝑇̿, 

into eq. (C.2), results in eq. (C.4). 

𝑃𝑗 =
−𝐼 𝜔

2
𝑢𝑖

∗ 𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑙                                                                                                                                   (C.4) 

Expressed in the eigenvector basis and assuming mono-mode expansion of the displacement 

field, its components are represented in eq. (C.5). 

𝑢𝑖 = 𝑢(𝛼) 𝑙𝑖
(𝛼)

                                                                                                                               (C.5) 

Assuming propagation in the 𝑝̅ direction, and 𝜉 = 𝑝̅. 𝑥̅,  

𝑢(𝛼) = 𝓊(𝛼)𝑒(𝐼𝑘(𝛼)𝜉)                                                                                                                                  (C.6) 

where 𝓊(𝛼) and  𝑘(𝛼) are the amplitude of the displacement and wavenumber of mode 𝛼, 

respectively.  Substituting eq. (C.6) and eq. (C.5) in eq. (C.4), results in eq. (C.7). 

𝑃𝑗 =
𝜔

2
𝓊∗(𝛼)𝑙𝑖

(𝛼)
𝑒−𝐼(𝑘(𝛼)𝜉−𝜔𝑡) 𝐶𝑖𝑗𝑘𝑙𝓊(𝛼)𝑘(𝛼)𝑙𝑘

(𝛼)
𝑝𝑙𝑒𝐼(𝑘(𝛼)𝜉−𝜔𝑡)                                                               (C.7) 

Eq. (C.8) is obtained by multiplying both sides of eq. (C.7) by 𝑝𝑗. 

𝑝𝑗𝑃𝑗 =
𝜔

2
𝐶𝑖𝑗𝑘𝑙  𝑘(𝛼) 𝓊∗(𝛼)𝓊(𝛼)𝑙𝑖

(𝛼)
 𝑙𝑘

(𝛼)
 𝑝𝑗𝑝𝑙                                                                                              (C.8) 

Here, with 𝓊(𝛼)𝓊∗(𝛼) = |𝓊(𝛼)|
2
 , and  Γ𝑖𝑘 = 𝐶𝑖𝑗𝑘𝑙𝑝𝑗𝑝𝑙 eq. (C.8) reduces to eq. (C.9). 

𝑝𝑗𝑃𝑗 =
𝜔

2
|𝓊(𝛼)|

2
 Γ𝑖𝑘 𝑙𝑖

(𝛼)
𝑙𝑘

(𝛼)
 𝑘(𝛼)                                                                                                               (C.9) 

With Γ𝑚𝑛 𝑙𝑛
(𝛼)

𝑙𝑚
(𝛼)

= 𝜌 
𝜔2

(𝑘(𝛼))2 eq. (C.9) reduces to eq. (C.10). 

𝑝𝑗𝑃𝑗 =
𝜌𝜔3

2𝑘(𝛼) |𝓊(𝛼)|
2
                                                                                                                                   (C.10) 

Substituting eq. (C.10) in eq. (C.1), the intensity of an acoustic wave can be obtained from eq. 

(C.11), 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
𝜌

2
|

𝜔3

𝑘(𝛼)| |𝓊(𝛼)|
2
                                                                                                                      (C.11) 

Or,  
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𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
1

2
𝜌𝜔2𝑐(𝛼)|𝓊(𝛼)|

2
,                                                                                                                (C.12)                   

where 𝑐𝛼, is the wave speed of the mode 𝛼.                                                            

From the above equation, the intensity of the wave at frequency 𝜔𝑞 can be written as eq. (C.13). 

𝐼𝑞 =
1

2
𝜌𝜔𝑞

2𝑐𝑞
(𝛼)

|𝓊(𝛼)(𝜔𝑞)|
2
                                                                                                                      (C.13) 

When the displacement is represented in its phasor notation, 𝓊𝛼(𝜔𝑞) = |𝓊𝛼(𝜔𝑞)| 𝑒𝐼𝜙𝑞, the 

magnitude of its 𝛼 mode can be written in terms of intensity as eq. (C.14), 

|𝓊𝛼(𝜔𝑞)| = (
2 𝐼𝑞

𝜌 𝜔𝑞
2  𝑐𝑞

𝛼)
1

2⁄                                                                                                                             (C.14) 

 and, its derivative with respect to 𝜉 is calculated as eq. (C.15). 

𝑑

𝑑𝜉
𝓊(𝛼)(𝜔𝑞) = (

𝑑

𝑑𝜉
|𝓊(𝛼)(𝜔𝑞)| + 𝐼|𝓊(𝛼)(𝜔𝑞)|

𝑑𝜙𝑞

𝑑𝜉
) 𝑒𝐼𝜙𝑞           

= (
1

2
(

2

𝜌 𝜔𝑞
2  𝑐𝑞

(𝛼))

1
2⁄

𝐼𝑞

−1
2⁄

 
𝑑𝐼𝑞

𝑑𝜉
+ 𝐼|𝓊(𝛼)(𝜔𝑞)|

𝑑𝜙𝑞

𝑑𝜉
)𝑒𝐼𝜙𝑞                                                                             (C.15) 

Solving eq. (C.15) for the derivative of the intensity with respect to 𝜉, eq. (C.16) is derived. 

