
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
The Automated Reconstruction and Analysis of High Resolution Spatial Models of Neuronal
Microanatomy

Permalink
https://escholarship.org/uc/item/5c04v3hw

Author
Perez, Alexander Joseph

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5c04v3hw
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

The Automated Reconstruction and Analysis of High Resolution Spatial Models of
Neuronal Microanatomy

A Dissertation submitted in partial satisfaction of the requirements
for the degree Doctor of Philosophy

in

Bioengineering

by

Alexander Joseph Perez

Committee in charge:

 Professor Mark H. Ellisman, Chair
 Professor Gabriel A. Silva, Co-Chair
 Professor Katerina Akassoglou
 Professor Andrew D. McCulloch
 Professor Gina E. Sosinsky

2014

Copyright

Alexander Joseph Perez, 2014

All rights reserved

iii

The Dissertation of Alexander Joseph Perez is approved, and it is acceptable in quality

and form for publication on microfilm and electronically:

Co-Chair

Chair

University of California, San Diego

2014

iv

DEDICATION

To my family,

Thank you for the support and guidance.

To the memory of my cousins, Andrew and Brian,

Thank you for the inspiration.

v

EPIGRAPH

The voyage of the best ship is a zigzag line of a hundred tacks.

– Ralph Waldo Emerson

vi

TABLE OF CONTENTS

Signature Page ...

iii

Dedication ...

iv

Epigraph ...

v

Table of Contents ...

vi

List of Abbreviations ...

ix

List of Figures ...

xi

List of Tables ..

xiv

Acknowledgements ...

xi

Vita ...

xviii

Abstract of the Dissertation ...

xxi

Chapter 1. Methods for Whole Cell Imaging at High Resolution and their
Applications in the Neurosciences ..

1

 1.1. Introduction ...

2

 1.2. Light microscopy ...

2

 1.3. Serial section transmission electron microscopy

5

 1.4. Serial block-face scanning electron microscopy

8

 1.5. Focused ion beam scanning electron microscopy

14

 1.6. Electron tomography ..

17

 1.7. Array tomography ...

21

 1.8. Discussion and future perspectives

23

Chapter 2. The Automatic Segmentation of Multi-scale Neuroanatomical
Features in 3D EM Image Stacks ...

28

 2.1. Introduction ..

29

 2.1.1. The manual segmentation bottleneck

29

 2.1.2. Automatic segmentation algorithms and their
applications in the neurosciences

41

 2.2. Methods Development and Results

48

 2.2.1. Data collection and pre-processing

48

 2.2.1.1. Tissue processing and SBEM image stack
acquisition ..

48

 2.2.1.2. SBEM stack alignment

49

 2.2.1.3. Image downsampling and conversion

50

 2.2.1.4. Histogram equalization

54

 2.2.2. Pixel classification ..

59

 2.2.2.1. Generation of training labels

59

 2.2.2.2. Training organelle-specific classifiers

60

 2.2.2.3. Computation of probability maps

62

 2.2.2.4. Assessment of classifier performance

64

vii

 2.2.2.5. Binarization of probability maps

66

 2.2.2.6. Comparison to a previously published
algorithm ...

70

 2.2.2.7. The impact of image downsampling on
automatic segmentation performance

79

 2.3. Discussion ...

79

Chapter 3. From Pixels to Structures: Constructing Models of Neuronal
Microanatomy ..

85

 3.1. Introduction ..

86

 3.1.1. Nuclear structure and function

88

 3.2. Methods Development and Results

94

 3.2.1. The multiplane automatic segmentation algorithm ..

94

 3.2.1.1. Description of the algorithm

95

 3.2.1.2. Implementation and Results

96

 3.2.2. Interslice interpolation of 3D objects

98

 3.2.3. Contour and mesh generation

106

 3.2.4. Tools for the automatic analysis of nuclear
morphology ...

123

 3.2.4.1. Nuclear and nucleolar morphology and
positioning ..

123

 3.2.4.2. Advanced metrics for characterizing
nuclear topology

131

 3.2.5. Delineation of individual neuronal compartments

141

 3.3. Discussion ...

161

Chapter 4. Chronomorphological Studies of the Mammmalian Supra-
chiasmatic Nucleus ..

164

 4.1. Introduction ..

165

 4.1.1. Neuroanatomy of the suprachiasmatic nucleus

172

 4.1.2. A history of biological chronomorphology

175

 4.2. Methods ...

185

 4.2.1. Tissue processing and SBEM imaging

185

 4.2.2. The subcellular chronomorphology of SCN neurons
studied by SBEM ...

186

 4.2.2.1. Nuclei and nucleoli...................................

186

 4.2.2.2. Mitochondria ...

187

 4.2.2.3. Stigmoid bodies

188

 4.2.3. Electron tomography of SCN organelles

192

 4.2.3.1. Serial section electron tomography of the
stigmoid body ...

192

 4.2.3.2. Electron tomography of neuronal nuclei ...

193

viii

 4.3. Results ..

194

 4.3.1. Nuclear volume, surface area, and topology

194

 4.3.2. Nucleolar number and volume

195

 4.3.3. Stigmoid body number and morphology

195

 4.4. Discussion ...

196

Chapter 5. Conclusions and Future Perspectives ..

212

 5.1. Contributions, significance, and limitations

213

 5.2. Future perspectives ...

215

Appendix A. A Survey of the Quantitative Methods Used in Published SBEM
Studies ...

227

Appendix B. Training Images and Labels ...

233

Appendix C. Source Code ..

254

Appendix D. Example Output from Automated Nuclear Analysis

326

References ...

336

ix

LIST OF ABBREVIATIONS

3V Third ventricle
ANOVA Analysis of variance
AT Array tomography
ATUM Automatic tape-collecting ultramicrotome
AuNP Gold nanoparticle
AVP Arginine vasopressin
BSA Bovine serum albumin
BSE Backscattered electron
CH Convex hull
CHD Convex hull difference
CHM Cascaded hierarchical model
CLAHE Contrast limited adaptive histogram equalization
CLEM Correlated light and electron microscopy
CPD Coherent point drift
CSV Comma-separated values
CT Computed tomography
cTEM Conventional transmission electron microscopy
DAB Diaminobenzadine
DCE Discrete curve evolution
DM Dorsomedial
dSTORM Direct stochastic optical reconstruction microscopy
ESEM Environmental scanning electron microscope
EHS Exact histogram specification
ER Endoplasmic reticulum
ET Electron tomography
FIBSEM Focused ion beam scanning electron microscopy
FDR False discovery rate
FNR False negative rate
FPR False positive rate
GFP Green fluorescent protein
GHE Global histogram equalization
GRP Gastrin-releasing polypeptide
GUI Graphical user interface
HAP1 Huntingtin-associated protein-1
HD Huntington’s disease
ICP Iterative closest point
IF Invagination factor
INM Inner nuclear membrane
ipRGC Intrinsically photosensitive retinal ganglion cell
IVEM Intermediate voltage electron microscope
LD Light:dark
MCC Matthews’ correlation coefficient
MPAS Multiplane automatic segmentation
MRI Magnetic resonance imaging
MSI Morphological skeleton interpolation
NBCR National Biomedical Computation Resource
NE Nuclear envelope

x

OC Optic chiasm
ONM Outer nuclear membrane
NPC Nuclear pore complex
NPV Negative predictive value
PNG Portable Network Graphics
RAM Random access memory
ROC Receiver operating characteristic
ROI Region of interest
SBEM Serial block-face scanning electron microscopy
SCN Suprachiasmatic nucleus
SEM Scanning electron microscope
SGE Sun Grid Engine
SLASH Scalable system for large data analysis and segmentation utilizing a

hybrid approach
SNR Signal-to-noise ratio
ssET Serial section electron tomography
ssSEM Serial section scanning electron microscopy
ssTEM Serial section transmission electron microscopy
STB Stigmoid body
SVR Surface area to volume ratio
TEM Transmission electron microscopy
TNR True negative rate
TPR True positive rate
UTSL Ultrathin section library
UHVEM Ultrahigh voltage electron microscope
VIP Vasoactive intestinal polypeptide
VL Ventrolateral
WT Wildtype

xi

LIST OF FIGURES

Figure 1.1. A schematic of the SBEM imaging process

10

Figure 1.2. A comparison of the pixel sizes and total image volumes used in a
sampling of publications that employed 3D EM methods

24

Figure 2.1. The manual segmentation of organelles from SBEM image stacks
represents a significant bottleneck to quantitative analyses

33

Figure 2.2. The collaborative segmentation workflow ...

36

Figure 2.3. The instructions given to volunteers for the task of segmenting nuclei
and nucleoli ...

37

Figure 2.4. An online portal to facilitate collaborative segmentation

38

Figure 2.5. A discussion board for volunteers to ask and answer questions
encountered while segmenting ...

39

Figure 2.6. The proposed method for image downsampling processes entire
datasets without stalling ...

52

Figure 2.7. The automatic detection of image borders

56

Figure 2.8. A flowchart of the steps involved in training data generation

61

Figure 2.9. ROC curves for CHM classifiers of various organelles

65

Figure 2.10. The binarization of probability maps using active contours initialized
by a multi-level Otsu threshold yields accurate segmentation
results ..

68

Figure 2.11. Binarization of probability maps using active contours outperforms
other methods ..

71

Figure 2.12. The results of the proposed method are consistent when applied to
diverse organelle targets ..

72

Figure 2.13. A full-slice CHM probability map for nuclei

73

Figure 2.14. A full-slice ilastik probability map for nuclei.......................................

75

Figure 2.15. ROC and precision-recall curves for CHM nuclear classifiers

77

Figure 2.16. ROC and precision-recall curves for an ilastik voxel classifier

78

Figure 2.17. Input images can be downsampled to various degrees before the
segmentation results are negatively affected

80

Figure 2.18. Automatic segmentation can be efficiently scaled to handle full slices
from teravoxel-sized SBEM datasets..

81

Figure 3.1. Nuclear invaginations are specific to certain populations of cells

92

Figure 3.2. The MPAS algorithm produces accurate probability maps for re-
sliced data in different orientations using a single pixel classifier

99

Figure 3.3. The application of MPAS to the automatic segmentation of nuclei
helps properly classify pixels near the nuclear envelope

101

Figure 3.4. A single interslice interpolation between two differently scaled and
translated circles ..

107

Figure 3.5. Multiple interslice interpolations between two differently scaled and
translated circles ..

109

xii

Figure 3.6. Multiple interslice interpolations between two differently scaled and
rotated squares ..

111

Figure 3.7. Multiple interslice interpolations between two differently scaled and
rotated segmentations of an invaginated nucleus

113

Figure 3.8. An example scenario in which automatic segmentation accuracy
benefits from post-processing by interslice interpolation

115

Figure 3.9. Replacing poorly segmented slices with interslice interpolations
increases morphological accuracy ...

117

Figure 3.10. A flowchart of the steps involved in contour and mesh generation
from large-scale automatic segmentations

121

Figure 3.11. Automatically generated surface renderings of nuclei from the ZT04
SCN SBEM dataset ..

124

Figure 3.12. Automatically generated surface renderings of nucleoli from the
ZT04 SCN SBEM dataset ..

126

Figure 3.13. Combined renderings of automatically segmented nuclei and
nucleoli from the ZT04 SCN SBEM dataset......................................

128

Figure 3.14. An example of the nuclear morphological characterization workflow

132

Figure 3.15. An example of the nucleolar positioning worfklow

134

Figure 3.16. An example of the nucleolar positioning workflow, Continued

136

Figure 3.17. The 3D convex hull for a single nucleus ...

143

Figure 3.18. 3D convex hull renderings for nuclei from a full SBEM volume

145

Figure 3.19. The local shape index scalar field for a nucleus with a single
invagination ..

147

Figure 3.20. The local shape index scalar field for a nucleus with multiple
invaginations ..

149

Figure 3.21. The local shape index scalar field for a heavily invaginated nucleus

151

Figure 3.22. The shape index and convex hull difference are able to discern small
qualitative differences in nuclear invagination

153

Figure 3.23. Neuronal compartments were delineated by manual segmentation
of the plasmalemma ...

155

Figure 3.24. Binary masks generated from neuronal segmentations are used to
separate organelles into their proper cellular compartments

157

Figure 3.25. Dataset-wide renderings of mitochondria belonging to three SCN
neurons ..

159

Figure 4.1. An overview of SCN neuroanatomy ..

166

Figure 4.2. The core transcriptional-translational feedback loop of the
mammalian circadian clock ...

170

Figure 4.3. Stigmoid bodies are cytoplasmic inclusions found in SCN neurons ..

190

Figure 4.4. The distribution of nuclear volumes in SCN neurons

199

Figure 4.5. The distribution of nuclear surface areas in SCN neurons

200

Figure 4.6. The mean values of topological descriptors for nuclear invagination
in nuclei of SCN neurons ..

201

xiii

Figure 4.7. Electron tomography of SCN nuclei reveals the ultrastructural
characteristics of nuclear invaginations ..

202

Figure 4.8. The distribution of total nucleolar volume in SCN neurons and the
percentage of neurons containing multiple nucleoli

204

Figure 4.9. The distribution of nucleolar volume fraction in SCN neurons

206

Figure 4.10. The distribution of stigmoid body volume in SCN neurons and the
percentage of neurons containing stigmoid bodies

207

Figure 4.11. The mean values of topological descriptors for stigmoid bodies in
SCN neurons ..

209

Figure 4.12. Stigmoid bodies contain tunnels associated with the endoplasmic
reticulum ...

210

Figure 5.1. A survey of the SBEM literature revealed that the vast majority of
studies did not employ automatic or semi-automatic analyses

217

Figure 5.2. A flowchart of the workflow demonstrating proposed future
developments ..

220

Figure 5.3. A flowchart of the workflow demonstrating proposed future
developments that includes automatic corrections

222

Figure 5.4. A demonstration of preliminary results from the automatic workflow
for classifying mitochondrial morphology ..

224

Figure 5.5. A subset of ten manually segmented neurons

226

xiv

LIST OF TABLES

Table 2.1. An expedited approach to the downsampling of SBEM image stacks

51

Table 2.2. Computational requirements for organelle-specific pixel
classification ..

63

Table 2.3. Segmentation evaluation metrics for the tested organelle targets
using various methods of probability map binarization

69

Table 3.1. A nuclear segmentation generated automatically by MPAS yields a
more faithful representation of ground truth morphology

98

Table 3.2. The metrics automatically computed and output during the
morphological analysis of nuclei ..

131

Table 3.3. The shape index and convex hull diference are able to discern small
qualitative differences in nuclear invagination

141

Table 4.1. A survey of significant chronomorphological studies and their
pertinent results ..

179

Table 4.2. Imaging parameters used during SBEM dataset acquisition

186

Table 4.3. Imaging parameters used for the collection of tomographic tilt series
of SCN nuclei ...

193

Table 4.4. The results of nuclear morphological characterization for three SCN
SBEM datasets ..

194

Table 4.5. Nucleolar volume and positioning in SCN neurons with single and
multiple nucleoli ...

196

xv

ACKNOWLEDGEMENTS

 As a high school senior writing my application to UCSD, I remember looking down

the list of majors offered, seeing bioengineering, and thinking to myself “what is that?”

Quite frankly, I had no clue. But I knew that I liked biology, computers, and playing with

numbers, so maybe this was the field for me. I applied to the major on a whim, got

accepted, stumbled around for my first year, fell in love with science during my second,

and wound up staying for a Ph.D. Despite so much uncertainty, there has always been

one constant throughout my time at UCSD – the support of my family. From my decision

to move to San Diego to my decision to enter graduate school, I have always had the

unequivocal backing and guidance of my parents, and for that I will always be grateful.

 Throughout the years, my passion for microscopy has truly been cultivated by my

mentors at NCMIR. First and foremost, I’d like to thank my advisor, Mark Ellisman, for

affording me the opportunity to spend my pre-doctoral years working at the cutting edge

of the field. It was through his supervision that I was encouraged to collect more data than

I knew what to do with while being provided with the tools and support necessary to

engineer innovative ways to analyze it. My undergraduate advisor, Guy Perkins, has also

played a huge role in the development of my scientific career. Rather than view me in the

manner by which many scientists look at undergraduates, he trained me like a true

researcher and gave me independent projects to work on that directly inspired me to

pursue a Ph.D. I will always be thankful to him for this approach to mentorship.

 My dissertation committee members have provided valuable and encouraging

feedback throughout the formulation of the work presented in the following pages. I am

thankful for the guidance they have provided in helping this effort come to fruition. In

particular, I would like to thank Gina Sosinsky for kindly taking the time to discuss my

xvi

project and help brainstorm the most logical way to tell this story. For graciously providing

the funding that made the bulk of my graduate studies possible, I would like to thank the

San Diego Fellowship organization and Vivian Hook for granting me a position on her

NIH/NIDA training grant.

 One of the greatest perks of working in a lab as diverse as NCMIR has been the

ability to interact with and learn from a talented and eclectic group of neuroscientists,

engineers, and computer scientists, both on-campus and off. Much of the work presented

in this dissertation has been performed in collaboration with the labs of Satchin Panda at

the Salk Institute and Tolga Tasdizen at the SCI Institute of the University of Utah, and I

will always be indebted to them for their encouraging feedback and the myriad

opportunities they have provided for me. I would like to particularly thank Mojtaba

Seyedhosseini from SCI for introducing me to the cascaded hierarchical model and

teaching me how to apply it to biological data. The animals used in the studies presented

here were provided by Satchin Panda’s lab, and tissues, grids, and datasets were

prepared and acquired in collaboration with Tom Deerinck, Monica Berlanga, Eric

Bushong, Christine Kim, and Andrea Thor at NCMIR. I am thankful to them for providing

the animals and much of the data that made this dissertation possible. I am especially

thankful to Monica Berlanga, whose mentorship and guidance were greatly influential

throughout my time at NCMIR. Much of the work presented here was greatly inspired by

our work together, and I will always be appreciative of her for truly making me feel like an

integral part of the lab for the first time.

 In addition to these collaborations, I have had the unique privilege of being trained,

mentored, and assisted by so many other wonderful people at NCMIR that it seems foolish

to list them all, but I’m going to try anyways. David Lee, Chris Churas, and Willy Wong

provided me with much support and guidance on the computational side of my project,

xvii

and many of the large-scale segmentations presented here would not have been possible

without their help and access to computational resources and seemingly endless supplies

of CPU years. I am very thankful for the great EM training provided to me by Mason

Mackey, as well as the many laughs and trips to La Costa. James Bouwer, Tristan Shone,

and Tomas Molina provided invaluable guidance and troubleshooting during the collection

and processing of the bulk of the tomographic data presented in this thesis. Much of my

desire to pursue cellular reconstructions at large scales was inspired by discussions with

Andrew Noske and Rick Giuly, and I am appreciative of their time and assistance. Edmond

Negado, Vicky Rowley, and the rest of the IT team at NCMIR provided me with great

support and put up with accommodating and moving around massive amounts of my data.

I promise I’ll clean it up soon.

 Last but not least, I would like to thank the many people who have made my time

as a graduate student at NCMIR enjoyable on a social level. Tapi, Nate, Don, Felix, Niko,

Phuong, Guillaume, Mason, Andrea, James, Tristan, Monica, Andrew, Rick, and so many

others. From lunches and birthday parties to celebrating the Giants’ World Series victories

to the NCMIR fantasy football league and World Cup pool. Being in the same lab as all of

you has truly been a blast. Thank you for the great memories.

 Chapter 2, in part, is a reprint of the material as it appears in Frontiers in

Neuroanatomy, 2014, 8(126). Perez, A.J., Seyedhosseini, M., Deerinck, T.J., Bushong,

E.A., Panda, S., Tasdizen, T., and Ellisman, M.H. The dissertation author was the primary

investigator and author of this paper.

xviii

VITA

2004-2005 Scientific Intern, Department of Vascular Biology, The Scripps
Research Institute, La Jolla, California

2006-2007 Research Assistant, National Center for Microscopy and Imaging
Research, University of California, San Diego

2007 Bachelor of Science, Department of Bioengineering, University of
California, San Diego

2007 Teaching Assistant, Department of Mechanical Engineering, University
of California, San Diego

2008 Master of Science, Department of Bioengineering, University of
California, San Diego

2008-2010 Teaching Assistant, Department of Bioengineering, University of
California, San Diego

2009-2014 Graduate Student Researcher, National Center for Microscopy and
Imaging Research, University of California, San Diego

2014 Doctor of Philosophy, Department of Bioengineering, University of
California, San Diego

PUBLICATIONS

Perez, A.J., Seyedhosseini, M., Deerinck, T.J., Bushong, E.A., Panda, S., Tasdizen, T.,
and Ellisman, M.H. (2014). A workflow for the automatic segmentation of organelles in
electron microscopy image stacks. Frontiers in Neuroanatomy, 8(126), 1-13.
doi:10.3389/fnana.2014.00126

Perkins, G.A., Scott, R., Perez, A., Ellisman, M.H., Johnson, J.E., and Fox, D.A. (2012).
Bcl-xL-mediated remodeling of rod and cone synaptic mitochondria after postnatal lead
exposure: Electron microscopy, tomography, and oxygen consumption. Molecular Vision,
18, 3029-3048. PMid: 23288995.

Kim, C.E., Perez, A., Perkins, G.A., Ellisman, M.H., and Dauer, W.T. (2010). A molecular
mechanism underlying the neural-specific defect in torsinA mutant mice. Proceedings of
the National Academy of Sciences U.S.A., 107(21), 9861-9866. doi:
10.1073/pnas.0912877107

Perkins, G.A., Sosinsky, G.E., Ghassemzadeh, S., Perez, A., Jones, Y., and Ellisman,
M.H. (2008). Analysis of the cross-bridges in the paranodal region of the node of Ranvier
by electron tomography. The Journal of Structural Biology, 161, 469-480.
doi:10.1016/j/jsb.2007.10.005

xix

Saini, V., Martyshkin, D.V., Mirov, S.B., Perez, A., Perkins, G., Ellisman, M.H., Wu, H.,
Pereboeva, L., Borovjagin, A., Curiel, D.T., and Everts, M. (2008). An adenoviral platform
for selective self-assembly and targeted delivery of nanoparticles. Small, 4(2), 262-269.
doi: 10.1002/smll.200700403

Saini, V., Enervold, M.R., Perez, A., Koploy, A., Perkins, G., Ellisman, M.H., Green, H.N.,
Mirov, S.B., Zharov, V.P., and Everts, M. (2007). “Targeting nanoparticles to tumors using
adenoviral vectors,” in 2007 NSTI Nanotechnology Conference, 2, 321-324.

ABSTRACTS & CONFERENCE PROCEEDINGS

Perez, A.J., Seyedhosseini, M., Churas, C., Kim, K.-Y., Hatori, M., Bushong, E.A.,
Deerinck, T.J., Le, H., Panda, S., Tasdizen, T., and Ellisman, M.H. (2014). Workflows for
the automatic segmentation and characterization of organelle morphology and distribution
in electron microscopy image stacks. Society for Neuroscience 2014, Washington, D.C.,
U.S.A.

Perez, A.J., Seyedhosseini, M., Tasdizen, T., Ellisman, M.H. (2014). Automated workflows
for the morphological characterization of organelles in electron microscopy image stacks.
Experimental Biology 2014, San Diego, CA, U.S.A.

Perez, A.J., Berlanga, M.L., Kim, K.-Y., Johnson, D.D., Hatori, M., Bushong, E.A.,
Deerinck, T.J., Le, H., Seyedhosseini, M., Giuly, R.J., Lee, D., Jurrus, E., Tasdizen, T.,
Ellisman, M.H., Panda, S. (2013). Morphological plasticity of the mouse suprachiasmatic
nucleus revealed by a multiscale imaging approach. Society for Neuroscience 2013, San
Diego, CA, U.S.A.

Schachtrup, C., Ryu, J.K., Carlton, P.M., Le Moan, N., Perez, A., Vagena, E., Ellisman,
M.H., Wyss-Coray, T., Akassoglou, K. (2013). Regulation of astrocyte activation by the
cleaved p75 neurotrophin receptor. XI European Meeting on Glial Cell Function in Health
and Disease, Berlin, Germany.

Schachtrup, C., Ryu, J.K., Carlton, P.M., Le Moan, N., Perez, A., Ellisman, M.H., Wyss-
Coray, T., Akassoglou, K. (2012). Regulation of astrocyte activation by the cleaved p75
neurotrophin receptor. NGF 2012, Würzburg, Germany.

Fox, D.A., Perkins, G.A., Johnson, J.E., Giddabasappa, A., Chaney, S., Brown, J.,
Lahsaei, P., Ghassemzadeh, S., Perez, A., Dixit, A., Ellisman, M.H. (2007). Differential
susceptibility of rod photoreceptor synaptic and non-synaptic mitochondria to divalent
cation exposure: Neuroprotection by Bcl-xL overexpression. Mitochondrial Medicine,
Pacific Beach, CA, U.S.A.

Fox, D.A., Perkins, G.A., Johnson, J.E., Giddabasappa, A., Chaney, S., Brown, J.,
Lahsaei, P., Ghassemzadeh, S., Perez, A., Dixit, A., Ellisman, M.H. (2007). Differential
susceptibility of rod photoreceptor synaptic and non-synaptic mitochondria (Mt) to lead
and protection by Bcl-Xl. ARVO Meeting, Fort Lauderdale, FL, U.S.A.

xx

Saini, V., Enervold, M.R., Perez, A., Koploy, A., Perkins, G., Ellisman, M.H., Green, H.N.,
Mirov, S.B., Zharov, V.P., Everts, M. (2007). Targeting nanoparticles to tumors using
adenoviral vectors. NSTI Nanotechnology (BioNano) Conference, Santa Clara, CA,
U.S.A.

Saini, V., Perez, A., Koploy, A., Perkins, G., Ellisman, M.H., Nikles, D.E., Everts, M.
(2007). Adenoviral platform for selective assembly and targeted delivery of gold
nanoparticles to tumor cells. Nanotechnology in Biomedicine, Keystones Symposia,
Tahoe City, CA, U.S.A.

Fox, D.A., Perkins, G.A., Johnson, J.E., Giddabasappa, A., Chaney, S., Brown, J.M., Wu,
I., Lahsaei, P., Ghassemzadeh, S., Perez, A., Dixit, A. and Ellisman, M.H. (2006).
Differential regulation and susceptibility of mouse rod photoreceptor inner segment and
synaptic terminal mitochondria to divalent cation-induced overload. XVII International
Congress of Eye Research, Buenos Aires, Argentina.

xxi

ABSTRACT OF THE DISSERTATION

The Automated Reconstruction and Analysis of High Resolution Spatial Models of

Neuronal Microanatomy

by

Alexander Joseph Perez

Doctor of Philosophy in Bioengineering

University of California, San Diego, 2014

Professor Mark H. Ellisman, Chair

Professor Gabriel A. Silva, Co-Chair

 Electron microscopy (EM) facilitates analysis of the structure, distribution, and

functional status of organelle networks within the nervous system. Recent breakthroughs

in EM specimen preparation and instrumentation have furnished scientists with the ability

to automatically collect volumetric datasets large enough to cover significant swaths of

xxii

neuroanatomical subdivisions at nano-resolution. The quantification of biological

morphologies from these data, however, typically requires image segmentation, which is

a long-standing and well-recognized bottleneck. Though datasets may now be collected

at rates exceeding teravoxels per day, the manual segmentation and analysis of all

features from such a volume requires many years of human labor. As technological

advances driven by the desire to reconstruct entire nervous systems continue to push

instrument throughput skyward, it is clear that our ability to model brain ultrastructure will

be limited by the rate of image analysis rather than that of image acquisition.

 The body of work described in this dissertation represents a contribution towards

alleviating this impediment. A pipeline for the automatic segmentation, morphological

quantification, and spatial characterization of organelles from high resolution datasets at

the teravoxel-scale is presented. Segmentations were generated using a highly

parallelized, supervised machine learning approach that reduces the required human

effort from years to just a few hours. A host of generic and organelle-specific post-

segmentation filters were developed, and it is shown that their application improves

segmentation accuracy. Accelerated approaches for generating surface renderings from

these large-scale segmentations are introduced, and a workflow for the automatic

computation and reporting of morphological, topological, and spatial metrics is described.

These methods were then applied to study the spatiotemporal changes of organelles in

neurons of the mouse suprachiasmatic nucleus across the diurnal cycle. Novel findings

pertaining to nuclear structure and organization are reported and discussed. Taken

together, the methods described here provide a series of tools for expediting the

quantitative analysis of organelle structure-function relationships in the current era of big

data in biological microscopy.

1

Chapter 1

Methods for Whole Cell Imaging at High Resolution and Their Applications

in the Neurosciences

2

1.1. Introduction

Over the past decade, the field of neuroscience has experienced a renewed

enthusiasm and commitment towards exploring and understanding the structural

underpinnings of how the brain works. Such pursuits have generated a palpable buzz in

the scientific community that has noticeably extended to the general population. Indeed,

the launches of the BRAIN Initiative and Human Brain Project, two ventures driven by the

desire to better map and understand the human brain, have brought mainstream attention

to a field that was previously bereft of it (Abbott, 2013; Insel et al., 2013). It is widely

acknowledged that this rejuvenation is the product of the rapid development and

proliferation of technologies for preparing, imaging, and reconstructing regions of the brain

at unprecedented scale and resolution (Knott and Genoud, 2013; Peddie and Collinson,

2014). As a result of this technological progress, neuroscientists now have a toolbox of

modalities at their disposal that enables the rapid and automatic imaging of large volumes

of the brain at the level of ultrastructural, and sometimes molecular, resolution.

The rest of this chapter will serve as an introduction to the individual components

of this imaging toolbox, describing their histories, applications, and associated

technological breakthroughs. Particular focus will be paid to the ability of each modality to

image organelles and other nanoscale features within the subcellular compartment.

Finally, the conclusion of this chapter will feature a look towards the future of the field and

establish the importance of the technologies developed in this dissertation.

1.2. Light microscopy

 From the pioneering neuroanatomical studies of Santiago Ramón y Cajal and

Camillo Golgi (Cajal, 1906; Golgi, 1906) to the current wealth of modalities designed to

surpass the resolution barrier imposed by light’s diffraction limit (Patterson et al., 2010),

3

light microscopy (LM) and its associated technologies have proven indispensable to the

neurosciences. In early studies, such as those of Ramón y Cajal and Golgi, cells could

only be visualized if they were first darkly stained to provide contrast in the optical

microscope. As an additional hurdle, useful depictions were only possible if this staining

was unique to just a very small subset of neurons within the field of view; if too many

neurons were dark, the resultant microscopic image would resemble an indecipherable

mass of stain. Though unproven at the time, this additional layer of complexity was present

because individual fibers of the neuropil are frequently smaller than the wavelength of

light, rendering them unresolvable from one another by conventional LM (Denk and

Horstmann, 2004). Fortunately, the staining method developed by and named after Golgi

achieved this requisite selective labeling via the deposition of silver chromate at neuronal

membranes following fixation of tissues with potassium dichromate and silver nitrate

(Pannese, 1999). By a mechanism that remains unknown, Golgi’s method specifically and

randomly labels only a small subset of neurons in their entirety, a fact that made it ideal

for early studies on neuronal morphology.

Though such methods laid the groundwork for modern neuroscience, they were

limited to the depiction of gross cellular morphologies; intricate views of subcellular

compartments remained largely beyond the capabilities of LM alone. This changed with

the advent and widespread adoption of fluorescence microscopy, which, combined with

significant advances in instrumentation, has enabled neuroscientists to view subcellular

components with increasing levels of clarity (Wilt et al., 2009). Though early applications

of fluorescence microscopy were limited to organic dyes attached to proteins of interest

via antibodies, fluorophores that could directly recognize organelles (Buckman et al.,

2001), DNA (Kapuscinski, 1995; Smith et al., 2000), lipids (Gan et al., 2000), and ions

(Grynkiewicz et al., 1985; Miyawaki et al., 1997) were subsequently developed. The

4

introduction of genetically encodable fluorescent proteins, such as green fluorescent

protein (GFP), allowed for precise fluorophore targeting via covalent linkage to the protein

of interest and the generation of fluorescence without the need for additional cofactors

(Tsien, 1998; Giepmans et al., 2006). From an instrumentation standpoint, the

commercialization of confocal microscopes (White and Amos, 1987) and the subsequent

introduction of two-photon systems (Denk et al., 1990) have enabled researchers to image

fluorescent signals with improved clarity from increasing tissue depths. Modalities that

allow for the localization of fluorophores at resolutions finer than the diffraction limit of light

(Gustafsson, 2000; Betzig et al., 2006; Rust et al., 2006) have found numerous

applications in the neurosciences, including the detailed localization of synaptic

cytoskeletal filaments (Pielage et al., 2008) and receptor proteins (Dani et al., 2011).

Though the aforementioned breakthroughs have increased our ability to resolve

the location of small intercellular components using LM, such visualizations remain

restricted to compartments or proteins that have been fluorescently tagged. Structures

that have not been tagged remain hidden, and even tagged structures do not yield a

continuous view of ultrastructure or membrane topology. Ideally, images of the same

region could be acquired using both EM and fluorescence LM and combined with one

another to simultaneously yield both molecular localization and fine ultrastructure. This

process, known as correlated light and electron microscopy (CLEM), is currently a major

focus within the community. One early success in the field of CLEM was the use of

quantum dots, which can be engineered to label desired protein targets for LM and

possess a molecular weight great enough to scatter electrons and appear opaque in

electron micrographs (Giepmans et al., 2005; Silva, 2006). Though such approaches were

promising, microscopists, inspired by the success of GFP, desired a probe for CLEM that

could be genetically encoded. One such approach involves the use of a genetically

5

encodable fluorophore that can also generate the singlet oxygen required to polymerize

diaminobenzadine (DAB) through a process known as photoconversion (Deerinck et al.,

1994). Such DAB precipitates are osmiophilic, and therefore render the same tagged

structures visible as electron dense clouds in EM micrographs. This principle led to the

development of a number of genetically encodable tags for CLEM, including FLAsH and

ReAsH (Gaietta et al., 2002; Sosinsky et al., 2003), miniSOG (Shu et al., 2011), and APEX

(Martell et al., 2012). In addition, a recent report has demonstrated the retention of GFP

fluorescence following resin embedding and EM preparation (Peddie et al., 2014), a

process that provides an alternative, but still genetically encodable, pathway for CLEM.

Although such CLEM techniques are promising, they remain in the early stages of

development. Furthermore, though some researchers have acquired large-scale volumes

of the brain using multiphoton fluorescence microscopy with stage mosaicking (Chow et

al., 2006; Berlanga et al., 2011), Brainbow labeling (Cai et al., 2013), and CLARITY

(Chung and Deisseroth, 2013), the resolution of such methods is limited. For example, the

volume of -synuclein immunoreactivity in the mouse brain acquired by Price and

colleagues has a lateral pixel size of 0.24 μm (Price et al., 2006), a value that is far too

coarse to resolve the ultrastructure of individual organelles or track membrane curvature.

As such, the electron microscope and its related technologies remain uniquely adapted

for providing images that can be used to simultaneously study subcellular ultrastructure

as well as the connectivity between cells of the nervous system.

1.3. Serial section transmission electron microscopy

The invention of the first glass knife microtome capable of cutting thin sections

from plastic-embedded specimens (Porter and Blum, 1953) allowed for TEM-based

ultrastructural studies of a number of organelles, including mitochondria (Palade, 1952),

6

ribosomes (Palay and Palade, 1955), and the endoplasmic reticulum (Palade and Porter,

1954). These ground-breaking studies established much of our baseline knowledge of the

structure and function of the machines that drive biological processes at the cellular level.

However, since many subcellular components and organelles are significantly larger than

the thickness (~50-100 nm) of the sections used for conventional TEM, individual

micrographs can be misleading with respect to organelle morphology. The most intuitive

first approach to circumventing this problem is to cut thicker sections that have a greater

probability of containing entire organelles. Unfortunately, as section thickness increases,

so do electron scattering events and chromatic aberration, effects that quickly degrade

image quality. Since early TEMs did not operate at voltages sufficient enough to limit these

effects by increasing the initial acceleration of the electron beam, microscopists had to

develop other methods to explore complete 3D morphologies.

In the first of these methods, known as serial section transmission electron

microscopy (ssTEM), ribbons of consecutive thin sections are cut from the block-face

using a microtome and collected, in the same order in which they were cut, onto EM grids

(Gay and Anderson, 1954; Sjöstrand, 1958). The same region of interest (ROI) is then

imaged from each section, resulting in a stack of images spaced apart by the cutting

thickness of the microtome. Such a stack can then be used to track individual organelles

or neuronal processes across sections, producing complete and high resolution 3D

morphologies. The development and evolution of methods to furnish such 3D

reconstructions are discussed in detail in Chapter 2.

Early studies using ssTEM explored the frog muscle spindle (Karlsson et al., 1966)

and studied the organization of organelles in neuronal somata of the rat lateral geniculate

nucleus (Karlsson, 1966). In the latter study, quantitative data, including length, surface

area, and volume, of organelles such as the Golgi apparatus, mitochondria, and nucleus

7

were provided. A sampling of subsequent studies reveals that ssTEM has been employed

to establish both structure (Fiala et al., 1998; Harris, 1999; Huang et al., 1998) and

connectivity (Sjöstrand, 1974; Chalfie et al., 1985; Hall and Russell, 1991; Mishchenko et

al., 2010; Cardona et al., 2010) in the brain. In a seminal study conducted by a team led

by Sydney Brenner at the MRC Laboratory for Molecular Biology, the entire nervous

system of the nematode Caenorhabditis elegans, including all neuronal processes and

synapses, was mapped using ssTEM (White et al, 1986). Though this task was certainly

simplified by the fact that the entire C. elegans nervous system contains only 302 neurons,

this study remains the only instance in which the entire neuronal wiring diagram, or

connectome, of any organism has been successfully mapped.

Despite the fact that ssTEM still enjoys widespread use (Lu et al., 2014; Fuchs et

al., 2014), its labor-intensive reputation is well established. Even today, all steps involved

in the process, including specimen preparation, section cutting and collecting, imaging,

and reconstruction, require some degree of interaction by highly trained experts.

Consequently, the technique is highly prone to human error; if sections or images from the

middle of a series are lost or damaged, the whole series may be jeopardized. As a result

of such errors, the reconstruction of the C. elegans connectome necessitated the

combination of images from different regions of several worms (Seung, 2013). Further,

even if the high risk for human error is ignored, the sheer task of collecting large volumes

with ssTEM remains daunting. The C. elegans dataset consisted of images from roughly

8,000 sections cut to thicknesses of 50 nm (White et al., 1986), and Karlsson’s datasets

of the frog muscle spindle approached 10,000 sections each (Karlsson et al., 1996). On

account of these astonishingly large numbers, it is readily apparent that ssTEM would

become much more feasible if the need to manually cut and collect sections were removed

from the equation. Moreover, one can imagine that further ease would be introduced if the

8

imaging process could be automatically synchronized to coincide with each successive

cut. Fortunately, practitioners of the field were in luck; the introduction of the serial block-

face scanning electron microscope (SBEM; Leighton, 1981; Denk and Horstmann, 2004)

simultaneously achieved both of these goals and revolutionized the field of large-scale 3D

EM.

1.4. Serial block-face scanning electron microscopy

With the aid of hindsight, the idea that led to the invention of SBEM seems

relatively intuitive: instead of cutting thin sections from a block and producing images of

these sequential sections, the block itself is imaged following repeated section removals.

If this continuously repeating cycle of cuts followed by image acquisitions could be

automated, the entire process of ssTEM would be emulated without the need for human

manipulation, thereby significantly reducing the risk of section loss or damage (Figure 1.1).

Furthermore, if the surface of the block were imaged at a fixed position relative to the

primary electron beam and detector, the output stack of images would already be

essentially aligned from one section to the next without the risk of section warping or the

need to re-align the microscope following each cut.

A machine capable of automating this process requires two principle components:

(1) a microscope other than the TEM, whose electron beam must penetrate the sample to

produce image contrast, and (2) a means to automatically plane thin sections off of the

block-face from within the chamber of the microscope. Both of these needs were first

addressed by Leighton (Leighton, 1981) who, in 1981, developed an ultramicrotome

capable of cutting sections off of a resin-embedded block from within the chamber of a

scanning electron microscope (SEM). The SEM used by Leighton, which produced image

contrast based on the detection of electrons emitted from the sample’s surface when it

9

was scanned by a primary electron beam, seemed perfect for imaging block-faces.

However, Leighton’s images based on the detection of these so-called secondary

electrons were marred by a significant artifact: surface charging. Plastic-embedded

biological samples are not naturally conductive and therefore act as insulators in the SEM,

trapping electrons at and just below the surface of the sample. This accumulation of

negative charge leads to a surface potential across the block face and a deceleration of

incident electrons. Due to the heterogeneous nature of biological tissues, these reduced

landing energies are non-uniform across the block, a problem that causes significant

distortions in the resultant image. For this reason, Leighton had to remove the sample

from the chamber and coat it with a layer of conductive metal before satisfactory images

could be obtained. Since such coating steps made full automation impossible, and

because image collection and storage systems remained primitive in 1981, Leighton’s

invention did not immediately catch on.

One approach to mitigating the impact of surface charging when imaging non-

conductive specimens is the use of an environmental scanning electron microscope

(ESEM), which maintains a low concentration of gas within its chamber (Donald, 2003).

Positively charged ions are generated as the primary electron beam impinges upon gas

molecules in the ESEM’s chamber, and these ions serve to neutralize the negative charge

that accumulates at the block-face. The use of this “low-vacuum” mode of operation was

the first of many innovations employed by Denk in his version of the SBEM (Denk and

Horstmann, 2004). Additionally, Denk opted to use a significantly higher beam

accelerating voltage (7.5 keV) to allow for the detection of backscattered electrons (BSEs),

which are incident electrons from the primary beam that have been elastically scattered

out of the specimen’s interacting volume due to collisions with its atoms. Importantly, BSE

10

Figure 1.1. A schematic of the SBEM imaging process. (Top) A BSE image of the
block-face (yellow) is acquired while the diamond knife (blue) is retracted. After this image
has been acquired, the block is advanced in the direction of the knife by the desired axial
step size, a value that typically falls in the range of 20-100 nm. The diamond knife is then
advanced across the block-face (right), planing off a section of the user-specified
thickness (bottom). These loose sections can often accumulate on the knife, and therefore
must be removed from time to time to minimize the risk of block-face occlusion. The knife
is then retracted across the planed block-face to its initial position (left). A new image is
acquired once it has been fully retracted, thus starting the cycle anew. The X and Y
dimensions are specified by the raster size at the plane of the block-face, while the Z
dimension is specified by incremental steps through the depth of the block. The black
semi-circle represents tissue that has been processed for SBEM imaging to provide
optimal contrast and surface conductivity.

11

12

detection holds a major advantage over secondary electron detection when imaging the

block face: BSE scattering is strongly dependent upon the charge of the atomic nucleus

that the primary electron collides with. This creates ideal contrast when imaging blocks

embedded with conventional heavy metal stains, and the BSE images acquired by Denk

closely resembled conventional TEM micrographs. To maintain the block in the same

position for optimal slice-to-slice registration, Denk designed a custom diamond knife

microtome in which the block is advanced by a specified amount prior to cutting. Such a

design maintains the lateral position of the block-face as a constant and facilitates

registration without the need to re-focus after each cut (Denk and Horstmann, 2004).

Unfortunately, a major disadvantage of imaging in low-vacuum mode lies in the

fact that the gas molecules within the chamber can scatter primary and backscattered

signals, leading to a reduction in signal-to-noise ratio (SNR). Therefore, the dwell time,

measured as the time the primary electron beam must spend to generate one pixel on the

detector, must be increased to provide more signal. Although dwell times used for SBEM

are typically no more than a few microseconds, the size of current detectors, such as the

one used in this dissertation (7.68 x 108 pixels), is large enough to make this the rate-

limiting step of the SBEM process. Ideally, the SEM chamber should be maintained at as

high of a vacuum as possible to allow for decreased dwell times. However, this would of

course require an alternate method for increasing specimen conductivity. One obvious

way to achieve this is to coat the block face with a thin layer of metal after each cut has

been made. Though a device capable of this in-chamber coating has been produced (Titze

and Denk, 2013), it is still in the early stages of development. Furthermore, such layers

may also decrease SNR by generating BSEs of their own that do not contain information

about the block-face. An alternative method introduced by Deerinck and colleagues, and

one that has proven very successful, is to enhance conductivity by increasing the amount

13

of heavy metals deposited while the tissue is being stained (Deerinck et al., 2010). This is

done using an osmium tetroxide-thiocarbohydrazide-osmium tetroxide (OTO) stain to

increase osmium deposition followed by uranyl acetate treatment and en bloc lead

aspartate staining. Specimens stained in such a manner produce high contrast images

mostly devoid of surface charging artifacts even in chambers held at ultrahigh vacuum

levels, thereby allowing pixel dwell times to be decreased.

The automated nature of SBEM means that the amount of data that can be

collected from one block is practically bounded by how long the experimenter wants to

leave the machine running and how much storage space they have available. A single-

slice, 16-bit SBEM image of pixel dimensions 32,000 x 24,000 requires approximately 1.54

GB of hard disk space. This means that typical image stacks in the range of 1,000 sections

require multiple terabytes of space just to store the raw images. Further, as a conservative

estimate, the storage space needed should be doubled to account for any ensuing post-

processing or reconstruction steps. In some of the largest scale SBEM studies to be

published thus far, researchers working with Denk used mosaicking to collect datasets

with dimensions of 8,192 x 7,072 x 3,200 (1.2 x 106 μm3; Helmstaedter et al., 2013) and

3,584 x 21,658 x 13,000 (6.3 x 106 μm3; Briggman et al., 2011) voxels. These datasets

were used to create connectomics-based wiring diagrams of circuits in the mouse retina.

Although most large-scale SBEM reconstructions have been inspired by connectomics, a

number of smaller scale studies have dealt with more manageable biological questions,

including the organization of chromatin (Rouquette et al., 2009), the volumes of synaptic

boutons and dendritic spines (Wilke et al., 2014), and the lengths of collagen fibrils (Kalson

et al., 2013).

Image stacks generated by SBEM can cover a wide range of pixel and raster sizes,

making the modality adaptable to the various goals of individual experiments. A recent

14

survey of the SBEM literature found that reported lateral resolutions ranged from 5-80

nm/pixel, while reported axial resolutions ranged from 25-100 nm/slice (Peddie and

Collinson, 2014). One commonality is that in almost all practical use cases, SBEM is an

anisotropic imaging modality; the cutting thickness tends to be many times greater than

the lateral pixel size. While this is typically not an issue, some segmentation and

reconstruction algorithms yield superior results when voxel dimensions are isotropic

(Sommer et al., 2011). Additionally, some features, such as ER sheets, synaptic vesicles,

and postsynaptic densities, are difficult to reliably track across sections spaced >20 nm

apart. For experiments in which a finer axial resolution is desired, another serial block-

face imaging technique, known as focused ion beam scanning electron microscopy

(FIBSEM), was developed. FIBSEM, like SBEM, allows for the acquisition of serial BSE

images of the block-face following section removal, but achieves this removal by a

different mechanism – the ablation of material from the block’s surface using a focused

beam of gallium ions.

1.5. Focused ion beam scanning electron microscopy

FIBSEM systems consist of a dual-beam microscope with both a scanning electron

beam used for imaging and a focused beam of gallium ions used for surface ablation

(Heymann et al., 2006; Knott, G. et al., 2008). Samples for FIBSEM imaging can be

prepared using the same staining and embedding procedures employed for ssTEM and

SBEM (Bushby et al., 2011), and images with contrast and lateral resolution comparable

to those attainable by SBEM are achieved by the detection of BSEs under high vacuum

using electron beam voltages in the range of 2-5 kV (Knott, G. et al., 2008). As previously

discussed, the main advantage of FIBSEM over SBEM is its improved axial resolution; the

use of a focused ion beam allows for the milling of sections from the block-face with

15

thicknesses as small as 3-15 nm (Peddie and Collinson, 2014). As such, FIBSEM datasets

can achieve isotropic resolutions comparable to the lateral resolution attainable by TEM.

Another advantage of FIBSEM lies in the fact that only the portion of the block-face

targeted for ablation by the focused ion beam is irreversibly destroyed. This affords the

microscopist the ability to collect a dataset from a small section of the block, then re-

sample other regions of interest at a later time. This is not possible when using the

diamond knife sectioning employed by SBEM, which irreversibly removes entire sections

of the block-face.

Unfortunately, the increased axial resolution afforded by FIBSEM comes at the

expense of data collection speed and the attainable field of view. A recent report has

stated that consistent ion beam milling with 4-5 nm/pixel resolution can only be achieved

over, at most, a 20 μm x 20 μm region of the block-face (Knott and Genoud, 2013). Though

such a size may be sufficient for reconstructing patches of neuropil, it is only large enough

to contain perhaps a few neuronal somata. This limitation, combined with the fact that ion

beam milling is significantly slower than diamond knife sectioning, has drastically restricted

the size of FIBSEM datasets. As a consequence, the majority of studies employing

FIBSEM have examined relatively small volumes in the range of 10 - 3,000 μm3 (Peddie

and Collinson, 2014). An example of one such study was that of Wei and colleagues, who

used FIBSEM to reconstruct the organelle networks of high-pressure frozen, freeze

substituted Saccharomyces cerevisiae cells (Wei et al., 2012). Their reconstruction was

generated from a FIBSEM dataset with 3 nm isotropic voxels and a total volume of

approximately 8 μm x 10 μm x 8 μm (640 μm3). The collection of this dataset took about

35 hours, which is a rather substantial period of time for such a small volume.

Despite these limitations, some relatively large volumes have been collected using

FIBSEM (70,000 μm3: Bushby et al., 2011; 1.7x106 μm3: Armer et al., 2009). Such efforts,

16

however, are currently the exception rather than the norm. Though the improved axial

resolution afforded by FIBSEM makes it preferable for the study of small features, such

fine resolution is often not necessary for larger structures, such as membrane-bound

organelles. A single mitochondrion is likely to persist across 10s to 100s of axial steps on

the order of 30-60 nm, and a nucleus will persist across many 100s of such steps. Even

in cases where mitochondria are highly branched, individual branches can be reliably

tracked across thicker SBEM slices without issue. Taking this, as well as the desire to

rapidly collect larger volumes, into consideration, SBEM was chosen as the primary

imaging modality for this dissertation. Each SBEM dataset used in this dissertation has an

axial resolution of 30 nm, covers roughly 600,000 μm3
, and was collected in about 5-6

days. This represents an almost 1,000-fold increase in tissue volume with only a 4-fold

increase in collection time over the FIBSEM dataset recently reported by Wei and

colleagues (Wei et al., 2012).

In recent years, electron tomography (ET), another high resolution, isotropic, 3D

EM technique, has been increasingly applied as a complementary modality for SBEM-

centric studies (West et al., 2010; Boassa et al., 2013; Kalson et al., 2013; Vihinen et al.,

2013; Wong et al., 2013). While SBEM datasets achieve large fields of view at coarser

resolutions, ET, similarly to FIBSEM, achieves finer, isotropic voxel dimensions over

smaller fields of view. Unlike FIBSEM, however, sequential slices through ET datasets are

generated by virtual, in silico reconstruction rather than physical sectioning. Additionally,

ET reconstructions typically feature equal or finer resolutions when compared to FIBSEM

image stacks (Gan and Jensen, 2012), and their acquisition takes on the order of one to

two hours rather than days. In the following subsection, the history and theory of ET will

be reviewed. This will be followed by a statement of ET’s power as a complementary

technique for serial block-face modalities and its applicability to the present study.

17

1.6. Electron tomography

 Early biological applications of high resolution TEM for 3D structure determination

include electron crystallography (Glaeser, 1999), single-particle reconstruction for

macromolecules and their assemblies (Frank, 2002), and helical reconstruction for

structures with repeating helical subunits (DeRosier et al., 1999). These techniques have

provided a wealth of knowledge in the structural biology community, a small sampling of

which includes the atomic structure of the tubulin dimer (Nogales et al., 1998), the

structure of bacterial flagellar motors (Francis et al., 1994), the architecture of the nuclear

pore complex (Yang et al., 1998), and a reconstruction of GroEL (Ludtke et al., 2004). To

yield a more complete biological view, such high resolution structures, which are often

determined using isolated complexes, may be fit and oriented into lower resolution TEM

images by a process known as docking (Baker and Johnson, 1996). However, these

methods for 3D reconstruction often require the averaging of thousands of similar copies

of the structure of interest to generate sufficient resolution. As such, they are unsuitable

for studying many subcellular components, such as organelles and membranes, whose

structures vary widely even within the same cell (McEwen and Marko, 2001). The desire

to study organelles at close to the resolution afforded by these averaging-based

approaches combined with the increased availability of high voltage TEMs led to the birth

of electron tomography.

The introduction of TEMs that operate at substantially increased voltages allowed

microscopists to image thicker sections while still attaining useful contrast and resolution.

High accelerating voltages facilitate the imaging of thicker sections by increasing the

mean-free path of electrons traveling through the sample and limiting chromatic aberration

(Frank, 2008). While some groups have employed ultrahigh voltage electron microscopes

(UHVEMs) operating in the megavolt range (Takaoka et al., 2000), most practical

18

applications involve the use of intermediate voltage electron microscopes (IVEMs)

operating in the 300-400 kV range. Unfortunately, even when using IVEMs, electron

micrographs of samples with a thickness of greater than a few hundred nanometers tend

to be difficult to analyze due to the confounding effect that features from all depths of the

sample are superimposed onto the same 2D projection. This results in micrographs that

appear blurred or smeared, especially in the vicinity of objects whose topologies change

significantly throughout the depth of the sample.

To circumvent this issue and produce useful reconstructions of subcellular

components using IVEMs without the need for ssTEM, researchers adapted the principles

of x-ray computed tomography (CT) to the electron microscope (DeRosier and Klug,

1968). The resulting technique, ET, enables the reconstruction of a 3D digital volume with

isotropic pixel dimensions from a set of 2D projections of the sample acquired at different

orientations with respect to the primary electron beam. In a typical ET experiment, this set

of projections, called a tilt series, is acquired by tilting and imaging the sample in angular

increments about an axis perpendicular to the electron beam. Reconstruction is possible

because, assuming that the electron paths are known or can be estimated, the only

unknown is the manner in which the sample’s density is distributed across the imaging

plane (McEwen and Marko, 2001). This unknown distribution can be computed by an

algorithm known as back-projection, in which the known densities of a given projection

image are distributed evenly over rays that re-trace the imaging path. This is repeated for

each image in the tilt series, and as the rays from all projections intersect, they sum to

form a 3D reconstruction of the original sample.

In practice, tilt series are recorded by rotating the sample over a range of ±60-70°

in 1-2° increments using a computer-controlled goniometer. Though progress is being

made (Palmer and Löwe, 2014), rotations outside of this range are typically not attainable

19

due to obstruction of the electron beam by the specimen holder at angles approaching

90°. This results in a so-called “missing wedge” of information corresponding to the

angular range between the maximum tilt angle and 90° (Frey et al., 2005). The missing

wedge has the deleterious effect of reducing the axial resolution of the final reconstruction,

and may introduce biases to post-reconstruction analyses such as sub-tomogram

averaging (Nickell et al., 2005; Nicastro et al., 2006). Fortunately, the size of the missing

wedge can be reduced by collecting an initial tilt series, rotating the sample by 90° about

the TEM’s optical axis, collecting a second tilt series, and computationally combining both

reconstructions. This process, known as dual-axis ET (Mastronarde, 1997), improves the

resolution of the output tomogram at the expense of increased specimen damage as well

as increased collection and processing times. Recent works have demonstrated that the

missing wedge can be further reduced by combining reconstructions from more than two

axes in an analogous manner (Ellisman et al., 2014). Additionally, methods such as high

pressure freezing and freeze substitution can enhance ultrastructural preservation for ET

and result in higher quality tomograms (Sosinsky et al., 2008).

Since each successive tilt angle changes the working thickness of the sample that

the electron beam must penetrate, the focus and positioning of the TEM have to be slightly

adjusted in between collecting each projection image. Traditionally, this meant that tilt

series collection was extremely labor intensive; a human operator had to be present at the

TEM to rotate the goniometer, manually adjust alignments, collect an image, and repeat.

However, computational advances have allowed for software that can interface with the

TEM and automatically adjust these parameters in between each tilt (Mastronarde, 2003).

After imaging, the tilt series must be post-processed in a number of ways before a

successful reconstruction can be attained. The most important of these steps is the

computational alignment of successive projection images with one another, and this

20

alignment is typically performed with the assistance of fiducial markers in the form of gold

nanoparticles (AuNPs) that are fixed to the top and bottom of the sample prior to imaging.

A number of software packages have been developed for tilt series post-processing and

reconstruction, and include IMOD (Kremer et al., 1996), TOM (Nickell et al., 2005), EM3D

(Harlow et al., 2001), TomoJ (Messaoudil et al., 2012), and TxBR (Lawrence et al., 2006;

Phan et al., 2012).

 Perhaps not surprisingly, the field of ET progressed towards the reconstruction and

stacking of tomograms from serial thick sections, a technique known as serial section

electron tomography (ssET) (Soto et al., 1994). In ssET, tilt series are acquired for each

section and individually reconstructed. This series of reconstructions is then stacked

together by computationally aligning user-placed fiducial marks between the last and first

tomographic slices from consecutive reconstructions. Though extremely laborious, ssTEM

has been successfully applied to build high resolution reconstructions of the Golgi

apparatus (Ladinsky et al., 1999), the node of Ranvier (Sosinsky et al., 2005) and even

full cell models of pancreatic beta cells (Noske et al., 2008) and hair stereocilia (Vranceanu

et al., 2012).

 Despite the aforementioned successes, the reconstruction of even partial neurons

by ssTEM is currently infeasible if any structures in addition to the soma are desired. From

personal experience, the automated collection of a single tilt series using a JEOL JEM

4000EX with two degree increments takes roughly one hour, without accounting for the

time required for TEM startup and alignment. Fiducial tracking for tilt series alignment may

take an additional two to three hours per tilt series, a figure that is highly dependent upon

the image quality of the tilt series and the experience of the researcher. The two whole-

cell reconstructions of Noske and colleagues necessitated 46 and 27 sections cut to

thicknesses of 300-400 nm (Noske et al., 2008). Such reconstructions were possible due

21

in large part to the roughly spherical nature of pancreatic beta cells; tracking the same cell

from section to section was trivial. Now, consider a neuron, whose neurites may branch

from 10s to 100s of microns away from its soma after only a few steps through the stack

of serial sections. Such branched processes would be impossible to find on the TEM when

looking in axial increments of 300-400 nm; the microscopist simply wouldn’t know which

region of the sample to image.

In spite of this, ET maintains an important presence in the toolbox of modalities for

large-scale structural studies of the brain (Vihinen et al., 2013). As previously discussed,

ET is employed in this dissertation to provide a high resolution complement to SBEM.

