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Quantum Randomness
and Underdetermination

Jeffrey A. Barrett and Simon M. Huttegger*y

We consider the nature of quantum randomness and how one might have empirical ev-
idence for it. We will see why, depending on one’s computational resources, it may be
impossible to determine whether a particular notion of randomness properly character-
izes one’s empirical data. Indeed, we will see why even an ideal observer under ideal
epistemic conditions may never have any empirical evidence whatsoever for believing
that the results of one’s quantum-mechanical experiments are randomly determined.
This illustrates a radical sort of empirical underdetermination faced by fundamentally
stochastic theories like quantum mechanics.

1. Quantum Randomness. Randomness is a characteristic aspect of quan-
tum phenomena. It is unclear, however, what it should mean for the results of
one’s quantum-mechanical measurements to be randomly distributed. It is
also unclear how one might have empirical evidence for the randomness of
one’s measurement results. Here we will use the theory of algorithmic ran-
domness to show how one might capture some of the standard intuitions re-
garding what it might mean for the results of quantum measurements to be
randomly distributed. We will then see why one may never have any empir-
ical evidence whatsoever that the results of one’s quantum-mechanical ex-
periments are in fact randomly determined even on the assumption that one’s
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data are statistically uniform. This illustrates a radical sort of empirical un-
derdetermination faced by fundamentally stochastic theories like quantum
mechanics.

The argument is that once one is in the ballpark of capturing standard
intuitions regarding what it might mean for the results of quantum measure-
ments to be random, one encounters competing notions of randomness that
are different but formally indistinguishable given standard computational re-
sources. This point regarding the empirical indistinguishability of competing
notions of randomness could be made more abstractly. We are considering it
in the concrete context of quantum mechanics because here the truth of the
physical theory depends on whether the physical world is in fact objectively
random. To this end, we are interested in notions of randomness in which a
physical process (as in a theory like the von Neumann–Dirac collapse for-
mulation of quantum mechanics) or initial distribution (as in a theory like
Bohmian mechanics) might be understood as being intrinsically and objec-
tively random. We take this to be what is required to make sense of how
physical randomness is typically understood in the context of quantum me-
chanics. We discuss this approach in contrast with other notions of random-
ness later.

In some formulations of quantum mechanics the source of quantum ran-
domness is dynamical. This is the case for the standard von Neumann–Dirac
collapse theory (von Neumann 1955) and more recent collapse theories like
in Ghirardi, Rimini, and Weber (1986).1 In other formulations quantum ran-
domness results from the specification of special statistical boundary condi-
tions. This is the case for some no-collapse theories. In Bohmian mechanics
(Bohm 1952) quantum randomness can be thought of as resulting from the
random selection of an initial particle configuration relative to the initial
wave function.2 In other no-collapse formulations quantum randomness is
the result of epistemic uncertainty regarding self-location. This is the case
for some many-world reconstructions of Everett’s pure wave mechanics (Di-
rac 1957).3 Here we will consider quantum randomness in the context of the
standard von Neumann–Dirac formulation of quantum mechanics, but these
considerations are also applicable to other formulations of quantummechan-
ics that appeal to the notion of a random process or random selection.

The standard von Neumann–Dirac collapse formulation of quantum me-
chanics stipulates that one’s measurement results are the outcome of a ran-
dom dynamical process and, hence, predicts that a sequence of measurement

1. See Albert (1992) and Barrett (2019) for discussions.

2. See Barrett (1999, 2019) for discussions.

3. See Saunders et al. (2010), Wallace (2012), and Barrett (2019) for discussions.
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results will be randomly distributed.4 We first consider the sense in which it
predicts random measurement results and then consider how one might em-
pirically test its predictions.

On the standard collapse formulation of quantum mechanics, the state of
a physical system S is represented by an element jwiS of unit length in a
Hilbert spaceH, and a physical observable O is represented by a Hermitian
operatorÔ on that space. The physical interpretation of a state is given by the
eigenvalue-eigenstate link, which says that a system S has a determinate
value for observable O if and only if it is in an eigenstate of O. That is, S
has a determinate value for O if and only if ÔjwiS 5 ljwiS, where Ô is
the Hermitian operator corresponding to O, jwiS is the vector representing
the state of S, and the eigenvalue l is a real number. In this case, one would
with certainty get the result l if one measured O of S.

Given the eigenvalue-eigenstate link and the linear way that systems
evolve when they are notmeasured, a particular observable will typically fail
to have any determinate value at all for a given system before the system is
measured. According to the standard theory, the system acquires a determi-
nate value for the observable when it is measured. In particular, the theory
predicts that when the observable is measured, the system will instanta-
neously and randomly jump to an eigenstate of the observable being mea-
sured with probabilities determined by its initial state. Since the final state
will be an eigenstate of the measured observable, it will be one where the
object system now has a determinate value for that observable. And, salient
to the present discussion, that value will be randomly determined by the pro-
cess that generated it.

