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Abstract
Objectives—Information concerning physical growth among small-scale populations remains
limited, yet such data are critical to local health efforts and to foster basic understandings of
human life history and variation in childhood development. Using a large dataset and robust
modeling methods, this study aims to describe growth from birth to adulthood among the
indigenous Shuar of Amazonian Ecuador.

Methods—Mixed-longitudinal measures of height, weight, and BMI were collected from Shuar
participants (n = 2,463; age 0–29 years). Centile growth curves and tables were created for each
anthropometric variable of interest using GAMLSS. Pseudo-velocity and LMS curves were
generated to further investigate Shuar patterns of growth and to facilitate comparison with U.S.
CDC and multinational WHO growth references.

Results—The Shuar are small throughout life and exhibit complex patterns of growth that differ
substantially from those of international references. Similar to other Amazonians, Shuar growth in
weight compares more favorably to references than growth in height, resulting in BMI curves that
approximate international medians. Several additional characteristics of Shuar development are
noteworthy, including large observed variation in body size early in life, significant infant growth
faltering, extended male growth into adulthood, and a markedly early female pubertal growth spurt
in height. Phenotypic plasticity and genetic selection in response to local environmental factors
may explain many of these patterns.
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Conclusions—Providing a detailed reference of growth for the Shuar and other Amazonian
populations, this study possesses direct clinical application and affords valuable insight into
childhood health and the ecology of human growth.

Keywords
Shuar; growth and development; life history; human biological variation; Amazonia

INTRODUCTION
Understanding variation in human growth and development has long been a primary
objective for the fields of human biology and public health (Tanner, 1981; WHO, 1995).
Although operating under occasionally conflicting research paradigms (Schell and Magnus,
2007), both fields continue to emphasize the importance of obtaining descriptions of growth
from diverse human populations to realize existing research goals (Eveleth and Tanner,
1990; Stinson, 2012). Despite this agreement, small-scale indigenous populations,
comprising a significant portion of human genetic and cultural diversity (Henn et al., 2011;
Karafet et al., 2002; Kent, 1996; Wang et al., 2007), remain greatly underrepresented in the
literature on childhood growth. The little data available from these groups are notable,
however, in that they suggest large variation in body size between populations and patterns
of growth and development that frequently differ from those of Western children (Eveleth
and Tanner, 1990; Ulijaszek, 1995; Walker et al., 2006). This observation underscores the
diversity and complexity of physical development in challenging environments (Cameron,
2007) and highlights the central importance of obtaining new descriptions of growth among
small-scale populations to better understand human biological variation, phenotypic
plasticity, and health.

In addition to their utility to researchers, population-level descriptions of growth may also
serve as important tools in the clinical evaluation of children. Descriptions of growth that
incorporate centile distributions are particularly valuable to clinicians as references of
expected growth (De Onis et al., 2004). While international references such as those of the
World Health Organization (WHO) (De Onis, 2007; WHO, 2006) and the United States
Center for Disease Control and Prevention (CDC) (Kuczmarski et al., 2002) are critical for
comparison of growth between regions or countries, population-specific references more
accurately describe the physical development of local children. Indeed, recently created
growth references for a variety of groups demonstrate that international references may not
be appropriate for the clinical assessment of growth in many populations, particularly those
of non-Western descent (Gleiss et al., 2013; Guedes et al., 2010; Hakeem et al., 2004; Hasan
et al., 2001; Marwaha et al., 2006; Mushtaq et al., 2012; Neyzi et al., 2006). This finding,
along with a strong preference for population-specific growth charts by most clinicians and
parents (Albertsson-Wikland et al., 2002; De Onis et al., 2004), illustrates the present
demand for local descriptions of growth throughout much of the developing world.

This article attempts to address the needs of researchers and local South American clinicians
by providing a detailed description of physical growth from birth to adulthood among the
indigenous Shuar of southeastern Ecuador. Previous research has demonstrated that the
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Shuar, who inhabit a nutritionally and pathogenically challenging Amazonian environment,
experience high rates of stunting, moderate rates of underweight, and low rates of wasting
during childhood (Blackwell et al., 2009). However, the growth patterns underlying these
observations have never been fully modeled or described and their clinical significance
remains unclear. Taking advantage of a newly-compiled and large mixed-longitudinal
dataset, this study develops centile growth references for Shuar height, weight, and BMI
using popular GAMLSS (Generalized Additive Models for Location, Scale, and Shape)
methods (Rigby and Stasinopoulos, 2005). LMS (Lambda-Mu-Sigma) curves (Cole and
Green, 1992) and pseudo-velocity curves for each anthropometric measure are further
generated from GAMLSS model parameters to facilitate direct comparison of Shuar growth
with CDC and WHO references.

