Title

Viral-host interactome evolution compensates for an array of host gene deletions

Permalink

https://escholarship.org/uc/item/5cf521v0

Author

hegewisch solloa, Everardo
Publication Date
2018
Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA SAN DIEGO

Viral-host interactome evolution compensates for an array of host gene deletions

A Thesis submitted in partial satisfaction of the requirements for the degree Master of Sciences
in

Biology
by

Everardo Hegewisch Solloa

Committee in charge:
Professor Justin R. Meyer, Chair
Professor Lin Chao
Professor Matthew Daugherty
©

Everardo Hegewisch Solloa, 2018
All rights reserved

The Thesis of Everardo Hegewisch Solloa is approved, and it is acceptable in quality and form for publication on microfilm and electronically:
\qquad

Chair

University of California San Diego
2018

Table of Contents:

Signature page iii
Table of contents iv
List of supplemental materials vi
List of figures vii
List of tables viii
Acknowledgements ix
Abstract of the thesis x
Introduction 1
Materials and methods 5
E. coli Strains 5
Bacteriophage λ strains 5
Culture conditions 6
Determining phage stock density 7
Preliminary knockout host screen 8
Evolution experiment 9
Genome sequencing 10
Identification of mutations in evolved phage isolates 11
Competitive fitness experiments 12
Calculation of λ growth rate and fitness 12
Host range experiment 13
Genome engineering 14
Competitive fitness experiments for engineered λ strains 14
Statistical analysis 15
Results 16
Discussion 29
Preliminary KO screen reveals large redundancies within the λ - E. coli interactome. 29
Intergenomic diminishing returns epistasis drives large variation in fitness improvements 29
Host range profiles of evolved isolates reveal a modular pattern of adaptation 30
Adaptive solutions to specific KOs 31
Conclusion 33
Supplemental materials 34
References 58
List of Supplemental Materials:
Supplemental table 1: list of 67 Keio KO strains used as hosts for the preliminary screen and their effect on λ replication 34
Supplemental table 2: host ratio and spot assay data for evolution experiments 35
Supplemental table 3: initial and final phage densities for competitive fitness experiments 41
Supplemental table 4: host range experiment raw plating efficiency data 49
Supplemental table 5: oligos for λ modification using MAGE 51
Supplemental table 6: primers for sanger sequencing verification of mutation incorporation in post MAGE isolates. 51
Supplemental table 7: initial and final concentrations for modified λ competitive growth rate experiments 52
Supplemental table 8: mutation profiles of all evolved isolates from BreSeq output files 53

List of Figures:

Figure 1: schematic of the evolution experiment set up 9
Figure 2: growth rate measurements of the ancestral lambda on candidate KEIO KO strains reveal a spanning range of deleterious effects on lambda replication 17
Figure 3a: relative fitness measurements of evolved isolates reveal a common pattern of improvement across all conditions with variation in the degree of improvement. 18
Figure 3b: Comparison of ancestral and evolved λ growth rates on 17 host genotypes reveals that λ evolved greater improvements when faced with larger challenges... 19
Figure 4a: genomic analysis of λ evolution show similar patterns of adaptation between KO and WT evolved populations 20
Figure 4b: more rapid molecular evolution is observed in WT evolved isolates than in KO evolved isolates. 20
Figure 4c: extreme KOs which attenuate viral replication do not show to select for increased rapid molecular evolution. 21
Figure 4d: the number of mutations acquired by any one isolate is not correlated to an increased improvement in fitness of an evolved isolate relative to the ancestral strain 21
Figure 5: intergenomic diminishing returns epistasis produces large variation in λ fitness improvements. 23
Figure 6: phenotypic analysis of the evolved λ host range reveals two general patterns of adaptation 24
Figure 7: correlation clustering of the evolved λs^{\prime} mutation profiles reveals unique lineages with specialized adaptations. 26
Figure 8 a-d: relative fitness of engineered λ strains reveal that some KOs selected for specialized adaptive solutions 28

List of Tables:

Table 1: experimental block design for parallel evolution experiment 10
Table 2: list of the 16 KEIO E. coli strains selected as hosts for evolution experiment.... 16

Acknowledgements:
This thesis would not have been possible without the great guidance and teachings of Doctors Justin Meyer and Katie Petrie. Justin, I would like to thank you for giving me a new perspective, pushing me to think outside the box and providing me with the fundamental skills that will help me succeed in my future endeavors. I would also like to thank Katie for her thoughtful mentorship and for all that you taught me. I will always cherish and use the skills you both gave me for the rest of my scientific career. Again, thank you for setting the stage for this project and giving me the amazing opportunity of working with you both.

I would also like to give a special thank you to all the lab members that put in countless hours into collecting data for this project; Thanks to Betty F., Alicia T., Annie S., Stephanie Y. and Weiwei H. Also thank you to Sarah M. for always giving me an extra hand when I was over my head with lab work, you are a great friend! To the rest of the Meyer lab members, thank you for all the support and advice you've provided over the past two and half years it's been truly an honor to get to know everyone!

Abstract of the Thesis

Viral-host interactome evolution compensates for an array of host gene deletions
by

Everardo Hegewisch Solloa
Master of Science in Biology
University of California San Diego, 2018
Professor Justin R. Meyer, Chair

In order to carry out successful infections, bacteriophage λ depends on many proteins in its host, the bacterium Escherichia coli. λ proteins and λ DNA interact with host molecules to facilitate infection and replication. These interactions form a molecular network known as the interactome. Viral evolution is therefore largely governed by changes that optimize the productivity of the interactome. Here, I present studies where we perturbed λ 's interactome and allowed it to regain functionality through adaptive evolution. These studies provide insight into how viruses adapt, and more generally, how gene networks evolve. Previous studies have identified host genes used by λ during infection. We used this knowledge in order to perturb the
interactome by culturing λ on a variety of host strains with one of these genes deleted. We proceeded to study λ evolution to the 16 KOs and a wild type control to distinguish between specialized adaptations to specific KOs, or general adaptations to suboptimal laboratory conditions. Overall, most perturbations to the interactome could be solved with generic mutations that improve λ growth, although, there are a few host gene deletions that require specialized mutations. Our study shows that viruses can easily adapt to perturbations in their interactomes through different adaptive solutions. While mutations with general benefits aid the correction of node deletions by providing disproportionate benefits for especially destructive deletions, some host gene deletions require specialized mutations.

Introduction:

As microscopic parasites that lack the fundamental components of a living cell, viruses are fully dependent on their host's cellular machinery to reproduce (Holmes and Drummond, 2007; Pybus and Rambaut, 2009). During an infection, viruses must rewire their host's innate programming that is optimized for cellular reproduction and survival, to replicate new viral particles and ultimately triggering cellular self-destruction. To accomplish this, viruses have evolved the ability to manipulate massive host molecular networks with a minimal set of viral genes (Chisari, 2005; Pybus and Rambaut, 2009; Stebbing and Gazzard, 2011; Trkola, 2004;).

Even though it is thought that viruses have evolved highly specialized interactions with their host molecular network, viruses seem to be flexible and able to adopt new molecular interactions. As viruses are dependent on a specific set of host molecular interactions, in order for a virus to infect a novel host the virus must adapt to efficiently manipulate the novel host's molecular machinery by evolving a new virus-host interaction network that compensates for missing interactions that were previously present in the natural host (Jones et al., 2008; Longdon et al., 2014; Parrish et al., 2008). For example, studies have shown that influenza strains which jump into a new host species must adapt to regulate a novel host's interferon immune response through NS1 mutations (Parrish et al. 2008). By studying how viruses evolve to exploit new molecular interactions we are able to better understand and predict emerging infectious diseases (Kuiken et al., 2006). Thus, it is important to understand the evolutionary dynamics that lead to changes in virus-host molecular interactions.

Shifts in pathogen-host molecular interactions are also a common theme in coevolutionary arms races (Beutler et al., 2008; Forde et al., 2008; Meyer et al., 2012; Scanlan et al., 2011). Viruses that face resistant host strains must adapt to compensate for missing or even
deleterious host interactions through mutations which allow the virus to gain novel interactions within the host's molecular network (Hertz et al., 2011; Marques and Carthew, 2007). Previous studies have shown that λ readily adapted to exploit a new receptor on its host, Escherichia coli, in response to the host decreasing the expression of its primary receptor, indicating that λ is highly evolvable and can easily adapt new molecular interactions to compensate for missing host components of the interactome (Meyer et al., 2012). Similarly, many antiviral therapeutics inhibit viral replication by preventing certain virus-host molecular interactions that are necessary for infection to occur (De Clercq, 2002; Lou et al., 2014). This creates a selection pressure for the virus to accumulate mutations that allow the virus to exploit novel interaction to overcome the antiviral block, leading to the rise of a resistant viral strain which is no longer dependent on the previous interaction (Kimberlin et al., 1995; Lipsitch et al., 2007 Strasfeld and Chou, 2011). Understanding how the molecular interactions between a virus and its host evolves under different evolutionary challenges provides major insights into better methods for the development of novel antiviral therapies that both mitigate evolution of antiviral resistance and attenuate effects of immune-mediated pathogenesis resulting from infection (Strasfeld and Chou, 2011; Rambaut et al., 2004; Karlsson et al., 2014).

In these scenarios, the virus has to evolve novel molecular interactions in response to new host opportunities or to perturbations within its host molecular network (i.e. antivirals and resistant hosts). Typically, these circumstances cause the virus to experience selective pressure to evolve adaptations that compensate for a changing host molecular interaction network (Lipsitch et al., 2007; Pybus and Rambaut, 2009). In this work, I explore the process of viral adaptation by seeing how a non-pathogenic model virus, bacteriophage λ, evolves solutions to deletions in host proteins that are used for viral replication. Bacteriophage λ is a well-studied phage that infects
the bacterium, Escherichia coli and has been used as model for viruses for decades (Barrick and Lenski, 2013; Casjens and Hendrix, 2015; Longdon et al., 2014). Moreover, λ evolution has been documented in many laboratory studies, and is an ideal model system to test evolutionary theories (Meyer et al., 2012; Refardt and Rainey, 2010; Shao and Wang, 2008).

Like all viruses, λ depends on a set of E. coli genes that consists of multifaceted and single molecular interactions (Balsche et al., 2013; Mariano et al., 2015; Maynard et al., 2010). The network of molecular interactions (i.e. protein-protein or DNA-DNA interactions) that occur between a virus and its host during infection and facilitate viral replication is known as the interactome (Rodrigo et al., 2017; Schneider et al., 2016). Studies from the last half century have identified over 100 host proteins (i.e. dnaK, lamB, nusB, etc.) which make up the bacterial components of the λ-E. coli interactome network; many of which have been recently identified through high throughput screens (Cumby et al., 2014; Balsche et al., 2013; Esquinas-Rynchen and Erni, 2001; Maynard et al., 2010). Because of this, our understanding of the members of the λ-E. coli interactome is well established. Yet it is not well known how λ can evolve to deal with alterations in the host components of its interactome.

As previously mentioned, viruses have evolved highly specialized interactome networks with their hosts yet evidence supports that interactomes are adaptable. Studies show that λ possesses additional qualities that may enhance its interactome adaptability. First, both the genome and interactome of λ is quite large relative to other phage, suggesting that it may have evolved genetic redundancies. Redundancies within the interactome may facilitate evolution since λ would be able to repurpose unnecessary interactions with host components for new operations (Hauser et al., 2012; Scandella and Arber, 1976). Moreover, λ has a unique interactome with few similarities to the interactome of other phage that infect E. coli, such as T7,
which indicates that there exists a number of alternative interactions that λ could evolve to exploit (Hauser et al., 2012). These observations suggest that λ should have the evolutionary capacity to compensate for different perturbations in host components of the interactome.

To study how λ evolves to perturbations in host components of its interactome we screened a library of single gene knockouts Escherichia coli to identify the host genes that most affected λ 's ability to replicate (Baba et al., 2006; Balsche et al., 2013; Maynard et al., 2010). We were able to test how λ evolves to compensate for deletions in its host interactome and whether there are any perturbations which λ is unable to overcome. Overall, studying how λ adapts to single deletions in host components of its interactome allows us to better understand many different scenarios of viral evolution and determine if there are common themes in virushost interactome evolution and λ evolvability.

Materials and Methods:

E. coli strains:

Two E. coli K-12 strains were used as hosts when culturing or plating our phage populations. The KEIO knockout ($K O$) collection consists of a library of single knockout mutants in which a non-essential gene is replaced with a kanamycin resistance cassette. We screened 67 different $K E I O K O$ strains in our preliminary study (supplemental table 1). The 14 with the greatest effects on viral fitness plus $\Delta d n a J$ and $\Delta n u s B$ were selected as hosts for the parallel evolution experiments along with WT KEIO E. coli BW25113, as our control host (table 2, Baba et al., 2006). $D H 5 \alpha$ was primarily used as the host for infused plates during our competitive growth rate experiments (Invitrogen).

K12 MG1655 derivative, HWEC106 (provided by Harris Wang, Columbia University, New York, New York), was used for producing lysogens and editing lambda genomes. Notable modifications in this strain include the addition of λ red recombineering genes provided on plasmid pKD46 and the deletion of mutS to improve allelic replacement of single nucleotide substitutions. All E. coli strains were stored at $-80^{\circ} \mathrm{C}$ with 15% w/v glycerol.

Bacteriophage λ strains:

We used two λ strains that have different mutations in the gene that dictates the switch between life cycles, cI (Meyer et al., 2010). Typically, λ has two stages in its life cycle, a lytic phase in which the phage rapidly replicates and kills the cell or a lysogenic phase in which the phage integrates into the host genome and remains dormant (Casjens and Hendrix, 2015). To start our evolution experiment we used cI26, a strictly lytic λ genotype (Meyer et al., 2010). For competition assays we used a marked strain, cI26lacZ that has the lacZ gene fused to λ 's gene R, allowing it to produce differentiable plaques when infecting DH5 α in the presence of X-gal
(Burmeister, 2016; Shao and Wang, 2008). cI26 stocks were made by co-culturing cI26 with fresh E. coli host in modified LBM9 overnight, phage were isolated by chloroform extraction and preserved at $4^{\circ} \mathrm{C}$ or $-80^{\circ} \mathrm{C}$ with 15% w/v glycerol (Sambrook and Russell, 2001).

We used a second λ base strain, cl857 (provided by Ing-Nang Wang, State University of New York at Albany) that has a mutation in cI which causes temperature controlled lysogeny. cI857 remains integrated in the E. coli host's genome at low temperatures, but the lytic phase can be triggered by heat shock. This strain was used for genetic engineering because modifications are easier to introduce during the lysogenic phase (Meyer et al., 2016). When measuring the competitive fitness of mutant cI857 lysogens we used a marked cI857 strain as the ancestor, cI857lacZ, which like cI26lacZ is used for the same purpose and was created in a similar fashion.

Lysogens were produced by inoculating $140 \mu \mathrm{~L}$ of fresh lysogen culture into $4-\mathrm{mL}$ of modified LBM9 and grown at $30^{\circ} \mathrm{C}$ shaking at 220 rpm for 2 hours. After the incubation period, lysogens were heat shocked in a water bath for 15 minutes at $42.5^{\circ} \mathrm{C}$ and transferred to a $37^{\circ} \mathrm{C}$ incubator shaking at 220 rpm until the culture cleared, ~ 1.5 hours (Meyer et al., 2016). The cultures were then filtered $(0.22 \mu \mathrm{~m})$ to isolate the phage and stored at $4^{\circ} \mathrm{C}$ or $-80^{\circ} \mathrm{C}$ with 15% w/v glycerol.

Culture conditions:

In order to maintain consistent culturing conditions for the duration of the experiment E. coli cultures were started daily from freezer stocks. We inoculated 4 mL of Luria Bertani (LB) Broth and $5 \mu \mathrm{~L}$ of $10 \mathrm{mg} / \mathrm{mL}$ Kanamycin with a sample of host cells taken from representative freezer stocks and incubated overnight shaking at 220 rpm and at a temperature of $37^{\circ} \mathrm{C}$ (Sambrook and Russell, 2001). To grow up HWEC106 for MAGE we inoculated a tube of 4 mL LB and $5 \mu \mathrm{~L}$ of $20 \mathrm{mg} / \mathrm{mL}$ ampicillin then incubated overnight at $30^{\circ} \mathrm{C}, 220 \mathrm{rpm}$. The same
media conditions were used throughout the evolution rounds and phage fitness assays, with the only varying condition being the host cells used. When propagating λ phage on its respective host, the phage and host cells were inoculated into 50 mL flasks containing 10 mL of modified LBM9 with $12.5 \mu \mathrm{~L}$ of $10 \mathrm{mg} / \mathrm{mL}$ kanamycin (20 g tryptone and 10 g yeast extract per liter water, supplemented with a final concentration of 47.7 mM disodium phosphate, 22.0 mM potassium phosphate monobasic, 18.7 mM ammonium chloride, $8.6 \mathrm{mM} \mathrm{NaCl}, 0.2 \mathrm{mM}$ calcium chloride and 10 mM magnesium sulfate) and incubated for 4 hours at a temp of $37^{\circ} \mathrm{C}$ while shaking at 120 rpm (adapted from, Sambrook and Russell, 2001). Similar media conditions were used when growing up clonal phage populations, except these populations were incubated shaking at 220 rpm in 4 mL of modified LBM9 with $5 \mu \mathrm{~L}$ of $10 \mathrm{mg} / \mathrm{mL}$ Kanamycin overnight (~ 16 hours) at $37^{\circ} \mathrm{C}$.

Determining phage stock density:

Spot assays were performed by either spotting $2 \mu \mathrm{~L}$ of a diluted or "full-strength" sample of a phage population on a bacterial lawn of the corresponding host E. coli cells suspended in soft agar (LB w/ $0.8 \% \mathrm{w} / \mathrm{v}$ agar supplemented with 2 mM Calcium Chloride, 10 mM Magnesium Sulfide, and $0.1 \mathrm{~g} / \mathrm{L}$ glucose) on the surface of an LB plate (LB broth with $1.6 \% \mathrm{w} / \mathrm{v}$ agar; Sambrook and Russell, 2001). Spot assays were used to confirm the presence of viable phage particles during the evolution experiment and when determining the density of phage stocks throughout the duration of the study. Infused plates were made by suspending $100 \mu \mathrm{~L}$ of overnight culture of $D H 5 \alpha$, diluted mixed phage population and X-gal in soft agar and spreading it on an LB plate, these were primarily used to calculate phage density during competition experiments and for clonal isolation. All Plates were incubated overnight ($\sim 16 \mathrm{hrs}$) at $37^{\circ} \mathrm{C}$ (Sambrook and Russell, 2001).

KO host screen to determine effects on λ plaquing efficiency:

Putative E. coli members of the λ - E. coli interactome were identified from a physical protein-protein interaction screen (Blasche et al., 2013) and a functional host dependency screen (Maynard et al., 2010). Two additional candidates ($\Delta \operatorname{man} Y \& \Delta m a n X$) were identified from the literature (Cumby et al., 2014; Esquinas-Rynchen and Erni, 2001). Of these candidate genes, 74 have knockout strains in the KEIO collection (Baba et al., 2006). Omitting the well-studied lambda receptor (lamB) (Esquinas-Rynchen and Erni, 2001; Meyer et al., 2012), its regulators (cyaA, yneJ, mall, and malt), and two genes already shown to affect infection (nusB, and dnaJ) (Meyer lab unpublished data), these 67 candidates were screened for their effect on replication of our λ strain, cI26.

Bacterial lawns of each candidate E. coli knockout strain and a $W T$ control were prepared in soft-agar overlays (Sambrook and Russell, 2001). A serial dilution of an isogenic cI26 phage stock was prepared and $5 \mu \mathrm{~L}$ of each dilution were applied to every plate in discrete spots, ensuring that single plaques would be visible at some dilution after incubation at $37^{\circ} \mathrm{c}$ overnight.

The number and appearance of plaques on each knockout strain was compared to their number and appearance on the $W T$ strain. The knockouts' effect was classified as follows: $4=$ completely blocked plaque formation, $3=$ reduced the number of plaques compared to wildtype, $2 \& 1=$ produced same number of plaques but with altered appearance ($2=$ substantially smaller than plaques on $W T, 1=$ possibly smaller that plaques on $W T)$ and $0=$ indistinguishable in both number and appearance from plaques on $W T$ host. All candidates with a score of 4 or 3 , and some candidates with a score of 2 , were used for further study

Evolution experiment:

In order to study how λ adapts to cope with perturbations within the interactome, we used evolution experiments to provide λ with an environment in which there exists a selective advantage for the use of the specific $K O$ host provided. Our evolution rounds began by coculturing λ populations from an isogenic stock of $c I 26$ (Meyer et al., 2010) with a respective mixture of $W T$ and a single $K O$ host (supplemental table 2). $W T$ host was initially provided and λ was slowly weaned from it as they developed adaptations to use the $K O$. λ was co-cultured with its $K O$ host for twenty incubation periods of four hours, roughly 200 generations (figure 1).

In addition to the 16 KOs , we also studied λ 's evolution to $W T$ as a control to distinguish responses to missing host proteins from general improvements to suboptimal laboratory conditions. The evolution experiment was broken up into 6 different blocks and for each we ran a separate $W T$ control (table 1). λ evolution to each host was studied in 6 replicate lines. In total 132 separate lines of evolution were carried out (supplemental table 2). After each round of evolution, a 1 mL sample was taken from each flask and treated with chloroform to kill all bacterial cells and isolate the representative evolved phage population which were stored at $4^{\circ} \mathrm{C}$.

Figure 1: schematic of the evolution experiment.

Table 1: experimental block design for parallel evolution experiment. The sixteen $K O$ hosts were divided as shown below because this portion of the experiment was run by six different experimenters.

Block:	1	2	3	4	5	6
E. coli Hosts:	$W T-1$	$W T-2$	$W T-3$	$W T-4$	$W T-5$	$W T-6$
	$d n a J$	$c l p X$	nuoG	$h s d s$	$h / d D$	$d n a K$
	nusB	$c r r$	ompC	$\operatorname{man} X$	tpx	recA
	-	$g m h A$	rfaF	manY	-	rfaC

Before proceeding to the next round of evolution, spot assays were done for each population to check for viable phage. If the population formed a full clearing on their respective host, such as the $W T$ control, then the next round of evolution was done using 100% of their respective $K O$ host. The ratio of $K O$ host to $W T$ host was adjusted with respects to whether the phage population was able to form a clearing on a lawn of their respective $K O$ host after a round of evolution (supplementary table 2).

After round twenty of evolution, phage populations were isolated by chloroform extraction. A dilution series spot assay was done for each population using WT E. coli to determine the population's density $(p f u / m L)$. Once determining the density of each phage stock, we diluted them to make infused plates with their corresponding bacterial host for clonal isolation. We then picked a plaque from each plate to serve as a clonal representative. All clones were grown on their corresponding $K O$ or $W T$ host to produce phage stocks. Freezer stocks were made of all clonal populations and the evolved populations from round $5,10,15$, and 20 , and stored at $-80^{\circ} \mathrm{c}$ in $15 \% \mathrm{v} / \mathrm{v}$ glycerol.

Genome Sequencing:
Genomic DNA was isolated from clonal phage lysates using phenol-chloroform extraction. Filtered lysates were freshly prepared from overnight infections on the host each
isolate evolved on, except for $\Delta m a n Y$ replicates a and e which were grown on $W T$. Briefly, to 500 $\mu \mathrm{L}$ of lysate, $6.25 \mu \mathrm{~L}$ of $1 \mathrm{MgCl}_{2}, 0.8$ units of DNAseI, and $1 \mu \mathrm{~L}$ of $100 \mathrm{mg} / \mathrm{mL}$ RNaseA were added to remove unencapsidated nucleic acids. After incubation at room temperature for 30 minutes, $20 \mu \mathrm{~L} 0.5 \mathrm{M}$ EDTA was added to quench the reaction, and $2.5 \mu \mathrm{~L} 10 \mathrm{mg} / \mathrm{mL}$ Proteinase K and $25 \mu \mathrm{~L}$ of 10% SDS were added and the mixture was incubated at $55^{\circ} \mathrm{C}$ for 1 hour with occasional vortexing to break down viral capsid proteins. Genomic DNA was isolated from the mixture by extracting the protein components successively with $500 \mu \mathrm{~L}$ phenol chloroform isoamyl alcohol (24:25:1) and $500 \mu \mathrm{~L}$ chloroform. The aqueous fraction was then ethanol precipitated in sodium acetate and washed, then resuspended in $100 \mu \mathrm{~L} \mathrm{H} \mathrm{H}_{2} 0$.

Genomic DNA was quantified using the Quant-iT dsDNA HS reagent (Thermofisher), and between 60 and 2350 ng of each isolate were submitted to the UC San Diego Institute for Genomic Medicine for multiplex library preparation and single-read 50 bp sequencing using an Illumina HiSeq4000. Evolved phage from the project were sequenced in two batches.

Identification of mutations in evolved phage isolates:

In order to analyze the Ilumina sequence data files, we used BreSeq under default settings to identify mutations present in the evolved clone with respect to the ancestor cI26's genome (Baym et al., 2015). BRESEQ was also used to construct FASTA sequence files, using cI26 as a reference genome, for the populations with evidence of insertions/recombination events (i.e. those with high numbers of mutations) via the built in gdtools feature (Baym et al., 2015). CLC Sequence Viewer 8 was used to analyze these files and to align them to $B W 25113$ genome to determine the site of recombination (QIAGEN Aarhus A/S, 2015). BLAST was also used to further determine the origin of these recombination events (NCBI).

Competitive fitness experiments:

We measured evolved fitness gains of each strain on the $K O$ it adapted to by running competition experiments against a genetically marked ancestor λ. For each λ isolate we ran three replicate competition experiments. The experiment was run identically for all phage, however the studies had to be broke into a block design. Such that the competitive fitness of the evolved isolates from a particular $K O$ were measured in one block or two blocks. To account for lacZ's possible marker effect on phage fitness, three separate replicates of $c 126 \lambda$ phage were competed against cl26lacZ on the corresponding $K O$ host for each block.

We began each assay by inoculating a flask with ~1E5 pfu/mL of the corresponding evolved or ancestral phage being tested and $\sim 1 \mathrm{E} 5 \mathrm{pfu} / \mathrm{mL}$ cI26lac Z along with $\sim 1 \mathrm{E} 8 \mathrm{cfu} / \mathrm{mL}$ of the corresponding bacterial host, the same culturing conditions were used as the parallel evolution experiment. We determined the density for each replicate before the hour incubation period and after using infused plates with $\mathrm{DH5} \alpha$ and supplementary X-gal (Supplemental table 3, Sambrook and Russell, 2001).

Due to the fact that some of the evolved populations outnumbered the marked ancestor by about three-fold after four hours of competition, we had to adjust the timing of a few competitions to two hours (i.e. $\Delta r f a F, \Delta h l d D, \Delta t p x$) in order to record reliable measurements.

Calculation of λ growth rate and fitness:

To calculate the fitness of our phage we used the difference of the competitors' growth rate from the competition experiments. The growth rate, r, of each competing phage was calculated using the initial and final density measurements from infused plates.

$$
r=\frac{\ln \left[\left(\frac{p . f . u_{.}}{m L}\right)_{\text {final }} /\left(\frac{p . f . u .}{m L}\right)_{\text {initial }}\right]}{\text { time }}
$$

The difference of two competitor's growth rates is more commonly known as the selection rate, S (Travisano and Lenski, 1996).

$$
S_{\text {phage isolate }}=r_{\text {unmarked phage }}-r_{\text {marked phage }}
$$

Although similar to the ratio of the competitive growth rates (i.e. relative fitness) this value provides a more reliable method for quantifying fitness especially in circumstances in which one competitor declines in abundance as seen for some KOs. To account for the marker effect on cI26lacZ's growth rate we established a correction in the calculations for the selection rate of our evolved populations. This correction consists of taking the difference of the selection rate of the evolved population and the selection rate of the ancestor on a particular $K O$.

$$
S_{\text {evolved isolate }}-S_{\text {ancestral phage }}
$$

The correction to our fitness calculations allows us to make a direct comparison between evolved phages measured in different blocks.

Host Range Experiment:

To test the host range of each evolved λ isolate we performed a dilution series spot assay on all 16 KO hosts as well as on $W T$. The purpose of this assay was to quantify each evolved isolates' ability to infect each host genotype. Using a 96-pinner tool we plated each population's dilution series on all $16 K O$ hosts, and $W T$ as a control to determine the phages infectivity on an optimal host. We plated a dilution series of the ancestral strain, cI26, on all the hosts as reference to identify improvements or losses in the evolved populations. After an overnight incubation at $37^{\circ} \mathrm{C}$ we measured the plating efficiency ($\mathrm{pfu} / \mathrm{mL}$) of each evolved phage isolate and ancestor on
all hosts. The plaquing or plating efficiency of λ represents the relative number of plaques a phage stock is able to produce on a particular host and is calculated by dividing the number of plaques by the amount of sample plated multiplied by the dilution factor (Travisano and Lenski, 1996)

To quantify an isolate's change in infectivity on a given $K O$, we took the natural log of the isolate's plating efficiency on a $K O$ relative to the natural \log of its plating efficiency on $W T$, subtracted by the natural \log of the ancestor's plating efficiency on the same $K O$ relative to the natural \log of its plating efficiency on $W T$.

$$
\left[\left(\left(\ln \left(\frac{p . f . u}{m l}\right)_{\text {on KO }} /_{\ln \left(\frac{p . f . u}{m l}\right)_{o n W T}}\right)_{\text {evolved isolate }}\right)-\left(\left(\ln \left(\frac{p . f . u}{m l}\right)_{o n ~ K o} /_{\ln \left(\frac{p . f . u}{m l}\right)_{o n W T}}\right)_{\text {ancestral phage }}\right)\right]
$$

Genome Engineering:

We engineered six different cI857 lysogens with specific single point mutations using multiplex automated genome engineering (MAGE) with the same protocol described by Meyer et al., 2016. Oligo sequences used for genome engineering and sanger sequencing verification of mutants are in supplemental table 3 and 4.

Competitive Fitness Experiments for Engineered λ Strain:

We ran competitive growth rate experiments, using a similar protocol as above, for each mutant lysogen on both $W T E$. coli and the $K O$ host on which the mutation evolved. Few modifications were made with regards to the protocol, but in place of cI26 and cI26lacZ we used cI857 and cI857lacZ (Meyer et al., 2016). This is because cI857 is the base strain of our lysogens
and both vary from the genetic composition of $c I 26$. Fitness was also calculated in the same fashion as described above.

Statistical Analysis:

All statistical tests were run using PAST 3.16 (2017) with standard settings and parameters while running the different analysis. Refer to the results for further specifications on what type of statistical test were used for the analysis of our data. Heat maps were made using ClustVis, all pre-data processing and PCA were done under default settings (Metsalu and Vilo, 2015).

Results:

Our preliminary screen of the 67 knockout E. coli hosts revealed that only 16 of the $K O$ hosts had observable deleterious effects on λ 's replication (table 2). We estimated a decline in λ 's fitness on each $K O$ strain, and confirmed that λ 's growth rate on the $K O$ strains was less than λ 's growth rate compared to the $W T$ control $(* p<0.005$, figure 2$)$.