In describing the dynamical laws of the standard theory, von Neumann
referred to the random nonlinear evolution of the state that occurs on mea-
surement as process 1. When no one is observing the system, it evolves in
a deterministic, linear way that he called process 2. These two dynamical
laws might be characterized as follows:

Process 1: If a measurement is made of the system S, the state of S will
randomly collapse to an eigenstate of the observable being measured (a
state where the system has a determinate value of the observable being
measured). If the initial state is given by jwiS and jxiS is an eigenstate
of O, then the probability of S collapsing to jxiS is equal to j h wjx i j2
(the square of the magnitude of the projection of the premeasurement state
onto the eigenstate).

4. See Barrett (2019) for a discussion of the standard von Neumann–Dirac formulation
of quantum mechanics and its conceptual structure.
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Process 2: If no measurement is made of a physical system, it will evolve
in a deterministic, linear way: if the state of S is given by jw(t0)iS at time t0,
then its state at a time t will be given by Û (t0, t1)jw(t0)iS , where Û is a uni-
tary operator that depends on the energy properties of S.

Process 2 is a deterministic dynamical law that explains quantum-mechanical
interference and entanglement. In contrast, process 1 is a fundamentally sto-
chastic dynamical law. It explains both whymeasurements yield determinate
outcomes and why one should expect a sequence of quantum measurement
results to be randomly distributed with the standard quantum statistics.

That the theory does not say what constitutes ameasurementmeans that it
is unclear precisely when each dynamical law obtains. This ambiguity is the
source of the quantummeasurement problem.5 For present purposes, wewill
simply suppose that process 1 kicks in at some point during a measurement
interaction to produce determinate measurement records that are randomly
determined with the standard quantum statistics. Our concern here is not to
say precisely when or why collapses occur but rather to consider what it
might mean to say that one’s measurement records are randomly determined
with the standard quantum statistics and how one might have empirical evi-
dence for such a claim.

Consider an infinite series of systems S1, S2, ... Sk, ... each in the state

1=
ffiffiffi

2
p

(j↑x iSk
1 j↓xiSk

):

Suppose that one measures the x-spin of each system in turn and records 0
for ↓x and 1 for ↑x as a string j. Call this the quantum coin-toss experiment.6

Here process 1 predicts that the outcome of each trial will be randomly de-
termined with probability 1/2 of recording 0 and probability 1/2 of record-
ing 1 on each trial. To say something that is at least very closely related, one
expects with probability one that the outcomes to be statistically independent
and unbiased.7

5. See Albert (1992) and Barrett (1999, 2019) for discussions of the quantum measure-
ment problem and various proposed resolutions.

6. One might equivalently, according to the standard theory, alternate x-spin and z-spin
measurements on a single electron and keep track of the sequence of up and down results.

7. There is an important distinction to be made between a random sequence and a se-
quence produced by a random process as these notions are typically used. While one
would expect (with probability one) a random sequence from a random process, and
a random sequence is empirical evidence that it was generated by a random process,
it is possible for a random process to produce a nonrandom sequence. But if a process does
produce a nonrandom sequence, that clearly counts as evidence against the process being
random inasmuch as that would be extraordinarily unlikely otherwise.
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While no particular sequence of 0’s and 1’s is ruled out in the quantum
coin-toss experiment, one would have very good empirical evidence against
process 1 if the ratio of 0’s and 1’s in j were not approximately even in the
long run. If so, the dynamics would be predicting the wrong relative frequen-
cies. But one would also have very good empirical evidence against process 1
if the sequence of results exhibited a simple pattern like 01010101. . . . This
would not count against the dynamics predicting the right relative frequen-
cies, but the longer a simple pattern like this persists, the better one’s empir-
ical evidence that the measurement results are not statistically independent
and hence not in fact determined by a random process at all.

If process 1 is descriptive of the physical world, then one should expect a
sequence of measurement results that exhibits all of the properties of a ran-
dom sequence. One such property in the present case is that a random sequence
of measurement results should be expected to have the standard quantum
relative frequencies. But, as the example of an alternating sequence of ze-
roes and ones illustrates, having the right relative frequencies is not suffi-
cient for the sequence of measurement results to be randomly distributed.
We expect the sequence to exhibit other statistical features as well. That
said, it is not immediately clear what these should be. In addition to tracking
relative frequencies, one needs an explicit test of all of the features of a ran-
dom sequence, whatever these may be, in order to check the empirical pre-
dictions of process 1.

The general methodological question here concerns how one might em-
pirically determine whether the output of a physical process is in fact ran-
dom. Equipped with a test for randomness, a good Bayesian might then
seek to update her degree of belief that the sequence j was produced by
a random process by conditioning on new measurement results as one gets
them. But what should it mean for the results in j, or an initial segment of j,
to be random?