METHODS
Study population

The Shuar are a natural fertility indigenous population of ≈ 40,000–110,000 individuals
(CODENPE, 2012; Rubenstein, 2001) inhabiting the neotropical lowland Amazonas region
of southeastern Ecuador. Similar to other members of the Jivaroan language group, the
Shuar have traditionally lived in small, scattered households and have practiced a mixed
subsistence pattern of horticulture, foraging, hunting, and fishing (Harner, 1984; Karsten,
1935; Rubenstein, 2001; Stirling, 1938). Regular contact between the Shuar and outsiders
began with Christian missionization during the 1940s, leading to the gradual formation of
centralized villages and the creation of the Federación Interprovincial de Centros Shuar
(FICSH) in 1964. Currently, the Shuar reside predominantly in 668 communities dispersed
across ≈ 900,000 hectares of land (CODENPE, 2012). The last decade has seen acceleration
in the development of modern infrastructure in Shuar territory, leading to varying degrees of
integration into the local, regional, and national economy (Liebert et al., 2013; Lu, 2007).
Most development has been limited to the Upano Valley where many Shuar communities
are now connected by road to larger towns, have electricity, and sell goods at market or
occasionally participate in wage labor. Other communities, particularly those east of the
Cutucú mountain range (cross-Cutucú), are only beginning to experience integration into the
market economy and continue to practice a largely traditional way of life.

Despite recent development in Shuar territory, most Shuar continue to consume a generally
low-quality diet, with increasingly diminished returns from foraging, hunting, and fishing
(Descola and Lloyd, 1996; Harner, 1984; Liebert et al., 2013). Overall, garden foods
(including plantains, sweet manioc, bananas, papaya, and sweet potato) are estimated to
provide ≈ 65% of the total number of calories consumed by the Shuar (Liebert et al., 2013).
This bulky dietary base is commonly supplemented by fish, palm grubs, small game,
domesticates, and, in some cases, purchased market items (Liebert et al., 2013; Lu, 2007).
Once obtained, food is typically boiled, accompanied by salt, and distributed narrowly
within the household. In addition to being eaten, manioc is fermented to make nihamanch
(referred to more generally by the Quichua term, chicha), a mildly alcoholic drink consumed
daily by most individuals (Colehour et al., 2014).
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As is the case in much of the developing world, the burden of infectious disease remains
high throughout Shuar territory. Many Shuar have difficulty obtaining clean water, lack
basic sanitation devices such as latrines, and are often in close contact with animal disease
vectors (Jokisch and McSweeney, 2006). One study recently found that 54% of investigated
Shuar adults and 74% of investigated Shuar children were infected with at least one species
of soil-transmitted helminth, with only slightly lower rates of infection in the more market-
integrated Upano Valley than cross-Cutucú (Cepon-Robins et al., 2014). Rates of acute
respiratory infections and vector-borne diseases (e.g., malaria, dengue, yellow fever, etc.)
are similarly high among the Shuar (Jokisch and McSweeney, 2006) and are comparable to
published rates from elsewhere in the Ecuadorian Amazon (Kuang-Yao Pan et al., 2010).
Access to modern medical care is typically limited, with 96% of individuals living in
communities without a resident doctor and travelling on average 2.9 (± 3.2) hours to the
nearest health center for basic treatment (Jokisch and McSweeney, 2006; Jokisch and
McSweeney, 2011). Although exact vaccination rates are unknown, available data suggest
that they are very low. One large study, for example, recently found that only 28% of
investigated Shuar and Achuar children under the age of 5 years had received at least one
documented vaccination while, of these, only 11% had completed a full regime (Jokisch and
McSweeney, 2006).

Data collection

Data were collected as part of the Shuar Health and Life History Project (SHLHP; http://
www.bonesandbehavior.org/shuar), an interdisciplinary research effort initiated in Ecuador
in 2005. Mixed-longitudinal data for height, weight, and BMI from 2,463 Shuar participants
age 0–29 years, providing a total of 5,140 measurement occasions, were included in the
present study (Table 1 and detail in online Supplemental File S1). All participants gave
informed consent or assent, with both parental consent and child assent for subjects under
age 15 years. Research approval was obtained from village leaders, FICSH, and the
Institutional Review Boards of the University of Oregon and Harvard University.

Data were drawn from the following three sources:

1. SHLHP survey data: Mixed-longitudinal data from 1,035 participants age 0–29
years (n = 3,085 measurement occasions) were collected directly by the authors
between 2007 and 2013 as part of ongoing SHLHP survey research. Data were
collected following conventional methods (Lohman et al., 1988) in diversely
market-integrated communities across Shuar territory. Height was measured to the
nearest 1.0 mm using a portable stadiometer (Seca Corporation 214, Hanover,
MD). Infant length was measured to the nearest 1.0 mm using a portable
infantometer (Seca Corporation 231, Hanover, MD). Weight was measured to the
nearest 0.1 kg using an electronic scale (Tanita Corporation BC-534/BF-689,
Tokyo, Japan). Dates of birth were available for most participants from official
school records. Ages were also obtained and cross-checked using overlapping
genealogies constructed from information given by parents and other community
members.
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2. Health diagnostic study: Cross-sectional data from 1,251 participants age 0–25
years were collected during a health diagnostic study conducted by FICSH and the
hospital Pio XII in collaboration with the SHLHP in 2005. This study has been
previously described (Blackwell et al., 2009) and consisted of teams of physicians
and trained health professionals who visited schools in both the Upano Valley and
cross-Cutucú regions of Morona Santiago province. Height and weight were
measured for nearly 100% of the individuals in attendance on the day of the visit
(as well as a few non-attendees) using standard methods. Ethnicity was assessed
based on self-report, with only individuals identifying as Shuar being included in
the present study. Birthdates were obtained from official school records and were
cross-checked with SHLHP genealogy data when available.