Table 2: candidate KEIO E. coli strains used as hosts for λ during the evolution experiment. Effect on λ plaque morphology was based on a preliminary observational screen and is relative to plaque morphology on WT host. (key: $0=$ no effect, $1=$ possible, $2=$ minimal, $3=$ moderate, $4=$ no viable infection detected)

	E. coli Gene	Function	KO effect on lambda plaque production
1	nusB	transcription anti terminator	4
2	$d n a J$	chaperone hsp40	4
3	$t p x$	lipid metabolism	3
4	$c r r$	phospho transport system	2
5	$g m h A$	LPS isomerase	3
6	$r f a C$	LPS transferase	3
7	$r f a F$	LPS transferase	3
8	hldD	LPS metabolism	4
9	$r e c A$	DNA repair	2
10	$o m p C$	membrane protein	2
11	$c l p X$	protease specificity	2
12	$d n a K$	chaperone hsp70	4
13	$n u o G$	NADH-quinone oxidoreductase	2
14	$h s d S$	restriction-modification	2
15	$m a n X$	mannose PTS permease	1
16	$\operatorname{man} Y$	mannose PTS permease	3

Figure 2: growth rate measurements of the ancestral λ on candidate KEIO KO strains reveal a spanning range of deleterious effects on λ replication. The average ancestral growth rate represents measurements from the three replicates that were run in parallel during the competition experiments, the error bars depict the standard deviation from the replicate measurements.

Almost all λ isolates experienced an increase in fitness on their particular $K O$ host, relative to the ancestral λ 's fitness on the same $K O$ (paired T-Test, two-tailed, $d f=21, p<0.0001$, figure 3a). Each $K O$ yielded at least one isolate which was able to infect 100% of the $K O$. Interestingly, we observed that the relative fitness varied between lines that were adapted to different host conditions (one-way ANOVA, $F=5.887, p<0.0001$) as well as between the replicates from the same host condition (one-way ANOSIM, $r=0.23, p=0.0001$) suggesting that there is genotypic variation among replicates of the same condition and variation in response between host conditions.

Figure 3a: relative fitness measurements of evolved isolates reveal a common pattern of improvement across all conditions with variation in the degree of improvement. Relative fitness was measured by taking the difference in Malthusian growth rates of the evolved isolate and ancestral isolate on the host condition which the evolved isolate was adapted to during the evolution experiment. The error bars show the standard deviation of three replicate measurements for each data point.

In general, the degree to which λ 's growth rate improved was greater in the lines adapted to $K O$'s that initially most reduced λ 's ancestral growth rate (figure 3 b). For example, we see that the host strains in which λ 's ancestral growth rate was approximately between $-0.1<x<1.5$ had the largest increases in growth rate. While, those adapted to hosts that minimally perturbed λ 's ancestral growth rate (i.e. samples between $1.5<x<2.5$) did not experience such a large increase in growth rate. Interestingly, λ was unable to improve its growth rate on some $K O$ hosts, seen in the lines adapted to $\Delta d n a K$ (figure $3 \mathrm{a}-\mathrm{b}$).

Figure 3b: comparison of ancestral and evolved λ growth rates on 17 host genotypes reveals that λ evolved greater improvements when faced with larger challenges. Each data point represents the average evolved growth rate (y-axis) versus the growth rate of the ancestor (x axis). The colors of each data point show the average number of SNP's for the evolved population of a particular condition. The red line is a representative trend line which has a slope less than one. Data points above the 1:1 dashed line show improvement in growth rate.

We proposed three hypotheses to explain why λ gained more on poorer hosts. The first hypothesis that could explain this pattern is that hosts that have a large deleterious effect on λ 's
fitness may apply more selection pressure on λ that drives more rapid molecular evolution. The second is similar however λ responds to the increased pressure by evolving mutations with greater benefit. The third is that each population will have evolved similar mutations, yet they have larger positive effects on fitness when infecting $K O$'s with larger growth rate consequences and smaller when λ 's growth penalty is not as steep (diminishing returns).

Figure 4a key:

$$
\bullet=10+
$$

$$
\bullet=5-9
$$

$$
\bullet=2-4
$$

$$
\bullet=1
$$

(no. of SNP's)

Figure 4a: genomic analysis of λ evolution show similar patterns of adaptation between $K O$ and WT evolved populations. The outer light grey ring represents the λ genome and its ORF's, while the inner rings show the distribution of SNP's found in populations either evolved to a $K O$ host or $W T$ host. The colors of the points representing unique SNP's denotes the number of populations with that SNP.

Figure 4b: more rapid molecular evolution is observed in WT evolved isolates than in $K O$ evolved isolates. The number of single point mutations was measured for all isolates and the average was taken of the isolates adapted to the same $K O$, the standard deviation of the averages is shown by the error bars.

Figure 4c: extreme KOs that attenuate viral growth rate do not show to select for increased rapid molecular evolution. The average ancestral growth rate is the average of three replicate control growth rate measurements from the competition experiments. The average number of mutations for each KO condition was taken from the mutation profiles of each evolved isolate.

Figure 4d: the number of mutations acquired by any one isolate is not correlated to increased improvement in fitness of an evolved isolate relative to the ancestral strain. The fitness of each evolved isolate was measured on the host they adapted to, relative to cI26's fitness on the same host. The average number of mutations for each KO condition was taken from the mutation profiles of each evolved isolate.

To test these hypotheses, we sequenced the full genome of each evolved λ isolate and identified their mutations. We predicted that if hosts with large deleterious effect on λ fitness select for more rapid molecular evolution then isolates adapted to more challenging hosts would have acquired more mutations. The mutation profile of each isolate revealed that on average $K O$ evolved lines acquired fewer mutations than the WT evolved lines (corresponding means of 2 and 2.611, comparison of KO and WT evolved mutation profiles, one-way ANOVA, $F=6.416, p=0.01$, figure

4b). Additionally, the more extreme KOs did not evolve more mutations $\left(x^{2}(21)=15.645, d f=21\right.$, $p=0.79$, figure 4 c) and there is no significant relationship between the number of single point mutations acquired by an isolate and its improvement in relative fitness (no association, $x^{2}(21)=13.314, d f=21, p=0.89$, figure 4 d$)$. Taken together we can reject the first hypothesis.

To test the second hypothesis, we compared the mutation profile of $K O$ evolved isolates to the $W T$ evolved isolates in order to determine if unique mutations evolved in the different host conditions (figure 4a). The mutations acquired among all $K O$ evolved isolates and all $W T$ evolved isolates significantly overlapped in a few key genes that control tail synthesis, lysis, and DNA synthesis. Almost all evolved λ isolates appeared to have mutations in the reactive region of gene J and in the regulatory region, upstream of gene S, suggesting they provide generic adaptation to laboratory conditions (figure 4a). The overlap in mutation profiles between the WT and $K O$ evolved lines is inconsistent with the second hypothesis.

To test the third hypothesis, we first identified a common mutation acquired by isolates adapted to different hosts. We found a mutation in gene J at genome position 18,824 relative to start, which arose in both $K O$ (i.e. $\Delta h l d D, \Delta c r r$) and $W T$ evolved λ isolates. We chose this mutation because the hosts in which the mutation arose spanned the range of effect sizes on the ancestral λ 's growth rate and the mutation was in a region of the genome which was under selection in both $K O$ and $W T$ adapted strains (figure 1 and 4a). All evolved lines (i.e. WT-2a \& b, crr-c, hldD-a \& b) with this mutation had varying returns on growth rate on their particular host (figure 2a). If the benefit of the mutation has diminishing returns then it should have a higher return on growth rate on more challenging $K O$ strains. In other words, we would observe that the modified λ would experience larger growth rate pay offs when infecting $\Delta h l d D$ versus when infecting $\Delta c r r$ because the mutation is expected to have more benefit on more extreme KOs. Next, we engineered λ to
have this single mutation. A comparison of the modified and unmodified λ 's Malthusian growth rate (r) on each of the three strains (i.e. $\Delta h l d D, \Delta c r r, W T$), revealed that this common J mutation increased λ 's growth rate significantly on both $K O$ strains ($* p$-value <0.05, figure 5). In agreement with our third hypothesis, the J mutation had a larger relative effect on λ 's growth rate when presented with the more challenging host condition, Δ hldD (one sample t-test, $t=30.32, p=0.001$) than with Δ crr (one sample t-test, $t=22.01, p=0.002$). The J mutant doubled the growth rate on $\Delta c r r$ relative to the unmodified λ, and it caused an astounding growth rate improvement of 12 times better on $\Delta h l d D\left({ }^{*} p<0.05\right)$. As expected, the modified and unmodified λ 's had indistinguishable growth rates when cultured on $W T$ host showing no significant improvement when presented with an optimal host (one sample t-test, $t=1.1204, p=0.379$). The diminishing returns on fitness we observed lends support to the third hypothesis.

Figure 5: intergenomic diminishing returns epistasis produces large variation in λ fitness improvements. Above is a comparison of Malthusian growth rates of our modified and unmodified phage on $\Delta h l d D, \Delta c r r$ and $W T$. The hosts used for this experiment were the conditions in which the mutation arose. The red line is a representative trendline with a slope less than 1.
*P-value <0.05 (Solid black line represents 1:1, null hypothesis)

Figure 6: phenotypic analysis of evolved isolates' host range profile reveals two general patterns of adaptation. The color represents how much better any given population is at forming plaques on a particular host compared to the ancestor and relative to its efficiency of plaquing on $W T$ host. Red signifies an improvement relative to the ancestor and blue indicates a decline in plaquing efficiency. (x-axis $=K O$ strain, y-axis=virus isolates)

Given that most λ isolates evolved similar mutations, regardless of their host condition during the evolution experiment, we hypothesized that adapting to any given $K O$ host will have a correlated positive effect on λ 's ability to infect other $K O$ hosts. We quantified each evolved isolates' ability to infect each host and found that in general most of our evolved λ isolates tended to have improved their ability to infect specifics groups of KOs (figure 6). Correlation clustering of λ host range profiles revealed that in general most isolates improved on $\Delta r e c A, \Delta o m p C$, and $\Delta h s d S$, while few gained infectivity on $\Delta n u o G, \Delta t p X$, and $\Delta c r r$ relative to the ancestor. We also observed two major modules of evolved phage and KOs (figure 6). The largest module is made up of the phage that improved on KO's that have a single deletion in a host gene associated with LPS synthesis (i.e. $\Delta h l d D, \Delta g m h A, \Delta r f a F$ and $\Delta r f a C$) but did poorly on $\Delta d n a K, \Delta d n a J, \Delta m a n Y$, and $\Delta n u s B$ (figure 6). The second module is comprised of isolates that have improved plaquing efficiency on $\Delta d n a K, \Delta d n a J, \Delta m a n Y, \Delta c l p X, \Delta m a n X$ and $\Delta n u s B$, but do poorly on $\Delta g m h A, \Delta r f a C$, $\Delta r f a F$, and Δ hldD. Interestingly we observed that isolates within the second module had stronger one to one interactions with the host they evolved on, we hypothesized that these isolates had evolved unique adaptations in response to their specific host.

We observed that lines evolved to $\Delta d n a J, \Delta n u s B$, and $\Delta m a n Y$ had unique mutations which were not seen in any other isolate (figure 7). For example, both λ isolates that evolved on $\Delta d n a J$, had a single mutation near the start of gene S . The first being at position 39,212 and the second mutation at position 39,170 both arose in a single $\Delta d n a J$ evolved isolate. Moreover, almost all $\Delta n u s B$ evolved isolates had mutations within the nin genes. Two of the isolates shared the same mutation at position 37,640 . The others had distinct mutations that were within 2,000 base pairs of each other. Finally, two out of the four λ isolates that survived the evolution experiment and
showed improvement on $\Delta \operatorname{man} Y$ had unique mutations in gene H , and both isolate's mutations were within 60 base pairs of each other.

$50 \rightarrow$
Point mutations (position \& base change)
Figure 7: correlation clustering and unit variance scaling of the evolved isolates' mutation profiles reveals unique lineages with specialized adaptations. This heat map shows all phage isolates on the y-axis, with their corresponding base pair changes on the x-axis. Supplemental table 8 contains data for the mutation position and base change acquired by each isolate (x -axis values).

We proceeded to test whether these unique mutations preferentially improved λ fitness on the $K O$ strains they evolved on. Indeed, we observed that the mutations improved fitness on the $K O$ that they arose on, but most had varying effects on $W T$. The λ 's with a single H mutation had a significantly higher fitness relative to the unaltered λ, on $\Delta \operatorname{man} Y(* * p<0.001)$, but no significant effect was detected when on $W T$ (one-sample t-test, $t=-0.25, p=0.8154$, figure $8 a$). Similarly, the λ we engineered with a mutation in gene ninI at position 37,640 showed to have an improved fitness on $\Delta n u s B(* * p<0.001)$, and no significant effect on λ 's fitness on $W T$ host (one-sample t test, $t=1.64, p=0.241$, figure $8 b$). On the other hand, we observed that although the two S mutations seen in both $\Delta d n a J$ adapted isolates had improved relative fitness on the $K O$, both had varying effects on λ 's fitness on $W T$. The modified λ with the mutation in gene S, at position 39,212 had an improved growth rate on $\Delta d n a J$ but had a notable deleterious effect on the modified λ 's growth rate when on $W T$ compared to the unaltered $\lambda\left({ }^{*} p<0.05\right.$, figure 8 c$)$. Next, we observed that the λ engineered with the S intergenic mutation at position 39,170 had an improved fitness on both $W T$ and $\Delta d n a J(* p<0.05$, figure 8 d$)$. Thus, we observed unique mutations arising in isolates adapted to some of the most challenging KO strains.

Figure 8: relative fitness measurements of engineered λ strains reveal that some KOs selected for specialized adaptive solutions. a: mutations in gene H give large returns on $\Delta m a n Y$. H 1 mutant has a base change from $\mathrm{T} \rightarrow \mathrm{C}$ at position 11378 and H 2 mutant has a base modification from $\mathrm{G} \rightarrow \mathrm{A}$ at position 11432. These mutations arose in isolates man Y - $\mathrm{B} \& \mathrm{~F}$, respectively. b : mutation in nin region compensates for $\Delta n u s B$. N1 mutant was modified to have a base change from $\mathrm{G} \rightarrow \mathrm{T}$ at position 37460 , this mutation was taken from isolate nus $B-\mathrm{D} \& \mathrm{E}$. The grey bars represent the unmodified cI857's relative fitness to the marked ancestor, cI857 lacZ and the error bars represent the standard deviation of the three replicate measurements takes for each condition. c: relative fitness of $S 1$ mutant on WT, and dnaJ reveals negative fitness returns on less challenging hosts. S1 mutant has a modification at position $39212(\mathrm{GAC} \rightarrow \mathrm{GGC})$ and arose in isolate dnaJ-A.d: relative fitness of S2mutant on WT and $\Delta d n a J$ shows general improvement on both KO and WT hosts. S 2 mutant has a base change from C to A and arose in isolate dnaJ-B.

Discussion:

Preliminary KO screen reveals large redundancies within the λ - E. coli Interactome:
Unlike previously documented, our study shows that only 16 of the $K O$ hosts appeared to have a significant deleterious effect on λ replication, some having stronger consequences than others. Only 4 of the 16 KO 's, completely prevented λ infection, suggesting that dnaJ, dnaK, nusB, and hldD are host components of the interactome network that are most essential for λ infection. Interestingly, the $K O$'s that prevented or significantly impeded λ replication were host components that carried out important functions in λ DNA replication, transcription, LPS synthesis and protein transport (Blasche et al., 2013; Casjens and Hendrix, 2015; Maynard et al., 2010; NCBI). The fact that we observed only a fraction of $K O$ hosts having detrimental effects on λ replication can have two explanations. First, previous high-throughput studies aimed at identifying all the host components of the λ-E.coli interactome were prone to false positive results for certain interactions (Balsche et al., 2013; Maynard et al., 2010). On the other hand, we may have not been able to detect effects on λ because redundancies within the interactome likely buffered the effects of the different host component deletions (Hauser et al., 2012).

Intergenomic diminishing returns epistasis drives large variation in fitness improvements:
Nearly all λ trials yielded strains that could replicate on their $K O$, moreover almost all had improved fitness on their host compared to the ancestral λ. Our data suggests λ is able to rapidly evolve to compensate for genetic perturbations in its host interactome (Wiser et al., 2013). The $K O$ host's initial effect on λ replication affected the extent of its improvement. We found evidence for a 'fitness ceiling', in which there is a limit to how much λ can improve at infecting its host before its reproduction is constrained by universal rate-limiting host processes (Bull et al., 2003).

Based on the variation in fitness improvements we suggested three hypothesis that could explain such a pattern. The first being that more challenging $K O$'s pose stronger selection for rapid molecular evolution. Previous studies have found that viruses can undergo selection for increased substitution rates is favored in response to a host counter adaptation, so we would assume that more challenging $K O s$ would produce this type of environment in which rapid molecular evolution is under positive selection (Paterson et al., 2010).

The overlap of mutation profiles contradicts the second hypothesis that more difficult KOs would select for unique mutations with greater fitness effects. Instead most mutations tended to occur in a few key λ genes. We observed mutations in genes $c I I$, nul, S, and J. Supporting the idea that these are generic mutations to laboratory conditions that have been observed in previous evolution studies (Meyer et al., 2012; Chuo et al., 2011; Wang, 2006).

In accordance with our third hypothesis, a mutation was observed to evolve in both $K O$ and $W T$ evolved lines which provided different returns on fitness depending on the difficulty of the host challenge, this pattern of fitness returns is similarly seen in diminishing returns epistasis. Many studies have found examples of diminishing returns in which mutations have varying returns on fitness depending on the selective pressures such that a beneficial mutation is observed to have higher returns on fitness in harsher environments than in optimal conditions (Chuo et al., 2011; Khan et al., 2011). Yet no examples exist of intergenomic diminishing returns epistasis as observed here, in which a mutation has different effects on fitness depending on the genome of the host.

Host range profiles of evolved isolates reveal a modular pattern of adaptation:

We determined that most bacteria-phage interactions observed were not completely specialized to one $K O$ but rather evolving to one $K O$ selected for adaptions which allowed λ to compensate for functionally related $K O s$ and/or to $K O s$ with similar adaptive solutions. This
created a modular pattern of adaptation in which blocks of phage better infected specific groups of KOs' that are missing functionally similar host components of the interactome. A module is a group of phage and bacteria in which the phage preferentially interacts with hosts from within the group more than hosts from another module. For example, we see that evolving to one LPS synthesis $K O$ allows λ to improve on other LPS synthesis $K O s$ ' yet this adaptation has pleiotropic effects resulting in decreased infectivity on DNA metabolism, and intracellular transport gene $K O s^{\prime}$. Interestingly we observed another module in which a group of phages selectively interacted with a group of KOs' that seem functionally unrelated.

Adaptive solutions to specific KOs:

A few of the $K O s$ we studied selected for adaptive solutions which greatly improved λ 's fitness on the $K O$, showing evidence of greater specialization suggesting that some interactome perturbation require more specialized mutations.

First, we observed that $\Delta d n a J$ selected for isolates with mutations in gene S, which is responsible for controlling host cell lysis time. Previous studies have found that λ 's S gene is highly adaptable and is under constant selection to be optimized for λ 's host environment. Typically, it is seen that prolonged lysis times are beneficial in an environment in which a relatively large adaptive solution is required to compensate for a change in the host and could potentially improve the odds of an adaptive mutation arising in the population (Goldhill and Turner, 2014; Heineman and Bull, 2007). In contrast, short cell lysis times are selected for in an environment with abundant host cells and is not prevalent in "harsh environments". A prolonged lysis time was perhaps selected for by $\Delta d n a J$ since it likely requires a more complex adaptive solution which had not been evolved in the original phage population (Goldhill and Turner, 2014; Heineman and Bull, 2007). Even if a mutation that conferred the ability to grow well on $\Delta d n a J$ had
arisen in the population there was no evidence of it having spread through the population. Thus, this mutation's benefit must be due to secondary effects from delaying lysis time which likely improves λ 's odds of evolving an adaptive solution to compensate for $\Delta d n a J$.

Next, we observed that the isolates adapted to $\Delta \operatorname{man} Y$ evolved unique mutations in gene H , the tail tape measure gene, that compensated for the absence of manY. After λ binds to a cell, λ 's tail tape measure protein along with other tail components interact with an inner membrane mannose transporter complex that contains man Y in order to import its genome into the host cell (Cumby et al., 2014). Studies have also shown that the tail tape measure protein of different phage, including λ, can form a channel through the host cell membrane (Hu et al., 2013; Roessner and Ihler, 1984). Like us, other studies observed that deleting a component of E. coli's mannose transport system is deleterious for a different phage, and mutations in its tail tape measure protein are sufficient for determining a phage's dependency on manY (Cumby et al., 2014). So, the mutations in λ gene H that we observed likely allowed λ to either form a channel through the membrane of the host or allowed λ to use a mutated mannose transporter protein. Adaptation to $\Delta m a n Y$ was evidently very challenging (i.e. only two $\Delta m a n Y$ lines had significant improvements on the $K O$) and required a specialized adaptive solution, indeed the two isolates which showed to have the most significant improvements on $\triangle \operatorname{man} Y$ had a mutation in the tail tape measure protein gene. This finding is in line with similar studies and proves to be an adaptive solution that is perhaps repeatedly evolved under these similar selective pressures.

Third, we observed that the $\Delta n u s B$ evolved lines with the largest fitness improvements had acquired a mutation in the nin regulatory region, which has a role in the transcriptional regulation of λ genes. The E.coli protein nusB interacts with other host and λ proteins to form the N -mediated transcription antitermination complex which functions as a termination-resistant RNA polymerase,
and disruptions in host components of this complex results in an inefficient anti-termination transcription complex (Leason and Friedman, 1988). Studies have shown that deletions in the nin region make transcription of λ genes independent of the N transcription anti-terminator system (Cheng et al., 1995; Herskowitz, 1973). This suggests that the large fitness reward provided by the ninI mutation observed in two of our $\Delta n u s B$ evolved isolates were selected as unique adaptations that exclusively improved λ 's growth rate on the focal host most likely by modifying λ 's dependency on the N transcription anti-terminator system. Further studies are required to identify the molecular mechanisms behind these adaptive solutions and how they compensate for the absence of these specific host components of the interactome.

Conclusion:

Overall, most interactome 'challenges' could be solved with general adaptations that improve λ growth variably depending on the host strain, yet a few host gene deletions required specialized adaptations. This supports the idea that viruses are good at dealing with suboptimal host conditions by selecting for adaptive solutions that generally improve fitness in turn providing an advantage in dealing with a variety of suboptimal hosts without any cost on $W T$ host.

Supplemental materials:

Supplemental table 1: list of 67 Keio KO strains used as hosts for the preliminary screen and their effect on λ replication. (key: $1=$ possible effect, $2=$ minimal effect, $3=$ moderate effect, $4=$ total inhibition)

	E. coli gene	Effect on lambda plating efficiancy		E. coli gene	Effect on lambda plating efficiancy
1	pdxH	0	35	cchB	0
2	hld E	3	36	fhuF	1
3	$t p x$	3	37	fdoH	1
4	manZ	0	38	yohN	1
5	crr	2	39	chaC	1
6	ihfA	2	40	proQ	0
7	ihfB	2	41	yeiW	0
8	gmhA	3	42	$y f c Q$	0
9	rfaF	3	43	yohH	1
10	rfaC	3	44	yehD	0
11	hldD	4	45	yjdl	0
12	spr	0	46	yqhC	1
13	RecA	2	47	rmf	0
14	rpoD	0	48	PriC	1
15	hsiV	2	49	cobB	1
16	hsiU	2	50	soxS	0
17	clpA	2	51	$y c b G$	0
18	clpP	2	52	hcr	0
19	Hfid	0	53	nuoG	2
20	Ion	0	54	yebR	0
21	ompC	2	55	envR	0
22	fis	0	56	minC	0
23	sbcC	0	57	rpoS	0
24	recB	0	58	PpyrF	2
25	hsdM	0	59	yhdW	1
26	hsdS	2	60	SIp	0
27	clpX	2	61	hycG	0
28	clpP	2	62	sdiA	1
29	dnak	4	63	paaC	1
30	dcrB	0	64	caiF	1
31	nohA	0	65	$y b c W$	0
32	nohB	1	66	manX	1
33	$y d g H$	1	67	manY	3
34	fixB	1			

Supplemental table 2: host ratio and spot assay data for parallel evolution experiments. (Key: $\mathrm{NC}=$ no clearing, $\mathrm{SP}=$ single plaques, $\mathrm{FC}=$ full clearing $)$

	round 1		round 2		round 3		round 4		round 5	
phage strain	KO:WT Host	Spot Assay								
clpXA	90:10	SP	90:10	FC	90:10	SP	90:10	NC	90:10	SP
clpX B	90:10	SP	90:10	FC	90:10	SP	90:10	NC	90:10	SP
clpXC	90:10	SP	90:10	FC	90:10	SP	90:10	NC	90:10	SP
cplX D	90:10	SP	90:10	FC	90:10	SP	90:10	NC	90:10	SP
clpXE	90:10	SP	90:10	FC	90:10	SP	90:10	NC	90:10	SP
clpX F	90:10	FC	90:10	FC	90:10	SP	90:10	NC	90:10	SP
crr A	100:0	FC								
crr B	100:0	FC								
crr C	100:0	FC								
crr D	100:0	FC								
crr E	100:0	FC								
crr F	100:0	FC								
gmhAA	90:10	NC								
gmhA B	90:10	NC								
gmha C	90:10	NC								
gmha D	90:10	NC								
gmhA E	90:10	NC								
gmhA F	90:10	NC								
dnaK A	90:10	NC								
dnaK B	90:10	NC								
dnaK C	90:10	NC								
dnaK D	90:10	NC								
dnaK E	90:10	NC								
dnaK F	90:10	NC								
recA A	100:0	NC	100:0	SP	100:0	FC	100:0	FC	100:0	SP
recA B	100:0	NC	100:0	SP	100:0	FC	100:0	FC	100:0	SP
recA C	100:0	NC	100:0	SP	100:0	FC	100:0	FC	100:0	SP
recAD	100:0	NC	100:0	SP	100:0	FC	100:0	FC	100:0	SP
recA E	100:0	NC	100:0	SP	100:0	FC	100:0	FC	100:0	SP
recAF	100:0	NC	100:0	SP	100:0	FC	100:0	FC	100:0	SP
rfac A	90:10	NC								
rfaC B	90:10	NC								
rfaC C	90:10	NC								
rfaC D	90:10	NC								
rfaC E	90:10	NC								
rfac F	90:10	NC								
nuoG A	100:0	SP	100:0	SP	100:0	FC	100:0	FC	100:0	FC
nuoG B	100:0	SP	100:0	SP	100:0	FC	100:0	FC	100:0	FC
nuoG C	100:0	SP	100:0	SP	100:0	FC	100:0	FC	100:0	FC
nuoG D	100:0	SP	100:0	SP	100:0	FC	100:0	FC	100:0	FC
nuoG E	100:0	SP	100:0	SP	100:0	FC	100:0	FC	100:0	FC
nuoG F	100:0	SP	100:0	SP	100:0	FC	100:0	FC	100:0	FC
ompC A	100:0	FC								
ompC B	100:0	FC								
ompC C	100:0	FC								
ompC D	100:0	FC								
ompC E	100:0	FC								
ompC F	100:0	FC								
rfaF A	90:10	PC	90:10	PC	90:10	PC	90:10	FC	100:0	FC
rfaF B	90:10	PC	90:10	PC	90:10	PC	90:10	FC	100:0	FC
rfaF C	90:10	PC	90:10	PC	90:10	PC	90:10	FC	100:0	FC
rfaF D	90:10	PC	90:10	PC	90:10	PC	90:10	FC	100:0	FC
rfaF E	90:10	PC	90:10	PC	90:10	PC	90:10	FC	100:0	FC
rfaF F	90:10	PC	90:10	PC	90:10	PC	90:10	FC	100:0	FC
hldD A	90:10	NC								
hldD B	90:10	NC								
hldD C	90:10	NC								
hldD D	90:10	NC								
hldD E	90:10	NC								
hldD F	90:10	NC								
tpx A	90:10	FC	100:0	FC	100:0	FC	100:0	FC	100:0	FC
tpx B	90:10	FC	100:0	FC	100:0	FC	100:0	FC	100:0	FC
tpx C	90:10	FC	100:0	FC	100:0	FC	100:0	FC	100:0	FC
tpx D	90:10	FC	100:0	FC	100:0	FC	100:0	FC	100:0	FC
tpx E	90:10	FC	100:0	FC	100:0	FC	100:0	FC	100:0	FC
tpxF	90:10	FC	100:0	FC	100:0	FC	100:0	FC	100:0	FC
hsdS A	100:0	PC	100:0	PC	100:0	FC	100:0	FC	100:0	FC
hsdS B	100:0	PC	100:0	PC	100:0	FC	100:0	FC	100:0	FC
hsdS C	100:0	PC	100:0	PC	100:0	FC	100:0	FC	100:0	FC
hsdS D	100:0	PC	100:0	PC	100:0	FC	100:0	FC	100:0	FC
hsdS E	100:0	PC	100:0	PC	100:0	FC	100:0	FC	100:0	FC
hsdS F	100:0	PC	100:0	PC	100:0	FC	100:0	FC	100:0	FC
$\operatorname{man} \times \mathrm{A}$	100:0	PC	100:0	PC	100:0	FC	100:0	FC	100:0	FC
manX B	100:0	PC	100:0	PC	100:0	FC	100:0	FC	100:0	FC
manX C	100:0	PC	100:0	PC	100:0	FC	100:0	FC	100:0	FC
manX D	100:0	PC	100:0	PC	100:0	FC	100:0	FC	100:0	FC
manXE	100:0	PC	100:0	PC	100:0	FC	100:0	FC	100:0	FC
manX F	100:0	PC	100:0	PC	100:0	FC	100:0	FC	100:0	FC
manY A	50:50	SP	50:50	SP	50:50	SP	50:50	SP	50:50	NC
manY B	50:50	SP	50:50	SP	50:50	SP	50:50	SP	50:50	NC
$\operatorname{manY} \mathrm{C}$	50:50	SP	50:50	SP	50:50	SP	50:50	SP	50:50	NC
manY D	50:50	SP	50:50	SP	50:50	SP	50:50	SP	50:50	NC
manYE	50:50	SP	50:50	SP	50:50	SP	50:50	SP	50:50	NC
manY F	50:50	SP	50:50	SP	50:50	SP	50:50	SP	50:50	NC