Whereas SBEM is preferable for the determination of gross morphological parameters

and distributions of organelles across whole neurons, ET can be used to correlatively

address questions at the single organelle level, such as the distribution of nuclear pores

or the geometry of mitochondrial cristae.

1.7. Array Tomography

A final modality in the toolbox for large-scale neuronal reconstructions is array

tomography (AT), an all-encompassing term used to describe a variety of methods based

on the collection of a 3D volume from serially sectioned tissue using an SEM. Unlike the

serial-block face techniques, sections for AT are cut and collected on a substrate prior to

insertion into the chamber of the SEM for imaging (Wacker and Schroeder, 2013). AT,

therefore, has more in common with ssTEM and the serial-block face imaging techniques

than it does ET; the word “tomography” is used here to refer to physical rather than

computational slicing.

AT was first introduced to the biological sciences by Micheva and Smith as an

approach for CLEM (Micheva and Smith, 2007). Driven by a desire to achieve axial

22

resolutions better than those afforded by confocal microscopy, Micheva and Smith turned

to ultrathin cryosections, which provide better resolution than thicker, conventional

cryostat sections (Mori et al., 2006). Such serial ultrathin sections were sequentially

imaged to yield 3D distributions of fluorescent antibodies, and could then be cyclically

eluted, re-labeled, and re-imaged with a different set of antibodies. Furthermore, by the

use of LRWhite embedding media (Newman and Hobot, 1999), these same sections were

capable of being post-stained with heavy metals and stably imaged in the SEM using the

detection of BSE signals. In this way, Micheva and Smith were able to produce overlays

of fluorescent signals on EM images with reasonably maintained ultrastructure. Such

methods, however, are of course a trade-off between fluorescence preservation and the

maintenance of tissue ultrastructure at the EM level. Oberti and colleagues were able to

achieve better ultrastructural preservation and regain some fluorescence lost during the

embedding process by the application of anti-dye antibodies (Oberti et al., 2011). A

subsequent study introduced super-resolution imaging to AT, implementing direct

stochastic optical reconstruction microscopy (dSTORM) to yield 28 nm lateral resolution

(Nanguneri, et al., 2012).

 An alternative approach to AT is to forego antibody labeling in favor of acquiring

large SEM volumes of thinner sections with better ultrastructural preservation (Horstmann

et al., 2012). Such an approach represents a potential improvement over the

aforementioned large-scale EM modalities in a number of ways. First, the use of an SEM

with BSE detection eliminates the need to place sections on the less stable, electron

transmissive substrates that would be required for ssTEM. Secondly, unlike the serial-

block-face modalities, AT is non-destructive; sections are not significantly damaged after

imaging and can be re-imaged at different magnifications or configurations if desired. To

compete with the high throughputs of the serial block-face modalities, however, the

23

process of section cutting and collecting in such a scheme must be automated. A device

capable of this automation, the automatic tape-collecting ultramicrotome (ATUM), was

introduced by Kenneth Hayworth and Jeff Lichtman in 2006. The ATUM is designed to cut

ultrathin sections of 30-35 nm and automatically collect them from the knife’s waterboat

onto specially designed copper tape fed by a conveyor belt (Hayworth et al., 2006;

Hayworth et al., 2014). A recent report demonstrated the power of this approach, citing

the collection of 2,100 consecutive, 29 nm-thick sections using the ATUM (Schalek et al.,

2011). After sectioning, the section-containing copper tapes are then cut and placed onto

silicon wafers that contain on the order of 100s of ultrathin sections, generating so-called

ultrathin section libraries (UTSLs; Hayworth et al., 2014). Individual sections from each

UTSL can then be sequentially imaged by BSE detection in an SEM. This approach

confers the additional advantage of reducing the time required for image collection, since

individual UTSLs can in theory be imaged in parallel on multiple SEMs. Parallelization of

this degree is not currently possible using the serial block-face modalities, which must

physically remove a section before the next one is revealed. Despite the power of this

technique, its applications in the field have so far been limited, likely due in large part to

its reliance on highly specialized, custom-built machines (Peddie and Collinson, 2014).

1.8. Discussion and future perspectives

Advances in technologies for specimen preparation, imaging, data storage, and

data analysis have fueled a renaissance in the field of quantitative 3D EM. Data obtained

from modalities such as SBEM provide unprecedented volumetric snapshots of the in situ

biological organization of the mammalian brain across a multitude of scales (Figure 1.2).

When optimized staining protocols are employed (Deerinck et al., 2010), the resultant

datasets possess enough breadth of field and resolution to be mined for answers to a

24

Figure 1.2. A comparison of the pixel sizes and total image volumes used in a
sampling of publications that employed 3D EM methods. The reported lateral pixel
sizes, axial pixel sizes, and total volumes are compared for studies published using four
3D EM modalities: ssET, SBEM, FIBSEM, and AT. A study of interest from each modality
is denoted by its citation on all graphs. In (A) and (B), lateral and axial pixel sizes are
compared to total volume, where total volume is plotted on a log scale. With the noteable
exception of the study by Noske and colleagues, which achieved a total volume
comparable to that of many FIBSEM reports, ssET studies demonstrate the finest pixel
sizes but smallest total volumes. On the other end of the spectrum, SBEM has been the
modality of choice for most high-volume studies, with the noteable exception of the large-
scale volumetric FIBSEM dataset (~1.7x106 μm3) collected by Armer and coworkers. Most
high-volume studies have, however, come at the expense of resolution in either the lateral
or axial directions, or in some cases, both. The SBEM work reported by Briggman and
colleagues represents one example of a massive dataset that was still collected at
relatively fine pixel sizes (12 nm lateral, 25 nm axial, ~6.3x106 μm3 volume). A comparison
of reported lateral and axial pixel sizes (C) demonstrates that very few large-scale 3D EM
studies have utilized isotropic voxel dimensions (isotropy is indicated by the dashed line).
Outside of ssET, FIBSEM studies are most likely to utilize near-isotropic voxels, while a
few SBEM studies have reported isotropic voxels by utilizing coarse lateral pixel sizes to
closely match their axial step sizes.

25

26

number of biologically relevant hypotheses. A single dataset, for example, could be used

to simultaneously map the distribution of synapses (Kreshuk et al., 2011; Morales et al.,

2011; Kreshuk et al., 2014; Plaza et al., 2014; Staffler et al., 2014), quantify the

morphologies of dendritic spines (Wilke et al., 2013; Wilke et al., 2014), explore the

ultrastructure and distribution of organelle networks (Kalson et al., 2011; Motskin et al.,

2011; Hatori et al., 2012; Zhuravleva et al., 2012), analyze the composition of chromatin

(Rouquette et al., 2009), and establish connectivities between neurons (Briggman et al.,

2011; Helmstaedter et al., 2013; Kim et al., 2014). Historically, however, most 3D EM

datasets have been collected with only a very specific scientific goal in mind. Such

datasets are used to extract the desired images or quantities and are then sent to archival

storage, where they are oftentimes forgotten and never looked at again. As a

consequence, there already exists a wealth of archived data that could be re-analyzed to

answer a host of other intriguing scientific questions. This amount of data is only growing;

microscopes are already capable of collecting terabytes of image data per day, and this

number will soon grow as technologies such as an SEM capable of imaging with 61 beams

in parallel become adopted (Marx et al., 2013; Keller et al, 2014). Therefore, it is

abundantly clear that in order for such analyses to be feasible and desirable to the average

scientist, rapid and largely automated tools for analysis are needed.

 Although these relatively new modalities are flexible enough to enable studies with

diverse biological goals, advances in the fields of segmentation and data analysis remain

largely driven by the pursuit of connectomics (Kleinfeld et al., 2011; Lichtman and Denk,

2011; Briggman and Bock, 2012; Plaza et al., 2014). With an eye towards this goal, semi-

automatic segmentation algorithms capable of labeling and tracking individual fibers

through dense tangles of neuropil are currently a major focus of the community (Jurrus et

al., 2009; Straehle et al., 2011; Andres et al., 2012; Liu et al., 2013). Though analogous

27

algorithms have been developed for organelles such as mitochondria (Giuly et al., 2012;

Lucchi et al., 2012; Seyedhosseini et al., 2013a) and nuclei (Jaume et al., 2012), published

reports of their applications to full, large-scale datasets are few and far between (Tek et

al., 2014). Despite their obvious biological importance, organelles and other constituents

of the subcellular compartment have been largely ignored at the quantitative level in state-

of-the-art, large-scale 3D EM reconstructions. Indeed, some connectome-centric SBEM

datasets have even utilized staining protocols specifically designed to leave the

subcellular compartment unlabeled (Briggman et al., 2011; Helmstaedter et al., 2013).

 In light of this, it is evident that there remains a substantial, and predominantly

untapped, opportunity for the application of serial block-face imaging modalities to the

study of subcellular structure-function relationships across large scales. Data resulting

from such efforts could be viewed as complementary to the endeavors of the

connectomics community, and the combination of reconstructions from both would yield a

more complete picture of cellular neuroanatomy. With this in mind, one of the major goals

of the work presented in this dissertation was to establish a workflow for the semi-

automatic segmentation and morphological characterization of organelles in large-scale

3D EM datasets. In Chapter 2, the work leading to the development of such a workflow

will be described. An architecture for achieving accurate segmentations of organelles will

be outlined, and the ability to scale this architecture to large SBEM datasets will be

demonstrated. Chapter 3 will introduce streamlined methods for enhancing and

quantifying the morphologies and 3D distributions of automatically segmented structures.

Finally, Chapter 4 will implement these previously developed technologies to study a

biologically intriguing question, namely, the chronomorphology of organelles in the

suprachiasmatic nucleus.

28

Chapter 2

The Automatic Segmentation of Multi-scale Neuroanatomical Features in

3D EM Image Stacks

29

2.1. Introduction

The generation of models from a series of 2D observations has long been

recognized as the rate-limiting step of quantitative 3D EM. Accounting for a span of time

ranging from the first microscopic observations of van Leeuwenhoek to the modern age

of EM automation, Stephen Senft recently wrote that, for the neurosciences, the

“bottleneck to reconstruction from each epoch has been processing speed, data access…,

and most importantly, processing intelligence” (Senft, 2011). Fortunately, the specimen

preparation and instrumentation advances discussed in Chapter 1 have combined to

address one of these roadblocks, furnishing neuroscientists with unparalleled access to

vast amounts of microscopic data. The last two impediments, processing speed and

intelligence, remain topics in need of advancement, and both will be addressed in part by

the technologies developed and described throughout the remainder of this dissertation.

Before the introduction of these technologies, however, this chapter will begin with

a brief historical discussion of the methods that have been employed by the community to

furnish accurate 3D models. Following this will be a review of contributions towards

automating these processes, and a discussion of the current state of the field.

2.1.1. The manual segmentation bottleneck

 Prior to the advent of modern computers, researchers resorted to a host of

innovative, yet extremely labor-intensive methods for the construction of physical models

from ssTEM micrographs. Early experimenters manually traced structures onto sheets of

transparent cellophane, which were then serially aligned and glued together to provide 3D

information (Bang and Bang, 1957; Sjöstrand, 1958). Subsequent researchers used

photographic enlargers to project the negative of each micrograph onto white cardboard.

Structures of interest were then hand-drawn onto the cardboard, cut out, and glued

30

together to form 3D models (Sotelo et al., 1973). Conceptually similar methods involved

stacking cut-outs of polystyrene (Pedlar and Tilly, 1966) and graph paper (Hoffman and

Avers, 1973), as well as segments of string wrapped around the perimeter of the structure

of interest (Braverman and Keh-Yen, 1983).

Though such models facilitated easier views of structure than the set of 2D images

from which they were derived, they remained bounded by the restraints of the physical

world; a model could only grow so large before it would require supports to prevent it from

toppling over like a tower of Jenga blocks. Furthermore, such models required physical

storage space and were difficult to morphologically quantify with a high degree of

precision. As technology advanced and more ambitious imaging projects were initiated,

the need for computer-based reconstruction systems became clear (Levinthal and Ware,

1972). Since early microcomputers did not readily permit the simultaneous display of EM

images and collection of user input, preliminary systems consisted of digital

microcomputers that received user input from drawing tablets interfaced with optical

devices (Cowan and Wann, 1973; Wiley et al., 1973; Fox et al., 1975; Moens and Moens,

1981; Prothero and Prothero, 1982). Using such systems, 3D renderings and basic

morphological parameters could be calculated and output to a connected oscilloscope or

plotter (Macagno et al., 1979). To accelerate the analysis of large stacks of micrographs,

systems were built in which serial images could be manually aligned to one another and

analyzed as they were automatically played as a filmstrip on a TV camera (Harris and

Stevens, 1988). During the mapping of the C. elegans connectome, a process that

spanned many years, some attempts at utilizing computer-aided reconstruction were

made (Stevens and White, 1979; White et al., 1986). Computerized systems, however,

remained in their formative stages at this time. Therefore, much of the work was still

performed by manually annotating neuronal processes on prints with drafting pens.

31

Over the next decade, improvements in computer hardware brought with them a

number of upgraded systems and software packages for the manual reconstruction and

visualization of objects from EM micrographs (Young et al., 1987; Allen and Levinthal,

1990). The SYNU software package facilitated the classification and computation of 3D

meshes from segmentations (Hessler et al., 1992). It also permitted the simultaneous

display of numerous meshed objects and enabled the user to create high resolution

movies from distinct orientations. The IMOD software package, which was introduced in

1996 and still receives frequent use today, allows microscopists to segment structures of

interest by drawing contours around them using a mouse or other input device (Kremer et

al., 1996). Such contours are sorted into hierarchical objects that can be individually

meshed, displayed, and morphologically quantified. IMOD utilizes the MRC image format

(Crowther et al., 1996), which provides the advantage of appending all micrographs from

a series into one file as a 3D stack. Such single files are much easier to store, keep track

of, and generate models from than a series of thousands of individual files. Since the

introduction of IMOD, a multitude of other software packages for the manual segmentation

and reconstruction of objects in 3D EM datasets have been introduced, including

Xvoxtrace (Perkins et al., 1997), Bsoft (Heymann, 2001), UCSF Chimera (Pettersen et al.,

2004), XMIPP (Sorzano et al., 2004), Reconstruct (Fiala, 2005), AUTO3DEM (Yan et al.,

2007), EMAN2 (Tang et al., 2007), Viking (Anderson et al., 2010), KNOSSOS (Briggman

et al., 2011), and TrakEM2 (Cardona et al., 2012). This list will surely continue to grow as

the needs of the community expand and evolve.

 Despite the plethora of software options currently available to the field, human-

based manual annotations remain necessary to ensure accurate reconstructions. As an

example, consider the reconstruction of a neuron and all of its processes across 1,000

SBEM slices. Even if an automated algorithm could achieve an accuracy of 99.9% for the

32

segmentation of this neuron (a value that is substantially better than any such algorithm

has ever performed), it would still almost certainly produce at least one fatal error in the

form of a falsely merged or separated neurite. Researchers, therefore, are typically

presented with three options when confronted with the need for a reconstructed model:

(1) use an automatic algorithm and accept its associated errors, (2) apply an automatic

algorithm and manually correct the errors of its output, or (3) perform purely manual

segmentation. Unfortunately, the first two approaches tend to be ignored by all but a few

groups, since most automatic approaches are not readily accessible or easily

implementable on the systems of a standard lab.

 Most neuroscientists, therefore, routinely opt for the manual segmentation option.

Though such a choice may be serviceable for small studies, it essentially precludes the

completion of any large-scale reconstructions in a timely manner. Even when using

expedited methods and shortcuts such as skipping slices or approximating organelles as

spheres or cylinders, manual segmentation remains a laborious endeavor (Noske et al.,

2008). Reconstructing neurons from even small regions of the Drosophila melanogaster

visual system has been reported to take several months to years in terms of labor

(Chklovskii et al., 2010; Plaza et al., 2012). The manual segmentation of mitochondria on

all slices of an SBEM dataset the size of the one used in this chapter (~450,000 μm3)

would require an estimated 2.3 years of work (Figure 2.1). This means that manually

reconstructing all mitochondria from a dataset the size of a full mouse brain (~500 mm3)

would necessitate about one year of nonstop work from every citizen in the city of Chicago

(~2.7 million people). An analogous effort for the human brain would require the same

workload from every person living on the continents of Asia and Africa combined (~5.5

billion people).

33

Figure 2.1. The manual segmentation of organelles from SBEM image stacks
represents a significant bottleneck to quantitative analyses. A scatter plot of the
amount of time required for a highly trained neuroanatomist to segment all instances of a
specific organelle in SBEM tiles of size 2,000 x 2,000 pixels demonstrates this
impediment. Average values are represented by horizontal bars (mitochondria = 5.01 min.,
lysosomes = 3.43 min., nuclei = 0.93 min., nucleoli = 1.24 min.). Since mitochondria are
ubiquitously present throughout most tissues, extrapolation of their average segmentation
time per tile to the size of a full dataset can reliably predict the actual segmentation time
required for such a volume. For a dataset the size of the one used in this report (stack
volume ~ 450,000 μm3, tile size ~ 60 μm2), the manual segmentation of all mitochondria
would require roughly 2.3 years, placing it well outside the realm of feasibility. This effect
is further exacerbated when experiments requiring segmentations from SBEM stacks over
multiple samples or experimental conditions are desired.

34

 As outlandish as these hypothetical efforts may seem, this sort of outsourcing has

already been attempted, albeit on much smaller scales. In their partial reconstruction of

the retinal wiring diagram, Kevin Briggman and Winfried Denk employed over 200

segmenters to trace skeletons through neuronal processes (Briggman et al., 2011). As a

first attempt at achieving large-scale reconstructions of organelles, I initially employed a

similar method with a group of undergraduate student volunteers. In collaboration with

Monica Berlanga, volunteers were recruited via job postings to the UCSD Career Services

website and trained on-site to segment using IMOD. To overcome resource limitations

and create a flexible work environment, the trained volunteers installed the IMOD software

on their own personal computers and segmented remotely. For remote segmentation to

be possible, however, SBEM stacks first had to be decomposed into smaller sub-stacks

that could reasonably fit into the hard disk and memory of a standard laptop computer.

Thus, each image stack was first manually inspected for features of interest, which were

then extracted to sub-volumes precisely large enough to contain the feature of interest in

its entirety. The size of a typical sub-volume was ~1-2 GB, which is small enough for even

outdated laptop computers to reasonably handle. A diagram of this workflow is shown in

Figure 2.2.

To organize the group, I created a web portal through which volunteers could

download sub-volumes to work on, upload model files when their segmentations were

complete, and ask questions or receive advice. The portal was created as part of the

SLASH (Scalable system for large data analysis and segmentation utilizing a hybrid

approach) group’s Google website, and files were distributed using Google Drive. The

portal was password protected so that files were only available for download by team

members. When logged in, seven tabs were available for volunteers to access (Figure

2.3), the purposes of which are described here:

35

1. About – Contained links that introduced the volunteers to concepts relevant to the

project, such as SBEM and the SCN.

2. Calendar – Provided dates for deadlines, training days, and open office hours.

3. Challenges – Provided details specific to the current segmentation task, including

the nature of the feature of interest, the pixel dimensions of the current sub-

volumes, and the desired colors, numbers, and names for IMOD objects (Figure

2.4).

4. Discussion Board – Provided an interactive environment in which volunteers could

ask and answer questions pertaining to the current segmentation task (Figure 2.5).

5. The Team – Contained the names and contact information of all volunteers.

6. Tutorials – Contained links to tutorials and instructional videos for segmentation

using IMOD.

7. Upload – Allowed the volunteers to upload their completed model files to a shared

Google Drive folder.

This portal was vital for facilitating the remote segmentation process, since it afforded

volunteers an easy way to exchange files without the need to physically come into the lab.

 The results obtained from this so-called “collaborative segmentation” endeavor

were critical in establishing the need for a more powerful analysis method. Though such

collaborative efforts have proven to yield satisfactory segmentations, they are clearly not

viable, long-term solutions to the manual segmentation bottleneck. First, the quality of

work from volunteers cannot always be trusted without substantial post-verification or

redundancy. Furthermore, the task of manual segmentation is an acquired taste; many

volunteers do not enjoy the work and quickly lose the desire to contribute. Finally,

volunteers need to be recruited, trained, and coordinated, and each of these tasks require

substantial investments on the part of the primary investigator.

36

Figure 2.2. The collaborative segmentation workflow. After imaging, alignment, and
downsampling, each dataset was manually inspected for instances of the feature of
interest, in this case nuclei, that were fully contained within the volume. Each instance was
assigned a numerical value and extracted to individual subvolumes using the IMOD
programs trimvol and boxstartend. These subvolumes were then distributed to trained
volunteers for segmentation and analysis on their own workstations. Subvolumes were
generally limited to sizes of no larger than 1 GB to keep them manageable for personal
computers and laptops. After completion, volunteers uploaded their segmentations to a
shared Google Drive folder via a custom-designed web portal. Completed segmentations
were subsequently downloaded, checked for accuracy, and added to the pipeline for
morphological analysis and quantification.

37

Figure 2.3. An online portal to facilitate collaborative segmentation. The password-
protected portal was designed as a sub-group under the main SLASH website. Each
volunteer was granted access to the portal by signing in via their Google account. Once
inside the portal, volunteers could access a calendar of upcoming deadlines, read
instructions for the current task, ask or answer questions on the discussion board, and
upload completed segmentations to a shared Google Drive folder.

38

Figure 2.4. The instructions given to volunteers for the task of segmenting nuclei
and nucleoli. In addition to being trained in person, volunteers were able to access
instructions for the current segmentation task from the ‘Challenges’ tab of the main portal.
The instructions included detailed information on how to identify the structure of interest,
how to generate the proper IMOD model file, and the naming and color conventions for
each object. Shown here is an excerpt of the instructions given for the segmentation of
nuclei and nucleoli, as visualized from within the portal.

39

Figure 2.5. A discussion board for volunteers to ask and answer questions
encountered while segmenting. When volunteers encountered a problem related to the
IMOD segmentation software or their specific subvolume, they were asked to post the
question to an interactive discussion board within the portal (names have been blacked
out to protect identities). This scheme conferred two advantages: (1) questions could be
answered by myself or another volunteer in a timely manner, and (2) such answers would
be preserved in case other volunteers subsequently encountered the same problem.

40

 Most of the aforementioned drawbacks of collaborative segmentation can be

circumvented if contributions towards reconstructions are made in parallel by many

thousands of laypeople. Such approaches, known as crowd-sourcing, have been

increasingly applied towards navigating the bottleneck of manual segmentation (Ball,

2014; Valeo, 2014). Rather than being restricted to highly trained experts, crowd-sourcing

methodologies leverage upon the recruitment of micro-laborers from the general

population. Such micro-laborers are then trained effortlessly with little or no cost to the

investigator; training frequently involves the presumptive laborer reading a simple

paragraph and producing accurate results on a few test examples, all of which are

provided to them automatically by a web interface. Achieving reasonable results with this

minimal degree of training is possible because the tasks given to crowd-sourced laborers

are relatively simple; instead of being asked to trace a neuron in its entirety, one might

simply be asked whether or not two points are located within the same neurite (Giuly et

al., 2013). With well-stained material and quality images, such decisions are incredibly

easy for a human to make, even with little-to-no practical training.

 The most well-known example of crowd-sourcing in the neurosciences is

Sebastian Seung’s EyeWire (Kim et al., 2014). In this web-based application, users are

tasked with tracking the processes of a single neuron through a 3D cube of EM data

overlaid with a supervoxel oversegmentation. To keep its users captivated and make them

feel as if they are playing a competitive game, EyeWire displays 3D renderings as the

player generates them and maintains a ranking system complete with weekly

competitions, player levels, and profile badge rewards. According to its website, EyeWire

has been used to reconstruct over 100 neurons by 130,000 users based in 145 different

countries (http://eyewire.org). Brainflight, another attempt at generating crowd-sourced

reconstructions by immersing users in a video game-like atmosphere, is currently being

41

developed by Moritz Helmstaedter’s group (http://brainflight.org). In this game, which will

be released for iOS and Android mobile phones and tablets, users are tasked with

correctly linking adjacent supervoxels generated by oversegmentations (Dow et al., 2014).

Like EyeWire, Brainflight features enough flashy graphics and reward mechanisms to

make its users feel as if they are playing a game rather than tediously correcting

segmentations. Though they are certainly helpful, useful scientific contributions can still

be aggregated from the crowd without the assistance of game-like environments. One

such example is the use of micro-laborers to accurately pick out the spherical objects

corresponding to true positives from automatically generated segmentations (Lee, 2013).

 Although advances in computational architectures and the introduction of crowd-

sourcing techniques have helped to partially expedite the pursuit of large-scale

neuroanatomical reconstructions, the manual segmentation bottleneck is still firmly

entrenched. Even today, scientists remain far away from developing methodologies that

can emulate the collective labor force of billions of humans. Achieving this will require a

high degree of automation; even the crowd-sourcing approaches discussed here rely upon

accurate automatic segmentations as starting points. Thus, it has become clear that the

most important contributions towards achieving this goal will come from improvements in

the speed and accuracy of automatic segmentation algorithms. A review of the history and

current state of such algorithms will follow.

2.1.2. Automatic segmentation algorithms and their applications to the

neurosciences

The advent of computer-based systems for generating manual segmentations

brought with it the hope that future researchers might be able to harness the power of

these machines to produce such segmentations automatically. In 1979, Macagno,

42

Levinthal, and Sobel concluded their review of 3D computer reconstruction systems in the

neurosciences with the following speculative glance to the future:

…it seems quite clear that the rapid advances in electronics will make more
and more automation possible at a reasonable cost. Within a few years we
can expect that systems will be available that can easily recognize and
digitize some features automatically, leaving for the investigator only those
cases that are difficult or ambiguous. (Macagno, Levinthal, and Sobel,
1979)

Although history has proven their estimate of a few years to be overly optimistic, much

progress has been made towards achieving this goal. The rest of this section will be

dedicated to providing a historical account of this progress as applied to 3D EM datasets,

followed by a discussion of the current deficiencies that led to the development of the

technologies outlined in this dissertation.

 Early reports of automated 3D image segmentation focused primarily on tasks

such as separating various tissue types in computed tomography (CT) and magnetic

resonance imaging (MRI) scans. A number of techniques were developed to specifically

segment images from these modalities, and included innovative boundary detectors (Liu,

1977; Zucker and Hummel, 1981), the marching cubes algorithm (Lorensen and Cline,

1987), and simple intensity thresholding (Höhne et al., 1990). Despite the success of these

approaches within the medical community, very few of them proved useful when applied

to 3D EM datasets for a number of reasons. First, EM micrographs contain numerous

membrane-bound structures whose intensity and texture profiles often overlap

extensively. This overlap significantly degrades the quality of results obtainable from any

operations based heavily on the histogram of the image. Second, most serial EM

modalities are highly anisotropic and may simultaneously yield lateral pixel sizes in the

range of 3-50 nm and axial pixel sizes in the range of 30-100 nm. This anisotropy means

that features of the same object may appear significantly different from one section to the

43

next. Finally, even relatively small 3D EM datasets of the brain may contain thousands of

fibers with unpredictable orientations. The membrane of a dendrite running perpendicular

to the cutting plane often resembles a solid, dark, closed contour. However, after a few

axial steps through the depth of the dataset, this same dendrite might bend in such a way

that situates it parallel to the cutting plane, giving its membrane the appearance of a more

diffuse spread of lighter, unconnected pixels. The design of an algorithm to detect both of

these instances as membranes of the same dendrite is no trivial task.

As a result of this complexity, the image processing community was rather delayed

in tackling the challenge of developing algorithms for the automatic segmentation of serial

EM data. One of the first such attempts was performed by Carlbom and colleagues, who

used interactive deformable contours, or snakes (Kass et al., 1988), to segment dendrites

from ssTEM images of the rat hippocampus (Carlbom et al., 1994). A similar approach

was also used to semi-automatically segment nuclei from EM micrographs of HIV-infected

cells (Bron et al., 1994). These works were subsequently improved upon by the

introduction of algorithms to better complete neuronal boundaries by minimizing a

geodesic function (Vazquez et al., 1998) and improve membrane contrast by optimizing a

coherence-enhancing diffusion filter (Tasdizen et al., 2005). This approach is still in use

today, and a number of groups have recently reported on the successful use of variations

of the deformable, or active, contour approach to segment neural processes (Macke et

al., 2008; Jeong et al., 2009; Jurrus et al., 2009). However, since it relies on either user-

specified initial contours approximating the object boundary or poorly defined image

gradients to drive the segmentation, the deformable contour approach is not ideal in terms

of either speed or accuracy.

The deluge of new data introduced by the adoption of automated serial EM

techniques such as SBEM brought with it an increased interest in the development of fully

44

automated segmentation algorithms (Briggman and Denk, 2006). To achieve the goal of

reconstructing even a small volume of the brain without employing a city’s worth of human

laborers, semi-automatic methods such as user-seeded contour evolution are not

sufficient. As such, the field of EM image segmentation began to shift towards

experimenting with approaches developed by the machine learning and artificial

intelligence communities. Upon reviewing the field in 2004, Nöel Bonnet predicted that:

…image processing tools will be based on methods originating from the
fields of pattern recognition and artificial intelligence. Neural networks and
expert systems will play an increasing part. Automatic classification, in the
supervised or the unsupervised mode, will become more important when
certain experimental techniques currently under development come into
routine use. (Bonnet, 2004)

Though machine intelligence had previously been employed to address various aspects

of biological microscopy, including the classification of macromolecules (Van Heel, 1984;

Van Heel, 1989; Frank, 1990; Marabini and Carazo, 1994; Pascual, et al., 2000) and the

segmentation of boundaries of cultured cells (Wu et al., 1996), it had yet to be applied to

the segmentation of structures from serial EM datasets, and certainly not on the scale of

what would be required to reconstruct even partial subcellular models or wiring diagrams

of the brain.

 Machine learning approaches developed for biological image segmentation fall

into one of two categories: supervised or unsupervised. For the former, the user must

supply the algorithm with a set of training images and labels that dictates how the different

classes should be discriminated. If, for example, a membrane segmentation is desired,

the user might supply the raw EM image as well as a binary image of the same size that

partitions each pixel into the class “membrane” or “not membrane.” If the algorithm

supports it, additional labels may be added as desired, e.g. “membrane,” “mitochondrion,”

and “background.” In the case of unsupervised learning, no such training sets are required,

45

and the algorithm performs the classification solely based on information present in the

image that is to be segmented. The major advantage of unsupervised algorithms is that

they do not require the generation of training data, which must be performed by a human

and, ideally, should be painstakingly accurate. The generation of such training data may

take anywhere from a few hours to weeks, depending upon the needs of the given

algorithm and the feature for which training is desired. However, supervised methods have

consistently outperformed their unsupervised brethren when applied to complicated EM

images (Tasdizen, et al., 2014). Since the correction of automatic segmentations, even

those generated by the highest performing algorithms available, still requires considerable

human effort (Plaza et al., 2014), the better performing supervised approaches remain the

gold standards of the field.

 A number of open-source software packages that perform supervised pixel

classification for EM data have been made available to the public in recent years. The Fiji

distribution of ImageJ (Schindelin et al., 2012) contains a “Trainable Weka Segmentation”

plugin that uses the WEKA machine learning libraries (Hall et al., 2009) to train a Random

Forest pixel classifier on a host of selectable image features. The plugin provides a GUI

by which the user can create a training set by manually tracing lines corresponding to

different classes on the input image. The trained model can be saved and intuitively

applied to classify naïve test datasets. Though fairly user-friendly, this plugin for pixel

classification has not seen widespread adoption by the biological sciences, in part

because it requires a significant amount of time and memory to generate its classifiers.

 While other open-source software packages for pixel classification, such as

CellProfiler (Carpenter, et al., 2006) and BIOCAT (Zhou et al., 2013), have been

introduced, it is the contribution of Fred Hamprecht’s group, ilastik (Sommer et al., 2011),

that has seen the most extensive use in the 3D EM community. Similar to Fiji’s WEKA

46

plugin, ilastik provides a GUI that allows the user to interactively add labels to a training

set. The user then selects the features and scales they wish to utilize for the training of a

Random Forest classifier, and the generated voxel classifications for all classes are shown

in real-time as they are generated. The classifier can then be stored to disk in the HDF5

format (Folk et al., 1999) and applied to test images in a batch mode. Alternatively, the

user can operate in the so-called “headless mode”, where training and voxel classification

are performed through the command line using previously generated training sets.

Applications of ilastik to 3D EM datasets have been numerous, and include the

segmentation of membranes (Andres et al., 2012), synapses (Kreshuk et al., 2014;

Kreshuk et al., 2011), and cell nuclei (Tek et al., 2014). One caveat of ilastik is that its

classifiers are trained on 3D features; it employs voxel classification rather than pixel

classification. This is of minor concern for isotropic imaging modalities such as FIBSEM,

but may cause issues for anisotropic modalities such as SBEM and ssTEM. First, SBEM

or ssTEM image stacks may need to be downsampled, often dramatically, in-plane to

achieve near-isotropic voxels. Second, 3D classification leaves the results susceptible to

any number of errors that may occur during imaging and processing, including surface

charging, focal gradients, specimen overlap, and imperfectly aligned sections.

 With relatively few exceptions, most machine learning approaches for organelle

segmentation have focused on mitochondria (Vitaladevuni et al., 2008; Narashima et al.,

2009; Smith et al., 2009; Kumar et al., 2010; Seyedhosseini et al., 2013a). Recently, Giuly

and co-workers proposed a method to segment mitochondria utilizing patch classification

followed by isocontour pair classification and level sets (Giuly, et al., 2012). Lucchi and

colleagues (Lucchi, et al., 2012; Lucchi et al., 2010) developed an approach that trains a

classifier to detect supervoxels that are most likely to belong to the boundary of the desired

organelle. A method to automatically segment cell nuclei using ilastik to train a Random

47

forest voxel classifier followed by morphological post-processing and object classification

was proposed by Tek and colleagues (Tek, et al., 2014).

 One drawback of these proposed methods is that they make critical assumptions

about the geometry of their segmentation target that render their expansion to other

organelles nontrivial. The workflow developed by Tek and colleagues to produce nuclear

segmentations, for example, would not be readily applicable to the segmentation of

mitochondria without heavy modifications to its filters. Additionally, many published

methods have only been tested on very small subregions of datasets. The method of Giuly

and colleagues, for example, was only tested on a 350 x 350 x 30 voxel slab of data (Giuly

et al., 2012). Since most large-scale 3D EM datasets contain a heterogeneous mixture of

organelle morphologies spread across different cell types, it is unclear if such methods

would achieve uniform results when applied to such datasets. Astrocytic mitochondria, for

example, are known to be more elongated than their neuronal counterparts (Fernandez et

al., 1983). Filters based on geometry and morphology may therefore preferentially accept

mitochondria from one cell type and reject those from another.

 Taking the above into consideration, it is clear that there remains a need for a

method to accurately segment various organelles in SBEM stacks without any a priori

assumptions about organelle morphology. In this chapter, a method for the robust and

accurate automatic segmentation of morphologically and functionally diverse organelles

in EM image stacks is presented. Organelle-specific pixel classifiers are trained using the

cascaded hierarchical model (CHM; Seyedhosseini et al., 2013b), a state-of-the-art,

supervised, multi-resolution framework for image segmentation that utilizes only 2D image

information. Critically, since only 2D features are considered, this method is equally

applicable to both isotropic and anisotropic imaging modalities. A series of tunable 2D

filters are then applied to generate accurate segmentations from the outputs of pixel

48

classification. In the final processing step, 3D connected components are meshed

together in a manner that minimizes the deleterious effects of local and global imaging

artifacts. Finally, an efficient workflow for scaling this method to teravoxel-sized datasets

that leverages upon parallelization with supercomputing resources is presented.

2.2. Methods Development and Results

 In this section, an algorithm developed for the automatic segmentation of multi-

scale features in SBEM image stacks will be described. The steps of the algorithm, which

utilizes CHM for pixel classification, will be outlined in detail, and performance metrics will

be presented for a variety of sub-cellular organelles (mitochondria, lysosomes, nuclei, and

nucleoli) using a single SBEM image stack as the test dataset. The strength of this

algorithm will then be established by means of a comparison to a recently reported method

for the automatic segmentation of nuclei in SBEM datasets (Tek et al., 2014).

In the first sub-section, the parameters used for imaging and pre-processing of the

dataset will be defined. Scripts for expediting image downsampling, conversion, and

histogram modification will be introduced. In the second sub-section, the generation of

organelle-specific CHM pixel classifiers will be outlined, and the description of a

computationally feasible workflow for the application of these classifiers to teravoxel-sized

image stacks will follow. A novel method for the binarization of CHM probability maps will

then be introduced, and its performance will be compared against that of other published

methods.

2.2.1. Data Collection and Pre-processing

2.2.1.1. Tissue processing and SBEM image stack acquisition

49

The suprachiasmatic nucleus (SCN) of one three-month-old, male C57BL/6J

mouse was harvested and prepared for SBEM using a standard protocol (Wilke, et al.,

2013). The resin-embedded tissue was mounted on an aluminum specimen pin and

prepared for SBEM imaging as previously described (Holcomb, et al., 2013). Imaging was

performed by detection of backscattered electrons (BSE) using a Zeiss Merlin scanning

electron microscope equipped with a 3View ultramicrotome (Gatan). The SBEM image

stack was acquired in ultrahigh vacuum mode using an accelerating voltage of 1.9 kV, a

pixel dwell time of 500 ns, and a spot size of 1.0. Sectioning was performed with a cutting

thickness of 30 nm. BSE images were acquired at 800x magnification with a raster size of

32,000 pixels x 24,000 pixels, yielding a pixel size of 3.899 nm/pixel. A total of 1,283 serial

images were acquired, resulting in an image stack with tissue dimensions of roughly 124.8

μm x 93.6 μm x 38.5 μm (~450,000 μm3). The specimen was then removed from the

chamber, and an image of a diffraction grating replica specimen (Ted Pella, Redding, CA,

U.S.A.) was acquired at the same magnification for calibration of the lateral pixel size. Low

magnification images of the block-face were acquired before and after sectioning.

2.2.1.2. SBEM stack alignment

All individual images of the input SBEM stack were converted to the MRC format

and appended to an 8-bit MRC stack using the IMOD programs dm2mrc and newstack,

respectively (Kremer, et al., 1996). Sequential images within the stack were then

translationally aligned to one another in the XY-plane using the cross-correlational

alignment algorithm of the IMOD program tiltxcorr.

The lateral pixel size of the stack was determined using the calibration image of

the diffraction grating replica specimen. The calibration image was opened in 3dmod, and

an object containing twenty open contours was initialized. On each contour, a line covering

50

ten grid boxes was traced, and the pixel lengths of each open contour were computed

using the IMOD program imodinfo. Each length was divided by ten to give the number of

pixels per grid box, and subsequently converted to nanometers using the known size of

each grid box. The average of these lengths for all twenty contours was determined, and

this value was used as the final lateral pixel size of the stack. The header information of

the aligned MRC stack was then edited to reflect the true pixel size using the IMOD

program alterheader.

2.2.1.3. Image downsampling and conversion

 Since working with a 32,000 x 24,000 pixel image size is unwieldy even for modern

computers, the ability to laterally downsample images in the stack without sacrificing the

accuracy of automatically generated segmentations is highly beneficial. Downsampling by

only a factor of two would reduce the single image size to 16,000 x 12,000 pixels, a total

size reduction of four times. However, the allowable degree of downsampling is likely to

vary depending on the segmentation target; larger targets, such as nuclei, may allow for

higher levels of downsampling before an impact on segmentation accuracy is noticeable.

In order to test this, laterally downsampled versions of the same dataset were generated

with binning factors of 2, 4, 6, 8, and 10. Additionally, a version with isotropic voxels was

generated by laterally downsampling by a factor of 7.694, the ratio of the axial resolution

to the lateral pixel size.

 To allow for easy and efficient downsampling, newstack_bin.sh, a Bash script that

incorporates IMOD programs, was written (Appendix C.2.1). The script requires three

inputs: (1) the location of the original MRC stack, (2) the factor by which it should be

downsampled, and (3) the name for the downsampled MRC stack. Each slice in the

51

Table 2.1. An expedited approach to the downsampling of SBEM image stacks. All
slices from an SBEM stack were individually extracted and downsampled in a two-step
process. The number of pixels per slice is indicated at each level of downsampling. The
average times for slice extraction and downsampling are reported as the mean ± standard
deviation. Following this process, all images were appended to a final, downsampled
stack; the time required for this stacking is also indicated. Though extraction time is
independent of image size, both downsampling and stacking times decrease as the size
of the input image decreases.

input stack is extracted to a temporary, single-image MRC file and then downsampled by

the user-specified factor using the IMOD program newstack. Afterwards, all binned, single-

image MRC files are appended to a new MRC stack with the user-specified output name.

By downsampling only single images, this approach eliminates the risk of stalling that may

occur when using the entire stack as input to the newstack program. The number of pixels,

average time per slice for extraction and downsampling, and the total time required for

stacking are reported in Table 2.1. Plots indicating the time required for extraction and

downsampling for every slice in the stack are shown in Figure 2.6. The results shown in

Figure 2.6 demonstrate that downsampling using the script newstack_bin.sh runs

smoothly without any stalling for the entirety of the stack.

 The code for pixel classification with CHM requires test images to be in the

Portable Network Graphics (PNG) format. Each downsampled MRC stack was converted

to a set of sequentially numbered PNG files using the Bash script mrcstack2png.sh

(Appendix C.2.2). This script requires two inputs: (1) the location of the MRC stack and

(2) the path to store output PNG files to. An array job is then submitted using the Sun Grid

Binning
Factor

Number of
Pixels

Average Extraction
Time Per Slice (sec.)

Average Downsampling
Time Per Slice (sec.)

Stacking Time
(min.)

1 7.68 x 108 - - -
2 1.92 x 108 15.77 ± 1.20 4.85 ± 0.43 52.35
4 4.80 x 107 15.46 ± 0.72 2.48 ± 0.74 13.23
8 1.20 x 107 15.29 ± 0.87 1.42 ± 0.26 4.09

10 7.68 x 106 15.64 ± 1.06 1.46 ± 0.15 2.69

52

Figure 2.6. The proposed method for image downsampling processes entire
datasets without stalling. The times required to extract and downsample each slice from
the same native resolution SBEM dataset are shown at different levels of downsampling
(A, 2x downsampling; B, 4x downsampling; C, 8x downsampling; D, 10x downsampling).
The proposed method runs smoothly for all images without demonstrating any significant
spikes in the time required. Extraction times are, as expected, relatively consistent and
independent of the desired level of downsampling. Downsampling times roughly scale with
the desired level of downsampling over the range of 2x – 8x. At 10x downsampling, the
average downsampling time per slice is virtually the same as for 8x (C,D).

53

54

Engine (SGE) job script mrcstack2png.q (Appendix C.2.3). This allows slices to be

processed in parallel and expedites the conversion process.

2.2.1.4. Histogram Equalization

 The histograms of all images in the stack were equalized using a MATLAB (The

MathWorks, Inc., Natick, MA, U.S.A.) implementation of the exact histogram specification

(EHS) algorithm (Coltuc et al., 2006). Unlike global histogram equalization (GHE), which

attempts to improve contrast by assigning equal numbers of pixels to the intensity bins of

the image, histogram specification attempts to fit the image’s histogram to a given function

or spread. The EHS algorithm is a type of histogram specification that allows for the

modification of an image’s histogram to fit any desired histogram with discrete bins.

Therefore, the first step is to generate a reference histogram that all images in the stack

will be normalized to. Two approaches for generating this reference histogram are

considered: (1) the use of the histogram of a single slice, and (2) the use of the summed

histogram of the entire stack.

 Irrespective of which approach is chosen, artifacts introduced by image borders

must be eliminated before an accurate histogram for specification can be extracted. When

lateral translations are needed to align successive slices to one another via cross-

correlation, a border of uniform pixel intensity is formed around the image to maintain the

same image dimensions following translation (Figure 2.7, A-B). Such a border causes a

spike in the histogram at this pixel intensity (Figure 2.7, D). Using simple translational

alignments, borders may exist on as many as two edges and as few as zero. If more

advanced alignments accounting for warping are implemented, borders can exist on all

four edges and may result in a sheared image with non-uniform borders. Therefore, an

55

automatic method for detecting borders that could be applied to an image aligned with any

method was necessary.

 The implemented method for border detection calculates the magnitude of the

numerical pixel gradient of the input image. Since borders have the same pixel intensity

throughout, the gradient magnitude of pixels belonging to borders will be approximately

zero. Gradients are computed using a MATLAB script, find_nonborder_pixels.m

(Appendix C.2.4), which calculates the horizontal (Gx) and vertical (Gy) gradients of the

input image (I) of size M x N pixels according to the following formulae:

Gxi,j =

{

I2,j − I1,j, i = 1

1

2
(Ii+1,j − Ii−1,j), 2 ≤ i ≤ M− 1 ∀ j ∈ {1,… , N}

IM,j − IM−1,j, i = M

Gyi,j = {

Ii,2 − Ii,1, j = 1

1

2
(Ii,j+1 − Ii,j−1), 2 ≤ j ≤ N − 1

Ii,N − Ii,N−1, j = N

 ∀ i ∈ {1, … ,M}

The gradient magnitude is then calculated for each pixel:

|G|i,j = √Gxi,j
2 + Gyi,j

2

This gradient magnitude image is binarized using a single-level threshold at a low value

(~0.01) to automatically detect border pixels. Occasionally, false positives may be

detected on the interior of the image; such false positives typically occur at blood vessels,

whose lumens may also have very small pixel gradients. To eliminate such false positives,

the mask obtained from thresholding is inverted, and 2D hole-filling is performed. Thus,

the final binary mask output from find_nonborder_pixels.m has all image pixels marked as

positive and all border pixels marked as negative. An example of this mask is shown in

Figure 2.7C, which depicts the automatically detected non-border pixels with a transparent

green overlay. The histogram of the whole masked image slice is shown in Figure 2.7E,

56

Figure 2.7. The automatic detection of image borders. As a result of various alignment
algorithms, SBEM image slices often possess borders of uniform pixel intensity (A, boxed
region magnified in B). Such borders add a spike artifact to the image histogram (C) that
is not representative of the true data in the image. By computing the magnitude of the
image gradient to detect non-border pixels, image pixels can be reliably discriminated from
border pixels (D). The histogram of only the true image pixels can then be determined;
such a histogram is shown to be devoid of the spike artifact (E) and is acceptable for use
in histogram specification algorithms.

57

58

which displays the same shape of the histogram in Figure 2.7D, but without the spike in

pixel intensity due to border pixels.

 Reference histogram generation is performed by invoking the Bash wrapper script

generate_reference.sh (Appendix C.2.5), which requires three inputs: (1) the path

containing the stack of PNG images generated in Section 2.2.1.3, (2) an output path for

reference histograms, and (3) the desired mode of operation. If single-slice mode is

chosen, the desired slice number for the reference image must be specified. In this case,

the SGE job script generate_reference.q (Appendix C.2.6) is submitted, which invokes the

MATLAB function generate_reference.m (Appendix C.2.7) to mask non-border pixels of

the input slice as previously described. The 8-bit histogram of these non-border pixels is

then computed and written to an ASCII file with 256 lines, in which each line corresponds

to the pixel count at the given pixel intensity. If full-stack mode is chosen,

generate_reference.q is submitted as an array job such that ASCII files specifying the

histogram of every image in the stack are output.

 Once reference histograms have been generated, histogram equalization is

performed using a MATLAB implementation of the EHS algorithm downloaded from the

MATLAB File Exchange (File ID: #26309). EHS processing is initialized using the Bash

wrapper script run_ehs.sh (Appendix C.2.8), which requires three inputs: (1) the path to

the stack of PNG images, (2) the path to the reference histogram ASCII files, and (3) an

output path to store equalized PNG images to. This wrapper script submits an SGE array

job using the job script run_ehs.q (Appendix C.2.9), such that images can be processed

in parallel. Each job invokes the MATLAB function run_ehs.m (Appendix C.2.10), which

first loads and sums all reference histograms in the specified path to yield the final full-

stack reference histogram. If single-slice mode was used, the single reference histogram

will be loaded without summation. EHS is then applied to the non-border pixels of the

59

image using the summed reference histogram as the target. The conclusion of this

process yields a stack of PNG images whose overall histograms are all essentially

identical to one another.

2.2.2. Pixel classification

2.2.2.1. Generation of training labels

 For each organelle target, a set of training images and labels was generated. First,

a set of 50 seed points, P, were selected for each organelle throughout the processed

SBEM stack such that:

Pi = (x, y, z) ∀ i ∈ {1,… ,50}

These points were chosen in a manner that yielded a wide distribution throughout the

stack. Since subtle alterations in image quality may occur throughout an SBEM dataset,

this wide distribution was preferable to simply taking training images from the same region

of consecutive slices, as such a sub-volume may not be representative of the whole

dataset.

 After the selection of seed points, every instance of the chosen organelle was

manually segmented in a 500 x 500 pixel tile centered at each Pi. To maintain consistency,

the manually segmented contours were placed on the inside of the membrane of

membrane-bound organelles. Once segmentations were completed, training images and

labels were extracted using the scripts process_td.sh (Appendix C.2.11) and process_td.q

(Appendix C.2.12). These scripts work by first extracting the coordinates of the points Pi

to a text file using the IMOD program model2point. Then, using the IMOD program trimvol,

2D tiles of size 500 x 500 pixels are extracted, masked using imodauto with the manually

generated contours, and converted to PNGs with the IMOD program mrc2tif. These

masked images are binary representations of the organelle of interest, and serve as

60

training labels. Training images are then extracted from the corresponding full-size images

in the EHS PNG stack using ImageMagick’s convert program. Thus, the final outputs from

training data generation are (1) a stack of 8-bit, grayscale training images, Ti, and (2) a

stack of corresponding binary organelle masks, Bi. A flow chart illustrating this procedure

for training data generation is shown in Figure 2.8. Training sets were generated for four

organelles of interest: nuclei, nucleoli, mitochondria, and lysosomes. The training images

and labels used for training each classifier are shown in Appendix B. Additional training

sets were also generated for the downsampled image stacks created in Section 2.2.1.3

using the same manual segmentations. Thus, for each organelle, training sets were

created for levels of downsampling of 2, 4, 6, 8, and 10.

2.2.2.2. Training organelle-specific classifiers

 The CHM consists of bottom-up and top-down steps cascaded in multiple stages

(Seyedhosseini, et al., 2013b). The bottom-up step occurs in a user-specified number of

hierarchical levels, L. At each level, the input stacks Ti and Bi are sequentially

downsampled and a classifier is trained based on features extracted from the

downsampled data as well as information from all lower levels of the hierarchy. After

classifiers have been trained at all levels, the top-down path combines the coarse

contextual information from higher levels into a single classifier that is applicable to images

at native resolution. This whole process is then cascaded in a number of stages, S, where

the output classifier from the previous stage serves as the input classifier for the

subsequent stage. The final output is a pixel classifier, CS,L, that is applicable to images at

the native pixel size of Ti and Bi. For optimal results, the number of stages chosen should

be greater than one. The exact number of stages and levels chosen depends on a host of

factors, including the size of Ti and Bi and the computational resources available to the

61

Figure 2.8. A flow chart of the steps involved in training data generation. The
generation of a set of training data for mitochondrial automatic segmentation is shown
here. First, a set of seed points, Pi, were selected such that a wide distribution throughout
the volume is achieved (bottom left). Tiles of size 500 x 500 centered at each seed point
were extracted to serve as training images, Ti. All instances of the desired organelle target
were manually segmented on each training image. These manual segmentations were
then used as masks to binarize each Ti such that pixels of value one correspond to pixels
of Ti that are positive for the desired organelle. This process was repeated 50 times to
yield stacks of training images and their corresponding training labels, Bi.

62

experimenter.

For each organelle target, 90 seed points were placed throughout the SBEM stack

as described in Section 2.2.2.1. Of the 90 tiles generated for each organelle, 50 were

randomly selected for use in training a CHM classifier; the other 40 were set aside to use

as test data and ground truth for evaluating classifier performance. CHM classifiers were

trained with two stages and two levels for each target organelle, and at each level of

downsampling. The wallclock time and memory requirements for training each classifier

are given in Table 2.2. All classifiers were trained using the high memory node (monster-

2.8) of the National Biomedical Computation Resource (NBCR) cluster, rocce.ucsd.edu

(http://rocce-mgr.ucsd.edu/).

2.2.2.3. Computation of probability maps

 For each organelle and level of downsampling, the corresponding set of 40 test

tiles were subjected to pixel classification using the appropriate trained classifier. Pixel

classification was performed in parallel by submitting the SGE array job script

CHM_array_testTile.q. An example of this script is shown in Appendix C.2.13. A tiling

routine was built and incorporated into the script for cases in which the test images are

significantly larger than the data used to train the classifier. When desired, the user can

specify a desired number of tiles in the X and Y directions. For example, if the test image

has dimensions of 4,000 pixels x 2,000 pixels and the classifier was trained on images of

size 500 x 500, tiling with dimensions of 8 x 4 would be appropriate. Each input image is

then decomposed into the specified number of tiles using a routine built around a series

of ImageMagick commands (Appendix C.2.13). The user is also able to specify the

number of pixels by which adjacent tiles should overlap. Probability maps are then

computed for each tile. Once all tiles have been generated, they are automatically stitched

63

Table 2.2. Computational requirements for organelle-specific pixel classification.
The dimensions of the stack of training images and labels used to train the classifier are
given. The values for pixel classification correspond to the average values required to
generate a probability map for one tile of roughly 60 μm2 at the tissue level (1,000 x 1,000
pixels at 2x downsampling). Values are reported as the mean and standard deviation (N
= 40 for each). Time is reported as the wall clock time for the indicated process.

 Classifier Training Pixel Classification

nm/pixel Dimensions Time (hr.) RAM (GB) Time (min.) RAM (GB)

Mitochondria
7.79 500 x 500 x 50 22.27 78.54 13.25 ± 1.18 4.54 ± 0.04
15.59 250 x 250 x 50 17.69 39.40 4.66 ± 2.07 2.08 ± 0.05
23.39 166 x 166 x 50 7.74 18.09 2.07 ± 0.06 1.69 ± 0.05
31.19 125 x 125 x 50 2.68 10.77 1.17 ± 0.03 1.49 ± 0.08
38.90 100 x 100 x 50 2.59 7.31 0.93 ± 0.05 1.40 ± 0.06
Lysosomes
7.79 500 x 500 x 50 43.45 75.78 13.12 ± 0.61 4.53 ± 0.03
15.59 250 x 250 x 50 38.39 39.34 4.71 ± 0.18 2.09 ± 0.06
23.39 166 x 166 x 50 12.13 18.06 2.06 ± 0.05 1.68 ± 0.05
31.19 125 x 125 x 50 6.65 10.78 1.11 ± 0.01 1.51 ± 0.04
38.90 100 x 100 x 50 4.08 7.35 0.82 ± 0.02 1.47 ± 0.04
Nuclei
7.79 500 x 500 x 50 23.98 87.24 12.73 ± 0.90 4.54 ± 0.03
15.59 250 x 250 x 50 20.35 39.38 4.67 ± 0.15 2.08 ± 0.04
23.39 166 x 166 x 50 7.95 18.16 2.03 ± 0.03 1.68 ± 0.05
31.19 125 x 125 x 50 4.71 10.83 1.18 ± 0.02 1.52 ± 0.04
38.90 100 x 100 x 50 3.18 7.38 0.90 ± 0.04 1.41 ± 0.04
Nucleoli
7.79 500 x 500 x 50 20.67 81.80 13.56 ± 1.70 4.54 ± 0.03
15.59 250 x 250 x 50 22.67 39.35 4.76 ± 0.16 2.09 ± 0.04
23.39 166 x 166 x 50 10.10 18.06 2.06 ± 0.04 1.69 ± 0.04
31.19 125 x 125 x 50 5.75 10.84 1.17 ± 0.02 1.50 ± 0.04
38.90 100 x 100 x 50 3.06 7.34 0.89 ± 0.02 1.41 ± 0.04

64

together to yield the final, full-sized probability map of the complete image. During

stitching, regions of overlap are handled by taking either the average or maximum pixel

intensity across the overlapped regions from all appropriate tiles. Following stitching, the

final probability map is normalized such that each pixel ranges from [0,…,1], with one

representing the greatest probability of a true positive.

2.2.2.4. Assessment of classifier performance

 Following pixel classification of all test images, classifier performance was

assessed by comparing the output, normalized probability maps to their corresponding,

manually segmented ground truth. Receiver operating characteristic (ROC) and precision-

recall curves (Fawcett, 2006) were generated by applying pixel intensity thresholds

ranging from 0 to 1 in increments of 0.01 to each probability map. The confusion matrix

was computed at each threshold value, and the true positive rate (TPR, or recall), false

positive rate (FPR), and precision were calculated according to the following formulae:

TPR =
TP

TP+FN

FPR =
FP

FP+TN

Precision =
TP

TP+FP

ROC curves were generated by plotting TPR against FPR for all threshold values, and

precision-recall curves were generated by plotting precision against TPR for all threshold

values. The computation of these values was performed using the MATLAB script

segStats.m (Appendix C.2.14). ROC curves for the four organelle targets at a

downsampling level of 2x are shown in Figure 2.9. In addition to the values described

above, the script segStats.m also calculates a host of other segmentation evalutation

65

Figure 2.9. ROC curves for CHM classifiers of various organelles. ROC curves for
mitochondrial (A), lysosomal (B), nuclear (C), and nucleolar (D) CHM classifiers generated
with two stages and two levels.

66

metrics, including the true negative rate (TNR), false negative rate (FNR), false discovery

rate (FDR), negative predictive value (NPV), accuracy, F-value, Jaccard coefficient

(Powers, 2011; Lucchi et al., 2012), geometric mean (Seyedhosseini et al., 2013b), and

Matthew’s correlation coefficient (Matthews, 1975; Baldi et al., 2000). These metrics are

calculated according to the following formulae:

TNR =
TN

FP+TN

FNR =
FN

FN+TP

NPV=
TN

TN+FN

Accuracy =
TP+TN

TP+FN+FP+TN

Jaccard =
TP

FP+TP+FN

G-mean = √TPR × TNR

MCC=
TP×TN-FP×FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)

2.2.2.5. Binarization of probability maps

 Each probability map, Mj, is binarized by evolving active contours (Chan and Vese,

2001) at automatically determined initial positions. For an unsupervised determination of

the initial positions, the probability map M is first thresholded using Otsu’s multi-level

method (Otsu, 1979) with G unique gray levels. The output from this operation is Oj, a

map in which each pixel of Mj has been classified into one of G unique levels, with the

zeroth level corresponding to the approximate background. This map is then binarized by

thresholding Oj at a pixel intensity of G, yielding a mask of initial positions, Kj. This binary

mask is then made smaller by applying two iterations of morphological shrinking and used

67

to initialize the evolution of active contours with a number of iterations and smoothing

factor specified by  and , respectively. Each 2D connected component of Kj serves as

a unique initial position for contour evolution. For best results,  should be at least 50. The

choice of  depends largely on the organelle target and pixel size of the test images, but

in general should fall in the range of 0-8. Larger values of  can be used when the pixel

size is small. If the pixel size is too large (i.e. above 10 nm/pixel), smoothing should be

turned off by setting  to zero. The value of G significantly alters the results, and its choice

is dependent on the goals of the experimenter. Low values of G tend to emphasize true

positives at the risk of retaining false positives. As G is increased, false positives are more

readily removed, but so are true positives. The final output from this process is SEGj, the

organelle segmentation of the input grayscale image, Ij. An illustration of this process is

shown for two test images in Figure 2.10. This binarization algorithm is implemented in

the MATLAB script binarize_pm_activecontour.m (Appendix C.2.15).