3. Health center records: Mixed-longitudinal data from 177 participants age 0–28
years (n = 804 measurement occasions) were obtained from health center records
drawn from a single Upano Valley Shuar community participating in SHLHP
research in 2009. These records include conventional height (or length) and weight
measurements obtained by a trained local clinician during routine and illness-
related visits. In general, health center data are from very young individuals, with
information from children < 3 years of age constituting 75% of the dataset.
Birthdates recorded on health center records were cross-checked with available
SHLHP genealogical information to ensure age estimation accuracy.

Centile curve modeling

Centile curves for height, weight, and BMI were constructed for each sex between the ages
of 0–29 years using GAMLSS (Rigby and Stasinopoulos, 2005), an extension of the popular
LMS method for modeling growth (Cole and Green, 1992). Following an evaluation of 30
existing methods for growth curve construction (Borghi et al., 2006), GAMLSS was recently
found to outperform other modeling methods and was selected to generate the WHO
childhood growth standards (De Onis, 2007). GAMLSS modeling involves two general
procedures: (i) fitting a parametric distribution of an outcome variable at each continuous
value of age in the data; and, (ii) smoothing the distribution on age for each parameter of the
selected parametric distribution function using cubic splines or a number of other methods.
The two GAMLSS procedures are estimated simultaneously across the complete dataset by
iterative maximization of a penalized likelihood function using the R-package “gamlss”
(http://www.gamlss.org/) (Stasinopoulos and Rigby, 2007) in R 3.0.3 (http://cran.us.r-
project.org/). This study attempted, whenever possible, to replicate the GAMLSS curve
fitting procedures of the WHO (Borghi et al., 2006; De Onis, 2007; WHO, 2006) by fitting
growth curves using the 4-parameter Box–Cox power exponential (BCPE) distribution
(Rigby and Stasinopoulos, 2004) with smoothing degrees of freedom determined in a
stepwise fashion.

Shuar centile curves were fit using GAMLSS as follows, with final model parameters given
in Table 1:

1. Models were first fit as BCPE(x=ageλ, df(μ)=10, df(σ)=5, ν=1, τ=2) with values of
the age-transformation power λ ranging from 0.05 to 1.5. The λ parameter from the

URLACHER et al. Page 5

Am J Hum Biol. Author manuscript.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.gamlss.org/
http://cran.us.r-project.org/
http://cran.us.r-project.org/


model with the smallest global deviance was selected. For one model (female BMI)
the λ selected by this procedure (1.15) resulted in over-smoothing of young ages.
For this model the λ parameter from the male BMI model (0.35) was used.

2. Using the selected λ model, outliers with predicted z-scores > 3 or < −3 were
removed.

3. Generalized Akaike information criterion (GAIC) was used to determine the
appropriate degrees of freedom for μ, σ, ν, and τ. While the WHO methods used
standard Akaike information criterion (penalty term of 2) for μ and GAIC for other
parameters, given the smaller sample size of this study, it was found that GAIC
criterion was less likely to result in over-fitting. Degrees of freedom for μ and σ
were selected by comparing all models with df(μ) ranging from 1 to 20 and df(σ)
ranging from 1 to 10. For two models (male height and weight) the GAIC penalty
of 3 resulted in models that over-fit idiosyncrasies in the data sampling. For these
two models only, a GAIC penalty term of 3.5 was used to produce smoother fits.
Models with ν = 1 or df(ν) ranging from 1 to 8 were then compared. Finally,
models with τ = 2 or df(ν) ranging from 1 to 8 were compared to determine whether
a τ parameter was needed. For all but two models the minimal GAIC was obtained
with τ = 2. For the other two, allowing τ to vary (df = 1) reduced GAIC, but only
slightly, and had no significant effect on centile curves. We therefore followed the
WHO in fixing τ = 2 in all models, resulting in the reduction of distribution
functions to the simpler 3-parameter Box-Cox Cole and Green (BCCG) distribution
(Cole and Green, 1992), equivalent to the LMS method.

4. Goodness of fit for all final models was assessed using grid tests to compare
observed and expected proportions of observations above and below specific
centiles (Borghi et al., 2006; Healy et al., 1988).

It should be noted that the WHO constructed growth curves separately for children 0–5
years old (WHO, 2006) and 5–19 years old (De Onis, 2007). The advantage of fitting
separate curves is that it allows for different power transformations and model parameters
for different age ranges. However, this technique also introduces new assumptions when
merging the two curves and may create “edge effects” at transition points. Shuar curves
were fit two ways: (i) curves were fit separately for ages 0–5 years and 5–29 years; and, (ii)
curves were fit singly for the entire age range of 0–29 years. The two methods produced
essentially identical μ curves but did create several mismatches in σ curves (despite similar
overall values). As a result, it was decided to differ from the WHO in the use of a single
GAMLSS model for the entire age range in all analyses. From a clinical standpoint, this has
essentially no effect on the centiles produced. The upper age range was included in all
analyses to act as an “anchor” for modeling (Indrayan, 2014) and is uninformative. Only
information for age 0–25 years is presented.