Supplemental table 2 continued: host ratio and spot assay data for parallel evolution experiments. (Key: $\mathrm{NC}=$ no clearing, $\mathrm{SP}=$ single plaques, $\mathrm{FC}=$ full clearing $)$

	round 6		round 7		round 8		round 9		round 10	
phage strain	KO:WT Host	Spot Assay								
clpXA	90:10	FC								
clpX B	90:10	FC								
clpX C	90:10	FC								
cpIX D	90:10	FC								
clpXE	90:10	FC								
clpX F	90:10	FC								
crr A	100:0	FC								
crr B	100:0	FC								
crr C	100:0	FC								
crr D	100:0	FC								
crr E	100:0	FC								
crr F	100:0	FC								
gmha A	90:10	PC	90:10	PC	90:10	PC	90:10	NC	90:10	NC
gmhA B	90:10	PC	90:10	PC	90:10	PC	90:10	NC	90:10	NC
gmhA C	90:10	PC	90:10	PC	90:10	PC	90:10	NC	90:10	NC
gmha D	90:10	PC	90:10	PC	90:10	PC	90:10	NC	90:10	NC
gmhA E	90:10	PC	90:10	PC	90:10	PC	90:10	NC	90:10	NC
gmhA F	90:10	PC	90:10	PC	90:10	PC	90:10	NC	90:10	NC
dnaK A	90:10	NC								
dnaK B	90:10	NC								
dnaK C	90:10	NC								
dnaK D	90:10	NC								
dnaK E	90:10	NC								
dnaK F	90:10	NC								
recA A	100:0	FC								
recA B	100:0	FC								
recAC	100:0	FC								
recA D	100:0	FC								
recAE	100:0	FC								
recAF	100:0	FC								
rfaC A	90:10	NC	90:10	PC	100:0	PC	100:0	FC	100:0	FC
rfaC B	90:10	NC	90:10	PC	100:0	PC	100:0	FC	100:0	FC
rfac C	90:10	NC	90:10	PC	100:0	PC	100:0	FC	100:0	FC
rfaCD	90:10	NC	90:10	PC	100:0	PC	100:0	FC	100:0	FC
rfaC E	90:10	NC	90:10	PC	100:0	PC	100:0	FC	100:0	FC
rfaC F	90:10	NC	90:10	PC	100:0	PC	100:0	FC	100:0	FC
nuoG A	100:0	FC								
nuoG B	100:0	FC								
nuoG C	100:0	FC								
nuog D	100:0	FC								
nuoG E	100:0	FC								
nuoG F	100:0	FC								
ompC A	100:0	FC								
ompC B	100:0	FC								
ompC C	100:0	FC								
ompC D	100:0	FC								
ompC E	100:0	FC								
ompC F	100:0	FC								
rfaFA	100:0	FC								
rfaF B	100:0	FC								
rfaF C	100:0	FC								
rfaF D	100:0	FC								
rfaF E	100:0	FC								
rfaF F	100:0	FC								
hldD A	90:10	PC	90:10	PC	90:10	PC	90:10	PC	90:10	FC
hldD B	90:10	PC	90:10	PC	90:10	PC	90:10	PC	90:10	FC
hldD C	90:10	PC	90:10	PC	90:10	PC	90:10	PC	90:10	FC
hldD D	90:10	PC	90:10	PC	90:10	PC	90:10	PC	90:10	FC
hldD E	90:10	PC	90:10	FC	90:10	FC	90:10	FC	90:10	FC
hldD F	90:10	PC	90:10	PC	90:10	PC	90:10	PC	90:10	FC
tpx A	100:0	FC								
tpx B	100:0	FC								
tpx C	100:0	FC								
tpx D	100:0	FC								
tpxE	100:0	FC								
tpxF	100:0	FC								
hsdS A	100:0	FC								
hsdS B	100:0	FC								
hsdS C	100:0	FC								
hsdS D	100:0	FC								
hsdS E	100:0	FC								
hsdS F	100:0	FC								
$\operatorname{man} \times \mathrm{A}$	100:0	FC								
manX B	100:0	FC								
manXC	100:0	FC								
$\operatorname{manX~D}$	100:0	FC								
manXE	100:0	FC								
manX F	100:0	FC								
manY A	50:50	NC								
$\operatorname{man} \mathrm{Y}$ B	50:50	NC	50:50	NC	50:50	NC	50:50	SP	50:50	SP
man Y C	50:50	SP	50:50	NC	50:50	NC	50:50	NC	50:50	NC
manY D	50:50	NC								
manYE	50:50	NC								
manY F	50:50	NC	50:50	NC	50:50	NC	50:50	SP	50:50	SP

Supplemental table 2 continued: host ratio and spot assay data for parallel evolution experiments. (Key: $\mathrm{NC}=$ no clearing, $\mathrm{SP}=$ single plaques, $\mathrm{FC}=$ full clearing $)$

	round 11		round 12		round 13		round 14		round 15	
phage strain	KO:WT Host	Spot Assay								
clpXA	90:10	FC								
clpX B	90:10	FC								
clpX C	90:10	FC								
cpIXD	90:10	FC								
clpXE	90:10	FC								
clpX F	90:10	FC								
crr A	100:0	FC								
crr B	100:0	FC								
crr C	100:0	FC								
crr D	100:0	FC								
crr E	100:0	FC								
crr F	100:0	FC								
gmhA A	90:10	NC	90:10	PC	90:10	PC	90:10	FC	90:10	FC
gmhA B	90:10	NC	90:10	PC	90:10	PC	90:10	FC	90:10	FC
gmhA C	90:10	NC	90:10	PC	90:10	PC	90:10	FC	90:10	FC
gmhA D	90:10	NC	90:10	PC	90:10	PC	90:10	FC	90:10	FC
gmhAE	90:10	NC	90:10	PC	90:10	PC	90:10	FC	90:10	FC
gmhAF	90:10	NC	90:10	PC	90:10	PC	90:10	FC	90:10	FC
dnaK A	90:10	NC	100:0	NC	100:0	NC	100:0	NC	100:0	NC
dnaK B	90:10	NC	100:0	NC	100:0	NC	100:0	NC	100:0	NC
dnaK C	90:10	NC	100:0	NC	100:0	NC	100:0	NC	100:0	NC
dnaK D	90:10	NC	100:0	NC	100:0	NC	100:0	NC	100:0	NC
dnaK E	90:10	NC	100:0	NC	100:0	NC	100:0	NC	100:0	NC
dnaK F	90:10	NC	100:0	NC	100:0	NC	100:0	NC	100:0	NC
recA A	100:0	FC								
recA B	100:0	FC								
recAC	100:0	FC								
recA D	100:0	FC								
recAE	100:0	FC								
recA F	100:0	FC								
rfaC A	100:0	FC								
rfaC B	100:0	FC								
rfaC C	100:0	PC	100:0	NC	100:0	NC	100:0	NC	100:0	NC
rfaC D	100:0	FC								
rfaC E	100:0	FC								
rfaC F	100:0	PC	100:0	SP	100:0	SP	100:0	FC	100:0	FC
nuoG A	100:0	FC								
nuoG B	100:0	FC								
nuoG C	100:0	FC								
nuoG D	100:0	FC								
nuoGE	100:0	FC								
nuoG F	100:0	FC								
ompC A	100:0	FC								
ompC B	100:0	FC								
ompC C	100:0	FC								
ompC D	100:0	FC								
ompC E	100:0	FC								
ompC F	100:0	FC								
rfaF A	100:0	FC								
rfaF B	100:0	FC								
rfaF C	100:0	FC								
rfaF D	100:0	FC								
rfaF E	100:0	FC								
rfaF F	100:0	FC								
hldD A	90:10	FC	100:0	FC	100:0	FC	100:0	FC	100:0	FC
hldD B	90:10	FC	100:0	FC	100:0	FC	100:0	FC	100:0	FC
hldD C	90:10	FC	100:0	FC	100:0	FC	100:0	FC	100:0	FC
hldD D	90:10	FC	100:0	FC	100:0	FC	100:0	FC	100:0	FC
hldD E	90:10	FC	100:0	FC	100:0	FC	100:0	FC	100:0	FC
hldD F	90:10	FC	100:0	FC	100:0	FC	100:0	FC	100:0	FC
tpx A	100:0	FC								
tpx B	100:0	FC								
tpx C	100:0	FC								
tpx D	100:0	FC								
tpxE	100:0	FC								
tpx F	100:0	FC								
hsdS A	100:0	FC								
hsdS B	100:0	FC								
hsdS C	100:0	FC								
hsdS D	100:0	FC								
hsdS E	100:0	FC								
hsdS F	100:0	FC								
$\operatorname{man} \times \mathrm{A}$	100:0	FC								
$\operatorname{man} \times \mathrm{B}$	100:0	FC								
manXC	100:0	FC								
manX D	100:0	FC								
manXE	100:0	FC								
manX F	100:0	FC								
$\operatorname{manY} \mathrm{A}$	50:50	SP	50:50	SP	50:50	SP	50:50	SP	50:50	NC
manY B	50:50	FC	50:50	SP	100:0	SP	100:0	FC	50:50	FC
man Y C	50:50	NC	50:50	NC						
manY D	50:50	NC								
manYE	50:50	SP	50:50	SP	50:50	SP	50:50	SP	50:50	NC
manY F	50:50	SP	50:50	FC	50:50	SP	50:50	FC	50:50	FC

Supplemental table 2 continued: host ratio and spot assay data for parallel evolution experiments. (Key: $\mathrm{NC}=$ no clearing, $\mathrm{SP}=$ single plaques, $\mathrm{FC}=$ full clearing)

	round 16		round 17		round 18		round 19		round 20	
phage strain	KO:WT Host	Spot Assay								
clpXA	90:10	FC	90:10	FC	100:0	FC	100:0	FC	100:0	FC
clpX B	90:10	FC	90:10	FC	100:0	FC	100:0	FC	100:0	FC
clpX C	90:10	FC	90:10	FC	100:0	FC	100:0	FC	100:0	FC
cplX D	90:10	FC	90:10	FC	100:0	FC	100:0	FC	100:0	FC
clpXE	90:10	FC	90:10	FC	100:0	FC	100:0	FC	100:0	FC
clpX F	90:10	FC	90:10	FC	100:0	FC	100:0	FC	100:0	FC
crr A	100:0	FC								
crr B	100:0	FC								
crr C	100:0	FC								
crr D	100:0	FC								
crr E	100:0	FC								
crr F	100:0	FC								
gmhA A	90:10	FC	90:10	FC	100:0	FC	100:0	FC	100:0	FC
gmhA B	90:10	FC	90:10	FC	100:0	FC	100:0	FC	100:0	FC
gmhA C	90:10	FC	90:10	FC	100:0	FC	100:0	FC	100:0	FC
gmhA D	90:10	FC	90:10	FC	100:0	FC	100:0	FC	100:0	FC
gmhAE	90:10	FC	90:10	FC	100:0	FC	100:0	FC	100:0	FC
gmhA F	90:10	FC	90:10	FC	100:0	FC	100:0	FC	100:0	FC
dnaK A	100:0	NC	90:10	NC	90:10	NC	90:10	NC	90:10	NC
dnaK B	100:0	NC	90:10	NC	90:10	NC	90:10	NC	90:10	NC
dnaK C	100:0	NC	90:10	NC	90:10	NC	90:10	NC	90:10	NC
dnaK D	100:0	NC	90:10	NC	90:10	NC	90:10	NC	90:10	NC
dnaKE	100:0	NC	90:10	NC	90:10	NC	90:10	NC	90:10	NC
dnaK F	100:0	NC	90:10	NC	90:10	NC	90:10	NC	90:10	NC
recA A	100:0	FC								
recA B	100:0	FC								
recAC	100:0	FC								
recA D	100:0	FC								
recAE	100:0	FC								
recAF	100:0	FC								
rfaC A	100:0	FC								
rfaC B	100:0	FC								
rfac C	100:0	NC	90:10	NC	90:10	FC	90:10	FC	90:10	FC
rfaC D	100:0	FC								
rfaC E	100:0	FC								
rfaC F	100:0	FC								
nuoG A	100:0	FC								
nuoG B	100:0	FC								
nuoG C	100:0	FC								
nuoG D	100:0	FC								
nuoG E	100:0	FC								
nuoG F	100:0	FC								
ompC A	100:0	FC								
ompC B	100:0	FC								
ompC C	100:0	FC								
ompC D	100:0	FC								
ompC E	100:0	FC								
ompC F	100:0	FC								
rfaF A	100:0	FC								
rfaF B	100:0	FC								
rfaF C	100:0	FC								
rfaF D	100:0	FC								
rfaF E	100:0	FC								
rfaF F	100:0	FC								
hldD A	100:0	FC								
hldD B	100:0	FC								
hldD C	100:0	FC								
hldD D	100:0	FC								
hldD E	100:0	FC								
hldD F	100:0	FC								
tpx A	100:0	FC								
tpx B	100:0	FC								
tpx C	100:0	FC								
tpx D	100:0	FC								
tpx E	100:0	FC								
tpx F	100:0	FC								
hsdS A	100:0	FC								
hsdS B	100:0	FC								
hsdS C	100:0	FC								
hsdS D	100:0	FC								
hsdS E	100:0	FC								
hsdS F	100:0	FC								
$\operatorname{man} \times \mathrm{A}$	100:0	FC								
$\operatorname{man} \times \mathrm{B}$	100:0	FC								
manXC	100:0	FC								
manX D	100:0	FC								
manXE	100:0	FC								
manX F	100:0	FC								
$\operatorname{manY} A$	50:50	NC								
manY B	50:50	FC	90:10	FC	90:10	FC	90:10	FC	100:0	FC
manY C										
manY D										
manYE	50:50	NC								
manY F	50:50	FC	90:10	FC	90:10	FC	90:10	FC	100:0	FC

Supplemental table 2 continued: host ratio and spot assay data for parallel evolution experiments. (Key: $\mathrm{NC}=$ no clearing, $\mathrm{SP}=$ single plaques, $\mathrm{FC}=$ full clearing)

	round 1		round 2		round 3		round 4		round 5	
phage strain	KO:WT Host	Spot Assay								
WT-1 A	0:100	FC								
WT-1 B	0:100	FC								
WT-1 C	0:100	FC								
WT-1 D	0:100	FC								
WT-1 E	0:100	FC								
WT-1 F	0:100	FC								
WT-2 A	0:100	FC								
WT-2 B	0:100	FC								
WT-2 C	0:100	FC								
WT-2 D	0:100	FC								
WT-2 E	0:100	FC								
WT-3A	0:100	FC								
WT-3 B	0:100	FC								
WT-3 C	0:100	FC								
WT-3 D	0:100	FC								
WT-3 E	0:100	FC								
WT-3 F	0:100	FC								
WT-4 A	0:100	FC								
WT-4 B	0:100	FC								
WT-4 C	0:100	FC								
WT-4 D	0:100	FC								
WT-4 E	0:100	FC								
WT-4 F	0:100	FC								
WT-5 A	0:100	FC								
WT-5 B	0:100	FC								
WT-5 C	0:100	FC								
WT-5 D	0:100	FC								
WT-5 E	0:100	FC								
WT-5 F	0:100	FC								
WT-6 A	0:100	FC								
WT-6 B	0:100	FC								
WT-6 C	0:100	FC								
WT-6 D	0:100	FC								
WT-6 E	0:100	FC								
WT-6 F	0:100	FC								

Supplemental table 2 continued: host ratio and spot assay data for parallel evolution experiments. (Key: $\mathrm{NC}=$ no clearing, $\mathrm{SP}=$ single plaques, $\mathrm{FC}=$ full clearing $)$

	round 6		round 7		round 8		round 9		round 10	
phage strain	KO:WT Host	Spot Assay								
WT-1 A	0:100	FC								
WT-1 B	0:100	FC								
WT-1 C	0:100	FC								
WT-1 D	0:100	FC								
WT-1 E	0:100	FC								
WT-1 F	0:100	FC								
WT-2 A	0:100	FC								
WT-2 B	0:100	FC								
WT-2 C	0:100	FC								
WT-2 D	0:100	FC								
WT-2 E	0:100	FC								
WT-3A	0:100	FC								
WT-3 B	0:100	FC								
WT-3 C	0:100	FC								
WT-3 D	0:100	FC								
WT-3 E	0:100	FC								
WT-3 F	0:100	FC								
WT-4 A	0:100	FC								
WT-4 B	0:100	FC								
WT-4 C	0:100	FC								
WT-4 D	0:100	FC								
WT-4 E	0:100	FC								
WT-4 F	0:100	FC								
WT-5 A	0:100	FC								
WT-5 B	0:100	FC								
WT-5 C	0:100	FC								
WT-5 D	0:100	FC								
WT-5 E	0:100	FC								
WT-5 F	0:100	FC								
WT-6 A	0:100	FC								
WT-6 B	0:100	FC								
WT-6 C	0:100	FC								
WT-6 D	0:100	FC								
WT-6 E	0:100	FC								
WT-6 F	0:100	FC								

Supplemental table 2 continued: host ratio and spot assay data for parallel evolution experiments. (Key: $\mathrm{NC}=$ no clearing, $\mathrm{SP}=$ single plaques, $\mathrm{FC}=$ full clearing $)$

	round 11		round 12		round 13		round 14		round 15	
phage strain	KO:WT Host	Spot Assay								
WT-1 A	0:100	FC								
WT-1 B	0:100	FC								
WT-1 C	0:100	FC								
WT-1 D	0:100	FC								
WT-1 E	0:100	FC								
WT-1 F	0:100	FC								
WT-2 A	0:100	FC								
WT-2 B	0:100	FC								
WT-2 C	0:100	FC								
WT-2 D	0:100	FC								
WT-2 E	0:100	FC								
WT-3A	0:100	FC								
WT-3 B	0:100	FC								
WT-3 C	0:100	FC								
WT-3 D	0:100	FC								
WT-3 E	0:100	FC								
WT-3 F	0:100	FC								
WT-4 A	0:100	FC								
WT-4 B	0:100	FC								
WT-4 C	0:100	FC								
WT-4 D	0:100	FC								
WT-4 E	0:100	FC								
WT-4 F	0:100	FC								
WT-5 A	0:100	FC								
WT-5 B	0:100	FC								
WT-5 C	0:100	FC								
WT-5 D	0:100	FC								
WT-5 E	0:100	FC								
WT-5 F	0:100	FC								
WT-6 A	0:100	FC								
WT-6 B	0:100	FC								
WT-6 C	0:100	FC								
WT-6 D	0:100	FC								
WT-6 E	0:100	FC								
WT-6 F	0:100	FC								

Supplemental table 2 continued: host ratio and spot assay data for parallel evolution experiments. (Key: $\mathrm{NC}=$ no clearing, $\mathrm{SP}=$ single plaques, $\mathrm{FC}=$ full clearing)

	round 16		round 17		round 18		round 19		round 20	
phage strain	KO:WT Host	Spot Assay								
WT-1 A	0:100	FC								
WT-1 B	0:100	FC								
WT-1 C	0:100	FC								
WT-1 D	0:100	FC								
WT-1 E	0:100	FC								
WT-1 F	0:100	FC								
WT-2 A	0:100	FC								
WT-2 B	0:100	FC								
WT-2 C	0:100	FC								
WT-2 D	0:100	FC								
WT-2 E	0:100	FC								
WT-3A	0:100	FC								
WT-3 B	0:100	FC								
WT-3 C	0:100	FC								
WT-3 D	0:100	FC								
WT-3 E	0:100	FC								
WT-3 F	0:100	FC								
WT-4 A	0:100	FC								
WT-4 B	0:100	FC								
WT-4 C	0:100	FC								
WT-4 D	0:100	FC								
WT-4 E	0:100	FC								
WT-4 F	0:100	FC								
WT-5 A	0:100	FC								
WT-5 B	0:100	FC								
WT-5 C	0:100	FC								
WT-5 D	0:100	FC								
WT-5 E	0:100	FC								
WT-5 F	0:100	FC								
WT-6 A	0:100	FC								
WT-6 B	0:100	FC								
WT-6 C	0:100	FC								
WT-6 D	0:100	FC								
WT-6 E	0:100	FC								
WT-6 F	0:100	FC								

Supplemental table 3: initial and final phage densities for competitive growth assay experiments (pfu/mL).

Sample	Initial evolved isolate concentration	Final evolved isolate concentration	Initial cl26lacZ concentration	Final cl26lacZ Concentration
crrA1	$4.64 \mathrm{E}+06$	$5.54 \mathrm{E}+09$	4.14E+06	$8.00 \mathrm{E}+07$
crr A2	$5.40 \mathrm{E}+06$	$6.16 \mathrm{E}+09$	$3.48 \mathrm{E}+06$	$1.10 \mathrm{E}+08$
crr A3	$4.96 \mathrm{E}+06$	$6.54 \mathrm{E}+09$	$3.58 \mathrm{E}+06$	$8.00 \mathrm{E}+07$
crr B1	$2.82 \mathrm{E}+06$	$6.74 \mathrm{E}+09$	$3.46 \mathrm{E}+06$	$1.00 \mathrm{E}+08$
crr B2	$2.64 \mathrm{E}+06$	$9.36 \mathrm{E}+09$	$3.36 \mathrm{E}+06$	$1.30 \mathrm{E}+08$
crr B3	$2.66 \mathrm{E}+06$	$7.44 \mathrm{E}+09$	$3.26 \mathrm{E}+06$	$1.70 \mathrm{E}+08$
crr C1	$1.66 \mathrm{E}+06$	$8.50 \mathrm{E}+09$	$2.56 \mathrm{E}+06$	$4.60 \mathrm{E}+08$
crr C2	$2.02 \mathrm{E}+06$	$7.58 \mathrm{E}+09$	$3.18 \mathrm{E}+06$	$8.20 \mathrm{E}+08$
crr C3	$1.40 \mathrm{E}+06$	$1.01 \mathrm{E}+10$	$2.84 \mathrm{E}+06$	$8.60 \mathrm{E}+08$
Control A	$1.76 \mathrm{E}+06$	$2.58 \mathrm{E}+09$	4.12E+06	$3.28 \mathrm{E}+09$
Control B	$1.50 \mathrm{E}+06$	$3.50 \mathrm{E}+09$	$3.10 \mathrm{E}+06$	$3.32 \mathrm{E}+09$
Control C	$1.26 \mathrm{E}+06$	$3.06 \mathrm{E}+09$	$2.54 \mathrm{E}+06$	$3.92 \mathrm{E}+09$
crr D1	3.94E+06	$1.50 \mathrm{E}+10$	$5.10 \mathrm{E}+06$	$2.00 \mathrm{E}+08$
crr D2	$2.66 \mathrm{E}+06$	$1.50 \mathrm{E}+10$	$4.34 \mathrm{E}+06$	$4.40 \mathrm{E}+08$
crr D3	$2.78 \mathrm{E}+06$	$1.71 \mathrm{E}+10$	$4.30 \mathrm{E}+06$	$3.70 \mathrm{E}+08$
crr E1	$1.56 \mathrm{E}+06$	$1.14 \mathrm{E}+10$	$5.36 \mathrm{E}+06$	$2.10 \mathrm{E}+08$
crrE2	$9.60 \mathrm{E}+05$	$1.06 \mathrm{E}+10$	$5.54 \mathrm{E}+06$	$2.60 \mathrm{E}+08$
crr E3	$1.16 \mathrm{E}+06$	$1.19 \mathrm{E}+10$	$5.50 \mathrm{E}+06$	$2.30 \mathrm{E}+08$
crr F1	$3.16 \mathrm{E}+06$	$1.51 \mathrm{E}+10$	$4.72 \mathrm{E}+06$	$2.70 \mathrm{E}+08$
crr F2	$4.30 \mathrm{E}+06$	$1.36 \mathrm{E}+10$	$4.40 \mathrm{E}+06$	$2.40 \mathrm{E}+08$
crr F3	$3.84 \mathrm{E}+06$	$1.27 \mathrm{E}+10$	$4.68 \mathrm{E}+06$	$2.00 \mathrm{E}+08$
Control A	$1.70 \mathrm{E}+06$	$3.00 \mathrm{E}+10$	$3.32 \mathrm{E}+06$	$1.40 \mathrm{E}+10$
Control B	$1.92 \mathrm{E}+06$	$1.70 \mathrm{E}+10$	$4.62 \mathrm{E}+06$	$1.90 \mathrm{E}+10$
Control C	$2.14 \mathrm{E}+06$	$2.90 \mathrm{E}+10$	$5.50 \mathrm{E}+06$	$2.10 \mathrm{E}+10$
clpx 11	$3.72 \mathrm{E}+07$	$1.05 \mathrm{E}+10$	$6.48 \mathrm{E}+07$	$6.60 \mathrm{E}+08$
clpx A2	$3.36 \mathrm{E}+07$	$1.25 \mathrm{E}+10$	$6.32 \mathrm{E}+07$	$5.60 \mathrm{E}+08$
clpx A3	$2.80 \mathrm{E}+07$	$1.03 \mathrm{E}+10$	$7.48 \mathrm{E}+07$	$5.40 \mathrm{E}+08$
clpx B1	$4.34 \mathrm{E}+07$	$8.34 \mathrm{E}+09$	$9.76 \mathrm{E}+07$	$5.40 \mathrm{E}+08$
clpx B2	$4.10 \mathrm{E}+07$	$8.26 \mathrm{E}+09$	$9.18 \mathrm{E}+07$	$4.80 \mathrm{E}+08$
clpx B3	$3.90 \mathrm{E}+07$	$1.22 \mathrm{E}+10$	$9.40 \mathrm{E}+07$	$5.60 \mathrm{E}+08$
clpx C1	$3.32 \mathrm{E}+07$	$8.44 \mathrm{E}+09$	$1.00 \mathrm{E}+08$	$1.04 \mathrm{E}+09$
clpx C2	$2.64 \mathrm{E}+07$	$6.72 \mathrm{E}+09$	$8.00 \mathrm{E}+07$	$1.60 \mathrm{E}+09$
clpx C3	$3.00 \mathrm{E}+07$	$7.24 \mathrm{E}+09$	$8.96 \mathrm{E}+07$	$9.20 \mathrm{E}+08$
Control A	$3.78 \mathrm{E}+07$	$4.38 \mathrm{E}+09$	$8.78 \mathrm{E}+07$	$9.68 \mathrm{E}+09$
Control B	$3.96 \mathrm{E}+07$	$4.76 \mathrm{E}+09$	$8.98 \mathrm{E}+07$	$1.12 \mathrm{E}+10$
Control C	$3.78 \mathrm{E}+07$	$4.56 \mathrm{E}+09$	$8.74 \mathrm{E}+07$	$9.48 \mathrm{E}+09$
clpx D1	$1.22 \mathrm{E}+06$	$6.57 \mathrm{E}+09$	$5.32 \mathrm{E}+06$	$2.30 \mathrm{E}+08$
clpx D2	$1.28 \mathrm{E}+06$	$5.71 \mathrm{E}+09$	$4.46 \mathrm{E}+06$	$3.10 \mathrm{E}+08$
clpx D3	$1.36 \mathrm{E}+06$	$4.44 \mathrm{E}+09$	$5.08 \mathrm{E}+06$	$3.70 \mathrm{E}+08$
clpx E1	$8.60 \mathrm{E}+05$	$6.93 \mathrm{E}+09$	$6.14 \mathrm{E}+06$	$5.90 \mathrm{E}+08$
clpx E2	$8.40 \mathrm{E}+05$	$7.30 \mathrm{E}+09$	$5.66 \mathrm{E}+06$	$7.20 \mathrm{E}+08$
clpx E3	$8.60 \mathrm{E}+05$	$7.21 \mathrm{E}+09$	$5.64 \mathrm{E}+06$	$7.80 \mathrm{E}+08$
clpx F1	$2.48 \mathrm{E}+06$	$9.10 \mathrm{E}+09$	$4.10 \mathrm{E}+06$	$1.90 \mathrm{E}+08$
clpx F2	$2.10 \mathrm{E}+06$	$8.36 \mathrm{E}+09$	$5.96 \mathrm{E}+06$	$1.80 \mathrm{E}+08$
clpx F3	$2.26 \mathrm{E}+06$	$8.13 \mathrm{E}+09$	$5.38 \mathrm{E}+06$	$1.60 \mathrm{E}+08$
Control A	$1.96 \mathrm{E}+06$	$4.20 \mathrm{E}+09$	$5.02 \mathrm{E}+06$	$3.96 \mathrm{E}+09$
Control B	$2.20 \mathrm{E}+06$	$3.92 \mathrm{E}+09$	$5.02 \mathrm{E}+06$	$3.44 \mathrm{E}+09$
Control C	$2.06 \mathrm{E}+06$	$4.52 \mathrm{E}+09$	$4.56 \mathrm{E}+06$	$4.06 \mathrm{E}+09$

Supplemental table 3 continued: initial and final phage densities for competitive growth assay experiments (pfu/mL).