As suggested earlier, our intuitions concerning what it means for a se-
quence of results to be randomly distributed are closely tied to our intuitions
concerning what it means for those results to be statistically independent.
The judgment that the sequence 01010101. . . does not appear to be random
goes hand in hand with the judgment that the measurement results that con-
stitute it do not appear to be statistically independent. In this sense, a test for
statistical independence is a test for a corresponding variety of randomness
and the other way around.8 If process 1 is in fact descriptive of the physical
world, then one should expect the results of the quantum coin-toss experiment

8. Events A and B are statistically independent if and only if P(A) 5 P(AjB). The issue
here is how one tests whether this condition is satisfied by the dynamical process that
produced one’s results given those results.
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to be both random and statistically independent in some appropriately strong
sense.

Von Neumann’s physical intuition was that the sequence j should be ex-
pected to be random and its elements statistically independent because it is
determined by a dynamical process that produces arbitrary events.9 Specif-
ically, he understood process 1 to postulate a willkürliche Veränderung—an
arbitrary or capricious change in the physical state. Because the sequence of
measurement results is arbitrary, one expects it to be patternless and not spe-
cial in any specifiable sense. The arbitrary results of this process were, for
von Neumann, what made the standard quantum probabilities the most pre-
cise empirical predictions possible. He took the quantum mechanical state
to be complete. Further, salient for the issue at hand, he took process 1 to be
(1) a physical process and (2) dynamically complete—there is simply noth-
ing more to say about what determines the result of a quantum measurement.10

As a consequence of von Neumann’s commitment to the outcomes being
arbitrary, the sequence j should be typical. That is, it should be a sequence
that one can think of as having been arbitrarily selected from a subset of mea-
sure one of all possible sequences in Lebesgue measure, just as in the case of
the random outcomes of tosses of a theoretical fair coin. This ties directly to
statistical independence. If the measurement results are independent, then one
should also expect the sequence to be typical in Lebesgue measure.

Finally, concerning von Neumann’s commitment to state completeness
and the completeness of the dynamics, since the standard probabilistic predic-
tions of quantum mechanics are the most precise predictions possible, one
should expect there to be no fair betting strategy that would allow one to
do better in predicting the sequence j than simply predicting each result with
the standard quantum probabilities—here each with probability 1/2.11

2. Algorithmic Randomness. In order to test the empirical predictions of
the standard theory, then, we want to test j for being patternless in a way that
satisfies our statistically independent, unpredictable, no-betting-strategy in-
tuitions. In short, we want to ensure that the sequence exhibits no specifiable
regularity.

9. By expectation we mean expectation with probability one.

10. SeeWigner (1970, 1005–6 and n. 1), Earman (1986, 227–28), and Barrett (2019) for
more on von Neumann’s understanding of the essential nature of quantum unpredictabil-
ity. See Earman (1986, 199–234) for a discussion of the distinction between quantum
indeterminism and quantum unpredictability.

11. A fair betting strategy is a plan to bet for or against outcomes at each stage so that
one does not expect to win or loose at the next stage. If one were to adopt an unfair bet-
ting strategy, one could of course expect to win arbitrarily large amounts of money.
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In this spirit, one might take a sequence to be patternless, and hence ran-
dom, when there is no algorithm significantly shorter than the sequence that
produces it. While this is a step in the right direction, it is not quite what we
want. An immediate problem is that an infinite sequence might be incom-
pressible but still contain long, recurring subsequences that exhibit regular
patterns. In that case, the sequence as a whole does not satisfy our intuitions
regarding what it is to be random.

Consider an infinite sequence that consists of one thousand 1’s followed
by one thousand 0’s followed by one thousand random 0’s and 1’s, then re-
peats this three-block pattern forever. Because of the random blocks, such
an infinite sequence may be incompressible in the sense of not being repre-
sentable by a finite-length algorithm, but the full sequence is clearly not ran-
dom. This is reflected by the fact that there is a simple betting strategy that
would lead to unbounded wealth in the long run (e.g., predict 1 a thousand
times, then 0 a thousand times, then whatever one wants a thousand times
and repeat). The upshot is that this very simple notion of algorithmic ran-
domness is too weak to support the intuition that there should be no pattern
or betting strategy that allows one to predict better than chance. But we are
on the right track.

There are a number of more subtle notions of algorithmic randomness
that do support our patternless, statistically independent, unpredictable, no-
betting-strategy intuitions. We will consider two here: Martin-Löf random-
ness and Schnorr randomness. Both of these satisfies the basic intuition that
a random sequence should be patternless in a way that makes it effectively
unpredictable and, in a strong sense, does not allow for a successful betting
strategy.