To assist other researchers in future analyses involving LMS output data, R code for
calculating z-scores and centiles from LMS values is provided in online Supplemental File
S2.

URLACHER et al. Page 6

Am J Hum Biol. Author manuscript.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



LMS and pseudo-velocity curve modeling

Final GAMLSS model parameters were used to produce LMS curves for each sex and
anthropometric measure of interest. The L, M, and S parameters from growth models can be
interpreted as showing asymmetry or skew (L), median (M), and variability (S) in the
distribution of data. Additionally, pseudo-velocity curves were created for each sex and
measure of interest using the first derivatives of the median (μ) curves obtained from
GAMLSS models. The following four parameters were obtained for each measure of interest:
(i) average growth rate from age 3 to 10 years; (ii) age at takeoff velocity (ATO); (iii) age at
peak velocity (APV); and, (iv) age at return to takeoff velocity (ARTO). The first measure
provides an estimate of “child-juvenile” growth velocity between the approximate ages of
weaning and puberty. ATO, APV, and ARTO represent the ages of the beginning, peak, and
end of the pubertal growth spurt, respectively. APV was calculated as the age of maximum
growth velocity after the first 7 years of life. ATO was calculated as the age at which growth
acceleration first attained a value > 0 units/year−1 immediately prior to the APV (Gasser et
al., 1985). ARTO was calculated as the age of return to the growth velocity at ATO
immediately following APV. Because individuals have growth spurts at different ages, using
mixed-longitudinal data from multiple participants creates overlapping spurt periods that can
obscure the true peak growth velocity of a population (Hauspie and Molinari, 2004). For this
reason, the magnitude of adolescent growth spurts is not reported.

To facilitate comparison with international references, Shuar LMS and pseudo-velocity
curves for each anthropometric measure of interest were plotted alongside CDC
(Kuczmarski et al., 2002) and WHO (De Onis, 2007; WHO, 2006) reference data.

RESULTS
Centile curves

Centile curves for Shuar height, weight, and BMI from age 0 to 25 years are plotted by sex
in Figure 1. Complete tables of centile values (2nd, 5th, 25th, 50th, 75th, 95th, and 98th) and
accompanying LMS parameters may be found in online Supplemental Files S3–S5.

LMS curves

Height LMS curves for the Shuar, CDC, and WHO are presented in Figure 2. Height M-
curves (displaying median values along with 5th to 95th centile ranges) illustrate that the
Shuar are short relative to international references throughout development. M-curves for
both sexes decline from near the WHO 40th centile in early infancy to the ≈ 3rd centile for
males and the ≈ 5th centile for females by age 2 years. Shuar M-curves for both sexes remain
generally stable at these reference levels during early childhood but begin to fall further
below WHO and CDC M-curves beginning near the age of 6 years, a pattern that continues
for much of the remainder of development and is associated with Shuar 95th centiles that are
consistently below international reference medians. In adulthood, Shuar 95th centiles for
height approximate the WHO 10th and 15th centiles for males and females, respectively.
Shuar height S-curves (illustrating variability in the distribution of height at a given age)
follow the general pattern of international references, with values falling from birth and
peaking near puberty; however, Shuar height S-curves in both sexes are distinct from
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references in possessing a clear second peak in variation during early childhood as well as
low levels of variation in adulthood. Similar to WHO references, Shuar height L-curves are
flat along a value of λ = 1, indicating no modeling of skew in the distribution of height
around age.

LMS curves for weight are presented in Figure 3. Similar to results for height, Shuar weight
M-curves are well below those of the CDC and WHO throughout development, beginning
near international reference 30th centiles in early infancy and subsequently falling to ≈ 5th

centiles by age 2 years in both sexes. In sharp contrast to the pattern observed for height,
however, Shuar weight M-curves begin rising progressively relative to international
references in early childhood and approximate reference 20th centiles by 5 years of age.
Male M-curves curves fall again near puberty relative to CDC references, to about the 5th

centile, before rising once more to around the 20th centile in adulthood. Females, in contrast,
gain relative to CDC references for weight continuously from early childhood, reaching the
≈ 35th centile in adulthood. Shuar weight 95th centile lines for both sexes are close to the
CDC 95th centile lines in infancy, drop to around the 40th centile by age 2 years, and then
rise to around the 65th centile in childhood. The female 95th centile curve remains around
that of the CDC 65th centile into adulthood, while the male curve falls to around the CDC
50th centile. Shuar weight S-curves exhibit the same overall pattern as those of CDC and
WHO references, illustrating high variation in infancy that drops into childhood and then
rises during puberty. Despite overall similarity in the shape of S-curves, the Shuar
demonstrate greater levels of variation than references during the first several years of life
and relatively lower levels of variation at later ages. Shuar weight L-curves reflect modest
distributional skew that is generally positive (i.e. λ < 1) across age but is significantly less
exaggerated than the positive skew of references.