 The results of this method were compared to segmentations generated from the

same probability maps, but with a number of different unsupervised binarization

algorithms: (1) Minimum error thresholding (Kittler and Illingworth, 1986), (2) Maximum

entropy thresholding (Kapur, et al., 1985), and (3) Otsu’s single-level method (Otsu, 1979).

The performance of each algorithm, as quantified by the F-value, Jaccard index, precision,

and recall, was compared against that of the proposed method for each organelle target.

The results of this comparison are shown in Table 2.3. The proposed active contour

segmentation method resulted in a superior recall for all four organelles and a superior F-

value for mitochondria, lysosomes, and nucleoli when compared to the other segmentation

methods. The F-value for nuclear segmentation is negligibly better using Otsu’s single-

level method. The lack of distinction between these two binarization methods for nuclei is

due largely to the already high quality of nuclear probability maps. The accuracy values

68

Figure 2.10. The binarization of probability maps using active contours initialized
by a multi-level Otsu threshold yields accurate segmentation results. Colorized
maps, M, of a nucleus (A) and lysosomes (D) generated by applying Otsu’s method with
multiple levels to probability maps obtained by CHM pixel classification. Each color
corresponds to a unique level of the threshold. Six gray levels (G = 6) were used for the
nucleus and four (G = 4) were used for the lysosomes. Initial positions (B, E) were
determined by selecting pixels corresponding to only the highest levels of each threshold
followed by two iterations of morphological shrinking. Output segmentations (C, F) were
obtained by evolving active contours about each of the initial positions in (B) and (E) with

100 iterations and a smoothing factor of 8 ( = 100,  = 8). In the case of the lysosome
images, note that a myelinated axon that was originally detected by the classifier as a
false positive (D, arrow) has been removed from the final segmentation by the application
of our method (F, arrow).

69

Table 2.3. Segmentation evaluation metrics for the tested organelle targets using
various methods of probability map binarization.

 F-value Precision Recall Jaccard Index

Mitochondria
Minimum Error 0.635 0.994 0.466 -
Max. Entropy 0.669 0.991 0.505 -
Otsu Single-level 0.816 0.957 0.712 -
Active Contours 0.877 0.867 0.886 0.780
Lysosomes
Minimum Error 0.433 0.985 0.277 -
Max. Entropy 0.492 0.940 0.508 -
Otsu Single-level 0.812 0.899 0.737 -
Active Contours 0.841 0.854 0.828 0.726
Nuclei
Minimum Error 0.963 0.958 0.968 -
Max. Entropy 0.644 0.603 0.692 -
Otsu Single-level 0.971 0.979 0.963 -
Active Contours 0.970 0.973 0.968 0.942
Nucleoli
Minimum Error 0.781 0.998 0.641 -
Max. Entropy 0.811 0.996 0.684 -
Otsu Single-level 0.898 0.973 0.835 -
Active Contours 0.910 0.902 0.918 0.835

obtained for each stack using active contour segmentation were 0.985, 0.997, 0.972, and

0.979 for mitochondria, lysosomes, nuclei, and nucleoli, respectively.

 A comparison of the proposed active contour binarization method to the other

methods tested is shown in Figure 2.11 using mitochondria as an example. Since the

Golgi apparatus can sometimes display a texture similar to that of the mitochondrial matrix,

the presence of this organelle can confuse the mitochondrial classifier (Figures 2.11A and

2.11B, arrows). Segmentations generated with the maximum entropy algorithm (Figure

2.11C, recall = 0.992, precision = 0.498, F-value = 0.670, accuracy = 0.948) and Otsu’s

single-level method (Figure 2.11D, recall = 0.958, precision = 0.687, F-value = 0.812,

accuracy = 0.977) retain elements of the Golgi apparatus as false positives. However,

probability map binarization using the proposed active contour method eliminates these

false positives (Figure 2.11D, recall = 0.908, precision = 0.804, F-value = 0.863, accuracy

70

= 0.985) when compared to the ground truth (Figure 2.11E). Output probability maps and

active contour segmentations from example test images of each organelle are shown in

comparison to their corresponding ground truth in Figure 2.12.

2.2.2.6. Comparison to a previously published algorithm

 The results of the proposed method for nuclear segmentation were validated by

comparison to the results obtained by the algorithm of Tek and colleagues (Tek, et al.,

2014). The full dataset was first downsampled to isotropic voxel dimensions (30 nm x 30

nm x 30 nm), resulting in a stack of size 4029 x 3120 x 1283 voxels. Training data and

images consisted of a 500 x 500 x 50 subvolume of the downsampled stack containing

two adjacent nuclei. Ground truth data were generated by manual segmentation of all

neuronal, glial, and endothelial cell nuclei across fifty consecutive slices from the center

of the dataset. A CHM pixel classifier with two stages and two levels was trained and

applied to all images in the stack. Similarly, an ilastik voxel classifier was trained using all

possible features with the same training images serving as input (Sommer, et al., 2014).

This classifier was subsequently applied to all images in the downsampled stack. CHM

probability maps (Figure 2.13) were binarized using the proposed method. The ilastik

probability maps (Figure 2.14) were binarized by thresholding at the level p = 0.5, followed

by the application of the object detection algorithm of Tek and colleagues with Vth1 and

Vth2 set to 25 and 10000, respectively (Tek, et al., 2014). The proposed method achieved

a precision, recall, and F-value of 0.976, 0.977, and 0.977, respectively. The method of

Tek and colleagues achieved a precision, recall, and F-value of 0.976, 0.542, and 0.697,

respectively, when applied to the same dataset using the same training data. ROC and

precision-recall curves for the CHM and ilastik classifiers are given in Figures 2.15 and

2.16, respectively.

71

Figure 2.11. Binarization of probability maps using active contours outperforms
other methods. A CHM classifier for mitochondria was applied to a 500 x 500 pixel test
image (A), generating the probability map shown in (B). Note that regions of pixels
corresponding to the Golgi apparatus (yellow arrows) were detected in the probability map.
The Golgi apparatus can often confuse mitochondrial pixel classifiers because it has a
texture very similar to that of the mitochondrial matrix. The results of binarization of the
probability map using maximum entropy (C) and Otsu’s single-level method (D) are
shown. Using these techniques, regions of the Golgi are permitted into the final
segmentation as false positives. The resultant segmentation obtained by our method of

binarization with active contours (G = 2,  = 100,  = 8) is shown in (E). Instances of the
Golgi apparatus were automatically removed during processing. This segmentation (F-
value = 0.863, accuracy = 0.985) is a highly faithful representation of the ground truth (F).

72

Figure 2.12. The results of the proposed method are consistent when applied to
diverse organelle targets. The application of our method to different organelle targets
yields consistent results without the need to significantly change the input parameters.
Shown here are test images, each of size 500 x 500 pixels, and their corresponding
probability maps, segmentations, and manually segmented ground truth images. The final
column shows a transparent overlay of the segmentation onto the test image. The
evaluation metrics for each test image are as follows: Mitochondria, F-value = 0.844,
accuracy = 0.984; lysosomes, F-value = 0.872, accuracy = 0.997; nuclei, F-value = 0.971,
accuracy = 0.971; nucleoli, F-value = 0.91, accuracy = 0.977.

73

Figure 2.13. A full-slice CHM probability map for nuclei. The full dataset was first
downsampled to isotropic voxel dimensions (30 nm x 30 nm x 30 nm), resulting in a stack
of size 4029 x 3120 x 1283 voxels. Training data and images consisted of a 500 x 500 x
50 subvolume of the downsampled stack containing two adjacent nuclei. These training
data were used to train a CHM pixel classifier with two stages and two levels, which was
then used to generate full-slice probability maps for all 1,283 images in the stack. Shown
here is a single slice from the stack (A) and its corresponding nuclear probability map (B).

74

75

Figure 2.14. A full-slice ilastik probability map for nuclei. An ilastik voxel classifier was
trained using the same training set used to produce the pixel classification show in Figure
2.13. All possible features and scales were included during classification. Shown here is
a single slice from the stack (A) and its corresponding nuclear probability map (B). This
probability map is significantly noisier than the one generated with the CHM.

76

77

Figure 2.15. ROC and precision-recall curves for CHM nuclear classifiers. The
performance of a CHM classifier trained on a 3D subvolume of data (red) is compared to
that of a CHM classifier trained on an equivalent amount of data collected from 2D tiles
that were distributed throughout the volume (green). Both ROC (A) and precision-recall
(B) curves demonstrate better performances for the classifier trained on 2D data. The
performances of both classifiers were verified against the same ground truth.

78

Figure 2.16. ROC and precision-recall curves for an ilastik voxel classifier. The ilastik
classifier evaluated here was trained using the same training data and evaluated against
the same ground truth as the CHM_3D classifier in Figure 2.15. The classifier was trained
using the “headless” mode of operation. Its performance, as evaluated by ROC (A) and
precision-recall (B) curves is significantly worse than that of both CHM pixel classifiers
shown in Figure 2.15. It is possible that ilastik may perform better with less labels or a
different proportion of label to background in its provided training labels.

79

2.2.2.7. The impact of image downsampling on automatic segmentation

performance

 The results of the downsampling experiment are shown in Figure 2.17. The

resultant F-value for segmentation of nuclei and nucleoli remains remarkably consistent

across the whole range of pixel sizes tested. The F-values for mitochondria and lysosomes

exhibit substantial reductions at pixel sizes greater than ~15 nm/pixel, corresponding to

an overall downsampling of the original SBEM stack by a factor of four. The persistence

of a high F-value across all scales tested for nuclei and nucleoli is likely due to their larger

size and more regular texture in comparison to the other organelles. This is especially true

for mitochondria, whose cristae architectures may differ dramatically from region to region.

 The required wall clock time and random access memory (RAM) required for CHM

classifier training and pixel classification for each organelle at each level of downsampling

were given in Table 2.2. The time and RAM required for probability map binarization are

not shown because they are negligible with respect to training and classification. These

results indicate that, in cases where segmentation accuracy is not dramatically affected,

a vast amount of time and computational resources can be saved by downsampling the

input image stacks. Simple extrapolation of pixel classification times shows that the time

required by a single CPU to apply a nuclear pixel classifier to our full test dataset would

be reduced from ~5.9 years to ~0.4 years when the input data are downsampled by a

factor of 10. Examples of full image probability maps of nuclei, nucleoli, and mitochondria

generated from downsampled data are shown in Figure 2.18.

2.3. Discussion

 As recently as a few years ago, the notion of reconstructing and morphologically

characterizing the organelle networks of even a few whole cells was considered a

80

Figure 2.17. Input images can be downsampled to various degrees before the
segmentation results are negatively affected. Each organelle-specific stack was
downsampled by factors of two, four, six, eight, and ten. Separate classifiers were trained
at each different pixel size and segmentations were generated for each stack using our
method. Here, the F-value of each resultant stack is compared across the different pixel
sizes obtained after downsampling. The F-value of nuclei (blue) and nucleoli (magenta) is
remarkably independent of the level of downsampling across all levels tested. The F-
values for mitochondria (red) and lysosomes (green) significantly decline as the level of
downsampling is increased.

81

Figure 2.18. Automatic segmentation can be efficiently scaled to handle full slices
from teravoxel-sized SBEM datasets. Probability maps of full images from the SCN
dataset were generated by downsampling the image, computing probability maps of
individual tiles, and stitching these tiled maps together. Shown here are probability maps
of mitochondria (B), nuclei (C), and nucleoli (D) computed from the same full slice (A). The
full slice was downsampled by a factor of two prior to mitochondrial pixel classification and
a factor of eight before nuclear and nucleolar pixel classification. Common residual errors
during mitochondrial pixel classification are the false detection of endothelial cells (arrow)
and nucleoli or clusters of chromatin in the nucleus (asterisk). A common error
encountered during nuclear pixel classification is the false detection or regions of
cytoplasm devoid of membrane-bound organelles (arrowhead). These residuals are
frequently removed by the application of the proposed probability map segmentation
algorithm. Scale bar = 20 μm.

82

monumental challenge (Noske, et al., 2008). The advent and widespread adoption of high

throughput, volumetric EM techniques has threatened to change that notion, with the

caveat that our ability to segment and analyze data must first catch up with our ability to

collect it. With that goal in mind, this study aimed to develop a method for the accurate

automatic segmentation of organelles in EM image stacks that: (1) could be easily adapted

to any organelle of interest, and (2) could be applied to teravoxel-sized datasets in a

computationally efficient manner.

 Since it does not make any large-scale, a priori assumptions about the morphology

of the segmentation target, the proposed method can be applied to segment diverse

organelles with ease. The only geometrical properties assumed throughout the method

are boundary smoothness and a cross-sectional area that is sufficient enough to prevent

the removal of true positives following binary shrinking. Both of these assumptions are

valid for virtually all organelles under practical imaging conditions. CHM classifiers can be

trained for any dataset or organelle target if given the proper training data, and the output

segmentations from the proposed method can be tuned to the demands of unique

experiments. For example, decreasing the number of gray levels, G, used in the multi-

level Otsu thresholding step will emphasize true positives at the expense of including false

positives, which can often be excluded by post-processing filters. Additionally, it is easier

to remove false positives by manual correction or crowd-sourcing (Giuly, et al., 2013) than

it is to add missing true positives.

 The proposed method performed favorably when compared to a recently published

algorithm for the automatic segmentation of cell nuclei (Tek, et al., 2014). It is interesting

to note that the performance of the proposed method was very similar when trained using

either images from consecutive slices of the same nuclei (precision = 0.976, recall = 0.977)

or single slice images from a variety of nuclei (precision = 0.973, recall = 0.968). This

83

similarity demonstrates the robustness of the CHM pixel classifier for this task. It is likely

that the segmentation results obtained by applying the method of Tek and colleagues to

the SCN dataset could be strengthened by training an ilastik voxel classifier against a

greater diversity of nuclei.

 Another advantage of the proposed method lies in its scalability to full datasets.

The generation of probability maps from small tiles of the input image minimizes the

required RAM. Additionally, it allows for computation to be easily expedited by parallelizing

the processing of individual tiles across multiple CPUs. The demonstration that accurate

results for certain organelles can be achieved on downsampled stacks also helps expedite

processing. One can envision an experiment in which a teravoxel-sized SBEM stack

collected at high resolution for axon tracking can then be downsampled and have its nuclei

or mitochondria automatically segmented at a fraction of the computational cost that would

have been required at its native resolution. As innovative methods to rapidly acquire even

larger datasets continue to be developed (Helmstaedter, et al., 2013; Marx, 2013;

Mohammadi-Gheidari and Kruit, 2011), this reduction in computational cost will prove

critical.

 In conclusion, the technologies proposed in this chapter introduce novel methods

for the automatic segmentation of organelles from EM image stacks that are both robust

and able to handle datasets of any size. These tools fill a critical need by allowing for the

quantitative analysis of volumetric EM datasets at a scale between that of current

connectomics approaches (Kim, et al., 2014; Helmstaedter, et al., 2013; Anderson, et al.,

2011; Bock, et al., 2011; Briggman, et al., 2011; Kleinfeld, et al., 2011; Varshney, et al.,

2011; Briggman and Denk, 2006) and that afforded by genetically encoded markers for

small molecule localization (Boassa, et al., 2013; Martell, et al, 2012; Shu, et al., 2011).

84

 This chapter, in part, is a reprint of the material as it appears in Frontiers in

Neuroanatomy, 2014, 8. Perez, A.J., Seyedhosseini, M., Deerinck, T.J., Bushong, E.A.,

Panda, S., Tasdizen, T., and Ellisman, M.H. The dissertation author was the primary

investigator and author of this paper.

85

Chapter 3

From Pixels to Structures: Constructing Models of Neuronal Microanatomy

86

3.1. Introduction

Understanding the relationship between structure and function at the subcellular

level is of fundamental importance to biology. Organelle positioning within cells is thought

to follow non-random organizational schemes that are rooted in the functionality of

molecular-scale signaling cascades (de Brito and Scorrano, 2010). Consequently, it is not

difficult to envision a number of biological questions that could be addressed with the aid

of easy access to high resolution models and quantifications of organelle ultrastructure.

For example, changes in mitochondrial fission and fusion events are known to correlate

with a number of neurodegenerative conditions, including Parkinson’s, Huntington’s, and

Alzheimer’s diseases (Bossy-Wetzel et al., 2003; Knott, A.B. et al., 2008; Su et al., 2010).

A neuroscientist studying one of these diseases might, therefore, wish to explore

mitochondrial defects at the ultrastructural level across hundreds of cells from diseased

tissue. In another example, a biologist may hope to obtain a high resolution depiction of

how the knockout of certain motor proteins affects organelle localization throughout the

cell (Tanaka et al., 1988). In addition, such whole-cell 3D models would undoubtedly

benefit members of the computational modeling community, who might use such

reconstructions to provide geometrical constraints for the modeling of Ca2+ diffusion or

neurotransmitter release (Slepchenko et al., 2003; Buck et al., 2012).

 As discussed in detail previously, the generation of the segmentations needed to

produce such models requires a significant time investment in the form of either human or

computational hours. Fortunately, the technologies described in Chapter 2 leverage upon

machine learning approaches to yield such segmentations with minimal human

interaction. The accurate, pixel-based segmentations output by these methods lay the

groundwork for large-scale studies of cellular microanatomies. However, the modeling of

representative biological morphologies from these data requires their expansion to the

87

third dimension, a step that is not trivial at larger scales. In this chapter, a series of

computational methods for accelerating this process will be presented. An expeditious

approach for the computation of 3D meshes from 2D binary segmentations will be

outlined. Additionally, novel algorithms designed to enhance 2D segmentations by

incorporating inter-slice contextual information will be described

 However, even once accurate 3D models have been attained, the extraction of

useful quantitative data from them remains no simple task. Quantitative analyses typically

require the use of specialized software such as IMOD, Amira, or Imaris, and formatting

the data into a structure recognizable by such programs may necessitate numerous

intermediate steps and file conversions. Additionally, it is incumbent upon the user to

ensure accuracy and store the results in a reliable, shareable, and reproducible format.

Therefore, it is clear that the automation of these steps, from initiation to data reporting,

would greatly enhance the accessibility of large-scale, quantitative analyses to the general

scientific community. A few open-source software packages have been generated with

this goal in mind (McComb et al., 2009). The MTK program contained in the IMOD

distribution has been used for a variety of quantitative analyses, including the study of

ribosome densities (Kang and Staehelin, 2008) and the distributions of microtubules

(Austin et al., 2005), mitochondria (Höög et al., 2007), and synaptic vesicles (Gibeaux et

al., 2013). Applications have been developed to automatically quantify and report label

density in confocal datasets (Dayal and Hill, 2014) and morphological parameters from

nuclei at the LM level (Ollion et al., 2013; Poulet et al., 2014). A recent contribution from

Graham Knott and Pascual Fua, NeuroMorph, is an attempt at bringing such automated

quantifications to the level of large-scale EM (Jorstad et al., 2014). Though this tool has

been used for studying dendritic spines and synapses, there are no known analogous

88

tools for automating the analysis of organelle morphologies in teravoxel-sized 3D EM

datasets.

 With this need in mind, a final contribution of this chapter will be the description of

a workflow for the automatic calculation and reporting of single-cell organelle

morphologies and spatial distributions using the nucleus as a test case. Importantly, it will

be demonstrated that these quantification steps can be linked to the automatic

segmentation algorithms of Chapter 2 in a seamless workflow that automatically outputs

numerical data following segmentation. Taken as a whole, this workflow represents a

powerful tool that enables the quantification and modeling of subcellular

microenvironments with high degrees of resolution and ease.

3.1.1. Nuclear structure and function

 The nucleus is generally the largest organelle found in eukaryotic cells and tends

to be the most obvious and defining cellular feature when viewed at the microscopic level.

According to both structural and functional criteria, the nucleus can be divided into two

distinct compartments: (1) the nuclear envelope (NE) and (2) the nuclear interior, or

nucleoplasm. The NE consists of two phospholipid bilayers, the inner (INM) and outer

(ONM) nuclear membranes, which are separated by a roughly 30-50 nm wide lumen

known as the perinuclear space (Zwerger et al., 2011). Large proteinaceous assemblies

known as nuclear pore complexes (NPCs) are embedded across the nuclear surface.

These complexes span both the INM and ONM, forming the sole gateway for the exchange

of ions and macromolecules between the cytoplasm and nucleoplasm (Hoelz et al., 2011).

At a mechanical level, the nucleus is physically coupled to the cell-wide cytoskeletal

network via protein complexes that cross the perinculear space and link cytoskeletal

elements with the nuclear lamina, a meshwork of proteins that lines the nucleoplasmic

89

face of the INM (Crisp et al., 2006; Tzur et al., 2006; Wang et al., 2009). Importantly, the

ONM and perinuclear space are continuous with the lumen of the ER, and this system

provides a reservoir of membrane that can, in theory, be used to accommodate nuclear

shape changes and deformations (Lammerding et al., 2007).

 The main function of the second nuclear compartment, the nucleoplasm, is to

sequester the cell’s genetic material in the form of chromatin. The two distinct

configurations of chromatin, heterochromatin and euchromatin, have been shown to

occupy distinguishable and non-random regions of the nucleoplasm. Euchromatin, the

more transcriptionally active of the two forms, tends to be found towards the nuclear

interior whereas the less active heterochromatin is found closer to the nuclear periphery

(Zwerger et al., 2011). Furthermore, it has been shown that individual chromosomes of

interphase nuclei occupy defined regions of the nucleoplasm, called chromatin territories

(Cremer and Cremer, 2001). The existence of a nuclear skeletal network that facilitates

this compartmentalization has been proposed (Nelson et al., 1986; Ingber, 1997), but its

existence is still the subject of much scientific debate.

 In addition to chromatin, the nucleoplasm contains a number of other distinct

structures that are readily identifiable at the EM level. The largest and most obvious of

these is the nucleolus, which serves as the site of ribosomal RNA processing and

ribosome biogenesis (Hetman and Pietzrak, 2012). The area surrounding the nucleolus,

known as the perinucleolar compartment (Huang et al., 1997), is an ordered domain

containing small RNAs and perinucleolar chromatin (Nemeth and Langst, 2011; Padeken

and Heun, 2014). Coiled, or Cajal, bodies are another type of nuclear organelle, and these

bodies are associated with states of cellular stress and are frequently localized in the

perinucleolar vicinity (Cioce and Lamond, 2005). Nuclear speckles, named after their

appearance when fluorescently labeled, contain large concentrations of small nuclear

90

ribonucleic particles (snRNPs; Handwerger and Gall, 2006). The location and composition

of these organelles within the nucleoplasm changes in response to levels of mRNA

transcription and protein phosphorylation (Lamond and Spector, 2003). The importance

of these nuclear organelles, in both normal and diseased states, remains a topic of great

interest within the community.

 Disruptions of wildtype (WT) nuclear structure and mechanics are associated with

a growing number of disease states. Changes in nuclear size and shape, as well as

alterations in chromatin texture and nucleolar number, have long been used as markers

for detecting tumor cells in clinical cancer diagnosis (Zink et al., 2004). The mutation of a

single codon within the gene encoding the ER/NE resident protein torsinA leads to the

development of the neurological movement disorder DYT1 dystonia (Tanabe et al., 2009).

At the microscale, this mutation manifests as the selective blebbing of the ONM in neurons

of mice, producing a grossly perturbed nuclear structure (Goodchild et al., 2005; Kim et

al., 2010). Mutations in proteins of the nuclear lamina are associated with a set of human

diseases collectively referred to as the laminopathies (Worman, 2012). The laminopathies

typically result from mutations to the gene encoding the protein lamin A, and include

Emery-Dreifuss muscular dystrophy, Hutchinson-Gilford progeria syndrome, and dilated

cardiomyopathy (Capell and Collins, 2006). One hypothesis for the mechanism behind

these diseases is that laminar mutations reduce the structural integrity of the nucleus,

ultimately weakening it and leading to cell death in mechanically stressed tissues such as

muscle (Zwerger et al., 2011).

 One interesting structural characteristic of many interphase nuclei is the presence

of deep grooves, or invaginations, of the nuclear surface. Such nuclear invaginations have

been reported in a host of species and cell types, including plants (Li and Dickinson, 1986;

Collings et al., 2000), yeast (Vitols et al., 1961), cultured 3T3 cells (Clubb and Locke,

91

1998) and myocytes (Abe et al., 2004), and mammalian B cells (Dardick et al., 1982) and

hypothalamic neurons (van den Pol, 1980). Nuclear invaginations can be separated into

two categories based on their ultrastructural nature: Type I invaginations involve only

extensions of the INM into the nucleoplasm, while Type II invaginations involve the similar

extension of both nuclear membranes (Malhas and Vaux, 2014). Studies using high

molecular weight fluorescent tracers confirmed that the lumens of invaginations are

contiguous with the cytoplasm (Malhas et al., 2011), and the presence of NPCs in

invaginated regions of the NE was confirmed by ssTEM (Fricker et al., 2007).

 The widespread distribution of nuclei displaying the invaginated phenotype has led

many to believe that these folds serve a critical purpose in cell biology. Nucleoli are

observed to be preferentially associated with invaginations (Fricker at al., 2007), and the

cytoplasmic lumens of invaginations often contain membrane-bound organelles and

markers of translational initiation (Paytubi et al., 2009). Therefore, invaginations may serve

to expedite the translation of critical mRNAs that are generated adjacent to the fold and

exported to the cytoplasm by invagination-localized NPCs. (Malhas et al., 2011). In a

recent report, Mauger suggested that nuclear invaginations may also affect cellular Ca2+

dynamics and serve to regulate transcriptional activity (Mauger, 2012). Whatever the

purpose of invaginations may be, it is likely that they are advantageous in a cell-specific

manner rather than necessary for normal cell function; populations of both invaginated

and non-invaginated nuclei can be found in different regions of the healthy mouse brain

(Figure 3.1).

 Despite such interest in the nature of nuclear folding, there are currently few

reliable methods for quantifying it in 3D. On account of this, some studies have reported

purely qualitative observations, commenting on the percentage of a certain cell type that

displays an invaginated phenotype (Abe et al., 2004). The most obvious descriptor for the

92

Figure 3.1. Nuclear invaginations are specific to certain populations of cells.
Depicted here are nuclear surface renderings from neurons of the mouse CA1
hippocampus (A, column) and the mouse hypothalamic suprachiasmatic nucleus (B,
column). Despite being reconstructed from the brain of the same species, nuclei from the
CA1 hippocampus have almost perfectly smooth surfaces, while the nuclei from the
suprachiasmatic nucleus are heavily invaginated. Therefore, by an unknown mechanism,
the nuclear invagination phenotype is specific to certain populations of cell types. The
surface renderings depicted here were automatically generated using the multiplane
automatic segmentation algorithm described in this chapter.

93

94

degree of nuclear folding is the surface area to volume ratio (SVR), which should, in

theory, be greater for more heavily invaginated nuclei (O’Connell et al., 2008). Lafarga

and colleagues proposed a dimensionless invagination factor (IF2D) to quantify the extent

of cross-sectional nuclear folding in ultrathin section TEM images. Their equation, in which

A and P represent the cross-sectional area and perimeter of the nucleus, respectively, is

given below (Lafarga et al., 1992):

IF2D =
P

√A
× K2D

𝐾2𝐷 =
1

2√𝜋

The IF is normalized such that it furnishes a value of one for a perfect circle and values

greater than one in the presence of any degree of folding. Numerous other 2D shape

descriptors, such as circularity, solidity, and eccentricity may also yield useful correlations

to the degree of nuclear folding (Choi et al., 2011). In this chapter, a number of shape

descriptors for the accurate quantification of 3D nuclear morphologies will be introduced

and applied to automatically generated surface renderings. But first, in the following

sections, two methods for enhancing segmentation results will be introduced and their

application to improving the accuracy of automatically generated nuclear morphologies

will be emphasized.

3.2. Methods Development and Results

3.2.1. The multiplane automatic segmentation algorithm

 Large structures with heterogeneous textures may be difficult to automatically

segment using a single classifier. An example of such a structure is the nucleus, which

contains unpredictably distributed clumps of chromatin with different textures and patch

sizes. This can lead to the erroneous assignment of low probabilities to pixels at the

95

nuclear border, where clumps of heterochromatin accumulate. Such low probabilities

result in false negatives in the output segmentation, which typically manifest as an uneven

or jagged nuclear border (Figure 3.3). This error is harmful when a quantification of exact

nuclear morphology is desired, as it will lead to an often substantial overestimate of

nuclear surface area.

 When an SBEM dataset is re-sliced about an orthogonal plane (Figure 3.2) and

this re-sliced representation is used as input to the pixel classification process, the

classifier is presented with a different view of the data that may yield better segmentation

accuracy. However, it is impossible to know which orientation will provide the best results

a priori, and it is likely an aggregate of many views that will achieve optimal classification.

In this section, a method for improving the results of 2D automatic segmentation is

presented. The input SBEM dataset is first downsampled to isotropic voxels, then re-sliced

to yield views in the XZ- and YZ-planes. A single pixel classifier is applied to all three

stacks, and the results are averaged together to give a final probability map stack. In the

following sub-sections, the principles behind this method, named the multiplane automatic

segmentation (MPAS) algorithm, will be outlined. This will be followed by a description of

its implementation and some results that demonstrate its use to achieve improvements in

output nuclear segmentations.

3.2.1.1. Description of the algorithm

Consider an 8-bit SBEM stack, IXY, in its native orientation, with isotropic voxels

and dimensions specified by (X, Y, Z) = (sX, sY, sZ). Since SBEM stacks have a coarser

resolution in their axial dimension, the isotropic voxel size of IXY is equivalent to the axial

step size, δ. Since the stack IXY is equivalent to a 3D matrix of pixel intensity values, it can

be rotated by 90° about both its X and Y axes, yielding the rotated image stacks:

96

IXZ(i, j, k) = {0,… ,255} ∀ i ∈ {1,… , sX}, j ∈ {1,… , sZ}, k ∈ {1,… , sY}

IYZ(i, j, k) = {0,… ,255} ∀ i ∈ {1,… , sY}, j ∈ {1,… , sZ}, k ∈ {1,… , sX}

These rotated stacks depict views that are equivalent to slicing IXY in increments of δ nm

about its XZ and YZ planes. Since voxels are isotropic, the texture, color, edge, and other

pertinent image features of IXZ and IYZ are comparable in scale to those of IXY. Therefore,

only one trained model is required to reliably classify the pixels for all three stacks. The

application of a trained CHM pixel classifier to each stack yields the probability map stacks

PXY, PXZ, and PYZ:

PXY(i, j, k) = {0,… ,1} ∀ i ∈ {1,… , sX}, j ∈ {1,… , sY}, k ∈ {1,… , sZ}

PXZ(i, j, k) = {0,… ,1} ∀ i ∈ {1,… , sX}, j ∈ {1, … , sZ}, k ∈ {1,… , sY}

PYZ(i, j, k) = {0,… ,1} ∀ i ∈ {1,… , sY}, j ∈ {1,… , sZ}, k ∈ {1,… , sX}

To combine results, the stacks PXZ and PYZ must first be converted back to the native, XY

orientation. This is achieved by applying the reverse 90° rotations about the X and Y axes,

giving the rotated stacks P’XZ and P’YZ, respectively. The average probability map stack is

attained by taking the voxel-by-voxel geometric mean (gmean) of all three probability map

stacks in the XY orientation:

P̅(i, j, k) = gmean(PXY(i, j, k), PXZ
′ (i, j, k), PYZ

′ (i, j, k)) ∀ i ∈ {1,… , sX}, j ∈ {1, … , sY}, k

∈ {1,… , sZ}

This average probability map is then binarized using the method described in Section

2.2.2.5, giving the final segmentation:

S(i, j, k) = {0,… , 1} ∀ i ∈ {1,… , sX}, j ∈ {1, … , sY}, k ∈ {1,… , sZ}

3.2.1.2. Implementation and Results

 The SBEM stack in its native XY orientation is first downsampled to isotropic voxels

using the method described in Chapter 2.2.1.3. Re-sliced representations depicting views

97

in the XZ and YZ planes are generated using the IMOD program rotatevol. Each of these

MRC stacks is then converted to a sequence of PNG images using the method described

in Chapter 2.2.1.3. The PNG stacks from all three representations are subsequently

classified using a CHM pixel classifier according to the methods described in Chapter

2.2.2. MPAS post-processing is initiated using the script mpas.sh (Appendix C.3.1). This

script requires paths to the three directories containing the full-dataset probability maps

generated previously (XY, XZ, and YZ). In the first step, all PNG images are converted to

single-slice MRC files using the script mpas_png2mrc.q (Appendix C.3.2). Single-file MRC

stacks are made from each set of single-slice MRCs, and the XZ and YZ MRC stacks are

rotated back into the XY orientation using the script mpas_stackandRotate.q (Appendix

C.3.3). Once rotation has completed, all three stacks are averaged together with the script

mpas_average.q (Appendix C.3.4). All of these steps are performed automatically and in

parallel once the mpas.sh script has been initiated.

 Examples of XY, XZ, and YZ probability maps generated using the MPAS process

are shown in Figure 3.2. Consistent pixel classifications were achieved for all orientations

using a classifier trained on images from the XY orientation only. The use of only one

classifier is advantageous because it reduces the computational time needed for training

as well as reduces the manual segmentation time necessary for generating training data

about all orientations. A colorized representation of three orthogonal probability maps from

the same nucleus (Figure 3.3A) further demonstrates this consistency. Figure 3.3B

illustrates the improvements afforded by the MPAS algorithm in the context of nuclear

segmentation. Averaging from multiple probability maps using the MPAS algorithm results

in a better segmentation by filling in pixels at the nuclear periphery that were assigned low

probabilities by the single XY classifier alone. Table 3.1 gives a quantitative example of

this improvement in the context of parameters of nuclear morphology. The volume and

98

Table 3.1. A nuclear segmentation generated automatically by MPAS yields a more
faithful representation of ground truth morphology. The volume and surface area
output automatically by single orientation segmentation and MPAS are compared to those
of manually segmented ground truth. The nuclear rendering generated automatically by
MPAS has a volume and surface area much closer to those of the ground truth. The
biggest gain is seen in the quantification of surface area, for which MPAS is significantly
more accurate.

surface area of a nucleus were compared for renderings generated from (1) a manual

segmentation, (2) a XY CHM segmentation, and (3) a MPAS CHM segmentation. The

volume and surface area of the manually segmented surface were considered to be

ground truth. The surface rendering generated automatically from the MPAS process had

a volume and surface area much closer to those of the ground truth, yielding a far more

accurate representation of true nuclear morphology than the single orientation

segmentation. As anticipated, the largest gain of using the MPAS algorithm was made in

the quantification of nuclear surface area. The single orientation automatic segmentation

furnished a surface area that was 8.9% larger than ground truth, while the surface area

generated by MPAS was only 2.35% greater.

3.2.2. Interslice interpolation of 3D objects

 One of the most significant drawbacks of automatic segmentation methods is that,

even in the most ideal cases, some degree of manual correction is needed when the

accurate quantification of single organelle morphologies is desired. One way to reduce, or

potentially eliminate, this need is to implement an automatic method to detect poorly

segmented slices and replace them with interpolations between slices that are presumed

Volume
(μm3)

dV
(μm3)

dV (%)
Surface

Area (μm2)
dS

(μm2)
dS (%)

Ground Truth 317.39 - - 368.4 - -

XY only 312.79 -4.60 -1.45 401.17 +32.71 +8.90

MPAS 315.37 -2.02 -0.64 376.95 8.65 +2.35

99

Figure 3.2. The MPAS algorithm produces accurate probability maps for re-sliced
data in different orientations using a single pixel classifier. Shown here are the raw
XY, XZ, and YZ images (A) from an isotropic SBEM dataset. Since isotropic voxels were
used, the XZ and YZ orientations do not appear to be compressed and demonstrate
quality and features similar to those of the XY orientation. Shown below (B) are the CHM
nuclear probability maps generated for each of the slices shown in (A). All probability maps
were generated using the same classifier, which was trained on data solely in the XY
orientation.

100

101

Figure 3.3. The application of MPAS to the automatic segmentation of nuclei helps
properly classify pixels near the nuclear envelope. MPAS was used to segment nuclei
from the SCN dataset. Shown in (A) are three orthogonal slices through a nucleus,
demonstrating probabilities obtained by CHM pixel classification about the XY, XZ, and
YZ planes. MPAS automatic segmentation helps to fill in higher probabilities to the
boundaries of nuclei that may have been improperly classified by considering only one
orientation (B, yellow arrows). Such misclassifications are typically the result of patches
of heterochromatin and other inconsistent features of nuclei. MPAS helps alleviate these
misclassifications by incorporating averages over multiple views of the same object.

102

103

to be properly segmented. In this section, an algorithm for generating accurate interslice

interpolations between input and output 2D binary images will be described and tested. It

will then be applied to correct segmentations of nuclei generated using the methods of the

previous chapter.

 The proposed method is inspired by the morphological skeleton interpolation (MSI)

algorithm of Chatzis and Pitas (Chatzis and Pitas, 2000). The MSI algorithm consists of

five principal steps: (1) Object skeletonization, (2) skeleton matching, (3) interpolation

transformation calculation, (4) skeleton modification, and (5) object reconstruction. The

inputs to the algorithm are two binary images, IA and IB, and the number of slices, L, to

produce between them. In the context of correcting automatic segmentations from 3D EM

datasets, IA and IB represent segmentations of the feature of interest on image slices A

and B, which are separated from one another by L axial increments. In the first step of the

MSI process, the binary objects of IA and IB are skeletonized, producing the skeletons SA

and SB, respectively. Skeletonization is performed using a distance transform-based

method, such that the skeleton is a grayscale representation in which the intensity of each

pixel corresponds to the value of its Euclidean distance transform. Such skeletons have

the advantage of maintaining information about image scale in addition to translation and

rotation. Following skeleton generation, the transform, TAB, required to bring the skeletons

SA and SB into registry with one another is determined. In their report of the MSI algorithm,

Chatzis and Pitas used the iterative closest point (ICP) algorithm to furnish this transform

(Besl and McKay, 1992; Zhang, 1994). TAB is then scaled to accommodate the number of

slices specified by L, generating L intermediate transforms which are subsequently applied

to SA to yield skeletons of all interpolated slices between IA and IB. In the final step, binary

objects are reconstructed from each interpolated skeleton by applying the inverse distance

transform in which all skeletal points are treated as centers of maximal binary disks.

104

 In the MATLAB implementation of MSI presented here, a number of modifications

to the original algorithm have been made. First, skeletons are generated using the discrete

curve evolution (DCE) algorithm of Bai and colleagues, which has been shown to preserve

object topology in the presence of significant shape variations better than classical

skeletonization algorithms (Bai et al., 2007). A second improvement in this implementation

of MSI is the use of the coherent point drift (CPD) algorithm for the nonrigid point set

registration of the skeletons SA and SB (Myronenko and Song, 2010). This algorithm was

demonstrated to be more robust than ICP, even in the presence of noise, for a variety of

complex shapes. Finally, a second mode of operation involving the registration and

transformation of object perimeters, rather than skeletons, was implemented. Both modes,

skeletonization and perimeterization, are available in the code presented here.

 The process is initiated using the MATLAB script msi3d_dce_cpd.m (Appendix

C.3.5), which requires the user to supply IA, IB, L, and the desired mode (skeletonization

or perimeterization). Skeletonization is performed using a MATLAB implementation of the

DCE skeletonization algorithm that was downloaded from the author’s website

(https://sites.google.com/site/xiangbai). The MATLAB functions im2cpd.m (Appendix

C.3.6) and cpd2im.m (Appendix C.3.7) are used to convert image coordinates to the

format needed for CPD and vice versa. Point set registration is performed using a

MATLAB implementation of the CPD algorithm downloaded from the author’s personal

website (https://sites.google.com/site/myronenko/research/cpd). Skeleton transformation

is performed in the main script, and object reconstruction from these skeletons is

performed by the function skel2obj.m (Appendix C.3.8). When the perimeterization mode

is selected, interpolated objects are filled using the function perimFill.m (Appendix C.3.9).

If the lateral dimensions of IA and IB are M x N, the final output of this process is an image

matrix of size M x N x (L+2) that contains both IA and IB as well as all interpolated slices

105

between them. A MATLAB script, msi3d_display.m (Appendix C.3.10) was created to

provide easy visualization of results as well as track the scaling, translational, and

rotational changes that occur from slice-to-slice.

 To test the algorithm, three scripts were written to produce example input images

for use as IA and IB. These scripts, genCircleTest.m, genSquareTest.m, and

genArbitraryTest.m (Appendix C.3.11-C.3.13), generate images in the form of circles,

squares, and arbitrary binary objects, respectively. Furthermore, they allow for the user-

specified translation and rotation of IA and IB, providing a robust test for the CPD-based

registration of interpolated slices. Figures 3.4-3.7 illustrate the use of these scripts to

create test images and show the output interpolations generated by the proposed MSI

process. These examples demonstrate the robustness of the process; accurate results

were obtained for translated and scaled circles (Figures 3.4 and 3.5) and differently

scaled, translated, and rotated squares (Figure 3.6) and nuclear profiles (Figure 3.7). The

validity of the interpolations are confirmed by demonstrating the consistency of their

translations, rotations, and scalings from slice to slice.

 An example use case for this algorithm is illustrated in Figures 3.8 and 3.9. Shown

in Figure 3.8 are eight consecutive slices through an automatic segmentation of a nucleus

generated using the method described in Chapter 1. By overlaying the binary

segmentations on the original image, it is clear that slices 2-5 contain clumps of false

positive pixels at the top of the nuclear profile. Though such false positives would not

significantly impact the results of nuclear detection or centroid localization, they are

extremely detrimental if accurate nuclear morphologies are desired, and would typically

require manual removal. However, it is demonstrated that these errors can be

automatically and reliably removed using the novel implementation of the MSI algorithm

described here. In Figure 3.9, the automatic segmentations of slices 2-5 have been

106

removed and replaced by interslice interpolations generated using slice 1 as IA, slice 6 as

IB, and a value of four for L. Such interpolations yield results that are much more faithful

to the correct nuclear morphology. A method for automatically detecting such erroneous

automatic segmentations will allow MSI to be applied immediately after automatic

segmentation, drastically reducing the manual correction time a human would need to

invest. The development of such a method will be the goal of future work.

3.2.3. Contour and mesh generation

 The result of automatic segmentation is a stack of N binary images in the TIF

format with the same dimensions as the input dataset. In order to visualize and accurately

quantify organelle morphologies, these binary images must be converted to 3D meshes.

Using the IMOD software package, this would traditionally be performed in a three-step

process consisting of the following steps: (1) append all individual TIF files to a single

MRC stack, (2) create contours around each 2D connected component, and (3) generate

meshes using the contours of all 3D connected components. However, the second step

in this workflow is extremely rate-limiting for certain organelles. For example, in a typical

dataset of size 32,000 x 24,000 x 1,500, each 2D segmentation would likely contain many

thousands of mitochondrial cross-sections. Using a single CPU, contour generation for

such a dataset using the program imodauto takes on the order of days.

 To expedite this process, a workflow for its parallelization was developed and

implemented. A flowchart of this entire workflow is shown in Figure 3.10. Parallelization is

achieved by the submission of SGE array jobs on the NBCR cluster, rocce.ucsd.edu. All

processes are invoked by the wrapper script contourgen.sh (Appendix C.3.14). At a

minimum, this script requires (1) the path containing the series of segmented TIF images,

(2) an output path, and (3) either the location of the original MRC stack or the origin and

107

Figure 3.4. A single interslice interpolation between two differently scaled and
translated circles. A single slice (L = 1) was interpolated between two differently scaled
circles that were translated with respect to one another. The first circle has a radius of 100
pixels (IA) whilte the second circle has a radius of 200 pixels and is translated by 200 pixels
away from the center of the image in both X and Y (IB). The results of interslice interpolation
using the MSI algorithm are shown (middle left). The plots on the middle right indicate the
area, rotation, change in X centroid, and change in Y centroid of each slice. Values for
rotation and centroid position are considered to be zero for IA. A solid line on each plot
indicates the linear regression formed by all points. The inputs to the MATLAB scripts
used to produce these data are displayed at the bottom of the image. Interpolation was
performed using perimeterization since it is faster than interpolation by skeletonization and
the enhanced accuracy afforded by skeletonization was not necessary for simple shapes
such as circles.

108

109

Figure 3.5. Multiple interslice interpolations between two differently scaled and
translated circles. Eight slices (L = 8) were interpolated between two differently scaled
circles that were translated with respect to one another. The first circle has a radius of 200
pixels and is translated by +200 pixels from the center of the image in X (IA). The second
circle has a radius of 50 pixels and is translated by -200 pixels from the center of the image
in X (IB). The results of interslice interpolation using the MSI algorithm show consistent
scaling and translation across all eight interpolated slices, as indicated visually as well as
by the linearity of the changes in centroid location and area of each slice.

110

111

Figure 3.6. Multiple interslice interpolations between two differently scaled and
rotated squares. Three slices (L = 3) were interpolated between two differently scaled
squares that were rotated with respect to one another. The first square has a dimension
of 100 pixels and is rotated by -10° from the horizontal (IA). The second square has a
dimension of 200 pixels and is rotated by +10° from the horizontal (IB). The results of
interslice interpolation using the MSI algorithm demonstrate consistent scaling and
rotation across all interpolated slices. Interpolation was performed using skeletonization,
since the improved accuracy was helpful when interpolating the linear edges present in
squares.

112

113

Figure 3.7. Multiple interslice interpolations between two differently scaled and
rotated segmentations of an invaginated nucleus. Four slices (L = 4) were interpolated
between two differently scaled automatic segmentations of an invaginated SCN nucleus
that were also rotated with respect to one another. The first nucleus is scaled by a factor
of 0.5 and rotated by +5° from the horizontal (IA). The second nucleus was left at its original
size and rotated by -5° from the horizontal (IB). The results of interslice interpolation using
the MSI algorithm demonstrate consistent scaling and rotation across all interpolated
slices. Interpolation was performed using skeletonization. Importantly, interslice
interpolations generated by transforming skeletons maintain their membrane topology;
invaginations remain present and properly scaled in all interpolated slices.

114

115

Figure 3.8. An example scenario in which automatic segmentation accuracy
benefits from post-processing by interslice interpolation. Depicted here are eight
slices from the automatic segmentation of a single nucleus generated using the method
described in Chapter 2. Shown to the right of each automatic segmentation is its overlay
on the original image. As can frequently occur with automatically generated
segmentations, some clusters of false positive pixels are present at the top of the nuclear
profiles in slices 2-5. Such artifacts have a deleterious effect when quantifying nuclear
morphologies, such as volume, surface area, and membrane curvature. Using interslice
interpolation, these poorly segmented slices can be rejected and replaced with more
accurate interslice interpolations using the segmentation of slice #1 as IA, the
segmentation of slice #6 as IB, and a value of four for L. The results of this interpolation is
shown in Figure 3.7.

116

117

Figure 3.9. Replacing poorly segmented slices with interslice interpolations
increases morphological accuracy. Depicted here are the same eight slices from Figure
3.6, but with the inaccurate segmentations of slices 2-5 replaced by their interslice
interpolations generated using the MSI code presented here. The accuracy of these
interpolated segmentations is demonstrated by visualizing their overlay on the original
image data. Meshes generated from these interpolations would be significantly more
representative of the true nuclear morphology.

118

119

pixel spacing specified by the header of the original MRC stack. Optionally, the user can

also specify smoothing parameters to be applied during contour generation.

 In the first step, contourgen.sh submits an array job using the SGE submission

script tif2mod2D.q (Appendix C.3.15). All images contained in the segmentation stack are

processed in parallel, and a sequence of operations are performed on each image. In the

first step, the image is converted to the MRC format using the IMOD program tif2mrc. The

header of this new, single-slice MRC file is then edited to reflect the origin and pixel

spacing of the original MRC stack using the IMOD program alterheader. Contours are then

generated around each 2D connected component using the IMOD program imodauto,

which generates one, single-slice model file for each image. The program imodtrans is

then used to translate each model file to its proper axial location. The number of contours,

NC, contained in each model file is determined by parsing an ASCII representation of the

model, obtained by the program imodinfo. This number is then written to a separate text

file for use by subsequent programs. The final outputs from this job script are: (1) N single-

slice model files and (2) N ASCII files specifying the number of contours contained in each

model file.

 When all of these invididual model files are joined together using the program

imodjoin, each slice is given its own object, resulting in a final model with N objects. This

scenario does not allow for accurate meshing using imodmesh, which will not make

connections across contours of different objects. Thus, to ensure proper meshing, all

contours need to be joined into a single object. The next step of the workflow achieves

this via submission of an array job using the SGE script mod2point2D.q (Appendix C.3.16).

For each single-slice model file, this script runs the MATLAB function mod2point2D.m

(Appendix C.3.17), which uses the MatTomo (http://bio3d.colorado.edu/imod/matlab.html)

library to read the IMOD model file binary and output the desired point listings. First, each

120

model file is converted to an ASCII representation of point listings compatible with the

IMOD program point2model. In this representation, each line contains five space-delimited

integer values, formatted as follows:

Object_number Contour_number X_coordinate Y_Coordinate Z_coordinate

The object number is one for all slices and contours. The starting contour number, C0, for

each model file is determined by summing the number of contours contained in the ASCII

files from all previous slices according to the following formula, in which i represents the

current slice number:

C0
i = 1 +∑NC

j

i−1

j=1

All subsequent contours within each file are numbered sequentially. The final output from

this process is a series of N ASCII files specifying the coordinates of every point on each

slice.

 In the final step, all N ASCII files are appended to one single point listing file, which

is then converted to a model file using the IMOD program point2model. This is performed

using the script point2mod3D.q (Appendix C.3.18). Thus, the final output of the entire

workflow is a model file with one object that consists of contours around all 2D connected

components in the entire segmented stack. This model file consists of one object

containing contours around all 2D connected components. All 3D connected components

are then meshed together using the program imodmesh. Individual 3D components are

then sorted into separate objects using the IMOD program sortsurf. These individual

objects are then remeshed following separation to yield the final, automatically generated,

and dataset-wide organelle surface renderings. Examples of dataset-wide surface

renderings generated using this method are depicted in Figures 3.11-3.13.

121

Figure 3.10. A flowchart of the steps involved in contour and mesh generation from
large-scale automatic segmentations. Segmentations are generated from probability
maps using binarization with automatically seeded active contours, as previously
described. The result of this step is a stack of N binary images the size of the original stack
(SEG_1.tif, …, SEG_N.tif). Following segmentation, the script contourgen.sh is run, which
parallelizes contour generation by submitting SGE array jobs. In the first step, each
segmented image is converted to the MRC format, then edited so that the MRC header
information matches that of the original stack. IMOD contours are then generated around
each 2D connected component using the IMOD program imodauto.

122

123

3.2.4. Tools for the automatic analysis of nuclear morphology

3.2.4.1. Nuclear and nucleolar morphology and positioning

 To facilitate rapid analysis, a workflow for the automatic reporting of nuclear

metrics and statistics was developed. This process is initiated by the script

sbem_analyze_nuclei.sh (Appendix C.3.19), which uses the dataset-wide surface

renderings (Figures 3.11-3.13) generated using the methods of the previous section as

input. The script outputs metrics on nuclei and nucleoli if model files containing

segmentations of both are provided; alternatively, it can output statistics of only one or the

other if desired. The rest of this section will focus on the case in which both model files

have been provided.

 The first task is to automatically group the segmented nucleoli with their

corresponding nucleus. This is done by analyzing the centroids of the nucleoli and

determining which centroids fall within the bounding box of a given nucleus. A loop is run

over all nucleolus objects, and the centroid of each nucleolus is output to a temporary text

file using the program imodinfo. After this, a loop is run over all nucleus objects. For each

nucleus, the coordinates of the eight points specifying the corners of its 3D bounding box

are extracted using the program imodinfo. All nucleoli whose centroids fall within the

bounds of this box are assigned to the given nucleus. A new IMOD model is initiated, and

the objects corresponding to these nucleoli are then joined to the object corresponding to

the nucleus. At the end of this loop, NN new model files will have been produced, where

NN is the number of nucleus objects in the input, dataset-wide model file.

 In the next step, volume and surface area are computed for each nucleus and

nucleolus and output to corresponding ASCII files. A loop is run over each of the newly

generated model files. For each file, the nuclear volume and surface area are computed

using the program imodinfo, and the nuclear surface area to volume ratio is then calculated

124

Figure 3.11. Automatically generated surface renderings of nuclei from the ZT04
SCN SBEM dataset. Multiple views of surface renderings generated from automatic
segmentations are shown here. The top figures depict the renderings from orthogonal
views in the XY, XZ, and YZ planes. The bottom figure depicts the renderings in a rotated
volume to illustrate depth. Eighty-one total nuclei were included in this representation, and
most nuclei are heavily invaginated (scale bar = 10 μm).

125

126

Figure 3.12. Automatically generated surface renderings of nucleoli from the ZT04
SCN SBEM dataset. Multiple views of surface renderings generated from automatic
segmentations are shown here. The top figures depict the renderings from orthogonal
views in the XY, XZ, and YZ planes. The bottom figure depicts the renderings in a rotated
volume to illustrate depth (scale bar = 10 μm).

127

128

Figure 3.13. Combined renderings of automatically segmented nuclei and nucleoli
from the ZT04 SCN SBEM dataset. Shown here are different views of the combination
of renderings of nucleoli (cyan) and all 81 nuclear surface renderings (yellow, translucent).
From this visualization, it is clear that while most nuclei contain a single nucleolus, there
are many instances of cells with multiple nucleoli (scale bar = 10 μm).

129

130

from these two values. These three metrics are written to a single line of the output ASCII

file nucleus_morphology.txt such that each line of the file corresponds to the metrics of

the ith nucleus. The file is written in a comma-separated values (CSV) format to allow easy

import to analytical programs such as Microsoft Excel. The contents of this file for the

current test SCN dataset (CCDBID: 81739) are given in Appendix D.1. Within the same

loop, the individual volumes of all nucleoli belonging to the ith nucleus are computed and

written to the output CSV file nucleolus_morphology.txt. In addition, the total number of

nucleoli, the total nucleolar volume, and the nucleolar volume fraction for the current

nucleus are written to this file. The contents of this file for the current dataset are given in

Appendix D.2. A graphical depiction of these values for a single nucleus as well as

screenshots of the output CSV files are shown in Figure 3.14.

 Following the extraction of morphological parameters, metrics pertaining to

nucleolar positioning within the nucleus are computed. The positions of all nuclear and

nucleolar centroids are calculated, and the distances between each nucleolar centroid and

its corresponding nuclear centroid are computed using the IMOD program mtk. These

distance values are output to the CSV file dist_centroid.txt, and the contents of this file for

the current dataset are given in Appendix D.3. A graphical representation of these

distances is given in Figure 3.15. Next, the distances between the surfaces of each

nucleolus and its corresponding nucleus are calculated using mtk. These values are

output to the CSV file dist_nuclear_envelope.txt. The contents of this file for the current

dataset are given in Appendix D.4., and a graphical representation of these distances is

given in Figure 3.16. Definitions for all computed metrics are given in Table 3.2.

131

Table 3.2. The metrics automatically computed and output during the morphological
analysis of nuclei. Parameters are computed using the script sbem_analyze_nuclei.sh
and output to CSV files to enable further analysis. The metrics for which no equation is
given are computed directly from IMOD programs. For all metrics: N = nucleus, NL =
nucleolus, C = centroid, NE = nuclear envelope, i = nuclear index, j = nucleolar index.

Metric Variable Equation

Nuclear volume Vi
N N/A

Nuclear surface area Si
N N/A

Nuclear surface area to
volume ratio

SVRi
N

Si
N

Vi
N

Number of nucleoli Ni
NL N/A

Nucleolar volume Vi,j
NL N/A

Total nucleolar volume Vi
NL ∑Vi,j

NL

Ni
NL

j=1

Nucleolar volume fraction fi
NL

Vi
NU

Vi
N

Distance between

nucleolar and nuclear
centroids

di,j
NL−C N/A

Distance between

nucleolar and nuclear
surfaces

di,j
NL−NE N/A

3.2.4.2. Advanced metrics for characterizing nuclear topology

 In this section, a number of metrics for characterizing nuclear topology and

membrane folding are proposed. The validity of each of these metrics was ascertained by

comparison to qualitatively assigned degrees of nuclear folding. The most intuitive and

widely used metric for this quantification is the SVR, which was automatically computed

using the methods of the previous section. However, preliminary observations suggested

132

Figure 3.14. An example of the nuclear morphological characterization workflow.
Shown at the bottom of the figure is the same combined nuclear and nucleolar surface
rendering depicted in Figure 3.13. The model file specifying this rendering was supplied
as input to the morphological characterization workflow described here. A single nucleus
from this rendering (nucleus #21) is magnified to highlight the morphological parameters
calculated in the first step of the workflow, namely nuclear and nucleolar volumes and
surface areas. Screenshots of the CSV files generated by the workflow are shown to the
right. The row of each CSV file pertaining to the nucleus shown is highlighted in yellow to
show correspondence. (Bottom scale bar = 10 μm)

133

134

Figure 3.15. An example of the nucleolar positioning workflow. The same nucleus
depicted in Figure 3.14 is shown here. The centroids of each nucleolus and the nucleus
are denoted by red spheres. The distances between the nuclear centroid and each
nucleolar centroid are indicated by red lines and the corresponding variable. Each of these
distances was calculated using the proposed workflow, and the results are shown in a
screenshot of the CSV generated by the script. The row pertaining to the current nucleus
is highlighted in yellow. (Scale bar = 10 μm)

135

136

Figure 3.16. An example of the nucleolar positioning workflow, Continued. The same
nucleus depicted in Figures 3.14 and 3.15 is shown here. The minimum distance between
the surfaces of each nucleolus and the nuclear envelope were computed using the IMOD
program mtk. These distances are indicated here by green lines, and the points of contact
on each surface are denoted by green spheres. The results are shown in a screenshot of
the CSV generated by the script. The row pertaining to the current nucleus is highlighted
in yellow. (Scale bar = 10 μm)

137

138

that the SVR alone did not appear to be an adequate descriptor for the degree of folding

seen in the nuclei of this dataset. Therefore, three other metrics were developed, and their

validity for quantifying the degree of nuclear invagination was ascertained. The first of

these metrics, the 3D invagination factor (IF3D), is an expansion of the 2D IF proposed by

Lafarga and colleagues that was previously introduced in Chapter 3.1.1 (Lafarga et al.,

1992). In their formulation of the IF, the ratio of perimeter to cross-sectional area was

normalized such that it yielded a value of one for a perfect circle, and values greater than

one when any folds were present. This formula was expanded to 3D by considering the

ratio of surface area to volume rather than that of perimeter to area. The same

normalization was implemented, such that the ratio of surface area (S) to volume (V)

produces a value of one for a perfect sphere. The formula that yields such a normalization

is:

𝐼𝐹3𝐷 =
𝑆

𝑉2/3
× 𝐾3𝐷

𝐾3𝐷 = 0.25 (
16

9𝜋
)
1/3

The IF3D can be calculated directly from the automatically generated results from the

previous section.