Sample	Initial evolved isolate concentration	Final evolved isolate concentration	Initial cl26lacZ concentration	Final cl26lacZ Concentration
gmha A1	$6.60 \mathrm{E}+05$	$2.07 \mathrm{E}+08$	$2.81 \mathrm{E}+06$	$6.00 \mathrm{E}+07$
gmha A2	$6.20 \mathrm{E}+05$	$1.78 \mathrm{E}+08$	$3.38 \mathrm{E}+06$	$4.40 \mathrm{E}+07$
gmha A3	$7.00 \mathrm{E}+05$	$2.28 \mathrm{E}+07$	$3.06 \mathrm{E}+06$	$6.90 \mathrm{E}+06$
gmha B1	$5.50 \mathrm{E}+05$	$3.58 \mathrm{E}+09$	$2.82 \mathrm{E}+06$	$2.00 \mathrm{E}+07$
$g m h A B 2$	$4.50 \mathrm{E}+05$	$3.08 \mathrm{E}+09$	$2.81 \mathrm{E}+06$	$2.00 \mathrm{E}+07$
gmha B3	$5.60 \mathrm{E}+05$	$4.98 \mathrm{E}+09$	$3.14 \mathrm{E}+06$	$2.00 \mathrm{E}+06$
gmha C1	$1.16 \mathrm{E}+06$	$1.97 \mathrm{E}+09$	$3.05 \mathrm{E}+06$	$1.00 \mathrm{E}+07$
gmhA C2	$1.40 \mathrm{E}+06$	$8.50 \mathrm{E}+08$	$2.98 \mathrm{E}+06$	$1.00 \mathrm{E}+07$
gmha C3	$1.21 \mathrm{E}+06$	$1.63 \mathrm{E}+09$	$2.55 \mathrm{E}+06$	$1.00 \mathrm{E}+07$
Control A	$1.10 \mathrm{E}+06$	$1.53 \mathrm{E}+07$	$2.52 \mathrm{E}+06$	$6.00 \mathrm{E}+06$
Control B	$1.19 \mathrm{E}+06$	$1.03 \mathrm{E}+07$	$2.97 \mathrm{E}+06$	$4.70 \mathrm{E}+06$
Control C	$9.30 \mathrm{E}+05$	$1.02 \mathrm{E}+07$	$3.08 \mathrm{E}+06$	$4.50 \mathrm{E}+06$
gmha D1	$4.90 \mathrm{E}+05$	$3.40 \mathrm{E}+07$	$2.35 \mathrm{E}+06$	$1.00 \mathrm{E}+06$
gmhA D2	$7.20 \mathrm{E}+05$	$1.70 \mathrm{E}+08$	$2.01 \mathrm{E}+06$	$2.00 \mathrm{E}+07$
gmhA D3	$4.70 \mathrm{E}+05$	$1.50 \mathrm{E}+08$	$1.75 \mathrm{E}+06$	$1.00 \mathrm{E}+07$
gmha E1	$1.27 \mathrm{E}+06$	$3.37 \mathrm{E}+09$	$2.10 \mathrm{E}+06$	$0.00 \mathrm{E}+00$
gmha E2	$1.31 \mathrm{E}+06$	$4.39 \mathrm{E}+09$	$2.03 \mathrm{E}+06$	$3.16 \mathrm{E}+04$
gmha E3	$1.13 \mathrm{E}+06$	$3.40 \mathrm{E}+08$	$1.96 \mathrm{E}+06$	$1.00 \mathrm{E}+07$
gmha F1	$7.00 \mathrm{E}+05$	$7.69 \mathrm{E}+03$	$1.78 \mathrm{E}+06$	$6.32 \mathrm{E}+03$
gmha F2	$6.40 \mathrm{E}+05$	$5.75 \mathrm{E}+03$	$1.57 \mathrm{E}+06$	$1.58 \mathrm{E}+04$
gmha F3	$5.70 \mathrm{E}+05$	$6.45 \mathrm{E}+03$	$1.79 \mathrm{E}+06$	$1.58 \mathrm{E}+04$
Control A	$5.70 \mathrm{E}+05$	$2.20 \mathrm{E}+07$	$1.71 \mathrm{E}+06$	$4.30 \mathrm{E}+06$
Control B	$7.40 \mathrm{E}+05$	$2.04 \mathrm{E}+07$	$1.67 \mathrm{E}+06$	$2.70 \mathrm{E}+06$
Control C	$6.90 \mathrm{E}+05$	$0.00 \mathrm{E}+00$	$2.31 \mathrm{E}+06$	
manX A1	$9.80 \mathrm{E}+05$	$8.96 \mathrm{E}+09$	$3.90 \mathrm{E}+05$	$8.00 \mathrm{E}+07$
$\operatorname{manX} A 2$	$9.60 \mathrm{E}+05$	$1.15 \mathrm{E}+10$	$4.00 \mathrm{E}+05$	$5.00 \mathrm{E}+07$
$\operatorname{manX} A 3$	$8.90 \mathrm{E}+05$	$9.40 \mathrm{E}+09$	$2.20 \mathrm{E}+05$	$9.00 \mathrm{E}+07$
$\operatorname{man} \times$ B1	$1.50 \mathrm{E}+05$	$8.12 \mathrm{E}+09$	$2.20 \mathrm{E}+05$	$7.80 \mathrm{E}+08$
$\operatorname{man} \times$ B2	$1.30 \mathrm{E}+05$	$6.50 \mathrm{E}+09$	$2.40 \mathrm{E}+05$	$1.03 \mathrm{E}+09$
$\operatorname{man} \times$ B3	$1.20 \mathrm{E}+05$	$8.18 \mathrm{E}+09$	$2.10 \mathrm{E}+05$	$9.40 \mathrm{E}+08$
$\operatorname{manX} \mathrm{C} 1$	$7.00 \mathrm{E}+04$	$5.60 \mathrm{E}+08$	$2.20 \mathrm{E}+05$	$1.25 \mathrm{E}+09$
Manx C2	$1.00 \mathrm{E}+05$	$5.50 \mathrm{E}+08$	$1.40 \mathrm{E}+05$	$1.20 \mathrm{E}+09$
manX C3	$9.00 \mathrm{E}+04$	$4.90 \mathrm{E}+08$	$1.40 \mathrm{E}+05$	$7.70 \mathrm{E}+08$
$\operatorname{manX~D1~}$	$9.10 \mathrm{E}+05$	$1.05 \mathrm{E}+10$	$2.60 \mathrm{E}+05$	$1.30 \mathrm{E}+08$
$\operatorname{manX~D2~}$	$8.20 \mathrm{E}+05$	$8.82 \mathrm{E}+09$	$2.20 \mathrm{E}+05$	$5.00 \mathrm{E}+07$
manX D3	$9.00 \mathrm{E}+05$	$8.88 \mathrm{E}+09$	$1.90 \mathrm{E}+05$	$1.10 \mathrm{E}+08$
$\operatorname{manXE1}$	$1.62 \mathrm{E}+06$	$1.21 \mathrm{E}+10$	$3.20 \mathrm{E}+05$	$4.00 \mathrm{E}+07$
$\operatorname{manX~E2}$	$1.29 \mathrm{E}+06$	$1.12 \mathrm{E}+10$	$2.10 \mathrm{E}+05$	$2.00 \mathrm{E}+07$
$\operatorname{manXE3}$	$1.28 \mathrm{E}+06$	$1.27 \mathrm{E}+10$	$2.60 \mathrm{E}+05$	$6.00 \mathrm{E}+07$
$\operatorname{manXF1}$	$4.90 \mathrm{E}+05$	$9.86 \mathrm{E}+09$	$1.30 \mathrm{E}+05$	$8.00 \mathrm{E}+07$
$\operatorname{manX} \times 2$	$4.60 \mathrm{E}+05$	$1.08 \mathrm{E}+10$	$2.20 \mathrm{E}+05$	$1.40 \mathrm{E}+08$
manX F3	$4.20 \mathrm{E}+05$	$1.01 \mathrm{E}+10$	$1.80 \mathrm{E}+05$	$1.10 \mathrm{E}+08$
Control A	$7.60 \mathrm{E}+05$	$1.13 \mathrm{E}+10$	$2.80 \mathrm{E}+05$	$9.20 \mathrm{E}+08$
Control B	$8.70 \mathrm{E}+05$	$1.24 \mathrm{E}+10$	$1.40 \mathrm{E}+05$	$5.90 \mathrm{E}+08$
Control C	$8.60 \mathrm{E}+05$	$1.09 \mathrm{E}+10$	$2.50 \mathrm{E}+05$	$6.20 \mathrm{E}+08$
manY A1	$7.40 \mathrm{E}+05$	$8.00 \mathrm{E}+05$	$3.69 \mathrm{E}+06$	$3.30 \mathrm{E}+06$
manY A2	$8.90 \mathrm{E}+05$	$1.50 \mathrm{E}+06$	$3.49 \mathrm{E}+06$	$3.40 \mathrm{E}+06$
manY A3	$8.40 \mathrm{E}+05$	$6.00 \mathrm{E}+05$	$3.40 \mathrm{E}+06$	$2.60 \mathrm{E}+06$
manY B1	$1.80 \mathrm{E}+06$	$1.98 \mathrm{E}+10$	$4.00 \mathrm{E}+06$	$2.00 \mathrm{E}+07$
$\operatorname{manY} \mathrm{B}^{2}$	$1.75 \mathrm{E}+06$	$1.84 \mathrm{E}+10$	$3.96 \mathrm{E}+06$	$2.00 \mathrm{E}+07$
manY B3	$1.72 \mathrm{E}+06$	$3.54 \mathrm{E}+10$	$4.03 \mathrm{E}+06$	$4.00 \mathrm{E}+07$
manYE1	$1.51 \mathrm{E}+06$	$1.50 \mathrm{E}+06$	$4.54 \mathrm{E}+06$	$3.80 \mathrm{E}+06$
manY E2	$1.73 \mathrm{E}+06$	$2.00 \mathrm{E}+06$	$4.68 \mathrm{E}+06$	$2.50 \mathrm{E}+06$
manY E3	$1.91 \mathrm{E}+06$	$8.00 \mathrm{E}+05$	$4.63 \mathrm{E}+06$	$2.40 \mathrm{E}+06$
manYF1	$2.53 \mathrm{E}+06$	$8.70 \mathrm{E}+09$	$4.92 \mathrm{E}+06$	$1.00 \mathrm{E}+07$
manY F2	$2.20 \mathrm{E}+06$	$8.50 \mathrm{E}+09$	$4.98 \mathrm{E}+06$	$1.00 \mathrm{E}+07$
manY F3	$2.42 \mathrm{E}+06$	$9.72 \mathrm{E}+09$	$3.55 \mathrm{E}+06$	$1.00 \mathrm{E}+07$
Control A	$1.75 \mathrm{E}+06$	$1.40 \mathrm{E}+06$	$3.78 \mathrm{E}+06$	$4.60 \mathrm{E}+06$
Control B	$2.00 \mathrm{E}+06$	$1.30 \mathrm{E}+06$	$3.90 \mathrm{E}+06$	$3.40 \mathrm{E}+06$
Control C	$2.02 \mathrm{E}+06$	$7.00 \mathrm{E}+05$	$3.96 \mathrm{E}+06$	$3.90 \mathrm{E}+06$

Supplemental table 3 continued: initial and final phage densities for competitive growth assay experiments (pfu/mL).

Sample	Initial evolved isolate concentration	Final evolved isolate concentration	Initial cl26lacZ concentration	Final cl26lacZ Concentration
tpx A1	$2.80 \mathrm{E}+05$	$1.83 \mathrm{E}+06$	$3.90 \mathrm{E}+05$	$1.81 \mathrm{E}+06$
tpx ${ }^{\text {a }}$	$4.20 \mathrm{E}+05$	$2.41 \mathrm{E}+06$	$3.40 \mathrm{E}+05$	$1.62 \mathrm{E}+06$
tpx ${ }^{\text {a }}$	$2.40 \mathrm{E}+05$	$1.61 \mathrm{E}+06$	$2.80 \mathrm{E}+05$	$1.70 \mathrm{E}+06$
tpx ${ }^{\text {B1 }}$	$1.60 \mathrm{E}+05$	$1.56 \mathrm{E}+06$	$3.00 \mathrm{E}+05$	$1.47 \mathrm{E}+06$
tpx B2	$1.30 \mathrm{E}+05$	$1.64 \mathrm{E}+06$	$2.60 \mathrm{E}+05$	$1.45 \mathrm{E}+06$
tpx B3	$1.20 \mathrm{E}+05$	$1.71 \mathrm{E}+06$	$3.40 \mathrm{E}+05$	$1.35 \mathrm{E}+06$
tpx C1	$3.30 \mathrm{E}+05$	$4.00 \mathrm{E}+07$	$3.20 \mathrm{E}+05$	$1.35 \mathrm{E}+06$
tpx C2	$4.60 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	$3.70 \mathrm{E}+05$	$1.35 \mathrm{E}+06$
tpx C3	$5.50 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	$2.50 \mathrm{E}+05$	$1.61 \mathrm{E}+06$
tpx D1	$7.80 \mathrm{E}+05$	$3.00 \mathrm{E}+07$	$4.20 \mathrm{E}+05$	$1.20 \mathrm{E}+06$
tpx D2	$9.60 \mathrm{E}+05$	$2.00 \mathrm{E}+07$	$4.60 \mathrm{E}+05$	$1.57 \mathrm{E}+06$
tpx D3	$1.01 \mathrm{E}+06$	$1.10 \mathrm{E}+07$	$4.70 \mathrm{E}+05$	$5.00 \mathrm{E}+05$
tpx E1	$4.70 \mathrm{E}+05$	$3.60 \mathrm{E}+06$	$7.10 \mathrm{E}+05$	$8.00 \mathrm{E}+05$
tpx E2	$3.60 \mathrm{E}+05$	$3.30 \mathrm{E}+06$	$3.00 \mathrm{E}+05$	$4.00 \mathrm{E}+05$
tpx E3	$6.60 \mathrm{E}+05$	$1.60 \mathrm{E}+06$	$7.70 \mathrm{E}+05$	$5.00 \mathrm{E}+05$
tpx F 1	$1.70 \mathrm{E}+05$	$9.00 \mathrm{E}+05$	$2.90 \mathrm{E}+05$	$2.00 \mathrm{E}+05$
tpx F2	$3.30 \mathrm{E}+05$	$1.10 \mathrm{E}+06$	$3.00 \mathrm{E}+05$	$4.00 \mathrm{E}+05$
tpx F3	$2.80 \mathrm{E}+05$	$1.00 \mathrm{E}+06$	$3.80 \mathrm{E}+05$	$5.00 \mathrm{E}+05$
Control A	$2.60 \mathrm{E}+05$	$1.00 \mathrm{E}+06$	$4.80 \mathrm{E}+05$	$5.00 \mathrm{E}+05$
Control B	$4.80 \mathrm{E}+05$	$8.00 \mathrm{E}+05$	$7.70 \mathrm{E}+05$	$5.00 \mathrm{E}+05$
Control C	$2.80 \mathrm{E}+05$	$1.10 \mathrm{E}+06$	$4.60 \mathrm{E}+05$	$9.00 \mathrm{E}+05$
hldD A1	$5.10 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	$5.00 \mathrm{E}+05$	$3.00 \mathrm{E}+05$
hldD A2	$4.50 \mathrm{E}+05$	$1.00 \mathrm{E}+07$	$8.30 \mathrm{E}+05$	$6.10 \mathrm{E}+05$
hldD A3	$4.60 \mathrm{E}+05$	$4.43 \mathrm{E}+06$	$8.50 \mathrm{E}+05$	$1.70 \mathrm{E}+05$
hldD B1	$3.08 \mathrm{E}+06$	$3.40 \mathrm{E}+09$	$5.30 \mathrm{E}+05$	$1.00 \mathrm{E}+05$
hldD B2	$2.82 \mathrm{E}+06$	$9.00 \mathrm{E}+08$	$6.70 \mathrm{E}+05$	$1.00 \mathrm{E}+05$
hldD B3	$2.54 \mathrm{E}+06$	$1.50 \mathrm{E}+09$	$4.60 \mathrm{E}+05$	$2.00 \mathrm{E}+05$
hldD C1	$6.00 \mathrm{E}+05$	$2.32 \mathrm{E}+06$	$5.70 \mathrm{E}+05$	$2.90 \mathrm{E}+05$
hldD C2	$5.10 \mathrm{E}+05$	$9.90 \mathrm{E}+05$	$4.90 \mathrm{E}+05$	$3.10 \mathrm{E}+05$
hldD C3	$4.40 \mathrm{E}+05$	$4.50 \mathrm{E}+05$	$6.20 \mathrm{E}+05$	$1.90 \mathrm{E}+05$
hldD D1	$1.65 \mathrm{E}+06$	$1.00 \mathrm{E}+07$	$9.20 \mathrm{E}+05$	$6.90 \mathrm{E}+05$
hldD D2	$1.68 \mathrm{E}+06$	$2.00 \mathrm{E}+07$	$7.80 \mathrm{E}+05$	$4.80 \mathrm{E}+05$
hldD D3	$1.79 \mathrm{E}+06$	$1.00 \mathrm{E}+07$	$6.10 \mathrm{E}+05$	$4.80 \mathrm{E}+05$
hldD E1	$2.66 \mathrm{E}+06$	$2.00 \mathrm{E}+07$	$7.90 \mathrm{E}+05$	$8.10 \mathrm{E}+05$
hldD E2	$2.07 \mathrm{E}+06$	$2.00 \mathrm{E}+07$	$5.10 \mathrm{E}+05$	$6.20 \mathrm{E}+05$
hldD E3	$1.66 \mathrm{E}+06$	$1.00 \mathrm{E}+07$	$4.70 \mathrm{E}+05$	$7.40 \mathrm{E}+05$
hldD F1	$5.90 \mathrm{E}+05$	$2.65 \mathrm{E}+06$	$5.70 \mathrm{E}+05$	$8.50 \mathrm{E}+05$
hldD F2	$7.40 \mathrm{E}+05$	$1.77 \mathrm{E}+06$	$5.50 \mathrm{E}+05$	$8.70 \mathrm{E}+05$
hldD F3	$5.50 \mathrm{E}+05$	$1.42 \mathrm{E}+06$	$5.70 \mathrm{E}+05$	$4.50 \mathrm{E}+05$
Control A	$3.20 \mathrm{E}+05$	$1.22 \mathrm{E}+06$	$7.10 \mathrm{E}+05$	$5.30 \mathrm{E}+05$
Control B	$2.20 \mathrm{E}+05$	$1.76 \mathrm{E}+06$	$5.40 \mathrm{E}+05$	$9.30 \mathrm{E}+05$
Control C	$4.60 \mathrm{E}+05$	$1.59 \mathrm{E}+06$	$6.10 \mathrm{E}+05$	$9.80 \mathrm{E}+05$
ompC A1	$1.40 \mathrm{E}+05$	5.76E+09	$9.00 \mathrm{E}+05$	$2.48 \mathrm{E}+09$
omp C A2	$5.00 \mathrm{E}+04$	$1.50 \mathrm{E}+10$	$2.80 \mathrm{E}+05$	$5.52 \mathrm{E}+09$
ompC A3	$1.80 \mathrm{E}+05$	$9.28 \mathrm{E}+09$	$8.90 \mathrm{E}+05$	$4.56 \mathrm{E}+09$
ompC B1	$4.80 \mathrm{E}+05$	$7.64 \mathrm{E}+09$	$4.30 \mathrm{E}+05$	$5.16 \mathrm{E}+09$
omp C B2	$4.50 \mathrm{E}+05$	$4.80 \mathrm{E}+09$	$6.50 \mathrm{E}+05$	$3.76 \mathrm{E}+09$
omp C B3	$4.40 \mathrm{E}+05$	$5.40 \mathrm{E}+09$	$6.70 \mathrm{E}+05$	$3.28 \mathrm{E}+09$
ompC C1	$7.00 \mathrm{E}+05$	$3.52 \mathrm{E}+09$	$6.40 \mathrm{E}+05$	$6.80 \mathrm{E}+09$
omp C C2	$7.20 \mathrm{E}+05$	$3.00 \mathrm{E}+09$	$7.10 \mathrm{E}+05$	$9.16 \mathrm{E}+09$
ompC C3	$7.80 \mathrm{E}+05$	$2.96 \mathrm{E}+09$	$6.90 \mathrm{E}+05$	$6.76 \mathrm{E}+09$
Control A	$1.06 \mathrm{E}+06$	$4.40 \mathrm{E}+09$	$7.70 \mathrm{E}+05$	$3.28 \mathrm{E}+09$
Control B	$7.70 \mathrm{E}+05$	$1.15 \mathrm{E}+10$	$6.50 \mathrm{E}+05$	$3.48 \mathrm{E}+09$
Control C	$8.60 \mathrm{E}+05$	$7.00 \mathrm{E}+09$	$8.40 \mathrm{E}+05$	$3.28 \mathrm{E}+09$

Supplemental table 3 continued: initial and final phage densities for competitive growth assay experiments (pfu/mL).

Sample	Initial evolved isolate concentration	Final evolved isolate concentration	Initial cl26lacZ concentration	Final cl26lacZ Concentration
ompC D1	$1.10 \mathrm{E}+05$	$4.00 \mathrm{E}+08$	$7.30 \mathrm{E}+05$	$9.20 \mathrm{E}+09$
ompC D2	$8.00 \mathrm{E}+04$	$4.00 \mathrm{E}+07$	$7.90 \mathrm{E}+05$	$1.51 \mathrm{E}+09$
ompC D3	$6.00 \mathrm{E}+04$	$9.00 \mathrm{E}+07$	$7.60 \mathrm{E}+05$	$2.00 \mathrm{E}+09$
ompC E1	$6.00 \mathrm{E}+04$	$1.50 \mathrm{E}+08$	$1.01 \mathrm{E}+06$	$1.92 \mathrm{E}+09$
ompC E2	$8.00 \mathrm{E}+04$	$1.70 \mathrm{E}+08$	$8.10 \mathrm{E}+05$	$1.95 \mathrm{E}+09$
ompC E3	$3.00 \mathrm{E}+04$	$6.00 \mathrm{E}+08$	$6.50 \mathrm{E}+05$	$7.56 \mathrm{E}+09$
ompC F1	$3.70 \mathrm{E}+05$	$7.96 \mathrm{E}+09$	$8.70 \mathrm{E}+05$	$7.20 \mathrm{E}+08$
ompC F2	$5.00 \mathrm{E}+05$	$4.92 \mathrm{E}+09$	$6.50 \mathrm{E}+05$	$6.00 \mathrm{E}+08$
ompC F3	$5.10 \mathrm{E}+05$	$9.20 \mathrm{E}+09$	$8.00 \mathrm{E}+05$	$8.00 \mathrm{E}+08$
Control A	$9.50 \mathrm{E}+05$	$3.92 \mathrm{E}+09$	$6.80 \mathrm{E}+05$	$1.00 \mathrm{E}+09$
Control B	$1.09 \mathrm{E}+06$	$5.12 \mathrm{E}+09$	$7.60 \mathrm{E}+05$	$1.88 \mathrm{E}+09$
Control C	$8.70 \mathrm{E}+05$	$9.32 \mathrm{E}+09$	$5.30 \mathrm{E}+05$	$3.72 \mathrm{E}+09$
rfaF A1	$1.32 \mathrm{E}+06$	$2.06 \mathrm{E}+07$	$8.70 \mathrm{E}+05$	$1.10 \mathrm{E}+06$
rfaF A2	$1.27 \mathrm{E}+06$	$2.15 \mathrm{E}+07$	$1.08 \mathrm{E}+06$	$1.20 \mathrm{E}+06$
rfaF A3	$1.18 \mathrm{E}+06$	$2.51 \mathrm{E}+07$	$8.80 \mathrm{E}+05$	$1.30 \mathrm{E}+06$
rfaF B1	$8.40 \mathrm{E}+05$	$3.24 \mathrm{E}+07$	$7.70 \mathrm{E}+05$	$6.00 \mathrm{E}+05$
rfaF B2	$8.70 \mathrm{E}+05$	$4.84 \mathrm{E}+07$	$9.80 \mathrm{E}+05$	$3.00 \mathrm{E}+06$
rfaF B3	$8.50 \mathrm{E}+05$	$4.30 \mathrm{E}+07$	$8.60 \mathrm{E}+05$	$8.00 \mathrm{E}+05$
rfaF C1	$4.00 \mathrm{E}+05$	$8.00 \mathrm{E}+06$	$8.90 \mathrm{E}+05$	$8.00 \mathrm{E}+05$
rfaF C2	$5.30 \mathrm{E}+05$	$7.50 \mathrm{E}+06$	$9.90 \mathrm{E}+05$	$1.10 \mathrm{E}+06$
IfaF C3	$5.50 \mathrm{E}+05$	$7.10 \mathrm{E}+06$	$7.30 \mathrm{E}+05$	$1.40 \mathrm{E}+06$
Control A	$9.10 \mathrm{E}+05$	$4.00 \mathrm{E}+05$	$9.90 \mathrm{E}+05$	$5.00 \mathrm{E}+05$
Control B	$8.50 \mathrm{E}+05$	$6.00 \mathrm{E}+05$	$8.80 \mathrm{E}+05$	$9.00 \mathrm{E}+05$
Control C	$9.10 \mathrm{E}+05$	$6.00 \mathrm{E}+05$	$9.80 \mathrm{E}+05$	$5.00 \mathrm{E}+05$
rfaF D1	$1.26 \mathrm{E}+06$	$1.93 \mathrm{E}+07$	$9.20 \mathrm{E}+05$	$1.00 \mathrm{E}+06$
rfaF D2	$1.16 \mathrm{E}+06$	$2.04 \mathrm{E}+07$	$1.00 \mathrm{E}+06$	$7.00 \mathrm{E}+05$
rfaF D3	$1.05 \mathrm{E}+06$	$2.04 \mathrm{E}+07$	$9.10 \mathrm{E}+05$	$1.20 \mathrm{E}+06$
rfaF E1	$4.30 \mathrm{E}+05$	$9.50 \mathrm{E}+06$	$8.70 \mathrm{E}+05$	$7.00 \mathrm{E}+05$
rfaF E2	$4.10 \mathrm{E}+05$	$6.62 \mathrm{E}+07$	$8.60 \mathrm{E}+05$	$8.80 \mathrm{E}+06$
rfaF E3	$4.00 \mathrm{E}+05$	$8.30 \mathrm{E}+06$	$1.02 \mathrm{E}+06$	$6.00 \mathrm{E}+05$
rfaF F1	$7.80 \mathrm{E}+05$	$5.34 \mathrm{E}+07$	$1.00 \mathrm{E}+06$	$1.30 \mathrm{E}+06$
rfaF F2	$8.20 \mathrm{E}+05$	$3.70 \mathrm{E}+07$	$1.03 \mathrm{E}+06$	$9.00 \mathrm{E}+05$
rfaF F3	$6.90 \mathrm{E}+05$	$5.32 \mathrm{E}+07$	7.40E+05	$8.00 \mathrm{E}+05$
Control A	$8.30 \mathrm{E}+05$	$1.10 \mathrm{E}+06$	$7.80 \mathrm{E}+05$	$9.00 \mathrm{E}+05$
Control B	$1.05 \mathrm{E}+06$	$2.10 \mathrm{E}+06$	$1.10 \mathrm{E}+06$	$6.00 \mathrm{E}+05$
Control C	$8.40 \mathrm{E}+05$	$1.30 \mathrm{E}+06$	$8.90 \mathrm{E}+05$	$1.00 \mathrm{E}+06$
nuoG A1	$8.70 \mathrm{E}+05$	$9.16 \mathrm{E}+09$	$5.90 \mathrm{E}+05$	$1.10 \mathrm{E}+08$
nuoG A2	$8.00 \mathrm{E}+05$	$1.08 \mathrm{E}+10$	$6.20 \mathrm{E}+05$	$1.40 \mathrm{E}+08$
nuoG A3	$8.30 \mathrm{E}+05$	$9.90 \mathrm{E}+09$	$5.70 \mathrm{E}+05$	$9.00 \mathrm{E}+07$
nuoG B1	$5.00 \mathrm{E}+04$	$7.88 \mathrm{E}+09$	$5.70 \mathrm{E}+05$	$3.76 \mathrm{E}+09$
nuoG B2	$6.00 \mathrm{E}+04$	$9.56 \mathrm{E}+09$	$6.20 \mathrm{E}+05$	$5.00 \mathrm{E}+09$
nuoG B3	$5.00 \mathrm{E}+04$	$8.52 \mathrm{E}+09$	$6.60 \mathrm{E}+05$	$5.60 \mathrm{E}+09$
nuoG C1	$1.83 \mathrm{E}+06$	$9.68 \mathrm{E}+09$	$4.70 \mathrm{E}+05$	$5.00 \mathrm{E}+07$
nuoG C2	$2.02 \mathrm{E}+06$	$1.14 \mathrm{E}+10$	$5.00 \mathrm{E}+05$	$7.00 \mathrm{E}+07$
nuoG C3	$4.14 \mathrm{E}+06$	$1.08 \mathrm{E}+10$	$5.30 \mathrm{E}+05$	$6.00 \mathrm{E}+07$
nuoG D1	$4.00 \mathrm{E}+04$	$7.16 \mathrm{E}+09$	$6.70 \mathrm{E}+05$	$5.60 \mathrm{E}+09$
nuoG D2	$2.00 \mathrm{E}+04$	$7.80 \mathrm{E}+09$	$7.10 \mathrm{E}+05$	$5.96 \mathrm{E}+09$
nuoG D3	$6.00 \mathrm{E}+04$	$5.78 \mathrm{E}+09$	$5.70 \mathrm{E}+05$	$4.30 \mathrm{E}+09$
nuoG E1	$4.30 \mathrm{E}+05$	$5.04 \mathrm{E}+09$	$7.00 \mathrm{E}+05$	$5.00 \mathrm{E}+07$
nuoG E2	$5.60 \mathrm{E}+05$	$5.22 \mathrm{E}+09$	$7.50 \mathrm{E}+05$	$7.00 \mathrm{E}+07$
nuoG E3	$7.10 \mathrm{E}+05$	$4.86 \mathrm{E}+09$	$7.10 \mathrm{E}+05$	$4.00 \mathrm{E}+07$
nuoG F1	$5.30 \mathrm{E}+05$	$9.64 \mathrm{E}+09$	$7.40 \mathrm{E}+05$	$6.00 \mathrm{E}+07$
nuoG F2	$5.90 \mathrm{E}+05$	$9.72 \mathrm{E}+09$	$7.90 \mathrm{E}+05$	$1.00 \mathrm{E}+08$
nuoG F3	$6.30 \mathrm{E}+05$	$9.40 \mathrm{E}+09$	$5.70 \mathrm{E}+05$	$1.10 \mathrm{E}+08$
Control A	$7.10 \mathrm{E}+05$	$6.72 \mathrm{E}+09$	$6.10 \mathrm{E}+05$	$2.64 \mathrm{E}+09$
Control B	$7.60 \mathrm{E}+05$	$9.60 \mathrm{E}+09$	$6.90 \mathrm{E}+05$	$3.52 \mathrm{E}+09$
Control C	$8.10 \mathrm{E}+05$	$1.09 \mathrm{E}+10$	$8.10 \mathrm{E}+05$	$4.04 \mathrm{E}+09$

Supplemental table 3 continued: initial and final phage densities for competitive growth assay experiments (pfu/mL).