BMI LMS curves are presented in Figure 4. Shuar M-curves exhibit low median BMI values
early in infancy that, similar to WHO curves, demonstrate early and rapid increases,
particularly in males. Unlike CDC and WHO references, the Shuar do not appear to
experience a significant BMI “dip” during early childhood, with median BMI values
generally increasing following infancy. From early childhood, Shuar BMI M-curves lie near
or slightly above those of international references. Shuar 5th and 95th centiles generally fall
well within the 5th and 95th centiles of both WHO and CDC references. Consistent with the
relatively narrow distribution observed in the range of the Shuar 5th and 95th centile lines,
Shuar BMI S-curves are markedly different than those of CDC and WHO references,
exhibiting relatively high values at birth that fall below international reference values near
age 7 years and remain low into adulthood. Shuar BMI L-curves exhibit modestly greater λ-
values than references (indicating more negative skew) and show a pattern of generally
decreasing λ-values following early childhood that contrasts the increasing curves of the
CDC and WHO.

Pseudo-velocity curves

Pseudo-velocity curves for height, weight, and BMI are presented in Figure 5. Associated
model parameters are provided in Table 2.
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Height pseudo-velocity curves illustrate several significant differences in growth between
the Shuar and international references. Growing relatively quickly over the first several
months of life, the Shuar track the height curves of the CDC and WHO to the age of ≈ 9
months. Shuar pseudo-velocity curves for males and females drop well below those of
references at this time, where they remain throughout infancy. Between the ages of 3 to 10
years, Shuar curves are consistently below references, with average child-juvenile growth
rates in both sexes that are ≈ 1 cm/year less than those of the CDC and WHO. Beginning
near puberty, Shuar growth exhibits marked sex differences. The growth of Shuar males at
this time can be characterized as moderately slow relative to references, with lower growth
velocities, a clear but slightly delayed pubertal growth spurt, and growth that persists at
marked velocity to the age of 20.9 years. A very different pattern is observed in the post-
juvenile growth of Shuar females. Shuar females experience a growth spurt in height that is
substantially earlier than that of CDC and WHO references (APVShuar = 10.2 years,
APVCDC = 11.6 years, APVWHO = 11.0 years) and possess a height pseudo-velocity curve
that is nearly identical to that of references beyond the age of 13 years, demonstrating no
significant prolongation of growth.

Shuar weight pseudo-velocity curves generally follow those of international references early
in life, particularly those of the WHO. Beginning at the age of ≈ 1 year, however, male and
female Shuar curves clearly fall below those of references. Shuar growth rates in weight for
both sexes remain, on average, below those of the CDC and WHO throughout juvenility.
Later in life, the Shuar experience clear pubertal growth spurts in weight that are modestly
delayed (males = + 0.5 years; females = + 0.7 years) relative to CDC references. As
observed in height curves, Shuar males, but not females, exhibit clear extension of weight
growth into adulthood.

BMI pseudo-velocity curves illustrate similar growth between the Shuar and WHO
references early in infancy, with Shuar females experiencing moderately lower growth rates
than references. Between the ages of ≈ 1 to 5 years, Shuar BMI curves lie above those of
references. This pattern is reversed between the ages of ≈ 5 to 10 years, however, resulting
in average child-juvenile growth rates for BMI that are similar between the Shuar, CDC, and
WHO. Shuar pseudo-velocity curves for BMI more closely resemble those of the WHO than
the CDC during puberty, exhibiting clear growth spurts during this time. In general, Shuar
pubertal BMI growth velocities are greater than those of references, a pattern that is
particularly apparent in females.

DISCUSSION
This study provides the first published use of GAMLSS methods to describe growth among a
small-scale indigenous population. Following its application for generating the WHO
childhood growth standards (De Onis, 2007), GAMLSS has recently been chosen to model
physical development in a number of Western populations (Gleiss et al., 2013; Nagy et al.,
2014; Saari et al., 2011). GAMLSS offers several modeling and interpretive advantages over
competing methods but requires a relatively large dataset (Borghi et al., 2006). Mixed-
longitudinal data from 2,463 individuals living throughout Shuar territory were included in
the present study. This sample size far exceeds those of most previous studies of growth
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among small-scale groups, including those among other Amazonians (e.g., Black et al.,
1977; Dangour, 2001; Hill and Hurtado, 1996; Hodge and Dufour, 1991; Stinson, 1989), and
represents ≈ 2–6% of the current Shuar population (CODENPE, 2012; Rubenstein, 2001).