Martin-Löf and Schnorr randomness fit into a hierarchy of algorithmic
ways of understanding what it might mean for a sequence to be random.
The core notions of algorithmic randomness from less to more restrictive
are Kurtz (weak) random, Schnorr random (SR), computably random,
Martin-Löf random (MLR), and 2-random. We are concerned here with
Schnorr randomness and Martin-Löf randomness.12

A notion of randomness can be given in terms of a set of tests that a random
sequence will pass. A Martin-Löf test is a sequence fUngn∈q of uniformly Σ0

1

sets of sequences such that m(Un) ≤ 22n for all n, where m is the unbiased
Lebesgue measure over the sequences. Being uniformly Σ0

1 means that there
is a single constructive specification of the sequence of sets. A constructive

12. See Li and Vitányi (2008) for an introduction to algorithmic complexity and ran-
domness. See Downey and Hirschfeldt (2010) for a description and comparison of
Martin-Löf and Schnorr randomness and Downey and Griffiths (2002) for further details
regarding the properties of Schnorr randomness.
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specification can be represented by a ordinary algorithm.13 Let 2q be the set of
all q-length sequences (infinite-length sequences indexed by q). A sequence
S ∈ 2q passes theMartin-Löf test associated with the sequence fUngn∈q if and
only if S is not in the measure-zero null set \nUn. Passing a Martin-Löf test
can be thought of as passing a particular effective statistical test for random-
ness.14 A sequence isMLR if and only if it passes everyMartin-Löf test. Since
there are only a countable number of Martin-Löf tests, the union of all the as-
sociated null sets is also a set of measure zero. So the set of MLR sequences
has Lebesgue measure one.

The idea here is that each sequence fUngn∈q of uniformly Σ0
1 classes cor-

responds to an effectively specifiable way that a sequence might be special
and thus to an associated statistical test of randomness. A sequence passes
the test if it is not special in the specified sense. A sequence is MLR then if
(1) it is not special in any way that can be effectively specified, and hence
(2) it passes every effective statistical test for being random. This is argu-
ably precisely what one should want for a sequence to be considered random.

Martin-Löf randomness also supports the intuition that a random se-
quence should be patternless in the sense of being both incompressible
and unpredictable. An infinite sequence is MLR if and only if there is a con-
stant c such that all finite initial segments are c-incompressible (not rep-
resentable by an algorithm that is c shorter than the initial segment) by a
prefix-free machine (a universal Turing machine that is self-delimiting and
hence can read its input in one direction without knowing what, if anything,
comes next). And a sequence is MLR if and only if no constructive martin-
gale succeeds on it (if there is no constructive betting strategy that generates
unbounded wealth).15 Since measure one of infinite-length sequences are
MLR in the unbiased Lebesgue measure over the set of possible sequences,
it also supports the intuition that random sequences are not special in a
measure-theoretic sense.

The notion of a sequence being SR is closely related. A Schnorr test is a
Martin-Löf test where the measures m(Un) on the sequence of uniformly Σ0

1

sets are uniformly computable (there is a single algorithm that computes
each of these measures). A sequence S ∈ 2q passes the Schnorr test associ-
ated with the sequence fUngn∈q if and only if S is not in the measure-zero
null set \nUn. A sequence is SR if and only if it passes every Schnorr test.
Because the measures on the test classes m(Un) are uniformly computable,

13. The Σ0
1 sets are semicomputable open sets in the following sense. Every Σ0

1 is the
union of a countable set of cylinder sets, the clopens of Cantor space. By taking an in-
creasing sequence of finite unions of clopens, we can approximate each Σ0

1 set by com-
putable objects from below.

14. See Downey and Hirschfeldt (2010, 229–31) for an extended discussion.

15. Constructive again means computably approximable from below.
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the statistical tests here might be thought of as being more concretely spec-
ifiable than in the case of Martin-Löf randomness. Indeed, one can suppose
that the measures of the test classes are given by m(Un) 5 22n without loss
of generality.

The notion of Schnorr randomness, like that of Martin-Löf randomness,
captures the intuition that a random sequence should be patternless in the
sense of being both incompressible and unpredictable in a strong sense. An
infinite sequence is SR if and only if there is a constant c such that all finite
initial segments are c-incompressible by a computable measure machine (a
prefix-free Turing machine with a domain of computable measure).16 If a se-
quence is SR, then no computable martingale h-succeeds on it (there is no
computable betting strategy that generates wealth over time that is bounded
from below by an unbounded, nondecreasing function h).17 And, like MLR
sequences, SR sequences are not special—measure one of infinite-length se-
quences are SR.

Important for what follows, MLR infinite-length sequences are a proper
subset of SR sequences. Since MLR sequences and SR sequences are both
measure-one sets, their intersection is also measure one. And the set of se-
quences that are SR but not MLR is measure zero in the unbiased Lebesgue
measure over the set of infinite-length sequences. Sequences that are SR but
not MLR are measure theoretically very special.

3. The Effective Indeterminacy of Randomness and Independence.
Given how they support the relevant intuitions, both MLR and SR provide
plausible standards for quantum randomness. Indeed, inasmuch as random
sequences are not special, one would expect (with probability one) the se-
quence j of quantum-mechanical results produced by process 1 to be both
MLR and SR. But here one encounters a number of epistemic problems.