 The second metric, the convex hull difference (CHD), is the difference between the

volume of the nuclear convex hull (CH) and the volume of the nucleus:

CHDi
N = Vi

CH,N − Vi
N

Nuclear CH computation is intiated using the Bash wrapper script sbem_convexHull.sh

(Appendix C.3.20). This script works on each single-nucleus model file output by the

methods of the previous section. The CH is computed using the MATLAB script

sbem_convexHull.m (Appendix C.3.21), which calculates the 3D CH from the Delaunay

triangulation of the points comprising the nuclear boundary. The output CH is saved as a

139

series of images, which are then converted to an IMOD model file using the program

imodauto. The volume of the CH is subsequently computed using the program imodinfo.

Examples of the CHs generated using this method are shown in Figures 3.17 and 3.18.

 The final metric considered here is the nuclear shape index, σ. First introduced by

Koenderink and van Doorn, the shape index is a single, angular measure that describes

local shape and surface topology as a function of the two principal curvatures, Kmax and

Kmin. Possible values for the shape index range from -1 to +1, where negative values

indicate a more convex, or cup-like, local topology, and positive values imply a more

concave, or cap-like, local topology (Koenderink and van Doorn, 1992). The local shape

index is given by the following:

σ =
2

π
arctan

Kmax + Kmin
Kmax − Kmin

Values of the shape index are computed locally by calculating the principal curvatures at

each triangle vertex of the mesh. Nuclear meshes generated using the previous methods

are first converted from the IMOD model file format to the VRML format using the IMOD

program imod2vrml. The VRML object is imported to Amira and then remeshed to

optimize the distribution of vertices. The principal curvatures at each vertex are

determined, and the local shape index at each vertex is calculated according to the

formula given above. The surface integral of the shape index over the nuclear surface is

given by:

σi
N =

2

π
∫ arctan

Kmax + Kmin
Kmax − Kmin

dA
S

This integral is computed by exporting the vertex positions and shape index scalar field to

a custom MATLAB script. The integral is then normalized by dividing by the nuclear

surface area. The final output of this process is a final value, the total nuclear shape index,

which ranges from -1 to +1. A number closer to -1 indicates that the nucleus is more

140

heavily invaginated, while a number closer to +1 indicates a smoother, more spherical

nucleus. Shape index calculation is initiated using the wrapper script

sbem_totalCurvature.sh (Appendix C.3.22), which handles file conversions and launches

Amira. The Amira Tcl script sbem_totalCurvature.hx (Appendix C.3.23) is then launched,

which performs remeshing, shape index calculation, and vertex and scalar field output. It

also generates movie representations featuring 360° rotations of the nucleus about two

axes in both the MPEG and GIF formats. Integration is performed with the MATLAB script

totalCurvature.m (Appendix C.3.24). Meshed representations of nuclei overlaid with their

local shape index scalar fields are given in Figure 3.19-3.21.

 After these metrics were calculated for all 81 nuclei, the goal was to determine

which of them gave the most faithful correspondence to qualitatively observed degrees of

nuclear folding. Each nucleus was assigned a numerical value of 0-3 to indicate its

qualitative degree of invagination, where a score of zero represented no folding and a

score of three represented a heavily folded nucleus. Examples of nuclei assigned values

of 1, 2, and 3 are shown in in Figures 3.19, 3.20, and 3.21, respectively. The values of

SVR, IF3D, CHD, and σ belonging to each score were grouped together, and the groups

of each metric were compared to one another by means of multiple one-way analysis of

variance (ANOVA) tests with Tukey’s post-hoc tests for multiple comparisons (Table 3.3;

Figure 3.22). The null hypothesis for each test was that the population means of each

score were the same.

 For the SVR, there was a statistically significant difference between score groups

(F = 8.920). A Tukey post-hoc test revealed significant differences between groups 0-2 (p

< 0.01), 0-3 (p < 0.0001), and 1-3 (p < 0.01). There were no statistically significant

differences between other groups. Therefore, the SVR is unable to unambiguously

differentiate between small qualitative differences in folding (i.e. between groups 0-1, 1-2,

141

Table 3.3. The shape index and convex hull difference are able to discern small
qualitative differences in nuclear invagination. Reported here are the results from
multiclass comparisons via one-way ANOVAs with Tukey’s post-hoc tests. The CHD
yields statistically significant differences between all qualitative score groups. The SVR
does not yield statistically significant differences between adjacent score groups (i.e. 0-1,
1-2, and 2-3).

and 2-3). There was also a statistically significant difference between score groups for

the IF3D (F = 11.64). However, similarly to the SVR, there were no statistically significant

differences between groups 0-1 and 1-2 (Table 3.3). There was, however, a statistically

significant difference btween groups 2-3 (p < 0.05). The shape index and CHD provide

much better metrics of nuclear invagination. For the shape index, statistically significant

differences existed between all scoring groups except for the group 2-3. For the CHD,

statistically significant differences existed between all scoring groups. The results of these

comparisons are depicted graphically in Figure 3.22.

3.2.5. Delineation of individual neuronal compartments

 Though nucleoli can be sorted into their corresponding cells based on overlap with

nuclear bounding boxes, this same type of separation cannot be easily attained for

cytoplasmic organelles such as mitochondria. Such accurate segregation is only possible

if the cellular boundaries are previously demarcated. These cellular boundaries can then

be used as binary masks to exclude all organelles that lie outside of them. Ideally, such

segmentations would be obtained through one of the automatic methods discussed in

Chapter 2.1.2, and such methods will be implemented in the future. Here, as a proof of

 Class Comparisons

 F 0-1 0-2 0-3 1-2 1-3 2-3

SVR 8.920 ns p < 0.01 p < 0.0001 ns p < 0.01 ns
IF 11.64 ns p < 0.01 p < 0.0001 ns p < 0.001 p < 0.05
σ 14.60 p < 0.01 p < 0.0001 p < 0.0001 p < 0.05 p < 0.001 ns

CHD 17.59 p < 0.05 p < 0.0001 p < 0.0001 p < 0.05 p < 0.0001 p < 0.01

142

concept, neuronal membranes were manually segmented in their entirety throughout the

dataset. Manual segmentation was performed in IMOD. Contours were traced on sections

spaced a variable number of axial steps apart. The number of sections that could be

skipped depended upon the feature being traced. When manually tracing a non-spiny

neuronal cell body, as many as 5-10 slices could be skipped without significantly

jeopardizing interslice accuracy. However, branched neurites, especially spiny dendrites,

often required manually traced contours on every slice or every other slice. Following

manual tracing, missing contours were filled in via an interslice interpolation algorithm.

Each final segmentation was then meshed using the program imodmesh to provide a

visual representation (Figure 3.23).

 A stack of binary masks, BN,j, where N indicates the index of the neuron and j

indicates the slice number, were produced from each neuronal segmentation using the

program imodmop. Mitochondria were automatically segmented from the same dataset by

the methods described in Chapter 2, producing a stack of binary segmentations, Sj.

Automatically segmented mitochondria were separated into their appropriate neuron by

taking the slice-by-slice intersection of BN,j and Sj, yielding the stack of neuron-specific

mitochondrial masks, MN,j:

MN,j = BN,j⋂Sj ∀ j ∈ {1, … , Nslices}

Surface renderings were then produced from these masked segmentations using the

methods introduced in Chapter 3.2.3 (Figure 3.24). This method facilitates the cell-specific

morphological and spatial analysis of automatically segmented organelles. A workflow for

the automatic analysis of mitochondrial morphologies using such cell-specific models as

input is currently being developed.

143

Figure 3.17. The 3D convex hull for a single nucleus. The automatically generated
surface rendering of a single nucleus is shown in the lower left corner. Three 2D slices
from this nucleus are depicted on the right, with overlays of the nuclear segmentation
(translucent yellow) and the contour of the 3D convex hull (red). The convex hull imitates
a rubber band being wrapped around the contour of the nucleus. The CHD can be
visualized as the region between the CH and the nucleus, and is thus one of the more
accurate descriptors of nuclear invagination. (Scale bar = 2 μm)

144

145

Figure 3.18. 3D convex hull renderings for nuclei from a full SBEM volume. 3D CHs
were computed for all 81 nuclei depicted in Figures 3.14-3.16 using the method described
here. A cross-sectional slice through the volume depicts eight accurately computed CHs
overlaid on the original image data (A, scale bar = 5 μm). The volumes of each CH were
computed directly from the surface renderings shown in B (scale bar = 10 μm).

146

147

Figure 3.19. The local shape index scalar field for a nucleus with a single
invagination. The local shape index was computed at each triangular vertex of the
nuclear mesh using the method described in Chapter 3.2.4.2. Shown here are twelve
views from the automatically generated movie of the local shape index scalar field overlaid
on the mesh of a nucleus with a single, deep invagination. The degree of invagination of
this nucleus was assigned a score of one on a scale of 0-3 by qualitative observation.
Each image represents a successive rotation of 30° about the same axis of the nucleus.
The shape index scalar field is coded to a colormap ranging from -1 to +1, as depicted at
the bottom of the figure. Negative values indicate that the local shape is more concave,
while positive values indicate a more convex local shape. As expected, the local shape
index is more negative in the proximity of the invagination.

148

149

Figure 3.20. The local shape index scalar field for a nucleus with multiple
invaginations. The local shape index was computed at each triangular vertex of the
nuclear mesh using the method described in Chapter 3.2.4.2. Shown here are twelve
views from the automatically generated movie of the local shape index scalar field overlaid
on the mesh of a nucleus with multiple invaginations. The degree of invagination of this
nucleus was assigned a score of two on a scale of 0-3 by qualitative observation. Each
image represents a successive rotation of 30° about the same axis of the nucleus. The
shape index scalar field is coded to a colormap ranging from -1 to +1, as depicted at the
bottom of the figure. Negative values indicate that the local shape is more concave, while
positive values indicate a more convex local shape. As expected, the local shape index is
more negative in the proximity of invaginations.

150

151

Figure 3.21. The local shape index scalar field for a heavily invaginated nucleus.
The local shape index was computed at each triangular vertex of the nuclear mesh using
the method described in Chapter 3.2.4.2. Shown here are twelve views from the
automatically generated movie of the local shape index scalar field overlaid on the mesh
of a heavily invaginated nucleus. The degree of invagination of this nucleus was assigned
a score of three on a scale of 0-3 by qualitative observation. Each image represents a
successive rotation of 30° about the same axis of the nucleus. The shape index scalar
field is coded to a colormap ranging from -1 to +1, as depicted at the bottom of the figure.
Negative values indicate that the local shape is more concave, while positive values
indicate a more convex local shape. As expected, the local shape index is more negative
in the proximity of invaginations.

152

153

Figure 3.22. The shape index and convex hull difference are able to discern small
qualitative differences in nuclear invagination. The average SVR, IF3D, shape index,
and CHD are displayed graphically for each qualitatively assessed score of nuclear
invagination. Error bars represent the standard deviation. The mean of the SVR was not
significantly different between any adjacent score classes. The mean of the IF3D was not
significantly different between score classes 0-1 and 1-2, but was significantly different
between score classes 2-3. The opposite was true for the shape index, whose means
were significantly different between score classes 0-1 and 1-2, but not significantly
different between score classes 2-3. The CHD was the only metric to demonstrate
statistically significant differences between all adjacent score classes. (ns: not significant;
*: < 0.05; **: p < 0.01).

154

155

Figure 3.23. Neuronal compartments were delineated by manual segmentation of
the plasmalemma. Neuronal plasma membranes were manually segmented to provide a
means by which automatically segmented organelles could be sorted into their
corresponding cells. Contours were manually drawn on sections spaced a variable
number of axial steps apart. The number of sections that could be skipped depended upon
the feature being traced. When manually tracing a neuronal cell body, as many as 5-10
slices could be skipped without significantly jeopardizing accuracy. However, branched
neurites, such as spiny dendrites, often required manually traced contours on every slice
or every other slice. Following manual tracing, skipped slices were automatically filled in
via an interslice interpolation algorithm. Shown here are surface renderings of seven
manually traced neurons from the test SCN dataset (A). These renderings are overlaid on
an SBEM slice, and transparent cross-sectional overlays of the renderings are shown on
this same slice (B). The overlays in (B) are representative of what would have been
manually traced or filled in by interpolation (scale bar = 10 μm).

156

157

Figure 3.24. Binary masks generated from neuronal segmentations are used to
separate organelles into their proper cellular compartments. The segmentations
shown in Figure 3.23 were used as binary masks to separate organelles into their proper
cells. The intersection of each neuronal binary mask with a single slice of a mitochondrial
automatic segmentation (A) demonstrates this process. A cross-section from the same
plane of the magenta neuron shown in (A) is overlaid on the original SBEM image in (B)
to demonstrate this segregation. The mitochondrial profiles shown here correspond
exactly to the binary connected components shown in the mask. All mitochondria falling
outside of the mask specified by the magenta neuron are excluded (B). These cell-specific
mitochondrial groupings are then meshed, sorted, and manually edited to produce the
rendering seen in (C). This rendering consists of all mitochondria contained within the
magenta neuron. Each mitochondrial rendering was given a different color to illustrate
individual morphologies.

158

159

Figure 3.25. Dataset-wide renderings of mitochondria belonging to three SCN
neurons. The method described in Chapter 3.2.5 was used to generate cell-specific
models of mitochondria. Depicted here are three manually segmented neuronal
renderings filled with automatically generated mitochondrial reconstructions. The models
are overlaid on a slice of the original SBEM image stack. These models can be used to
quantify mitochondrial morphology and study how mitochondria are distributed throughout
the cell, including in the soma, dendrites, and axon.

160

161

3.3. Discussion

 In the first section of this chapter, the MPAS algorithm for enhancing segmentation

performance for isotropic datasets was introduced. Since most SBEM datasets must be

downsampled significantly in the lateral dimension to achieve isotropic voxels, this

algorithm is most applicable to features such as nuclei and nucleoli, whose segmentation

performance does not dramatically decrease with increased pixel sizes (Figure 2.17). For

the dataset tested here, the isotropic pixel size was 30 nm, which is too coarse to allow

for quality automatic segmentations of mitochondria. It is likely that the improvement

provided by the use of the MPAS algorithm would be outweighed by the deleterious effect

of image downsampling. For datasets in which the isotropic pixel size is in the range of 15

nm or less, this algorithm should be able to improve segmentation accuracy for all of the

organelles tested here. Such datasets can be acquired using FIBSEM or SBEM with a

smaller section thickness.

 Another drawback of the MPAS method is the increased computational time

required, since the automatic segmentation of all images re-sliced about three orthogonal

planes requires three times the computational load. This load could potentially be

alleviated by performing the re-slicing and orthogonal automatic segmentations in only

certain regions of the entire volume. For example, if nuclei are being segmented, one

would first run the normal automatic segmentation in the XY plane. If this segmentation is

not satisfactory, MPAS could be initiated, but only run on areas of the XY segmentation

that clearly possessed nuclei. These regions could be automatically determined by a

simple algorithm that looks for regions of maximum probability in the XY probability maps.

Such regions would then be subjected to the MPAS algorithm, and the region they were

extracted from would be replaced by the averaged MPAS probability map. This

implementation should be simple to achieve, and will be explored in the future.

162

 The MSI interslice interpolation algorithm presented here will soon be incorporated

into the nuclear automatic segmentation workflow to provide corrections. Poorly

segmented slices will be detected by looking for abnormal spikes in the perimeter or cross-

sectional area of segmented objects, or by looking for slices in which the centroid shifts

dramatically from one section to the next. Alternative metrics, such as descriptors of

boundary irregularity, could also prove useful. These sections can then be automatically

removed and replaced by interslice interpolations. The whole process of correction can

fortunately be parallelized by working on one 3D connected component per processor, a

fact that should drastically reduce processing time. This method can also be applied to the

correction of segmentations from smaller objects such as mitochondria. However, the

rules it would need to follow for the determination of poorly segmented slices would likely

be different than those required for larger features such as nuclei.

 The rest of the methods presented in this chapter provide a seamless workflow for

providing quantifiable models from 2D automatic segmentations. A script for calculating

parameters of nuclear morphology and spatial organization was presented, and its results

were demonstrated (Appendix D). The average run time for this script is in the range of 5-

10 minutes for a full dataset containing hundreds of nuclei, which is trivial when compared

to the time required for pixel classification. It also eliminates the need for individual users

to learn how to operate multiple analytical software packages, which should make these

types of analyses much more accessible to the average scientist. By writing outputs to

simple CSV files, the proposed method provides a reproducible bookkeeping system that

facilitates easy import into Microsoft Excel and software packages for statistical analyses.

 Finally, a workflow for the cell-specific analysis of smaller cytoplasmic organelles,

such as mitochondria, was presented. While this method does require segmentations of

cell boundaries, such segmentations have the potential to be acquired through some of

163

the automatic algorithms already present in the literature (Jurrus et al., 2009; Straehle et

al., 2011; Andres et al., 2012; Liu et al., 2013). A script similar to the one presented here

for nuclei is currently in development for the morphological quantification and spatial

characterization of cytoplasmic organelles segmented and separated using this approach.

The incorporation of all of the technologies presented here into a seamless, automatic

workflow for organelle characterization will be discussed in greater detail in Chapter 5.

164

Chapter 4

Chronomorphological Studies of the Mammalian Suprachiasmatic Nucleus

165

4.1. Introduction

 Living organisms exhibit remarkably accurate rhythms in almost all known

biological activities. Such rhythms are the result of an evolutionarily conserved internal, or

circadian, clock that can be traced back to earth’s most primitive life forms (Mohawk et al.,

2012). Circadian control over biological activities has been demonstrated in both

unicellular and multicellular organisms, and entire fields are dedicated to the study of

rhythms in species as diverse as cyanobacteria, fruit flies, algae, rodents, and humans

(Bell-Pedersen, 2005). To be defined as circadian, a biological rhythm must exhibit two

important characteristics: (1) it must have a period of roughly 24 hours, and (2) its

rhythmicity must persist when removed from environmental influences and placed under

constant conditions. This persistent, intrinsic oscillation, known as a free-running rhythm,

can be entrained through the detection of environmental cues, or zeitgebers. The most

well-known zeitgeber is light, which allows organisms to become entrained to the solar

light:dark (LD) cycle. In turn, these entrained rhythms regulate most known physiological

parameters, including the sleep-wake cycle, body temperature, athletic ability, feeding

behavior, hormone secretion, blood pressure, and glucose metabolism (Takahashi et al.,

2008).

 Decades of research have definitively identified the suprachiasmatic nucleus

(SCN) as the master circadian pacemaker of mammals. The SCN consists of two anterior

hypothalamic nuclei of roughly 10,000 neurons each, situated dorsal to the optic chiasm

and paired bilaterally across the third ventricle (Figure 4.1). SCN neurons receive light

cues via direct innervation from the retinohypothalamic tract, and this information is carried

by a specific subset of melanopsin-expressing neurons known as intrinsically

photosensitive retinal ganglion cells (ipRGCs) (Hattar et al., 2002; Panda et al., 2005).

166

Figure 4.1. An overview of SCN neuroanatomy. A low magnification image of the block-
face collected prior to SBEM image acquisition. The image depicts a single SCN and its
surrounding anatomical structures (scale bar = 20 μm). The SCN sits directly above the
optic chiasm (OC) and is paired bilaterally across the third ventricle (3V, other SCN not
depicted). The density of cell packing can be used to delineate the SCN from its
surrounding hypothalamus; the somata of SCN neurons tend to pack into long clusters,
while those of the hypothalamus do not. The SCN is also relatively devoid of myelinated
axons, a feature that is especially apparent due to its juxtaposition with the OC.

167

168

Ablation of the SCN destroys behavioral rhythmicity in rats (Stephan and Zucker, 1972),

and the transplantation of a WT SCN into mutant hamsters with genetically shortened

circadian periods restores the mutants to normal periods of roughly 24 hours (Ralph, et

al., 1990). Interestingly, the same is true in reverse; transplantation of the SCN from a

mutant hamster into a WT animal causes it to adopt the shortened circadian period of the

mutant.

 Although these studies provided intriguing evidence that the period of mammalian

circadian rhythms is determined by the SCN, the question of how the SCN synchronizes

the rest of the body to operate under the same clock remained. When neurons from SCN

explants are dissociated and grown in culture, they demonstrate independently phased

firing rhythms and rhythms of gene expression that can persist without dampening for up

to 50 days (Welsh et al., 1995; Yamazaki et al., 2002). However, the same did not appear

to hold true for explants from other tissues; circadian gene expression in cultured

fibroblasts was inexplicably found to be detectable only following a change of the culture

medium, and this rhythm disappeared within a few days (Balsalobre et al, 1998). However,

it was later proven that this lack of rhythmicity was simply an artifact of looking at the gene

expression data of the collection of cells as a whole. A subsequent study employing single-

cell resolution demonstrated that individual fibroblasts did indeed show rhythmicity, but

that these rhythms were out of phase with one another (Welsh et al., 2004). Thus, when

looking at the aggregate expression data of all cells, the summation of out-of-phase

oscillations appeared arrhythmic. Therefore, the oscillation that Balsalobre and colleagues

saw following the change of culture medium was due to synchronization of the

independent phases of the fibroblasts, and not to the generation of new rhythms within

individual cells. Subsequent studies determined that, like these fibroblasts, nearly all

mammalian cells possess their own cell-autonomous circadian clocks, and that it is the

169

SCN’s job to synchronize these so-called peripheral clocks to the light cues it receives

from the retina. This is achieved in part due to the phase diversity of firing rates among

SCN neurons, which allows the SCN to provide differently phased outputs to different

tissues and organ systems (Welsh et al., 2010).

 At the molecular level, the mechanism of the mammalian circadian clock is

governed by a negative-feedback transcriptional loop consisting of proteins whose

expressions oscillate rhythmically. At the beginning of the cycle, the transcriptional

activators CLOCK and BMAL1 interact with one another to up-regulate expression of

transcription factors belonging to the Period (PER1, PER2) and Cryptochrome families

(CRY1, CRY2). These Per and Cry gene products undergo nucleocytoplasmic export and

are translated in the cytosol, where their protein products accumulate as the cycle

progresses and dimerize with one another. PER-CRY heterodimers are subsequently

imported back into the nucleus, where they act to repress the CLOCK/BMAL1 complex

and suppress their own transcription (Mohawk et al., 2012). PER and CRY are

progressively phosphorylated as the cycle progresses, and such phosphorylation events

target them for ubiquitination and degradation by proteasomes (Takahashi et al., 2008).

Once this occurs, CLOCK and BMAL1 renew their upregulation of PER and CRY

expression, restarting the feedback loop. This whole cycle, of course, has a period of

roughly 24 hours, and is known to be present in both SCN neurons and cells of peripheral

tissues. Mutations to components of this loop cause significant mammalian arrhythmias;

the double knockout of both the Cry1 and Cry2 genes, for example, abolishes free-running

rhythms in mice (van der Horst et al., 1999).

 Components of this core feedback loop, however, aren’t the only mammalian

proteins whose expressions display significant circadian rhythmicity. In 2002, Panda and

170

Figure 4.2. The core transcriptional-translational feedback loop of the mammalian
circadian clock. Mammalian cells possess a delicately balanced negative-feedback loop
consisting of rhythmically expressed proteins. Inside the nucleus, the transcriptional
activators CLOCK and BMAL1 form a complex with one another, and this complex acts to
up-regulate the expression of the PER and CRY transcription factors by binding to the E-
box of their genes. Per and Cry transcripts then undergo nucleocytoplasmic export and
are translated in the cytosol. While in the cytosol, PER undergoes phosphorylation by
casein kinase 1 (CK1) ε and CK1δ. Phosphorylated PER can undergo heterodimerization
with CRY, and this PER/CRY complex is able to achieve nucleocytoplasmic import. Within
the nucleoplasm, the PER/CRY complex interacts with the CLOCK/BMAL1 complex in a
way that inhibits the subsequent transcription of PER and CRY. As time passes and the
PER/CRY complex degrades in the nucleoplasm, this inhibition is removed and the cycle
is able to begin anew.

171

colleagues used gene expression profiling to demonstrate the rhythmic expression of over

650 gene transcripts in the mouse SCN and liver (Panda et al., 2012). Interestingly, most

cycling transcripts were specific to either the SCN or the liver; only 28 transcripts cycled

in both tissues. Furthermore, the cycling transcripts that are unique to either the SCN or

liver play critical roles in the physiological function of their tissue. Examples of cycling

transcripts in the SCN are those that control neuropeptide synthesis, while genes involved

in sugar metabolism cycle in the liver. This demonstrates the ability of peripheral clocks,

such as those of the liver, to oscillate in a manner that suits their own physiological

demands.

 Since this study and a number of others since it (Storch et al., 2002; Miller et al.,

2007; Hughes et al., 2009) have established that the levels of as many as 3-10% of all

mRNAs in a given tissue are governed by the circadian clock (Mohawk et al., 2012), it is

reasonable to ask if such oscillations are also present at the level of tissue ultrastructure.

From the 1970s to the 1980s, long before such molecular-level details were known, a

number of researchers intrigued with answering this very question established the field of

chronomorphology – the study of how biological structures change with respect to the

circadian cycle. In his review of the field in 1983, the German chronomorphologist Heinz

von Mayersbach wrote the following:

Temporal variations in such biological components as hormones and
enzymes, for example, are undoubtedly the expression of temporal
alterations in metabolic processes. Since metabolic processes are based
on cellular functions, the question arises: To what extent are structural
manifestations during the circadian cycle visible at the cellular level? (von
Mayersbach, 1983)

Despite the fact that it was posed over 30 years ago, this question remains largely

unanswered, and the study of chronomorphology at the ultrastructural level has mostly

fallen by the wayside.

172

 Though recent evidence supports the day-night plasticity of SCN neurons at the

level of their glial coverage (Becquet et al., 2008; Girardet et al., 2014), no known work

investigating plasticity at the level of subcellular ultrastructure has been performed. A

possible explanation for this is that, prior to the introduction of block-face imaging, the

acquisition of 3D EM datasets comprising enough cells to achieve statistical relevance

was a monumental task. Early chronomorphological studies relied on 2D stereology to

compute the volume fractions of subcellular components; 3D morphologies could only be

estimated by making geometrical assumptions, such as the approximation of the nucleus

as a sphere or ellipsoid.

 This chapter will describe the application of the technologies developed in this

dissertation to the study of SCN neuronal chronomorphology. Organelle morphologies

were quantified and compared using SBEM datasets, and electron tomography was

employed as a complementary technique. The rest of this introduction will contain a brief

overview of SCN neuroanatomy followed by a survey of findings from previous

chronomorphological studies of the brain and peripheral organ systems.

4.1.1. Neuroanatomy of the suprachiasmatic nucleus

 The first comprehensive studies of SCN neuroanatomy were conducted by Fritz

Güldner (Güldner, 1976) and Anthony van den Pol (van den Pol, 1980), both of whom

used the rat as a model organism. Through the use of a variety of techniques, including

Golgi impregnation, Nissl stains, and high resolution EM, van den Pol’s work provided

important insight into not only the gross anatomy of the rat SCN, but also the structure

and microanatomy of its neurons and glial cells. Though its delineation from the

surrounding hypothalamus is difficult to the untrained eye, van den Pol presented a

number of unique anatomical features that can be used to identify the SCN. First, SCN

173

neurons exhibit tight packing and frequently form chains in which multiple somata are in

apposition with one another or separated only by thin glial processes; this cell packing is

even more prominent in the dorsomedial (DM) regions of the nucleus (van den Pol, 1980).

While an obvious “cell-free” zone devoid of such cell bodies separates the third ventricle

from the SCN, the other boundaries are often less obviously demarcated and must

typically be identified based on changes in cell body apposition. A final telling sign is that

the SCN contains significantly fewer myelinated axons than the surrounding

hypothalamus.

 The dendrites and axons of most SCN neurons terminate locally within the

nucleus, though dendrites extending into the hypothalamus are found in its dorsal and

lateral regions (van den Pol, 1980). Axons are derived from somata and dendrites in a

roughly 50/50 ratio and create both terminal and en passant boutons that may spread

diffusely throughout the nucleus or establish a more restricted field of influence near their

soma. Through his observations of Golgi impregnated tissue, van den Pol grouped SCN

neurons into five classes, distinguished primarily by the morphologies of their neurites:

(1) Simple bipolar cells, which possess two primary dendrites at opposite sides of the

soma. They are mostly devoid of spines and have dendrites that rarely branch.

(2) Monopolar cells, which have a single primary dendrite that bifurcates into many

smaller, distal dendrites

(3) Curly bipolar cells, whose dendrites often bend and change directions. Spines are

typically present on both dendrites and soma.

(4) Radial multipolar cells, which possess many dendrites that radially extend from the

soma.

174

(5) Spiny neurons, which are the most amorphous of the classes and possess

predominantly spherical cell bodies with spines and appendages of varying shapes

and sizes.

The majority of SCN neurons have multiple nucleoli, which are situated on opposing sides

of the nucleus and in close proximity to the nuclear envelope. In cells with a single

nucleolus, the nucleolus is situated more towards the middle of the nucleus. SCN neurons

and astrocytes demonstrate significantly invaginated nuclear membranes, a

morphological trait that serves to increase the surface area-to-volume (SAV) ratio as well

as decrease the distance from nucleoli to the nuclear periphery. (van den Pol, 1980).

 Traditionally, each ellipsoidal SCN is split into two anatomical subdivisions: (1) a

ventrolateral (VL) shell, and (2) a dorsomedial (DM) core (Moore et al., 2002; Colwell,

2011). Though it is believed that all SCN neurons synthesize GABA (Morin, 2013), their

synthesis of other neuropeptides has historically formed the basis for the demarcation of

these subdivisions. Neurons in the core, which lies adjacent to the optic chiasm, generally

produce vasoactive intestinal polypeptide (VIP) and gastrin-releasing peptide (GRP). This

central core is surrounded by a shell of neurons that predominantly produce arginine

vasopressin (AVP). These core/shell delineations were first made by employing

immunocytochemistry with antibodies specific to the aforementioned neuropeptides

(Moore et al., 2002). However, recent groups have argued that this classical model is

inaccurate, and a more accurate topographical classification schema is needed (Morin,

2007; Hundahl et al., 2010). For example, neuronal phenotypes and patterns of rhythmicity

do not directly correlate with neuropeptide chemistry. Additionally, such anatomical

patterns of neuropeptide chemistry are not identical across organisms, differing even

amongst species of rodents (Morin, 2013).

175

 Güldner first estimated the volume of a single SCN to be 0.05 mm3; a value he

arrived at by measuring the major and minor axes of the SCN and approximating it as an

ellipsoid (Güldner, 1976). This number was refined by van den Pol, who, using camera

lucida tracings from serial paraffin sections, arrived at a value of 0.068 mm3. Subsequent

measurements have fallen within the range of 0.02 – 0.07 mm3, with variations likely due

to differing methods for specimen preparation (Madeira et al., 1995). The rat retina, a

tissue that has received the bulk of attention from the connectomics community, has an

estimated volume of roughly 16 mm3 (Mayhew and Astle, 1997). Thus, when compared to

the retina, the SCN presents a size that is significantly more amenable to large-scale

reconstructions.

4.1.2. A history of biological chronomorphology

 A circadian influence on cell cycle progression has been demonstrated for a

variety of tissue types in numerous organisms, including plants, cyanobacteria, zebrafish,

and rodents (Masri et al., 2013). Mitotic activity, as measured by the number of mitotic

events per 1,000 cells, is rhythmically controlled by tissue-specific zeitgebers. For

example, the mitotic index in the corneal epithelium of rats closely follows the light cycle,

while the same index closely follows the feeding pattern in the liver (Philippens, 1980).

Given the functions of these two systems, and that mRNA transcripts are known to cycle

in a tissue-dependent manner (Panda et al., 2002), such findings are intuitive. Importantly,

since progression through the cell cycle involves significant changes in nuclear

architecture, it stands to reason that nuclear morphologies are also under a degree of

circadian control in non-senescent cell types. Indeed, reports demonstrating pronounced

rhythmic variations of nuclear size in liver hepatocytes had surfaced as early as the 1930s

176

(von Mayersbach, 1983). Rhythms in the percentage of hepatocytes with a binuclear

phenotype have been reported in rats, with a binucleation peak occurring during the

subjective night and a trough occurring during the subjective day (Röver and Philippens,

1979). The authors attempted to explain these data by hypothesizing an oscillating

sequence of amitotic nuclear divisions and nuclear fusion processes. At a molecular level,

the extent to which 32P-labeled precursors (Barnum et al., 1958) and tritiated thymidine

(Eling, 1967) are incorporated into the DNA of rat hepatocytes depends significantly upon

the time of injection.

These early findings sparked a number of subsequent studies exploring alterations

in nuclear morphology across the diurnal cycle in a variety of tissues. Diehl reported daily

fluctuations in the nuclear volume of rat pinealocytes, and that pinealocytes in the medulla

and cortex demonstrate different patterns of fluctuation (Diehl, 1981). Ensuing studies

were in disagreement as to the phasing of this pattern, with peaks of pinealocyte nuclear

volume reportedly occurring at the transition between the light and dark phases (Diehl et

al., 1984), during the middle of the light phase (Lew et al., 1984; Hira et al., 1989), and

during the dark phase (Karasek et al., 1990). One possible explanation for these

discrepancies is that each study used slightly different specimen preparation and

quantification methods. Another is that different LD cycles were used; Karasek and

colleagues used a 14 hr:12 hr LD cycle, while all other studies used the more standard 12

hr:12 hr LD cycle. Bimodal fluctuations in nuclear morphology were reported in rat thyroid

follicular cells (Murakami and Uchiyama, 1986), juxtaglomerular cells of the kidney

(Watanabe et al., 1988), pancreatic islet cells (Watanabe and Uchiyama, 1988), and

alveolar type II cells (Ishii et al., 1989). Importantly, these findings demonstrate the need

to sample with a high temporal resolution; if only 2-4 time points are sampled, bimodal

behaviors would likely be masked or incorrectly classified as unimodal.

177

Interestingly, Lew and coworkers reported a qualitative finding that pinealocyte

nuclei were more heavily invaginated during the middle of the light period, a morphological

factor that had not previously been considered oscillatory (Lew et al., 1984). A study of

tadpole nuclei showed that thyroid follicular cells oscillate between small and elongated to

large and spherical during a 12 hr:12 hr LD cycle (Wright et al., 1995). The elongated

morphology was observed one hour after the onset of light, and the spherical morphology

was observed during the dark period and late light period. Nuclei demonstrating the

spherical morphology also stained lighter with toluidine blue and had more visible

chromatin. These findings suggest that daily fluctuations in nuclear morphology may

involve concomitant changes in sub-nuclear compartmentalization, affecting parameters

such as chromosome positioning and the location of chromosome territories (Cremer and

Cremer, 2001).

Though most of the aforementioned studies arrived at their quantifications using

thin section EM combined with stereological methods, a few used traced measurements

of nuclei combined with geometrical approximations. Kirillov and Kurilenko approximated

nuclear volume in cells of the adrenal cortex using the formula for a rotary ellipsoid:

Vnuc =
π

6
L2B

in which L is the maximum diameter and B is the minimum diameter of the nucleus in

cross-section, as determined by measurements from hematoxylin and eosin (H&E)

stained, paraffin-embedded sections (Kirillov and Kurilenko, 1977; Kirillov and Kurilenko,

1979). Diehl subsequently employed the same formula in his study of nuclear volume in

rat pinealocytes (Diehl, 1981; Diehl et al., 1984). Becker and Vollrath, operating with tissue

from the same staining method, employed a formula for nuclear volume that accounts for

the circumference, as determined by cross-sectional tracings:

178

Vnuc =

4
9𝜋 (

𝐶 + √𝜋 ∙ 𝐴) ∙ 𝐴

𝐾

Here, K is a constant and C and A denote the circumference and area of the 2D nuclear

profile, respectively (Becker and Vollrath, 1983).

Though none have been as extensively studied as the nucleus, a plethora of

chronomorphological studies have been conducted on other organelles. In studies

conducted on rat lung (Ishii et al., 1989) and porcine pineal gland (Lewczuk et al., 2004)

tissue, mitochondrial volume fractions were found to fluctuate and peak during the time of

activity of the animal. Lysosomes have been shown to exhibit circadian variations in

number, size, activity, and position within hepatocytes of the rat liver lobule, with a peak

in number that occurs at the end of the light period (Groh and von Mayersbach 1981).

Since autophagic processes also peak during the light period in the liver of nocturnal

rodents, the phasing of this maximum in lysosomal quantity makes intuitive sense (von

Mayersbach, 1983). Armstrong and Hatton reported that the percentage of cells with

multiple nucleoli peaks during the dark phase in the rat supraoptic nucleus (Armstrong

and Hatton, 1978). However, this study was likely confounded by the use of only single

sections for quantification. Raymond Seïte and his colleagues published a series of

studies demonstrating nucleolar volume fluctuations in a variety of rat tissues (Pébusque

and Seïte, 1981a; Pébusque and Seïte, 1981b; Bessone and Seïte, 1985; Pébusque and

Seïte, 1985; Robaglia and Seïte, 1985). Significant and differentially phased rhythms of

nucleolar volume were found in all tissues studied except the nodose ganglion (Pébusque

and Seïte, 1985). A comprehensive listing of other significant chronomorphological studies

and their relevant findings is given in Table 4.1.

179

180

181

182

183

184

185

4.2. Methods

4.2.1. Tissue processing and SBEM imaging

 Wildtype C57BL/6J mice were housed in light-impermeable boxes and entrained

to a 12:12-hr light-dark (LD) cycle as previously described (Miller et al., 2007). The local

time of “lights on” was 6:00 A.M. (ZT0), while the corresponding time of “lights off” was

6:00 P.M. (ZT12). Following entrainment, mice were isolated in a manner that did not

expose them to ambient white light, anesthetized, and transcardially perfused at two

distinct time points in the diurnal cycle: ZT4-6 and ZT16-18. Time ranges are used in

reporting due to the uncertain delay between animal isolation and perfusion. The VL SCN

of two animals at each time point were harvested and prepared using a standard protocol

(Wilke et al., 2013). The resin-embedded tissue was mounted on an aluminum specimen

pin and prepared for SBEM imaging as previously described (Holcomb, et al., 2013).

Animal perfusions, dissections, and tissue preparation steps were performed by Eric

Bushong and Keun-Young Kim at NCMIR.

 The first ZT4-6 SBEM dataset and both ZT16-18 datasets were collected using a

raster size of 32,000 x 24,000 pixels, an axial step size of 30 nm, a magnification of 800x,

a lateral pixel size of 3.899 nm/pixel, a spot size of 1.0, and a pixel dwell time of 500 ns

(ZT4-6 animal #1: CCDBID 81739; ZT16-18 animal #1: CCDBID 90850; ZT16-18 animal

#2: CCDBID 93678). The corresponding accelerating voltage used and number of

sections collected are reported in Table 4.2. Low magnification images of the block-face

were collected before and after SBEM imaging, and the lateral pixel size was confirmed

using an image of a diffraction grating replica specimen as previously described (Chapter

2.2.1.2). SBEM imaging was performed by detection of BSEs using a Zeiss Merlin SEM

equipped with a 3View ultramicrotome (Gatan). SBEM imaging was performed by Tom

186

Table 4.2. Imaging parameters used during SBEM dataset acquisition.

CCDBID ZT
Animal

Raster Size

Number of
Slices

Axial
Step Size

(nm)

Lateral
Pixel Size

(nm)

81739 4-6 1 32,000 x 24,000 1,283 30 3.899
90850 16-18 1 32,000 x 24,000 1,604 30 3.899
93678 16-18 2 32,000 x 24,000 1,311 30 3.899

CCDBID
Dwell

Time (ns)
Spot
Size

Accelerating
Voltage (kV)

Magnification

81739 500 1.0 1.9 800
90850 500 1.0 2.2 800
93678 500 1.0 1.9 800

Deerinck in collaboration with Monica Berlanga and myself. A dataset from the second

animal of the ZT4-6 time point was collected by Keun-Young Kim and will be used in future

analyses (ZT4-6 animal #2: CCDBID 5215795).

4.2.2. The subcellular chronomorphology of SCN neurons

4.2.2.1. Nuclei and nucleoli

 All datasets were converted to the MRC format, translationally aligned, and

downsampled to isotropic voxels using the methods described in Chapter 2.2.1.3. Training

images and labels for nuclei and nucleoli from each dataset were generated by manual

segmentation as described in Chapter 2.2.2.2. All training sets had pixel dimensions of

500 x 500 x 50, and individual training slices were taken from points scattered throughout

the image stack (Figure 2.8). For each set of training data, a CHM pixel classifier was

trained with two stages and two levels as described in Chapter 2.2.2.3. Since isotropic

voxels were used, the MPAS algorithm was employed as described in Chapter 3.2.1. The

resultant, full-stack probability maps were generated by taking the pixel-by-pixel geometric

mean of PXY, P’XZ, and P’YZ. Segmentations were produced using the automatically-

seeded active contour algorithm described in Chapter 2.2.2.5. Nuclear segmentations

187

were produced using the following values: G = 2,  = 300,  = 8. Nucleolar segmentations

were produced using the following values: G = 2,  = 90,  = 10. An overlap of 50 pixels

was used during the tiling and stitching process for all datasets. Surface renderings were

produced from each segmentation using the scripts presented in Chapter 3.2.3. A post-

rendering size exclusion filter was applied to reject erroneously small or large objects

using a custom script. The results for each automatic segmentation were manually

inspected for accuracy and corrected when necessary. Metrics of nuclear and nucleolar

morphology and spatial orientation were calculated automatically using the method of

Chapter 3.2.4.1. Advanced metrics of nuclear topology were calculated using the scripts

outlined in Chapter 3.2.4.2. Output CSV files were imported to Microsoft Excel and used

for subsequent analyses.

4.2.2.2. Mitochondria

 The converted and aligned datasets produced in the previous section were

downsampled by a factor of two in the XY plane using the method presented in Chapter

2.2.1.3. Mitochondrial training sets with pixel dimensions of 500 x 500 x 50 were produced

by manual segmentation. Mitochondria from neurons, astrocytes, and the neuropil were

all contained in these training data. This is of particular note because mitochondria from

each of these distinct localizations display slightly different textures and grayscale levels.

CHM pixel classifiers were trained with two stages and two levels. Pixel classification was

performed using a PANFISH implementation of the methods of Chapter 2.2.2.3 developed

by Christopher Churas (Churas et al., 2013). Since these datasets were not isotropic, the

MPAS algorithm was not used. Segmentations were achieved using the automatically-

seeded active contour method with the following values: G = 3,  = 80,  = 7. An overlap

of 20 pixels was used for the tiling of all datasets during pixel classification. Surface

188

renderings were produced from each segmentation using the scripts presented in Chapter

3.2.3. Neurons from each dataset were manually segmented in their entirety, and

mitochondria were automatically separated to the appropriate neuron using the methods

of Chapter 3.2.5. These data are being used to drive the development of an automatic

workflow for the analysis of mitochondrial morphology and distribution throughout cells.

4.2.2.3. Stigmoid bodies

 Qualitative inspection of the SBEM datasets of the SCN revealed an unusual

neuronal cytoplasmic structure that resembled a nucleolus. Despite initial confusion as to

what the structure was, a literature search revealed it to be an organelle known as the

stigmoid body (STB). The STB is a membrane-free, proteinaceous inclusion found in the

cytoplasm of neurons in many brain regions, including the thalamus, hippocampus,

amygdala, and hypothalamus (Shinoda et al., 1992). At the ultrastructural level, the STB

resembles a spherical distribution of closely packed clusters of heterogeneous electron-

dense granules and fibrils interspersed with seemingly empty pockets (Shinoda et al.,

1993). As a whole, STBs are very highly spherical, possess diameters in the range of 0.5-

4 μm, and are significantly less electron dense than the nucleolus. Sheets of ER and

polyribosomes are frequently seen in the immediate vicinity of STBs (Gutekunst et al.,

2003). Reports of cytoplasmic inclusion bodies can be found throughout the history of

microscopy in the neurosciences, and structures very closely resembling STBs have been

given a plethora of unique names, including nematosomes (Le Beux, 1972; Hindelang-

Gertner et al., 1974), botrysomes (Kind et al., 1997), cytoplasmic bodies (Weakley, 1969),

giant granular filamentous bodies (Blazquez et al., 1995), and nucleolus-like bodies

(Kessel, 1969; Kishi, 1972; Hindelang-Gertner et al., 1974; Takeuchi and Takeuchi, 1982).

189

To maintain consistency with what is perceived to be the current standard in the

community, the name stigmoid body will be used throughout the rest of this dissertation.

 Though not much is known about the function of STBs, it has been hypothesized

that they play a protective role against Huntington’s disease (HD) by sequestering

huntingtin and the androgen receptor, two causative proteins associated with HD

(Metzeger et al., 2008; Fujinaga et al., 2009). An interacting partner of huntingtin,

Huntingtin-associated protein-1 (HAP1), has been identified as a constituent of STBs and

is commonly used as a marker for antibody labeling (Gutekunst et al., 1998; Li et al.,

1998a). HAP1 has been shown to play a role in neurite outgrowth (Li et al., 2000), and

also influences microtubule trafficking by directly binding to motor proteins (Li et al.,

1998b). As a consequence of this, Fujinaga and colleagues demonstrated that STB

formation is microtubule-dependent and occurs in a two-step process in vitro (Fujinga et

al., 2009). The first step, for which microtubules are not necessary, involves the formation

of small, HAP1-positive, STB-like inclusions. In the second step, these small inclusions

fuse together in a microtubule-dependent process to form spherical, mature STBs.

Subsequent studies have demonstrated that the apolipoprotein E receptor, SorLA/LR11,

and sortilin co-localize with HAP1 in STBs (Motoi et al., 1999; Gutekunst et al., 2003).

Such data indicate that STBs are heterogeneous in both ultrastructure and protein

constituency.

 Since the function of STBs largely remains a mystery and no large-scale studies

of STB ultrastructure have been performed, the morphology and distribution of STBs in

the SCN were studied. The number of SCN neurons containing STBs was determined for

each dataset. All STBS were then manually segmented using IMOD. Automatic

segmentation of STBs was not attempted because they are rather easy to find and

segment manually. The volume and surface area of each STB were computed using the

190

Figure 4.3. Stigmoid bodies are cytoplasmic inclusions found in SCN neurons.
Stigmoid bodies are roughly spherical and resemble the nucleolus in terms of texture and
size (A, scale bar = 2 μm). Expanded views of the boxed regions depict a stigmoid body
and nucleolus. Nucleoli are, in general, more electron dense than stigmoid bodies. To
demonstrate this discrepancy, histograms of pixel intensities are shown for the center of
a cross-section through a stigmoid body and nucleolus (B).

191

192

IMOD program imodinfo.

4.2.3. Electron tomography of SCN organelles

4.2.3.1. Serial section electon tomography of the stigmoid body

 The same SCN tissues blocks used for SBEM imaging were subsequently utilized

to create grids of serial thick sections for ssET. Ribbons of 250 nm serial sections were

cut using an ultramicrotome and collected on Luxel slot grids. Five grids containing ribbons

of 4-5 sections each were prepared. All grids were carbon coated and glow discharged,

and a 50:50 solution of 5% bovine serum albumin (BSA) and 15/20 nm colloidal gold

particles (AuNPs) was applied to each grid. No poststaining was performed. This process

was repeated for the tissue of one animal from both time points.

 Microscopy was performed using a JEOL 4000EX IVEM operating at 300 kV.

Samples were loaded using a rotation holder to permit the collection of tilt series about a

second axis without the need to remove the holder from the column. Low magnification

maps of a STB across multiple sections were recorded, and it was confirmed that the

entire STB was contained and undamaged in the serial series before imaging. Tilt series

were acquired at 30,000x magnification, corresponding to a lateral pixel size of 0.497 nm.

All tilt series were acquired in 1° angular increments, and most were acquired with the tilt

range of ±60°. The SerialEM software package (Mastronarde et al., 2003) was used to

automatically track and maintain focus between successive tilts. Each tilt series was

recorded in two steps: (1) 0 to -60° and (2) 0 to +60°. Following the collection of tilt series

for all sections of each grid, the grid was rotated by 90° and second tilt series were

acquired about the same region of each grid.

 Two serial series were acquired using the above procedure. The first was a STB

from a ZT16-18 neuron and consisted of data for ten 250 nm sections. The second was a

193

STB from a ZT4-6 neuron and consisted of data for six 250 nm sections. Tilt series were

processed and aligned, and tomographic reconstructions were computed using the Etomo

GUI of IMOD as previously described (Kremer et al., 1996; Perkins et al., 2009). Serial

sections have not yet been stacked, but will be in the future.

4.2.3.2. Electron tomography of neuronal nuclei

 Multiple high magnification tilt series of neuronal nuclei were acquired from the

same grids prepared in the previous section. Single, non-serial tilt series were collected

from both ZT4-6 and ZT16-18 grids. A list of the tilt series acquired and their corresponding

imaging parameters is given in Table 4.3. Tomographic reconstruction was performed as

described in the previous section.

Table 4.3. Imaging parameters used for the collection of tomographic tilt series of
SCN nuclei

Feature
Imaged

CCDBID
Section

Thickness
(nm)

Accelerating
Voltage (kV)

Pixel Size
(nm)

Angular
Min, Max,
Increment

ZT4-6 NE 66441 500 400 0.49 -58,+58,2

ZT4-6 NE 66526 500 400 0.49 -56,+56,2

ZT4-6 NE 66610 500 400 0.92 -50,+54,2

ZT4-6
NE

Invagination
66971 500 400 0.49 -54,+54,2

ZT4-6 NE 67132 500 400 0.49 -58,+48,2

ZT4-6 NE 67833 500 400 0.49 -50,+58,2

ZT16-18 NE 69548 250 300 0.33 -58,+58,2

ZT16-18
NE

Invagination
69011 250 400 0.62 -58,+58,2

ZT16-18
NE

Invagination
69459 250 400 0.62 -58,+58,2

194

4.3. Results

4.3.1. Nuclear volume, surface area, and topology

 Automatically generated segmentations appeared consistent in all three datasets.

Due to the extremely labor intensive nature of generating ground truth for comparison,

segmentation evaluation metrics were not computed for the ZT16-18 datasets. The

segmentation evaluation metrics for the ZT4-6 dataset were reported in Chapter 2 (Table

2.3; Figure 2.15). The results of the morphological characterization of SCN neuronal nuclei

from all three SBEM datasets are reported in Table 4.4. Only nuclei that were fully

contained in the dataset were included in the analysis. Histograms of nuclear volume and

surface area are given in Figures 4.4 and 4.5, respectively. A graphical representation

comparing the advanced topological metrics for each dataset is shown in Figure 4.6.

Tomographic reconstruction demonstrate the presence of NPCs and membranous debris

or vesicles in the lumen of nuclear invaginations (Figure 4.7).

Table 4.4. The results of nuclear morphological characterization for three SCN
SBEM datasets. Metrics were automatically computed using the methods previously
described. All values are reported as the mean ± standard deviation.

 ZT4-6, Animal #1 ZT16-18, Animal #1 ZT16-18, Animal #2

Count 81 72 96

Volume (μm3) 331.51 ± 32.84 305.07 ± 31.19 287.60 ± 29.51

Surface Area (μm2) 316.13 ± 38.09 289.74 ± 37.27 300.79 ± 46.33

Surface Area to
Volume Ratio

0.957 ± 0.107 0.951 ± 0.093 1.043 ± 0.091

Invagination Factor 1.367 ± 0.143 1.322 ± 0.130 1.423 ± 0.147

Shape Index 0.377 ± 0.052 0.446 ± 0.059 0.381 ± 0.050

Convex Hull

Difference (%)
4.396 ± 2.195 3.026 ± 1.747 4.973 ± 2.075

Sphericity 0.740 ± 0.077 0.763 ± 0.074 0.710 ± 0.072

195

4.3.2. Nucleolar number and volume

 The proposed workflow for automatic analysis accurately separated all nucleoli

into their proper nuclei, as confirmed by visual inspection. Histograms of the computed

total neuronal nucleolar volume per cell are displayed in Figure 4.7 for all three datasets.

The mean total nucleolar volume was 3.18 ± 0.64 μm3 for the ZT4-6 dataset and 3.03 ±

1.03 μm3 and 3.04 ± 0.65 μm3
 for the two ZT16-18 datasets. In addition to total volume,

the number of neurons containing one, two, or greater than two nucleoli is also compared

in Figure 4.6. Fifty-seven percent of neurons in the ZT4-6 dataset and 69% and 84% of

neurons in the ZT16-18 datasets contained just one nucleolus. Nucleoli from cells

containing a single nucleolus were clustered and morphologically compared to nucleoli

from cells containing multiple nucleoli. The mean nucleolar volume and distance to the

nuclear centroid were computed for each group and the results are reported in Table 4.5.

Histograms of the nucleolar volume fraction are showin in Figure 4.8 for all datasets.

4.3.3. Stigmoid body number and morphology

 Histograms demonstrating the frequency of STB volumes are given in Figure 4.10

for each dataset. The percentage of neurons containing zero, one, and two STBs in each

dataset are also reported in Figure 4.10. Average STB shape was assessed by computing

the sphericity and invagination factor for every STB analyzed. The mean values of these

metrics for each dataset are shown in Figure 4.11. As expected, STBs were uniformly very

close to spherical in all datasets. Some STBs containing tunnels were found in SBEM

datasets (Figure 4.12). Such tunnels were commonly associated with ER, and the ER

network could frequently be tracked from one end of the tunnel to the other. The lumens

of these tunnels possess electron densities similar to those of the cytoplasm. Other

196

Table 4.5. Nucleolar volume and positioning in SCN neurons with single and
multiple nucleoli. All values are reported as the mean ± standard deviation.

 ZT4-6, Animal #1 ZT16-18, Animal #2 ZT16-18, Animal #2

 Single Multiple Single Multiple Single Multiple

Number of
Nucleoli (N)

46 80 50 49 80 37

Nucleolar

Volume (μm3)
3.26 ±
0.61

1.36 ±
1.88

3.17 ±
0.94

1.21±
0.79

3.04 ±
0.61

1.24 ±
0.86

Distance to

Nuclear Centroid
(μm)

3.62 ±
1.66

6.10 ±
2.47

3.39 ±
1.46

5.03 ±
2.49

3.71 ±
2.01

5.91 ±
2.29

membrane-bound organelles, such as mitochondria and lysosomes, were also found in

close proximity to STBs.

4.4. Discussion

 The results of this chapter demonstrate the utility of the automatic segmentation

and quantification workflow proposed in Chapters 2 and 3. This workflow was used to

quantify the morphologies of SCN neuronal nuclei and nucleoli in three different, large-

scale SBEM datasets. Accurate results were achieved in all datasets. Mitochondrial

segmentations have also been generated for all datasets described in this chapter, though

the mitochondrial morphologies from these segmentations remain to be analyzed in future

work. Some preliminary results obtained from this effort will be presented and discussed

in Chapter 5.

 The data reported here demonstrate a trend of increased nuclear volume during

the middle of the light phase (ZT4-6), which corresponds to the period of inactivity of the

nocturnal mouse (Figure 4.4). Metrics designed to quantify the extent of nuclear

invagination do not show obvious variations in their average values across the three

datasets analyzed (Figure 4.6). This is also supported by qualitative observation; nuclei in

197

all three datasets appear to be heavily invaginated. Volumetric increases across the

diurnal cycle may be facilitated by the transient remodeling of the NE/ER system

(Lammerding et al., 2007). However, since only one light phase dataset and two dark

phase datasets were analyzed, these data are preliminary. More datasets will be analyzed

in the future to increase the sample size and facilitate statistical analyses.

 The total nucleolar volume and nucleolar volume fraction demonstrate remarkably

similar averages and distributions for neurons in the three datasets analyzed (Figures 4.8

and 4.9). The data of Figure 4.8 suggest that there may be a greater percentage of

neurons with multiple nucleoli during the dark cycle, which corresponds to the period of

activity for the animal. Nucleoli also occupy consistently similar positions within the

nucleus in all datasets studied (Table 4.5). These observations will also need to be

confirmed by the analysis of additional datasets.

 Though stigmoid bodies have been previously identified in the SCN (Shinoda et

al., 1992), this was the first known instance in which they were studied ultrastructurally

using 3D EM. STBs in the SCN demonstrate a wide distribution of sizes (Figure 4.10) and

are highly spherical (Figure 4.11). Many of the STBs included in this analysis were clearly

smaller and ultrastructurally different than the canonical 1-4 μm diameter STB (Shinoda

et al., 1993). Such STBs did not possess pockets, tunnels, or obvious associations with

cytoplasmic organelles. It is possible that these small STBs are the precursors to mature

STBs that have been reported in vitro (Fujinaga et al., 2009). The percentage of SCN

neurons containing STBs was highly variable across all three datasets (Figure 4.10).

Therefore, STB presence in neurons may vary by individual rather than being associated

with any circadian cycle. However, it is interesting to note that the vast majority of neurons

in the single light cycle dataset did not contain STBs. Data from more animals will need to

be analyzed to establish if this trend holds.

198

 In conclusion, though the data presented here are preliminary, the results of this

chapter demonstrate the power of automated SBEM analyses for the quantification of

organelle morphologies. Such a study provides far greater insight into 3D organelle

morphology and spatial organization than was afforded by the previous

chronomorphological studies discussed in Chapter 4.1.2. In future analyses, it may be

advisable to collect smaller SBEM datasets from more animals. Such an experimental

design would facilitate the acquisition of statistically verifiable data and decrease the

computational demand required for automatic segmentation.