Shuar comparative growth

Consistent with previous investigations performed using limited cross-sectional data
(Blackwell et al., 2009; Blackwell et al., 2010; Houck et al., 2013), the results of the present
study document that the Shuar are small throughout life, with growth in height that
compares less favorably to international references than growth in weight. This general
pattern of growth, reflecting high rates of stunting but low rates of underweight and wasting,
strongly characterizes indigenous Amazonians collectively (Dufour, 1992; Foster et al.,
2005; Orr et al., 2001; Piperata et al., 2011; Santos and Coimbra Jr, 1991; Zonta et al.,
2010). Indeed, Amazonian populations have long been recognized as among the shortest but
not the lightest people in the world (Stinson, 1990). With an overall rate of stunting of ≈
40% (Blackwell et al., 2009), the Shuar approximate the median of a wide range of stunting
rates among other indigenous Amazonians (Foster et al., 2005) and fall near, for example,
rates of 38% for the Pueblo Tacana and Esse-Ejjas of Bolivia (Benefice et al., 2006) and
43% for the Achuar of Ecuador (Orr et al., 2001). Shuar median adult heights of 160.8 cm
and 149.3 cm for males and females, respectively, closely resemble averages calculated for
20 other lowland South American groups (males = 161.7 ± 5.5 cm; females = 149.8 ± 4.8
cm) (Godoy et al., 2006), further supporting the notion that general growth outcomes among
the Shuar are typical of other small-scale Amazonian populations.

Unlike most previous studies of growth among small-scale societies, the use of GAMLSS
modeling in the present study provides a series of parameters that make in-depth description
of population-level growth patterns possible. Results suggest that, in general, Shuar growth
is complex and differs substantially from that of international references. Shuar males and
females grow rapidly over the first few months of life but experience subsequent declines in
infant growth that track near the CDC and WHO 5th centiles for height and weight in early
childhood. Growth diverges markedly from international references during mid-childhood,
however, with Shuar height experiencing progressive decreases and Shuar weight
progressive increases relative to references for most of the remaining growth period.
Resulting Shuar child-juvenile median growth rates in both sexes are ≈ 1.0 cm/year less and
≈ 0.5 kg/year less than that of references for height and weight, respectively. During
puberty, clear sex differences in Shuar growth patterns are apparent. Relative to
international references, Shuar males exhibit modest delays in the timing of pubertal growth
spurts in height and weight and extend growth in both of these measures into adulthood.
Shuar females experience a similar slight delay in the pubertal growth spurt in weight, but,
unlike males, demonstrate a growth spurt in height that is approximately one full year
earlier than that of international references and do not appear to extend growth into
adulthood. Interestingly, the S and L parameters describing Shuar growth vary significantly
from WHO and CDC references, reflecting differences in sample distribution and skew. The
Shuar demonstrate substantially lower variation than references in measures of height,
weight, and BMI during adulthood but somewhat greater variation in these same measures
early in life. Lower adult variation in body size among the Shuar is likely the result of

URLACHER et al. Page 10

Am J Hum Biol. Author manuscript.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reduced genetic and environmental diversity relative to the more ethnically heterogeneous
samples of the WHO and CDC. Greater variation in Shuar body size during infancy and
childhood may conversely reflect heightened sensitivity of Shuar growth to environmental
influences during early life (see below). Findings further suggest that the Shuar possess
significantly less positive skew than references in the distribution of body size throughout
life, particularly in weight and BMI. This observation appears to be related to a lower
incidence of overweight in Shuar children.

Few comparably detailed data are currently available to assess the degree to which nuanced
characteristics of Shuar growth reflect those of other Amazonians and small-scale
indigenous groups. Considering a wider range of human populations, it is well documented
that rapid growth in height and weight over the first few months of life (Karlberg et al.,
1997; Khandelwal et al., 2014) as well as subsequent faltering in these measures between
the age of 3 to 24 months (Shrimpton et al., 2001; WHO, 1995) are common patterns of
growth in many developing populations. This observation includes limited data from the
Bolivian Amazon suggesting declines from international growth references during infancy
among the indigenous Tsimane’, Pueblo Tacana, and Esse-Ejjas (Benefice et al., 2006;
Foster et al., 2005). The progressive falling of Shuar height curves and rising of Shuar
weight curves relative to CDC and WHO references beginning in mid-childhood illustrates
that the Shuar do not consistently track the growth of reference children beyond infancy. A
similar pattern of divergence from references, evidenced by lower height-for-age and greater
weight-for-age reference z-scores in older versus younger children, has been documented
among several other Amazonian groups (Benefice et al., 2006; Foster et al., 2005; Wilson et
al., 2011). While more data are needed, this finding suggests that preferential growth in
weight over that of height following early childhood may be a common developmental
characteristic among indigenous Amazonian populations.