Consider the following proposition concerning whether one can know
whether a sequence is MLR or SR.18

Proposition 1. Suppose that C ⊆ 2q is a nonempty class such that either (i) C
contains no computable members or (ii) C ≠ 2q and C is a tail set; that is, if
X is in C and Y differs from X by at most finitely many bits, then Y is in C.
Then there is no algorithm e such that for all X ∈ 2q one has JX

e (0) 5 1 if

16. See Downey and Hirschfeldt (2010, 277) for further details on such machines.

17. See Downey and Hirschfeldt (2010, 271) for further details regarding the martingale
properties of SR sequences.

18. See Soare (2016) for an explanation of the notation here. The proof of this propo-
sition follows closely from the definitions of the relevant notions. See, e.g., Soare
(2016, 190) and Shen, Uspensky, and Vereshchagin (2017, 81). See also Downey and
Hirschfeldt’s (2010, 16–18) discussion of the use principle.
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and only if X ∈ C, where JX
e denotes the eth computable function with

oracle X.

Proof. Suppose not, with witness e. Since C is a nonempty class, choose X
in C. Then JX

e (0) 5 1. Then there is s such that JX
e,s(0) 5 1; that is, the com-

putation converges in <s steps looking at <s bits of the oracle tape.
Let j 5 X ↾ s. Suppose that i is satisfied. Consider Y 5 j⌢�0 (i.e., j fol-
lowed by all zeros). This is computable, and we also have that JY

e,s(0) 5 1
and hence Y ∈ C, contradicting our hypothesis that C contains no comput-
able members.
Suppose that ii is satisfied. Then for any Y ∈ ½j�, that is, any Y that begins
with j, we have Y ∈ C. But every element of 2q differs by an element of
[j] by only finitely much, and since C is a tail set, we then have C 5 2q.

Notions of algorithmic randomness typically satisfy both conditions i
and ii. In particular, both Martin-Löf and Schnorr randomness satisfy these
two conditions. The upshot is that there is no effective procedure to tell
whether a sequence j is MLR or is SR. This means that if one is restricted
to Turing-strength computations, one can never know whether one’s empir-
ical evidence is in fact random in either of these two senses.19 But the episte-
mic situation is significantly worse than this might suggest.

The following proposition is concerned with the question of whether one
can distinguish between sequences that are SR but not MLR and sequences
that are MLR.

Proposition 2. There is no algorithm e such that for all X ∈ 2q, if one has
that if X is SR, then JX

e (0) 5 1 if and only if X is MLR.

Proof. Choose MLR X. Then as above, JX
e,s(0) 5 1 for some s, and again

set j 5 X ↾ s. Choose Y that is SR but not MLR, and let Z 5 j ⌢Y . Then
since the SRs and the MLRs are tail sets, one has that Z is SR but not
MLR. But we also have that JZ

e (0) 5 1 since Z ∈ ½j�.

19. There are similar results to this for other notions of randomness. Notably, Eagle
(2005) points out that one cannot tell from any finite initial segment of a sequence that
it is von Mises random if it is. He concludes that von Mises randomness “is a profligate
hypothesis that we cannot be justified in adopting” even for infinite strings of quantum-
mechanical measurement outcomes (757–58). Eagle suggests Martin-Löf randomness
as an improvement on von Mises’s notion. But, given the sequence of arguments here,
he would presumably take Martin-Löf randomness and Schnorr randomness to be sim-
ilarly profligate, especially when, as we will see, there is a sense in which empirical
underdetermination holds here even in the limit as one examines the entire sequence.
In contrast, we take both of these notions to be in the ballpark of the physical intuitions
involved in quantum randomness. We discuss Eagle’s approach to randomness later.
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The upshot is that there is no effective procedure that would tell whether a
particular sequence is MLR or SR but not MLR.

In order to make clear what is at stake here, consider two ways of under-
standing what it might mean for the sequence of results j in the quantum
coin-toss experiment to be randomly determined dynamically.

Martin-Löf dynamics: When a measurement is made of system Sk, its state
instantaneously jumps to an eigenstate of the observable being measured
in such a way that the sequence of results j should be expected almost al-
ways to be MLR.

Schnorr dynamics: When a measurement is made of system Sk, its state in-
stantaneously jumps to an eigenstate of the observable being measured in
such a way that the sequence of results j should be expected almost al-
ways to be SR.

Given proposition 2, there is a sense in which these two dynamical laws are
effectively indistinguishable, but the Martin-Löf dynamics is in fact more
restrictive from a god’s-eye view than the Schnorr dynamics. This difference
would only be detectable by a computationally strong observer, one who
could carry out computations that go beyond what can be accomplished
by an ordinary Turing machine. But such an observer might find herself with
very strong empirical evidence for accepting the Schnorr dynamics over the
Martin-Löf dynamics.