199

Figure 4.4. The distribution of nuclear volumes in SCN neurons. The volumes of
automatically segmented nuclei were computed using the workflow for morphological
characterization reported in Chapter 3.2.4. Shown here are histograms illustrating the
spread of nuclear volumes for SCN neurons from the three datasets analyzed. The mean
nuclear volume is indicated by a dashed line on each histogram (ZT4-6 Animal #1: 331.51
± 32.85 μm3, N = 81; ZT16-18 Animal #1: 305.07 ± 31.19 μm3, N = 72; ZT16-18 Animal
#2: 287.60 ± 29.51 μm3, N = 96; values are reported as the mean ± standard deviation).

200

Figure 4.5. The distribution of nuclear surface areas in SCN neurons. The surface
areas of automatically segmented nuclei were computed using the workflow for
morphological characterization reported in Chapter 3.2.4. Shown here are histograms
illustrating the spread of nuclear surface areas for SCN neurons from the three datasets
analyzed. The mean nuclear surface area is indicated by a dashed line on each histogram
(ZT4-6 Animal #1: 316.13 ± 38.08 μm2, N = 81; ZT16-18 Animal #1: 289.737 ± 37.27 μm2,
N = 72; ZT16-18 Animal #2: 300.79 ± 46.33 μm2, N = 96; values are reported as the mean
± standard deviation).

201

Figure 4.6. The mean values of topological descriptors for nuclear invagination in
nuclei of SCN neurons. The mean values of the surface area to volume ratio,
invagination factor (IF3D), shape index (σ), and convex hull difference (CHD) are reported
for nuclei of SCN neurons from the three datasets analyzed. Error bars represent the
standard deviation. The mean numerical values of each metric are given in Table 4.4.

202

Figure 4.7. Electron tomography of SCN nuclei reveals the ultrastructural
characteristics of their nuclear invaginations. The results of tomographic
reconstruction are shown here. A single slice through a tomogram depicts a nuclear
invagination with cytoplasmic organelles in its vicinity (A). The lumen of the invagination
in this reconstruction is devoid of membrane-bound organelles. As previously reported in
other tissue types, SCN invaginations contain NPCs (B). A slice through another
tomogram demonstrates the presence of membranous debris or large vesicles in the
lumen of the invagination (C). The nature of these structures is unclear. (A: scale bar =
200 nm; B: scale bar = 500 nm; C: scale bar = 200 nm).

203

204

Figure 4.8. The distribution of total nucleolar volume in SCN neurons and the
percentage of neurons containing multiple nucleoli. (A) The volumes of automatically
segmented nucleoli were computed using the workflow for morphological characterization
reported in Chapter 3.2.4. Shown here are histograms illustrating the spread of total
nucleolar volume per SCN neuron from the three datasets analyzed. The mean total
nucleolar volume is indicated by a dashed line on each histogram (ZT4-6 Animal #1: 3.18
± 0.64 μm3, N = 81; ZT16-18 Animal #1: 3.03 ± 1.03 μm3, N = 72; ZT16-18 Animal #2:
3.04 ± 0.65 μm3, N = 96; values are reported as the mean ± standard deviation). (B) The
percentages of nuclei containing one nucleolus, two nucleoli, or greater than two nucleoli
are depicted graphically.

205

206

Figure 4.9. The distribution of nucleolar volume fraction in SCN neurons. The
nucleolar volume fraction, calculated as the ratio of nucleolar volume to nuclear volume,
was calculated for each SCN neuron from the automatically segmented data. Shown here
are histograms illustrating the spread of nucleolar volume fraction from the three datasets
analyzed. The mean nucleolar volume fraction is indicated by a dashed line on each
histogram (ZT4-6 Animal #1: 0.95 ± 0.15%, N = 81; ZT16-18 Animal #1: 0.98 ± 0.31 %, N
= 72; ZT16-18 Animal #2: 1.05 ± 0.20 %, N = 96; values are reported as the mean ±
standard deviation).

207

Figure 4.10. The distribution of stigmoid body volume in SCN neurons and the
percentage of neurons containing stigmoid bodies. (A) The volumes of manually
segmented stigmoid bodies were computed. Shown here are histograms illustrating the
spread of stigmoid body volumes from the three datasets analyzed. (B) The percentages
of SCN neurons containing zero, one, and two stigmoid bodies per soma are depicted
graphically.

208

209

Figure 4.11. The mean values of topological descriptors for stigmoid bodies in SCN
neurons. The mean values of the sphericity and invagination factor (IF3D) are reported for
stigmoid bodies in SCN neurons from the three datasets analyzed. Error bars represent
the standard deviation. The sphericity and invagination factor are exactly one for a perfect
sphere; therefore, these data demonstrate that stigmoid bodies are remarkably spherical.

210

Figure 4.12. Stigmoid bodies contain tunnels associated with the endoplasmic
reticulum. In addition to having numerous organelles such as mitochondria and
lysosomes in their vicinity, STBs sometimes contain short tunnels by which ER crosses
from one side of the STB to the other. Shown here (top, scale bar = 1 μm) is a manual
reconstruction of the vicinity of a single STB (cyan) from a ZT16-18 SCN dataset.
Mitochondria (magenta), ER (green), and the surrounding plasmalemma (translucent
white) were also reconstructed. The STB is located at the extremity of a neuronal soma,
in close proximity to the axon hillock. The boxed region is magnified in the second
rendering (middle), which shows only the STB and its surrounding ER network. Part of the
ER network traverses through a tunnel in the STB and emerges from the other end. The
white lines on this rendering illustrate the top and bottom boundaries of the eight
corresponding and sequentially numbered SBEM slices shown below. All slices were
spaced 30 nm apart from one another. The ER tunnel is clearly visible in slices four and
five (yellow arrowheads). The lumen of the tunnel appears to have a similar electron
density to that of the cytoplasm. Electron tomograms of STBs also demonstrate the
presence of membranous structures in what appears to be tunnels (data not shown),
though the function of such tunnels remains unclear.

211

212

Chapter 5

Conclusions and Future Perspectives

213

5.1. Contributions, significance, and limitations

 Novel technologies such as SBEM, FIBSEM, and array tomography have supplied

scientists with the tools necessary to image significant percentages of mammalian

neuroanatomical regions at unprecedented scale and resolution. These methods currently

facilitate the collection of teravoxels of image data per day, and new instruments promise

to push this number significantly higher in the immediate future (Marx et al., 2013; Keller

et al, 2014). Unfortunately, as has been the case for decades (Macagno et al., 1979), our

ability to analyze such data continues to significantly lag behind out ability to collect it.

Furthermore, many algorithmic approaches to automatic image analysis are not readily

accessible or easily implementable to the general scientific community. As a result, most

EM facilities are currently producing a vast surplus of image data that cannot practically

be analyzed without significant breakthroughs from the image processing community.

 The methods presented in this dissertation provide a workflow for the automatic

analysis of organelles from such data in a reasonable time frame. The work of Chapter 2

supplied a pipeline for the application of supervised machine learning algorithms to the

task of automatically segmenting diverse organelle targets in SBEM datasets. An

algorithm for the binarization of organelle-specific probability maps based on active

contour evolution at automatically seeded points was implemented and described.

Performance was assessed by mathematically comparing automatically generated

segmentations to manually segmented ground truth, and accurate results were

demonstrated for all four organelles tested. The results of this method were subsequently

validated by comparison to another recently published, supervised algorithm. Finally, and

perhaps most importantly, a method for the computationally efficient scaling of this

workflow to teravoxel-sized datasets was presented. The decomposition of input images

into small tiles decreases the memory demand for pixel classification and increases the

214

degree to which the process can be parallelized. Using such parallelization on

supercomputing resources, dataset-wide automatic segmentations were achieved in the

range of one to seven days. The only required human input to this process is the manual

segmentation of training data, which, even in the worst case scenario, requires only a few

hours. Considering it would take a single person many years to manually segment all

organelles from a similarly sized dataset, the utility of this approach is obvious.

 Surprisingly, very few reports of large-scale organelle segmentations of this nature

exist in the literature. Furthermore, the use of such data for the reconstruction and

quantification of organelle morphologies is even less common. While some dataset-wide

automatic segmentations of organelles have been produced (Lucchi et al., 2012; Tek et

al., 2014), these results were only used as proof-of-concept validations of their algorithmic

approaches. The work of Noske and colleagues produced detailed characterizations of

organelle morphologies, but their study was limited to only two cells (Noske et al., 2008).

Since organelle structure is known to correlate with a host of normal and pathological

processes in biology (Knott, A.B. et al., 2008; Worman, 2012), the generation of large-

scale maps of in situ organelle structure and distribution across hundreds of cells is highly

desirable. The work presented in Chapter 3 addressed this need by introducing a

quantitative analysis extension to the segmentation workflow of Chapter 2. First, an

accelerated pipeline for generating 3D surface renderings from a stack of 2D

segmentations was described. A script capable of automatically computing morphological

parameters and spatial distributions from these renderings was developed, and the results

of its application to nuclei and nucleoli from numerous datasets are reported in Chapter 4.

Importantly, the quantitative analysis methods described in Chapter 3 can be linked

directly to the output of automatic segmentations in a seamless workflow to automatically

yield morphological metrics.

215

 A significant roadblock to the full automation of this process lies in the fact that

automatically generated segmentations frequently need to be manually inspected and

corrected before the morphologies extracted from them can be deemed accurate. In

Chapter 3, two novel methods to decrease the need for manual editing were introduced.

The first, the MPAS algorithm, produces representations of organelle morphology that are

more accurate by averaging probability maps acquired from multiple views of the same

object. It was demonstrated that this method can reduce the errors associated with

estimations of nuclear volume and surface area to a few percent without the need for

manual corrections. This increased accuracy, of course, comes at the cost of increased

computational load. However, this increased load may be justified in cases where MPAS

can dramatically reduce the time needed for manual correction by humans. A method for

correcting segmentations by replacing poorly segmented slices of objects with their

interslice interpolations was also introduced. This method can be used on single-axis

probability maps or in tandem with MPAS to improve segmentation accuracy. The next

step in its development will be to implement a set of rules for the automatic detection of

poorly segmented slices; such rules will likely need to vary on an organelle-by-organelle

basis. Taken together, both of these methods facilitate the improvement of segmentation

results without the need for user interaction, and should dramatically reduce the time

required for manual correction.

5.2. Future perspectives

 Data from a single SBEM dataset can be used to pose several interesting

questions. However, obtaining answers to these questions typically necessitates the use

of manual segmentation, which is untenable at the scale of teravoxel-sized SBEM image

stacks (Figure 2.1). Additionally, the application of many existing automatic segmentation

216

approaches is hindered by a number of factors. First, many published algorithms have

been tested on only a single dataset and, in many cases, only a small subset of a single

dataset. Therefore, it is unclear if such algorithms will yield satisfactory results when

applied to images of different anatomical regions that were acquired using a different

instrument and imaging parameters than the published test dataset. Second, many

algorithms contain numerous poorly defined variables that significantly affect

segmentation performance. Such variables must be tuned to different factors of the input

images, and it is frequently unclear how this tuning should be performed. Lastly, many

open-source automatic segmentation packages contain numerous and often poorly

defined dependencies. The simple act of successfully installing or compiling them on a

machine may require several days and significant levels of frustration.

 All of these factors have combined to make most automatic segmentation

approaches unattractive to the general scientific community. A survey of published studies

that employed SBEM from 2006-2014 (Appendix A) revealed that only 63% reported

quantitative data derived from SBEM image analyses (Figure 5.1). Furthermore, only 18%

of the studies that reported quantitative data employed automatic or semi-automatic

segmentation techniques. This is a shockingly low number, and indicates that there is a

great need within the field for intuitive and easy-to-apply automatic segmentation

algorithms. The most well-known software package designed to address this need is ilastik

(Sommer et al., 2011), which provides a user-friendly GUI and easy-to-follow tutorials.

However, ilastik trains classifiers based on 3D rather than 2D features, a fact that makes

it better situated to process data from modalities that provide voxel sizes that are close to

isotropy, such as FIBSEM. As discussed in detail in Chapter 1, however, SBEM

is currently the modality of choice for large-scale studies covering significant tissue

217

Figure 5.1. A survey of the SBEM literature revealed that the vast majority of studies
did not emply automatic or semi-automatic analyses. The numbers shown in this
figure were generated from the SBEM publications listed in Appendix A, and cover a time
span of 2006 through March 2014 (N = 49).

volumes. The desire to segment organelles from SBEM datasets led to the development

of the technologies described in this dissertation.

 The workflow presented here circumvents many of the classical problems

associated with automatic segmentation routines. First, no assumptions about organelle

shape or geometry are necessary, which makes the method applicable to any target rather

than just one specific organelle type. Second, though certain variables (Nstages, Nlevels, G,

, ) are used, most do not have a dramatic impact on segmentation performance and

there is rarely a need to change them. Accurate segmentations for all organelles studied

have been achieved using the same parameter set (Nstages = 2, Nlevels = 2, G = 2,  = 100,

 = 6). Finally, to allow for widespread accessibility, a web-based portal for submitting

automatic segmentation jobs is currently being developed in collaboration with David Lee,

Christopher Churas, and Willy Wong. The portal provides an intuitive and easy-to-use front

218

end for the methods described here; the user only has to select their training data, select

their images to segment, and click the submit button. This eliminates the need for users

to have to download, install, and compile software on their own, which should make the

workflow easily accessible to a broad user base.

 The techniques presented here are based upon the generation of 2D pixel

classifications using the cascaded hierarchical model. However, the novel techniques

described in Chapters 2 and 3 are all equally applicable to probabilities provided by any

other 2D classification scheme. Thus, as the machine learning field evolves and better

classification algorithms are developed, such approaches can be easily slotted into the

proposed workflow. In addition to being more appropriate for anisotropic SBEM datasets,

2D pixel classifications are also more robust against common SBEM imaging defects such

as focal gradients, obscured slices, and surface charging. Furthermore, 2D pixel

classification facilitates a high degree of parallelization; in theory, all images could be

simultaneously classified and segmented in parallel if one had access to enough

computational resources to allow it. This also sets up the potential for images to be

processed and segmented as they are collected, and this scenario will be explored in the

future. A flowchart illustrating how the pipeline described in this dissertation would fit into

such a scenario is shown in Figure 5.2. The same workflow with the interslice interpolation

step added to it is shown in Figure 5.3. One drawback of such a design is that it relies

upon a pre-trained classifier. Such a classifier could be supplied from a dataset that is

similar in terms of appearance, pixel size, and feature of interest. Whether accurate

segmentations can be obtained from a classifier trained against a different dataset

remains to be determined, and this will be explored in the future. Alternatively, training

data could be manually generated from the first few slices of the image stack after they

have been acquired.

219

 Workflows for the automatic quantification of cytoplasmic organelles are currently

being developed. Such workflows will automatically provide morphological and spatial

data in a manner analogous to the workflow presented for nuclei (Chapter 3.2.4.; Appendix

D). A proof-of-concept illustration of this approach is shown in Figure 5.4 for mitochondrial

characterization. Individual mitochondrial volumes were computed and displayed as a

histogram, and the total mitochondrial volume and volume fraction were also calculated.

As described previously, such analyses depend on accurate segmentations of cellular

boundaries to group mitochondria into their appropriate neuron. In the preliminary data

presented here, such boundaries were generated by manual segmentation (Figure 5.5).

However, in the near future, methods for automatic segmentation of cell membranes will

be explored and implemented into the workflow.

 In summary, the work presented in this dissertation provides a novel method for

the automatic segmentation of organelles and the quantification of their morphologies in

3D EM datasets. The validity of the workflow was tested and established by applying it to

diverse organelle targets in numerous datasets of the mouse SCN. Two novel algorithms

for increasing segmentation accuracy were developed and introduced. Numerous steps,

including image segmentation and model generation, were expedited via parallelization

on supercomputing resources. As the field continues to progress towards its goal of

reconstructing entire nervous systems, these tools address a critical need by allowing for

the quantitative analysis of volumetric EM datasets at a scale between that of current

connectomics approaches (Kim, et al., 2014; Helmstaedter, et al., 2013) and that afforded

by genetically encoded markers for small molecule localization (Martell, et al, 2012; Shu,

et al., 2011).

220

Figure 5.2. A flowchart of the workflow demonstrating proposed future
developments. The flowchart begins in the bottom-left corner (A). The chapter in which
each step was described is given in parentheses. Processing is initialized for every SBEM
image after it has been acquired. Each image is subjected to conversion, downsampling,
and histogram equalization using the expedited methods outlined in this dissertation (B).
Next, the image is classified using a previously trained CHM pixel classifier (C), and the
output probability map is binarized using the active contour evolution algorithm as
previously described. As an alternative to using a previously trained classifier, the user
may wait until a few slices have been collected, generate training data from them, and
train a new, dataset-specific classifier. After probability map binarization, contours are
generated around each 2D connected component (D). All steps through this point are
performed in parallel for each newly acquired slice. After image acquisition has been
terminated and contour models of the segmentation on each slice have been generated,
the 3D stack operations are initiated. Meshes are generated (E), and morphological filters
are applied to excluse erroneously large or small objects. Alternatively, and object
classifier may be applied at this stage. The output model file is then manually inspected
for accuracy and corrected as necessary. Once manual corrections have been completed,
the automatic quantification workflow is initiated, and results are output to CSV files for
further analyses.

221

222

Figure 5.3. A flowchart of the workflow demonstrating proposed future
developments that includes automatic corrections. Steps A-C are identical to those
of the flowchart shown in Figure 5.2. However, in this scenario, the contour generation
step cannot follow directly after segmentation since the entire 3D stack of segmentations
is needed for interslice interpolation. Following the automatic correction of all objects, the
workflow then proceeds the same as previously. The generation of contours and meshes
is parallelized (E) using the methods described in Chapter 3.2.3.

223

224

Figure 5.4. A demonstration of preliminary results from the automatic workflow for
classifying mitochondrial morphology. Mitochondria were automatically segmented
and separated into their corresponding neuron using the methods described previously.
All mitochondria in the neuron shown here were manually inspected and corrected as
necessary. The bottom two panels demonstrate magnified views of parts of the neuronal
soma (left) and axon (right). Mitochondria are preferentially localized to a specific side of
the soma and continue down the entirety of the axon. The neuronal volume, total
mitochondrial volume, and mitochondrial volume fraction were automatically calculated
and are reported here. A histogram of individual mitochondrial volumes is also displayed.
These data will be automatically output once the workflow has been finalized.

225

226

Figure 5.5. A subset of ten manually segmented neurons. Neurons were segmented
and rendered using the methods previously described. Shown here are ten neurons from
the second SCN ZT4-6 dataset. Both spiny (pink) and smooth (cyan) neurons are present
in close proximity to one another. These segmentations will be used for the future analysis
of cytoplasmic organelles.

227

Appendix A. A Survey of the Quantitative Methods Used in Published SBEM
Studies

 The results of a literature survey of studies employing SBEM from 2006 through

March 2014 are presented here. The citation for each study is given, along with a

description of what was quantified, how this quantification was performed, and whether

manual or semi-automatic segmentation and quantification methods were employed.

228

229

230

231

232

233

Appendix B. Training Images and Labels

 The training images and labels used in Chapter 2 for the generation of organelle-

specific CHM probability maps are displayed on the following pages. All training images

were of the size 500 x 500 pixels and were extracted from the original stack after it was

downsampled by a factor of two. Training labels were generated by manual segmentation

of all organelles of interest using IMOD.

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

Appendix C. Source Code

C.2.1. newstack_bin.sh

1 #! /bin/bash
2
3 function show_help () {
4 cat <<-END
5 newstack_bin.sh
6 Usage:
7 ------
8 -i | --input (MRC filename)
9 MRC stack to be binned
10
11 -o | --output (MRC filename)
12 Desired name of output MRC stack
13
14 -b | --bin (Integer)
15 Factor to bin the input stack by
16
17 -t | --time
18 If specified, timing stats for each step will be output
19
20 -h | --help
21 Display this help
22 END
23 }
24
25 while :; do
26 case $1 in
27 -h|--help)
28 show_help
29 exit
30 ;;
31 -i|--input)
32 mrc_in=$2
33 shift 2
34 continue
35 ;;
36 -o|--output)
37 mrc_out=$2
38 shift 2
39 continue
40 ;;
41 -b|--bin)
42 bin=$2
43 shift 2
44 continue
45 ;;
46 -t|--time)
47 time=1
48 shift 1
49 continue
50 ;;

255

51 *)
52 break
53 esac
54 shift
55 done
56
57 IMOD_BIN=${IMOD_DIR}/bin
58
59 #Check validity of input mrc stack
60 if [[! $mrc_in]]; then printf 'ERROR: input stack not specified.\n\n' >&2; show_help; exit
1; fi
61 if [[! -f $mrc_in]]; then printf 'ERROR: input stack does not exist.\n\n' >&2; show_help;
exit 1; fi
62 ${IMOD_BIN}/header $mrc_in > /dev/null
63 if [[$? == 1]]; then printf 'ERROR: input stack is not a valid MRC file.\n\n' >&2;
show_help; exit 1; fi
64
65 #Check validity of output
66 if [[! $mrc_out]]; then printf 'ERROR: output stack not specified.\n\n' >&2; show_help;
exit 1; fi
67 path_out=`dirname $mrc_out`
68 if [[! -d $path_out]]; then printf 'ERROR: output directory does not exist.\n\n' >&2;
show_help; exit 1; fi
69
70 #Check validity of binning factor
71 if [[! $bin]]; then printf 'ERROR: binning factor not specified.\n\n' >&2; show_help; exit 1;
fi
72 if [[${bin//[0-9]/}]]; then
73 CMD="${IMOD_BIN}/newstack -shrink ${bin}" #Use "-shrink" if the input is not an
integer
74 else
75 CMD="${IMOD_BIN}/newstack -bin ${bin}" #Use "-bin" if the input is an integer
76 fi
77
78 #Create temporary directory and log directory (if necessary)
79 mkdir ${path_out}/tmp_nb
80 if [[-n $time]]; then mkdir ${path_out}/log_nb; fi
81
82 #Get number of slices in the input stack
83 Nslices=`${IMOD_BIN}/header -size $mrc_in | tr -s ' ' | cut -d ' ' -f4`
84
85 #Loop over each slice. For each slice, first extract the given slice using "newstack -secs",
then bin the
86 #extracted slice using "newstack -bin". Record timing stats using /usr/bin/time if desired.
87 for ((i=0;i<=$((Nslices-1));i+=1)); do
88 N=`printf %04d $i`
89 file_extract=${path_out}/tmp_nb/slice_${N}.mrc
90 file_bin=${path_out}/tmp_nb/slice_bin_${N}.mrc
91 if [[-n $time]]; then
92 /usr/bin/time -v -o ${path_out}/log_nb/time_extract_${N}.txt ${IMOD_BIN}/newstack -
secs $i $mrc_in $file_extract
93 /usr/bin/time -v -o ${path_out}/log_nb/time_bin_${N}.txt $CMD $file_extract $file_bin
94 else
95 ${IMOD_BIN}/newstack -secs $i $mrc_in $file_extract

256

96 $CMD $file_extract $file_bin
97 fi
98 rm -rf $file_extract
99 done
100
101 #Append all single-slice, binned MRC files to the final stack
102 if [[-n $time]]; then
103 /usr/bin/time -v -o ${path_out}/log_nb/time_stack.txt ${IMOD_BIN}/newstack
${path_out}/tmp_nb/slice_bin*.mrc $mrc_out
104 else
105 ${IMOD_BIN}/newstack ${path_out}/tmp_nb/slice_bin*.mrc $mrc_out
106 fi
107
108 #Cleanup
109 rm -rf ${path_out}/tmp_nb

C.2.2. mrcstack2png.sh

1 #! /bin/bash
2
3 function show_help () {
4 cat <<-END
5 mrcstack2png.sh
6 Usage:
7 ------
8 -i | --input (File name)
9 MRC stack to be converted to PNG files
10
11 -o | --output (Directory name)
12 Path to store output PNG files to
13
14 -a | --array
15 Process in parallel as an array job
16
17 -h | --help
18 Display this help
19 END
20 }
21
22 while :; do
23 case $1 in
24 -h|--help)
25 show_help
26 exit
27 ;;
28 -i|--input)
29 input=$2
30 shift 2
31 continue
32 ;;
33 -o|--output)
34 path_out=$2
35 shift 2
36 continue

257

37 ;;
38 -a|--array)
39 array=1
40 shift 1
41 continue
42 ;;
43 *)
44 break
45 esac
46 shift
47 done
48
49 if [[! $input]] || [[! $path_out]]; then
50 printf 'ERROR: options -i and -o must be specified\n\n' >&2
51 show_help
52 exit 1
53 fi
54
55 source /home/aperez/.bashrc
56
57 if [[! -d $path_out]]; then mkdir ${path_out}; fi
58 mkdir ${path_out}/test ${path_out}/log
59
60 #If array is not selected, launch a non-array job using standard mrc2tif. If it is set, launch
a parallel job
61 #using mrc2tif on single slices only.
62 if [[-z ${array+x}]]; then
63 qsub -v file_mrc=${input},path_out=${path_out} -o ${path_out}/log
/data/aperez/sge/mrcstack2png.q
64 else
65 Nslices=`${IMOD_DIR}/bin/header -size $input | tr -s ' ' | cut -d ' ' -f4`
66 qsub -t 1-${Nslices} -v file_mrc=${input},path_out=${path_out} -o ${path_out}/log
/data/aperez/sge/mrcstack2png.q
67 fi

C.2.3. mrcstack2png.q

1 #! /bin/bash
2
3 #$ -S /bin/bash
4 #$ -N mrc2png
5 #$ -j yes
6 #$ -m eas
7 #$ -M alexjperez@outlook.com
8 #$ -l h_vmem=1G
9 #$ -cwd
10 #$ -V
11
12 source /home/aperez/.bashrc
13
14 base=${file_mrc%.mrc}
15 if [[$SGE_TASK_ID -eq 0]]; then
16 ${IMOD_DIR}/bin/mrc2tif -p ${file_mrc} ${path_out}/test/${base}
17 else

258

18 ${IMOD_DIR}/bin/mrc2tif -p -z $((SGE_TASK_ID-1)),$((SGE_TASK_ID-1)) ${file_mrc}
${path_out}/test/${base}
19 if [[$((SGE_TASK_ID-1)) -lt 1000]]; then
20 ext=`printf %03d $((SGE_TASK_ID-1))`
21 else
22 ext=$((SGE_TASK_ID-1))
23 fi
24 mv ${path_out}/test/${base}.${ext}.png ${path_out}/test/${base}.`printf %04d
$((SGE_TASK_ID-1))`.png
25 fi

C.2.4. find_nonborder_pixels.m

1 function [PV,border] = find_nonborder_pixels(I)
2 % Returns the pixel values of an input image that are not part
3 % of the border. The border is determined by computing the
4 % gradient magnitude of the image, then searching for pixels
5 % with gradient values that are approximately zero. This method
6 % of determining the image border works for all types of borders,
7 % including simple linear translations and shears.
8 %
9 % INPUT
10 % ----------
11 % I Image to extract pixel values from
12 %
13 % OUTPUT
14 % ----------
15 % PV 1xM vector of non-border pixel values
16 % border Binary image displaying the border pixels
17 %
18
19 [FX,FY] = gradient(double(I));
20 border = sqrt(FX.^2 + FY.^2); %Gradient magnitude
21 border = (border < 0.01); %Find where gradient is ~zero
22 border = imfill(~border,'holes');
23 clear FX FY
24
25 RP = regionprops(border,I,'PixelValues');
26 PV = []; %Initialize pixel value vector
27 for i = 1:numel(RP)
28 PV = [PV RP(i).PixelValues'];
29 end
30
31 end

C.2.5. generate_reference.sh

1 #! /bin/bash
2
3 function show_help () {
4 cat <<-END
5 generate_reference.sh
6 Usage:
7 ------

259

8 -i | --input (Directory name)
9 Path containing the stack of PNG files to run EHS on
10
11 -o | --output (Directory name)
12 Path to store the reference histogram to
13
14 -f | --fullstack
15 Compute the reference histogram as that of the full image stack specified by --input
16
17 -z (Integer)
18 Compute the reference histogram as that of a single image in --input whose value is
specified here
19
20 -h | --help
21 Display this help
22 END
23 }
24
25 while :; do
26 case $1 in
27 -h|--help)
28 show_help
29 exit
30 ;;
31 -i|--input)
32 path_in=$2
33 shift 2
34 continue
35 ;;
36 -o|--output)
37 path_out=$2
38 shift 2
39 continue
40 ;;
41 -f|--fullstack)
42 fullstack=1
43 shift 1
44 continue
45 ;;
46 -z)
47 z=$2
48 shift 2
49 continue
50 ;;
51 *)
52 break
53 esac
54 shift
55 done
56
57 if [[! $path_in]] || [[! $path_out]]; then
58 printf 'ERROR: options -i and -o must be specified\n\n' >&2
59 show_help; exit 1
60 fi

260

61
62 if [[! $fullstack]] && [[! $z]]; then
63 printf 'ERROR: must chose fullstack mode (-f) or single image mode (-z integer)\n\n'
>&2
64 show_help; exit 1
65 fi
66
67 if [[! -d $path_in]]; then
68 printf 'ERROR: directory specified by -i does not exist\n\n' >&2
69 show_help; exit 1
70 fi
71
72 if [[! -d $path_out]]; then mkdir ${path_out}; fi
73 mkdir ${path_out}/log ${path_out}/err ${path_out}/ref
74
75 if [[-z ${fullstack+x}]]; then
76 qsub -v path_in=${path_in},path_out=${path_out}/ref,N1=${z} -o ${path_out}/log
generate_reference.q
77 else
78 Nslices=`ls ${path_in} | wc -l`
79 qsub -t 1-${Nslices} -v path_in=${path_in},path_out=${path_out}/ref,N1=1 -o
${path_out}/log -e ${path_out}/err generate_reference.q
80 fi

C.2.6. generate_reference.q

1 #! /bin/bash
2
3 #$ -S /bin/bash
4 #$ -N genRef
5 #$ -m eas
6 #$ -M alexjperez@outlook.com
7 #$ -l h_vmem=5G
8 #$ -cwd
9 #$ -V
10
11 if [[$SGE_TASK_ID -ne 0]]; then N1=${SGE_TASK_ID}; fi
12
13 matlab -nodisplay -nosplash -r "generate_reference('"${path_in}"','"${path_out}"',${N1})";

C.2.7. generate_reference.m

1 function generate_reference(path_in, path_out, N)
2 % Generate a reference histogram for exact histogram specification
3 % Generates a histogram with 256 bins for an input 8-bit image. Prior
4 % to histogram calculation, borders are removed from the input image.
5 % The output histogram is stored to an ASCII text file.
6 %
7 % INPUT
8 % ----------
9 % path_in Path to the stack of TIF/PNG files to process
10 % path_out Path to output the histogram text file to
11 % N Image number to analyze within path_in
12 %

261

13
14 %Parse path_in for test images
15 imgs = dir(fullfile(path_in,'*.png'));
16 if isempty(imgs)
17 imgs = dir(fullfile(path_in,'*.tif'));
18 end
19
20 file_out = fullfile(path_out,['ref_hist_' sprintf('%04d',N) '.txt']);
21
22 %Compute overall histogram. Each image is read, and its borders are removed.
23 %The image histogram is computed only from the pixels remaining following
24 %border removal.
25 file_in = fullfile(path_in,imgs(N).name);
26 img_in = uint8(imread(file_in));
27 [IR IC] = size(img_in);
28 [PV_img,~] = find_nonborder_pixels(img_in);
29 clear img_in
30 fprintf('Analyzing %s\n',file_in);
31 fprintf('Image size = %d\n',IR*IC);
32 fprintf('Border size = %d\n',IR*IC - numel(PV_img));
33 hist_img = hist(double(PV_img),256);
34 hist_img = hist_img';
35
36 save(file_out,'hist_img','-ascii');
37 fprintf('Output written to %s\n',file_out);
38
39 end

C.2.8. run_ehs.sh

1 #! /bin/bash
2
3 function show_help () {
4 cat <<-END
5 run_ehs.sh
6 Usage:
7 ------
8 -i | --images (Directory name)
9 Path containing input PNG files to be processed
10
11 -r | --reference (Directory name)
12 Path containing reference histogram text files
13
14 -o | --output (Directory name)
15 Path to save output to
16
17 -h | --help
18 Display this help
19 END
20 }
21
22 while :; do
23 case $1 in
24 -h|--help)

262

25 show_help
26 exit
27 ;;
28 -i|--images)
29 path_images=$2
30 shift 2
31 continue
32 ;;
33 -r|--reference)
34 path_ref=$2
35 shift 2
36 continue
37 ;;
38 -o|--output)
39 path_out=$2
40 shift 2
41 continue
42 ;;
43 *)
44 break
45 esac
46 shift
47 done
48
49 if [[! $path_images]] || [[! $path_ref]] || [[! $path_out]]; then
50 printf 'ERROR: options -i, -r, and -o must be specified\n\n' >&2
51 show_help
52 exit 1
53 fi
54
55 if [[! -d $path_out]]; then mkdir ${path_out}; fi
56 mkdir ${path_out}/log ${path_out}/ehs
57
58 Nslices=`ls ${path_images} | wc -l`
59 qsub -t 1-${Nslices} -v
path_images=${path_images},path_ref=${path_ref},path_out=${path_out}/ehs -o ${path_out}/log
run_ehs.q

C.2.9. run_ehs.q

1 #! /bin/bash
2
3 #$ -S /bin/bash
4 #$ -N runEHS
5 #$ -j yes
6 #$ -m eas
7 #$ -M alexjperez@outlook.com
8 #$ -l h_vmem=15G
9 #$ -cwd
10 #$ -V
11
12 matlab -nodisplay -nosplash -r
"run_ehs('"${path_images}"','"${path_ref}"','"${path_out}"',${SGE_TASK_ID})";

263

C.2.10. run_ehs.m

1 function run_ehs(path_imgs, path_ref, path_out, N)
2
3 files_ref = dir(fullfile(path_ref,'*.txt'));
4 imgs = dir(fullfile(path_imgs,'*.png'));
5 if isempty(imgs)
6 imgs = dir(fullfile(path_imgs,'*.tif'));
7 end
8
9 %Compute summed histogram of all references
10 hist_sum = zeros(256,1);
11 for i = 1:numel(files_ref)
12 hist_i = load(fullfile(path_ref,files_ref(i).name));
13 hist_sum = hist_sum + hist_i;
14 end
15
16 I = uint8(imread(fullfile(path_imgs,imgs(N).name)));
17 [PV_init,border] = find_nonborder_pixels(I);
18
19 [ehs,~] = exact_histogram(I,hist_sum,border);
20 clear I border
21
22 [PV_ehs,~] = find_nonborder_pixels(ehs);
23
24 for i = 1:256
25 fprintf('%d %d %d %d\n',i-1,hist_sum(i),PV_init(i),PV_ehs(i));
26 end
27
28 %Write output
29 [~,base,ext] = fileparts(imgs(N).name);
30 file_out = fullfile(path_out,[base '_EHS' ext]);
31 imwrite(uint8(ehs),file_out);
32 fprintf('Output written to %s\n',file_out);
33
34 end

C.2.11. process_td.sh

1 #! /bin/bash
2
3 function show_help () {
4 cat <<-END
5 process_td.sh
6 Usage:
7 ------
8 -i | --input (File name)
9 MRC file the training contours were traced on
10
11 -m | --model (File name)
12 Model file consisting of two objects. The first object consists of scattered seed points
13 marking the center of each training image. The second object consists of closed
contours
14 representing manual traces of the object of interest.

264

15
16 -e | --ehs (Directory name)
17 Path to output stack of PNGs from EHS
18
19 -o | --output (Directory name)
20 Path to save training images and labels to
21
22 -d | --dim (Integer,Integer)
23 Dimensions of the training data in X and Y
24
25 -h | --help
26 Display this help
27 END
28 }
29
30 while :; do
31 case $1 in
32 -h|--help)
33 show_help
34 exit
35 ;;
36 -i|--input)
37 file_mrc=$2
38 shift 2
39 continue
40 ;;
41 -m|--model)
42 file_mod=$2
43 shift 2
44 continue
45 ;;
46 -e|--ehs)
47 path_ehs=$2
48 shift 2
49 continue
50 ;;
51 -o|--output)
52 path_out=$2
53 shift 2
54 continue
55 ;;
56 -d|--dim)
57 dim=$2
58 shift 2
59 continue
60 ;;
61 *)
62 break
63 esac
64 shift
65 done
66
67 source /home/aperez/.bashrc
68

265

69 if [[! $file_mrc]] || [[! $file_mod]] || [[! $path_ehs]] || [[! $path_out]] || [[! $dim]]; then
70 printf 'ERROR: options -i, -m, -e, -o, and -d must be specified\n\n' >&2
71 show_help
72 exit 1
73 fi
74
75 if [[! -d $path_ehs]]; then
76 printf 'ERROR: the path specified by -e does not exist\n\n' >&2
77 show_help
78 exit 1
79 fi
80
81 if [[! -f $file_mrc]]; then
82 printf 'ERROR: the MRC file specified by -i does not exist\n\n' >&2
83 show_help
84 exit 1
85 fi
86
87 if [[! -f $file_mod]]; then
88 printf 'ERROR: the model file specified by -m does not exist\n\n' >&2
89 show_help
90 exit 1
91 fi
92
93 Nobj=`${IMOD_DIR}/bin/imodinfo -a $file_mod | grep -m 1 '^imod' | cut -d ' ' -f2`
94
95 if [[$Nobj -ne 2]]; then
96 printf 'ERROR: the model file specified by -m must contain exactly two objects\n\n' >&2
97 show_help
98 exit 1
99 fi
100
101 if [[! -d $path_out]]; then mkdir ${path_out}; fi
102 mkdir ${path_out}/td ${path_out}/tl ${path_out}/log
103
104 qsub -v
file_mrc=${file_mrc},file_mod=${file_mod},path_ehs=${path_ehs},path_out=${path_out},dim=${di
m} -o ${path_out}/log process_td.q

C.2.12. process_td.q

1 #! /bin/bash
2
3 #$ -S /bin/bash
4 #$ -N processTD
5 #$ -j yes
6 #$ -m eas
7 #$ -M alexjperez@outlook.com
8 #$ -l h_vmem=2G
9 #$ -cwd
10 #$ -V
11
12 source /home/aperez/.bashrc
13

266

14 img_h=`${IMOD_DIR}/bin/header -size ${file_mrc} | tr -s ' ' | cut -d ' ' -f3`
15
16 dimx=`echo $dim | cut -d ',' -f1`
17 dimy=`echo $dim | cut -d ',' -f2`
18 radx=`echo "$dimx / 2" | bc`
19 rady=`echo "$dimy / 2" | bc`
20
21 #Extract seed and contour model files
22 file_seed=${file_mod%.mod}_seed.mod
23 file_cont=${file_mod%.mod}_cont.mod
24
25 ${IMOD_DIR}/bin/imodextract 1 $file_mod $file_seed
26 ${IMOD_DIR}/bin/imodextract 2 $file_mod $file_cont
27
28 #Output point listing of seed file to a text file
29 ${IMOD_DIR}/bin/model2point $file_seed ${file_seed%.mod}.txt
30
31 C=1
32 while read line; do
33 #Extract point values from text file
34 td_i=td_`printf '%03d' $C`
35 tl_i=tl_`printf '%03d' $C`
36 xi=`echo $line | cut -d ' ' -f1`
37 yi=`echo $line | cut -d ' ' -f2`
38 zi=`echo $line | cut -d ' ' -f3`
39
40 #Determine bounding box
41 xmin=`echo "$xi - $radx" | bc`
42 xmax=`echo "$xi + $radx -1" | bc`
43 ymin=`echo "$yi - $rady" | bc`
44 ymax=`echo "$yi + $rady -1" | bc`
45
46 #Trim the bounding box from the input mrc stack. Generate training labels with
imodmop
47 ${IMOD_DIR}/bin/trimvol -x ${xmin},${xmax} -y ${ymin},${ymax} -z $((zi+1)),$((zi+1))
$file_mrc ${tl_i}.mrc
48 ${IMOD_DIR}/bin/imodmop -mask 1 $file_cont ${tl_i}.mrc ${tl_i}.mrc
49 ${IMOD_DIR}/bin/mrc2tif -p ${tl_i}.mrc ${path_out}/tl/${tl_i}.png
50 rm -rf ${tl_i}*
51
52 #Generate training data from EHS output
53 file_td=`ls ${path_ehs} | sed -n ''$((zi+1))'p'`
54 /home/aperez/usr/local/bin/convert ${path_ehs}/$file_td -crop
${dimx}x${dimx}+${xmin}+$((img_h-ymax)) ${path_out}/td/${td_i}.png
55
56 C=$((C+1))
57
58 done < ${file_seed%.mod}.txt
59
60 #Clean up intermediates
61 rm -rf $file_seed $file_cont ${file_seed%.mod}.txt

267

C.2.13. CHM_array_testTile.q

1 #! /bin/bash
2
3 #$ -V
4 #$ -cwd
5 #$ -j y
6 #$ -S /bin/bash
7 #$ -m eas
8 #$ -M alexjperez@outlook.com
9 #$ -N CHM
10 #$ -l h_vmem=10G
11 #$ -t 1-1283:1
12
13 ##########
14 Dir_IM=/home/aperez/usr/local/bin
15 classdir=/data/aperez/CHM_classifiers/nucleolus/ZT04/edge/Nstage2_Nlevel2
16 testfolder=/data/aperez/ZT04/input_iso_full/XY/histeq/PNG
17 testout=/data/aperez/ZT04/runCHM_nucleolus/XY
18 Nstage=2
19 Nlevel=2
20 TileX=8
21 TileY=6
22 Overlap=200
23 #########
24
25 img_in=`ls ${testfolder}/*.png | sed -n ''${SGE_TASK_ID}','${SGE_TASK_ID}'p'`
26
27 base=`basename ${img_in}`
28 base=${base%.*}
29
30 testTile=${testfolder}/${base}
31 mkdir ${testTile}
32
33 ${Dir_IM}/convert ${img_in} -crop ${TileX}x${TileY}+${Overlap}+${Overlap}@\! +repage
+adjoin ${testTile}/${base}_tile_%04d.png
34
35 testF="'${testTile}'"
36 testO="'${testout}'"
37 matlab -nodisplay -singleCompThread -r
'TrainScript_test('${testF},${testO},${Nstage},${Nlevel}'); quit'
38
39 rm -rf ${testTile} #Remove input tiles
40
41 #####
42 # Stitching
43 #####
44
45 pwd
46 cd ../output_testImages
47
48 DX=${TileX} #Number of tiles in X
49 DY=${TileY} #Number of tiles in Y
50 OX=${Overlap} #Overlap in X in pixels

268

51 OY=${Overlap} #Overlap in Y in pixels
52
53 if ((${OX} == 0 & ${OY} == 0)); then #Perform simple stitching if no overlap was
specified
54 ${Dir_IM}/montage ${base}_tile*.png -mode concatenate -tile ${DX}x${DY}
${base}.png
55 ${Dir_IM}/convert ${base}.png -equalize ${base}.png
56 exit 0
57 fi
58
59 # First, the row is stitched together in a west-to-east (left-to-right) manner. Rows are then
stitched together in a
60 # north-to-south (top-to-bottom) manner. Regions of overlap are handeld by taking the
maximum pixel value in the
61 # region
62 C=1
63 for ((j=1;j<=${DY};j+=1)); do #Loop over rows
64 imgFirst=`ls ${base}_tile*.png | sed -n ''${C}','${C}'p'` #Name of first image in the row
65 imgHeight=`${Dir_IM}/identify -format "%[fx:h]" ${imgFirst}` #Height of row
66 for ((i=1;i<=${DX};i+=1)); do #Loop over each image within the row
67 imgL=`ls ${base}_tile*.png | sed -n ''${C}','${C}'p'` #Name of first image
68 imgLWidth=`${Dir_IM}/identify -format "%[fx:w]" ${imgL}`
69 if ((i == 1)); then #If first image in the row, no overlap is needed in the western
direction
70 imgR=`ls ${base}_tile*.png | sed -n ''$((C+1))','$((C+1))'p'` #Name of second
image
71 imgRWidth=`${Dir_IM}/identify -format "%[fx:w]" ${imgR}`
72 ${Dir_IM}/convert ${imgL} -gravity west -crop -${OX}-0 ${base}_tempL.png
#Crop non-overlap region of image1
73 ${Dir_IM}/convert ${imgL} -gravity east -crop ${OX}x${imgHeight}-0-0
${base}_tempML.png #Crop eastern overlap region of image1
74 ${Dir_IM}/convert ${imgR} -gravity west -crop ${OX}x${imgHeight}-0-0
${base}_tempMR.png #Crop western overlap region of image2
75 ${Dir_IM}/convert ${base}_tempML.png ${base}_tempMR.png -compose lighten -
composite ${base}_tempM.png #Take max of overlap regions
76 ${Dir_IM}/convert +append ${base}_tempL.png ${base}_tempM.png
${base}_out_temp.png #Append
77 elif ((i > 1 & i <= $((DX-1)))); then #All middle images in the row
78 imgR=`ls ${base}_tile*.png | sed -n ''$((C+1))','$((C+1))'p'`
79 imgRWidth=`${Dir_IM}/identify -format "%[fx:w]" ${imgR}`
80 ${Dir_IM}/convert ${imgL} -gravity center -crop $((imgLWidth-
2*OX))x${imgHeight}-0-0 ${base}_tempL.png #Crop non-overlap region of image1
81 ${Dir_IM}/convert ${imgL} -gravity east -crop ${OX}x${imgHeight}-0-0
${base}_tempML.png #Crop eastern overlap region of image1
82 ${Dir_IM}/convert ${imgR} -gravity west -crop ${OX}x${imgHeight}-0-0
${base}_tempMR.png #Crop western overlap region of image2
83 ${Dir_IM}/convert ${base}_tempML.png ${base}_tempMR.png -compose
lighten -composite ${base}_tempM.png #Take max of overlap regions
84 ${Dir_IM}/convert +append ${base}_out_temp.png ${base}_tempL.png
${base}_tempM.png ${base}_out_temp.png #Append
85 else #Last image in the row, overlap has already been analyzed
86 ${Dir_IM}/convert ${imgL} -gravity east -crop -${OX}-0 ${base}_tempL.png #Crop
non-overlap region

269

87 ${Dir_IM}/convert +append ${base}_out_temp.png ${base}_tempL.png
${base}_out_temp.png #Append
88 fi
89 rm -rf ${base}_temp*.png
90 C=$((C+1))
91 done
92 if ((j == 1)); then #If first row, rename to out.png
93 imgWidthTotal=`${Dir_IM}/identify -format "%[fx:w]" ${base}_out_temp.png`
94 mv ${base}_out_temp.png ${base}_out.png
95 else
96 imgHeightOut=`${Dir_IM}/identify -format "%[fx:h]" ${base}_out.png` #Get height of
total output to this point
97 ${Dir_IM}/convert ${base}_out.png -gravity south -crop ${imgWidthTotal}x${OY}-
0-0 ${base}_tempMU.png
98 ${Dir_IM}/convert ${base}_out.png -gravity north -crop
${imgWidthTotal}x$((imgHeightOut-OY))-0-0 ${base}_tempU.png
99 ${Dir_IM}/convert ${base}_out_temp.png -gravity north -crop
${imgWidthTotal}x${OY}-0-0 ${base}_tempMD.png
100 ${Dir_IM}/convert ${base}_out_temp.png -gravity south -crop
${imgWidthTotal}x$((imgHeight-OY))-0-0 ${base}_tempD.png
101 ${Dir_IM}/convert ${base}_tempMU.png ${base}_tempMD.png -compose lighten
-composite ${base}_tempM.png
102 ${Dir_IM}/convert -append ${base}_tempU.png ${base}_tempM.png
${base}_tempD.png ${base}_out.png
103 fi
104 rm -rf ${base}_temp*.png ${base}_out_temp*.png
105 done
106
107 rm -rf ${base}_tile*.png #Remove output tiles

C.2.14. segStats.m

1 function fid_out = segStats(Seg, GT, Border, Filename)
2
3 % segStats
4 % Computes a variety of segmentation evaluation statistics comparing a
5 % single probability map or a 3D stack of probability maps to a single
6 % binary ground truth image or a 3D stack of binary ground truth images.
7 % Works with both:
8 % (1) Pre-imported image stacks
9 % (2) A directory specifying the location of images to load
10 % If the input probability maps are already binary because they have
11 % been pre-processed, statistics will be computed directly between this
12 % stack and the ground truth. If not, statistics will be computed at
13 % variable threshold levels, ranging from 0-255 in increments of 1. The
14 % metrics calculated are reported, in order, as follows:
15 %
16 % (1) Threshold Value
17 % (2) Error Probability [11]
18 % (3) False Positive Rate (a.k.a. fall-out) [1]
19 % (4) False Negative Rate (a.k.a. miss rate) [1]
20 % (5) True Positive Rate (a.k.a. sensitivity, recall) [1]
21 % (6) True Negative Rate (a.k.a. specificity) [1]
22 % (7) Negative Predictive Value [1]

270

23 % (8) False Discovery Rate [1]
24 % (9) Precision [1]
25 % (10) Rand Accuracy [1]
26 % (11) F-value (a.k.a. F-score, F-measure) [1]
27 % (12) Jaccard Similarity Coefficient [2,3]
28 % (13) Dice Coefficient [9,10]
29 % (14) Geometric Mean (a.k.a. G-Mean) [8]
30 % (15) Matthew's Correlation Coefficient [4,5]
31 % (16) Average Conditional Probability [5,6]
32 % (17) Area Under Curve [2]
33 % (18) Balanced Accuracy [7]
34 % (19) Informedness [2]
35 % (20) Markedness [2]
36 % (21) False Positives (total pixels)
37 % (22) False Negatives (total pixels)
38 % (23) True Positives (total pixels)
39 % (24) True Negatives (total pixels)
40 % (25) FP + FN + TP + TN (as a sanity check, should be equal to Image Size)
41 % (26) Image Size (total pixels)
42 %
43 % Input
44 % --------------------
45 % Seg Single image or 3D stack of probability map images. There
46 % are two use cases:
47 % (1) Image stack has been previously loaded. In this case,
48 % Seg is the name of the matrix containing the stack.
49 % (2) Image stack needs to be loaded. In this case, Seg is
50 % a string specifying the directory of the files to load.
51 % GT Single image or 3D stack of binary ground truth. The use
52 % cases are the same as Seg.
53 % Border Integer value specifying the padding to remove around both
54 % the Seg and GT stacks.
55 % Filename Path to write a text file containing the output statistics
56 % to.
57 %
58 % Example
59 % --------------------
60 % segStats(Out,GT,0,'stats/segStats_Out.txt');
61 % segStats('/home/aperez/out','home/aperez/gt',50,'/home/aperez/stats.txt');
62 %
63 % References
64 % --------------------
65 % [1] Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition
66 % letters, 27(8), 861-874.
67 % [2] Powers, D. M. (2011). Evaluation: from precision, recall and F-measure to
68 % ROC, informedness, markedness & correlation. Journal of Machine Learning
69 % Technologies, 2(1), 37-63.
70 % [3] Lucchi, A., Smith, K., Achanta, R., Knott, G., & Fua, P. (2012). Supervoxel-
71 % based segmentation of mitochondria in EM image stacks with learned shape
72 % features. Medical Imaging, IEEE Transactions on, 31(2), 474-486
73 % [4] Matthews, B. W. (1975). Comparison of the predicted and observed secondary
74 % structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein
75 % Structure, 405(2), 442-451.
76 % [5] Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A., & Nielsen, H. (2000).

271

77 % Assessing the accuracy of prediction algorithms for classification: an
78 % overview. Bioinformatics, 16(5), 412-424.i
79 % [6] Burset, M., & Guigo, R. (1996). Evaluation of gene structure prediction
80 % programs. Genomics, 34(3), 353-367.
81 % [7] Brodersen, K. H., Ong, C. S., Stephan, K. E., & Buhmann, J. M. (2010).
82 % The balanced accuracy and its posterior distribution. In Pattern Recognition
83 % (ICPR), 2010 20th International Conference on (pp. 3121-3124). IEEE.
84 % [8] Seyedhosseini, M., Sajjadi, M., & Tasdizen, T. (2013). Image Segmentation with
85 % Cascaded Hierarchical Models and Logistic Disjunctive Normal Networks.
Computer
86 % Vision.
87 % [9] Shattuck, D. W., Prasad, G., Mirza, M., Narr, K. L., & Toga, A. W. (2009).
88 % Online resource for validation of brain segmentation methods. NeuroImage,
89 % 45(2), 431-439.
90 % [10] Dice, L. R. (1945). Measures of the amount of ecologic association between
91 % species. Ecology, 26(3), 297-302.
92 % [11] Celebi, M. E., Schaefer, G., Iyatomi, H., Stoecker, W. V., Malters, J. M., &
93 % Grichnik, J. M. (2009). An improved objective evaluation measure for border
94 % detection in dermoscopy images. Skin Research and Technology, 15(4), 444-450.
95 %
96
97 if nargin < 4; Filename = ''; end
98 if nargin < 3; Border = 0; end
99
100 % Import probability map. If the input is not a string, assume it is a matrix to which
101 % the probability map images have been previously imported to. If it is a string,
102 % check if it is a directory of a file. If it is a directory, import all images in the
103 % directory to a 3D image stack. If not, import the single image.
104 if isstr(Seg) & isdir(Seg)
105 Dir_seg = Seg;
106 Imgs_seg = dir([Dir_seg '/*.png']);
107 if isempty(Imgs_seg)
108 Imgs_seg = dir([Dir_seg '/*.tif']);
109 end
110 Img_seg = imread([Dir_seg '/' Imgs_seg(1).name]);
111 Seg = zeros([size(Img_seg) numel(Imgs_seg)]);
112 clear Img_seg
113 for i = 1:numel(Imgs_seg)
114 Seg(:,:,i) = imread([Dir_seg '/' Imgs_seg(i).name]);
115 end
116 elseif isstr(Seg) & ~isdir(Seg)
117 Seg = imread(Seg);
118 end
119 Seg = uint8(Seg);
120
121 % Import ground truth stack in the same fashion.
122 if isstr(GT) & isdir(GT)
123 Dir_gt = GT;
124 Imgs_gt = dir([Dir_gt '/*.png']);
125 if isempty(Imgs_gt)
126 Imgs_gt = dir([Dir_gt '/*.tif']);
127 end
128 Img_gt = imread([Dir_gt '/' Imgs_gt(1).name]);
129 GT = zeros([size(Img_gt) numel(Imgs_gt)]);

272

130 clear Img_gt
131 for i = 1:numel(Imgs_gt)
132 GT(:,:,i) = imread([Dir_gt '/' Imgs_gt(i).name]);
133 end
134 elseif isstr(GT) & ~isdir(GT)
135 GT = imread(GT);
136 end
137
138 % Remove borders.
139 [SegX SegY SegZ] = size(Seg);
140 [GTX GTY GTZ] = size(GT);
141 Seg = Seg(Border+1:SegX-Border,Border+1:SegY-Border,:);
142 GT = GT(Border+1:GTX-Border,Border+1:GTY-Border,:);
143 [SegX SegY SegZ] = size(Seg);
144 N = SegX * SegY * SegZ;
145
146 % Open file to write output to
147 if isempty(Filename)
148 fid_out = 1;
149 else
150 fid_out = fopen(Filename,'a');
151 end
152
153 % Check if Seg is binary (i.e. the probability map has already been
154 % thresholded). If so, set Tmax to 0. If not, set Tmax to 255, so
155 % statistics will be calculated at each value of T.
156 if numel(unique(Seg)) <= 2
157 Tmax = 0;
158 else
159 Tmax = 255;
160 end
161
162 % Calculate statistics
163 T = [0:Tmax];
164 Seg_orig = Seg;
165 for i = 1:numel(T)
166 Seg = (Seg_orig > T(i));
167 fprintf('Calculating statistics for T = %d\n',T(i));
168 FP = numel(find(Seg == 1 & GT == 0)); %[1], False positive OR Type I Error
169 FN = numel(find(Seg == 0 & GT == 1)); %[1], False negative OR Type II Error
170 TP = numel(find(Seg == 1 & GT == 1)); %[1], True positive OR Hit
171 TN = numel(find(Seg == 0 & GT == 0)); %[1], True negative OR Correct Rejection
172 FPR(i,1) = FP/(FP+TN); %[1], False positive rate OR Fall-out
173 FNR = FN/(FN+TP); %[1], False negative rate OR Miss rate
174 TPR(i,1) = TP/(TP+FN); %[1], True positive rate OR Sensitivity OR Recall OR Hit Rate
175 TNR = TN/(FP+TN); %[1], True negative rate OR Specificity
176 NPV = TN/(TN+FN); %[1], Negative Predictive Value (NPV)
177 FDR = FP/(FP+TP); %[1], False Discovery Rate (FDR)
178 Precision = TP/(TP+FP); %[1], Precision OR Positive Predictive Value (PPV)
179 F1 = (2*TP)/(2*TP+FP+FN); %[1], F1-score OR F-value OR F-measure
180 Accuracy = (TP+TN)/(TP+FN+FP+TN); %[1], Rand Accuracy
181 Jaccard = TP/(FP+TP+FN); %[2,3], Jaccard similarity coefficient OR VOC score
182 MCC = (TP*TN-FP*FN)/sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)); %[4,5], Matthew's
correlation coefficient

273

183 ACP = 0.25*((TP/(TP+FN))+(TP/(TP+FP))+(TN/(TN+FP))+(TN/(TN+FN))); %[5,6],
Average conditional probability
184 AUC = 1-((FPR(i,1)+FNR)/2);%[2], Area under curve
185 Inform = TPR(i,1)+TNR-1; %[2], Informedness
186 Marked = Precision+NPV-1; %[2], Markedness
187 AccBal = 0.5*(TPR(i,1)+TNR); %[7], Balanced accuracy
188 GMean = sqrt(TPR(i,1)*TNR); %[8], Geometrical mean OR G-Mean
189 Dice = (2*TP)/((FP+TP)+(TP+FN)); %[9,10], Dice Coefficient
190 ErrorProb = (FP+FN)/(TP+FN+FP+TN); %[11], Error Probability
191
192 fprintf(fid_out,'%d %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %d
%d %d %d %d %d\n',...
193
T(i),ErrorProb,FPR(i,1),FNR,TPR(i,1),TNR,NPV,FDR,Precision,Accuracy,F1,Jaccard,Dice,GMea
n,MCC,ACP,...
194 AUC,AccBal,Inform,Marked,FP,FN,TP,TN,(FP+FN+TP+TN),N);
195 end
196
197 % Calculate the area under the curve for the ROC plot
198 %[FPR_sort,I] = sort(FPR,1,'ascend');
199 %TPR_sort = TPR(I);
200 %AUC = trapz(FPR_sort,TPR_sort);
201 %fprintf(fid_out,'%f\n',AUC);
202
203
204 fclose(fid_out);
205
206 end

C.2.15. binarize_pm_activecontour.m

1 function [seg,mask,Q] = binarize_pm_activecontour(path_in, path_out, N, level, iter,
smooth)
2 % Segments an input probability map by using the Chan-Vese method for active contour
evolution
3 % with seeds determined by multi-level Otsu thresholding. Requires MATLAB R2013a or
later for
4 % the functions multithresh, imquantize, and activecontour.
5 %
6 % INPUT
7 % --------------------
8 % path_in Path containing probability maps to process
9 % path_out Path to write segmented images to
10 % N Image number within path_in to process
11 % level Number of Otsu threshold levels to use for seed masking
12 % iter Number of iterations of active contour evolution to use
13 % smooth Degree of smoothing for active contour evolution
14 %
15 % OUTPUT
16 % --------------------
17 % seg Output segmentation of the probability map specified by path_in and N
18 % mask Binary mask used as seeds for active contour evolution
19 % Q Image of the probability map after multi-level Otsu thresholding. Pixel values
20 % will be integers from [1,...,level+1].