Sample	Initial evolved isolate concentration	Final evolved isolate concentration	Initial cl26lacZ concentration	Final cl26lacZ Concentration
nusB A1	$1.06 \mathrm{E}+06$	$4.46 \mathrm{E}+07$	$2.80 \mathrm{E}+05$	$1.00 \mathrm{E}+05$
nusB A2	$8.30 \mathrm{E}+05$	$3.80 \mathrm{E}+07$	$3.90 \mathrm{E}+05$	$4.00 \mathrm{E}+05$
nusB A3	$1.01 \mathrm{E}+06$	$3.32 \mathrm{E}+07$	$8.50 \mathrm{E}+05$	$3.00 \mathrm{E}+05$
nusB B1	$4.80 \mathrm{E}+05$	$6.00 \mathrm{E}+07$	$4.90 \mathrm{E}+05$	$4.00 \mathrm{E}+05$
nusB B2	$4.60 \mathrm{E}+05$	$6.24 \mathrm{E}+07$	$2.30 \mathrm{E}+05$	$1.00 \mathrm{E}+05$
nusB B3	$5.10 \mathrm{E}+05$	$6.72 \mathrm{E}+07$	$2.90 \mathrm{E}+05$	$4.00 \mathrm{E}+05$
nusB C1	$8.30 \mathrm{E}+05$	$3.80 \mathrm{E}+06$	$3.50 \mathrm{E}+05$	$1.00 \mathrm{E}+05$
nusB C2	$6.80 \mathrm{E}+05$	$3.40 \mathrm{E}+06$	$3.20 \mathrm{E}+05$	$1.00 \mathrm{E}+05$
nusB C3	$9.10 \mathrm{E}+05$	$3.70 \mathrm{E}+06$	$2.80 \mathrm{E}+05$	$2.00 \mathrm{E}+05$
nusB D1	$8.70 \mathrm{E}+05$	$8.44 \mathrm{E}+07$	$4.70 \mathrm{E}+05$	$3.00 \mathrm{E}+05$
nusB D2	$5.90 \mathrm{E}+05$	$5.32 \mathrm{E}+07$	$3.60 \mathrm{E}+05$	$2.00 \mathrm{E}+05$
nusB D3	$5.40 \mathrm{E}+05$	$5.00 \mathrm{E}+07$	$4.50 \mathrm{E}+05$	$1.00 \mathrm{E}+05$
nusB E1	$3.80 \mathrm{E}+05$	$1.87 \mathrm{E}+08$	$3.10 \mathrm{E}+05$	$1.00 \mathrm{E}+05$
nusB E2	$4.20 \mathrm{E}+05$	$1.91 \mathrm{E}+08$	$4.00 \mathrm{E}+05$	$1.00 \mathrm{E}+05$
nusB E3	$4.70 \mathrm{E}+05$	$1.32 \mathrm{E}+08$	$3.20 \mathrm{E}+05$	$5.00 \mathrm{E}+05$
nusB F1	$4.20 \mathrm{E}+05$	$4.20 \mathrm{E}+07$	$2.80 \mathrm{E}+05$	$2.00 \mathrm{E}+05$
nusB F2	$5.00 \mathrm{E}+05$	$5.92 \mathrm{E}+07$	$2.10 \mathrm{E}+05$	$1.00 \mathrm{E}+05$
nusB F3	$4.80 \mathrm{E}+05$	$5.72 \mathrm{E}+07$	$3.50 \mathrm{E}+05$	$1.00 \mathrm{E}+05$
Control A	$3.50 \mathrm{E}+05$	$6.00 \mathrm{E}+05$	$4.00 \mathrm{E}+05$	$4.00 \mathrm{E}+05$
Control B	$6.10 \mathrm{E}+05$	$5.00 \mathrm{E}+05$	$3.20 \mathrm{E}+05$	$2.00 \mathrm{E}+05$
Control C	$4.10 \mathrm{E}+05$	$1.70 \mathrm{E}+06$	$3.70 \mathrm{E}+05$	$8.00 \mathrm{E}+05$
dnaJ A1	$4.10 \mathrm{E}+05$	$2.76 \mathrm{E}+05$	$3.50 \mathrm{E}+05$	$7.00 \mathrm{E}+03$
dnaJ A2	$5.00 \mathrm{E}+05$	$1.43 \mathrm{E}+05$	$3.70 \mathrm{E}+05$	$5.00 \mathrm{E}+03$
dnaJ A3	$6.00 \mathrm{E}+05$	$9.70 \mathrm{E}+04$	$4.50 \mathrm{E}+05$	$6.00 \mathrm{E}+03$
dnaJ B1	$3.00 \mathrm{E}+05$	$8.80 \mathrm{E}+04$	$3.50 \mathrm{E}+05$	$1.00 \mathrm{E}+04$
dnaJ B2	$2.70 \mathrm{E}+05$	$1.40 \mathrm{E}+05$	$3.10 \mathrm{E}+05$	$2.00 \mathrm{E}+03$
dnaJ B3	$1.90 \mathrm{E}+05$	$1.80 \mathrm{E}+05$	$3.90 \mathrm{E}+05$	$1.04 \mathrm{E}+04$
Control A	$5.50 \mathrm{E}+05$	$3.10 \mathrm{E}+04$	$3.20 \mathrm{E}+05$	$1.20 \mathrm{E}+04$
Control B	$4.80 \mathrm{E}+05$	$3.50 \mathrm{E}+04$	$4.30 \mathrm{E}+05$	$1.50 \mathrm{E}+04$
Control C	$6.30 \mathrm{E}+05$	$3.00 \mathrm{E}+04$	$3.20 \mathrm{E}+05$	$1.80 \mathrm{E}+04$
dnaK A1	$2.41 \mathrm{E}+06$	$4.00 \mathrm{E}+05$	$1.16 \mathrm{E}+06$	$1.50 \mathrm{E}+06$
dnaK A2	$2.43 \mathrm{E}+06$	$1.00 \mathrm{E}+05$	$1.09 \mathrm{E}+06$	$6.00 \mathrm{E}+05$
dnaK A3	$2.65 \mathrm{E}+06$	$4.30 \mathrm{E}+05$	$1.20 \mathrm{E}+06$	$1.20 \mathrm{E}+05$
dnaK B1	$2.10 \mathrm{E}+05$	$2.00 \mathrm{E}+05$	$1.44 \mathrm{E}+06$	$1.20 \mathrm{E}+06$
dnaK B2	$1.90 \mathrm{E}+05$	$5.00 \mathrm{E}+05$	$1.15 \mathrm{E}+06$	$1.20 \mathrm{E}+05$
dnaK B3	$3.00 \mathrm{E}+05$	$7.00 \mathrm{E}+04$	$1.27 \mathrm{E}+06$	$1.40 \mathrm{E}+05$
dnaK C1	$1.02 \mathrm{E}+06$	$1.20 \mathrm{E}+06$	$8.50 \mathrm{E}+05$	$1.00 \mathrm{E}+06$
dnaK C2	$1.13 \mathrm{E}+06$	$8.00 \mathrm{E}+05$	$8.40 \mathrm{E}+05$	$1.10 \mathrm{E}+06$
dnaK C3	$1.20 \mathrm{E}+06$	$9.00 \mathrm{E}+05$	$1.07 \mathrm{E}+06$	$1.00 \mathrm{E}+06$
dnaK D1	$4.80 \mathrm{E}+05$	$1.50 \mathrm{E}+05$	$7.30 \mathrm{E}+05$	$7.40 \mathrm{E}+05$
dnaK D2	$3.10 \mathrm{E}+05$	$1.00 \mathrm{E}+05$	$8.30 \mathrm{E}+05$	$5.00 \mathrm{E}+05$
dnaK D3	$4.10 \mathrm{E}+05$	$4.00 \mathrm{E}+05$	$1.06 \mathrm{E}+06$	$8.00 \mathrm{E}+05$
dnaK E1	$8.20 \mathrm{E}+05$	$2.00 \mathrm{E}+05$	$1.01 \mathrm{E}+06$	$1.20 \mathrm{E}+06$
dnaK E2	$7.40 \mathrm{E}+05$	$7.00 \mathrm{E}+05$	$1.25 \mathrm{E}+06$	$5.00 \mathrm{E}+05$
dnaK E3	$7.60 \mathrm{E}+05$	$3.00 \mathrm{E}+05$	$6.30 \mathrm{E}+05$	$5.00 \mathrm{E}+05$
dnaK F1	$4.00 \mathrm{E}+05$	$3.00 \mathrm{E}+05$	$7.10 \mathrm{E}+05$	$4.00 \mathrm{E}+05$
dnaK F2	$7.50 \mathrm{E}+05$	$1.00 \mathrm{E}+05$	$9.80 \mathrm{E}+05$	$1.20 \mathrm{E}+06$
dnaK F3	$4.40 \mathrm{E}+05$	$1.00 \mathrm{E}+06$	$9.50 \mathrm{E}+05$	$1.80 \mathrm{E}+06$
Control A	$6.70 \mathrm{E}+05$	$6.00 \mathrm{E}+05$	$1.02 \mathrm{E}+06$	$5.00 \mathrm{E}+05$
Control B	$3.50 \mathrm{E}+05$	$8.00 \mathrm{E}+05$	$8.80 \mathrm{E}+05$	$7.00 \mathrm{E}+05$
Control C	$6.80 \mathrm{E}+05$	$8.00 \mathrm{E}+05$	$1.09 \mathrm{E}+06$	$9.00 \mathrm{E}+05$

Supplemental table 3 continued: initial and final phage densities for competitive growth assay experiments (pfu/mL).

Sample	Initial evolved isolate concentration	Final evolved isolate concentration	Initial cl26lacZ concentration	Final cl26lacZ Concentration
rfaC A1	$5.20 \mathrm{E}+05$	$6.00 \mathrm{E}+07$	$5.40 \mathrm{E}+05$	$1.00 \mathrm{E}+05$
rfaC A2	$1.70 \mathrm{E}+05$	$6.00 \mathrm{E}+07$	$3.50 \mathrm{E}+05$	$2.00 \mathrm{E}+05$
rfaC A3	$8.00 \mathrm{E}+04$	$4.00 \mathrm{E}+07$	$1.30 \mathrm{E}+05$	$1.00 \mathrm{E}+05$
rfaC B1	$3.40 \mathrm{E}+05$	$1.60 \mathrm{E}+09$	$2.10 \mathrm{E}+05$	$5.00 \mathrm{E}+05$
rfaC B2	$7.00 \mathrm{E}+04$	$2.10 \mathrm{E}+09$	$1.60 \mathrm{E}+05$	$9.00 \mathrm{E}+05$
rfaC B3	$3.60 \mathrm{E}+05$	$2.90 \mathrm{E}+09$	$2.90 \mathrm{E}+05$	$2.00 \mathrm{E}+05$
rfaC C1	$7.50 \mathrm{E}+05$	$4.01 \mathrm{E}+09$	$6.40 \mathrm{E}+05$	$1.00 \mathrm{E}+05$
rfac C2	$2.40 \mathrm{E}+05$	$7.10 \mathrm{E}+09$	$4.50 \mathrm{E}+05$	$1.00 \mathrm{E}+08$
rfaC C3	$2.50 \mathrm{E}+05$	$2.90 \mathrm{E}+09$	$3.50 \mathrm{E}+05$	$3.00 \mathrm{E}+06$
rfaC D1	$6.40 \mathrm{E}+05$	$2.29 \mathrm{E}+09$	$3.40 \mathrm{E}+05$	$2.00 \mathrm{E}+05$
rfaC D2	$4.30 \mathrm{E}+05$	$3.70 \mathrm{E}+09$	$3.20 \mathrm{E}+05$	$5.00 \mathrm{E}+05$
rfaC D3	$3.90 \mathrm{E}+05$	$3.24 \mathrm{E}+09$	$3.00 \mathrm{E}+05$	$1.00 \mathrm{E}+05$
rfaC E1	$4.20 \mathrm{E}+05$	$1.41 \mathrm{E}+10$	$4.50 \mathrm{E}+05$	$2.00 \mathrm{E}+05$
rfaC E2	$3.20 \mathrm{E}+05$	$7.90 \mathrm{E}+09$	$5.80 \mathrm{E}+05$	$3.00 \mathrm{E}+06$
rfaC E3	$7.10 \mathrm{E}+05$	$1.49 \mathrm{E}+10$	$5.90 \mathrm{E}+05$	$1.00 \mathrm{E}+06$
rfaC F1	$4.10 \mathrm{E}+05$	$2.00 \mathrm{E}+09$	$2.10 \mathrm{E}+05$	$2.00 \mathrm{E}+05$
rfaC F2	$2.90 \mathrm{E}+05$	$4.50 \mathrm{E}+09$	$2.60 \mathrm{E}+05$	$4.00 \mathrm{E}+05$
rfaC F3	$3.40 \mathrm{E}+05$	$2.65 \mathrm{E}+09$	$4.70 \mathrm{E}+05$	$1.00 \mathrm{E}+07$
Control A	$3.90 \mathrm{E}+05$	$9.00 \mathrm{E}+07$	$7.10 \mathrm{E}+05$	$5.00 \mathrm{E}+05$
Control B	$3.50 \mathrm{E}+05$	$8.00 \mathrm{E}+05$	$5.00 \mathrm{E}+05$	$9.00 \mathrm{E}+05$
Control C	$3.00 \mathrm{E}+05$	$6.00 \mathrm{E}+05$	$5.80 \mathrm{E}+05$	$4.00 \mathrm{E}+05$
hsds A1	$6.92 \mathrm{E}+06$	$1.11 \mathrm{E}+10$	$6.50 \mathrm{E}+06$	$1.90 \mathrm{E}+08$
hsds A2	$6.86 \mathrm{E}+06$	$9.72 \mathrm{E}+09$	$7.78 \mathrm{E}+06$	$2.40 \mathrm{E}+08$
hsds A3	$7.54 \mathrm{E}+06$	$9.44 \mathrm{E}+09$	$7.18 \mathrm{E}+06$	$1.30 \mathrm{E}+08$
hsds B1	$6.48 \mathrm{E}+06$	$8.64 \mathrm{E}+09$	$7.68 \mathrm{E}+06$	$3.30 \mathrm{E}+08$
hsds B2	$5.42 \mathrm{E}+06$	$6.52 \mathrm{E}+09$	$9.34 \mathrm{E}+06$	$1.80 \mathrm{E}+08$
hsds B3	$4.44 \mathrm{E}+06$	$7.28 \mathrm{E}+09$	$8.98 \mathrm{E}+06$	$3.10 \mathrm{E}+08$
hsds C1	$5.84 \mathrm{E}+06$	$3.30 \mathrm{E}+09$	$6.82 \mathrm{E}+06$	$1.30 \mathrm{E}+08$
hsds C2	$6.28 \mathrm{E}+06$	$2.68 \mathrm{E}+09$	$6.80 \mathrm{E}+06$	$1.10 \mathrm{E}+08$
hsds C3	$6.76 \mathrm{E}+06$	$3.95 \mathrm{E}+09$	$7.66 \mathrm{E}+06$	$1.50 \mathrm{E}+08$
hsds D1	$5.84 \mathrm{E}+06$	$3.02 \mathrm{E}+09$	$6.86 \mathrm{E}+06$	$1.60 \mathrm{E}+08$
hsds D2	$5.96 \mathrm{E}+06$	$5.86 \mathrm{E}+09$	$3.76 \mathrm{E}+06$	$1.20 \mathrm{E}+08$
hsds D3	$6.02 \mathrm{E}+06$	$6.16 \mathrm{E}+09$	$4.62 \mathrm{E}+06$	$9.00 \mathrm{E}+07$
hsds E1	$1.36 \mathrm{E}+07$	$6.52 \mathrm{E}+09$	$4.58 \mathrm{E}+06$	$1.10 \mathrm{E}+08$
hsds E2	$1.32 \mathrm{E}+07$	$6.06 \mathrm{E}+09$	$4.94 \mathrm{E}+06$	$1.60 \mathrm{E}+08$
hsds E3	$1.43 \mathrm{E}+07$	$5.00 \mathrm{E}+09$	$5.64 \mathrm{E}+06$	$8.00 \mathrm{E}+07$
hsds F1	$4.26 \mathrm{E}+06$	$4.29 \mathrm{E}+09$	$6.00 \mathrm{E}+06$	$8.00 \mathrm{E}+07$
hsds F2	$3.98 \mathrm{E}+06$	$3.87 \mathrm{E}+09$	$5.42 \mathrm{E}+06$	$9.00 \mathrm{E}+07$
hsds F3	$6.06 \mathrm{E}+06$	$5.75 \mathrm{E}+09$	$6.34 \mathrm{E}+06$	$9.00 \mathrm{E}+07$
Control A	$3.74 \mathrm{E}+06$	$4.84 \mathrm{E}+09$	$6.48 \mathrm{E}+06$	$4.76 \mathrm{E}+09$
Control B	$3.24 \mathrm{E}+06$	$4.74 \mathrm{E}+09$	$7.46 \mathrm{E}+06$	$5.14 \mathrm{E}+09$
Control C	$3.78 \mathrm{E}+06$	$5.08 \mathrm{E}+09$	$7.90 \mathrm{E}+06$	$4.66 \mathrm{E}+09$
recA A1	$1.25 \mathrm{E}+06$	$6.90 \mathrm{E}+09$	$9.30 \mathrm{E}+05$	$1.30 \mathrm{E}+07$
recA A2	$1.57 \mathrm{E}+06$	$7.10 \mathrm{E}+09$	$1.18 \mathrm{E}+06$	$1.10 \mathrm{E}+07$
recA A3	$1.22 \mathrm{E}+06$	$5.30 \mathrm{E}+09$	$1.10 \mathrm{E}+06$	$1.40 \mathrm{E}+07$
recA B1	$9.30 \mathrm{E}+05$	$8.10 \mathrm{E}+09$	$8.00 \mathrm{E}+05$	$3.00 \mathrm{E}+07$
recA B2	$1.01 \mathrm{E}+06$	$4.40 \mathrm{E}+09$	$8.70 \mathrm{E}+05$	$2.00 \mathrm{E}+07$
recA B3	$9.90 \mathrm{E}+05$	$4.80 \mathrm{E}+09$	$9.70 \mathrm{E}+05$	$1.00 \mathrm{E}+07$
reca C1	$3.30 \mathrm{E}+05$	$5.90 \mathrm{E}+09$	$1.25 \mathrm{E}+06$	$1.00 \mathrm{E}+07$
recA C2	$3.20 \mathrm{E}+05$	$2.70 \mathrm{E}+09$	$1.49 \mathrm{E}+06$	$2.00 \mathrm{E}+07$
reca C3	$4.00 \mathrm{E}+05$	$2.90 \mathrm{E}+09$	$1.29 \mathrm{E}+06$	$3.00 \mathrm{E}+07$
recA D1	$3.00 \mathrm{E}+04$	$1.20 \mathrm{E}+09$	$1.07 \mathrm{E}+06$	$3.00 \mathrm{E}+07$
recA D2	$1.50 \mathrm{E}+05$	$4.00 \mathrm{E}+09$	$1.27 \mathrm{E}+06$	$1.00 \mathrm{E}+07$
recA D3	$7.00 \mathrm{E}+04$	$4.00 \mathrm{E}+09$	$1.04 \mathrm{E}+06$	$1.10 \mathrm{E}+07$
recAE1	$8.00 \mathrm{E}+05$	$2.50 \mathrm{E}+09$	$1.23 \mathrm{E}+06$	$2.00 \mathrm{E}+07$
recA E2	$6.30 \mathrm{E}+05$	$1.50 \mathrm{E}+09$	$9.70 \mathrm{E}+05$	$6.00 \mathrm{E}+07$
recA E3	$9.10 \mathrm{E}+05$	$2.00 \mathrm{E}+09$	$8.30 \mathrm{E}+05$	$2.00 \mathrm{E}+07$
recA F1	$1.32 \mathrm{E}+06$	$4.40 \mathrm{E}+09$	$9.80 \mathrm{E}+05$	$2.00 \mathrm{E}+07$
recA F2	$1.54 \mathrm{E}+06$	$6.60 \mathrm{E}+09$	$1.10 \mathrm{E}+06$	$2.00 \mathrm{E}+07$
recA F3	$1.52 \mathrm{E}+06$	$5.10 \mathrm{E}+09$	$1.16 \mathrm{E}+06$	$1.00 \mathrm{E}+07$
Control A	$6.60 \mathrm{E}+05$	$9.00 \mathrm{E}+07$	$1.13 \mathrm{E}+06$	$1.30 \mathrm{E}+08$
Control B	$7.90 \mathrm{E}+05$	$1.80 \mathrm{E}+08$	$1.70 \mathrm{E}+06$	$1.10 \mathrm{E}+08$
Control C	$8.00 \mathrm{E}+05$	$5.00 \mathrm{E}+07$	$1.58 \mathrm{E}+06$	$1.90 \mathrm{E}+08$

Supplemental table 3 continued: initial and final phage densities for competitive growth assay experiments (pfu/mL).

Sample	Initial evolved isolate concentration	Final evolved isolate concentration	Initial cl26lacZ concentration	Final cl26lacZ Concentration
WT-1 A1	$8.50 \mathrm{E}+05$	$1.87 \mathrm{E}+10$	$4.00 \mathrm{E}+05$	$2.40 \mathrm{E}+08$
WT-1 A2	$7.30 \mathrm{E}+05$	$1.20 \mathrm{E}+10$	$4.90 \mathrm{E}+05$	$1.50 \mathrm{E}+08$
WT-1 A3	$7.70 \mathrm{E}+05$	$1.42 \mathrm{E}+10$	$4.90 \mathrm{E}+05$	$1.60 \mathrm{E}+08$
WT-1 B1	$1.80 \mathrm{E}+05$	$1.58 \mathrm{E}+10$	$4.70 \mathrm{E}+05$	$6.00 \mathrm{E}+07$
WT-1 B2	$2.10 \mathrm{E}+05$	$1.58 \mathrm{E}+10$	$4.50 \mathrm{E}+05$	$1.20 \mathrm{E}+08$
WT-1 B3	$2.90 \mathrm{E}+05$	$1.63 \mathrm{E}+10$	$5.00 \mathrm{E}+05$	$1.00 \mathrm{E}+08$
WT-1 C1	$8.10 \mathrm{E}+05$	$1.82 \mathrm{E}+10$	$4.60 \mathrm{E}+05$	$1.60 \mathrm{E}+08$
WT-1 C2	$8.80 \mathrm{E}+05$	$1.34 \mathrm{E}+10$	$6.10 \mathrm{E}+05$	$1.20 \mathrm{E}+08$
WT-1 C3	$9.70 \mathrm{E}+05$	$2.06 \mathrm{E}+10$	$5.90 \mathrm{E}+05$	$1.00 \mathrm{E}+08$
WT-1 D1	$4.10 \mathrm{E}+05$	$1.06 \mathrm{E}+10$	$3.90 \mathrm{E}+05$	$2.40 \mathrm{E}+08$
WT-1 D2	$4.00 \mathrm{E}+05$	$1.57 \mathrm{E}+10$	$5.30 \mathrm{E}+05$	$1.60 \mathrm{E}+08$
WT-1 D3	$3.10 \mathrm{E}+05$	$1.13 \mathrm{E}+10$	$5.80 \mathrm{E}+05$	$1.50 \mathrm{E}+08$
WT-1 E1	$4.00 \mathrm{E}+05$	$1.30 \mathrm{E}+10$	$5.10 \mathrm{E}+05$	$4.30 \mathrm{E}+08$
WT-1 E2	$5.70 \mathrm{E}+05$	$9.80 \mathrm{E}+09$	$7.10 \mathrm{E}+05$	$2.10 \mathrm{E}+08$
WT-1 E3	$5.10 \mathrm{E}+05$	$1.53 \mathrm{E}+10$	$4.60 \mathrm{E}+05$	$5.70 \mathrm{E}+08$
WT-1 F1	$8.60 \mathrm{E}+05$	$1.66 \mathrm{E}+10$	$5.90 \mathrm{E}+05$	$6.10 \mathrm{E}+08$
WT-1 F2	$9.10 \mathrm{E}+05$	$1.63 \mathrm{E}+10$	$4.20 \mathrm{E}+05$	$5.20 \mathrm{E}+08$
WT-1 F3	$7.50 \mathrm{E}+05$	$1.58 \mathrm{E}+10$	$4.10 \mathrm{E}+05$	$5.60 \mathrm{E}+08$
Control A	$8.80 \mathrm{E}+05$	$2.18 \mathrm{E}+10$	$3.40 \mathrm{E}+05$	$3.20 \mathrm{E}+09$
Control B	$9.80 \mathrm{E}+05$	$1.16 \mathrm{E}+10$	$4.00 \mathrm{E}+05$	$1.64 \mathrm{E}+09$
Control C	$8.60 \mathrm{E}+05$	$1.88 \mathrm{E}+10$	$4.50 \mathrm{E}+05$	$3.12 \mathrm{E}+09$
WT-2 A1	$5.44 \mathrm{E}+06$	$4.65 \mathrm{E}+09$	$6.20 \mathrm{E}+05$	$9.00 \mathrm{E}+06$
WT-2 A2	$4.74 \mathrm{E}+06$	$5.12 \mathrm{E}+09$	$7.10 \mathrm{E}+05$	$5.00 \mathrm{E}+06$
WT-2 A3	$5.50 \mathrm{E}+06$	$5.43 \mathrm{E}+09$	$6.50 \mathrm{E}+05$	$7.00 \mathrm{E}+06$
WT-2 B1	$1.35 \mathrm{E}+07$	$1.11 \mathrm{E}+10$	$2.60 \mathrm{E}+05$	$3.00 \mathrm{E}+07$
WT-2 B2	$1.20 \mathrm{E}+07$	$1.06 \mathrm{E}+10$	$4.40 \mathrm{E}+05$	$1.00 \mathrm{E}+07$
WT-2 B3	$1.13 \mathrm{E}+07$	$1.14 \mathrm{E}+10$	$4.20 \mathrm{E}+05$	$2.00 \mathrm{E}+07$
WT-2 C1	$2.60 \mathrm{E}+05$	$1.72 \mathrm{E}+09$	$9.20 \mathrm{E}+05$	$9.66 \mathrm{E}+09$
WT-2 C2	$2.40 \mathrm{E}+05$	$1.42 \mathrm{E}+09$	$6.60 \mathrm{E}+05$	$8.92 \mathrm{E}+09$
WT-2 C3	$1.90 \mathrm{E}+05$	$9.20 \mathrm{E}+08$	$5.90 \mathrm{E}+05$	$6.22 \mathrm{E}+09$
Control A	$1.60 \mathrm{E}+05$	$4.82 \mathrm{E}+09$	$7.10 \mathrm{E}+05$	$6.62 \mathrm{E}+09$
Control B	$1.30 \mathrm{E}+05$	$5.36 \mathrm{E}+09$	$7.60 \mathrm{E}+05$	$6.92 \mathrm{E}+09$
Control C	$2.10 \mathrm{E}+05$	$6.60 \mathrm{E}+09$	$7.60 \mathrm{E}+05$	$5.36 \mathrm{E}+09$
WT-2 D1	$2.00 \mathrm{E}+04$	$6.00 \mathrm{E}+07$	$2.60 \mathrm{E}+05$	$1.02 \mathrm{E}+09$
WT-2 D2	$1.00 \mathrm{E}+04$	$6.00 \mathrm{E}+07$	$2.90 \mathrm{E}+05$	$1.26 \mathrm{E}+09$
WT-2 D3	$1.00 \mathrm{E}+04$	$5.00 \mathrm{E}+07$	$3.20 \mathrm{E}+05$	$9.70 \mathrm{E}+08$
WT-2 E1	$1.10 \mathrm{E}+05$	$1.37 \mathrm{E}+09$	$2.80 \mathrm{E}+05$	$4.00 \mathrm{E}+08$
WT-2 E2	$7.00 \mathrm{E}+04$	$1.06 \mathrm{E}+09$	$2.70 \mathrm{E}+05$	$4.80 \mathrm{E}+08$
WT-2 E3	$8.00 \mathrm{E}+04$	$1.07 \mathrm{E}+09$	$2.80 \mathrm{E}+05$	$4.10 \mathrm{E}+08$
WT-2 F1	$6.00 \mathrm{E}+04$	$1.32 \mathrm{E}+09$	$2.50 \mathrm{E}+05$	$7.40 \mathrm{E}+08$
WT-2 F2	$4.00 \mathrm{E}+04$	$1.64 \mathrm{E}+09$	$2.90 \mathrm{E}+05$	$5.50 \mathrm{E}+08$
WT-2 F3	$4.00 \mathrm{E}+04$	$1.64 \mathrm{E}+09$	$2.90 \mathrm{E}+05$	$6.70 \mathrm{E}+08$
Control A	$1.00 \mathrm{E}+05$	$6.80 \mathrm{E}+08$	$4.50 \mathrm{E}+05$	$9.00 \mathrm{E}+08$
Control B	$7.00 \mathrm{E}+04$	$6.30 \mathrm{E}+08$	$4.40 \mathrm{E}+05$	$9.80 \mathrm{E}+08$
Control C	$9.00 \mathrm{E}+04$	$6.00 \mathrm{E}+08$	$4.00 \mathrm{E}+05$	$1.30 \mathrm{E}+09$
WT-3 A1	$1.26 \mathrm{E}+06$	$1.22 \mathrm{E}+10$	$1.26 \mathrm{E}+06$	$1.16 \mathrm{E}+10$
WT-3 A2	$5.00 \mathrm{E}+05$	$1.37 \mathrm{E}+10$	$5.00 \mathrm{E}+05$	$9.72 \mathrm{E}+09$
WT-3 A3	$4.50 \mathrm{E}+05$	$1.14 \mathrm{E}+10$	$4.50 \mathrm{E}+05$	$1.06 \mathrm{E}+10$
WT-3 B1	$1.58 \mathrm{E}+06$	$1.45 \mathrm{E}+10$	$1.58 \mathrm{E}+06$	$7.20 \mathrm{E}+08$
WT-3 B2	$1.70 \mathrm{E}+06$	$1.21 \mathrm{E}+10$	$1.70 \mathrm{E}+06$	$9.20 \mathrm{E}+08$
WT-3 B3	$1.70 \mathrm{E}+06$	$1.17 \mathrm{E}+10$	$1.70 \mathrm{E}+06$	$6.80 \mathrm{E}+08$
WT-3 C1	$5.30 \mathrm{E}+05$	$1.34 \mathrm{E}+10$	$5.30 \mathrm{E}+05$	$6.80 \mathrm{E}+08$
WT-3 C2	$8.10 \mathrm{E}+05$	$1.06 \mathrm{E}+10$	$8.10 \mathrm{E}+05$	$1.72 \mathrm{E}+09$
WT-3 C3	$8.40 \mathrm{E}+05$	$1.54 \mathrm{E}+10$	$8.40 \mathrm{E}+05$	$1.64 \mathrm{E}+09$
Control A	$8.20 \mathrm{E}+05$	$1.04 \mathrm{E}+09$	$8.20 \mathrm{E}+05$	$7.60 \mathrm{E}+08$
Control B	$1.18 \mathrm{E}+06$	$1.12 \mathrm{E}+09$	$1.18 \mathrm{E}+06$	$5.60 \mathrm{E}+08$
Control C	$9.50 \mathrm{E}+05$	$2.68 \mathrm{E}+09$	$9.50 \mathrm{E}+05$	$1.20 \mathrm{E}+09$
WT-3 D1	$1.20 \mathrm{E}+05$	$1.55 \mathrm{E}+09$	$1.20 \mathrm{E}+05$	$7.50 \mathrm{E}+08$
WT-3 D2	$2.40 \mathrm{E}+05$	$1.15 \mathrm{E}+09$	$2.40 \mathrm{E}+05$	$6.40 \mathrm{E}+08$
WT-3 D3	$1.90 \mathrm{E}+05$	$6.90 \mathrm{E}+08$	$1.90 \mathrm{E}+05$	$5.10 \mathrm{E}+08$
WT-3 E1	$2.40 \mathrm{E}+05$	$1.61 \mathrm{E}+09$	$2.40 \mathrm{E}+05$	$2.60 \mathrm{E}+08$
WT-3 E2	$2.10 \mathrm{E}+05$	$1.41 \mathrm{E}+09$	$2.10 \mathrm{E}+05$	$4.40 \mathrm{E}+08$
WT-3 E3	$5.50 \mathrm{E}+05$	$1.68 \mathrm{E}+09$	$5.50 \mathrm{E}+05$	$2.90 \mathrm{E}+08$
WT-3 F1	$5.10 \mathrm{E}+05$	$1.08 \mathrm{E}+09$	$5.10 \mathrm{E}+05$	$9.00 \mathrm{E}+08$
WT-3 F2	$3.30 \mathrm{E}+05$	$1.35 \mathrm{E}+09$	$3.30 \mathrm{E}+05$	$1.20 \mathrm{E}+09$
WT-3 F3	$1.20 \mathrm{E}+05$	$9.30 \mathrm{E}+08$	$1.20 \mathrm{E}+05$	$6.10 \mathrm{E}+08$
Control A	$1.50 \mathrm{E}+05$	$9.60 \mathrm{E}+08$	$1.50 \mathrm{E}+05$	$7.20 \mathrm{E}+08$
Control B	$2.90 \mathrm{E}+05$	$9.80 \mathrm{E}+08$	$2.90 \mathrm{E}+05$	$6.50 \mathrm{E}+08$
Control C	$8.20 \mathrm{E}+05$	$6.30 \mathrm{E}+08$	$8.20 \mathrm{E}+05$	$3.10 \mathrm{E}+08$

Supplemental table 3 continued: initial and final phage densities for competitive growth assay experiments (pfu/mL).