Suppose that one somehow knew that the sequence of results j was SR
but not MLR. Since one would expect j to be both SR and MLR on the
Martin-Löf dynamics, this would count as very strong evidence in favor of
the Schnorr dynamics over the Martin-Löf dynamics. This is precisely anal-
ogous to the argument that getting something from the measure-zero set of
sequences that can be represented by finite algorithms would provide strong
empirical evidence that the actual physical dynamics was not random at all.

That said, if the Schnorr dynamics were in fact descriptive of the world,
while such a sequence of results is possible, one would never expect a se-
quence that was SR but not MLR. Rather, one would fully expect j to be
bothMLR and SR on both theMartin-Löf dynamics and the Schnorr dynam-
ics. Inasmuch as the two laws yield precisely the same expectations, there is
good reason to take them to be empirically equivalent even after one con-
cedes that it is logically possible for an observer to have evidence in favor
of one over the other and a computationally strong observer to recognize
the difference.

But to see why this does not settle the matter, consider the following non-
standard law.
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Nonstandard dynamics: When a measurement is made of the system Sk, its
state instantaneously jumps to an eigenstate of the observable being mea-
sured in such a way that the sequence of results j should be expected al-
most always to be SR but not MLR.

Since one should expect this dynamics to produce a sequence of measure-
ment outcomes that is SR, one should expect it to produce a sequence that
appears to be perfectly random in the Schnorr sense of not exhibiting any
effectively specifiable or discernible pattern. Among other things, this
means that one should expect all initial segments of the sequence of mea-
surement results to appear to be completely arbitrary and patternless in ev-
ery algorithmically specifiable sense. But inasmuch as one should expect
the full sequence to be SR but not MLR, one should expect that it will
be selected from a measure-zero set of infinite-length sequences. So while
this dynamics produces sequences whose initial segments will always ap-
pear to be entirely patternless and unpredictable and will pass all effective
statistical tests for being random, a sequence chosen from a measure-zero
set is in a straightforward sense very special and, hence, is not at all random
in the measure-theoretic sense. While the sequence of measurement results
will appear to be randomly determined on the nonstandard dynamics, it is not.

Similarly, while one should expect results produced by the nonstandard
dynamics to appear to be statistically independent, they are not. If the re-
sults were in fact statistically independent, then the sequence should be ex-
pected to be arbitrarily chosen from the measure-one set of all possible
infinite-length sequences, not from the measure-zero set of sequences that
are SR but not MLR. Hence, the sequence of results produced by the non-
standard dynamics is not random in the sense of in fact being statistically
independent.20

While the nonstandard dynamics represents a simple, concrete law that an
inquirer might seriously consider given standard deliberational resources, it
threatens a strong variety of empirical underdetermination. Since there is no
effective procedure that would distinguish between a sequence that is both
SR and MLR from one that is SR but not MLR, the nonstandard dynamics
is empirically equivalent to the Martin-Löf dynamics given standard com-
putational resources. But inasmuch as one should expect the Martin-Löf
dynamics to be empirically indistinguishable from process 1, the non-
standard dynamics is empirically equivalent to process 1 if one is restricted
to standard computational resources. Indeed, it is empirically equivalent to

20. If one were to repeat the full quantum coin-toss experiment and keep getting se-
quences in the gap between SR and MLR, then from a god’s-eye view one would have
evidence for a very subtle sort of global statistical dependence—a sort that one could not
concretely characterize by effective means.
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any standard criterion of randomness that assigns Lebesgue measure one to
the set of random sequences. The upshot is that if the sequence of quantum
results j is in fact random in any standard sense, then there is no effective way
to rule out the nonstandard dynamics regardless of how much empirical ev-
idence one has.

The epistemic situation here is dire. There is a straightforward sense in
which one can never have any empirical evidence whatsoever that one’s
quantum-mechanical results are in fact randomly determined or genuinely
independent if they are. In order to see why, compare what it would be to
have empirical evidence regarding the relative frequencies of one’s results
against what it would be to have empirical evidence regarding the random-
ness of one’s results.

A good Bayesian inquirer might have empirical evidence either for or
against quantum mechanics predicting the right relative frequencies by con-
ditioning on the evidence presented in each initial segment jk of j on the as-
sumption that the sequence exhibits an appropriate sort of statistical unifor-
mity. But there is no way at all to distinguish between the initial segments of
sequences that are both SR and MLR and those that are SR but not MLR.
This is because c-incompressible on a prefix-free machine (the condition for
beingMLR) is precisely the same thing as c-incompressible on a computable
measure machine (the condition for being SR) for any finite initial segment
of the sequence. Sequences that are both SR and MLR and those that are SR
but not MLR will both always appear to be similarly random, patternless,
statistically independent, and unpredictable.