Shuar pubertal growth is also noteworthy from a comparative perspective. While there exists
substantial global variation in the dynamics of human growth near puberty (Eveleth and
Tanner, 1990; Ulijaszek, 2001), the typical pattern of growth at this time in the developing
world is characterized by delayed, longer, and less dramatic growth spurts often
accompanied by the extension of growth into adulthood (Cameron, 2007; Eveleth and
Tanner, 1990). Shuar males largely follow this pattern of slow and delayed pubertal growth,
conforming closely to limited available data from small-scale groups and other Amazonians
(Bogin et al., 1990; Eveleth and Tanner, 1990; Sellen, 1999; Walker et al., 2006). Although
Shuar females also experience an expected delay relative to international references in
pubertal growth in weight, the finding of relatively early pubertal growth in height in Shuar
females contrasts starkly with previous observations among other small-scale groups
(Walker et al., 2006). Among Amazonians, the timing of the Shuar female growth spurt in
height (APVheight = 10.2 years) is significantly earlier than reported for the Tsimane’
(APVheight = 12.0 years) and the Paraguayan Ache (APVheight = 13.0 years) (Walker et al.,
2006). Notably, however, the growth spurt parameters for the Tsimane’ and Ache were
estimated visually from curves constructed using a very modest number of individuals. As
such, comparison of the timing of pubertal growth in height between the Shuar and these
populations must be made cautiously. Abundant evidence documenting early age at
menarche among many lowland South American populations (Kramer et al., 2009), as well
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as a close relationship between the timing of menarche and the timing of the human pubertal
growth spurt in height (Elizondo, 1992; Ellison, 1981), suggests the likelihood that other
Amazonian populations will be found to experience early female pubertal growth in height,
similar to that of the Shuar, as sufficient data become available.

Environmental and selective explanations for Shuar growth patterns

The extent of genetic contribution to Amazonian growth characteristics remains unclear (Orr
et al., 2001; Stinson, 1990); however, environmental factors are thought to explain much of
the observed variation in growth within and between human populations globally (Eveleth
and Tanner, 1990; Ulijaszek, 2006; WHO, 1995). In the developing world, including
Amazonia, nutritional inadequacy and infectious disease are typically considered the
primary causes of slow childhood growth and delayed maturation (Foster et al., 2005; Hodge
and Dufour, 1991; Santos and Coimbra Jr, 1991; WHO, 1995). Developmental responses to
these environmental factors likely explain some, but not all, aspects of Shuar growth. As
noted above, the Shuar do indeed face substantial rates of infectious and parasitic disease.
Although the precise relationship between infection and the growth of Shuar children is
currently unknown, ample evidence suggests that soil-transmitted helminths and other
pathogens that are common among the Shuar negatively affect growth in many populations
(Crompton and Nesheim, 2002; Goodman et al., 2011; Moffatt et al., 2001; Rowland et al.,
1988; Sackey et al., 2003). The pathways through which these infections impact childhood
growth are numerous and complex (Stephensen, 1999). Among the Shuar, the large
predicted energetic cost associated with frequent pathogen-driven activation of the immune
system (Blackwell et al., 2011; Blackwell et al., 2010; Mcdade et al., 2012), in conjunction
with low-nutrient-density diets (Dufour, 1992; Liebert et al., 2013), may play a key role in
limiting resources available for growth, particularly early in life and near weaning at ≈ 15
months of age (Madimenos et al., 2012). This hypothesis requires further testing but
receives initial support from evidence indicating that stature in Shuar subadults is inversely
related to levels of various biomarkers of immune activation (Blackwell et al., 2010).

While developmental response to environmental stimuli such as nutrition and infection
likely explains some aspects of Shuar growth, consideration of explanations involving
genetic adaptation may also provide useful insight into the patterns observed in this study.
Several possible adaptive explanations for the small body size of tropical forest populations
have previously been suggested and may apply to the Shuar. These include selection for heat
dissipation (Cavalli-Sforza, 1986; Hiernaux and Froment, 1976; Roberts, 1953), efficient
mobility (Diamond, 1991; Stinson, 1990; Tobias, 1972), and low body maintenance
requirements (Gurven and Walker, 2006; Stini, 1969). When adult mortality is high, short
stature may also reflect the indirect outcome of selection for early reproductive maturation
(Migliano et al., 2007; Walker et al., 2006). In some cases, mortality-driven selection for
early reproduction may additionally lead to earlier and more rapid growth (Case, 1978;
Charnov and Berrigan, 1993; Stearns, 1992). This latter scenario may explain the early
female growth spurt in height observed among the Shuar. Although Shuar age-specific
mortality curves are not available, data from interviews (SHLHP, unpublished data), other
indigenous Amazonians (Gurven et al., 2007; Hill and Hurtado, 1996; Walker et al., 2006)
and elsewhere in the Ecuadorian Amazon (Kuang-Yao Pan et al., 2010; WHO, 2011)
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suggest that Shuar adult mortality is likely quite high. Direct evidence documents that Shuar
females do indeed initiate reproduction early in life, possessing a mean age at menarche
(13.0 years) and a mean age at first birth (17.5 years) (Madimenos et al., 2012) that fall near
the very low end of ranges observed among 22 other small-scale populations (Walker et al.,
2006). Recognizing that skeletal maturation is the key physiological factor determining age
at reproductive maturation in females (Elizondo, 1992; Ellison, 1981), extrinsic mortality
should more strongly influence female growth in height than growth in weight. This, along
with possible energy-partitioning benefits relating to the temporal staggering of growth
spurts in different soma, may explain why Shuar females possess early pubertal growth
spurts in height but not weight. The particularly strong influence of mortality factors on life
history parameters in females (Stearns, 1992; Walker et al., 2006), as well as possible male
target body size selection pressures relating to male-male competition, may further explain
why Shuar females but not males experience early pubertal growth in height.