Sample	Initial evolved isolate concentration	Final evolved isolate concentration	Initial cl26lacZ concentration	Final cl26lacZ Concentration
WT-4 A1	$7.30 \mathrm{E}+05$	$8.66 \mathrm{E}+09$	$3.10 \mathrm{E}+05$	$8.00 \mathrm{E}+07$
WT-4 A2	$1.31 \mathrm{E}+06$	$1.00 \mathrm{E}+10$	$4.30 \mathrm{E}+05$	$1.20 \mathrm{E}+08$
WT-4 A3	$1.26 \mathrm{E}+06$	$7.32 \mathrm{E}+09$	$4.00 \mathrm{E}+05$	$8.00 \mathrm{E}+07$
WT-4 B1	$1.55 \mathrm{E}+06$	$9.06 \mathrm{E}+09$	$4.80 \mathrm{E}+05$	$4.00 \mathrm{E}+07$
WT-4 B2	$1.50 \mathrm{E}+06$	$6.40 \mathrm{E}+09$	$5.20 \mathrm{E}+05$	$8.00 \mathrm{E}+07$
WT-4 B3	$1.38 \mathrm{E}+06$	$4.68 \mathrm{E}+09$	$5.10 \mathrm{E}+05$	$5.00 \mathrm{E}+07$
WT-4 C1	$9.00 \mathrm{E}+05$	$2.42 \mathrm{E}+10$	$7.60 \mathrm{E}+05$	$5.96 \mathrm{E}+09$
WT-4 C2	$9.50 \mathrm{E}+05$	$1.92 \mathrm{E}+10$	$6.90 \mathrm{E}+05$	$3.60 \mathrm{E}+09$
WT-4 C3	$1.03 \mathrm{E}+06$	$1.86 \mathrm{E}+10$	$5.60 \mathrm{E}+05$	$4.68 \mathrm{E}+09$
WT-4 D1	$1.60 \mathrm{E}+06$	$3.83 \mathrm{E}+09$	$3.80 \mathrm{E}+05$	$1.00 \mathrm{E}+07$
WT-4 D2	$1.49 \mathrm{E}+06$	$1.34 \mathrm{E}+09$	$5.50 \mathrm{E}+05$	$1.00 \mathrm{E}+07$
WT-4 D3	$1.19 \mathrm{E}+06$	$3.54 \mathrm{E}+09$	$4.50 \mathrm{E}+05$	$1.00 \mathrm{E}+07$
WT-4E1	$1.73 \mathrm{E}+06$	$8.12 \mathrm{E}+09$	$5.40 \mathrm{E}+05$	$4.00 \mathrm{E}+07$
WT-4E2	$1.85 \mathrm{E}+06$	$2.56 \mathrm{E}+09$	$5.20 \mathrm{E}+05$	$1.00 \mathrm{E}+07$
WT-4 E3	$2.09 \mathrm{E}+06$	$6.42 \mathrm{E}+09$	$6.20 \mathrm{E}+05$	$1.00 \mathrm{E}+07$
WT-4 F1	$1.64 \mathrm{E}+06$	$8.16 \mathrm{E}+09$	$5.70 \mathrm{E}+05$	$1.00 \mathrm{E}+08$
WT-4 F2	$1.52 \mathrm{E}+06$	$5.48 \mathrm{E}+09$	$4.10 \mathrm{E}+05$	$3.00 \mathrm{E}+07$
WT-4 F3	$1.67 \mathrm{E}+06$	$8.82 \mathrm{E}+09$	$4.90 \mathrm{E}+05$	$3.00 \mathrm{E}+07$
Control A	$7.80 \mathrm{E}+05$	$8.52 \mathrm{E}+09$	$4.90 \mathrm{E}+05$	$2.56 \mathrm{E}+09$
Control B	$6.90 \mathrm{E}+05$	$8.96 \mathrm{E}+09$	$3.30 \mathrm{E}+05$	$3.46 \mathrm{E}+09$
Control C	$7.30 \mathrm{E}+05$	8.92E+09	$3.80 \mathrm{E}+05$	$3.64 \mathrm{E}+09$
WT-5 A1	$1.40 \mathrm{E}+05$	$3.00 \mathrm{E}+09$	$3.40 \mathrm{E}+05$	$5.40 \mathrm{E}+09$
WT-5 A2	$2.50 \mathrm{E}+05$	$3.40 \mathrm{E}+09$	$7.40 \mathrm{E}+05$	$8.10 \mathrm{E}+09$
WT-5 A3	$1.90 \mathrm{E}+05$	$4.00 \mathrm{E}+09$	$3.70 \mathrm{E}+05$	$8.10 \mathrm{E}+09$
WT-5 B1	$2.80 \mathrm{E}+05$	$8.60 \mathrm{E}+09$	$8.00 \mathrm{E}+05$	$2.20 \mathrm{E}+09$
WT-5 B2	$4.90 \mathrm{E}+05$	$1.16 \mathrm{E}+10$	$7.30 \mathrm{E}+05$	$3.90 \mathrm{E}+09$
WT-5 B3	$1.80 \mathrm{E}+05$	$8.50 \mathrm{E}+09$	$5.00 \mathrm{E}+05$	$2.60 \mathrm{E}+09$
WT-5 C1	$3.20 \mathrm{E}+05$	$2.70 \mathrm{E}+09$	$6.50 \mathrm{E}+05$	$1.00 \mathrm{E}+08$
WT-5 C2	$9.00 \mathrm{E}+04$	$3.10 \mathrm{E}+09$	$4.10 \mathrm{E}+05$	$1.00 \mathrm{E}+08$
WT-5 C3	$2.30 \mathrm{E}+05$	$2.20 \mathrm{E}+10$	$3.60 \mathrm{E}+05$	$1.00 \mathrm{E}+08$
WT-5 D1	$3.60 \mathrm{E}+05$	$6.80 \mathrm{E}+09$	$4.40 \mathrm{E}+05$	$1.00 \mathrm{E}+09$
WT-5 D2	$2.50 \mathrm{E}+05$	$7.00 \mathrm{E}+09$	$4.40 \mathrm{E}+05$	$2.70 \mathrm{E}+09$
WT-5 D3	$1.80 \mathrm{E}+05$	$1.38 \mathrm{E}+11$	$4.00 \mathrm{E}+05$	$2.90 \mathrm{E}+09$
WT-5E1	$2.70 \mathrm{E}+05$	$5.60 \mathrm{E}+10$	$4.30 \mathrm{E}+05$	$2.00 \mathrm{E}+07$
WT-5 E2	$1.80 \mathrm{E}+05$	$1.80 \mathrm{E}+10$	$2.70 \mathrm{E}+05$	$1.50 \mathrm{E}+07$
WT-5 E3	$2.80 \mathrm{E}+05$	$3.80 \mathrm{E}+09$	$3.30 \mathrm{E}+05$	$1.70 \mathrm{E}+06$
WT-5 F1	$1.20 \mathrm{E}+05$	$4.10 \mathrm{E}+10$	$4.00 \mathrm{E}+05$	$1.00 \mathrm{E}+07$
WT-5 F2	$1.90 \mathrm{E}+05$	$1.10 \mathrm{E}+10$	$5.50 \mathrm{E}+05$	$2.90 \mathrm{E}+07$
WT-5 F3	$1.90 \mathrm{E}+05$	$5.10 \mathrm{E}+09$	$2.40 \mathrm{E}+05$	$2.30 \mathrm{E}+05$
Control A	$1.10 \mathrm{E}+05$	$1.80 \mathrm{E}+09$	$3.90 \mathrm{E}+05$	$6.00 \mathrm{E}+08$
Control B	$1.20 \mathrm{E}+05$	$3.40 \mathrm{E}+09$	$2.00 \mathrm{E}+05$	$4.00 \mathrm{E}+08$
Control C	$1.80 \mathrm{E}+05$	$3.40 \mathrm{E}+09$	$1.90 \mathrm{E}+05$	$9.00 \mathrm{E}+08$
WT-6 A1	$5.40 \mathrm{E}+05$	$4.00 \mathrm{E}+09$	$5.00 \mathrm{E}+05$	$4.00 \mathrm{E}+07$
WT-6 A2	$8.10 \mathrm{E}+05$	$4.80 \mathrm{E}+09$	$8.70 \mathrm{E}+05$	$4.00 \mathrm{E}+07$
WT-6 A3	$6.20 \mathrm{E}+05$	$3.80 \mathrm{E}+09$	$8.60 \mathrm{E}+05$	$5.00 \mathrm{E}+07$
WT-6 B1	$6.40 \mathrm{E}+05$	$8.70 \mathrm{E}+09$	$4.50 \mathrm{E}+05$	$1.30 \mathrm{E}+08$
WT-6 B2	$5.60 \mathrm{E}+05$	$8.80 \mathrm{E}+09$	$5.90 \mathrm{E}+05$	$1.74 \mathrm{E}+09$
WT-6 B3	$7.10 \mathrm{E}+05$	$9.00 \mathrm{E}+09$	$4.50 \mathrm{E}+05$	$1.20 \mathrm{E}+08$
WT-6 C1	$2.90 \mathrm{E}+05$	$7.40 \mathrm{E}+09$	$5.70 \mathrm{E}+05$	$1.47 \mathrm{E}+09$
WT-6 C2	$3.90 \mathrm{E}+05$	$6.20 \mathrm{E}+09$	$6.80 \mathrm{E}+05$	$1.23 \mathrm{E}+09$
WT-6 C3	$1.00 \mathrm{E}+05$	$1.20 \mathrm{E}+10$	$3.80 \mathrm{E}+05$	$2.00 \mathrm{E}+09$
WT-6 D1	$3.40 \mathrm{E}+05$	$6.70 \mathrm{E}+09$	$6.70 \mathrm{E}+05$	$4.00 \mathrm{E}+07$
WT-6 D2	$4.40 \mathrm{E}+05$	$5.70 \mathrm{E}+09$	$1.15 \mathrm{E}+06$	$5.00 \mathrm{E}+07$
WT-6 D3	$2.40 \mathrm{E}+05$	$1.00 \mathrm{E}+10$	$1.04 \mathrm{E}+06$	$8.00 \mathrm{E}+07$
WT-6E1	$8.70 \mathrm{E}+05$	$6.90 \mathrm{E}+09$	$3.70 \mathrm{E}+05$	$1.20 \mathrm{E}+08$
WT-6E2	$8.50 \mathrm{E}+05$	$1.02 \mathrm{E}+10$	$6.20 \mathrm{E}+05$	$1.20 \mathrm{E}+08$
WT-6 E3	$7.00 \mathrm{E}+05$	$1.01 \mathrm{E}+10$	$5.20 \mathrm{E}+05$	$1.70 \mathrm{E}+08$
WT-6 F1	$4.00 \mathrm{E}+05$	$9.40 \mathrm{E}+09$	$4.00 \mathrm{E}+05$	$1.50 \mathrm{E}+09$
WT-6 F2	$2.60 \mathrm{E}+05$	$1.80 \mathrm{E}+10$	$4.20 \mathrm{E}+05$	$2.90 \mathrm{E}+09$
WT-6 F3	$4.40 \mathrm{E}+05$	$8.90 \mathrm{E}+09$	$4.20 \mathrm{E}+05$	$2.00 \mathrm{E}+09$
Control A	$7.90 \mathrm{E}+05$	$9.80 \mathrm{E}+09$	$5.10 \mathrm{E}+05$	$1.70 \mathrm{E}+09$
Control B	$9.50 \mathrm{E}+05$	$6.60 \mathrm{E}+09$	$5.90 \mathrm{E}+05$	$1.10 \mathrm{E}+09$
Control C	$9.40 \mathrm{E}+05$	$1.50 \mathrm{E}+10$	$5.30 \mathrm{E}+05$	$2.50 \mathrm{E}+09$

Supplemental table 4 continued：host range experiment raw plating efficiency data（pfu／mL）．$(Y$－axis $=\lambda$ isolates；X－

															＋	${ }^{2} 5$			$\begin{aligned} & \mathrm{y} \\ & \hline 0 \\ & \hline \end{aligned}$	영		宽		$\begin{gathered} \text { + } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \\ \hline \\ 山 \\ \hline \end{array}$			$\left\|\begin{array}{c} \circ \\ 0 \\ \vdots \\ \mathbf{u} \\ \hline 0 \end{array}\right\|$		
		$\begin{gathered} \underset{+}{+} \\ \underset{\sim}{4} \\ \hline \end{gathered}$			3						$\left.\begin{array}{\|c} \mathbb{N} \\ 0 \\ 山 \end{array} \right\rvert\,$	\|安		$\begin{aligned} & + \\ & \hline 1 \\ & \hline 1 \\ & \hline \end{aligned}$						N	岂		$1 \begin{gathered} \bar{o} \\ \underset{W}{w} \end{gathered}$	山 山						
		$$		$\begin{array}{l\|l\|} \hline 8 \\ + \\ \hline \end{array}$	So	$\mathfrak{l l}$		$\begin{array}{l\|l} \hline 8 \\ \hline \end{array}$		$\begin{aligned} & 8 \\ & \hline \end{aligned}$					8	$\begin{aligned} & \text { 岂 } \\ & \hline \end{aligned}$	出\|	O			出	出	出							
		No	$\left\|\begin{array}{c} - \\ \underset{y}{0} \\ \underset{O}{2} \end{array}\right\|$		3	Br			Be	$\begin{array}{r}8 \\ \hline\end{array}$	$\stackrel{\rightharpoonup}{4}$	$\underset{\sim}{\circ}$			움	O	잉	OTO	$\begin{aligned} & \underset{\sim}{0} \\ & \hline \end{aligned}$										$\begin{array}{\|c} \underset{\sim}{O} \\ \underset{O}{w} \end{array}$	
			$\begin{aligned} & \stackrel{+}{+} \\ & \dot{4} \\ & \hline \mathbf{y} \end{aligned}$	U					Be		$\begin{array}{r}\circ \\ \hline \\ \hline\end{array}$				$\left\|\begin{array}{l} 0 \\ 0 \\ \underset{o}{u} \\ \hline \end{array}\right\|$			0	M	$\begin{aligned} & \dot{O} \\ & \vdots \\ & \dot{W} \end{aligned}$		5								
		$\begin{gathered} 0 \\ + \\ \underset{~}{4} \end{gathered}$	$\begin{gathered} 0 \\ + \\ \dot{O} \\ \mathbf{~} \end{gathered}$		3	5		$\begin{gathered} 0 \\ \hline \end{gathered}$	\mid		$\begin{gathered} 0 \\ 0 \\ \vdots \\ \dot{U} \\ \hline \end{gathered}$				$\begin{gathered} n \\ \vdots \\ + \end{gathered}$				$\begin{aligned} & 0 \\ & \hline \end{aligned}$											
			$\begin{aligned} & \text { + } \\ & + \\ & \hline \end{aligned}$		1o				Br\|			0				88			$\begin{aligned} & \text { R } \\ & \hline \end{aligned}$				！					$\begin{aligned} & 0 \\ & 0 \\ & \dot{~} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	g\|	
					3o			$\begin{gathered} 8 \\ \hline \\ \hline \end{gathered}$		$\left\lvert\, \begin{gathered} \substack{0 \\ \underset{~}{w} \\ \hline \\ \hline} \end{gathered}\right.$					$\begin{array}{\|c} \stackrel{\leftrightarrow}{0} \\ \underset{\sim}{\Psi} \\ \hline \end{array}$					$\begin{gathered} 0 \\ 0 \\ \vdots \\ \dot{W} \\ \hline \mathbf{O} \end{gathered}$			！							
		$\begin{aligned} & \pm \\ & + \\ & \dot{~} \\ & \hline \mathbf{0} \end{aligned}$			3o				Biof	$\left(\left.\begin{array}{c} n \\ 0 \\ \underset{\sim}{4} \end{array} \right\rvert\,\right.$	Sox					5			\mathfrak{y}			0							\|	
		$\begin{gathered} \pm \\ + \\ \dot{~} \\ \hline \end{gathered}$				$\left\lvert\, \begin{gathered} 0 \\ \vdots \\ \dot{u} \\ \dot{\omega} \\ \hline \end{gathered}\right.$							O									?								
		$\begin{array}{cc} 0 \\ \hline \end{array}$				$\begin{aligned} & 2 \\ & \hline \end{aligned}$				$\begin{aligned} & \circ \\ & + \\ & \hline \end{aligned}$	8	8	\circ	O-					8					¢				¢		
				$\begin{gathered} \substack{0 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline} \end{gathered}$		花荷	荷草			$\begin{aligned} & 0 \\ & + \\ & \vdots \\ & \hline \end{aligned}$	t	0								O	＋	－	¢					－		
		O			$\underset{O}{O}$			$\begin{aligned} & 0 \\ & \hline \end{aligned}$	$\stackrel{1}{\circ}$	8	8	8							0	¢		g	¢						（	
					So																		8		－			$\begin{aligned} & \circ \\ & \hline \\ & + \\ & \stackrel{1}{0} \\ & \hline \\ & \hline \end{aligned}$	\bigcirc	
					$\begin{gathered} \bar{c} \\ \vdots \\ \vdots \\ \vdots \end{gathered}$	\mathfrak{c}				$\begin{aligned} & 0 \\ & \vdots \\ & \dot{~} \\ & \hline \end{aligned}$		d			$\begin{aligned} & 0 \\ & + \\ & \hline \end{aligned}$										＋	（1）		$\begin{aligned} & \stackrel{\bullet}{\circ} \\ & + \\ & \hline \\ & \hline \\ & \hline \end{aligned}$	0 	
					No		Br							$\begin{gathered} \text { ¿ } \\ \text { +1 } \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & + \\ & + \\ & \\ & \hline \end{aligned}$	00	0		$\begin{aligned} & 0 \\ & \hline 1 \\ & \hline \end{aligned}$		$\stackrel{\text { 앋 }}{\dot{-}}$			\circ	－	－			!	
			虽		?										\circ	$\begin{array}{\|c} \substack{0 \\ \underset{~}{4} \\ \underset{\sim}{0} \\ \underset{\sim}{2} \\ \hline} \\ \hline \end{array}$								－	－			\％	－	
		$\begin{array}{l\|l} \infty \\ \hline \\ \hline \end{array}$		$\begin{array}{ll}1 & \\ \vdots \\ \vdots \\ \vdots\end{array}$							¢					∞ 	\mathfrak{y}			$\begin{aligned} & \mathbb{4} \\ & 6 \\ & 5 \\ & 3 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 5 \\ & 5 \end{aligned}$	$\left\|\begin{array}{c} w \\ 0 \\ 0 \\ 0 \end{array}\right\|$	？	－			3	$\stackrel{\sim}{\square}$	

Supplementary table 5: oligos for λ modification using MAGE

Mutation	Oligo Sequence
H_11378	5' GTCTGCCCAGGTCTCCAGCGTGCCCATGTTCTCTTTCAGGCGGCGGGTCTGGTCATCAAGCCCTTTCGTTGCGGCCTCGTTCGCCGCCTG 3'
H_11432	5' CATCCCACATGGATTTGAATGCCCGCGCAGTCCTGTCTGTCCAGGTCTCCAGCGTGCCCATGTTCTCTTTCAGGCGGCGGGTCTGGTCAT 3'
ninl_37640	5' TTTCCAAACTCGTATTCGTCAAAGGGATAATCGGCGTGGAAGATAACATATTTTTTATCTTTGCTCACCAGTTCGATGATTAACGGAAGT 3'
S_39212	5' CGCAAGGATTGCCCCGATGCCTTGTTCCTTTGCCGCGAGAATGGCGGCCAACAGGCCATGTTTTTCTGGCATCTTCATGTCTTACCCCCAA 3'
S_39170	5' GGTCATGTTTTTCTGGCATCTTCATGTCTTACCCCCAATAAGGGtATTTGCTCTATTTAATTAGGAATAAGGTCGATTACTGATAGAACA 3'
J_18824	5' CTGTTTCTTAATCACCATAACCTGCACATCGCTGGCAAACGTATACGGCGGAATACCTGCCGAATGCCGTGTGGACGTAAGCGTGAACGT 3'

Supplementary table 6: primers for sanger sequencing verification of mutation incorporation in post MAGE isolates

Mutation	Direction	Primer Sequence	Direction	Primer Sequence
H_11378	FWD	5' ACTCAACCCTGTCCGATTTC 3'	REV	5' CTGCGCCTCTTCGGTATATT
H_11432	FWD	5' ACTCAACCCTGTCCGATTTC 3'	REV	5' CTGCGCCTCTTCGGTATATT 3'
ninl_37640	FWD	5' GGAGTGAAAGAGATGCGCTATTA 3'	REV	5' TTGCCACACCACGGTATTT 3'
S_39212/S_39170	FWD	5' TAGAGCCTGCATAACGGTTTC 3'	REV	5' GGGTGATCGGAGTAATCAGTAAAT 3'

Supplemental table 7: initial and final concentrations for modified λ competitive growth rate experiments.

Modified lambda strain/host strain	Initial modified lambda concentration	Final modified lambda concentration	Initial cl857lacZ concentration	Final cl857lacZ Concentration
H11378/WT 1	$2.80 \mathrm{E}+06$	$5.09 \mathrm{E}+09$	$3.00 \mathrm{E}+06$	$9.50 \mathrm{E}+08$
H11378/WT 2	$2.28 \mathrm{E}+06$	$5.12 \mathrm{E}+09$	$1.80 \mathrm{E}+06$	$2.68 \mathrm{E}+09$
H11378/WT 3	$2.76 \mathrm{E}+06$	$6.52 \mathrm{E}+09$	$2.68 \mathrm{E}+06$	$3.08 \mathrm{E}+09$
H11378/manY 1	$2.92 \mathrm{E}+06$	$2.94 \mathrm{E}+08$	$2.96 \mathrm{E}+06$	$1.50 \mathrm{E}+07$
H11378/manY 2	$2.44 \mathrm{E}+06$	$4.44 \mathrm{E}+08$	$1.80 \mathrm{E}+06$	$1.90 \mathrm{E}+07$
H11378/manY 3	$2.48 \mathrm{E}+06$	$4.88 \mathrm{E}+08$	$2.28 \mathrm{E}+06$	$2.80 \mathrm{E}+07$
H11432/WT 1	$1.20 \mathrm{E}+06$	$3.40 \mathrm{E}+09$	$1.20 \mathrm{E}+06$	$2.83 \mathrm{E}+09$
H11432/WT 2	$1.04 \mathrm{E}+06$	$3.24 \mathrm{E}+09$	$1.76 \mathrm{E}+06$	$1.96 \mathrm{E}+09$
H11432/WT 3	$1.40 \mathrm{E}+06$	$3.27 \mathrm{E}+09$	$2.04 \mathrm{E}+06$	$3.03 \mathrm{E}+09$
H11432/manY 1	$1.84 \mathrm{E}+06$	$8.40 \mathrm{E}+08$	$1.60 \mathrm{E}+06$	$3.00 \mathrm{E}+07$
H11432/man Y 2	$1.24 \mathrm{E}+06$	$8.32 \mathrm{E}+08$	$1.96 \mathrm{E}+06$	$4.30 \mathrm{E}+07$
H11432/manY 3	$1.44 \mathrm{E}+06$	$7.80 \mathrm{E}+08$	$2.32 \mathrm{E}+06$	$4.80 \mathrm{E}+07$
cl857/WT 1	$2.00 \mathrm{E}+06$	$3.84 \mathrm{E}+09$	$2.64 \mathrm{E}+06$	$3.44 \mathrm{E}+09$
cl857/WT 2	$1.44 \mathrm{E}+06$	$3.28 \mathrm{E}+09$	$1.60 \mathrm{E}+06$	$4.24 \mathrm{E}+09$
cl857/WT 3	$1.60 \mathrm{E}+06$	$5.04 \mathrm{E}+09$	$2.72 \mathrm{E}+06$	$3.20 \mathrm{E}+09$
cl857/manY 1	$1.36 \mathrm{E}+06$	$2.52 \mathrm{E}+07$	$1.44 \mathrm{E}+06$	$3.96 \mathrm{E}+07$
cl857/manY 2	1.12E+06	$2.76 \mathrm{E}+07$	$1.76 \mathrm{E}+06$	$4.20 \mathrm{E}+07$
cl857/manY 3	$1.20 \mathrm{E}+06$	$3.24 \mathrm{E}+07$	$1.52 \mathrm{E}+06$	4.72E+07
Modified lambda strain/host strain	Initial modified lambda concentration	Final modified lambda concentration	Initial cl857lacZ concentration	Final cl857lacZ Concentration
ninl37640/nusB 1	$4.40 \mathrm{E}+05$	$4.76 \mathrm{E}+06$	$2.14 \mathrm{E}+06$	$1.20 \mathrm{E}+05$
ninl37640/nusB 2	$3.30 \mathrm{E}+05$	$6.76 \mathrm{E}+06$	$2.60 \mathrm{E}+06$	$1.20 \mathrm{E}+05$
ninl37640/nusB 3	$3.00 \mathrm{E}+05$	$5.64 \mathrm{E}+06$	$1.84 \mathrm{E}+06$	$1.20 \mathrm{E}+05$
nin/37640/WT 1	$2.20 \mathrm{E}+05$	$1.24 \mathrm{E}+09$	$2.64 \mathrm{E}+06$	$1.41 \mathrm{E}+10$
ninl37640/WT 2	$3.60 \mathrm{E}+05$	$7.20 \mathrm{E}+08$	$2.40 \mathrm{E}+06$	$1.12 \mathrm{E}+10$
ninl37640/WT 3	$3.00 \mathrm{E}+05$	$1.24 \mathrm{E}+09$	$2.06 \mathrm{E}+06$	$1.24 \mathrm{E}+10$
cl857/nusB 1	$1.10 \mathrm{E}+06$	$9.60 \mathrm{E}+03$	$1.50 \mathrm{E}+06$	$3.60 \mathrm{E}+04$
cl857/nusB 2	$9.80 \mathrm{E}+05$	$8.80 \mathrm{E}+03$	$2.58 \mathrm{E}+06$	$3.56 \mathrm{E}+04$
cl857/nusB 3	1.12E+06	$8.20 \mathrm{E}+03$	$2.10 \mathrm{E}+06$	$2.68 \mathrm{E}+04$
cl857/WT 1	1.12E+06	$2.72 \mathrm{E}+09$	$2.40 \mathrm{E}+06$	$5.56 \mathrm{E}+09$
c/857/WT 2	$9.50 \mathrm{E}+05$	$2.38 \mathrm{E}+09$	$2.14 \mathrm{E}+06$	$8.56 \mathrm{E}+09$
c/857/WT 3	$1.54 \mathrm{E}+06$	$2.16 \mathrm{E}+09$	$2.64 \mathrm{E}+06$	$8.28 \mathrm{E}+09$

Modified lambda strain/host strain	Initial modified lambda concentration	Final modified lambda concentration	Initial cl857lacZ concentration	Final cl857lacZ Concentration
S39212/WT 1	$1.40 \mathrm{E}+06$	$2.08 \mathrm{E}+09$	$1.25 \mathrm{E}+06$	1.59E+09
S39212/WT 2	$1.23 \mathrm{E}+06$	$2.08 \mathrm{E}+09$	$1.11 \mathrm{E}+06$	$2.21 \mathrm{E}+09$
S39212/WT 3	$2.05 \mathrm{E}+06$	$2.13 \mathrm{E}+09$	$1.64 \mathrm{E}+06$	$1.61 \mathrm{E}+09$
S39212/dnaJ 1	1.77E+06	$1.21 \mathrm{E}+05$	$1.29 \mathrm{E}+06$	$1.80 \mathrm{E}+04$
S39212/dnaJ 2	$1.80 \mathrm{E}+06$	$1.28 \mathrm{E}+05$	$1.57 \mathrm{E}+06$	$2.20 \mathrm{E}+04$
S39212/dnaJ 3	$1.58 \mathrm{E}+06$	$1.80 \mathrm{E}+05$	$1.15 \mathrm{E}+06$	$1.50 \mathrm{E}+04$
S39212/nusB 1	$2.19 \mathrm{E}+06$	$3.72 \mathrm{E}+04$	$1.65 \mathrm{E}+06$	$1.32 \mathrm{E}+04$
S39212/nusB 2	$1.69 \mathrm{E}+06$	$1.72 \mathrm{E}+04$	$1.67 \mathrm{E}+06$	$1.04 \mathrm{E}+04$
S39212/nusB 3	$2.17 \mathrm{E}+06$	$2.08 \mathrm{E}+04$	$1.86 \mathrm{E}+06$	$9.60 \mathrm{E}+03$
c/857/WT 1	$1.17 \mathrm{E}+06$	$1.80 \mathrm{E}+09$	$1.38 \mathrm{E}+06$	$1.45 \mathrm{E}+09$
cl857/WT 2	$1.01 \mathrm{E}+06$	$7.70 \mathrm{E}+08$	$1.63 \mathrm{E}+06$	$7.60 \mathrm{E}+08$
cl857/WT 3	$1.21 \mathrm{E}+06$	$7.20 \mathrm{E}+08$	$2.01 \mathrm{E}+06$	$8.60 \mathrm{E}+08$
cl857/dnaJ 1	$1.20 \mathrm{E}+06$	$1.68 \mathrm{E}+04$	$2.30 \mathrm{E}+06$	$2.20 \mathrm{E}+04$
cl857/dnaJ 2	$1.15 \mathrm{E}+06$	$1.20 \mathrm{E}+04$	$1.94 \mathrm{E}+06$	$2.00 \mathrm{E}+04$
cl857/dnaJ 3	$1.13 \mathrm{E}+06$	$1.56 \mathrm{E}+04$	$2.30 \mathrm{E}+06$	$2.04 \mathrm{E}+04$
c/857/nusB 1	$1.03 \mathrm{E}+06$	$1.48 \mathrm{E}+04$	$1.99 \mathrm{E}+06$	$8.80 \mathrm{E}+03$
cl857/nusB 2	$8.80 \mathrm{E}+05$	$1.00 \mathrm{E}+04$	$1.41 \mathrm{E}+06$	$1.28 \mathrm{E}+04$
c/857/nusB 3	$1.08 \mathrm{E}+06$	$1.40 \mathrm{E}+04$	$1.93 \mathrm{E}+06$	$7.60 \mathrm{E}+03$

Modified lambda strain/host strain	Initial modified lambda concentration	Final modified lambda concentration	Initial cl857lacZ concentration	Final cl857lacZ Concentration
S39170/WT 1	$4.00 \mathrm{E}+07$	$1.70 \mathrm{E}+09$	$1.40 \mathrm{E}+07$	$6.40 \mathrm{E}+08$
S39170/WT 2	$3.70 \mathrm{E}+07$	$3.30 \mathrm{E}+09$	$1.90 \mathrm{E}+07$	$1.21 \mathrm{E}+09$
S39170/WT 3	$5.50 \mathrm{E}+07$	$2.34 \mathrm{E}+09$	$1.10 \mathrm{E}+07$	$8.90 \mathrm{E}+08$
S39170/dnaJ 1	$4.20 \mathrm{E}+07$	$2.82 \mathrm{E}+07$	$8.00 \mathrm{E}+06$	$1.72 \mathrm{E}+07$
S39170/dnaJ 2	$4.00 \mathrm{E}+07$	$6.28 \mathrm{E}+07$	$7.00 \mathrm{E}+06$	$2.92 \mathrm{E}+07$
S39170/dnaJ 3	$3.50 \mathrm{E}+07$	$6.04 \mathrm{E}+07$	$8.00 \mathrm{E}+06$	$3.12 \mathrm{E}+07$
cl857/WT 1	$1.70 \mathrm{E}+07$	$2.64 \mathrm{E}+09$	$1.30 \mathrm{E}+07$	$5.16 \mathrm{E}+09$
c/857/WT 2	$1.20 \mathrm{E}+07$	$2.12 \mathrm{E}+09$	$9.00 \mathrm{E}+06$	$3.60 \mathrm{E}+09$
cl857/WT 3	$2.10 \mathrm{E}+07$	$3.48 \mathrm{E}+09$	$8.00 \mathrm{E}+06$	$5.20 \mathrm{E}+09$
c/857/dnaJ 1	$1.80 \mathrm{E}+07$	$5.20 \mathrm{E}+06$	$1.10 \mathrm{E}+07$	$1.02 \mathrm{E}+07$
cl857/dnaJ 2	$1.80 \mathrm{E}+07$	$8.00 \mathrm{E}+06$	$1.90 \mathrm{E}+07$	$1.20 \mathrm{E}+07$
cl857/dnaJ 3	$1.60 \mathrm{E}+07$	$6.00 \mathrm{E}+06$	$1.10 \mathrm{E}+07$	$8.20 \mathrm{E}+06$

Supplemental table 8: mutation profiles of all evolved isolates from BreSeq output files.