Further, because the conditions are identical for all finite initial segments,
no background assumption of uniformity for the full sequence will help a
Bayesian inquirer to distinguish between sequences that are both SR and
MLR (and hence genuinely random) and those that are SR but not MLR
and hence not what one would expect from a random process. The point here
is not that the inquirer will never know with certainty whether the sequence
was randomly determined. Rather, even with a background assumption that
the string is overall statistically uniform, looking at finite initial segments here
provides no evidence whatsoever that the sequence was in fact randomly
determined.

While the examination of initial segments might provide a Bayesian in-
quirer with compelling evidence that a given sequence is or is not simply pat-
terned in a concrete specified way (as in the case of the alternating pattern
exhibited by the sequence 01010101. . .), a sequence that is SR but not MLR
has a global property that cannot be detected by examining initial segments.
A sequence generated by the nonstandard dynamics should be expected to
exhibit this global property, one shared by measure-zero of the possible infinite-
length sequences. Such sequences are very special. But the fact that they are
special is not detectable from finite initial segments.
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While a good Bayesian is not committed to any particular set of priors as
being rational, on the standard line at least, she is committed to probabilistic
coherence and nondogmatic priors. The first condition allows her to avoid
dutch books, and the second provides a general path to learning the truth.
If a Bayesian inquirer were ever to assign a probability of zero or one to a
hypothesis under consideration, she would never be able to condition away
from the initial dogmatic assignment and hence would be entirely insensitive
to new evidence no matter how strong. While she might assign a very low
prior probability to the hypothesis that the evidence is SR but not MLR, in-
asmuch as she is interested in the truth, she cannot assign a probability of
zero. But, once on the table, she would never have empirical evidence that
supports both SR and MLR over SR but not MLR if she is restricted to stan-
dard computational resources.

That a good Bayesian agent may have evidence regarding limiting rela-
tive frequencies illustrates that the epistemic problem here is not a version of
the standard problem of induction. Even when an agent has full empirical in-
formation in the form of the complete infinite-length sequence j, she can have
no empirical evidence at all regarding whether j is both SR and MLR (and
hence intuitively compatible with any standard notion of randomness) or SR
but not MLR (and hence intuitively incompatible with all standard notions
of randomness) given standard computational resources.

4. Discussion. The argument here concerns both the objective nature of the
physical world and what we can know about it. A theory that says that a pro-
cess is random in a particular sense can only be true if the process is in fact
random in the sense specified. That said, the claim is not that quantum ran-
domness is in fact faithfully described by any particular notion of algorith-
mic randomness that we have discussed. We can think of no reason whatso-
ever to suppose that quantum randomness as exhibited in the physical world
is precisely characterized by SR but not MLR or by the significantly more
plausible notions of Schnorr randomness or Martin-Löf randomness them-
selves. These notions of randomness are defined in terms of our basic under-
standing of formal computability, and there is no grounds for believing that
physical law respects that. Rather, the argument is that objective standards of
randomness that are in the ballpark of capturing the properties that we expect
from the random results of the quantum coin-flip experiment, notions like SR
andMLR, are subtle enough as to be computationally (and hence empirically)
indistinguishable. Further, in the case of SR but not MLR, we see how one
might have a notion of randomness that one expects will select sequences
from a measure-zero subset of possible sequences, and hence violate a basic
commitment concerning the nature of objectively random quantum processes
(i.e., that they select typical sequences), yet is nevertheless computationally
indistinguishable from other standards of randomness that are in the ballpark
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of capturing the properties that we expect from the random measurement re-
sults. The upshot is that we cannot empirically distinguish between very dif-
ferent dynamical laws by standard computational means.

Among the consequences of quantummechanics is presumably the claim
that the quantum coin-toss experiment in fact models an objectively random
fair coin and hence selects a typical sequence in the Lebesgue measure-one
sense from the set of all possible sequences. In something like the standard
collapse formulation of quantum mechanics, the truth of a dynamical law of
nature is at stake—the dynamics of the world is such that either one should
expect one’s results to be randomly distributed in a particular specified way
or they are not. More concretely, most physicists would presumably expect
the actual results of a quantum coin toss to be both SR and MLR if they were
to consider the question. As we have seen, both of these notions plausibly
capture what it means for a sequence to be patternless and unpredictable, and
they satisfy the measure-one typicality intuition regarding what it means to
be a fair coin.

Of course, the point concerning the objectivity of quantum randomness
also applies in the context of a deterministic hidden-variable theory like
Bohmian mechanics. Here there is a physical matter of fact at stake concern-
ing whether particles are in fact randomly distributed in a particular specified
sense with respect to the wave function at a time. If they are, then the results
of the quantum coin-toss experiment should be expected to be randomly dis-
tributed in a corresponding sense; otherwise, all bets are off.