274

21 %
22 % USAGE
23 % --------------------
24 % Helpful values of iter typically range from 50 - 400, depending on the feature
segmented.
25 % Helpful values of level typically range from 2-10, depending on the feature
segmented and
26 % the quality of the probability map. Noisy probability maps with higher noise will
typically
27 % benefit more from increased levels. Helpful values of smooth range from 2-12.
28 %
29 % EXAMPLE
30 % --------------------
31 % [seg,mask,Q] = binarize_pm_activecontour('probMaps','seg',100,2,100,4);
32 %
33 % REFERENCES
34 % --------------------
35 % [1] Perez, A.J., Seyedhosseini, M., Deerinck, T.J., Bushong, E.A., Panda, S.,
Tasdizen, T.,
36 % and Ellisman, M.H. (2014). A workflow for the automatic segmentation of
organelles in
37 % electron microscopy image stacks. Frontiers in Neuroanatomy (in review).
38 % [2] Chan, T.F., and Vese, L.A. (2001). Active contours without edges. IEEE
Transactions on
39 % Image Processing, 10(2), 266-277.
40 %
41
42 tic;
43
44 if ~isdir(path_out); mkdir(path_out); end
45
46 imgs = dir(fullfile(path_in,'*.tif'));
47 if isempty(imgs)
48 imgs = dir(fullfile(path_in,'*.png'));
49 end
50
51 % Single-slice probability maps output from CHM will sometimes have a third dimension,
where each
52 % slice along the third dimension is identical. If this is the case, reduce the dimensionality
53 % of the input.
54 img = imread(fullfile(path_in,imgs(1).name));
55 if ndims(img) == 3; img = img(:,:,1); end
56 seg = zeros(size(img)); %Initialize empty output image
57 clear img
58
59 file_in = fullfile(path_in,imgs(N).name); %Read probability map N within path_in
60 P = double(imread(file_in));
61 if ndims(P) == 3; P = P(:,:,1); end %Reduce dimensionality if necessary
62 P = P / 255; %Rescale from [0,...,255] to [0,...,1]
63 fprintf('Input image %s read.\n',file_in);
64
65 fprintf('Generating seed image via Otsu multi-level thresholding with ');
66 fprintf('%d levels.\n',level);
67 thresh = multithresh(P,level); %Return multi-level threshold values

275

68 Q = imquantize(P,thresh); %Apply threshold values to the probability map
69 mask = (Q == level+1); %Mask Q at the top level of the threshold
70 mask = bwmorph(mask,'shrink',2); %Shrink the mask slightly to serve as seeds
71
72 fprintf('Performing Chan-Vese active contour segmentation with %d ',iter);
73 fprintf('iterations and a smoothing factor of %d.\n',smooth);
74 seg = activecontour(P,mask,iter,'Chan-Vese',smooth); %Active contour evolution
75
76 file_out = fullfile(path_out,['out_' sprintf('%04d',N) '.tif']);
77 imwrite(uint8(seg),file_out); %Write output in uint8 format
78 fprintf('Output image %s written.\n',file_out);
79 fprintf('Elapsed time: %0.2f\n',toc);
80
81 end

C.2.XX. myelin_segment_sbem.q

1 #! /bin/bash
2
3 #$ -V
4 #$ -cwd
5 #$ -j y
6 #$ -S /bin/bash
7 #$ -m eas
8 #$ -M alexjperez@outlook.com
9 #$ -N myelinSeg
10 #$ -l h_vmem=2G
11 #$ -t 1-1000:1
12
13 matlab -nodisplay -nosplash -r
"myelin_segment_sbem('TIF_2Dbin10','out_2Dbin10',${SGE_TASK_ID},2,0)";

C.3.1. mpas.sh

1 #! /bin/bash
2
3 function show_help () {
4 cat <<-END
5 mpas.sh
6 Usage:
7 ------
8 -i | --input (Dir1,Dir2,...,DirN)
9 Paths to probability maps in orientations 1,2,...,N
10
11 -o | --output (Directory name)
12 Path to store output and temporary files to
13
14 -r | --orientation (String1,String2,...,StringN)
15 Orientations of the probability maps in paths 1,2,...,N
16
17 -s | --size (Integer,Integer,Integer)
18 Size of the input stack (X,Y,Z) in the XY orientation
19
20 -h | --help

276

21 Display this help
22 END
23 }
24
25 while :; do
26 case $1 in
27 -h|--help)
28 show_help
29 exit
30 ;;
31 -i|--input)
32 paths=$2
33 shift 2
34 continue
35 ;;
36 -o|--output)
37 path_out=$2
38 shift 2
39 continue
40 ;;
41 -s|--size)
42 size=$2
43 shift 2
44 continue
45 ;;
46 -r|--orientation)
47 orientations=$2
48 shift 2
49 continue
50 ;;
51 *)
52 break
53 esac
54 shift
55 done
56
57 #Make output directory (if necessary) and temporary directories
58 if [[! -d $path_out]]; then mkdir $path_out; fi
59 mkdir ${path_out}/tmp ${path_out}/log
60
61 #Parse the inputs to determine how many axes have been specified by the user
62 size=`echo $size | tr ',' ' '`
63 Npath=`echo $paths | tr -cd , | wc -c`
64 Npath=$((Npath+1))
65 Nori=`echo $orientations | tr -cd , | wc -c`
66 Nori=$((Nori+1))
67 if [[$Npath -ne $Nori]]; then printf 'ERROR: # of paths and orientations must be the
same\n\n' >&2; show help; exit 1; fi
68
69 #Loop over all orientations. Submit appropriate jobs
70 hold=''
71 for ((i=1;i<=${Npath};i+=1)); do
72 path_in=`echo $paths | cut -d ',' -f${i}`
73 ori_in=`echo $orientations | cut -d ',' -f${i}`

277

74 Nimgs=`ls ${path_in}/*.png | wc -l`
75 printf 'Orientation #%d: %s, %s\n' $i $ori_in $path_in
76 qsub -N png2mrc${ori_in} -t 1-${Nimgs} -v
path_in=${path_in},path_out=${path_out},orient=${ori_in} -o ${path_out}/log mpas_png2mrc.q
77 qsub -hold_jid png2mrc${ori_in} -N snr${ori_in} -v
path_in=${path_out}/tmp,path_out=${path_out}/tmp,orient=${ori_in},size="${size}" -o
${path_out}/log mpas_stackAndRotate.q
78 hold=${hold}snr${ori_in},
79 done
80 hold=${hold%?}
81
82 #Average over all orientations
83 qsub -hold_jid $hold -N mpas_avg -v path_in=${path_out}/tmp,path_out=${path_out} -o
${path_out}/log mpas_average.q

C.3.2. mpas_png2mrc.q

1 #! /bin/bash
2
3 #$ -V
4 #$ -cwd
5 #$ -j y
6 #$ -S /bin/bash
7 #$ -m eas
8 #$ -M alexjperez@outlook.com
9 #$ -l h_vmem=1G
10
11 DIR_IMOD=/home/aperez/usr/local/imod_4.8.10/bin
12 DIR_IM=/home/aperez/usr/local/bin
13
14 #Get file to process
15 file_in=`ls ${path_in}/*.png | sed -n ''${SGE_TASK_ID}'p'`
16 base=`basename $file_in`
17 base=${base%.png}
18
19 #Convert PNG to TIF
20 ${DIR_IM}/convert $file_in ${path_out}/tmp/${base}_${orient}.tif
21 ${DIR_IMOD}/tif2mrc ${path_out}/tmp/${base}_${orient}.tif
${path_out}/tmp/${base}_${orient}.mrc
22
23 #Cleanup
24 rm -rf ${path_out}/tmp/${base}_${orient}.tif

C.3.3. mpas_stackandRotate.q

1 #! /bin/bash
2
3 #$ -V
4 #$ -cwd
5 #$ -j y
6 #$ -S /bin/bash
7 #$ -m eas
8 #$ -M alexjperez@outlook.com
9 #$ -l h_vmem=50G

278

10
11 DIR_IMOD=/home/aperez/usr/local/imod_4.8.10/bin
12 DIR_IM=/home/aperez/usr/local/bin
13
14 #Stack individual MRCs
15 ${DIR_IMOD}/newstack ${path_in}/*${orient}.mrc ${path_out}/${orient}.st
16 rm -rf ${path_in}/*${orient}.mrc
17
18 size=`echo $size | tr ' ' ','`
19 echo $size
20
21 #Rotate, if necessary
22 if [[$orient == 'XZ']]; then
23 ${DIR_IMOD}/rotatevol -angles 0,0,-90 -size $size ${path_out}/${orient}.st
${path_out}/${orient}_rot.st
24 rm -rf ${path_out}/${orient}.st
25 elif [[$orient == 'YZ']]; then
26 ${DIR_IMOD}/rotatevol -angles 0,-90,0 -size $size ${path_out}/${orient}.st
${path_out}/${orient}_rot.st
27 rm -rf ${path_out}/${orient}.st
28 fi

C.3.4. mpas_average.q

1 #! /bin/bash
2
3 #$ -V
4 #$ -cwd
5 #$ -j y
6 #$ -S /bin/bash
7 #$ -m eas
8 #$ -M alexjperez@outlook.com
9 #$ -l h_vmem=50G
10
11 DIR_IMOD=/home/aperez/usr/local/imod_4.8.10/bin
12 DIR_IM=/home/aperez/usr/local/bin
13
14 #Perform averaging
15 ${DIR_IMOD}/clip average ${path_in}/*.st ${path_out}/average.mrc
16
17 #Cleanup
18 #rm -rf ${path_in}/*.st

C.3.5. msi3d_dce_cpd.m

1 % msi3d_dce_cpd
2 % Generates evenly distributed, interpolated binary images between two
3 % input binary images. This approach is inspired by the morphological
4 % skeleton interpolation (MSI) algorithm of Chatzis and Pitas [1].
5 % Depending on the mode specified, the input images are simplified by
6 % reducing them to their skeleton or perimeter. Distance transform-based
7 % skeletonization is performed using the discrete curve evolution (DCE)
8 % algorithm of Bai, et al [2], and perimeterization is performed using
9 % bwperim. The reduced objects are registered to each other using the

279

10 % non-rigid registration mode of the coherent point drift (CPD)
11 % algorithm of Myronenko and Song [3]. CPD determines the non-rigid
12 % mapping of pixels between the input and output reduced objects, and
13 % this correspondence is used to generate evenly spaced, interpolated
14 % objects between the two in the interpolation transformation step.
15 % Finally, the whole objects are reconstructed from the reduced
16 % simplifications. In the case of reduction by skeletonization,
17 % reconstruction is performed by creating the union of all circles
18 % centered at each pixel of the skeleton, with each pixel value
19 % specifying the radius of the given circle. In the case of reduction by
20 % perimeterization, reconstruction is performed by first running a
21 % gap-filling algorithm to connect all pixels of the interpolated
22 % perimeter, then filling the object using imfill(...,'holes').
23 %
24 % Input
25 % --------------------
26 % I_A,I_B Input binary images to interpolate between.
27 % L0 Number of interpolated slices to produce between the two
28 % input images.
29 % mode = 1, aligns the skeletons of the images. Skeletons are
30 % generated using the DCE algorithm of Bai, et al.
31 % = 2, aligns the perimeters of the images.
32 % image = 1, will write intermediate plots and figures to disk.
33 % = 0, will not save any intermediate images.
34 % verbose = 1, will print text pertaining to intermediate steps.
35 % = 0, will not print any text.
36 % compile = 1, will compile CPD code. = 0, will not compile,
37 % assuming code has been previously compiled.
38 %
39 % Output
40 % --------------------
41 % Out Stack of interpolated images between I_A and I_B.
42 % time 1x3 vector specifying the runtimes, in seconds, for (1)
43 % object reduction, (2) CPD registration, and (3)
44 % interpolation transformation.
45 %
46 % Example
47 % --------------------
48 % interp = msi3d_cpd_perim(I1,I2,3,3,0,0,1);
49 %
50 % Dependencies
51 % --------------------
52 % [1] Requires the Coherent Point Drift toolbox, available for download
53 % here: https://sites.google.com/site/myronenko/research/cpd
54 %
55 % [2] Requires the Matlab code for the DCE algorithms for skeleton
56 % generation, available for download here:
57 % https://sites.google.com/site/xiangbai/softwareforskeletonizationandskeletonpru
58 % NOTE: For compatibility with MATLAB R2013a, add the following between
59 % lines 41 and 42 in the file SkeletonGrow1.m:
60 % lab = single(lab);
61 %
62 % References
63 % --------------------

280

64 % [1] Chatzis and Pitas (2000). Interpolation of 3-D binary images based
65 % on morphological skeletonization. IEEE Transactions on Medical
66 % Imaging, 19(7):699-710.
67 %
68 % [2] Bai, Latecki, and Liu (2007). Skeleton pruning by contour
69 % partitioning with discrete curve evolution. IEEE Transactions on
70 % Pattern Analysis and Machine Intelligence. 29(3):1-14.
71 %
72 % [3] Myronenko and Song (2012). Point Set Registration: Coherent Point
73 % Drift. IEEE Transactions on Pattern Analysis and Machine Intelligence,
74 % 32(12):2262-75.
75 %
76 %
77
78 function [Out,time,ratio] = msi3d_dce_cpd(I_A, I_B, L, mode, image, verbose, compile)
79
80 if nargin < 7; compile = 1; end
81 if nargin < 6; verbose = 0; end
82 if nargin < 5; image = 0; end
83 if nargin < 4; mode = 1; end %Default is to align the skeletons
84
85 % Add needed paths for CPD and compile
86 if compile == 1; compileCPD; end
87
88 % Initialize output matrix
89 Out = zeros([size(I_A),L+2]);
90 Out(:,:,1) = I_A;
91 Out(:,:,L+2) = I_B;
92
93 % Set options for CPD
94 opt.method = 'nonrigid';
95 opt.tol = 1e-4;
96 opt.beta = 1;
97 opt.corresp = 1;
98 opt.viz = 0;
99
100 C = 2;
101
102 %%%%%%%%%%
103 %%% (1) Object Reduction
104 %%%%%%%%%%
105
106 % Find number of connected components in input images
107 CC_A = bwconncomp(I_A);
108 CC_B = bwconncomp(I_B);
109
110 tic; % Start timer for object reduction
111
112 if mode == 1
113 % Create skeleton images of both input images by using DCE
114 S_A = div_skeleton_new(4,1,~I_A,15);
115 fprintf('Skeletonization of Image A done.\n');
116
117 S_B = div_skeleton_new(4,1,~I_B,15);

281

118 fprintf('Skeletonization of Image B done.\n');
119 else
120 S_A = bwperim(I_A);
121 fprintf('Perimeterization of Image A done.\n');
122 S_B = bwperim(I_B);
123 fprintf('Perimeterization of Image B done.\n');
124 end
125
126 runtime_reduce = toc; % End timer for DCE skeletonization
127
128 A_A = numel(find(I_A > 0));
129 A_SA = numel(find(S_A > 0));
130 ratio(1) = A_SA/A_A;
131 fprintf('Image A contains %d points.\n',A_A);
132 fprintf('Reduction A contains %d points.\n',A_SA);
133 fprintf('Reduction : Image Ratio A = %f\n',ratio(1));
134
135 A_B = numel(find(I_B > 0));
136 A_SB = numel(find(S_B > 0));
137 ratio(2) = A_SB/A_B;
138 fprintf('Image B contains %d points.\n',A_B);
139 fprintf('Reduction B contains %d points.\n',A_SB);
140 fprintf('Reduction : Image Ratio B = %f\n',ratio(2));
141
142 %%%%%%%%%%
143 %%% (2) Skeleton Matching
144 %%%%%%%%%%
145
146 tic; % Start timer for CPD
147
148 % Convert from image format to a 3xM array of points, as required for CPD
149 S_A_cpd = im2cpd(S_A);
150 S_B_cpd = im2cpd(S_B);
151
152 % Run Coherent Point Drift Algorithm using rigid point set registration.
153 % CPD is run to generate transforms in both directions: (1) From I_A to
154 % I_B, and (2) from I_B to I_A.
155
156 fprintf('Running non-rigid CPD registration of A to B.\n');
157 [Transform_AB,X_AB] = cpd_register(S_B_cpd',S_A_cpd',opt);
158
159 runtime_cpd = toc; % End timer for CPD
160 fprintf('CPD registration done.\n')
161
162 %%%%%%%%
163 % (3) Interpolation Transformation Calculation
164 %%%%%%%%
165
166 % Calculate the transforms in distance, in X and Y, and pixel intensity
167 % in Z to apply to the original skeleton to match the destination
168 % skeleton
169
170 tic; % Start timer for interpolation transformation
171

282

172 clear D_AB
173 for i = 1:numel(X_AB); D_AB(:,i) = S_B_cpd(:,X_AB(i)) - S_A_cpd(:,i); end
174
175 for l = 1:L
176
177 % Calculate coefficients for matching interpolations to the properly spaced
178 % slice. l = [1...L].
179 C_AB = l / (L+1);
180 fprintf('Transforming interpolation for l = %d, C_AB = %f.\n',l,C_AB);
181
182 % Scale transforms by the coefficients
183 D_AB_scale = C_AB .* D_AB;
184
185 % Create new objects
186 delta_AB = S_A_cpd + D_AB_scale;
187 delta_AB(1:2,:) = round(delta_AB(1:2,:));
188 S_AB_delta = cpd2im(delta_AB,S_A);
189
190 %%%%%%%%
191 % (4) Object Reconstruction
192 %%%%%%%%
193
194 % Reconstruct objects
195 if mode == 1
196 O_interp_AB = skel2obj(S_AB_delta,2);
197 O_interp_AB = bwmorph(O_interp_AB,'spur');
198 O_interp_AB = bwmorph(O_interp_AB,'hbreak');
199 else
200 O_interp_AB = perimFill(S_AB_delta);
201 %O_interp_AB = imfill(O_interp_AB,'holes');
202 end
203
204 % Check for consistency in connected components. Remove artifacts
205 % if necessary.
206 CC_AB = bwconncomp(O_interp_AB,4);
207
208 if CC_A.NumObjects == CC_B.NumObjects
209 if CC_AB.NumObjects ~= CC_A.NumObjects
210 RP_AB = regionprops(O_interp_AB,'Area','PixelIdxList');
211 [Sort,Idx] = sort([RP_AB.Area],'descend');
212 Remove = Idx(CC_A.NumObjects+1:end);
213 for q = 1:numel(Remove)
214 O_interp_AB(RP_AB(Remove(q)).PixelIdxList) = 0;
215 end
216 end
217 end
218
219 %%%%%%%%
220 % Store output and set inputs for next iteration
221 %%%%%%%%
222
223 Out(:,:,C) = O_interp_AB;
224 C = C+1;
225

283

226 %%%%%%%%
227 % (OPTIONAL)
228 %%%%%%%%
229
230 if image == 1
231 figure;
232 subplot(3,2,1); imshow(S_A,[]); title('P_A')
233 subplot(3,2,2); imshow(S_B,[]); title('P_B')
234 subplot(3,2,3); imshow(S_interp_AB,[]); title('P_{AB}')
235 subplot(3,2,4); imshow(S_interp_BA,[]); title('P_{BA}')
236 subplot(3,2,5); imshow(O_interp_AB,[]); title('O_{AB}')
237 subplot(3,2,6); imshow(O_interp_BA,[]); title('O_{BA}');
238 figure;
239 subplot(2,3,1); imshow(I_A,[]);
240 subplot(2,3,2); imshow(O_interp_AB,[]);
241 subplot(2,3,3); imshow(I_B,[]);
242 subplot(2,3,4); imshow(I_A,[]);
243 subplot(2,3,5); imshow(O_interp_BA,[]);
244 subplot(2,3,6); imshow(I_B,[]);
245 end
246 end
247
248 runtime_interpTrx = toc; % End timer for interpolation transformation
249
250 Out = uint8(Out);
251
252 fprintf('Run time:\n');
253 fprintf('Image Reduction %f\n',runtime_reduce);
254 fprintf('CPD Registration %f\n',runtime_cpd);
255 fprintf('Interpolation Transformation %f\n',runtime_interpTrx);
256
257 time = [runtime_reduce runtime_cpd runtime_interpTrx];
258
259 end

C.3.6. im2cpd.m

1 function Im_cpd = im2cpd(Im)
2 % im2cpd
3 % Converts an image to the 3xM indexed representation needed by the CPD
4 % algorithm.
5 %
6 % Input
7 % --------------------
8 % Im Input binary image.
9 %
10 % Output
11 % --------------------
12 % Im_cpd Mx3 representation of binary image.
13 %
14 % Example
15 % --------------------
16 % A_cpd = im2cpd(A);
17

284

18 Idx = find(Im > 0);
19 Im_cpd = zeros(3,numel(Idx));
20 [X Y] = ind2sub(size(Im),Idx);
21 Im_cpd(1,:) = X';
22 Im_cpd(2,:) = Y';
23 Im_cpd(3,:) = Im(Idx)';
24
25 end

C.3.7. cpd2im.m

1 function Im_out = cpd2im(cpd_mat,Im)
2 % cpd2im
3 % Converts from the 3xM indexed representation needed by the CPD
4 % algorithm to an image.
5 %
6 % Input
7 % --------------------
8 % cpd_mat Input 3xM indexed representation
9 % Im Image to match the size of the output image to.
10 %
11 % Output
12 % --------------------
13 % Im_out Output image
14 %
15 % Example
16 % --------------------
17 % Im_trx = cpd2im(cpd_trx,Im);
18
19 [SX SY] = size(Im);
20 Im_out = zeros(SX,SY);
21 for i = 1:size(cpd_mat,2)
22 if cpd_mat(1,i) <= 0; cpd_mat(1,i) = 1; end
23 if cpd_mat(2,i) <= 0; cpd_mat(2,i) = 1; end
24 if cpd_mat(3,i) >= 0
25 Im_out(ceil(cpd_mat(1,i)),ceil(cpd_mat(2,i))) = cpd_mat(3,i);
26 else
27 Im_out(ceil(cpd_mat(1,i)),ceil(cpd_mat(2,i))) = 0;
28 end
29 end
30 Im_out = Im_out(1:SX,1:SY);
31
32 end

C.3.8. skel2obj.m

1 % skel2obj
2 % Reconstructs an object from its distance transform-derived skeleton.
3 %
4 % Input
5 % --------------------
6 % skel Skeleton image
7 % mode = 1, uses the midpoint circle algorithm to append
8 % circles to the image

285

9 % = 2, uses a function involving polymask to append
10 % circles to the image
11 %
12 % Output
13 % --------------------
14 % obj Image of reconstructed object
15 %
16 % Example
17 % --------------------
18 % A_obj = skel2obj(A_skel);
19 %
20 % Dependencies
21 % --------------------
22 % [1] Requires Peter Bone's implementation of the midpoint circle
23 % algorithm:
24 % http://www.mathworks.com/matlabcentral/fileexchange/14331-draw-a-circle-in-a-
matrix-image
25 %
26 % References
27 % --------------------
28 % http://reference.wolfram.com/mathematica/ref/InverseDistanceTransform.html
29 %
30 % Mode 1:
31 % http://en.wikipedia.org/wiki/Midpoint_circle_algorithm
32 %
33 % Mode 2:
34 % http://stackoverflow.com/questions/7648186/is-there-any-function-opposite-to-
bwmorphimage-skel-in-matlab-or-c-c-code
35 %
36
37 function obj = skel2obj(skel, mode)
38
39 if nargin < 2; mode = 1; end
40
41 if mode == 1
42 Idx = find(skel > 0);
43 [r c] = ind2sub(size(skel),Idx);
44 obj = zeros(size(skel));
45 for i = 1:numel(Idx)
46 obj = midpoint(obj,skel(Idx(i)),r(i),c(i),1);
47 end
48 obj = imfill(obj,'holes');
49 else
50 t = linspace(0,2*pi,50);
51 ct = cos(t);
52 st = sin(t);
53 [r c] = size(skel);
54 obj = false(r,c);
55 for j=1:c
56 for k=1:r
57 if skel(k,j)==0, continue; end
58 mask = poly2mask(skel(k,j).*st + j, skel(k,j).*ct + k, r, c);
59 obj(mask) = true;
60 end

286

61 end
62 end
63
64 end

C.3.9. perimFill.m

1 % perimFill
2 % Takes a thinned perimeter binary image, finds the pixels belonging to
3 % gaps in the perimeter, then fills them such that the perimeter can be
4 % properly filled using imfill(...,'holes').
5 %
6 % Input
7 % --------------------
8 % Im Binary perimeter image.
9 %
10 % Output
11 % --------------------
12 % Out Filled image.
13 %
14 % Example
15 % --------------------
16 % P_filled = perimFill(P);
17 %
18 % Dependencies
19 % --------------------
20 % [1] Peter Kovesi's findendsjunctions.m for detecting the pixels
21 % surrounding gaps in the output perimeter map:
22 % http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/#edgelink
23 % [2] Jing Tian's func_drawLine.m for connecting end pixels:
24 % http://www.mathworks.com/matlabcentral/fileexchange/4211-connect-two-pixels
25 %
26
27 function Out = perimFill(Im)
28
29 % Bridge gaps that are separated by only one pixel
30 Im = bwmorph(Im,'bridge');
31
32 % Find points where ends occur
33 [rj,cj,re,ce] = findendsjunctions(Im,0);
34 re = [re; rj];
35 ce = [ce; cj];
36
37 % Determine the pairs of points in re and ce that constitute both edges of
38 % a gap. This is done by determining which points are closest to one
39 % another by minimizing the distance. The gap is then closed by calling
40 % func_DrawLine.
41 while re
42 R1 = re(1);
43 C1 = ce(1);
44 d = [];
45 for i = 1:numel(re)
46 d(i) = sqrt((R1-re(i))^2 + (C1-ce(i))^2);
47 end

287

48 d(1) = Inf;
49 [Min Idx] = min(d);
50 Im = func_DrawLine(Im,R1,C1,re(Idx),ce(Idx),1);
51 re(Idx) = []; re(1) = []; %Remove points from future consideration
52 ce(Idx) = []; ce(1) = [];
53 end
54
55 Out = Im;
56
57 end

C.3.10. msi3d_display.m

1 function msi3d_display(Im,filename,compile)
2 % msi3d_display
3 % Plots a variety of data pertaining to the output interpolations
4 % generated by msi3d_cpd. The plots generated are as follows (from left
5 % to right, top to bottom);
6 % 1. A grayscale overlay of all slices, including the two original
7 % images and all interpolated images. Each image is coded to a
8 % unique grayscale value, as displayed in the legend.
9 % 2. A plot of object area versus slice number, as determined by
10 % regionprops.
11 % 3. A plot of object rotation versus slice number, as determined by
12 % registry using rigid transformations with CPD.
13 % 4. A plot of the pixel location of the X centroid of each object
14 % versus slice number, as determined by regionprops.
15 % 5. A plot of the pixel location of the Y centroid of each object
16 % versus slice number, as determiend by regionprops.
17 % If desired, images of the plot will be written to disk in both the
18 % .eps and .tif formats.
19 %
20 % Input
21 % --------------------
22 % Im Output image stack from msi3d_cpd.
23 % filename String specifying the filename to save images to. If a
24 % filename is not specified, images will not be saved to
25 % disk.
26 % compile = 1, will compile CPD code. = 0, will not compile,
27 % assuming code has been previously compiled.
28 %
29 % Example
30 % --------------------
31 % msi3d_display(msi3d_Out);
32 %
33
34 if nargin < 3; compile = 1; end
35 if nargin < 2; filename=''; end
36
37 % Compile CPD code
38 if compile == 1; compileCPD; end
39
40 % Generate pixel values corresponding to each iteration
41 [DimY DimX N] = size(Im);

288

42 M = floor(205/N);
43 P = [50+M.*(1:(N-1)) 255];
44 P = fliplr(P);
45
46 % Determine if the image stack is growing or shrinking in size
47 A_start = numel(find(Im(:,:,1) == 1));
48 A_end = numel(find(Im(:,:,N) == 1));
49 if A_start >= A_end
50 j = 1;
51 k = N;
52 inc = 1;
53 else
54 j = N;
55 k = 1;
56 inc = -1;
57 end
58
59 Disp = Im(:,:,1);
60 h = figure;
61 set(h, 'Position', [0 0 1280 800])
62
63 subplot(4,2,7);
64 colormap('Gray');
65
66 for i = j:inc:k
67
68 % Add slices to image at different grayscale values
69 Idx = find(Im(:,:,i) ~= 0);
70 Disp(Idx) = P(i);
71
72 % Compute statistics on each slice
73 RP = regionprops(Im(:,:,i),'Area','Centroid');
74 A(i) = RP.Area;
75 C(i,:) = RP.Centroid;
76 if i == 1
77 O(i) = 0;
78 else
79 O(i) = imregister_rotational(Im(:,:,1),Im(:,:,i),0);
80 end
81
82 % Create legend patches and text
83 patch([i-1 i-1 i i],[0.75 0.9 0.9 0.75],P(i));
84 if i == 1 | i == N; text(i-1 + 0.5,0.6,num2str(i)); end
85 end
86
87 patch([N N N+1 N+1],[0.75 0.9 0.9 0.75],0);
88 axis([-0.1 N 0 1]);
89 text(0,0.98,'Legend, Z =');
90 axis off; grid off;
91
92 subplot(4,2,[1:2:5]);
93 imshow(Disp,[]);
94
95 X = 1:size(A,2);

289

96 DX = (C(:,1) - C(1,1))';
97 DY = (C(:,2) - C(1,2))';
98
99 % Change interval of X tickmarks if X is too large to display every other
100 % tick properly
101 if N < 20
102 xtick = [1:X(end)];
103 else
104 xtick = [1:2:X(end)];
105 end
106
107 subplot(4,2,2);
108 set(gca, 'FontName', 'Arial');
109 plot(X,A,'ko','LineWidth',4);
110 set(gca,'XTick',xtick);
111 axis([1 X(end) min(A)*0.5 max(A)*1.5]);
112 ylabel('Area (pix)');
113 linearRegression(X,A);
114
115 subplot(4,2,4)
116 plot(X,O,'ko','LineWidth',4);
117 set(gca,'XTick',xtick,'Ytick',-90:45:90);
118 axis([1 X(end) -90 90]);
119 ylabel('Rotation (deg)');
120 linearRegression(X,O);
121
122 subplot(4,2,6)
123 plot(X,DX,'ko','LineWidth',4);
124 set(gca,'XTick',xtick)
125 axis([1 X(end) -DimX DimX]);
126 ylabel('DX Centroid (pix)')
127 linearRegression(X,DX);
128
129 subplot(4,2,8)
130 plot(X,-DY,'ko','LineWidth',4);
131 set(gca,'XTick',xtick)
132 axis([1 X(end) -DimY DimY]);
133 ylabel('DY Centroid (pix)');
134 linearRegression(X,-DY);
135
136 set(findall(h, '-property', 'FontSize'), 'FontSize', 11, 'fontWeight', 'bold')
137
138 % Write file to disk, if desired
139 if ~isempty(filename)
140 options.Format='eps2';
141 hgexport(h,[filename '.eps'],options);
142 options.Format='tiff';
143 hgexport(h,[filename '.tif'],options);
144 end
145
146
 %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
147

290

148 function linearRegression(X,Y)
149 p = polyfit(X,Y,1);
150 yfit = polyval(p,X);
151 yresid = Y - yfit;
152 SSresid = sum(yresid.^2);
153 SStotal = (length(Y)-1) *var(Y);
154 Rsq = 1 - SSresid/SStotal;
155 hold on;
156 p = plot([X(1) X(end)],[yfit(1) yfit(end)],'r-','LineWidth',2);
157 set(p,'Color',[0.25 0.25 0.25]);
158 grid on;
159 end
160
161
 %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
162
163 end

C.3.11 genCircleTest.m

1 function [I1, I2] = genCircleTest(R1,R2,t1,t2)
2 % genCircleTest
3 % Generates a pair of binary images that are circular phantoms of specified
4 % radius and translation from the image center.
5 %
6 % Input
7 % --------------------
8 % R1,R2 Radii of the circles in pixels
9 % t1,t2 1x2 vectors specifying the X and Y translations for
10 % the circles. I.E.: t1 = [tx ty].
11 %
12 % Output
13 % --------------------
14 % I1,I2 Output images
15 %
16 % Example
17 % --------------------
18 % [I1, I2] = genCircleTest(80,40,[20 10],[0 0])
19 if nargin < 4; t2 = [0 0]; end
20 if nargin < 3; t1 = [0 0]; end
21 if nargin < 2; error('Must specify at least two circle radii.'); end
22
23 % Calculate amount to pad each image based on input parameters
24 Max_tx = max(abs([t1 t2]));
25 Max_r = max([R1 R2]);
26 Pad = round((Max_tx + Max_r)/2);
27
28 % Initialize circles
29 I1 = fspecial('disk',R1); I1 = (I1 > 0);
30 I2 = fspecial('disk',R2); I2 = (I2 > 0);
31
32 % Make each image the same size by padding with zeros
33 I1 = padarray(I1,[R2+Pad R2+Pad],0,'both');

291

34 I2 = padarray(I2,[R1+Pad R1+Pad],0,'both');
35
36 % Translate circles
37 I1 = circTranslate(I1,t1(1),t1(2));
38 I2 = circTranslate(I2,t2(1),t2(2));
39
40
 %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
41
42 function Im_out = circTranslate(Im_in, dC, dR)
43 tx = maketform('affine',[1 0; 0 1; dC dR]);
44 [SX SY] = size(Im_in);
45 bounds = findbounds(tx,[1 1; size(Im_in)]);
46 bounds(1,:) = [1 1];
47 Im_out = imtransform(Im_in,tx,'XData',bounds(:,2)','YData',bounds(:,1)');
48 Min = min([dC dR]);
49 if Min < 0
50 Im_out = padarray(Im_out,[abs(Min) abs(Min)],0,'post');
51 end
52 Im_out = Im_out(1:SX,1:SY);
53 end
54
55
 %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
56
57 end

C.3.12. genSquareTest.m

1 function [I1, I2] = genSquareTest(S1,S2,t1,t2,ang1,ang2)
2 % genSquareTest
3 % Generates a pair of binary images that are square phantoms of
4 % specified size, XY rotation, and translation from the image center.
5 %
6 % Input
7 % --------------------
8 % S1,S2 Length of the squares in pixels.
9 % t1,t2 1x2 vectors specifying the X and Y translations for
10 % the squares. I.E.: t1 = [tx ty].
11 % ang1,ang2 Angle, in degrees, to rotate the squares about the XY
12 % axis.
13 %
14 % Output
15 % --------------------
16 % I1,I2 Output images
17 %
18 % Example
19 % --------------------
20 % [I1, I2] = genSquareTest(80,40,[20 10],[0 0],0,30)
21 %
22 % Dependencies
23 % --------------------

292

24 % Requires Jan Motl's rotateAround.m from the Mathworks File Exchange:
25 % http://www.mathworks.com/matlabcentral/fileexchange/40469-rotate-an-image-
about-a-point
26
27 if nargin < 6; ang2 = 0; end
28 if nargin < 5; ang1 = 0; end
29 if nargin < 4; t2 = [0 0]; end
30 if nargin < 3; t1 = [0 0]; end
31 if nargin < 2; error('Must specify at least two square sizes.'); end
32
33 % Calculate amount to pad each image based on input parameters
34 Max_tx = max(abs([t1 t2]));
35 Max_r = max([S1 S2]);
36 Pad = round((Max_tx + Max_r));
37
38 % Initialize squares
39 I1 = ones(S1,S1);
40 I2 = ones(S2,S2);
41
42 % Make each image the same size by padding with zeros
43 Max = abs(max([S1 S2]));
44
45 I1 = padarray(I1,[ceil((Max - S1)/2)+Pad ceil((Max - S1)/2)+Pad],0,'both');
46 I2 = padarray(I2,[ceil((Max - S2)/2)+Pad ceil((Max - S2)/2)+Pad],0,'both');
47 if mod((Max - S1),2) ~= 0; I2 = padarray(I2,[1 1],0,'post'); end
48 if mod((Max - S2),2) ~= 0; I1 = padarray(I1,[1 1],0,'post'); end
49
50 % Translate squares
51 I1 = sqTranslate(I1,t1(1),t1(2));
52 I2 = sqTranslate(I2,t2(1),t2(2));
53
54 % Rotate squares. Rotation is performed about the centroid of each square
55 % using rotateAround.m.
56 RP_I1 = regionprops(I1,'Centroid');
57 RP_I2 = regionprops(I2,'Centroid');
58 I1 = rotateAround(I1,RP_I1.Centroid(2),RP_I1.Centroid(1),ang1);
59 I2 = rotateAround(I2,RP_I2.Centroid(2),RP_I2.Centroid(1),ang2);
60
61
 %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
62
63 function Im_out = sqTranslate(Im_in, dC, dR)
64 tx = maketform('affine',[1 0; 0 1; dC dR]);
65 [SX SY] = size(Im_in);
66 bounds = findbounds(tx,[1 1; size(Im_in)]);
67 bounds(1,:) = [1 1];
68 Im_out = imtransform(Im_in,tx,'XData',bounds(:,2)','YData',bounds(:,1)');
69 Min = min([dC dR]);
70 if Min < 0
71 Im_out = padarray(Im_out,[abs(Min) abs(Min)],0,'post');
72 end
73 Im_out = Im_out(1:SX,1:SY);
74 end

293

75
76
 %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
77
78 end

C.3.13. genArbitraryTest.m

1 function [I1,I2] = genArbitraryTest(Im_string,scale1,scale2,t1,t2,ang1,ang2);
2 % genArbitraryTest
3 % Takes a binary image as input, then creates two phantoms of this image
4 % that are scaled, translated, and rotated by the specified parameters.
5 %
6 % Input
7 % --------------------
8 % Im_string String specifying the path of the binary image to be
9 % loaded and made into phantoms.
10 % scale1,scale2 Factor by which to scale the two phantoms with respect
11 % to the input image.
12 % t1,t2 1x2 vectors specifying the X and Y translations for
13 % the phantoms. I.E.: t1 = [tx ty].
14 % ang1,ang2 Angle, in degrees, to rotate the phantoms about the XY
15 % axis.
16 %
17 % Output
18 % --------------------
19 % I1,I2 Output images
20 %
21 % Example
22 % --------------------
23 % [I1, I2] = genArbitraryTest('nucleus.0100.tif',1,0.5,[200 100],[0 0],0,30)
24 %
25 % Dependencies
26 % --------------------
27 % Requires Jan Motl's rotateAround.m from the Mathworks File Exchange:
28 % http://www.mathworks.com/matlabcentral/fileexchange/40469-rotate-an-image-
about-a-point
29
30 if nargin < 7; ang2 = 0; end
31 if nargin < 6; ang1 = 0; end
32 if nargin < 5; t2 = [0 0]; end
33 if nargin < 4; t1 = [0 0]; end
34 if nargin < 3; scale2 = 1; end
35 if nargin < 2; scale1 = 1; end
36
37 Im = imread(Im_string);
38
39 % Crop input image to be tight around the binary blob
40 RP = regionprops(Im,'BoundingBox');
41 BB = RP.BoundingBox;
42 BB(1:2) = floor(BB(1:2));
43 BB(3:4) = ceil(BB(3:4));
44 Im = Im(BB(2):BB(2)+BB(4),BB(1):BB(1)+BB(3));

294

45
46 % Scale image
47 I1 = imresize(Im,scale1);
48 I2 = imresize(Im,scale2);
49
50 [Y1 X1] = size(I1);
51 [Y2 X2] = size(I2);
52 [MaxY IdxMaxY] = max([Y1 Y2]);
53 [MaxX] = max([X1 X2]);
54
55 % Pad the smaller image to be the same size as the larger image,
56 % post-scaling.
57 if scale1 ~= scale2 & IdxMaxY == 1
58 I2 = padarray(I2,[ceil((MaxY-Y2)/2) ceil((MaxX-X2)/2)],0,'both');
59 if mod((MaxY-Y2),2) == 1; I1 = padarray(I1,[1 0],0,'post'); end
60 if mod((MaxX-X2),2) == 1; I1 = padarray(I1,[0 1],0,'post'); end
61 elseif scale1 ~= scale2 & IdxMaxY == 2
62 I1 = padarray(I1,[ceil((MaxY-Y1)/2) ceil((MaxX-X1)/2)],0,'both');
63 if mod((MaxY-Y1),2) == 1; I2 = padarray(I2,[1 0],0,'post'); end
64 if mod((MaxX-X1),2) == 1; I2 = padarray(I2,[0 1],0,'post'); end
65 end
66
67 % Pad again to account for translations
68 Max = max([t1 t2]);
69 I1 = padarray(I1,[Max+round(MaxY/2) Max+round(MaxX/2)],0,'both');
70 I2 = padarray(I2,[Max+round(MaxY/2) Max+round(MaxX/2)],0,'both');
71
72 % Translate
73 I1 = arbTranslate(I1,t1(1),t1(2));
74 I2 = arbTranslate(I2,t2(1),t2(2));
75
76 % Rotate
77 RP_I1 = regionprops(I1,'Centroid');
78 RP_I2 = regionprops(I2,'Centroid');
79 I1 = rotateAround(I1,RP_I1.Centroid(2),RP_I1.Centroid(1),ang1);
80 I2 = rotateAround(I2,RP_I2.Centroid(2),RP_I2.Centroid(1),ang2);
81
82 figure; imshow(I1,[])
83 figure; imshow(I2,[])
84
85
 %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
86
87 function Im_out = arbTranslate(Im_in, dC, dR)
88 tx = maketform('affine',[1 0; 0 1; dC dR]);
89 [SX SY] = size(Im_in);
90 bounds = findbounds(tx,[1 1; size(Im_in)]);
91 bounds(1,:) = [1 1];
92 Im_out = imtransform(Im_in,tx,'XData',bounds(:,2)','YData',bounds(:,1)');
93 Min = min([dC dR]);
94 if Min < 0
95 Im_out = padarray(Im_out,[abs(Min) abs(Min)],0,'post');
96 end

295

97 Im_out = Im_out(1:SX,1:SY);
98 end
99
100
 %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
101
102 end

C.3.14. contourgen.sh

1 #! /bin/bash
2
3 function show_help () {
4 cat <<-END
5 contourgen.sh
6 Usage:
7 ------
8 -i | --input (Directory name)
9 Path to series of TIF files to be processed
10
11 -o | --output (Directory name)
12 Path to store output model file to
13
14 -m | --mrc (MRC stack)
15 Name of MRC stack to match to
16
17 -d | --del (Integer,Integer,Integer)
18 Pixel size of MRC stack to match to (X,Y,Z)
19
20 -r | --org (Integer,Integer,Integer)
21 Origin of MRC stack to match to (X,Y,Z)
22
23 -R | --point
24 Tolerance for point shaving during model generation.
25 R = [0,...,1]. Default value = 0.
26
27 -k | --sigma
28 Smooth the data during model generation with a kernal filter
29 whose Gaussian sigma is given by this value. Defaule value = 0.
30
31 -h | --help
32 Display this help
33 END
34 }
35
36 while :; do
37 case $1 in
38 -h|--help)
39 show_help
40 exit
41 ;;
42 -i|--input)
43 path_in=$2

296

44 shift 2
45 continue
46 ;;
47 -o|--output)
48 path_out=$2
49 shift 2
50 continue
51 ;;
52 -m|--mrc)
53 mrc_stack=$2
54 shift 2
55 continue
56 ;;
57 -d|--del)
58 del=$2
59 shift 2
60 continue
61 ;;
62 -r|--org)
63 org=$2
64 shift 2
65 continue
66 ;;
67 -R|--point)
68 pointred=$2
69 shift 2
70 continue
71 ;;
72 -k|--sigma)
73 sigma=$2
74 shift 2
75 continue
76 ;;
77 *)
78 break
79 esac
80 shift
81 done
82
83 #Check for problems with input. Print help and exit if not correct
84 if [[! $path_in]] || [[! $path_out]]; then
85 printf 'ERROR: options -i and -o must be specified\n\n' >&2
86 show_help
87 exit 1
88 fi
89
90 if [[-n $mrc_stack]] && [[-n $del]]; then
91 printf 'ERROR: Use either the -m option OR the -d and -r options\n\n' >&2
92 show_help
93 exit 1
94 elif [[-n $mrc_stack]] && [[-n $org]]; then
95 printf 'ERROR: Use either the -m option OR the -d and -r options\n\n' >&2
96 show_help
97 exit 1

297

98 elif [[! $mrc_stack]] && [[! $del]] && [[-n $org]]; then
99 printf 'ERROR: options -d and -r must both be specified\n\n' >&2
100 show_help
101 exit 1
102 elif [[! $mrc_stack]] && [[-n $del]] && [[! $org]]; then
103 printf 'ERROR: options -d and -r must both be specified\n\n' >&2
104 show_help
105 exit 1
106 fi
107
108 source /home/aperez/.bashrc #Source IMOD
109
110 #Make output directory if necessary and make temporary subdirectories
111 if [[! -d $path_out]]; then mkdir ${path_out}; fi
112 mkdir ${path_out}/log ${path_out}/mod ${path_out}/ncont ${path_out}/txt
113
114 Nslices=`ls ${path_in}/*.tif | wc -l` #Determine number of images
115
116 #If the original mrc stack is supplied, extract the pixel spacing and origin information
117 #from the header of that file. If not, use the user-supplied values. These values are
118 #critical to ensure the output model file aligns properly with the original mrc stack.
119 if [[-n $mrc_stack]]; then
120 del=`${IMOD_DIR}/bin/header -pixel $mrc_stack | tr -s ' '`
121 org=`${IMOD_DIR}/bin/header -origin $mrc_stack | tr -s ' '`
122 else
123 del=`echo $del | tr ',' ' '` #Replace commas with spaces
124 org=`echo $org | tr ',' ' '`
125 fi
126
127 #Turn off point reduction and smoothing (i.e., set their values to zero) if they are not
specified
128 if [[! $pointred]]; then pointred=0; fi
129 if [[! $sigma]]; then sigma=0; fi
130
131 #(1) Submit tif2mod2D.q as an array job to convert TIFS to model files.
132 qsub -t 1-${Nslices} -v
path_in=${path_in},path_out=${path_out},del="${del}",org="${org}",pointred=${pointred},sigma=${
sigma} -o ${path_out}/log tif2mod2D.q
133
134 #(2) Submit mod2point2D.q as an array job to convert model files to text files containing
point listings.
135 qsub -hold_jid tif2mod -t 1-${Nslices} -v
path_mod=${path_out}/mod,path_txt=${path_out}/ncont,path_out=${path_out}/txt -o
${path_out}/log mod2point2D.q
136
137 #(3) Submit point2mod3D.q to append all point listings to a single text file, and then
generate a model from this using point2model.
138 qsub -hold_jid mod2point -v path_out=${path_out},del="${del}",org="${org}" -o
${path_out}/log point2mod3D.q

C.3.15. tif2mod2D.q

1 #! /bin/bash
2

298

3 # tif2mod2D.q
4 # SGE script to convert a single binary image to a single model file. The output model
file
5 # consists of a single object with individual contours drawn around each 2D connected
component.
6 # The steps involved are:
7 # (1) Convert the TIF file to a 2D mrc file
8 # (2) Alter the header information of the 2D mrc file to match that of the original stack
9 # (3) Generate contours around 2d connected components using user-specified
values for
10 # point reduction (-R) and Gaussian smoothing (-k).
11 # (4) Translate the model file in Z so it sits in the correct depth of the stack.
12 # (5) Convert the IMOD model file binary format to ASCII, and parse this output to
determine
13 # the number of contours on this slice. Store this value to a text file, which will be
14 # used in future processing.
15 # (6) Clean up intermediates.
16 #
17 # The next script to be run in the workflow is mod2point2D.q
18 #
19 # INPUT
20 # --------------------
21 # path_in Path containing the segmented TIF images to process
22 # path_out Output path to write model files to
23 # del Pixel spacing of the original mrc file, delimited by spaces, in the format "X Y
Z"
24 # org Origin of the original mrc file, delimited by spaces, in the format "X Y Z"
25 # pointred Value for point reduction during contour generation
26 # sigma Value for Gaussian smoothing during contour generation
27 #
28
29 #$ -S /bin/bash
30 #$ -N tif2mod
31 #$ -j yes
32 #$ -m eas
33 #$ -M alexjperez@outlook.com
34 #$ -l h_vmem=1G
35 #$ -cwd
36 #$ -V
37
38 source /home/aperez/.bashrc #Source IMOD
39
40 file_in=`ls ${path_in}/*.tif | sed -n ''${SGE_TASK_ID}'p'` #Determine which image to work
with
41 base=`basename $file_in`
42 base=${base%.*}
43
44 #STEP (1)
45 ${IMOD_DIR}/bin/tif2mrc $file_in ${path_out}/mod/${base}.mrc
46
47 #STEP (2)
48 echo -e "${path_out}/mod/${base}.mrc\ndel\n${del}\norg\n${org}\ndone\n" |
${IMOD_DIR}/bin/alterheader
49

299

50 #STEP (3)
51 ${IMOD_DIR}/bin/imodauto -h 1 -R $pointred -k $sigma ${path_out}/mod/${base}.mrc
${path_out}/mod/${base}.mod
52
53 #STEP (4)
54 ${IMOD_DIR}/bin/imodtrans -tz $((SGE_TASK_ID-1)) ${path_out}/mod/${base}.mod
${path_out}/mod/${base}.mod
55
56 #STEP (5)
57 ${IMOD_DIR}/bin/imodinfo -a ${path_out}/mod/${base}.mod | grep -m 1 'object 0*' | cut -d
' ' -f3 >> ${path_out}/ncont/${base}.txt
58
59 #STEP (6)
60 rm -rf ${path_out}/mod/${base}.mrc ${path_out}/mod/${base}.mod~

C.3.16. mod2point2D.q

1 #! /bin/bash
2
3 # mod2point2D.q
4 # SGE script to submit array jobs converting 2D model files to point listings compatible
5 # with the IMOD program point2model. Conversion is done using MATLAB, and is
dependent on
6 # the MatTomo package of MATLAB scripts from IMOD.
7 #
8 # INPUT
9 # --------------------
10 # path_mod Path containing the model files to process
11 # path_txt Path containing the contour listings output from tif2mod2D.q
12 # path_out Output path to write point listing text files to
13 #
14
15 #$ -S /bin/bash
16 #$ -N mod2point
17 #$ -j yes
18 #$ -m eas
19 #$ -M alexjperez@outlook.com
20 #$ -l h_vmem=5G
21 #$ -cwd
22 #$ -V
24 matlab -nodisplay -nosplash -r
"mod2point2D('"${path_mod}"','"${path_txt}"','"${path_out}"',${SGE_TASK_ID})";

C.3.17. mod2point2D.m

1 function mod2point2D(path_models, path_txts, path_out, N)
2 % Converts an IMOD model file to a text file where each line corresponds to
3 % one point of the model file. Each line consists of five numbers, arranged
4 % as such: Object, Contour, X, Y, Z
5 %
6 % The starting contour is determined by parsing the text files output from
7 % tif2mod2D.q.
8 %
9 % INPUT

300

10 % --------------------
11 % path_models Path containing the input IMOD model files
12 % path_txts Path containing the text files of contour listings
13 % generated by tif2mod2D.q
14 % path_out Output path to write text files to
15 % N Model number within path_models to process
16 %
17 % DEPENDENCIES
18 % --------------------
19 % The MatTomo package of PEET is needed:
20 % http://bio3d.colorado.edu/imod/matlab.html
21 %
22 % EXAMPLE
23 % --------------------
24 % mod2point2D('out/mod','out/ncont','out/txt',100);
25 %
26
27 path_mattomo = '/data/aperez/mfiles/MatTomo'; %Path containing MatTomo
28 addpath(genpath(path_mattomo));
29
30 tic;
31 models = dir(fullfile(path_models,'*.mod'));
32 txts = dir(fullfile(path_txts,'*.txt'));
33
34 %Determine the starting contour number by reading and summing all contour
35 %listings before the current value of N
36 C = 1;
37 for i = 1:N-1
38 C = C + load(fullfile(path_txts,txts(i).name));
39 end
40
41 filei = fullfile(path_models,models(N).name); %Name of model file
42 modi = ImodModel(filei); %Read model file to MATLAB
43 obji = getObject(modi,1); %Get first object (should be the only object)
44 Ncont = getNContours(obji); %Determine the total number of contours
45 text_out = fullfile(path_out,['test_' sprintf('%03d',N) '.txt']);
46 fprintf('Processing model %s\n',filei);
47 fprintf('Model %s has %d contours.\n',filei,Ncont);
48 for j = 1:Ncont %Loop over all contours
49 contj = getContour(obji,j); %Read contour
50 points = getPoints(contj)'; %Extract contour's points to a matrix
51 [NR,NC] = size(points);
52 points2write = zeros(NR,NC+2); %Generate a new matrix to add obj and cont listings
53 points2write(:,1) = 1; %All contours will belong to object 1
54 points2write(:,2) = C; %Second value is the contour number
55 points2write(:,3:5) = points;
56 %Append to the text file. The space delimiter is required by point2model. A high
57 %precision is required because if the contour number exceeds this number of digits,
58 %dlmwrite will output it in scientific notation, which point2model cannot understand.
59 %A precision of 9 means the file can have one billion contours before this limit is
60 %exceeded.
61 dlmwrite(text_out,points2write,'delimiter',' ','-append','precision',9);
62 C = C + 1;
63 end

301

64
65 fprintf('Elapsed time: %0.2f seconds\n',toc);
66
67 end

C.3.18. point2mod3D.q

1 #! /bin/bash
2
3 # point2mod3D.q
4 # Takes a directory of text files containing point listings for each 2D slice, appends
5 # them to one single file, and generates contours using this file as input to the IMOD
6 # program point2model.
7 #
8 # INPUT
9 # --------------------
10 # path_out Output path
11 # del Pixel spacing of the original mrc file, delimited by spaces, in the format "X Y
Z"
12 # org Origin of the original mrc file, delimited by spaces, in the format "X Y Z"
13 #
14
15 #$ -S /bin/bash
16 #$ -N point2mod
17 #$ -j yes
18 #$ -m eas
19 #$ -M alexjperez@outlook.com
20 #$ -l h_vmem=5G
21 #$ -cwd
22 #$ -V
23
24 source /home/aperez/.bashrc #Source IMOD
25
26 del=`echo $del | tr -s ' ' ','` #Replace space delimiter with commas
27 org=`echo $org | tr -s ' ' ','`
28
29 rm -rf ${path_out}/mod ${path_out}/ncont #Remove intermediates
30
31 for file in ${path_out}/txt/*.txt; do #Append individual point listing files to one file
32 cat $file >> ${path_out}/out.txt
33 done
34
35 #Generate a model file from the complete point listing
36 point2model -pixel ${del} -origin ${org} ${path_out}/out.txt ${path_out}/out.mod
37
38 rm -rf ${path_out}/out.txt ${path_out}/txt

C.3.19. sbem_analyze_nuclei.sh

1 #! /bin/bash
2
3 function show_help () {
4 cat <<-END
5

302

6 sbem_analyze_nuclei.sh
7 Usage:
8 ------
9 -h | --help
10 Display this help
11 -i | --input
12 IMOD model file containing objects of interest
13 -c1
14 Color string for nuclei, in the format R,G,B (i.e., 1,1,0)
15 -c2
16 Color string for nucleoli, in the format R,G,B (i.e., 0,1,1)
17 Example:
18 --------
19 ./sbem_analyze_nuclei_nucleoli.sh -i ZT04_01_join.mod -c1 1,1,0 -c2 0,0,1
20
21 END
22 }
23
24 function scientific_to_bc () {
25 base=`echo ${1} | cut -d 'e' -f1 | bc`
26 exp=`echo ${1} | cut -d '+' -f2 | bc`
27 echo "${base}*10^${exp}"
28 }
29
30 ##########
31 ## (0) Parse input arguments
32 ##########
33
34 while :; do
35 case $1 in
36 -h|--help)
37 show_help
38 exit
39 ;;
40 -i|--input)
41 file=$2
42 shift 2
43 continue
44 ;;
45 -c1)
46 c1=$2
47 shift 2
48 continue
49 ;;
50 -c2)
51 c2=$2
52 shift 2
53 continue
54 ;;
55 *)
56 break
57 esac
58 shift
59 done

303

60
61 if [! "$file"] | [! "$c1"] | [! "$c2"]; then
62 echo 'ERROR: options -i, -c1, and -c2 must be specified. See -help' >&2
63 exit 1
64 fi
65
66 ##########
67 ## (1) Group nuclei with their corresponding nucleoli. This is done by taking the bounding
box of each nucleus and
68 ## finding the centroids of nucleoli that lie within this bounding box.
69 ##########
70
71 #Determine zscale of the model
72 zscale=`imodinfo -a $file | grep -m 1 'scale' | cut -d ' ' -f4`
73
74 #Decompose color strings
75 for i in 1 2 3; do
76 cnuc[${i}]=`echo $c1 | cut -d ',' -f${i}`
77 cnucl[${i}]=`echo $c2 | cut -d ',' -f${i}`
78 done
79
80 #Parse IMOD model file for objects matching nuclear color and separate them into a new
model file
81 imodinfo -a $file | grep -B2 "color ${cnuc[1]} ${cnuc[2]} ${cnuc[3]}" | awk -F '\n' 'ln ~ /^$/ {
ln = "matched"; print $1 } $1 ~ /^--$/ { ln = "" }' | cut -d ' ' -f2 >> sann_nuc.txt
82 Nnuc=`cat sann_nuc.txt | wc -l`
83 str_nuc=""
84 while read line; do
85 str_nuc=${str_nuc}$((line+1)),
86 done < sann_nuc.txt
87 str_nuc=${str_nuc%?}
88 rm -rf sann_nuc.txt
89 imodextract $str_nuc $file ${file}_nuclei
90
91 #Parse IMOD model file for objects matching nucleolar color and separate them into a
new model file
92 imodinfo -a $file | grep -B2 "color ${cnucl[1]} ${cnucl[2]} ${cnucl[3]}" | awk -F '\n' 'ln ~ /^$/ {
ln = "matched"; print $1 } $1 ~ /^--$/ { ln = "" }' | cut -d ' ' -f2 >> sann_nucl.txt
93 Nnucl=`cat sann_nucl.txt | wc -l`
94 str_nucl=""
95 while read line; do
96 str_nucl=${str_nucl}$((line+1)),
97 done < sann_nucl.txt
98 str_nucl=${str_nucl%?}
99 rm -rf sann_nucl.txt
100 imodextract $str_nucl $file ${file}_nucleoli
101
102 #Create a temporary text file with the centroids of each nucleolus
103 for ((i=1;i<=${Nnucl};i+=1)); do
104 strcent=`imodinfo -o $i -F ${file}_nucleoli | grep 'Center' | tr -s ' ' | cut -d '(' -f2 | cut -d ')'
-f1`
105 xcent=`echo $strcent | cut -d ',' -f1`
106 ycent=`echo $strcent | cut -d ',' -f2`
107 zcent=`echo $strcent | cut -d ',' -f3`