𝑑𝐼𝑞

𝑑𝜉
= (2𝜌 𝑐𝑞

(𝛼)
)

1
2⁄

𝐼𝑞

1
2⁄

𝜔𝑞(
𝑑

𝑑𝜉
𝓊(𝛼)(𝜔𝑞)𝑒−𝐼𝜙𝑞 − 𝐼|𝓊(𝛼)(𝜔𝑞)|

𝑑𝜙𝑞

𝑑𝜉
).                                                     (C.16) 

From eq. (3.1.38), 𝓊,𝜉
(𝛼)

 can be written as,  

𝓊,𝜉
(𝛼)

(𝜔𝑞) = ∑ |𝐶𝑒𝑓𝑓
𝛼𝛽𝛾

| |
𝑘𝑟

(𝛽)
𝑘𝑆

(𝛾)

𝑘𝑞
(𝛼) (𝑘𝑟

𝛽
+ 𝑘𝑆

𝛾
)| |𝓊(𝛽)(𝜔𝑟)||𝓊(𝛾)(𝜔𝑠)|(𝑟,𝑠) 𝑒𝐼(∆𝑘𝑟𝑠𝑞𝜉+𝜙𝑐+𝜙𝑘+𝜙𝑟+𝜙𝑠)         (C.17) 

where, it is assumed,  

 𝓊𝛽(𝜔𝑟) = |𝓊𝛽(𝜔𝑟)| 𝑒𝐼𝜙𝑟 , 𝓊𝛾(𝜔𝑠) = |𝓊𝛾(𝜔𝑠)| 𝑒𝐼𝜙𝑠, 
1

8

(𝐻𝛼𝛽𝛾)

𝐺𝛼𝛼 = |𝐶𝑒𝑓𝑓
𝛼𝛽𝛾

| 𝑒𝐼𝜙𝑐  

 and  

(
𝑘𝑟

(𝛽)
𝑘𝑆

(𝛾)

𝑘𝑞
(𝛼) (𝑘𝑟

(𝛽)
+ 𝑘𝑆

(𝛾)
)) = |

𝑘𝑟
(𝛽)

𝑘𝑆
(𝛾)

𝑘𝑞
(𝛼) (𝑘𝑟

(𝛽)
+ 𝑘𝑆

(𝛾)
)| 𝑒𝐼𝜙𝑘. 

Substituting for 
𝑑

𝑑𝜉
𝓊(𝛼)(𝜔𝑞), from eq. (C.17) in eq. (C.16), results in eq. (C.18),   
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𝑑𝐼𝑞

𝑑𝜉
= (2𝜌 𝑐𝑞

(𝛼)
)

1
2⁄

𝐼𝑞

1
2⁄

𝜔𝑞 ∑ |𝐶𝑒𝑓𝑓
𝛼𝛽𝛾

| |
𝑘𝑟

(𝛽)
𝑘𝑆

(𝛾)

𝑘𝑞
(𝛼) (𝑘𝑟

(𝛽)
+ 𝑘𝑆

(𝛾)
)| |𝓊(𝛽)(𝜔𝑟)||𝓊(𝛾)(𝜔𝑠)|(𝑟,𝑠) 𝑒𝐼𝜓𝑟𝑠𝑞 −

𝐼|𝓊(𝛼)(𝜔𝑞)|
𝑑𝜙𝑞

𝑑𝜉
)                                                                                                             (C.18) 

where,  

𝜓𝑟𝑠𝑞 = ∆𝑘𝑟𝑠𝑞𝜉 + 𝜙𝑐 + 𝜙𝑟 + 𝜙𝑠 − 𝜙𝑞 + 𝜙𝑘                                                                         (C.19) 

Substituting for |𝓊(𝛽)(𝜔𝑟)| and |𝓊(𝛾)(𝜔𝑠)| from eq. (C.13) and using the definition of the wave 

speed to substitute for 𝑘𝑞
(𝛼)

=
𝜔𝑞

 𝑐𝑞
(𝛼) , 𝑘𝑟

(𝛽)
=

𝜔𝑟

𝑐𝑟
(𝛽) and 𝑘𝑠

(𝛾)
=

𝜔𝑠

 𝑐𝑠
(𝛾) , eq. (C.18), eq. (C.20) is derived 

𝑑𝐼𝑞

𝑑𝜉
= ∑ (

 2 𝑐𝑞
(𝛼)

𝑐𝑟
(𝛽)