Sample	Total reads	Position	Base change	Gene	Predicted or marginal	Frequency (if marginal)
clpXA	4816125	18751	$\mathrm{A} \rightarrow \mathrm{G}$	$\mathrm{J} \rightarrow$	predicted	
clpX B	4671959	18535	$\mathrm{A} \rightarrow \mathrm{G}$	$J \rightarrow$	predicted	
clpX C	3606338	18535	$A \rightarrow G$	$J \rightarrow$	predicted	
clpXE	4763246	18824	$A \rightarrow C$	$\mathrm{J} \rightarrow$	predicted	
clpXF	3932627	18535	A \rightarrow G	$J \rightarrow$	predicted	
clpX F	3932627	32003	$\mathrm{A} \rightarrow \mathrm{G}$	$\mathrm{cl} \leftarrow \mathrm{l} \rightarrow \mathrm{cro}$	predicted	
cpIX D	5041887	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$\mathrm{J} \rightarrow$	predicted	
crr A	4646270	18737	$\mathrm{A} \rightarrow \mathrm{G}$	$J \rightarrow$	predicted	
crr B	3893381	18751	$A \rightarrow G$	$J \rightarrow$	predicted	
crr C	4132576	18824	$\mathrm{A} \rightarrow \mathrm{G}$	$J \rightarrow$	predicted	
crr D	5451409	17419	$\mathrm{G} \rightarrow \mathrm{T}$	$J \rightarrow$	predicted	
crr D	5451409	18730	$\mathrm{G} \rightarrow \mathrm{A}$	$\mathrm{J} \rightarrow$	predicted	
crr D	5451409	31455	$\mathrm{C} \rightarrow \mathrm{A}$	$\mathrm{cl} \leftarrow$	predicted	
crr E	4578574	18501	$\mathrm{G} \rightarrow \mathrm{T}$	$\mathrm{J} \rightarrow$	predicted	
crr E	4578574	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$J \rightarrow$	predicted	
crr F	3727090	18535	$\mathrm{A} \rightarrow \mathrm{G}$	$\mathrm{J} \rightarrow$	predicted	
crr F	3727090	42432	$\mathrm{C} \rightarrow \mathrm{G}$	lambdap79 \rightarrow /-	predicted	
crr F	3727090	42434	$2 \mathrm{bp} \rightarrow \mathrm{AG}$	lambdap79 \rightarrow /-	predicted	
crr F	3727090	42437	$\mathrm{C} \rightarrow$ T	lambdap79 \rightarrow -	predicted	
crr F	3727090	42449	$\mathrm{T} \rightarrow \mathrm{C}$	lambdap79 \rightarrow /-	predicted	
crr F	3727090	42464	$\mathrm{C} \rightarrow \mathrm{T}$	lambdap79 \rightarrow /-	predicted	
crr F	3727090	42472	$\mathrm{C} \rightarrow$ T	lambdap79 \rightarrow /-	predicted	
crr F	3727090	42476	$2 \mathrm{bp} \rightarrow \mathrm{GT}$	lambdap79 \rightarrow -	predicted	
crr F	3727090	42491	$\mathrm{T} \rightarrow \mathrm{C}$	lambdap79 \rightarrow /-	predicted	
dnaJ A	450113	18,503	$\mathrm{C} \rightarrow \mathrm{T}$	$J \rightarrow$	predicted	
dnaJ A	450113	21,595	$\mathrm{G} \rightarrow \mathrm{T}$	orf-401 $\rightarrow / \leftarrow \mathrm{int}$	predicted	
dnaJ A	450113	39,212	$\mathrm{A} \rightarrow \mathrm{G}$	$S \rightarrow$	predicted	
dnaJ B	637988	18,503	$C \rightarrow T$	$J \rightarrow$	predicted	
dnaJ B	637988	39,170	$\mathrm{C} \rightarrow \mathrm{A}$	orf-64 \rightarrow / \rightarrow S	predicted	
dnaK A	4286465	18503	$\mathrm{C} \rightarrow$ T	$\mathrm{J} \rightarrow$	predicted	
dnaK A	4286465	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$J \rightarrow$	predicted	
dnaK B	5705760	18835	$\mathrm{T} \rightarrow \mathrm{C}$	$J \rightarrow$	predicted	
dnak C	4491146	18503	$\mathrm{C} \rightarrow$ T	$J \rightarrow$	predicted	
dnaK D	4985869	18835	$\mathrm{T} \rightarrow \mathrm{C}$	$\mathrm{J} \rightarrow$	predicted	
dnaKE	4468036	18503	$\mathrm{C} \rightarrow \mathrm{T}$	$\mathrm{J} \rightarrow$	predicted	
dnaK F	3261467	18835	$\mathrm{T} \rightarrow \mathrm{C}$	$\mathrm{J} \rightarrow$	predicted	
dnaK F	3261467	42300	$\mathrm{C} \rightarrow \mathrm{A}$	lambdap79 \rightarrow /-	predicted	
dnaK F	3261467	42432	$\mathrm{C} \rightarrow \mathrm{G}$	lambdap79 \rightarrow /-	predicted	
dnaK F	3261467	42434	$2 \mathrm{bp} \rightarrow \mathrm{AG}$	lambdap79 \rightarrow /-	predicted	
dnaK F	3261467	42437	$\mathrm{C} \rightarrow$ T	lambdap79 \rightarrow /-	predicted	
dnaK F	3261467	42449	$\mathrm{T} \rightarrow \mathrm{C}$	lambdap79 \rightarrow /-	predicted	
dnaK F	3261467	42464	$\mathrm{C} \rightarrow$ T	lambdap79 \rightarrow /-	predicted	
dnaK F	3261467	42472	$\mathrm{C} \rightarrow \mathrm{T}$	lambdap79 \rightarrow /-	predicted	
dnaK F	3261467	42476	$2 \mathrm{bp} \rightarrow$ GT	lambdap79 \rightarrow /-	predicted	
dnaK F	3261467	42491	$\mathrm{T} \rightarrow \mathrm{C}$	lambdap79 \rightarrow /-	predicted	
gmhA A	3861960	18481	A \rightarrow G	$\mathrm{J} \rightarrow$	predicted	
gmha B	4685134	18473	$\mathrm{C} \rightarrow \mathrm{T}$	$J \rightarrow$	predicted	
gmhA B	4685134	18835	$\mathrm{T} \rightarrow \mathrm{C}$	$J \rightarrow$	predicted	
gmhA C	4243117	18751	$\mathrm{A} \rightarrow \mathrm{G}$	$J \rightarrow$	predicted	
gmhA D	4432104	18877	$\mathrm{C} \rightarrow \mathrm{G}$	$J \rightarrow$	predicted	
gmhA E	3818269	18503	$\mathrm{C} \rightarrow \mathrm{T}$	$J \rightarrow$	predicted	
gmhA E	3818269	18734	$\mathrm{T} \rightarrow \mathrm{C}$	$\mathrm{J} \rightarrow$	predicted	
gmha F	4510047	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$J \rightarrow$	predicted	
gmhA F	4510047	18835	$\mathrm{T} \rightarrow \mathrm{C}$	$J \rightarrow$	predicted	
hldD A	3954016	18,493	$\mathrm{A} \rightarrow \mathrm{G}$	$J \rightarrow$	predicted	
hldD A	3954016	18,824	A \rightarrow G	$J \rightarrow$	predicted	
hldD B	4718258	18,503	$\mathrm{C} \rightarrow \mathrm{T}$	$J \rightarrow$	predicted	
hldD B	4718258	18,535	$\mathrm{A} \rightarrow \mathrm{G}$	$J \rightarrow$	predicted	
hldD B	4718258	18,824	$\mathrm{A} \rightarrow \mathrm{G}$	$J \rightarrow$	predicted	
hldD C	3422662	53	$\mathrm{C} \rightarrow \mathrm{T}$	$-I \rightarrow n u 1$	predicted	
hldD C	3422662	73	$\mathrm{A} \rightarrow \mathrm{G}$	$-/ \rightarrow$ nu1	predicted	
hldD C	3422662	85	$\mathrm{T} \rightarrow \mathrm{A}$	$-/ \rightarrow$ nu1	predicted	
hldD C	3422662	102	$\mathrm{T} \rightarrow \mathrm{C}$	$-I \rightarrow$ nu1	predicted	
hldD C	3422662	186	$2 \mathrm{bp} \rightarrow$ TG	$-/ \rightarrow$ nu1	predicted	
hldD C	3422662	398	$\mathrm{G} \rightarrow \mathrm{T}$	nu1 \rightarrow	predicted	
hidd C	3422662	412	$\mathrm{G} \rightarrow \mathrm{A}$	nu1 \rightarrow	predicted	
hldD C	3422662	429	$\mathrm{A} \rightarrow \mathrm{G}$	nu1 \rightarrow	predicted	
hldD C	3422662	474	$\mathrm{C} \rightarrow \mathrm{T}$	nu1 \rightarrow	predicted	
hldD C	3422662	483	$\mathrm{A} \rightarrow \mathrm{G}$	nu1 \rightarrow	predicted	
hldD C	3422662	489	$\mathrm{G} \rightarrow \mathrm{A}$	nu1 \rightarrow	predicted	
hldD C	3422662	583	$\mathrm{C} \rightarrow \mathrm{A}$	nu1 \rightarrow	predicted	
hldD C	3422662	18,752	$\mathrm{T} \rightarrow \mathrm{C}$	$J \rightarrow$	predicted	
hidd C	3422662	27,689	$\mathrm{G} \rightarrow \mathrm{T}$	ea10 \leftarrow	predicted	
hldD C	3422662	39,017	$\mathrm{A} \rightarrow \mathrm{G}$	orf-64 \rightarrow l \rightarrow S	predicted	
hldD D	4023301	18,503	$\mathrm{C} \rightarrow \mathrm{T}$	$\mathrm{J} \rightarrow$	predicted	
hldD D	4023301	18,878	$\mathrm{A} \rightarrow \mathrm{G}$	$J \rightarrow$	predicted	
hldD D	4023301	28,476	$\mathrm{A} \rightarrow \mathrm{G}$	orf28 \leftarrow / \rightarrow lambdap48	predicted	
hldD E	3607313	18,500	$\mathrm{A} \rightarrow \mathrm{C}$	$J \rightarrow$	predicted	
hldD E	3607313	19,710	A \rightarrow G	orf-401 \rightarrow	predicted	
hldD E	3607313	39,443	$\mathrm{A} \rightarrow \mathrm{G}$	$S \rightarrow$	predicted	
hldD F	3339056	18,495	$\mathrm{T} \rightarrow \mathrm{G}$	$J \rightarrow$	predicted	
hldD F	3339056	18,751	$\mathrm{A} \rightarrow \mathrm{G}$	$J \rightarrow$	predicted	

Supplemental table 8 continued: mutation profiles of all evolved isolates from BreSeq output files.

Sample	Total reads	Position	Base change	Gene	Predicted or marginal	Frequency (if marginal)
hsdS A	553727	18535	$A \rightarrow G$	$\mathrm{J} \rightarrow$	predicted	
hsds B	538398	1506	$A \rightarrow C$	A \rightarrow	predicted	
hsds B	538398	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$J \rightarrow$	predicted	
hsds B	538398	21711	$A \rightarrow G$	orf-401 \rightarrow / \leftarrow int	predicted	
hsds C	639878	18730	$\mathrm{G} \rightarrow \mathrm{A}$	$\mathrm{J} \rightarrow$	predicted	
hsds C	639878	28585	$A \rightarrow G$	lambdap48 \rightarrow	predicted	
hsd D	387080	18730	$G \rightarrow A$	${ }^{\prime} \rightarrow$	predicted	
hsdS E	338840	18733	$\mathrm{G} \rightarrow \mathrm{A}$	$J \rightarrow$	predicted	
hsdS E	338840	36964	$A \rightarrow G$	$\mathrm{NinG} \rightarrow$	predicted	
hsdS F	465074	16572	$\mathrm{G} \rightarrow \mathrm{A}$	${ }^{\prime} \rightarrow$	predicted	
hsdS F	465074	18823	$\mathrm{G} \rightarrow \mathrm{A}$	${ }^{\prime} \rightarrow$	predicted	
hsdS F	465074	42432	$C \rightarrow G$	lambdap79 \rightarrow /-	predicted	
hsdS F	465074	42434	$2 \mathrm{bp} \rightarrow \mathrm{AG}$	lambdap79 \rightarrow /-	predicted	
hsdS F	465074	42437	$C \rightarrow T$	lambdap79 \rightarrow /-	predicted	
hsdS F	465074	42449	$T \rightarrow$ C	lambdap79 \rightarrow /-	predicted	
hsdS F	465074	42464	$\mathrm{C} \rightarrow$ T	lambdap79 \rightarrow /-	predicted	
hsdS F	465074	42472	$c \rightarrow T$	lambdap79 \rightarrow /-	predicted	
hsdS F	465074	42476	$2 \mathrm{bp} \rightarrow \mathrm{GT}$	lambdap79 \rightarrow /-	predicted	
hsdS F	465074	42491	$\mathrm{T} \rightarrow \mathrm{C}$	lambdap79 \rightarrow /-	predicted	
manXA	2408	1	$\Delta 42,507$ bp	nu1-lambdap79	predicted	
manX B	54388	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$J \rightarrow$	predicted	
manX B	54388	4755	T \rightarrow C	c	marginal	0.579
$\operatorname{manX} \times$	54388	22360	c.	int	marginal	0.2
$\operatorname{manX} \times$	54388	13891-13904	New junction	L	predicted	0.398
manXB	54388	22377-22387	new junction	int	predicted	0.374
manX B	54388	41110-41122	new junction	lambdap78	predicted	0.38
$\operatorname{manX} \times$	54388	41107-41127	new junction	lambdap78	marginal	0.139
manX C	517076	18751	$\mathrm{A} \rightarrow \mathrm{G}$	$J \rightarrow$	predicted	
manXC	517076	39127	$\mathrm{T} \rightarrow \mathrm{C}$	orf-64 \rightarrow / \rightarrow S	predicted	
manX ${ }^{\text {d }}$	105641	18731	$c \rightarrow T$	${ }^{\mathrm{J}} \rightarrow$	predicted	
manXE	273764	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$J \rightarrow$	predicted	
manXE	273764	42491	TC	lambdap79/-	marginal	0.226
manX F	48	1	$\Delta 42,507$ bp	nu1-lambdap79		
manY A	248627					
manY B	525188	11378	$\mathrm{T} \rightarrow \mathrm{C}$	$\mathrm{H} \rightarrow$	predicted	
manY B	525188	18503	$C \rightarrow T$	$J \rightarrow$	predicted	
manY B	525188	33010	$A \rightarrow G$	$0 \rightarrow$	predicted	
manY E	595090					
manY F	901928	11432	$\mathrm{G} \rightarrow \mathrm{A}$	H \rightarrow	predicted	
nuoG A	4500330	18535	$A \rightarrow G$	$J \rightarrow$	predicted	
nuog A	4500330	22456	$\mathrm{T} \rightarrow \mathrm{C}$	int \leftarrow	predicted	
nuoG B	4248874	18737	$A \rightarrow G$	$\mathrm{J} \rightarrow$	predicted	
nuog B	4248874	39982	$A \rightarrow G$	Rz \rightarrow	predicted	
nuoG C	4534567	18824	$A \rightarrow C$	$J \rightarrow$	predicted	
nuog C	4534567	29697	$(\mathrm{G})_{6 \rightarrow 7}$	$\mathrm{N} \leftarrow 1 \leftarrow \mathrm{lexb}$	predicted	
nuog C	4534567	29830	$T \rightarrow G$	rexb \leftarrow	predicted	
nuog C	4534567	32003	$A \rightarrow G$	$\mathrm{cl} \leftarrow \mathrm{l} \rightarrow$ cro	predicted	
nuog D	4229787	18737	$A \rightarrow G$	$\xrightarrow{ } \rightarrow$	predicted	
nuog E	4446838	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$J \rightarrow$	predicted	
nuoG F	3596079	18535	$A \rightarrow G$	$J \rightarrow$	predicted	
nuoG F	3596079	41037	$A \rightarrow C$	bor $\leftarrow 1 \leftarrow$ lambdap78	predicted	
nuoG F	3596079	41785	$A \rightarrow G$	lambdap79 \rightarrow	predicted	
nusB A	702263	18503	$C \rightarrow T$	$\mathrm{J} \rightarrow$	predicted	
nusB A	702263	35319	+TAT	$\mathrm{NinC} \rightarrow$	predicted	
nusB B	818244	18503	$c \rightarrow T$	${ }^{\text {a }}$	predicted	
nusB B	818244	37305	$G \rightarrow T$	$\mathrm{Ninl} \rightarrow$	predicted	
nus B C	528989					
nusB D	598935	18503	$c \rightarrow T$	$J \rightarrow$	predicted	
nus ${ }^{\text {d }}$	598935	37640	$G \rightarrow T$	Ninl \rightarrow	predicted	
nusB D	598935	9745	TC	G	marginal	0.537
nus B D	598935	39212	A G	s	marginal	0.338
nusB D	598935	27600	TC	ea10	marginal	0.258
nus B E	553926	18503	$c \rightarrow T$	$\mathrm{J} \rightarrow$	predicted	
nusB E	553926	37640	$G \rightarrow T$	Ninl \rightarrow	predicted	
nus E E	553926	39212	$A \rightarrow G$	$\mathrm{S} \rightarrow$	predicted	
nus B F	684211	18503	$C \rightarrow T$	$J \rightarrow$	predicted	
nusB F	684211	36305	$\mathrm{A} \rightarrow \mathrm{T}$	$\mathrm{NinF} \rightarrow$	predicted	
ompC A	3345819	18535	$\mathrm{A} \rightarrow \mathrm{G}$	${ }^{\text {J }}$	predicted	
ompC B	5892769	34206	$\mathrm{T} \rightarrow \mathrm{C}$	$\mathrm{P} \rightarrow$	predicted	
ompC C	4897093	18734	$T \rightarrow G$	$\mathrm{J} \rightarrow$	predicted	
ompC C	4897093	23327	$T \rightarrow C$	lambdap $35 \leftarrow / \leftarrow$ ea8.5	predicted	
ompC D	4339920	18872	$A \rightarrow G$	$J \rightarrow$	predicted	
ompC E	4214.667	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$J \rightarrow$	predicted	
ompC F	4303427	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$J \rightarrow$	predicted	
reca A	4619255	18473	$C \rightarrow T$	$\xrightarrow{\mathrm{J}}$	predicted	
recA A	4619255	18835	$T \rightarrow C$	$\mathrm{J} \rightarrow$	predicted	
recA A	4619255	32900	$\mathrm{A} \rightarrow \mathrm{G}$	$\bigcirc \rightarrow$	predicted	
recA B	4613527	18503	$C \rightarrow T$	$\mathrm{J} \rightarrow$	predicted	
recA B	4613527	18535	$A \rightarrow G$	$\xrightarrow{\mathrm{J}}$	predicted	
recal	3620450	18535	$A \rightarrow G$	$\xrightarrow{\mathrm{J}}$	predicted	
recA C	3620450	18835	$T \rightarrow C$	$\xrightarrow{ } \rightarrow$	predicted	
recal	3620450	32015	$\mathrm{G} \rightarrow \mathrm{A}$	cl \leftarrow / \rightarrow cro	predicted	
recA D	5169558	18535	$A \rightarrow G$	$\xrightarrow{\mathrm{J}}$	predicted	
recA D	5169558	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$\xrightarrow{\mathrm{J}}$	predicted	
recAE	4330027	18500	$\mathrm{A} \rightarrow \mathrm{C}$	$\xrightarrow{\mathrm{J}}$	predicted	
recAF	3871885	18503	$C \rightarrow T$	$\xrightarrow{\mathrm{J}}$	predicted	
recA F	3871885	18737	$A \rightarrow G$	$\xrightarrow{\mathrm{J}}$	predicted	

Supplemental table 8 continued: mutation profiles of all evolved isolates from BreSeq
output files.

Sample	Total reads	Position	Base change	Gene	Predicted or marginal	Frequency (if marginal)
rfac A	3600676	18535	$A \rightarrow G$	$\xrightarrow{\mathrm{J}}$	marginal	0.649
rfac A	3600676	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$J \rightarrow$	marginal	0.642
rfaCA	3600676	19683	$\mathrm{G} \rightarrow \mathrm{A}$	orf-401 \rightarrow	marginal	0.332
rfac A	3600676	18491	$A \rightarrow C$	$J \rightarrow$	marginal	0.301
rfac B	4650434	1868	$\mathrm{G} \rightarrow \mathrm{T}$	A \rightarrow	predicted	
rfac B	4650434	18500	$A \rightarrow C$	$\xrightarrow{\mathrm{J}}$	predicted	
rfac	4489428	18503	$C \rightarrow T$	$J \rightarrow$	predicted	
rfaC ${ }^{\text {c }}$	4489428	18535	$\mathrm{A} \rightarrow \mathrm{G}$	$\xrightarrow{\mathrm{J}}$	predicted	
rfaC D	4006284	18500	$A \rightarrow C$	\xrightarrow{J}	predicted	
rfaCE	4272075	18535	$\mathrm{A} \rightarrow \mathrm{G}$	\xrightarrow{J}	predicted	
rface	4272075	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$\xrightarrow{\mathrm{J}}$	predicted	
rfac F	4382434	18500	$A \rightarrow C$	$\xrightarrow{\prime}$	predicted	
rfaF A	3349176	18500	$A \rightarrow C$	$\xrightarrow{ } \rightarrow$	predicted	
rfaF A	3349176	25980	$\mathrm{T} \rightarrow \mathrm{C}$	exo \leftarrow	predicted	
rfaF A	3349176	39183	(G) $5 \rightarrow 6$	orf-64 $\rightarrow / \rightarrow$ S	predicted	
rfaF B	3889186	16983	$\mathrm{T} \rightarrow \mathrm{C}$	$J \rightarrow$	predicted	
rfaF B	3889186	18500	$\mathrm{A} \rightarrow \mathrm{C}$	${ }^{\prime} \rightarrow$	predicted	
rfaF B	3889186	18649	$A \rightarrow C$	$\mathrm{J} \rightarrow$	predicted	
rfaF C	4120286	18500	$A \rightarrow C$	$J \rightarrow$	predicted	
rfaF D	4170859	53	$C \rightarrow T$	$-/ \rightarrow$ nu1	predicted	
rfaF D	4170859	73	$\mathrm{A} \rightarrow \mathrm{G}$	$-/ \rightarrow$ nu1	predicted	
rfaF D	4170859	85	$\mathrm{T} \rightarrow \mathrm{A}$	$-/ \rightarrow$ nu1	predicted	
rfaF D	4170859	102	$\mathrm{T} \rightarrow \mathrm{C}$	$-/ \rightarrow$ nu1	predicted	
rfaF D	4170859	186	$2 \mathrm{bp} \rightarrow$ TG	- / \rightarrow nu1	predicted	
rfaF D	4170859	398	$G \rightarrow T$	nu1 \rightarrow	predicted	
rfaF D	4170859	412	$\mathrm{G} \rightarrow \mathrm{A}$	nu1 \rightarrow	predicted	
rfaF D	4170859	429	$\mathrm{A} \rightarrow \mathrm{G}$	nu1 \rightarrow	predicted	
rfaF D	4170859	474	$C \rightarrow T$	nu1 \rightarrow	predicted	
rfaF D	4170859	483	$\mathrm{A} \rightarrow \mathrm{G}$	nu1 \rightarrow	predicted	
rfaF D	4170859	489	$\mathrm{G} \rightarrow \mathrm{A}$	nu1 \rightarrow	predicted	
rfaF D	4170859	18730	$\mathrm{G} \rightarrow \mathrm{A}$	$\mathrm{J} \rightarrow$	predicted	
rfaF D	4170859	35038	$\mathrm{G} \rightarrow \mathrm{T}$	$\mathrm{NinB} \rightarrow$	predicted	
rfaF D	4170859	40073	$C \rightarrow T$	Rz \rightarrow	predicted	
rfaF D	4170859	40107	$\mathrm{G} \rightarrow \mathrm{A}$	Rz \rightarrow	predicted	
rfaF D	4170859	40194	$T \rightarrow G$	$\mathrm{Rz} \rightarrow$	predicted	
rfaF D	4170859	40290	$\mathrm{C} \rightarrow \mathrm{G}$	Rz \rightarrow	predicted	
rfaF D	4170859	40434	$\mathrm{T} \rightarrow \mathrm{C}$	$\mathrm{Rz} \rightarrow / \leftarrow$ bor	predicted	
rfaF D	4170859	40437	$\mathrm{C} \rightarrow \mathrm{A}$	$\mathrm{Rz} \rightarrow / \leftarrow$ bor	predicted	
rfaF D	4170859	40468	$G \rightarrow T$	bor \leftarrow	predicted	
rfaF D	4170859	40592	$\mathrm{G} \rightarrow \mathrm{A}$	bor \leftarrow	predicted	
rfaF D	4170859	40672	$C \rightarrow T$	bor \leftarrow	predicted	
rfaF D	4170859	40674	$\mathrm{G} \rightarrow \mathrm{T}$	bor \leftarrow	predicted	
rfaF D	4170859	40694	$\mathrm{C} \rightarrow$ T	bor \leftarrow	predicted	
rfaF D	4170859	40867	$\mathrm{T} \rightarrow \mathrm{C}$	bor $\leftarrow 1 \leftarrow$ lambdap78	predicted	
rfaF D	4170859	42300	$\mathrm{C} \rightarrow \mathrm{A}$	lambdap79 \rightarrow /-	predicted	
rfaF D	4170859	42432	$\mathrm{C} \rightarrow \mathrm{G}$	lambdap79 \rightarrow /-	predicted	
rfaF D	4170859	42434	$2 \mathrm{bp} \rightarrow \mathrm{AG}$	lambdap79 \rightarrow /-	predicted	
rfaF D	4170859	42437	$C \rightarrow T$	lambdap79 \rightarrow /-	predicted	
rfaF D	4170859	42449	$\mathrm{T} \rightarrow \mathrm{C}$	lambdap79 \rightarrow /-	predicted	
rfaF D	4170859	42464	$\mathrm{C} \rightarrow$ T	lambdap79 \rightarrow /-	predicted	
rfaF D	4170859	42472	$\mathrm{C} \rightarrow$ T	lambdap79 \rightarrow /-	predicted	
rfaF D	4170859	42476	$2 \mathrm{bp} \rightarrow \mathrm{GT}$	lambdap79 \rightarrow /-	predicted	
rfaF D	4170859	40668		bor	marginal	0.189
rfaF D	4170859	37104		NinH	marginal	0.189
rfaF D	4170859	2679/12680		H	marginal	0.156
rfaF D	4170859	42491	$\mathrm{T} \rightarrow \mathrm{C}$	lambdap79 \rightarrow /-	predicted	
rfaF E	4153404	18500	$\mathrm{A} \rightarrow \mathrm{C}$	$\mathrm{J} \rightarrow$	predicted	
rfaF F	3604925	18500	$\mathrm{A} \rightarrow \mathrm{C}$	$J \rightarrow$	predicted	
rfaF F	3604925	18651	$\mathrm{C} \rightarrow \mathrm{A}$	$J \rightarrow$	predicted	
$t \mathrm{tpx}$ A	3480745	18622	$\mathrm{A} \rightarrow \mathrm{G}$	$\mathrm{J} \rightarrow$	predicted	
$t \mathrm{tpx}$ A	3480745	39127	$\mathrm{T} \rightarrow \mathrm{C}$	orf-64 \rightarrow / \rightarrow S	predicted	
tpx B	4742092	39165		orf-64/S	marginal	0.265
tpx B	4742092	117	$A \rightarrow G$	$-/ \rightarrow$ nu1	predicted	
tpx B	4742092	18622	$A \rightarrow G$	$J \rightarrow$	predicted	
tpx B	4742092	19929	$A \rightarrow C$	orf-401 \rightarrow	predicted	
tpx B	4742092	26477	$\mathrm{A} \rightarrow \mathrm{G}$	bet \leftarrow	predicted	
tpx ${ }^{\text {B }}$	4742092	30986	$\mathrm{T} \rightarrow \mathrm{C}$	rexa \leftarrow	predicted	
tpx B	4742092	39127	$\mathrm{T} \rightarrow \mathrm{C}$	orf-64 \rightarrow / \rightarrow S	predicted	
tpx B	4742092	40831	$T \rightarrow G$	bor $\leftarrow 1 \leftarrow$ lambdap78	predicted	
tpx C	4515269	61	$T \rightarrow G$	$-/ \rightarrow$ nu1	predicted	
$t \mathrm{pxC}$	4515269	18535	$A \rightarrow G$	$\xrightarrow{ } \rightarrow$	predicted	
$t \mathrm{pxC}$	4515269	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$\mathrm{J} \rightarrow$	predicted	
tpx C	4515269	32003	$\mathrm{A} \rightarrow \mathrm{G}$	$\mathrm{cl} \leftarrow 1 \rightarrow$ cro	predicted	
tpx C	4515269	37446	$\mathrm{T} \rightarrow \mathrm{C}$	Ninl \rightarrow		
tpx D	4617814	13798	$\mathrm{A} \rightarrow \mathrm{G}$	L \rightarrow	predicted	
tpx D	4617814	18730	$\mathrm{G} \rightarrow \mathrm{A}$	$J \rightarrow$	predicted	
tpx D	4617814	32749	$\mathrm{T} \rightarrow \mathrm{C}$	$0 \rightarrow$	predicted	
tpx D	4617814	39127	$\mathrm{T} \rightarrow \mathrm{C}$	orf-64 $\rightarrow / \rightarrow$ S	predicted	
tpx E	4434768	116	$A \rightarrow G$	$-/ \rightarrow$ nu1	predicted	
tpx E	4434768	18751	$A \rightarrow G$	$J \rightarrow$	predicted	
tpx F	3654198	118	$\Delta 1 \mathrm{bp}$	$-/ \rightarrow$ nu1	predicted	
tpx F	3654198	18842	$\mathrm{T} \rightarrow \mathrm{C}$	$\mathrm{J} \rightarrow$	predicted	
tpx F	3654198	42300	$\mathrm{C} \rightarrow \mathrm{A}$	lambdap79 \rightarrow /-		