One strategy for avoiding the empirical underdetermination of quantum
randomness would be to appeal to a different notion of what it means for
a process to be random. Eagle (2005) has argued that randomness might
be understood as just unpredictability for a specified predictor. While the al-
gorithmic notions of randomness that we have considered are grounded in
the martingale idea that a random sequence should be unpredictable at a
specified level of computation, his proposal is more practically minded. Spe-
cifically, Eagle takes an event E to be random for a predictor Pwith a theory
T if and only if P’s posterior probability of E conditional on T and her current
evidence, is equal to her prior probability of E. The idea is that the event is
random if and only if a human agent P cannot in fact make better predictions
given her evidence of the current state than she could with just her theory.
Eagle wants a notion of randomness that takes into account the fact that real
predictors are severely limited in their epistemic and computational capac-
ities. He takes his account of randomness to be objective in the sense that
it is based on the objective features of real predictive agents.

Shifting to a notion of randomness like this would arguably allow one to
have straightforward evidence regarding the randomness of quantum events
relative, say, to the actual community of physicists given their de facto episte-
mic capabilities. The results of the quantum coin toss experiment are random
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on this view if and only if the physical community can do no better than to
predict the standard quantum probabilities. Since this has repeatedly proved
to be the case, we have substantial empirical evidence for the randomness of
quantum measurement results relative to the actual physics community over
its recent history given its formulation of quantum mechanics and its episte-
mic access to facts about the physical world.

Such a notion of randomness makes quantum randomness a property that
depends on the contingent practical properties of human agents rather than
an objective intrinsic property of the physical world. But inasmuch as one is
concerned with determining whether quantum mechanics has the physical
world right, the question is not one whether the community of physicists up to
now has been able to make predictions better than quantum mechanics allows
when they use quantum mechanics; rather, it is whether quantum mechanics
is right in characterizing the collapse as being a fundamentally random phys-
ical process in the context of something like the standard collapse theory or
of the initial distribution of particles being genuinely random in the context
of something like Bohmian mechanics. The question is whether the physical
world is in fact random in a concrete sense that supports the descriptions of
our best physical theories. Also salient here, the expected measure-theoretic
properties of random quantum sequences seem to be an essential part of our
theoretical commitments. In the case of the quantum coin-flip experiment, the
question iswhether the sequence of results can be expected to be typical—that
is, selected in an unconstrained way from a Lebesgue measure-one subset of
the set of all sequences. This reflects von Neumann’s theoretical commitment
to the results being arbitrary and capricious.21

Notions of algorithmic randomness allow us to consider ideal predictors
with computational abilities that outstrip our current, contingent abilities. This
allows us to specify part of the standard commitments of physicists with re-
spect to quantum mechanics, namely, those commitments that go beyond our
historically contingent capacities to predict. But, as we have seen, this comes
with a trade-off—the tools of algorithmic randomness allow us to specify
notions of randomness such that we cannot determine whether they in fact
obtain.

5. Epistemic Morals. We have seen how one might simply characterize a
set of sequences (those that are SR but not MLR) where each will always
appear to be patternless and will be empirically indistinguishable from a

21. While von Neumann was committed to quantum mechanics being indeterministic, it
is worth noting that algorithmic notions of randomness are compatible with determin-
ism. As a simple example, given the right sort of initial distribution of particles, the
quantum world may be deterministic as described by Bohmian mechanics and yet still
yield results that are expected to be MLR.
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standard measure-one notion of randomness like MLR given computable
resources. If nature were always to produce sequences drawn from this
measure-zero set, the quantum world would not be random, but one could
never know this by effective means. Indeed, as we have seen, there is a sense
in which one could never have any empirical evidence at all for accepting a
standard random dynamics if one were ever to allow for the possibility of
something like the nonstandard dynamics obtaining. And it is unclear the ra-
tional grounds on which one might rule out this entirely straightforward pos-
sibility—a possibility that might easily be tested if one had nonstandard com-
putational resources of sufficient strength.

This leaves us with a sort of empirical underdetermination that results
from computational limits and not from any lack of empirical evidence.
Even with the complete set of empirical evidence, full Turing computational
power, and the assumption that one’s data are statistically uniform, there is a
clear sense in which one can have no empirical justification whatsoever for
believing that the results of one’s quantum-mechanical experiments are ar-
bitrarily, independently, or randomly determined.

The practice of science often involves theoretical commitments that ex-
tend beyond our predictive capacities. These might concern the energy density
of the early universe or the continuity of space-time or the expected prop-
erties of infinite sequences of quantum coin flips. Such idealized commit-
ments often help us in formulating, reasoning about, and communicating the
content of our physical theories. But they do so at the cost of committing us
to claims that may not be empirically testable given our actual empirical and
computational capabilities.22

In the present case, if one is limited to computable resources, there is no
empirical content to insisting that quantum-mechanical results are genuinely
random, arbitrary, independent, or patternless. While one might be fully
committed to their being randomly determined given one’s intuitions regard-
ing dynamical simplicity or naturalness, one can have no empirical evidence
for so believing.
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