Finally, it must be noted that developmental plasticity and genetic adaptation are not
independent explanations of Shuar growth. Developmental reaction norms are themselves
the product of natural selection, and different populations may, for example, respond to
energetic and disease stressors differently as a result of distinct histories of selection on
reaction norms. The Shuar and other Amazonians appear to prioritize growth in weight over
growth in height relative to populations from many parts of the world (Eveleth and Tanner,
1990; Foster et al., 2005; Victora, 1992). This apparent pattern of preferential allocation of
energy into gains in weight rather than height may facilitate energy availability for female
reproduction early in life. Alternatively, it may reflect selection for robust immune function
in response to persistent pathogen exposure, for which central body fat may be particularly
important (Samaras et al., 2010; Wells and Cortina-Borja, 2013). Future research is needed
to investigate these hypotheses.

Clinical application of Shuar growth references

In addition to its utility for understanding human biological variation and life history, the
description of Shuar growth presented in this study may also serve as an important tool for
use in the clinical assessment of childhood development and health. Growth references
provide authorities with information about the growth status of children and are critical for
identifying groups and individuals who are at risk for disease or require urgent care (De
Onis et al., 2004). Although some researchers advocate the use of a single growth reference
for all children globally (De Onis et al., 2004), evidence is mounting to suggest that
international references may not be appropriate for assessing growth in all populations,
particularly among non-Western and indigenous groups (Gleiss et al., 2013; Guedes et al.,
2010; Hakeem et al., 2004; Hasan et al., 2001; Marwaha et al., 2006; Mushtaq et al., 2012;
Neyzi et al., 2006; Ulijaszek, 1994; Ulijaszek, 2001). In line with this finding, a number of
factors suggest that the growth references presented in this study may be used to supplement
international references in the clinical assessment of Shuar children. First, while CDC and
WHO references appear to model Shuar infant growth with fair accuracy, the Shuar do not
closely follow the growth of reference children at older ages. This observation is most
apparent following early childhood, a time when variation in the distribution of Shuar
height, weight, and BMI are low and genetic factors are thought to become increasingly
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important in producing differences in growth between populations (Haas and Campirano,
2006; Ulijaszek, 2001). Second, there is little evidence of skew in Shuar growth
distributions, implying that Shuar medians are not the consequence of an unhealthy subset of
individuals shifting the median downward but rather that the entire population distribution
of the Shuar is lower than the distribution of international references and remains more-or-
less normally distributed at all ages. Finally, many notable aspects of Shuar growth appear
to be common among other indigenous Amazonian and South American populations living
in diverse socio-ecological contexts, further supporting a genetic basis for at least some
differences in growth between the Shuar and CDC/WHO references.

CONCLUSIONS
This study has used a large dataset and robust GAMLSS modeling to provide a detailed,
population-level description of Shuar physical growth that may be useful to both researchers
and clinicians. Such descriptions are rare among small-scale indigenous groups, and these
data contribute significantly to the global database of variation in human growth and
development. Results demonstrate that the Shuar are small throughout life and possess
patterns of growth that differ markedly from international references, particularly following
early childhood and near puberty. Phenotypic plasticity and genetic selection in response to
local environmental and life history factors, among them a heavy burden of infectious
disease and high predicted rates of extrinsic mortality, likely explain many noteworthy
aspects of Shuar growth. Future research will test hypotheses linking ecological variables,
growth, reproduction, and health in this population.
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Fig. 1.
Sex-specific centile curves for Shuar height, weight, and BMI from age 0 to 25 years. Solid
lines = 50th centile; Dashed lines = 25th and 75th centiles; Dotted lines = 5th and 95th

centiles. Complete centile values and accompanying LMS parameters are provided in online
Supplemental Files S3–S5.
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Fig. 2.
LMS curves for height by sex. Shuar (solid red line, red shade), CDC references (dashed
black line, light grey shade), and WHO references (dotted black line, dark grey shade). Mu =
median height (5th to 95th centiles shaded); Sigma = coefficient of variation; Lambda = Box-
Cox transformation (skew).
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Fig. 3.
LMS curves for weight by sex. Shuar (solid red line, red shade), CDC references (dashed
black line, light grey shade), and WHO references (dotted black line, dark grey shade). Mu =
median weight (5th to 95th centiles shaded); Sigma = coefficient of variation; Lambda =
Box-Cox transformation (skew).
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Fig. 4.
LMS curves for BMI by sex. Shuar (solid red line, red shade), CDC references (dashed black
line, light grey shade), and WHO references (dotted black line, dark grey shade). Mu =
median BMI (5th to 95th centiles shaded); Sigma = coefficient of variation; Lambda = Box-
Cox transformation (skew).
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Fig. 5.
Pseudo-velocity curves for height, weight, and BMI plotted by sex. Shuar (solid red line),
CDC references (dashed black line), and WHO references (doted black line). Curves
represent the velocity of the median (μ) GAMLSS model parameter. Curves for age ≤ 3 years
(left) are enhanced for detail.
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