 𝑐𝑠
(𝛾))

3
2⁄

(
𝐼𝑞𝐼𝑟𝐼𝑠

𝜌
)

1
2⁄

|𝑘𝑟
(𝛽)

+ 𝑘𝑆
(𝛾)

| |𝐶𝑒𝑓𝑓
𝛼𝛽𝛾

|(𝑟,𝑠)  𝑒𝐼𝜓𝑟𝑠𝑞 − 2 𝐼 𝐼𝑞  
𝑑𝜙𝑞

𝑑𝜉
                            (C.20) 

Dividing eq. (C.20) into real and imaginary parts results in eqs. (C.21) (a) and (C.21) (b), 

respectively. Since intensity of an elastic wave is a real value eq. (C.20) represents the equation 

for intensity gradient. eq. (C.21) (b) also provides the equation to solve for the change in phase 

of the wave at frequency 𝜔𝑞.  

𝑑𝐼𝑞

𝑑𝜉
= ∑ (

 2 𝑐𝑞
(𝛼)

𝑐𝑟
(𝛽)

 𝑐𝑠
(𝛾))

3
2⁄

(
𝐼𝑞𝐼𝑟𝐼𝑠

𝜌
)

1
2⁄

|𝑘𝑟
(𝛽)

+ 𝑘𝑆
(𝛾)

| |𝐶𝑒𝑓𝑓
𝛼𝛽𝛾

|(𝑟,𝑠) 𝐶𝑜𝑠(𝜓𝑟𝑠𝑞)                                           (C.21) (a) 

𝐼(2  𝐼𝑞  
𝑑𝜙𝑞

𝑑𝜉
− ∑ (

 2 𝑐𝑞
(𝛼)

𝑐𝑟
(𝛽)

 𝑐𝑠
(𝛾))

3
2⁄

(
𝐼𝑞𝐼𝑟𝐼𝑠

𝜌
)

1
2⁄

|𝑘𝑟
(𝛽)

+ 𝑘𝑆
(𝛾)

| |𝐶𝑒𝑓𝑓
𝛼𝛽𝛾

|(𝑟,𝑠) 𝑆𝑖𝑛(𝜓𝑟𝑠𝑞)) = 0                      (C.21) (b) 

Defining  

𝒜(𝑟,𝑠) = (
 2 𝑐𝑞

(𝛼)

𝑐𝑟
(𝛽)

 𝑐𝑠
(𝛾))

3
2⁄

(
𝐼𝑞𝐼𝑟𝐼𝑠

𝜌
)

1
2⁄

|𝑘𝑟
(𝛽)

+ 𝑘𝑆
(𝛾)

| |𝐶𝑒𝑓𝑓
𝛼𝛽𝛾

|                                                         (C.22)   

Eq. (C.21a) is written as  

𝑑𝐼𝑞

𝑑𝜉
= ∑ 𝒜(𝑟,𝑠)(𝑟,𝑠)  𝐶𝑜𝑠(𝜓𝑟𝑠𝑞)                                                                                          (C.23) 
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Appendix D Linear and Nonlinear Elastic Constants of LiNbO3 

and Aluminum 

 

 

Table 4- Nonlinear Material Properties for Lithium Niobate (LiNbO3), (×10^9Pa) and C155 = C166 = C125 = C135 = 
C145 = C146 = C225 = C226 = C235 = C236 = C136 = C245 = C246 = C334 = C335 = C336 = C345 = C346 = C445 = 
C446 = C555 = C556 = C566 = C666 = C 

 

 
 
 

 

 

 

 

 

 

C111 C112 C113 C114 C123 C124 

-512 454 728 -410 719 55 

C144 C155 C222 C333 C344 C444 

-37 -599 -478 -363 -540 -41 

C156 C166 C224 C233 C234 C244 

-122.5 -216 300 -340 1 -599 

C455 C356 C355 C266 C366 C456 

41 -1 -540 -250 4.5 -281 

C133 C134 C122 C256 C255 C466 

-34 -1 420 -232.5 -370 55 

C223 

728 
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Table 5- Linear Material Properties for Lithium Niobate (LiNbO3) (×10^9Pa), density=4700  Kg/m^3  and C15 = 
C16 = C25 = C26 = C34 = C35 = C36 = C45 = C46 = 0 

 

 

 

 

Table 6- Linear and Nonlinear Material Properties for Aluminum (×10^9Pa), density=2680 Kg/m^3 

 

 
 
 
 
 
 
 
 
 
 
 
 

C11 C12 C22 C14 C24 C13 

203 57.3 203 8.5 -8.5 75.2 

C23 C33 C44 C55 C56 C66 

75.2 242.4 59.5 59.5 8.5 72.85 

𝑬 𝝀 𝝁 𝒍 𝒎 𝒏 

70 51 26 -250 -333 -350 
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