Sample	Total reads	Position	Base change	Gene	Predicted or marginal	Frequency (if marginal)
WT-1 A	1150485	116	$\mathrm{A} \rightarrow \mathrm{G}$	$-/ \rightarrow n u 1$	predicted	
WT-1 A	1150485	9067	$\mathrm{T} \rightarrow \mathrm{C}$	$\vee \rightarrow$	predicted	
WT-1 A	1150485	18503	$C \rightarrow T$	$J \rightarrow$	predicted	
WT-1 A	1150485	18884	$\mathrm{T} \rightarrow \mathrm{C}$	$J \rightarrow$	predicted	
WT-1 A	1150485	20200	$\mathrm{A} \rightarrow \mathrm{G}$	orf-401 \rightarrow	predicted	
WT-1 B	143924	531	$\mathrm{T} \rightarrow \mathrm{C}$	nu1 \rightarrow	predicted	
WT-1 B	143924	534	$\mathrm{T} \rightarrow \mathrm{G}$	nu1 \rightarrow	predicted	
WT-1 B	143924	597	$\mathrm{G} \rightarrow \mathrm{T}$	nu1 \rightarrow	predicted	
WT-1 B	143924	606	$\mathrm{T} \rightarrow \mathrm{C}$	nu1 \rightarrow	predicted	
WT-1 B	143924	609	$\mathrm{T} \rightarrow \mathrm{C}$	nu1 \rightarrow	predicted	
WT-1 B	143924	615	$\mathrm{A} \rightarrow \mathrm{G}$	nu1 \rightarrow	predicted	
WT-1 B	143924	631	$\mathrm{G} \rightarrow \mathrm{A}$	nu1 \rightarrow	predicted	
WT-1 B	143924	678	$C \rightarrow T$	nu1 \rightarrow	predicted	
WT-1 B	143924	691	$\mathrm{C} \rightarrow \mathrm{A}$	nu1 \rightarrow	predicted	
WT-1 B	143924	832	$\mathrm{G} \rightarrow \mathrm{C}$	$\mathrm{A} \rightarrow$	predicted	
WT-1 B	143924	838	$A \rightarrow G$	$\mathrm{A} \rightarrow$	predicted	
WT-1 B	143924	841	$C \rightarrow G$	A \rightarrow	predicted	
WT-1 B	143924	844	$A \rightarrow C$	A \rightarrow	predicted	
WT-1 B	143924	874	$\mathrm{C} \rightarrow \mathrm{G}$	$A \rightarrow$	predicted	
WT-1 B	143924	880	$\mathrm{G} \rightarrow \mathrm{A}$	A \rightarrow	predicted	
WT-1 B	143924	883	$\mathrm{G} \rightarrow \mathrm{C}$	A \rightarrow	predicted	
WT-1 B	143924	886	$\mathrm{C} \rightarrow \mathrm{G}$	A \rightarrow	predicted	
WT-1 B	143924	904	$C \rightarrow T$	A \rightarrow	predicted	
WT-1 B	143924	906	$\mathrm{G} \rightarrow \mathrm{A}$	$\mathrm{A} \rightarrow$	predicted	
WT-1 B	143924	916	$C \rightarrow A$	$\mathrm{A} \rightarrow$	predicted	
WT-1 B	143924	925	$\mathrm{G} \rightarrow \mathrm{C}$	$\mathrm{A} \rightarrow$	predicted	
WT-1 B	143924	958	$\mathrm{C} \rightarrow \mathrm{A}$	A \rightarrow	predicted	
WT-1 B	143924	965	$C \rightarrow T$	$\mathrm{A} \rightarrow$	predicted	
WT-1 B	143924	982	$\mathrm{C} \rightarrow \mathrm{G}$	A \rightarrow	predicted	
WT-1 B	143924	985	$C \rightarrow T$	$A \rightarrow$	predicted	
WT-1 B	143924	991	$2 \mathrm{bp} \rightarrow \mathrm{TC}$	$\mathrm{A} \rightarrow$	predicted	
WT-1 B	143924	997	$\mathrm{T} \rightarrow \mathrm{C}$	$\mathrm{A} \rightarrow$	predicted	
WT-1 B	143924	1006	$\mathrm{C} \rightarrow \mathrm{A}$	$\mathrm{A} \rightarrow$	predicted	
WT-1 B	143924	1009	$2 \mathrm{bp} \rightarrow \mathrm{T}$	$A \rightarrow$	predicted	
WT-1 B	143924	1045	$\mathrm{G} \rightarrow \mathrm{A}$	$A \rightarrow$	predicted	
WT-1 B	143924	1057	$2 \mathrm{bp} \rightarrow \mathrm{GT}$	$A \rightarrow$	predicted	
WT-1 B	143924	1060	$\mathrm{C} \rightarrow \mathrm{G}$	$\mathrm{A} \rightarrow$	predicted	
WT-1 B	143924	1063	$C \rightarrow T$	A \rightarrow	predicted	
WT-1 B	143924	1075	$\mathrm{T} \rightarrow \mathrm{G}$	$A \rightarrow$	predicted	
WT-1 B	143924	1081	$\mathrm{T} \rightarrow \mathrm{C}$	A \rightarrow	predicted	
WT-1 B	143924	1093	$\mathrm{G} \rightarrow \mathrm{A}$	$\mathrm{A} \rightarrow$	predicted	
WT-1 B	143924	1096	$\mathrm{G} \rightarrow \mathrm{T}$	A \rightarrow	predicted	
WT-1 B	143924	1111	$\mathrm{G} \rightarrow \mathrm{C}$	A \rightarrow	predicted	
WT-1 B	143924	1183	$C \rightarrow T$	A \rightarrow	predicted	
WT-1 B	143924	1189	$C \rightarrow T$	$\mathrm{A} \rightarrow$	predicted	
WT-1 B	143924	1201	$\mathrm{A} \rightarrow \mathrm{G}$	$\mathrm{A} \rightarrow$	predicted	
WT-1 B	143924	18503	$C \rightarrow T$	$J \rightarrow$	predicted	
WT-1 B	143924	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$\mathrm{J} \rightarrow$	predicted	
WT-1 B	143924	39172	$C \rightarrow A$	orf-64 \rightarrow / \rightarrow S	predicted	
WT-1 B	143924	42491	$\mathrm{T} \rightarrow \mathrm{C}$	lambdap79 \rightarrow /-	predicted	
WT-1 B	143924	42498	$A \rightarrow C$	lambdap79 \rightarrow -	predicted	
WT-1 B	143924	42500	$2 \mathrm{bp} \rightarrow \mathrm{TT}$	lambdap79 \rightarrow /-	predicted	
WT-1 B	143924	928	TC	A	marginal	0.797
WT-1 B	143924	931	G T	A	marginal	0.797
WT-1 B	143924	934	G T	A	marginal	0.797
WT-1 B	143924	1039	TC	A	marginal	0.79
WT-1 B	143924	868	A G	A	marginal	0.788
WT-1 B	143924	869	CT	A	marginal	0.788
WT-1 B	143924	910	CT	A	marginal	0.786
WT-1 B	143924	510	A G	nu1	marginal	0.779
WT-1 B	143924	693	G A	nu1	marginal	0.775
WT-1 B	143924	949	CT	A	marginal	0.766
WT-1 B	143924	642	G C	nu1	marginal	0.759
WT-1 B	143924	952	TC	A	marginal	0.753
WT-1 B	143924	52	G C	-/nu1	marginal	0.75
WT-1 B	143924	736	C G	A	marginal	0.741
WT-1 B	143924	737	A G	A	marginal	0.741
WT-1 B	143924	1120	CA	A	marginal	0.741
WT-1 B	143924	176	C G	-/nu1	marginal	0.733
WT-1 B	143924	177	CT	-/nu1	marginal	0.733
WT-1 B	143924	1022	TC	A	marginal	0.725
WT-1 B	143924	1027	G T	A	marginal	0.708
WT-1 B	143924	29749 =/29769 =	new junction	N/rexb	marginal	0.172
WT-1 B	143924	$22791=/ 22813=$	new junction	int	marginal	0.142
WT-1 B	143924	$32308=/ 32330=$	new junction	cro/cll	marginal	0.145
WT-1 B	143924	29036//29042 =	new junction	lambdap48, N	marginal	0.144
WT-1 B	143924	33172/33186	new junction	0	marginal	0.136
WT-1 B	143924	33165/33171	new junction	0	marginal	0.173
WT-1 B	143924	33161/33172	new junction	0	marginal	0.151
WT-1 B	143924	33166-33180	new junction	0	predicted	0.521

Supplemental table 8 continued: mutation profiles of all evolved isolates from BreSeq output files.

Sample	Total reads	Position	Base change	Gene	Predicted or marginal	Frequency (if marginal)
WT-1 C	684372	18503	CT	J	marginal	0.61
WT-1 C	684372	18884	tc	J	marginal	0.592
WT-1 C	684372	39127	TC	orf-64/s	marginal	0.562
WT-1 C	684372	116	A G	-/nu1	marginal	0.4
WT-1 C	684372	18823	G A	J	marginal	0.36
WT-1 C	684372	29786	G	N/rexb	marginal	0.342
WT-1 D	572119	116	$A \rightarrow G$	$-/ \rightarrow n u 1$	predicted	
WT-1 D	572119	10636	$T \rightarrow$ C	$\mathrm{H} \rightarrow$	predicted	
WT-1 D	572119	18503	$\mathrm{C} \rightarrow$ T	${ }^{\prime} \rightarrow$	predicted	
WT-1 D	572119	18884	$T \rightarrow C$	$J \rightarrow$	predicted	
WT-1 D	572119	22852	$T \rightarrow G$	int \leftarrow	predicted	
WT-1 D	572119	39182	$\mathrm{G} \rightarrow \mathrm{A}$	orf- $64 \rightarrow / \rightarrow$ S	predicted	
WT-1E	420530	39198	GT	S	marginal	0.688
WT-1 E	420530	1263	A G	A	marginal	0.635
WT-1E	420530	62	TC	-/nu1	marginal	0.581
WT-1 E	420530	61	TG	-/nu1	marginal	0.291
WT-1E	420530	1096	G T	A	marginal	0.245
WT-1 E	420530	693	G A	nu1	marginal	0.24
WT-1E	420530	691	CA	nu1	marginal	0.238
WT-1 E	420530	18503	$c \rightarrow$ T	${ }^{\text {a }}$	predicted	
WT-1 E	420530	18884	$T \rightarrow$ C	${ }^{\mathrm{J}} \rightarrow$	predicted	
WT-1 F	1246537	18503	$C \rightarrow T$	$J \rightarrow$	predicted	
WT-1 F	1246537	18884	$\mathrm{T} \rightarrow \mathrm{C}$	${ }^{\text {l }}$	predicted	
WT-1 F	1246537	39198	$\mathrm{G} \rightarrow \mathrm{A}$	S \rightarrow	predicted	
WT-2 A	3462693	18535	$A \rightarrow G$	$\xrightarrow{ } \rightarrow$	predicted	
WT-2 A	3462693	18824	$A \rightarrow G$	\xrightarrow{J}	predicted	
WT-2 B	3741124	18751	$A \rightarrow G$	$\xrightarrow{ } \rightarrow$	predicted	
WT-2 B	3741124	39172	$C \rightarrow T$	orf $64 \rightarrow / \rightarrow$ S	predicted	
WT-2 C	4546103	1802	$\mathrm{T} \rightarrow \mathrm{C}$	A \rightarrow	predicted	
WT-2 C	4546103	18622	$A \rightarrow G$	$\xrightarrow{\prime}$	predicted	
WT-2 D	3718619	18824	$A \rightarrow G$	$\xrightarrow{ } \rightarrow$	marginal	0.672
WT-2 D	3718619	38636	$C \rightarrow T$	orf-64 \rightarrow	marginal	0.672
WT-2 D	3718619	39127	$\mathrm{T} \rightarrow \mathrm{C}$	orf $64 \rightarrow / \rightarrow$ S	marginal	0.672
WT-2 E	3944544	18823	$\mathrm{G} \rightarrow \mathrm{A}$	${ }^{\prime} \rightarrow$	predicted	
WT-2 E	3944544	39127	$T \rightarrow$ C	orf-64 \rightarrow / \rightarrow S	predicted	
WT-2 F	4404135	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$\xrightarrow{ } \rightarrow$	mariginal	0.787
WT-2 F	4404135	32547	(G) $6 \rightarrow 7$	cll \rightarrow	mariginal	0.787
WT-2 F	4404135	39127	$\mathrm{T} \rightarrow \mathrm{C}$	orf- $64 \rightarrow / \rightarrow$ S	mariginal	0.787
WT-3 A	2038559	18824	$A \rightarrow C$	${ }^{\mathrm{J}} \rightarrow$	predicted	
WT-3 A	2038559	39092	$C \rightarrow A$	orf-64 $\rightarrow / \rightarrow S$	predicted	
WT-3 B	4664174	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$\mathrm{J} \rightarrow$	predicted	
WT-3 C	5349633	4428	$G \rightarrow A$	B \rightarrow	predicted	
WT-3 C	5349633	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$J \rightarrow$	predicted	
WT-3 C	5349633	27447	$A \rightarrow T$	clll \leftarrow	predicted	
WT-3 D	4543718	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$\mathrm{J} \rightarrow$	predicted	
WT-3 D	4543718	35478	$A \rightarrow G$	$\mathrm{Ninc} \rightarrow$	predicted	
WT-3 E	5167935	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$\mathrm{J} \rightarrow$	predicted	
WT-3 E	5167935	19747	$T \rightarrow$ C	orf-401 \rightarrow	predicted	
WT-3 F	5100901	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$J \rightarrow$	predicted	
WT-3 F	5100901	30200	$\mathrm{C} \rightarrow \mathrm{A}$	rexb \leftarrow	predicted	
WT-3 F	5100901	39127	$T \rightarrow C$	orf-64 $\rightarrow / \rightarrow$ S	predicted	
WT-3 F	5100901	39142	$\mathrm{A} \rightarrow \mathrm{C}$	orf-64 $\rightarrow / \rightarrow$ S	predicted	
WT-4 A	643331	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$\mathrm{J} \rightarrow$	predicted	
WT-4 B	539710	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$J \rightarrow$	predicted	
WT-4 B	539710	20255	$\mathrm{T} \rightarrow \mathrm{C}$	orf-401 \rightarrow	predicted	
WT-4 C	489613	5667	$A \rightarrow G$	$\mathrm{C} \rightarrow$	predicted	
WT-4 C	489613	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$\mathrm{J} \rightarrow$	predicted	
WT-4 C	489613	39181	$G \rightarrow T$	orf- $64 \rightarrow / \rightarrow$ S	predicted	
WT-4 D	1310033	6039	$A \rightarrow G$	D \rightarrow	predicted	
WT-4 D	1310033	18824	$\mathrm{A} \rightarrow \mathrm{C}$	${ }^{\text {J }}$	predicted	
WT-4 D	1310033	18835	$T \rightarrow C$	$J \rightarrow$	predicted	
WT-4 D	1310033	32500	$A \rightarrow G$	cll \rightarrow	predicted	
WT-4 E	449512	18535	$A \rightarrow G$	$J \rightarrow$	predicted	
WT-4 F	409563	18823	$\mathrm{G} \rightarrow \mathrm{A}$	${ }^{\mathrm{J}} \rightarrow$	predicted	
WT-5 A	3666622	18823	$\mathrm{G} \rightarrow \mathrm{A}$	${ }^{\mathrm{J}} \rightarrow$	predicted	
WT-5 A	3666622	32003	$A \rightarrow G$	$\mathrm{cl} \leftarrow 1 \rightarrow$ cro	predicted	
WT-5 A	3666622	39127	$\mathrm{T} \rightarrow \mathrm{C}$	orf-64 $\rightarrow / \rightarrow$ S	predicted	
WT-5 B	3801784	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$\mathrm{J} \rightarrow$	predicted	
WT-5 B	3801784	39127	$\mathrm{T} \rightarrow \mathrm{C}$	orf-64 \rightarrow l \rightarrow S	predicted	
WT-5 C	4080224	62	$T \rightarrow$ C	$-/ \rightarrow n u 1$	predicted	
WT-5 C	4080224	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$\xrightarrow{ } \rightarrow$	predicted	
WT-5 D	2758261	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$J \rightarrow$	predicted	
WT-5 D	2758261	19149	$A \rightarrow G$	$\mathrm{lom} \rightarrow$	predicted	
WT-5 D	2758261	39127	$\mathrm{T} \rightarrow \mathrm{C}$	orf-64 $\rightarrow / \rightarrow$ S	predicted	
WT-5 E	3838658	18535	$\mathrm{A} \rightarrow \mathrm{G}$	$J \rightarrow$	predicted	
WT-5 E	3838658	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$J \rightarrow$	predicted	
WT-5 F	3443382	18734	$\mathrm{T} \rightarrow \mathrm{C}$	$J \rightarrow$	predicted	
WT-5 F	3443382	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$J \rightarrow$	predicted	
WT-5 F	3443382	39127	$\mathrm{T} \rightarrow \mathrm{C}$	orf-64 \rightarrow l \rightarrow S	predicted	
WT-6 A	4315618	18535	$A \rightarrow G$	$\xrightarrow{\mathrm{J}}$	predicted	
WT-6A	4315618	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$\xrightarrow{\prime}$	predicted	
WT-6 B	4424663	18823	$\mathrm{G} \rightarrow \mathrm{A}$	\xrightarrow{J}	predicted	
WT-6 C	4218933	18535	$A \rightarrow G$	$\xrightarrow{ } \rightarrow$	predicted	
WT-6 C	4218933	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$\xrightarrow{ } \rightarrow$	predicted	
WT-6 C	4218933	39127	$\mathrm{T} \rightarrow \mathrm{C}$	orf-64 \rightarrow / \rightarrow S	predicted	
WT-6 D	3744760	18535	$A \rightarrow G$	$\xrightarrow{ } \rightarrow$	predicted	
WT-6 D	3744760	18823	$\mathrm{G} \rightarrow \mathrm{A}$	$\xrightarrow{\prime}$	predicted	
WT-6 E	4107342	18823	$G \rightarrow A$	$\xrightarrow{\prime}$	predicted	
WT-6 F	4510712	18823	$G \rightarrow A$	$\xrightarrow{ } \rightarrow$	predicted	
WT-6 F	4510712	39343	$G \rightarrow T$	$s \rightarrow$	predicted	

References:

Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M et al. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Molecular Systems Biology. 2: 2006.0008-2006.0008.

Barrick J and Lenski R. 2013. Genome dynamics during experimental evolution. Nature Reviews Genetics. 14, 827-839. doi:10.1038/nrg3564.

Baym M, Kryazhimskiy S, Lieberman TD, Chung H, Desai MM, Kishony R. 2015. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS. 1-10: e0128036.

Beutler B, Eidenschenk C, Crozat K, Imler J, Takeuchi O, Hoffman J, Akira S. 2007. Genetic analysis of resistance to viral infection. Nature Reviews Immunology. [access date: 04/10/2018]. 7, 753-766. doi:10.1038/nri2174.

Blasche S, Wuchty S, Rajagopala S, Uetz P. 2013. The protein interaction network of bacteriophage lambda with its host. Escherichia coli. J Virol. 87: 12745-12755

Blount ZD, Borland CZ, Lenski RE (2008). Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci U S A. 105: 7899-7906.

Brüssow H, Canchaya C, Hardt W. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev. 68(3):560602.

Buckling A, Rainey P. 2002. Anatagonistic coevolution between a bacterium and bacteriophage. Proceedings of the Royal Society: BioSci. 269(1494). doi:10.1098/rspb.2001.1945

Burmeister AR, Lenski RE, Meyer JR (2016). Host coevolution alters the adaptive landscape of a virus. Proc Biol Sci. 283: 20161528.

Bull J. 2006. Optimality models of phage life history and parallels in disease evolution. Journal of theoretical biology. 241(4); 928-938. https://doi.org/10.1016/j.jtbi.2006.01.027.

Bull J, Badgett M, Springman R, Molineux I. 2003. Genome properties and the limits of adaptation in bacteriophages. Evolution. 58(4); 692-70. doi:10.1554/03-358

Casjens S, Hendrix R. 2015. Bacteriophage lambda: earl pioneer and still relevant. Virology. 0(479-480): 310-330. doi:10.1016/j.virol.2015.02.010.

Cheng S, Court D, Friedman D. 1995. Transcription termination signals in the nin region of bacteriophage lambda: identification of Rho-dependent termination regions. Genetics. 140(3); 875-887.

Chisari F. 2005. Unscrambling hepatitis C virus-host interactions. Nature. 436; 930-932. doi:10.1038/nature04076

Chuo H, Chiu H, Delaney N, Segrè D, Marx C. 2011. Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science. 332(6034); 1190-1192. doi:10.1126/science. 1203799

CLC Sequence Viewer 7 (QIAGEN Aarhus A/S, 2015); latest version available at www.qiagenbioinformatics.com/products/clc-sequence-viewer/.

Cumby N, Reimer K, Mengin-Lecreulx D, Davidson A, Maxwell K. 2014. The phage tail tape measure protein, an inner membrane protein and a periplasmic chaperone play connected roles in the genome injection process of E. coli phage HK97. Molecular Microbiology. 96(3): https://doi.org/10.1111/mmi.12918.

Deatherage D, Barrick J. 2014. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using BreSeq. Methods Mol Biol. 1151: 165-188.

De Clercq E. 2002. Strategies in the design of antiviral drugs. Nature Reviews Drug Discovery. 1, 13-25. doi:10.1038/nrd703.

De Clercq E, Li G. 2016. Approved antiviral drugs over the past 50 years. Clinical Microbiology Review. 29(3): 695-747. doi: 10.1128/CMR.00102-15.

Duffy S, Shackelton L, Holmes E. 2008. Rates of evolutionary change in viruses: patterns and determinants. Nature Reviews Genetics. 9: 267-276.

Enard D, Cai L, Gwennap C, Petrov DA (2016). Viruses are a dominant driver of protein adaptation in mammals. Elife 5: e12469.

Esquinas-Rynchen M, Erni B. 2001. Facilitation of Bacteriophage Lambda DNA Injection by Inner Membrane Proteins of the Bacterial Phosphoenolpyruvate:Carbohydrate Phosphotransferase System (PTS). J. Mol. Microbiol. Biotechnol. 3(3):361-370.

Flores C, Meyer J, Valverde S, Farr L, Weitz J. 2011. Statistical structure of host-phage interactions. PNAS. 108(28); 288-297.

Forde S, Beardmore R, Gudelj I, Arkin S, Thompson J, Hurst L. 2008. Understanding the limits to generalizability of experimental evolutionary models. Nature. 455: 220-223.

Friedman D, Baumann M, Baron L. 1976. Cooperative effects of bacterial mutations affecting λ N gene expression: I. Isolation and characterization of a nusB mutant. Virology. 73(1); 119-127. https://doi.org/10.1016/0042-6822(76)90066-0

Gandon S, Mackinnon M, Nee S, Read A. 2001. Imperfect vaccines and the evolution of pathogen virulence. Nature. 414, 751-756. doi:10.1038/414751a

Goldhill D, Turner P. 2014. The evolution of life history trade-offs in viruses. Current Opinion in Virology. 8; 79-84. https://doi.org/10.1016/j.coviro.2014.07.005

Hall J, Harrison E, Brockhurst M. 2013. Viral host-adaptation: insights from evolution experiments with phages. Current Opinion in Virology. 3(5); 572-577. https://doi.org/10.1016/j.coviro.2013.07.001

Hammer Ø, Harper D, Ryan P. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electronica 4, 9 (2016).

Hauser R, Blasche S, Dokland T, Haggard-Ljungquist E, von Brunn A, Salas M et al (2012). Bacteriophage protein-protein interactions. Adv Virus Res 83: 219-298.

Heineman R, Bull J. 2007. Testing optimality with experimental evolution: lysis time in a bacteriophage. Evolution. 61(7); 1695-1709. https://doi.org/10.1111/j.15585646.2007.00132.x

Herskowitz I. 1973. Control of gene expression bacteriophage lambda. Annual Review of Genetics. 7; 289-324. https://doi.org/10.1146/annurev.ge.07.120173.001445

Hertz T, Nolan D, James I, John M, Gaudieri S, Phillips E, Huang J, Riadi G, Mallal S, Jojic Nebojsa. 2011. Mapping the Landscape of Host-Pathogen Coevolution: HLA Class I Binding and Its Relationship with Evolutionary Conservation in Human and Viral Proteins ASM, Journal of Virology. [access date: 04/25/18]. 85(3): 1310-1321. http://jvi.asm.org/content/85/3/1310.short. doi: 10.1128/JVI.01966-10.

Holmes E, Drummond A. 2007. The evolutionary genetics of viral emergence. Curr Top Microbiol Immunol. 315: 51-66.

Holmes E, Dudas G, Rambaut A, Andersen K. 2016. The evolution of Ebola virus: Insights from the 2013-2016 epidemic. Nature. [access date: 04/15/2018]. 583, 193-200. doi:10.1038/nature19790

Hu B, Margolin W, Molineux I, Liu J. 2013. The bacteriophage T7 virion undergoes extensive structural remodeling during infection. Science. 339: 576-579.
doi:10.1126/science. 1231887
Jones K, Patel N, Levy M, Storeygard A, Balk D, Gittleman J, Daszak P. 2008. Global trends in emerging infectious diseases. Nature. 451, 990-993. doi:10.1038/nature06536

Jessup C, Bohannan B. 2008. The shape of an ecological trade-off caries with environment. Ecology letters. 11(9); 947-959. https://doi.org/10.1111/j.1461-0248.2008.01205.x

Kamp C, Bornholdt S. 2002. Coevolution of Quasispecies: B-Cell Mutation Rates Maximize Viral Error Catastrophes. Physical Review Letters. [access date: 04/25/18]. 88(6): 68-104. url: https://link.aps.org/doi/10.1103/PhysRevLett.88.068104. doi: 10.1103/PhysRevLett.88.068104.

Karlsson E, Kwiatkowski, Sabeti P. 2014. Natural selection and infectious disease in human populations. Nature Reviews Genetics. [access date: 04/15/2018]. 15; 379-393. doi:10.1038/nrg3734.

Khan A, Dinh D, Schneider D, Lenski R, Cooper T. 2011. Negative epistasis between beneficial mutations in an evolving bacterial population. Science. 332(6034); 1193-1196. doi:10.1126/science. 1203801

Kimberlin D, Coen D, Biron K, Cohen J, Lamb R, Mckinlay M, Emini E, Whitley R. 1995. Molecular mechanisms of antiviral resistance. Antiviral Research. 26: 369-401. https://doi.org/10.1016/0166-3542(95)00027-J

Kuiken T, Holmes E, McCauley J, Rimmelzwaan G, Williams C, Grenfell B. 2006. Host species barrier to influenza virus infections. Science. 312(5772); 394-397.
doi:10.1126/science. 1122818
Leason K, Friedman D. 1988. Analysis of Transcription Termination Signals in the nin Region of Bacteriophage X: the roc Deletion. Journal of Bacteriology. 170(11): 5051-5058.

Liberek K, Osipiuk J, Zylicz M, Ang D, Skorko J, Georgopoulos C. 1990. Physical Interactions between Bacteriophage and Escherichia-Coli Proteins Required for Initiation of LambdaDNA Replication. Journal of Biological Chemistry 265: 3022-3029

Lipsitch M, Cohen T, Murray M, Levin B. 2007. Antiviral resistance and the control of pandemic influenza. PLOS Medicine. 4(1): e15. https://doi.org/10.1371/journal.pmed. 0040015

Liu X, Jiang H, Gu Z, Roberts J. 2013. High resolution view of bacteriophage lambda gene expression by ribosomo profiling. PNAS. 110(29); 11928-11933. https://doi.org/10.1073/pnas. 1309739110

Longdon B, Brockhurst M, Russell C, Welch J, Jiggins F. 2014. The evolution and genetics of virus host shifts. PLOS Pathogens. 10(11): e1004395

Lou Z, Sun Y, Rao Z. 2014. Current progress in antiviral strategies. Trends in Pharmacological Sciences. 35(2):86-102. https://doi.org/10.1016/j.tips.2013.11.006

Mariano R, Khuri S, Uetz P, Wutchy S. 2016. Local action with global impact: highly similar infection patterns of human viruses and bacteriophages. AMS. 1(2): e00030-15.

Marques J, Carthew R. 2007. A call to arms: coevolution of animal viruses and host innate immune responses. [access date: 04/23/18]. Trends in Genetics. 23(7); 359-364. url: https://www.sciencedirect.com/science/article/pii/S0168952507001527.

Maynard ND, Birch EW, Sanghvi JC, Chen L, Gutschow MV, Covert MW (2010). A forwardgenetic screen and dynamic analysis of lambda phage host-dependencies reveals an extensive interaction network and a new anti-viral strategy. PLoS Genet 6: e1001017.

Metsalu, Tauno and Vilo, Jaak. Clustvis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1):W566-W570, 2015. doi: 10.1093/nar/gkv468.

Meyer J, Agrawal A, Quick R, Dobias D, Schneider D, Lenski R. 2010. Parallel Changes in Host Resistance to Viral Infection during 45,000 Generations of Relaxed Selection. Evolution. 64: 3024-3034.

Meyer J, Dobias D, Weitz J, Barrick J, Quick R, Lenski R. 2012. Repeatability and contingency in the evolution of a key innovation in phage lambda. Science. 335: 428-432.

Meyer J, Dobias D, Medina S, Servilio, L, Gupta, A, Lenski, R. 2016. Ecological speciation of bacteriophage lambda in allopatry and sympatry. Science. 354: 1301-1304

National Center for Biotechnology Information (NCBI)[Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; [1988] [cited 2017 Apr 06]. Available from: https://www.ncbi.nlm.nih.gov/

Pal c, Maciá M, Oliver A, Schachar I, Buckling A. 2007. Coevolution with viruses drives the evolution of bacterial mutation rates. Nature. [access date: 05/01/2018]. 450; 1079-1081. doi: doi:10.1038/nature06350

Parrish C, Holmes E, Morens D, Park E, Burke D, Calisher C, Laughlin C, Saif L, Daszak P. 2008. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol Mol Biol Rev. [access date: 04/10/2018]. 72(3):457-470. doi: 10.1128/MMBR.00004-08.

Patterson S, Vogwill T, Buckling A, Benmayor R, Spiers A, Thomson N, Quail M, Smoth F, Walker D, Libberton B, Fenton A, Hall N, Brockhurst M. 2010. Antagonistic coevolution accelerates molecular evolution. Nature. 464; 275-278. doi:10.1038/nature08798

Poland G, Jacobson R, Ovsyannikova I. 2009. Influenza Virus Resistance to Antiviral Agents: A Plea for Rational Use. 48(9): 1254-1256. https://doi.org/10.1086/598989

Pybus O, Rambaut A. 2009. Evolutionary analysis of the dynamics of viral infectious disease. Nature Reviews Genetics. [access date: 04/03/2018]. 10; 540-550. doi:10.1038/nrg2583.

Rambaut A, Posada D, Crandall K, Holmes E. 2004. The causes and consequences of HIV evolution. Nature Reviews Genetics. [access date: 04/03/2018]. 5; 52-61. doi: $10.1038 / \mathrm{nrg} 1246$.

Refardt D, Rainey PB. 2010. Tuning a genetic switch: experimental evolution and natural variation of prophage induction. Evolution. 64: 1086-1097.

Rodrigo G, Daros JA, Elena S. 2017. Virus-host interactome: putting the accent on how it changes. Journal of Proteomics. 156(6): 1-4. https://doi.org/10.1016/j.jprot.2016.12.007

Roessner C, Ihler G. 1986. Formation of transmembrane channels in liposomes during injection of λ DNA. The journal of Biological Chemistry. 261(1); 386-390.

Sambrook J, Russell D. Molecular Cloning: A Laboratory Manual. 2001, $3^{\text {rd }}$ edition. Cold Spring Harbour Laboratory Press.

Scandella D, Arber W. 1976. Phage lambda DNA injection into Escherichia coli pel-mutants is restored by mutations in phage genes V or H. Virology 69: 206-215.

Scanlan P, Hall A, Lopez Pascula L, Buckling A. 2011. Genetic basis of infectivity evolution in a bacteriophage. Molecular Ecology. 20: 981-989.

Schneider M, Johnson J, Krogan N, Chanda S. 2016. Viral Pathogenesis $3^{\text {rd }}$, Chapter 12- The Virus-Host Interactome: Knowing the Players to Understand the Game. 157-167. Academic Press. https://doi.org/10.1016/B978-0-12-800964-2.00012-4.

Shao Y, Wang IN. 2008. Bacteriophage adsorption rate and optimal lysis time. Genetics. 180: 471-482.

Stebbing J, Gazzard B. 2011. Virus host interactions. Obstretrics \& Gynecologist. 5(2). doi:10.1576/toag.5.2.103

Strasfeld L and Chou S. 2011. Antiviral Drug Resistance: Mechanisms and Clinical Implications. Infect Dis Clin North Am. [access date: 04/10/2018]. 24(2); 413-437. doi: 10.1016/j.idc.2010.01.001

Travisano M, Lenski R. 1996. Long-term experimental evolution in Escherichia coli. IV. Targets of selection and the specificity of adaptation. Genetics 143: 15-26.

Trkola A. 2004. HIV-host interactions: vital to the virus and key to its inhibition. Current Opinion in Microbiology. 7(4); 407-411. doi:10.1016/j.mib.2004.06.002

Wang H, Church G. 2011. Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering. Methods Enzymol. 498, 409-426. doi:10.1016/B978-0-12-385120-8.00018-8 Medline

Weitz J, Poisot T, Meyer J, Flores C, Valverde S, Sullivan M, Hochberg M. 2012. Phagebacteria interaction networks. Trends in Microbiology. http://dx.doi.org/10.1016/j.tim.2012.11.003.

Wiser M, Ribeck N, Lenski E. 2013. Long-term dynamics of adaptation in asexual populations. Science. 342: 1364-1367

Zylicz M, Ang D, Liberek K, Georgopoulos C. 1989. Initiation of lambda DNA replication with purified host- and bacteriophage-encoded proteins: the role of the dnaK, dnaJ and grpE heat shock proteins. EMBO J 8: 1601-1608.