304

108 zcent=`echo "$zcent / $zscale" | bc`
109 xcent=`echo "($xcent+0.5)/1" | bc`
110 ycent=`echo "($ycent+0.5)/1" | bc`
111 zcent=`echo "($zcent+0.5)/1" | bc`
112 echo $xcent $ycent $zcent >> sann_cent.txt
113 done
114
115 #Find nucleoli that belong to each nucleus
116 for ((i=1;i<=${Nnuc};i+=1)); do
117 strbb=`imodinfo -o $i -F ${file}_nuclei | grep 'Bounding Box' | cut -d '{' -f2 | cut -d '}' -f1`
118 strcent=`imodinfo -o $i -F ${file}_nuclei | grep 'Center' | tr -s ' ' | cut -d '(' -f2 | cut -d ')' -
f1`
119 xcentnuc=`echo $strcent | cut -d ',' -f1`
120 ycentnuc=`echo $strcent | cut -d ',' -f2`
121 zcentnuc=`echo $strcent | cut -d ',' -f3`
122 zcentnuc=`echo "$zcentnuc / $zscale" | bc`
123 xmin=`echo $strbb | cut -d ',' -f1 | cut -d '(' -f2`
124 ymin=`echo $strbb | cut -d ',' -f2`
125 zmin=`echo $strbb | cut -d ',' -f3 | cut -d ')' -f1`
126 xmax=`echo $strbb | cut -d ',' -f4 | cut -d '(' -f2`
127 ymax=`echo $strbb | cut -d ',' -f5`
128 zmax=`echo $strbb | cut -d ',' -f6 | cut -d ')' -f1`
129 xcentnuc=`echo "($xcentnuc+0.5)/1" | bc`
130 ycentnuc=`echo "($ycentnuc+0.5)/1" | bc`
131 zcentnuc=`echo "($zcentnuc+0.5)/1" | bc`
132 xmin=`echo "($xmin+0.5)/1" | bc`
133 ymin=`echo "($ymin+0.5)/1" | bc`
134 zmin=`echo "($zmin+0.5)/1" | bc`
135 xmax=`echo "($xmax+0.5)/1" | bc`
136 ymax=`echo "($ymax+0.5)/1" | bc`
137 zmax=`echo "($zmax+0.5)/1" | bc`
138 printf "Nucleus #%d: %d,%d,%d %d,%d,%d\n" $i $xmin $ymin $zmin $xmax $ymax
$zmax
139 strkeep=""
140 count=1
141 for ((j=1;j<=${Nnucl};j+=1)); do
142 xcent=`sed ''$j'q;d' sann_cent.txt | cut -d ' ' -f1`
143 ycent=`sed ''$j'q;d' sann_cent.txt | cut -d ' ' -f2`
144 zcent=`sed ''$j'q;d' sann_cent.txt | cut -d ' ' -f3`
145 if (($xcent < $xmax)) && (($xcent > $xmin)) && (($ycent < $ymax)) && (($ycent >
$ymin)) && (($zcent < $zmax)) && (($zcent > $zmin)); then
146 printf " Nucleolus #%d: %d,%d,%d\n" $j $xcent $ycent $zcent
147 echo $count $xcentnuc $ycentnuc $zcentnuc >> sann_cent_nucl.txt
148 echo $count $xcent $ycent $zcent >> sann_cent_nucl.txt
149 strkeep=${strkeep}${j},
150 count=$((count+1))
151 fi
152 done
153 strkeep=${strkeep%?}
154 filei=nucleus_`printf "%03d" $i`.mod
155 imodextract $i ${file}_nuclei tempnucleus.mod
156 imodextract $strkeep ${file}_nucleoli tempnucleoli.mod
157 point2model -input sann_cent_nucl.txt -output sann_cent_nucl.mod -circle 6 -sphere
20 -color 255,0,0 > /dev/null

305

158 imodjoin tempnucleus.mod tempnucleoli.mod sann_cent_nucl.mod $filei > /dev/null
159 rm -rf tempnucleus.mod tempnucleoli.mod sann_cent_nucl*
160 done
161 rm -rf sann_cent.txt
162
163 ##########
164 ## (2) Volume and surface area measurements
165 ##########
166
167 for ((i=1;i<=${Nnuc};i+=1)); do
168 filei=nucleus_`printf "%03d" $i`.mod
169 Nobj=`imodinfo -a $filei | grep -m 1 '^imod' | cut -d ' ' -f2`
170 echo $((Nobj-2)) >> sann_sort.txt
171 done
172 maxnucl=`sort -r sann_sort.txt | head -1`
173
174 for ((i=1;i<=${Nnuc};i+=1)); do
175 printf "Analyzing morphology for Nucleus #%d\n" $i
176 filei=nucleus_`printf "%03d" $i`.mod
177 Nobj=`imodinfo -a $filei | grep -m 1 '^imod' | cut -d ' ' -f2`
178 imodmesh -e $filei $filei > /dev/null
179 imodmesh -C -T -P 100 -l $filei $filei > /dev/null
180 strvol=`imodinfo -c -o 1 $filei | grep "#--" -A1 | tail -1 | tr -s ' '`
181 volnuc=`echo $strvol | cut -d ' ' -f4`
182 sanuc=`echo $strvol | cut -d ' ' -f5`
183 volnuc_bc=`scientific_to_bc $volnuc`
184 sanuc_bc=`scientific_to_bc $sanuc`
185 volnuc_um=`echo "scale=4; $volnuc_bc / 1000^3" | bc`
186 sanuc_um=`echo "scale=4; $sanuc_bc / 1000^2" | bc`
187 savratio=`echo "scale=4; $sanuc_um / $volnuc_um" | bc`
188 echo $volnuc_um $sanuc_um $savratio >> nucleus_morphology.txt
189 printf "%d " $((Nobj-2)) >> nucleolus_morphology.txt
190 sumvolnucl=0
191 for ((j=2;j<=$((maxnucl+1));j+=1)); do
192 if (($j <= $((Nobj-1)))); then
193 strvol=`imodinfo -c -o $j $filei | grep "#--" -A1 | tail -1 | tr -s ' ' `
194 volnuclj=`echo $strvol | cut -d ' ' -f4`
195 volnuclj_bc=`scientific_to_bc $volnuclj`
196 volnuclj_um=`echo "scale=4; $volnuclj_bc / 1000^3" | bc`
197 sumvolnucl=`echo "$sumvolnucl + $volnuclj_um" | bc`
198 printf "%0.4f " $volnuclj_um >> nucleolus_morphology.txt
199 else
200 printf "0 " >> nucleolus_morphology.txt
201 fi
202 done
203 nuclvolfrac=`echo "scale=4; $sumvolnucl / $volnuc_um" | bc`
204 printf "%0.6f %0.4f\n" $sumvolnucl $nuclvolfrac >> nucleolus_morphology.txt
205 done
206
207 ##########
208 ## (3) Distance to centroid measurements
209 ##########
210
211 for ((i=1;i<=${Nnuc};i+=1)); do

306

212 printf "Analyzing centroid distances for Nucleus #%d\n" $i
213 filei=nucleus_`printf "%03d" $i`.mod
214 Nobj=`imodinfo -a $filei | grep -m 1 '^imod' | cut -d ' ' -f2`
215 Nnucli=$((Nobj-2))
216 for ((j=1;j<=${Nnucli};j+=1)); do
217 dist=`imodinfo -l -o $Nobj $filei | grep '#--' -A${Nnucli} | sed -n ''$((j+1))'p' | tr -s ' ' |
cut -d ' ' -f5`
218 dist_um=`echo "scale=4; $dist / 1000" | bc`
219 printf "%0.4f " $dist_um >> dist_centroid.txt
220 done
221 printf "\n" >> dist_centroid.txt
222 done
223
224 ##########
225 ## (4) Distance to nuclear envelope measurements
226 ##########
227
228 for ((i=1;i<=${Nnuc};i+=1)); do
229 printf "Analyzing nuclear envelope distances for Nucleus #%d\n" $i
230 filei=nucleus_`printf "%03d" $i`.mod
231 Nobj=`imodinfo -a $filei | grep -m 1 '^imod' | cut -d ' ' -f2`
232 Nnucli=$((Nobj-2))
233 strobj=`seq -s ',' 2 $((Nnucli+1))`
234
strmtk="\n\n1\n0\n${filei}\n\n\n0,0\n0.05,200\n0\n2,0\n1\n0\n1\n${strobj}\n1\n17\n0,5\n0.5,20\n0\n
0\n21\n${filei}\n\n25\n"
235 echo $Nobj
236 echo $Nnucli
237 echo $strobj
238 echo $strmtk
239 echo -e $strmtk | mtk > /dev/null
240 for ((j=1;j<=${Nnucli};j+=1)); do
241 dist=`imodinfo -l -o $((Nobj+1)) $filei | grep '#--' -A${Nnucli} | sed -n ''$((j+1))'p' | tr -s
' ' | cut -d ' ' -f5`
242 dist_um=`echo "scale=4; $dist / 1000" | bc`
243 printf "%0.4f " $dist_um >> dist_nuclear_envelope.txt
244 done
245 printf "\n" >> dist_nuclear_envelope.txt
246 done
247
248
249 #cleanup
250 #rm -rf nucleus_???.mod*

C.3.20. sbem_convexHull.sh

1 #! /bin/bash
2
3 #=#=#=#=#=#=#=#=#=#
4 #
5 # sbem_convexHull.sh
6 #
7 # Arguments: -i STRING Name of input model file to generate convex hull model file
for

307

8 # -s STRING Name of MRC stack that input model is derived from
9 #
10 # Example: sbem_convexHull -i SCN-
VL_WT_LD_ZT04_001_nucleus_003_2Dbin4_tc.subv -s ../../reconstruction/subv_nuclei/SCN-
VL_WT_LD_ZT04_001_nucleus_003_2Dbin4.mrc
11 #
12 #=#=#=#=#=#=#=#=#=#
13
14 # Parse command line arguments
15 while getopts i:s: option
16 do
17 case "${option}"
18 in
19 i) INPUT=${OPTARG};;
20 s) MRC_stack=${OPTARG};;
21 esac
22 done
23
24 BASENAME=`echo ${INPUT/.*/}`
25
26 mkdir temp_ch_mask
27 echo "Generating binary mask..."
28 imodmop -mask 1 ${INPUT} ${MRC_stack} ./temp_ch_mask/mask.mrc #Generate binary
mask
29 echo "Converting binary mask to a TIFF series..."
30 mrc2tif ./temp_ch_mask/mask.mrc ./temp_ch_mask/mask #Convert binary mask to a
series of TIF files
31
32 cd temp_ch_mask
33 N_tifs=`ls mask*.tif | wc -l`
34 echo "Computing the convex hull..."
35 cp /home/aperez/mfiles/sbem_convexHull.m .
36 grep -rl 'N_images=;' sbem_convexHull.m | xargs sed -i
's|N_images=;|N_images='${N_tifs}';|g'
37 matlab -nojvm -nosplash -nodesktop -nodisplay -r sbem_convexHull
38
39 echo "Converting to IMOD format..."
40 mv temp_ch_points.txt ..
41 cd ..
42 point2model -image ${MRC_stack} -color 255,0,0 temp_ch_points.txt
${BASENAME}_convexHull.subv
43 imodjoin ${INPUT} ${BASENAME}_convexHull.subv
${BASENAME}_convexHullJoin.subv
44 rm -rf temp_ch* *_convexHull.subv~

C.3.21. sbem_convexHull.m

1 N_images=;
2 N_images=N_images-1;
3
4 fid=fopen('temp_ch_points.txt','w');
5 C=1;
6 for N=0:N_images
7 N_str=sprintf('%0*d',3,N);

308

8 INPUT=['mask.' N_str '.tif'];
9 fprintf('Computing convex hull for Z=%s...\n',num2str(N));
10 I=imread(sprintf('%s',INPUT));
11 I=imrotate(I,-90);
12 OUTPUT=zeros(size(I));
13 ONES=find(I == 1);
14 if numel(ONES) > 3
15 [X,Y]=ind2sub(size(I),ONES);
16 DT=DelaunayTri(X,Y);
17 CH=convexHull(DT);
18 X_CH=DT.X(CH,1);
19 Y_CH=DT.X(CH,2);
20 Y_max=size(I,1);
21 Y_CH_imod=Y_CH;
22 P=[X_CH Y_CH_imod N*ones(size(X_CH))];
23 for i=1:size(P,1)
24 fprintf(fid,'%g %f %f %g\n',C,P(i,1),P(i,2),P(i,3));
25 end
26 C=C+1;
27 end
28 end
29 fclose(fid);
30 exit;

C.3.22. totalCurvature.sh

1 #! /bin/bash
2
3 #=#=#=#=#=#=#=#=#=#
4 #
5 # totalCurvature.sh
6 #
7 # Arguments: -i STRING Name of subvolume being analyzed
8 #
9 # Example: sbem_totalCurvature -i SCN-
VL_WT_LD_ZT04_001_nucleus_008_2Dbin4.subv
10 #
11 #=#=#=#=#=#=#=#=#=#
12
13 # Parse command line arguments
14 while getopts i: option
15 do
16 case "${option}"
17 in
18 i) INPUT_mod=${OPTARG};;
19 esac
20 done
21
22 if [! -d ../sbem_totalCurvature]; then mkdir ../sbem_totalCurvature; fi
23
24 BASENAME=`echo ${INPUT_mod/.*/}` #Extract basename
25
26 echo ${INPUT_mod}

309

27 echo "Converting to VRML format..."
28
29 cp ${INPUT_mod} ..
30 cd ..
31 cp sbem_convexHull/${BASENAME}_convexHull.subv .
32 imod2vrml2 -l ${INPUT_mod} ${BASENAME}.wml > /dev/null
33 imod2vrml2 -l ${BASENAME}_convexHull.subv ${BASENAME}_convexHull.wml >
/dev/null
34 rm -rf ${INPUT_mod} ${BASENAME}_convexHull.subv
35
36 # Create Amira network file
37 echo "Generating recomputed meshes and curvature vector/scalar fields and creating
movies..."
38 cp /home/aperez/amira_scripts/totalCurvature_withMovies.hx
./sbem_totalCurvature/${BASENAME}_curvature.hx
39 grep -rl 'BASENAME' ./sbem_totalCurvature/${BASENAME}_curvature.hx | xargs sed -i
's|BASENAME|'${BASENAME}'|g'
40 cd sbem_totalCurvature
41 mkdir tif_Curvedness tif_GaussCurvature tif_MaxCurvature tif_MeanCurvature
tif_ShapeIndex tif_MinCurvature tif_BendingEnergy tif_EulerCharacteristic
42
43 /ncmir/local.linux.amd64/Amira-5.4/bin/start ${BASENAME}_curvature.hx
44
45 N=`sed -n '4p' ${BASENAME}_remeshed.inp | cut -d ' ' -f1` #Extract number of vertices
(N)
46 M=`sed -n '4p' ${BASENAME}_remeshed.inp | cut -d ' ' -f2` #Extract number of faces (M)
47 N_sphere=`sed -n '4p' ${BASENAME}_sphere_remeshed.inp | cut -d ' ' -f1`
48 M_sphere=`sed -n '4p' ${BASENAME}_sphere_remeshed.inp | cut -d ' ' -f2`
49 echo "N vertices nucleus: ${N}"
50 echo "N faces nucleus: ${M}"
51 echo "N vertices sphere: ${N_sphere}"
52 echo "N faces sphere: ${M_sphere}"
53
54 # Create animated GIFs from output
55 for file in tif_*/*.tif; do convert ${file} ${file%.tif}.gif; done
56 gifsicle -l --colors 256 ./tif_Curvedness/*.gif > ${BASENAME}_Curvedness.gif
57 gifsicle -l --colors 256 ./tif_GaussCurvature/*.gif > ${BASENAME}_GaussCurvature.gif
58 gifsicle -l --colors 256 ./tif_MaxCurvature/*.gif > ${BASENAME}_MaxCurvature.gif
59 gifsicle -l --colors 256 ./tif_MeanCurvature/*.gif > ${BASENAME}_MeanCurvature.gif
60 gifsicle -l --colors 256 ./tif_ShapeIndex/*.gif > ${BASENAME}_ShapeIndex.gif
61 gifsicle -l --colors 256 ./tif_MinCurvature/*.gif > ${BASENAME}_MinCurvature.gif
62 gifsicle -l --colors 256 ./tif_BendingEnergy/*.gif > ${BASENAME}_BendingEnergy.gif
63 gifsicle -l --colors 256 ./tif_EulerCharacteristic/*.gif >
${BASENAME}_EulerCharacteristic.gif
64 rm -rf tif_Curvedness tif_GaussCurvature tif_MaxCurvature tif_MeanCurvature
tif_ShapeIndex tif_MinCurvature tif_BendingEnergy tif_EulerCharacteristic
65
66 echo "Formatting output..."
67 grep -v 'tri' ${BASENAME}_remeshed.inp >> temp_tc_verts.txt #Extract coordinates of
vertices by matching everything without tri
68 grep -i 'tri' ${BASENAME}_remeshed.inp >> temp_tc_tris.txt #Extract vertex identifiers for
each trinagle by matching everything with tri
69 grep -v 'tri' ${BASENAME}_sphere_remeshed.inp >> temp_tc_sphere_verts.txt
70 grep -i 'tri' ${BASENAME}_sphere_remeshed.inp >> temp_tc_sphere_tris.txt

310

71
72 N_lines=`cat temp_tc_verts.txt | wc -l`
73 N_lines_sphere=`cat temp_tc_sphere_verts.txt | wc -l`
74 sed -n '5,'${N_lines}'p' temp_tc_verts.txt >> temp_tc_verts2.txt #Remove AVS UCD
format header information
75 sed -n '5,'${N_lines_sphere}'p' temp_tc_sphere_verts.txt >> temp_tc_sphere_verts2.txt
76
77 # Remove extraneous information at the start, leaving just the three vertex identifiers
78 while read line
79 do
80 echo "`echo ${line} | cut -d ' ' -f4-6`" >> temp_tc_tris2.txt
81 done < temp_tc_tris.txt
82
83 while read line
84 do
85 echo "`echo ${line} | cut -d ' ' -f4-6`" >> temp_tc_sphere_tris2.txt
86 done < temp_tc_sphere_tris.txt
87
88 # Extract curvature values from Amira mesh ASCII files
89 sed -e '1,/@1/d' ${BASENAME}_MaxCurvature.am >> temp_tc_max.txt
90 sed -e '1,/@1/d' temp_tc_max.txt >> temp_tc_max2.txt
91 head -n -1 temp_tc_max2.txt >> ${BASENAME}_K_Max.txt #Remove final blank line
92
93 sed -e '1,/@1/d' ${BASENAME}_MeanCurvature.am >> temp_tc_mean.txt
94 sed -e '1,/@1/d' temp_tc_mean.txt >> temp_tc_mean2.txt
95 head -n -1 temp_tc_mean2.txt >> ${BASENAME}_K_Mean.txt
96
97 sed -e '1,/@1/d' ${BASENAME}_GaussCurvature.am >> temp_tc_gauss.txt
98 sed -e '1,/@1/d' temp_tc_gauss.txt >> temp_tc_gauss2.txt
99 head -n -1 temp_tc_gauss2.txt >> ${BASENAME}_K_Gaussian.txt
100
101 sed -e '1,/@1/d' ${BASENAME}_ShapeIndex.am >> temp_tc_shape.txt
102 sed -e '1,/@1/d' temp_tc_shape.txt >> temp_tc_shape2.txt
103 head -n -1 temp_tc_shape2.txt >> ${BASENAME}_s.txt
104
105 sed -e '1,/@1/d' ${BASENAME}_Curvedness.am >> temp_tc_curve.txt
106 sed -e '1,/@1/d' temp_tc_curve.txt >> temp_tc_curve2.txt
107 head -n -1 temp_tc_curve2.txt >> ${BASENAME}_C.txt
108
109 sed -e '1,/@1/d' ${BASENAME}_BendingEnergy.am >> temp_tc_be.txt
110 sed -e '1,/@1/d' temp_tc_be.txt >> temp_tc_be2.txt
111 head -n -1 temp_tc_be2.txt >> ${BASENAME}_EB.txt
112
113 sed -e '1,/@1/d' ${BASENAME}_EulerCharacteristic.am >> temp_tc_x.txt
114 sed -e '1,/@1/d' temp_tc_x.txt >> temp_tc_x2.txt
115 head -n -1 temp_tc_x2.txt >> ${BASENAME}_X.txt
116
117 sed -e '1,/@1/d' ${BASENAME}_MinCurvature.am >> temp_tc_min.txt
118 sed -e '1,/@1/d' temp_tc_min.txt >> temp_tc_min2.txt
119 head -n -1 temp_tc_min2.txt >> ${BASENAME}_K_Min.txt
120
121 sed -e '1,/@1/d' ${BASENAME}_sphere_MaxCurvature.am >> temp_tc_sphere_max.txt
122 sed -e '1,/@1/d' temp_tc_sphere_max.txt >> temp_tc_sphere_max2.txt
123 head -n -1 temp_tc_sphere_max2.txt >> ${BASENAME}_K_Max_sphere.txt

311

124
125 sed -e '1,/@1/d' ${BASENAME}_sphere_MeanCurvature.am >>
temp_tc_sphere_mean.txt
126 sed -e '1,/@1/d' temp_tc_sphere_mean.txt >> temp_tc_sphere_mean2.txt
127 head -n -1 temp_tc_sphere_mean2.txt >> ${BASENAME}_K_Mean_sphere.txt
128
129 sed -e '1,/@1/d' ${BASENAME}_sphere_GaussCurvature.am >>
temp_tc_sphere_gauss.txt
130 sed -e '1,/@1/d' temp_tc_sphere_gauss.txt >> temp_tc_sphere_gauss2.txt
131 head -n -1 temp_tc_sphere_gauss2.txt >> ${BASENAME}_K_Gaussian_sphere.txt
132
133 sed -e '1,/@1/d' ${BASENAME}_sphere_ShapeIndex.am >> temp_tc_sphere_shape.txt
134 sed -e '1,/@1/d' temp_tc_sphere_shape.txt >> temp_tc_sphere_shape2.txt
135 head -n -1 temp_tc_sphere_shape2.txt >> ${BASENAME}_s_sphere.txt
136
137 sed -e '1,/@1/d' ${BASENAME}_sphere_Curvedness.am >> temp_tc_sphere_curve.txt
138 sed -e '1,/@1/d' temp_tc_sphere_curve.txt >> temp_tc_sphere_curve2.txt
139 head -n -1 temp_tc_sphere_curve2.txt >> ${BASENAME}_C_sphere.txt
140
141 sed -e '1,/@1/d' ${BASENAME}_sphere_BendingEnergy.am >> temp_tc_sphere_be.txt
142 sed -e '1,/@1/d' temp_tc_sphere_be.txt >> temp_tc_sphere_be2.txt
143 head -n -1 temp_tc_sphere_be2.txt >> ${BASENAME}_EB_sphere.txt
144
145 sed -e '1,/@1/d' ${BASENAME}_sphere_EulerCharacteristic.am >> temp_tc_sphere_x.txt
146 sed -e '1,/@1/d' temp_tc_sphere_x.txt >> temp_tc_sphere_x2.txt
147 head -n -1 temp_tc_sphere_x2.txt >> ${BASENAME}_X_sphere.txt
148
149 sed -e '1,/@1/d' ${BASENAME}_sphere_MinCurvature.am >> temp_tc_sphere_min.txt
150 sed -e '1,/@1/d' temp_tc_sphere_min.txt >> temp_tc_sphere_min2.txt
151 head -n -1 temp_tc_sphere_min2.txt >> ${BASENAME}_K_Min_sphere.txt
152
153 mv temp_tc_tris2.txt ${BASENAME}_meshIndices.txt #Rename
154 mv temp_tc_verts2.txt ${BASENAME}_meshVertices.txt
155 mv temp_tc_sphere_tris2.txt ${BASENAME}_meshIndices_sphere.txt
156 mv temp_tc_sphere_verts2.txt ${BASENAME}_meshVertices_sphere.txt
157
158 rm -rf temp_tc_*.txt #Remove temporary files #Remove temporary files
159
160 mkdir ${BASENAME}_files #Create directory for files
161 sed -n '1,110p' ${BASENAME}_curvature.hx | grep -v 'save' >>
${BASENAME}_curvature_noSave.hx
162 mv ${BASENAME}* ${BASENAME}_files >> /dev/null 2>&1 #Move intermediate files to
_files directory
163 mkdir ${BASENAME}_movies
164 mv ${BASENAME}_files/*gif ${BASENAME}_files/*.mpg ${BASENAME}_movies
165 #mv ../${BASENAME}*.wml .
166
167
168 #Create MATLAB mfile to perform surface integrals
169 echo "Computing surface integrals..."
170 cp /home/aperez/mfiles/totalCurvature.m totalCurvature.m
171 grep -rl 'BASENAME' totalCurvature.m | xargs sed -i 's|BASENAME|'${BASENAME}'|g'
172

312

173 matlab -nojvm -nosplash -nodesktop -nodisplay -r totalCurvature #> /dev/null 2>&1 #Run
mfile
174 mv totalCurvature.m ./${BASENAME}_files
175 rm -rf *~
176 echo "Done."

C.3.23. totalCurvature_withMovies.hx

1 # Amira Script
2
3 viewer setBackgroundColor 0.5 0.5 0.5; #Make background grey
4 viewer setSize 900 900; #Set viewer size
5
6 ##########
7 # Load the nucleus, remesh, and export
8 ##########
9
10 load ../BASENAME.wml; #Load nucleus VRML file
11 create HxGeometryToSurface {IvToSurface}; #Create Inventor-to-surf format conversion
module
12 IvToSurface data connect BASENAME.wml; #Connect converter to VRML file
13 IvToSurface action setState index 0;
14 IvToSurface action touch 0;
15 IvToSurface fire; #Apply
16 GeometrySurface save "AVS UCD ascii" BASENAME.inp; #Save surface model in AVS
UCD format
17 create HxRemeshSurface; #Create RemeshSurface module
18 RemeshSurface data connect BASENAME.inp; #Connect to original surface
19 RemeshSurface desiredSize setValue 2 100; #Set percentage of triangles to keep at
100%
20 RemeshSurface remeshOptions1 setValue 0 1; #Turn on contour correction
21 RemeshSurface remeshOptions1 setValue 1 0;
22 RemeshSurface remesh setState index 0;
23 RemeshSurface remesh touch 0;
24 RemeshSurface fire; #Apply
25 BASENAME.remeshed save "AVS UCD ascii" BASENAME_remeshed.inp; #Save
remeshed model in AVS UCD format
26
27 ##########
28 # Load the convex hull, remesh, and compute surface area
29 ##########
30
31 load ../BASENAME_convexHull.wml;
32 create HxGeometryToSurface {IvToSurface};
33 IvToSurface2 data connect BASENAME_convexHull.wml;
34 IvToSurface2 action setState index 0;
35 IvToSurface2 action touch 0;
36 IvToSurface2 fire;
37 GeometrySurface save "AVS UCD ascii" BASENAME_convexHull.inp;
38 create HxRemeshSurface;
39 RemeshSurface2 data connect BASENAME_convexHull.inp;
40 RemeshSurface2 desiredSize setValue 2 100;
41 RemeshSurface2 remeshOptions1 setValue 0 1;
42 RemeshSurface2 remeshOptions1 setValue 1 0;

313

43 RemeshSurface2 remesh setState index 0;
44 RemeshSurface2 remesh touch 0;
45 RemeshSurface2 fire;
46 BASENAME_convexHull.remeshed save "AVS UCD ascii"
BASENAME_convexHull_remeshed.inp;
47 create HxSurfaceArea {Surface Area};
48 Surface-Area data connect BASENAME_convexHull_remeshed.inp;
49 Surface-Area action setState index 0;
50 Surface-Area action touch 0;
51 Surface-Area fire;
52 set A_CH [BASENAME_convexHull_remeshed.statistics getValue table1 2 1]; #Get
surface area of convex hull
53
54 ##########
55 # Calculate and export curvature fields for the nucleus
56 ##########
57
58 create HxGetCurvature; #Create GetCurvature module
59 GetCurvature data connect BASENAME_remeshed.inp; #Connect to remeshed surface
60 GetCurvature output setValue 6; #Compute both principal curvatures
61 GetCurvature method setValue 1;
62 GetCurvature create;
63 create HxArithmetic; #Maximum principal curvature
64 Arithmetic inputA connect BothCurvatures; #Connect Arithmetic module to curvatures
65 Arithmetic resultChannels setValue 1;
66 Arithmetic expr0 setValue Ar;
67 Arithmetic resultType setValue 0;
68 Arithmetic create;
69 Result save "Amiramesh ascii" BASENAME_MaxCurvature.am; #Save maximum
principal curvatures as Amira mesh ASCII file
70 create HxArithmetic; #Minimum principal curvature
71 Arithmetic2 inputA connect BothCurvatures;
72 Arithmetic2 resultChannels setValue 1;
73 Arithmetic2 expr0 setValue Ai;
74 Arithmetic2 resultType setValue 0;
75 Arithmetic2 create;
76 Result save "Amiramesh ascii" BASENAME_MinCurvature.am; #Save minimum principal
curvatures as Amira mesh ASCII file
77 create HxArithmetic; #Local bending energy
78 Arithmetic3 inputA connect BASENAME_MaxCurvature.am;
79 Arithmetic3 inputB connect BASENAME_MinCurvature.am;
80 Arithmetic3 resultChannels setValue 1;
81 Arithmetic3 resultType setValue 0;
82 Arithmetic3 expr0 setValue pow(A,2)+pow(B,2);
83 Arithmetic3 create;
84 Result save "Amiramesh ascii" BASENAME_BendingEnergy.am;
85 GetCurvature output setValue 2; #Set to Mean Curvature
86 GetCurvature method setValue 1;
87 GetCurvature create;
88 GetCurvature output setValue 4; #Set to Gaussian Curvature
89 GetCurvature method setValue 1;
90 GetCurvature create;
91 GetCurvature output setValue 10; #Set to ShapeIndex
92 GetCurvature method setValue 1;

314

93 GetCurvature doIt setState index 0;
94 GetCurvature doIt touch 0;
95 GetCurvature fire;
96 GetCurvature output setValue 11; #Set to Curvedness
97 GetCurvature method setValue 1;
98 GetCurvature doIt setState index 0;
99 GetCurvature doIt touch 0;
100 GetCurvature fire;
101 GaussCurvature save "Amiramesh ascii" BASENAME_GaussCurvature.am;
102 MeanCurvature save "Amiramesh ascii" BASENAME_MeanCurvature.am;
103 ShapeIndex save "Amiramesh ascii" BASENAME_ShapeIndex.am;
104 Curvedness save "Amiramesh ascii" BASENAME_Curvedness.am;
105 create HxArithmetic; #Euler characteristic
106 Arithmetic4 inputA connect BASENAME_GaussCurvature.am;
107 Arithmetic4 resultChannels setValue 1;
108 Arithmetic4 resultType setValue 0;
109 Arithmetic4 expr0 setValue A/(2*2*cos(0));
110 Arithmetic4 create;
111 Result save "Amiramesh ascii" BASENAME_EulerCharacteristic.am;
112
113
114 ##########
115 # Create a sphere with the same volume as the nucleus
116 ##########
117
118 create HxSurfaceArea {Surface Area}; #Create SurfaceArea module
119 Surface-Area2 data connect BASENAME_remeshed.inp; #Connect to remeshed surface
120 Surface-Area2 action setState index 0;
121 Surface-Area2 action touch 0;
122 Surface-Area2 fire; #Compute
123 set V [BASENAME_remeshed.statistics getValue Table1 3 3]; #Store surface volume to
variable V
124 #Compute the radius of a sphere with volume equivalent to the surface (r=(3V/4pi)^1/3)
125 set A [expr ((3*$V)/(4*2*acos(0)))]; #2*acos(0) = pi
126 set r [expr
pow($A,0.333)]; #Store
radius to variable r
127 create HxCreateSphere; #Create CreateSphere module
128 CreateSphere radius setMinMax 0 1E+06; #Raise maximum for radius
129 CreateSphere edgeLength setMinMax 0 1E+06; #Raise maximum for edgeLength
130 CreateSphere radius setValue $r; #Set radius to variable r
131 CreateSphere edgeLength setValue 20; #Set edgeLength to 20 (this gives a reasonable
number of triangles)
132 CreateSphere action setState index 0;
133 CreateSphere action touch 0;
134 CreateSphere fire;
135 CreateSphere edgeLength setValue 20;
136 CreateSphere action setState index 0;
137 CreateSphere action touch 0;
138 CreateSphere fire; #Compute
139 SphereLat.surf save "AVS UCD ascii" BASENAME_sphere.inp; #Save sphere in AVS
UCD format
140 create HxRemeshSurface; #Create RemeshSurface module
141 RemeshSurface3 data connect BASENAME_sphere.inp; #Connect to sphere

315

142 RemeshSurface3 desiredSize setValue 2 100; #Set percentage of triangles to keep at
100%
143 RemeshSurface3 remeshOptions1 setValue 0 1;
144 RemeshSurface3 remeshOptions1 setValue 1 0;
145 RemeshSurface3 remesh setState index 0;
146 RemeshSurface3 remesh touch 0;
147 RemeshSurface3 fire; #Apply
148 BASENAME_sphere.remeshed save "AVS UCD ascii"
BASENAME_sphere_remeshed.inp; #Save remeshed sphere in AVS UCD format
149
150 ##########
151 # Write volume/radius of sphere and convex hull area to files
152 ##########
153
154 set data "$V $r"; #Set string to print
155 set filename "BASENAME_sphereRadius.txt"; #Set filename to save to
156 set fileId [open $filename "w"]; #Open file
157 puts $fileId $data; #Write data to file
158 close $fileId; #Close file
159 set data "$A_CH";
160 set filename "BASENAME_convexHullArea.txt";
161 set fileId [open $filename "w"];
162 puts $fileId $data;
163 close $fileId;
164
165 ##########
166 # Calculate and export curvature fields for the sphere
167 ##########
168
169 create HxGetCurvature; #Create GetCurvature module
170 GetCurvature2 data connect BASENAME_sphere_remeshed.inp; #Connect to remeshed
surface
171 GetCurvature2 output setValue 6; #Compute both principal curvatures
172 GetCurvature2 method setValue 1;
173 GetCurvature create;
174 create HxArithmetic; #Maximum principal curvature
175 Arithmetic5 inputA connect BothCurvatures; #Connect Arithmetic module to curvatures
176 Arithmetic5 resultChannels setValue 1;
177 Arithmetic5 expr0 setValue Ar;
178 Arithmetic5 resultType setValue 0;
179 Arithmetic5 create;
180 Result save "Amiramesh ascii" BASENAME_sphere_MaxCurvature.am; #Save maximum
principal curvatures as Amira mesh ASCII file
181 create HxArithmetic; #Minimum principal curvature
182 Arithmetic6 inputA connect BothCurvatures;
183 Arithmetic6 resultChannels setValue 1;
184 Arithmetic6 expr0 setValue Ai;
185 Arithmetic6 resultType setValue 0;
186 Arithmetic6 create;
187 Result save "Amiramesh ascii" BASENAME_sphere_MinCurvature.am; #Save minimum
principal curvatures as Amira mesh ASCII file
188 create HxArithmetic; #Local bending energy
189 Arithmetic7 inputA connect BASENAME_MaxCurvature.am;
190 Arithmetic7 inputB connect BASENAME_MinCurvature.am;

316

191 Arithmetic7 resultChannels setValue 1;
192 Arithmetic7 resultType setValue 0;
193 Arithmetic7 expr0 setValue pow(A,2)+pow(B,2);
194 Arithmetic7 create;
195 Result save "Amiramesh ascii" BASENAME_sphere_BendingEnergy.am;
196 GetCurvature2 output setValue 2;
197 GetCurvature2 method setValue 1;
198 GetCurvature2 create;
199 GetCurvature2 output setValue 4;
200 GetCurvature2 method setValue 1;
201 GetCurvature2 create;
202 GetCurvature2 output setValue 10;
203 GetCurvature2 method setValue 1;
204 GetCurvature2 doIt setState index 0;
205 GetCurvature2 doIt touch 0;
206 GetCurvature2 fire;
207 GetCurvature2 output setValue 11;
208 GetCurvature2 method setValue 1;
209 GetCurvature2 doIt setState index 0;
210 GetCurvature2 doIt touch 0;
211 GetCurvature2 fire;
212 GaussCurvature save "Amiramesh ascii" BASENAME_sphere_GaussCurvature.am;
213 MeanCurvature save "Amiramesh ascii" BASENAME_sphere_MeanCurvature.am;
214 ShapeIndex save "Amiramesh ascii" BASENAME_sphere_ShapeIndex.am;
215 Curvedness save "Amiramesh ascii" BASENAME_sphere_Curvedness.am;
216 create HxArithmetic; #Euler characteristic
217 Arithmetic8 inputA connect BASENAME_GaussCurvature.am;
218 Arithmetic8 resultChannels setValue 1;
219 Arithmetic8 resultType setValue 0;
220 Arithmetic8 expr0 setValue A/(2*2*cos(0));
221 Arithmetic8 create;
222 Result save "Amiramesh ascii" BASENAME_sphere_EulerCharacteristic.am;
223
224 ##########
225 # Create movies for Max Curvature
226 ##########
227
228 SurfaceView setViewerMask 0; #Turn off previous SurfaceViews
229 SurfaceView2 setViewerMask 0;
230 create HxDisplaySurface {SurfaceView3}; #Create new SurfaceView module
231 SurfaceView3 data connect BASENAME_remeshed.inp; #Connect to nucleus surface
232 SurfaceView3 colorField connect BASENAME_MaxCurvature.am; #Connect to
MaxCurvature scalar field
233 SurfaceView3 drawStyle setValue 0; #Set draw style to outline triangles
234 SurfaceView3 drawStyle setOutlineColor 0 0 0; #Set outline color to black
235 SurfaceView3 drawStyle setState 0 1 1 1 1 0 1; #Set draw style to vertex normals
236 [load ${AMIRA_ROOT}/data/colormaps/physics.icol] setLabel physics2.icol; #Load
physics colormap
237 physics2.icol Datafield connect BASENAME_MaxCurvature.am; #Connect colormap to
MaxCurvature scalar field
238 physics2.icol setAlphaCurve 0; #Set alpha to zero
239 physics2.icol select; #Apply
240 SurfaceView3 colormap connect physics2.icol; #Connect SurfaceView to physics
colormap

317

241 SurfaceView3 colormap setLocalRange 0; #Set colormap range to that of the
MaxCurvature scalar field
242 SurfaceView3 buffer touch 4; #Apply changes
243 SurfaceView3 fire;
244 create HxDisplayColormap; #Create color map display
245 DisplayColormap data connect physics2.icol; #Connect to physics colormap
246 DisplayColormap options setValue 1 1; #Make display vertical
247 DisplayColormap options setValue 3 1; #Make background transparent
248 DisplayColormap setColor black; #Make text black
249 DisplayColormap size setValue 300; #Make colormap display longer
250 DisplayColormap select; #Apply
251 create HxAnnotation; #Create annotation
252 set INPUT [BASENAME.wml getLabel]; #Read in name of input wml file to variable
INPUT
253 Annotation text setValue "Maximum Principal Curvature"; #Set text of annotation
254 Annotation font setFontName Helvetica;
255 Annotation font setFontSize 24;
256 Annotation font setFontColor black;
257 Annotation fire; #Apply
258 create HxAnnotation;
259 Annotation2 text setValue "$INPUT";
260 Annotation2 font setFontName Helvetica;
261 Annotation2 font setFontSize 14;
262 Annotation2 font setFontColor black;
263 Annotation2 position setValue 0 450;
264 Annotation2 position setValue 1 5;
265 Annotation2 fire;
266
267 create HxCircularCameraPath {CameraRotate}; #Create CameraRotate module
268 create HxScriptObject {DemoMaker}; #Create DemoMaker module
269 create HxMovieMaker {MovieMaker}; #Create MovieMaker module
270 DemoMaker script setValue ${AMIRA_ROOT}/share/script-
objects/DemoMakerClassic.scro; #Load classic DemoMaker
271 DemoMaker setVar scroTypeDemoMaker 1; #Set variables required for DemoMaker to
work
272 DemoMaker setVar isInitialized 1;
273 DemoMaker setVar isDemoMakerActive 1;
274 DemoMaker setVar funcKeysDefined 1;
275 DemoMaker setVar lastStartTime 4; #Start time of last event
276 DemoMaker setVar lastEndTime 8; #End time of last event (i.e., max time)
277 DemoMaker setVar lastTimeStep 0;
278 DemoMaker setVar internalEventList {dummy {numeric CameraRotate/Time 0 4 0 360 0
360 {CameraRotate time setValue %0%; CameraRotate fire}} {select CameraRotate/Action 4 1 0
{{most vertical} x-axis y-axis z-axis {up direction}} {CameraRotate action setOptValue %0%;
CameraRotate fire}} {button CameraRotate/Action/recompute 4 0 0 0 {
279 if %0% {CameraRotate action setShiftDown}
280 if %1% {CameraRotate action setCtrlDown}
281 if %2% {CameraRotate action setAltDown}
282 CameraRotate action setValue 0
283 CameraRotate fire
284 }} {numeric CameraRotate/Time 4 8 0 360 0 360 {CameraRotate time setValue
%0%; CameraRotate fire}}}; #Copy and paste from output
285 DemoMaker fire; #Apply
286 DemoMaker time setMinMax 0 8; #Set min and max times (min will always be 0)

318

287
288 MovieMaker time connect DemoMaker; #Connect to DemoMaker
289 MovieMaker fileFormat setValue 0; #Set output as MPEG movie
290 MovieMaker frames setValue 240; #Set number of frames (such that time is equal to max
time)
291 MovieMaker compressionQuality setValue 1.0; #Set compression quality to 1 (max
quality)
292 MovieMaker filename setValue BASENAME_MaxCurvature.mpg; #Set name of output
293 MovieMaker action setState index 0;
294 MovieMaker action touch 0;
295 MovieMaker fire; #Start recording
296 MovieMaker fileFormat setValue 2; #Set output as TIF series to create animated GIF
from
297 MovieMaker frames setValue 50; #Lower number of frames
298 MovieMaker filename setValue tif_MaxCurvature/BASENAME_MaxCurvature.tif; #Set
filename for output series
299 MovieMaker action setState index 0;
300 MovieMaker action touch 0;
301 MovieMaker fire; #Start recording
302
303 ##########
304 ## Create movies for Min Curvature
305 ###########
306
307 physics2.icol deselect;
308 DisplayColormap deselect;
309 SurfaceView3 colorField connect BASENAME_MinCurvature.am;
310 physics2.icol Datafield connect BASENAME_MinCurvature.am;
311 physics2.icol select;
312 SurfaceView3 colormap connect physics2.icol;
313 SurfaceView3 colormap setLocalRange 0;
314 SurfaceView3 buffer touch 4;
315 SurfaceView3 fire;
316 DisplayColormap data connect physics2.icol;
317 DisplayColormap select;
318 Annotation text setValue "Minimum Prinicipal Curvature";
319 Annotation fire;
320
321 MovieMaker fileFormat setValue 0;
322 MovieMaker frames setValue 240;
323 MovieMaker compressionQuality setValue 1.0;
324 MovieMaker filename setValue BASENAME_MinCurvature.mpg;
325 MovieMaker action setState index 0;
326 MovieMaker action touch 0;
327 MovieMaker fire;
328 MovieMaker fileFormat setValue 2;
329 MovieMaker frames setValue 50;
330 MovieMaker filename setValue tif_MinCurvature/BASENAME_MinCurvature.tif;
331 MovieMaker action setState index 0;
332 MovieMaker action touch 0;
333 MovieMaker fire;
334
335 ##########
336 # Create movies for Curvedness

319

337 ##########
338
339 physics2.icol deselect;
340 DisplayColormap deselect;
341 SurfaceView3 colorField connect BASENAME_Curvedness.am;
342 physics2.icol Datafield connect BASENAME_Curvedness.am;
343 physics2.icol select;
344 SurfaceView3 colormap connect physics2.icol;
345 SurfaceView3 colormap setLocalRange 0;
346 SurfaceView3 buffer touch 4;
347 SurfaceView3 fire;
348 DisplayColormap data connect physics2.icol;
349 DisplayColormap select;
350 Annotation text setValue "Local Curvedness";
351 Annotation fire;
352
353 MovieMaker fileFormat setValue 0;
354 MovieMaker frames setValue 240;
355 MovieMaker compressionQuality setValue 1.0;
356 MovieMaker filename setValue BASENAME_Curvedness.mpg;
357 MovieMaker action setState index 0;
358 MovieMaker action touch 0;
359 MovieMaker fire;
360 MovieMaker fileFormat setValue 2;
361 MovieMaker frames setValue 50;
362 MovieMaker filename setValue tif_Curvedness/BASENAME_Curvedness.tif;
363 MovieMaker action setState index 0;
364 MovieMaker action touch 0;
365 MovieMaker fire;
366
367 ##########
368 # Create movies for Mean Curvature
369 ##########
370
371 physics2.icol deselect;
372 DisplayColormap deselect;
373 SurfaceView3 colorField connect BASENAME_MeanCurvature.am;
374 physics2.icol Datafield connect BASENAME_MeanCurvature.am;
375 physics2.icol select;
376 SurfaceView3 colormap connect physics2.icol;
377 SurfaceView3 colormap setLocalRange 0;
378 SurfaceView3 buffer touch 4;
379 SurfaceView3 fire;
380 DisplayColormap data connect physics2.icol;
381 DisplayColormap select;
382 Annotation text setValue "Local Mean Curvature";
383 Annotation fire;
384
385 MovieMaker fileFormat setValue 0;
386 MovieMaker frames setValue 240;
387 MovieMaker compressionQuality setValue 1.0;
388 MovieMaker filename setValue BASENAME_MeanCurvature.mpg;
389 MovieMaker action setState index 0;
390 MovieMaker action touch 0;

320

391 MovieMaker fire;
392 MovieMaker fileFormat setValue 2;
393 MovieMaker frames setValue 50;
394 MovieMaker filename setValue tif_MeanCurvature/BASENAME_MeanCurvature.tif;
395 MovieMaker action setState index 0;
396 MovieMaker action touch 0;
397 MovieMaker fire;
398
399 ##########
400 # Create movies for Gaussian Curvature
401 ##########
402
403 physics2.icol deselect;
404 DisplayColormap deselect;
405 SurfaceView3 colorField connect BASENAME_GaussCurvature.am;
406 physics2.icol Datafield connect BASENAME_GaussCurvature.am;
407 physics2.icol select;
408 SurfaceView3 colormap connect physics2.icol;
409 SurfaceView3 colormap setLocalRange 0;
410 SurfaceView3 buffer touch 4;
411 SurfaceView3 fire;
412 DisplayColormap data connect physics2.icol;
413 DisplayColormap select;
414 Annotation text setValue "Local Gaussian Curvature";
415 Annotation fire;
416
417 MovieMaker fileFormat setValue 0;
418 MovieMaker frames setValue 240;
419 MovieMaker compressionQuality setValue 1.0;
420 MovieMaker filename setValue BASENAME_GaussCurvature.mpg;
421 MovieMaker action setState index 0;
422 MovieMaker action touch 0;
423 MovieMaker fire;
424 MovieMaker fileFormat setValue 2;
425 MovieMaker frames setValue 50;
426 MovieMaker filename setValue tif_GaussCurvature/BASENAME_GaussCurvature.tif;
427 MovieMaker action setState index 0;
428 MovieMaker action touch 0;
429 MovieMaker fire;
430
431 ##########
432 # Create movies for Shape Index
433 ##########
434
435 physics2.icol deselect;
436 DisplayColormap deselect;
437 SurfaceView3 colorField connect BASENAME_ShapeIndex.am;
438 physics2.icol Datafield connect BASENAME_ShapeIndex.am;
439 physics2.icol select;
440 SurfaceView3 colormap connect physics2.icol;
441 SurfaceView3 colormap setLocalRange 0;
442 SurfaceView3 buffer touch 4;
443 SurfaceView3 fire;
444 DisplayColormap data connect physics2.icol;

321

445 DisplayColormap select;
446 Annotation text setValue "Local Shape Index";
447 Annotation fire;
448
449 MovieMaker fileFormat setValue 0;
450 MovieMaker frames setValue 240;
451 MovieMaker compressionQuality setValue 1.0;
452 MovieMaker filename setValue BASENAME_ShapeIndex.mpg;
453 MovieMaker action setState index 0;
454 MovieMaker action touch 0;
455 MovieMaker fire;
456 MovieMaker fileFormat setValue 2;
457 MovieMaker frames setValue 50;
458 MovieMaker filename setValue tif_ShapeIndex/BASENAME_ShapeIndex.tif;
459 MovieMaker action setState index 0;
460 MovieMaker action touch 0;
461 MovieMaker fire;
462
463 ##########
464 ## Create movies for Bending Energy
465 ###########
466
467 physics2.icol deselect;
468 DisplayColormap deselect;
469 SurfaceView3 colorField connect BASENAME_BendingEnergy.am;
470 physics2.icol Datafield connect BASENAME_BendingEnergy.am;
471 physics2.icol select;
472 SurfaceView3 colormap connect physics2.icol;
473 SurfaceView3 colormap setLocalRange 0;
474 SurfaceView3 buffer touch 4;
475 SurfaceView3 fire;
476 DisplayColormap data connect physics2.icol;
477 DisplayColormap select;
478 Annotation text setValue "Local Bending Energy";
479 Annotation fire;
480
481 MovieMaker fileFormat setValue 0;
482 MovieMaker frames setValue 240;
483 MovieMaker compressionQuality setValue 1.0;
484 MovieMaker filename setValue BASENAME_BendingEnergy.mpg;
485 MovieMaker action setState index 0;
486 MovieMaker action touch 0;
487 MovieMaker fire;
488 MovieMaker fileFormat setValue 2;
489 MovieMaker frames setValue 50;
490 MovieMaker filename setValue tif_BendingEnergy/BASENAME_BendingEnergy.tif;
491 MovieMaker action setState index 0;
492 MovieMaker action touch 0;
493 MovieMaker fire;
494
495 ##########
496 ## Create movies for Euler Characteristic
497 ###########
498

322

499 physics2.icol deselect;
500 DisplayColormap deselect;
501 SurfaceView3 colorField connect BASENAME_EulerCharacteristic.am;
502 physics2.icol Datafield connect BASENAME_EulerCharacteristic.am;
503 physics2.icol select;
504 SurfaceView3 colormap connect physics2.icol;
505 SurfaceView3 colormap setLocalRange 0;
506 SurfaceView3 buffer touch 4;
507 SurfaceView3 fire;
508 DisplayColormap data connect physics2.icol;
509 DisplayColormap select;
510 Annotation text setValue "Local Euler Characteristic";
511 Annotation fire;
512
513 MovieMaker fileFormat setValue 0;
514 MovieMaker frames setValue 240;
515 MovieMaker compressionQuality setValue 1.0;
516 MovieMaker filename setValue BASENAME_EulerCharacteristic.mpg;
517 MovieMaker action setState index 0;
518 MovieMaker action touch 0;
519 MovieMaker fire;
520 MovieMaker fileFormat setValue 2;
521 MovieMaker frames setValue 50;
522 MovieMaker filename setValue
tif_EulerCharacteristic/BASENAME_EulerCharacteristic.tif;
523 MovieMaker action setState index 0;
524 MovieMaker action touch 0;
525 MovieMaker fire;
526
527 exit;
528

C.3.24. totalCurvature.m

1 % Load nucleus data
2 INDS=load('./BASENAME_files/BASENAME_meshIndices.txt');
3 VERTS=load('./BASENAME_files/BASENAME_meshVertices.txt');
4 K_max=load('./BASENAME_files/BASENAME_K_Max.txt');
5 K_mean=load('./BASENAME_files/BASENAME_K_Mean.txt');
6 K_gaussian=load('./BASENAME_files/BASENAME_K_Gaussian.txt');
7 s=load('./BASENAME_files/BASENAME_s.txt');
8 C=load('./BASENAME_files/BASENAME_C.txt');
9 X=load('./BASENAME_files/BASENAME_X.txt');
10 EB=load('./BASENAME_files/BASENAME_EB.txt');
11 K_min=load('./BASENAME_files/BASENAME_K_Min.txt');
12
13 % Load sphere data
14 INDS_sphere=load('./BASENAME_files/BASENAME_meshIndices_sphere.txt');
15 VERTS_sphere=load('./BASENAME_files/BASENAME_meshVertices_sphere.txt');
16 K_max_sphere=load('./BASENAME_files/BASENAME_K_Max_sphere.txt');
17 K_mean_sphere=load('./BASENAME_files/BASENAME_K_Mean_sphere.txt');
18 K_gaussian_sphere=load('./BASENAME_files/BASENAME_K_Gaussian_sphere.txt');
19 s_sphere=load('./BASENAME_files/BASENAME_s_sphere.txt');
20 C_sphere=load('./BASENAME_files/BASENAME_C_sphere.txt');

323

21 X_sphere=load('./BASENAME_files/BASENAME_X_sphere.txt');
22 EB_sphere=load('./BASENAME_files/BASENAME_EB_sphere.txt');
23 K_min_sphere=load('./BASENAME_files/BASENAME_K_Min_sphere.txt');
24
25 % Load convex hull area
26 A_CH=load('./BASENAME_files/BASENAME_convexHullArea.txt');
27
28 VERTS=VERTS(:,2:4); %Extract vertex coordinates only
29 INDS=INDS+1; %Change indices to MATLAB format (starting at 1 instead of 0)
30 VERTS_sphere=VERTS_sphere(:,2:4);
31 INDS_sphere=INDS_sphere+1;
32
33 %Compute surface integrals for nucleus
34 SUM_area=0;
35 SUM_max=0; SUM_mean=0; SUM_gauss=0; SUM_s=0; SUM_C=0; SUM_X=0;
SUM_EB=0; SUM_min=0;
36 for i=1:size(INDS,1)
37 P_A=VERTS(INDS(i,1),:);
38 P_B=VERTS(INDS(i,2),:);
39 P_C=VERTS(INDS(i,3),:);
40 AREA=0.5*norm(cross(P_C-P_A,P_C-P_B));
41 K_max_i=mean(K_max(INDS(i,:)));
42 K_mean_i=mean(K_mean(INDS(i,:)));
43 K_gaussian_i=mean(K_gaussian(INDS(i,:)));
44 s_i=mean(s(INDS(i,:)));
45 C_i=mean(C(INDS(i,:)));
46 X_i=mean(X(INDS(i,:)));
47 K_min_i=mean(K_min(INDS(i,:)));
48 EB_i=mean(EB(INDS(i,:)));
49 SUM_max=SUM_max+K_max_i*AREA;
50 SUM_mean=SUM_mean+K_mean_i*AREA;
51 SUM_gauss=SUM_gauss+K_gaussian_i*AREA;
52 SUM_s=SUM_s+s_i*AREA;
53 SUM_C=SUM_C+C_i*AREA;
54 SUM_X=SUM_X+X_i*AREA;
55 SUM_EB=SUM_EB+EB_i*AREA;
56 SUM_min=SUM_min+K_min_i*AREA;
57 SUM_area=SUM_area+AREA;
58 end
59
60 %Compute surface integrals for sphere
61 SUM_area_sphere=0;
62 SUM_max_sphere=0; SUM_mean_sphere=0; SUM_gauss_sphere=0;
SUM_s_sphere=0; SUM_C_sphere=0; SUM_X_sphere=0; SUM_EB_sphere=0;
SUM_min_sphere=0;
63 for i=1:size(INDS_sphere,1)
64 P_A=VERTS_sphere(INDS_sphere(i,1),:);
65 P_B=VERTS_sphere(INDS_sphere(i,2),:);
66 P_C=VERTS_sphere(INDS_sphere(i,3),:);
67 AREA=0.5*norm(cross(P_C-P_A,P_C-P_B));
68 K_max_sphere_i=mean(K_max_sphere(INDS_sphere(i,:)));
69 K_mean_sphere_i=mean(K_mean_sphere(INDS_sphere(i,:)));
70 K_gaussian_sphere_i=mean(K_gaussian_sphere(INDS_sphere(i,:)));
71 s_sphere_i=mean(s_sphere(INDS_sphere(i,:)));

324

72 C_sphere_i=mean(C_sphere(INDS_sphere(i,:)));
73 X_sphere_i=mean(X_sphere(INDS_sphere(i,:)));
74 EB_sphere_i=mean(EB_sphere(INDS_sphere(i,:)));
75 K_min_sphere_i=mean(K_min_sphere(INDS_sphere(i,:)));
76 SUM_max_sphere=SUM_max_sphere+K_max_sphere_i*AREA;
77 SUM_mean_sphere=SUM_mean_sphere+K_mean_sphere_i*AREA;
78 SUM_gauss_sphere=SUM_gauss_sphere+K_gaussian_sphere_i*AREA;
79 SUM_s_sphere=SUM_s_sphere+s_sphere_i*AREA;
80 SUM_C_sphere=SUM_C_sphere+C_sphere_i*AREA;
81 SUM_X_sphere=SUM_X_sphere+X_sphere_i*AREA;
82 SUM_EB_sphere=SUM_EB_sphere+EB_sphere_i*AREA;
83 SUM_min_sphere=SUM_min_sphere+K_min_sphere_i*AREA;
84 SUM_area_sphere=SUM_area_sphere+AREA;
85 end
86
87 %Compute normalized, average, absolute values for nucleus
88 Q=A_CH/SUM_area;
89 KnaaMax=Q*sum(abs(K_max));
90 KnaaMin=Q*sum(abs(K_min));
91 KnaaMean=Q*sum(abs(K_mean));
92 KnaaGauss=Q*sum(abs(K_gaussian));
93 Snaa=Q*sum(abs(s));
94 Cnaa=Q*sum(abs(C));
95 Xnaa=Q*sum(abs(X));
96 EBnaa=Q*sum(abs(EB));
97
98 %Compute normalized, average values for nucleus
99 KnaMax=Q*sum(K_max);
100 KnaMin=Q*sum(K_min);
101 KnaMean=Q*sum(K_mean);
102 KnaGauss=Q*sum(K_gaussian);
103 Sna=Q*sum(s);
104 Cna=Q*sum(C);
105 Xna=Q*sum(X);
106 EBna=Q*sum(EB);
107
108 fid=fopen('BASENAME_results.txt','w');
109 fprintf(fid,'K_max %f %f %f %f %f
%f\n',SUM_max,SUM_max_sphere,SUM_max/SUM_max_sphere,SUM_max-
SUM_max_sphere,KnaaMax,KnaMax);
110 fprintf(fid,'K_min %f %f %f %f %f
%f\n',SUM_min,SUM_min_sphere,SUM_min/SUM_min_sphere,SUM_min-
SUM_min_sphere,KnaaMin,KnaMin);
111 fprintf(fid,'K_mean %f %f %f %f %f
%f\n',SUM_mean,SUM_mean_sphere,SUM_mean/SUM_mean_sphere,SUM_mean-
SUM_mean_sphere,KnaaMean,KnaMean);
112 fprintf(fid,'K_gauss %f %f %f %f %f
%f\n',SUM_gauss,SUM_gauss_sphere,SUM_gauss/SUM_gauss_sphere,SUM_gauss-
SUM_gauss_sphere,KnaaGauss,KnaGauss);
113 fprintf(fid,'s %f %f %f %f %f
%f\n',SUM_s,SUM_s_sphere,SUM_s/SUM_s_sphere,SUM_s-SUM_s_sphere,Snaa,Sna);
114 fprintf(fid,'C %f %f %f %f %f
%f\n',SUM_C,SUM_C_sphere,SUM_C/SUM_C_sphere,SUM_C-SUM_C_sphere,Cnaa,Cna);

325

115 fprintf(fid,'X %f %f %f %f %f
%f\n',SUM_X,SUM_X_sphere,SUM_X/SUM_X_sphere,SUM_X-SUM_X_sphere,Xnaa,Xna);
116 fprintf(fid,'EB %f %f %f %f %f
%f\n',SUM_EB,SUM_EB_sphere,SUM_EB/SUM_EB_sphere,SUM_EB-
SUM_EB_sphere,EBnaa,EBna);
117 fprintf(fid,'Area %f\n',SUM_area);
118 fprintf(fid,'CH Area %f\n',A_CH);
119 fclose(fid);
120 exit;

326

Appendix D. Example output from automated nuclear analysis.

Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset (CCDBID:
81739) – Contents of nucleus_morphology.txt

Cell # Nuclear Volume (μm3)
Nuclear Surface

Area (μm2)
Nuclear Surface Area to

Volume Ratio

1 328.289 270.48 0.8239

2 334.793 290.63 0.868

3 355.311 338.51 0.9527

4 353.863 330.25 0.9332

5 323.646 353.98 1.0937

6 298.639 274.52 0.9192

7 369.18 337.52 0.9142

8 361.215 295.76 0.8187

9 374.046 349.27 0.9337

10 328.484 276.18 0.8407

11 308.978 324.97 1.0517

12 354.269 336 0.9484

13 311.194 268.38 0.8624

14 332.515 269.09 0.8092

15 322.815 341.06 1.0565

16 299.195 284.22 0.9499

17 314.6 331.33 1.0531

18 400.399 309.5 0.7729

19 358.404 370.76 1.0344

20 303.43 295.95 0.9753

21 398.756 294.07 0.7374

22 265.793 328.58 1.2362

23 298.679 299.7 1.0034

24 325.7 303.42 0.9315

25 345.7 340.45 0.9848

26 276.831 240.17 0.8675

27 352.463 411.85 1.1684

28 381.835 322.97 0.8458

29 368.115 383.41 1.0415

30 289.182 296.71 1.026

31 292.87 333.76 1.1396

32 360.017 340.34 0.9453

33 342.072 356.4 1.0418

34 344.478 339.36 0.9851

35 393.73 390.18 0.9909

36 349.85 375.99 1.0747

327

Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset (CCDBID:
81739) – Contents of nucleus_morphology.txt, Continued.

Cell # Nuclear Volume (μm3)
Nuclear Surface

Area (μm2)
Nuclear Surface Area to

Volume Ratio

37 315.065 348.02 1.1045

38 350.649 332.14 0.9472

39 299.036 288.31 0.9641

40 283.925 307.25 1.0821

41 393.831 331.85 0.8426

42 320.992 298.6 0.9302

43 334.407 347.49 1.0391

44 353.524 301.5 0.8528

45 363.566 358.86 0.987

46 327.559 279.23 0.8524

47 378.257 339.51 0.8975

48 324.358 316.64 0.9762

49 324.3 315.48 0.9728

50 287.457 320.73 1.1157

51 349.838 304.34 0.8699

52 301.559 246.81 0.8184

53 290.557 262.98 0.905

54 262.882 239.85 0.9124

55 301.02 256.53 0.8522

56 370.761 378.57 1.021

57 358.79 308.62 0.8601

58 343.786 304.06 0.8844

59 352.9 278.81 0.79

60 361.938 329.45 0.9102

61 301.145 280.45 0.9312

62 334.374 368.31 1.1014

63 339.283 332.91 0.9812

64 330.531 336.58 1.0183

65 363.945 347.46 0.9546

66 288.755 303.51 1.051

67 339.294 289.15 0.8522

68 335.41 406.25 1.2112

69 342.512 281.84 0.8228

70 292.881 239.75 0.8185

71 304.81 317.88 1.0428

72 269.82 315.98 1.171

73 348.26 370.05 1.0625

74 316.729 303.97 0.9597

328

Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset (CCDBID:
81739) – Contents of nucleus_morphology.txt, Continued.

Cell # Nuclear Volume (μm3)
Nuclear Surface

Area (μm2)
Nuclear Surface Area to

Volume Ratio

75 372.935 340.63 0.9133

76 306.545 315.54 1.0293

77 315.727 248.48 0.787

78 288.008 280.11 0.9725

79 373.179 314.8 0.8435

80 330.767 305.78 0.9244

81 287.432 305.8 1.0639

Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset – Contents
of nucleolus_morphology.txt.

Cell

of
Nucleoli

Volume:
Nucleolus
#1 (μm3)

Volume:
Nucleolus
#2 (μm3)

Volume:
Nucleolus
#3 (μm3)

Volume:
Nucleolus
#4 (μm3)

Total
Nucleolar
Volume
(μm3)

Nucleolar
Volume
Fraction

1 2 1.7118 0.8404 0 0 2.5522 0.0077

2 2 0.5372 2.8246 0 0 3.3618 0.01

3 2 2.9809 0.674 0 0 3.6549 0.0102

4 1 3.0072 0 0 0 3.0072 0.0084

5 1 3.6435 0 0 0 3.6435 0.0112

6 1 2.8928 0 0 0 2.8928 0.0096

7 2 2.47 0.7057 0 0 3.1757 0.0086

8 2 2.5347 0.5222 0 0 3.0569 0.0084

9 1 3.3999 0 0 0 3.3999 0.009

10 3 1.5026 1.0823 0.3535 0 2.9384 0.0089

11 1 3.138 0 0 0 3.138 0.0101

12 1 3.7283 0 0 0 3.7283 0.0105

13 1 3.2668 0 0 0 3.2668 0.0104

14 2 1.2899 1.1607 0 0 2.4506 0.0073

15 1 2.6785 0 0 0 2.6785 0.0082

16 3 0.814 0.5936 0.8032 0 2.2108 0.0073

17 1 2.7775 0 0 0 2.7775 0.0088

18 2 3.2294 1.08 0 0 4.3094 0.0107

19 2 0.5631 2.891 0 0 3.4541 0.0096

20 1 3.2697 0 0 0 3.2697 0.0107

21 3 0.7816 1.2201 1.0732 0 3.0749 0.0077

22 1 2.2766 0 0 0 2.2766 0.0085

23 1 2.7743 0 0 0 2.7743 0.0092

24 1 3.4016 0 0 0 3.4016 0.0104

329

Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset – Contents
of nucleolus_morphology.txt, Continued.

Cell

of
Nucleoli

Volume:
Nucleolus
#1 (μm3)

Volume:
Nucleolus
#2 (μm3)

Volume:
Nucleolus
#3 (μm3)

Volume:
Nucleolus
#4 (μm3)

Total
Nucleolar
Volume
(μm3)

Nucleolar
Volume
Fraction

25 1 3.4951 0 0 0 3.4951 0.0101

26 1 2.7677 0 0 0 2.7677 0.0099

27 1 4.2747 0 0 0 4.2747 0.0121

28 3 0.9736 2.5109 0.8481 0 4.3326 0.0113

29 1 3.7762 0 0 0 3.7762 0.0102

30 2 1.527 0.8984 0 0 2.4254 0.0083

31 2 2.3923 0.8598 0 0 3.2521 0.0111

32 2 1.7329 1.7291 0 0 3.462 0.0096

33 3 1.857 0.3322 0.5357 0 2.7249 0.0079

34 2 1.0932 1.4355 0 0 2.5287 0.0073

35 1 4.2308 0 0 0 4.2308 0.0107

36 1 3.4081 0 0 0 3.4081 0.0097

37 2 2.3611 0.1844 0 0 2.5455 0.008

38 1 3.1578 0 0 0 3.1578 0.009

39 1 3.5031 0 0 0 3.5031 0.0117

40 1 2.5541 0 0 0 2.5541 0.0089

41 1 3.8165 0 0 0 3.8165 0.0096

42 3 2.8481 0.5932 0 0 3.4413 0.0107

43 4 1.082 0.4939 0.3054 0.4313 2.3126 0.0069

44 2 2.4653 0.8598 0 0 3.3251 0.0094

45 1 3.7924 0 0 0 3.7924 0.0104

46 2 0.8548 2.4587 0 0 3.3135 0.0101

47 2 3.5278 0.2277 0 0 3.7555 0.0099

48 1 3.2989 0 0 0 3.2989 0.0101

49 1 2.9311 0 0 0 2.9311 0.009

50 1 2.2792 0 0 0 2.2792 0.0079

51 1 1.5986 0 0 0 1.5986 0.0045

52 1 3.0276 0 0 0 3.0276 0.01

53 1 2.6772 0 0 0 2.6772 0.0092

54 2 1.1925 0.9631 0 0 2.1556 0.0081

55 1 2.7659 0 0 0 2.7659 0.0091

56 1 3.8223 0 0 0 3.8223 0.0103

57 2 1.5294 1.3907 0 0 2.9201 0.0081

58 1 3.6789 0 0 0 3.6789 0.0107

59 1 4.1109 0 0 0 4.1109 0.0116

60 1 4.4066 0 0 0 4.4066 0.0121

61 1 2.9793 0 0 0 2.9793 0.0098

330

Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset – Contents
of nucleolus_morphology.txt, Continued.

Cell

of
Nucleoli

Volume:
Nucleolus
#1 (μm3)

Volume:
Nucleolus
#2 (μm3)

Volume:
Nucleolus
#3 (μm3)

Volume:
Nucleolus
#4 (μm3)

Total
Nucleolar
Volume
(μm3)

Nucleolar
Volume
Fraction

62 1 3.6055 0 0 0 3.6055 0.0107

63 1 4.0165 0 0 0 4.0165 0.0118

64 2 1.3151 1.508 0 0 2.8231 0.0085

65 1 4.2344 0 0 0 4.2344 0.0116

66 2 1.6483 0.5725 0 0 2.2208 0.0076

67 3 0.8395 1.0996 0.4373 0 2.3764 0.007

68 1 3.0971 0 0 0 3.0971 0.0092

69 2 1.6449 1.8453 0 0 3.4902 0.0101

70 3 1.9681 0.5075 0.4405 0 2.9161 0.0099

71 1 2.7444 0 0 0 2.7444 0.009

72 2 1.5272 0.2569 0 0 1.7841 0.0066

73 1 3.5772 0 0 0 3.5772 0.0102

74 1 3.5818 0 0 0 3.5818 0.0113

75 2 4.2096 0.4054 0 0 4.615 0.0123

76 1 2.2789 0 0 0 2.2789 0.0074

77 2 2.4231 0.7827 0 0 3.2058 0.0101

78 1 2.6452 0 0 0 2.6452 0.0091

79 2 2.4552 1.5774 0 0 4.0326 0.0108

80 2 1.4105 2.0149 0 0 3.4254 0.0103

81 1 3.5928 0 0 0 3.5928 0.0124

Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset – Contents
of dist_centroid.txt.

Cell #
Distance:

Nucleolus #1
(μm)

Distance:
Nucleolus #2

(μm)

Distance:
Nucleolus #3

(μm)

Distance:
Nucleolus #4

(μm)

1 7.9436 6.1031 0 0

2 6.8471 2.5216 0 0

3 3.1866 8.7385 0 0

4 7.6548 0 0 0

5 4.7801 0 0 0

6 3.4784 0 0 0

7 5.0477 9.3676 0 0

8 1.3088 4.4262 0 0

9 4.2182 0 0 0

331

Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset – Contents
of dist_centroid.txt, Continued.

Cell #
Distance:

Nucleolus #1
(μm)

Distance:
Nucleolus #2

(μm)

Distance:
Nucleolus #3

(μm)

Distance:
Nucleolus #4

(μm)

10 5.0035 7.8152 7.774 0

11 3.966 0 0 0

12 5.6642 0 0 0

13 1.2586 0 0 0

14 3.5343 3.4318 0 0

15 5.0777 0 0 0

16 10.0281 3.7503 8.0568 0

17 1.5045 0 0 0

18 6.2651 5.0259 0 0

19 10.4327 3.8781 0 0

20 1.5227 0 0 0

21 8.3864 4.2999 5.1474 0

22 4.0229 0 0 0

23 3.0527 0 0 0

24 3.0628 0 0 0

25 2.8466 0 0 0

26 2.0245 0 0 0

27 1.5623 0 0 0

28 8.18 2.5233 7.6754 0

29 3.0441 0 0 0

30 7.2927 4.9024 0 0

31 3.8328 12.223 0 0

32 5.0906 6.8841 0 0

33 5.626 10.5948 10.0901 0

34 8.9506 8.6125 0 0

35 5.8478 0 0 0

36 4.3511 0 0 0

37 3.0174 7.6177 0 0

38 3.2767 0 0 0

39 2.3454 0 0 0

40 3.9996 0 0 0

41 4.019 0 0 0

42 4.0502 9.6341 10.07 0

43 6.5722 7.7395 5.5262 11.6972

44 4.2894 3.4747 0 0

45 5.1087 0 0 0

46 5.7078 2.1161 0 0

332

Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset – Contents
of dist_centroid.txt, Continued.

Cell #
Distance:

Nucleolus #1
(μm)

Distance:
Nucleolus #2

(μm)

Distance:
Nucleolus #3

(μm)

Distance:
Nucleolus #4

(μm)

47 4.9322 4.4599 0 0

48 2.6322 0 0 0

49 2.4348 0 0 0

50 2.7891 0 0 0

51 7.8406 0 0 0

52 2.8402 0 0 0

53 2.386 0 0 0

54 5.3376 6.767 0 0

55 4.1016 0 0 0

56 2.959 0 0 0

57 6.0671 4.8251 0 0

58 2.1008 0 0 0

59 1.4003 0 0 0

60 5.3229 0 0 0

61 4.5505 0 0 0

62 4.7134 0 0 0

63 2.5462 0 0 0

64 5.7316 5.0322 0 0

65 3.0135 0 0 0

66 1.3655 9.2155 0 0

67 7.3682 7.8983 7.1588 0

68 4.0141 0 0 0

69 3.4264 2.9334 0 0

70 3.548 3.0666 8.9977 0

71 3.9479 0 0 0

72 5.0125 7.121 0 0

73 4.6562 0 0 0

74 0.8245 0 0 0

75 4.8804 8.2702 0 0

76 7.8593 0 0 0

77 2.9941 5.0876 0 0

78 3.5169 0 0 0

79 6.1666 4.4882 0 0

80 7.5027 5.83 0 0

81 2.2331 0 0 0

333

Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset – Contents
of dist_nuclear_envelope.txt.

Cell #
Distance:

Nucleolus #1
(μm)

Distance:
Nucleolus #2

(μm)

Distance:
Nucleolus #3

(μm)

Distance:
Nucleolus #4

(μm)

1 0 1.2194 0 0

2 0.02 1.0684 0 0

3 0.4894 0.0974 0 0

4 0.0231 0 0 0

5 0.9073 0 0 0

6 0.7257 0 0 0

7 1.3855 0.0654 0 0

8 0.1744 0.0648 0 0

9 0.8158 0 0 0

10 0.8047 0.1014 0.0213 0

11 0.963 0 0 0

12 0.3777 0 0 0

13 1.4539 0 0 0

14 0.9015 0.8656 0 0

15 0 0 0 0

16 0.0433 0.7692 0.1214 0

17 0.8347 0 0 0

18 0.9725 1.3459 0 0

19 0 0.664 0 0

20 0.6991 0 0 0

21 0.2414 0.7908 0.0178 0

22 0.9405 0 0 0

23 0.7386 0 0 0

24 1.1308 0 0 0

25 0.8245 0 0 0

26 0.8742 0 0 0

27 0.7205 0 0 0

28 0.9496 1.176 0.1042 0

29 0.1889 0 0 0

30 0 0.897 0 0

31 1.2875 1.6732 0 0

32 0.138 0.2803 0 0

33 0 0 0 0

34 0.0077 0.0655 0 0

35 0.3478 0 0 0

36 0.9209 0 0 0

37 0 0.8563 0 0

334

Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset – Contents
of dist_nuclear_envelope.txt, Continued.

Cell #
Distance:

Nucleolus #1
(μm)

Distance:
Nucleolus #2

(μm)

Distance:
Nucleolus #3

(μm)

Distance:
Nucleolus #4

(μm)

38 0.6581 0 0 0

39 0.8727 0 0 0

40 0.5974 0 0 0

41 0.547 0 0 0

42 0 0 0 0

43 0.1339 0.1716 0.0054 0.0458

44 1.2674 0.0808 0 0

45 0.7763 0 0 0

46 0 0.979 0 0

47 0.6622 0.1453 0 0

48 1.0309 0 0 0

49 0.752 0 0 0

50 1.3005 0 0 0

51 0.4094 0 0 0

52 1.0623 0 0 0

53 1.2228 0 0 0

54 0.5688 0.0676 0 0

55 1.2784 0 0 0

56 0.7104 0 0 0

57 0.6959 0.143 0 0

58 1.5181 0 0 0

59 1.9465 0 0 0

60 1.0811 0 0 0

61 1.3852 0 0 0

62 0.2054 0 0 0

63 0.292 0 0 0

64 0.0387 0.0703 0 0

65 0.8027 0 0 0

66 0.2548 0.6244 0 0

67 0.2699 0.9479 0.5666 0

68 0.3923 0 0 0

69 1.0019 0.9277 0 0

70 1.0667 0.9677 0.0534 0

71 0.9473 0 0 0

72 0.0063 0 0 0

73 1.0315 0 0 0

74 1.1774 0 0 0

335

Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset – Contents
of dist_nuclear_envelope.txt, Continued.

Cell #
Distance:

Nucleolus #1
(μm)

Distance:
Nucleolus #2

(μm)

Distance:
Nucleolus #3

(μm)

Distance:
Nucleolus #4

(μm)

75 0.7432 0 0 0

76 0 0 0 0

77 1.1646 0.1955 0 0

78 0.7599 0 0 0

79 1.0683 0.1098 0 0

80 0.9879 0.1151 0 0

81 0.6593 0 0 0

336

References

Abbott, A. (2013). Solving the brain. Nature, 499, 272-274.

Abe, T., Takano, K., Suzuki, A., Shimada, Y., Inagaki, M., Sato, N., Obinata, T., and Endo,
T. (2004). Myocyte differentiation generates nuclear invaginations traversed by myofibrils
associating with sarcomeric protein mRNAs. The Journal of Cell Science, 117, 6523-6534.

Allen, B.A., and Levinthal, C. (1990). Cartos II semi-automated nerve tracing: Three-
dimensional reconstruction from serial section micrographs. Computerized Medical
Imaging and Graphics, 14(5), 319-329.

Anderson, J.R., Jones, B.W., Watt, C.B., Shaw, M.V., Yang, J.H., Demill, D., Lauritzen,
J.S., Lin, Y., Rapp, K.D., Mastronarde, D., Koshevoy, P., Grimm, B., Tasdizen, T.,
Whitaker, R., and Marc, R.E. (2011). Exploring the retinal connectome. Molecular Vision,
17, 355-379.

Anderson, J.R., Mohamed, S., Grimm, B., Jones, B.W., Koshevoy, P., Tasdizen, T.,
Whitaker, R., Marc, R.E. (2010). The Viking viewer for connectomics: Scalable multi-user
annotation and summarization of large volume data sets. The Journal of Microscopy,
241(1), 1328.

Andres, B., Koethe, U., Kroeger, T., Helmstaedter, M., Briggman, K.L., Denk, W., and
Hamprecht, F.A. (2012). 3D segmentation of SBFSEM images of neuropil by a graphical
model over supervoxel boundaries. Medical Image Analysis, 16(4), 796-805.

Anttonen, T., Kirjavainen, A., Belevich, I., Laos, M., Richardson, W.D., Jokitalo, E.,
Brakebusch, C., and Pirvola, U. (2012). CdC42-dependent structural development of
auditory supporting cells is required for wound healing at adulthood. Scientific Reports, 2,
978.

Arkill, K.P., Qvortrup, K., Starborg, T., Mantell, J.M., Knupp, C., Michel, C.C., Harper, S.J.,
Salmon, A.H.J., Squire, J.M., Bates, D.O., and Neal, C.R. (2014). Resolution of the three
dimensional structure of components of the glomerular filtration barrier. BMC Nephrology,
15(1), 24.

Armer, H.E.J., Mariggi, G., Png, K.M.Y., Genoud, C., Monteith, A.G., Bushby, A.J.,
Gerhardt, H., and Collinson, L.M. (2009). Imaging transient blood vessel fusion events in
zebrafish by correlative volume electron microscopy. PLoS one, 4(11), e7716.

Armstrong, W.E., and Hatton, G.I. (1978). Morphological changes in the rat supraoptic
and paraventricular nuclei during the diurnal cycle. Brain Research, 157, 407-413.

Austin, J.R., Segui-Simarro, J.M., and Staehelin, L.A. (2005). Quantitative analysis of
changes in spatial distribution and plus-end geometry of microtubules involved in plant-
cell cytokinesis. The Journal of Cell Biology, 118, 3895-3903.

337

Bai, X., Latecki, L.J., and Liu, W.-Y. (2007). Skeleton pruning by contour partitioning with
discrete curve evolution. IEEE Transactions on Pattern Analysis and Machine Intelligence,
29(3), 449-462.

Baker, T.S., and Johnson, J.E. (1996). Low resolution meets high: Towards a resolution
continuum from cells to atoms. Current Opinion in Structural Biology, 6, 585-594.

Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A., and Nielsen, H. (2000). Assessing the
accuracy of prediction algorithms for classification: an overview. Bioinformatics, 16(5),
412-424.

Ball, P. (2014). Crowd-sourcing: Strength in numbers. Nature, 506(7489), 422-423.

Balsalobre, A., Damiola, F., and Schibler, U. (1998). A serum shock induces circadian
gene expression in mammalian tissue culture cells. Cell, 93, 929-937.

Bang, B.G., and Bang, F.B. (1957). Graphic reconstruction of the third dimension from
serial electron microphotographs. The Journal of Ultrastructure Research, 1, 138-146.

Barnum, C.P., Jardetzky, C.D., and Halberg, F. (1958). Time relations among metabolic
and morphologic 24 hour changes in mouse liver. American Journal of Physiology, 195,
301-310.

Becker, U.G., and Vollrath, L. (1983). 24-hour variation of pineal gland volume,
pinealocytes nuclear volume, and mitotic activity in male Sprague-Dawley rats. The
Journal of Neural Transmission, 56, 211-221.

Becquet, D., Girardet, C., Guillaumond, F., Francois-Bellan, A.-M., and Bosler, O. (2008).
Ultrastructural plasticity in the rat suprachiasmatic nucleus. Possible involvement in clock
entrainment. Glia, 56, 294-305.

Bell-Pedersen, D., Cassone, V.M., Earnest, D.J., Golden, S.S., Hardin, P.E., Thomas,
T.L., and Zoran, M.J. (2005). Circadian rhythms from multiple oscillators: lessons from
diverse organisms. Nature Reviews Drug Discovery, 6, 554-556.

Benson, B., and Krasovich, M. (1977). Circadian rhythm in the number of granulated
vesicles in the pinealocytes of mice. Cell and Tissue Research, 184, 499-506.

Berlanga, M.L., Phan, S., Bushong, E.A., Wu, S., Kwon, O., Phung, B.S., Lamont, S.,
Terada, M., Tasdizen, T., Martone, M.E., and Ellisman, M.H. (2011). Three-dimensional
reconstruction of serial mouse brain sections: Solution for flattening high-resolution large-
scale mosaics. Frontiers in Neuroanatomy, 5, 17.

Besl, P.J., and McKay, N.D. (1992). A method for registration of 3-d shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14, 239-256.

Bessone, R., and Seïte, R. (1985). Daily fluctuations of nucleoli in neurosecretory cells of
the rat supraoptic nucleus. An ultrastructural and stereological study. Cell and Tissue
Research, 240, 393-396.

338

Betzig, B., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S.,
Davidson, M.W., Lippincott-Schwartz, J., Hess, H.F. (2006). Imaging intracellular
fluorescent proteins at nanometer resolution. Science, 15, 313(5793), 1642-1645.

Blazquez, J., Pastor, F., Amat, P., Pelaez. B., Sanchez, A., and Amat-Peral, G. (1995).
Giant granular filamentous bodies in the cytoplasm of arcuate nucleus neurons of
castrated rats. Histology and Histopathology, 10, 385-392.

Boassa, D., Berlanga, M.L., Yang, M.A., Terada, M., Hu, J., Bushong, E.A., Hwang, M.,
Masliah, E., George, J.M., and Ellisman, M.H. (2013). Mapping the subcellular distribution
of α-synuclein in neurons using genetically encoded probes for correlated light and
electron microscopy: Implications for Parkinson’s disease pathogenesis. The Journal of
Neuroscience, 33(6), 2605-2615.

Bock, D.D., Lee, W.-C.A., Kerlin, A.M., Andermann, M.L., Hood, G., Wetzel, A.W.,
Yurgenson, S., Soucy, E.R., Kim, H.S., and Reid, R.C. (2011). Network anatomy and in
vivo physiology of visual cortical neurons. Nature, 471, 177-182.

Bohórquez, D.V., Samsa, L.A., Roholt, A., Medicetty, S., Chandra, R., and Liddle, R.A.
(2014). An enteroendocrine cell-enteric glia connection revealed by 3D electron
microscopy. PLoS one, 9(2), e89881.

Bonnet, N. (2004). Some trends in microscope image processing. Micron, 35, 635-653.

Bossy-Wetzel, E., Barsoum, M.J., Godzik, A., Schwarzenbacher, R., and Lipton, S.A.
(2003). Mitochondrial fission in apoptosis, neurodegeneration and aging. Current Opinion
in Cell Biology, 15(6), 706-716.

Braverman, I.M. and Keh-Yen, M.D. (1983). Ultrastructure and three-dimensional
reconstruction of several macular and popular telangiectases. The Journal of Investigative
Dermatology, 81, 489-497.

Briggman, K.L., and Bock, D.D. (2012). Volume electron microscopy for neuronal circuit
reconstruction. Current Opinion in Neurobiology, 22, 154-161.

Briggman, K.L., and Denk, W. (2006). Towards neural circuit reconstruction with volume
electron microscopy techniques. Current Opinion in Neurobiology, 16, 562-570.

Briggman, K.L., Helmstaedter, M., and Denk, W. (2011). Wiring specific in the direction-
selectivity circuit of the retina. Nature, 471, 183-188.

Bron, C., Sadlo, F., Szekely, G., Neuenschwander, W., Keubler, O., and Schuepbach, H.
(1994). “Segmentation and visualization of membranes and intracellular organelles
contours in 3D electron microscopy,” in Visualization in Biomedical Computing 1994, pp.
706-714. International Society for Optics and Photonics.

Buck, T.E., Li, J., Rohde, G.K., and Murphy, R.F. (2012). Toward the virtual cell:
Automated approaches to building models of subcellular organization “learned” from
microscopy images. BioEssays, 34, 791-799.

339

Buckman, J.F., Hernández, H., Kress, G.J., Votyakova, T.V., Pal, S., and Reynolds, I.J.
(2001). MitoTracker labeling in primary neuronal and astrocytic cultures: influence of
mitochondrial membrane potential and oxidants. The Journal of Neuroscience Methods,
165-176.

Bushby, A.J., Png, K.M.Y., Young, R.D., Pinali, C., Knupp, C., and Quantock, A.J. (2011).
Imaging three-dimensional tissue architectures by focused ion beam scanning electron
microscopy. Nature Protocols, 6(6), 845-858.

Cai, D., Cohen. K.B., Luo, T., Lichtman, J.W., and Sanes, J.R. (2013). Improved tools for
the Brainbow toolbox. Nature Methods, 10, 540-547.

Cajal, S.R. (1906). The structure and connexions of neurons. Nobel lecture, Dec. 12.

Capell, B.C., and Collins, F.S. (2006). Human laminopathies: nuclei gone genetically awry.
Nature Reviews Genetics, 7, 940-952.

Cardona, A. (2013). Towards semi-automatic reconstruction of neural circuits.
Neuroinformatics, 11, 31-33.

Cardona, A., Saalfeld, S., Preibisch, S., Schmid, B., Cheng, A., Pulokas, J., Tomancak,
P. and Hartenstein, V. (2010). An integrated micro- and macroarchitectural analysis of the
Drosophila brain by computer-assisted serial section electron microscopy. PLoS Biology,
8.

Cardona, A., Saalfeld, S, Schindelin, J., Arganda-Carreras, I., Preibisch, S., Longair, M.,
Tomancak, P., Hartenstein, V., and Douglas, R.J. (2012). TrakEM2 software for neural
circuit reconstruction. PLoS one, 7(6), e38011.

Carlbom, I., Terzopoulos, D., and Harris, K.M. (1994). Computer-assisted registration,
segmentation, and 3D reconstruction from images of neuronal tissue sections. IEEE
Transactions on Medical Imaging, 13(2), 351-362.

Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O., Guertin,
D.A., Chang, J.H., Lindquist, R.A., Moffat, J., Golland, P., and Sabatini, D.M. (2006).
CellProfiler: Image analysis software for identifying and quantifying cell phenotypes.
Genome Biology, 7(1), R100.

Chalfie, M., Sulston, J.E, White, J.G., Southgate, E., Thomson, J.N., and Brenner, S.
(1985). The neural circuit for touch sensitivity in Caenorhabditis elegans. The Journal of
Neuroscience, 5(4), 956-964.

Chan, T.F., and Vese, L.A. (2001). Active contours without edges. IEEE Transactions on
Image Processing, 10(2), 266-277.

Chatzis, V., and Pitas, I. (2000). Interpolation of 3-D binary images based on
morphological skeletonization. IEEE Transactions on Medical Imaging, 19(7):699-710.

340

Chklovskii, D.B., Vitaladevuni, S., and Scheffer, L.K. (2010). Semi-automated
reconstruction of neural circuits using electron microscopy. Current Opinion in
Neurobiology, 20, 667-675.

Choi, S., Wang, W., Ribeiro, A.J.S., Kalinowski, A., Gregg, S.Q., Opresko, P.L.,
Niedernhofer, L.J., Rohde, G.K., and Dahl, K.N. (2011). Computational image analysis of
nuclear morphology associated with various nuclear-specific aging disorders. Nucleus,
2(6), 1-10.

Chow, S.K., Hakozaki, H., Price, D.L., Maclean, N.A.B., Deerinck, T.J., Bouwer, J.C.,
Martone, M.E., Peltier, S.T., and Ellisman, M.H. (2006). Automated microscopy system
for mosaic acquisition and processing. The Journal of Microscopy, 222(2), 76-84.

Chung, K., and Deisseroth, K. (2013). CLARITY for mapping the nervous system. Nature
Methods, 10(6), 508-513.

Chung, W.-S., Clarke, L.E., Wang, G.X., Stafford, B.K., Sher, A., Chakraborty, C., Joung,
J., Foo, L.C., Thompson, A., Chen, C., Smith, S.J., and Barres, B.A. (2013). Astrocytes
mediate synapse elimination through MEGF10 and MERTK pathways. Nature, 504(7480),
394-400.

Churas, C., Lin, A.W., Grethe, J.S., and Ellisman, M.H. (2013). PANFISH: A multi-cluster
submission system. XSEDE13, San Diego, California, U.S.A.

Cioce, M., and Lamond, A.I. (2005). Cajal bodies: a long history of discovery. Annual
Review of Cell and Developmental Biology, 21, 105-131.

Clubb, B.H., and Locke, M. (1998). 3T3 cells have nuclear invaginations containing F-
actin. Tissue & Cell, 30(6), 684-691.

Collings, D.A., Carter, C.N., Rink, J.C., Scott, A.C., Wyatt, S.E., and Allen, N.S. (2000).
Plant nuclei can contain extensive grooves and invaginations. The Plant Cell, 12, 2425-
2439.

Coltuc, D., Bolon, P., and Chassery, J.M. (2006). Exact histogram specification. IEEE
Transactions on Image Processing, 15(5), 1143-1152.

Cowan, W.M., and Wann, D.F. (1973). A computer system for the measurement of cell
and nuclear sizes. The Journal of Microscopy, 99(3), 331-348.

Cremer, T., and Cremer, C. (2001). Chromosome territories, nuclear architecture and
gene regulation in mammalian cells. Nature Reviews Genetics, 2, 292-301.

Crisp, M., Liu, Q., Roux, K., Rattner, J.B., Shanahan, C., Burke, B., Stahl, P.D., and
Hodzic, D. (2006). Coupling of the nucleus and cytoplasm: Role of the LINC complex. The
Journal of Cell Biology, 172(1), 41-53.

Crowther, R.A., Henderson, R., and Smith, J.M. (1996). MRC image processing programs.
The Journal of Structural Biology, 116(1), 9-16.

341

Dani, A., Huang, B., Bergan, J., Dulac, C., Zhuang, X. (2011). Superresolution imaging of
chemical synapses in the brain. Neuron, 68, 843-856.

Dardick, I., Sinnott, N.M., Hall, R., Bajenko-Carr, A., and Setterfield, G. (1982). Nuclear
morphology and morphometry of B-lympocyte transformation. The American Journal of
Pathology, 111(1), 35-49.

Dayal, A., and Hill, D.L. (2014). Image J software designed to quantify multiple labels in
sectioned tissue from confocal stacks in large experimental datasets. Program No. 854.01.
2014 Neuroscience Meeting Planner. Washington, D.C.: Society for Neuroscience, 2014.
Online.

de Brito, O.M., and Scorrano, L. (2010). An intimate liaison: spatial organization of the
endoplasmic reticulum-mitochondria relationship. The EMBO Journal, 29, 2715-2723.

Deerinck, T.J., Martone, M.E., Lev-Ram, V., Green, D.P., Tsien, R.Y., Spector, D.L.,
Huang, S., and Ellisman, M.H. (1994). Fluorescence photooxidation with eosin: A method
for high resolution immunolocalization and in situ hybridization detection for light and
electron microscopy. The Journal of Cell Biology, 126(4), 901.

Deerinck, T.J., Bushong, E.A., Lev-Ram, V., Shu, X., Tsien, R.Y., and Ellisman, M.H.
(2010). Enhancing serial block-face scanning electron microscopy to enable high
resolution 3-D nanohistology of cells and tissues. Microscopy and Microanalysis, 16(S2),
1138-1139.

Denk, W., Strickler, J.H., and Webb, W.W. (1990). Two-photon laser scanning
fluorescence microscopy. Science, 248(4951), 73-76.

Denk, W., and Horstmann, H. (2004). Serial block-face scanning electron microscopy to
reconstruct three-dimensional tissue nanostructure. PLoS Biology, 2(11), 1900-1909.

DeRosier, D., Stokes, D.L., and Darst, S.A. (1999). Averaging data derived from images
of helical structures with different symmetries. The Journal of Molecular Biology, 289, 159-
165.

DeRosier, D.J., and Klug, A. (1968). Reconstruction of three-dimensional structures from
electron micrographs. Nature, 217, 130-134.

Diehl, B.J.M. (1981). Time-related changes in size of nuclei of pinealocytes in rats. Cell
and Tissue Research, 218, 427-438.

Diehl, B.J.M., Heidbüchel, U., Welker, H.A., and Vollrath, L. (1984). Day/night changes of
pineal gland volume and pinealocyte nuclear size assessed over 10 consecutive days.
The Journal of Neural Transmission, 60, 19-29.

Dolci, C., Vizzotto, L., Morini, M., Ferrari, A., Carandente, F., and Miani, A. (1990).
“Structural and ultrastructural circadian features in rat exocrine pancreas,” in
Chronobiology: Its Role in Clinical Medicine, General Biology, and Agriculture, Part A, pp.
235-241. Wiley-Liss, Inc., Wilmington, Delaware, U.S.A.

342

Donald, A.M. (2003). The use of environmental scanning electron microscopy for imaging
wet and insulating materials. Nature Materials, 2, 511-516.

Dow, E., Buckley, Y., Berning, M., Bocklisch, T., Braunlein, D., Herold, T., Rzepka, N.,
Werkmeister, T., and Helmstaeder, M. (2014). Project Brainflight: Scaling connectomics
reconstruction via lay-audience targeted image analysis. Program No. 98.05. 2014
Neuroscience Meeting Planner. Washington, D.C.: Society for Neuroscience, 2014.
Online.

Eling, W. (1967). “The circadian rhythm of nucleic acids,” in The Cellular Aspects of
Biorhythms, pp. 105-114. Springer Berlin Heidelberg.

Ellisman, M.H., Boassa, D., Nguyen, P., Wan, X., Lawrence, A., Lanman, J., and Phan,
S. (2014). Automated procedures for the alignment and reconstruction of multiple tilt
electron microscopic tomography data. Microscopy and Microanalysis, 20(S3), 1258-
1259.

Ewald, A.J., Huebner, R.J., Palsdottir, H., Lee, J.K., Perez, M.J., Jorgens, D.M., Tauscher,
A.N., Cheung, K.J., Werb, Z., and Auer, M. (2012). Mammary collective cell migration
involves transient loss of epithelial features and individual cell migration within the
epithelium. The Journal of Cell Science, 125, 2638-2654.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27, 861-
874.

Feierbach, B., Piccinotti, S., Bisher, M., Denk, W., and Enquist, L.W. (2006). Alpha-
herpesvirus infection induces the formation of nuclear actin filaments. PLoS pathogens,
2(8), e85.

Fernandez, B., Suarez, I., and Gianonatti, C. (1983). Fine structure of astrocytic
mitochondria in the hypothalamus of the hamster. The Journal of Anatomy, 137(Pt 3), 483-
488.

Fiala, J.C. (2005). Reconstruct: A free editor for serial section microscopy. The Journal of
Microscopy, 218(1), 52-61.

Fiala, J.C., Feinberg, M., Popov, V., and Harris, K.M. (1998). Synaptogenesis via dendritic
filopodia in developing hippocampal area CA1. The Journal of Neuroscience, 18, 8900-
8911

Folk, M., Cheng, A., and Yates, K. (1999). “HDF5: A file format and I/O library for high
performance computing applications,” in Proceedings of Supercomputing, 99.

Fox, C.A., Rafols, J.A., and Cowan, W.M. (1975). Computer measurements of axis
cylinder diameters of radial fibers and “comb” bundle fibers. The Journal of Comparative
Neurology, 159(2), 201-223.
Francis, N.R., Sosinsky, G.E., Thomas, D., and DeRosier, D.J. (1994). Isolation,
characterization and structure of bacterial flagellar motors containing the switch complex.
The Journal of Molecular Biology, 235, 1261-1270.

343

Frank, J. (1990). Classification of macromolecular assemblies studied as single particles.
Quarterly Reviews of Biophysics, 23, 281-329.

Frank, J. (2002). Single-particle imaging of macromolecules by cryo-electron microscopy.
Annual Review of Biophysics and Biomolecular Structure, 31, 303-319.

Frank, J. (2008). Electron Tomography: Methods for Three-Dimensional Visualization of
Structures in the Cell. 2nd edition. Springer New York.

Frey, T.G., Perkins, G.A., and Ellisman, M.H. (2005). Electron tomography of membrane-
bound organelles. Annual Review of Biophysics and Biomolecular Structure. 35, 199-224.

Fricker, M, Hollinshead, M., White, N., and Vaux, D. (1997). Interphase nuclei of many
mammalian cell types contain deep, dynamic, tubular membrane-bound invaginations of
the nuclear envelope. The Journal of Cell Biology, 136(3), 531-544.

Fuchs, P.A., Lehar, M., and Hiel, H. (2014). Ultrastructure of cisternal synapses on outer
hair cells of the mouse cochlea. The Journal of Comparative Neurology, 522(3), 717-729.

Fujinaga, R., Yanai, A., Nakatsuka, H., Yoshida, K., Takeshita, Y., Uozumi, K., Zhao, C.,
Hirata, K., Kokubu, K., Nagano, M., and Shinoda, K. (2007). Anti-human placental antigen
complex X-P2 (hPAX-P2) anti-serum recognizes C-terminus of huntingtin-associated
protein 1A common to 1B as a determinant marker for the stigmoid body. Histochem Cell
Biol, 128, 335-348.

Gaietta, G., Deerinck, T.J., Adams, S.R., Bouwer, J., Tour, O., Laird, D.W., Soinsky, G.E.,
Tsien, R.Y., and Ellisman, M.H. (2002). Multicolor and electron microscopic imaging of
connexin trafficking. Science, 296, 503-507.

Gan, W.-B., Grutzendler, J., Wong, W.T., Wong, R.O.L., Lichtman, J.W. (2000). Multicolor
“DiOlistic” labeling of the nervous system using lipophilic dye combinations. Neuron, 27(2),
219-225.

Gan, L., and Jensen, G.J. (2012). Electron tomography of cells. Quarterly Reviews of
Biophysics, 45(1), 27-56.

Gay, H., and Anderson, T.F. (1954). Serial sections for electron microscopy. Science,
120(3130), 1071-1073.

Gerasimov, A.V., Logvinov, S.V., and Kosyuchenko, V.P. (2010). Morphological changes
in the pineal gland of rats under conditions of long-term exposure to bright light. Bulletin
of Experimental Biology and Medicine, 150(1), 86-88.

Gibeaux, R., Hoepfner, D., Schlatter, I., Antony, C., and Philippsen, P. (2013).
Organization of organelles within hyphae of Ashbya gossypii revealed by electron
tomography. Eukaryotic Cell, 12(11), 1423.

344

Giepmans, B.N.G., Deerinck, T.J., Smar,, B.L., Jones, Y.Z., and Ellisman, M.H. (2005).
Correlated light and electron microscopic imaging of multiple endogenous proteins using
quantum dots. Nature Methods, 2(10), 743-749.

Giepmans, B.N.G., Adams, S.R., Ellisman, M.H., and Tsien, R.Y. (2006). The fluorescent
toolbox for assessing protein location and function. Science, 312, 217-224.

Girardet, C., Lebrun, B., Cabirol-Pol, M.-J., Tardivel, C., Francois-Bellan, A.-M., Becquet,
D., and Bosler, O. (2014). Brain-derived neurotrophic factof/TrkB signaling regulates daily
astroglial plasticity in the suprachiasmatic nucleus: Electron-microscopic evidence in
mouse. Glia, 61, 1172-1177.

Giuly, R.J., Kim, K.-Y., and Ellisman, M.H. (2013). DP2: Distributed 3D imag segmentation
using micro-labor workforce. Bioinformatics, 29(10), 1359-1360.

Giuly, R.J., Martone, M.E., and Ellisman, M.H. (2012). Method: Automatic segmentation
of mitochondria utilizing patch classification, contour pair classification, and automatically
seeded level sets. BMC Bioinformatics, 13(29).

Glaeser, R.M. (1999). Review: Electron crystallography: Present excitement, a nod to the
past, anticipating the future. The Journal of Structural Biology, 128(1), 3-14.

Golgi, C. (1906). The neuron doctrine – theory and facts. Nobel lecture, Dec. 11.

Goodchild, R.E., Kim, C.E., and Dauer, W.T. (2005). Loss of the dystonia-associated
protein torsinA selectively disrupts the neuronal nuclear envelope. Neuron, 48(6), 923-
932.

Groh, V., and von Mayersbach, H. (1981). Enzymatic and functional heterogeneity of
lysosomes. Cell and Tissue Research, 214, 613-621.

Grynkiewicz, G., Poenie, M. and Tsien, R.Y. (1985). A new generation of Ca2+ indicators
with greatly improved fluorescence properties. The Journal of Biological Chemistry, 260,
3440-3450.

Güldner, F.-H. (1976). Synaptology of the rat suprachiasmatic nucleus. Cell and Tissue
Research, 165, 509-544.

Gustafsson, M.G.L. (2000). Surpassing the lateral resolution limit by a factor of two using
structured illumination microscopy. The Journal of Microscopy, 195, 10-16.

Gutekunst, C., Li, S., Yi, H., Ferrante, R.J., Li, X., and Hersch, S.M. (1998). The cellular
and subcellular localization of huntingtin-associated protein 1 (HAP1): Comparison with
huntingtin in rat and human. The Journal of Neuroscience, 18(19), 7674-86.

Gutekunst, C., Torre, E.R., Sheng, Z., Yi, H., Coleman, S.H., Riedel, I.B., and Bujo, H.,
(2003). Stigmoid bodies contain type I receptor proteins SorLA/LR11 and sortilin: New
perspectives on their function. The Journal of Histochemistry & Cytochemistry, 51(6), 841-
52.

345

Hall, D.H., and Russell, R.L. (1991). The posterior nervous system of the nematode
Caenorhabditis elegans: Serial reconstruction of identified neruons and complete pattern
of synaptic interactions. The Journal of Neuroscience, 11(1), 1-22.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutermann, P., and Witten, I.H. (2009).
The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter,
11(1), 10-18.

Handwerger, K.E., and Gall, J.G. (2006). Subnuclear organelles: new insights into form
and function. Trends in Cell Biology, 16(1), 19-26.

Hardeland, R., Hohmann, D., and Rensing, L. (1973). The rhythmic organization of rodent
liver. A review. The Journal of Interdisciplinary Cycle Research, 4(2), 89-118.

Harlow, M.L., Ress, D., Stoscheck, A., Marshall, R.M., and McMahan, U.J. (2001). The
architecture of active zone material at the frog’s neuromuscular junction. Nature, 409, 479-
484.

Harris, K.M., and Stevens, J.K. (1988). Dendritic spines of rate cerebellar Purkinje cells:
serial electron microscopy with reference to their biophysical characteristics. The Journal
of Neuroscience, 8(12), 4455-4489.

Harris, K.M. (1999). Structure, development, and plasticity of dendritic spines. Current
Opinion in Neurobiology, 9, 343-348.

Hatori, M., Vollmers, C., Zarrinpar, A., DiTacchio, L., Bushong, E.A., Gill, S., Leblanc, M.,
Chaix, A., Joens, M., Fitzpatrick, J.A.J., Ellisman, M.H., and Panda, S. (2012). Time-
restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed
a high-fat diet. Cell Metabolism, 15(6), 848-860.

Hattar, S., Liao, H.-W., Takao, M., Berson, D.M., and Yau, K.-W. (2002). Melanopsin-
containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity.
Science, 295(5557), 1065-1070.

Hayworth, K.J., Kasthuri, N., Schalek, R., and Lichtman, J.W. (2006). Automating the
collection of ultrathin serial sections for large volume TEM reconstructions. Microscopy
and Microanalysis, 12(Supp 2), 86-87.

Hayworth, K.J., Morgan, J.L., Schalek, R., Berger, D.R., Hildebrand, D.G.C., and
Lichtman, J.W. (2014). Imaging ATUM ultrathin section libraries with WaferMapper: a
multi-scale approach to EM reconstruction of neural circuits. Frontiers in Neural Circuits,
8, 68.

Hellman, B., and Hellerström, C. (1959). Diurnal changes in the function of the pancreatic
islets of rats as indicated by nuclear size in the islet cells. Acta Endocrinologica, 31, 267-
281.

346

Helmstaedter, M., Briggman, K.L., Turaga, S.C., Jain, V., Seung, H.S., and Denk, W.
(2013). Connectomic reconstruction of the inner plexiform layer in the mouse retina.
Nature, 500, 168-174.

Herms, A., Bosch, M., Ariotti, N., Reddy, B.J.N., Fajardo, A., Fernandez-Vidal, A., Alvarez-
Guaita, A., Fernandez-Rojo, M.A., Rentero, C., Tebar, F., Enrich, C., Geli, M.-I., Parton,
R.G., Gross, S.P., and Pol, A. (2013). Cell-to-cell heterogeneity in lipid droplets suggests
a mechanism to reduce lipotoxicity. Current Biology, 23(15), 1489-1496.

Hessler, D., Young, S.J., Carragher, B.O., Martone, M.E., Lamont, S., Whittaker, M.,
Milligan, R.A., Masliah, E., Hinshaw, J.E., and Ellisman, M.H. (1992). Programs for
visualization in three-dimensional microscopy. Neuroimage, 1, 55-67.

Hetman, M., and Pietrzak, M. (2012). Emerging roles of the neuronal nucleolus. Trends in
Neurosciences, 35(5), 305-314.

Heymann, J.A.W., Hayles, M., Gestmann, I., Giannuzzi, L.A., Lich, B., and Subramaniam,
S. (2006). Site-specific 3D imaging of cells and tissues with a dual beam microscope. The
Journal of Structural Biology, 155, 63-73.

Heymann, J.B. (2001). Bsoft: Image and molecular processing in electron microscopy.
The Journal of Structural Biology, 133(2), 156-169.

Hindelang-Gertner, C., Stoeckel, M.E., Porte, A., Dellmann, H.D., and Madarasz, B.
(1974). Nematosomes or nucleolus-like bodies in hypothalamic neurons, the subfornical
organ and adenohypophysial cells of the rat. Cell and Tissue Research, 155, 211-219.

Hira, Y., Sakai, Y., and Matsushima, S. (1989). Comparisons of sizes of pinealocyte nuclei
and pinealocytes in young and adult Chinese hamsters (Cricetulus griseus) under different
photoperiod conditions. The Journal of Pineal Research, 7, 411-418.

Hoelz, A., Debler, E.W., and Blobel, G. (2011). The structure of the nuclear pore complex.
Annual Review in Biochemistry, 80, 613-43.

Höhne, K.H., Bomans, M., Pommert, A., Riemer, M., Schiers, C., Tiede, U., and Wiebecke,
G. (1990). 3D visualization of tomographic volume data using the generalized voxel model.
The Visual Computer, 6, 28-36.

Hoffman, H.-P., and Avers, C.J. (1973). Mitochondrion of yeast: Ultrastructural evidence
for one giant, branched organelle per cell. Science, 181(4101), 749-751.

Holcomb, P.S., Hoffpauir, B.K., Hoyson, M.C., Jackson, D.R., Deerinck, T.J., Marrs, G.S.,
Dehoff, M., Wu, J., Ellisman, M.H., and Spirou, G.A. (2013). Synaptic inputs compete
during rapid formation of the calyx of Held: A new model system for neural development.
The Journal of Neuroscience, 33(32), 12954-12969.
Höög, J.L., Schwartz, C., Noon, A.T., O’Toole, E.T., Mastronarde, D.N., McIntosh, J.R.,
and Antony, C. (2007). Organization of interphase microtubules in fission yeast analyzed
by electron tomography. Developmental Cell, 12, 349-361.

347

Hoppa, M.B., Jones, E., Karanauskaite, J., Ramracheya, R., Braun, M., Collins, S.C.,
Zhang, Q., Clark, A., Eliasson, L., Genoud, C., MacDonald, P.E., Monteith, A.G., Barg, S.,
Galvanovskis, J., and Rorsman, P. (2012). Multivesicular exocytosis in rat pancreatic beta
cells. Diabetologia, 55, 1001-1012.

Horstmann, H., Körber, C., Sätzler, K., Aydin, D., and Kuner, T. (2012). Serial section
scanning electron microscopy (S3EM) on silicon wafers for ultra-structural volume imaging
of cells and tissues. PLoS one, 7(4), e35172.

Hu, W., Haamedi, N., Lee, J., Kinoshita, T., and Ohnuma, S. (2013). The structure and
development of Xenopus laevis cornea. Experimental Eye Research, 116, 109-128.

Huang, S., Deerinck, T.J., Ellisman, M.H., and Spector, D.L. (1997). The dynamic
organization of the perinucleolar compartment in the cell nucleus. The Journal of Cell
Biology, 137(5), 965-974.

Hughes, M.E., DiTacchio, L., Hayes, K.R., Vollmers, C., Pulivarthy, S., Baggs, J.E.,
Panda, S., and Hogenesch, J.B. (2009). Harmonics of circadian gene transcription in
mammals. PLoS Genetics, 5, e10000442.

Hundahl, C.A., Hannibal, J., Fahrenkrug, J., Dewilde, S., and Hay-Schmidt, A. (2010).
Neuroglobin expression in the rat suprachiasmatic nucleus: colocalization, innervation,
and response to light. The Journal of Comparative Neurology, 518, 156-1569.

Hunter, D.A., Moradzadeh, A., Whitlock, E.L., Brenner, M.J., Myckatyn, T.M., Wei, C.H.,
Tung, T.H.H., and Mackinnon, S. (2007). Binary imaging analysis for comprehensive
quantitative assessment of peripheral nerve. The Journal of Neuroscience Methods,
166(1), 116-124.

Ingber, D.E. (1997). Tensegrity: The architectural basis of cellular mechanotransduction.
Annual Review of Physiology, 59, 575-599.

Insel, T.R., Landis, S.C., and Collins, F.S. (2013). The NIH BRAIN Initiative. Science, 340,
687-688.

Ishii, Y., Hasegawa, S., and Uchiyama, Y. (1989). Twenty-four-hour variations in
subcellular structures of rat type II alveolar epithelial cells. Cell and Tissue Research, 256,
347-353.

Jaume, S., Knobe, K., Newton, R.R., Schlimbach, F., Blower, M., and Reid, R.C. (2012).
A multiscale parallel computing architecture for automated segmentation of the brain
connectome. IEEE Transactions on Biomedical Engineering, 59(1), 35-38.

Jeong, W.-K., Beyer, J., Hadwiger, M., Vazquez, A., Pfister, H., and Whitaker, R.T. (2009).
Scalable and interactive segmentation and visualization of neural processes in EM
datasets. IEEE Transactions on Visualization and Computer Graphics, 15(6), 1505-1514.

348

Jorstad, A., Nigro, B., Cali, C., Wawrzyniak, M., Fua, P., Knott, G. (2014). NeuroMorph: A
toolset for the morphometric analysis and visualization of 3D models derived from electron
microscopy image stacks. Neuroinformatics, 1-10.

Jurrus, E., Hardy, M., Tasdizen, T., Fletcher, P., Koshevoy, P. Chien, C.B., Denk, W., and
Whitaker, R. (2009). Axon tracking in serial block-face scanning electron microscopy.
Medical Image Analysis, 13, 180-188.

Kalson, N.S., Holmes, D.F., Herchenhan, A., Lu, Y., Starborg, T., and Kadler, K.E. (2011).
Slow stretching that mimics embryonic growth rate stimulates structural and mechanical
development of tendon-like tissue in vitro. Developmental Dynamics, 240(11), 2520-2528.

Kalson, N.S., Starborg, T., Lu, Y., Mironov, A., Humphries, S.M., Holmes, D.F., and
Kadler, K.E. (2013). Nonmuscle myosin II powered transport of newly formed collagen
fibrils at the plasma membrane. Proceedings of the National Academy of Sciences U.S.A.,
110(49), E4743-E4752.

Kang, B.-H., and Staehelin, L.A. (2008). ER-to-Golgi transport by COPII vesicles in
Arabidopsis involves a ribosome-excluding scaffold that is transferred with the vesicles to
the Golgi matrix. Protoplasma, 234, 51-64.

Kapur, J.N., Sahoo, P.K., and Wong, A.C.K. (1985). A new method for gray-level picture
thresholding using the entropy of the histogram. Graphical Models and Image Processing,
29(3), 273-285.

Kapuscinski, J. (1995). DAPI: A DNA-specific fluorescent probe. Biotechnic &
Histochemistry, 70(5), 220-233.

Karasek, M., Stankov, B., Lucini, V., Scaglione, F., Esposti, G., Mariani, M., and Fraschini,
F. (1990). Comparison of the rat pinealocyte ultrastructure with melatonin concentrations
during daytime and at night. The Journal of Pineal Research, 9, 251-257.

Karlsson, U. (1966). Three-dimensional studies of neurons in the lateral geniculate
nucleus of the rat. I. Organelle organization in the perikaryon and its proximal branches.
The Journal of Ultrastructure Research, 16, 429-481.

Karlsson, U., Andersson-Cedergren, E., and Ottoson, D. (1966). Cellular organization of
the frog muscle spindle as revealed by serial sections for electron microscopy. The Journal
of Ultrastructure Research, 14, 1-35.

Kass, M., Witkin, A., Terzopoulos, D. (1988). Snakes: Active contour models. The
International Journal of Computer Vision, 1(4), 321-331.

Keeley, P.W., Luna, G., Fariss, R.N., Skyles, K.A., Madsen, N.R., Raven, M.A., Poche,
R.A., Swindell, E.C., Jamrich, M., Oh, E.C., Swaroop, A., Fisher, S.K., and Reese, B.E.
(2013). Development and plasticity of outer retinal circuitry following genetic removal of
horizontal cells. The Journal of Neuroscience, 33(45), 17847-17862.

349

Keller, A.L., Zeidler, D., and Kemen, T. (2014). “High throughput data acquisition with a
multi-beam SEM,” in SPIE Scanning Microscopies, pp. 92360B1-92360B6.

Kessel, R.G. (1969). Cytodifferentiation in the Rana pipiens oocyte. I. Association between
mitochondria and nucleolus-like bodies in yount ootes. The Journal of Ultrastructural
Research, 28, 61-77.

Kim, J.S., Greene, M.J., Zlateski, A., Lee, K., Richardson, M., Turaga, S.C., Purcaro, M.,
Balkam, M., Robinson, A., Behabadi, B.F., Campos, M., Denk, W., Seung, H.S., and the
EyeWirers (2014). Space-time wiring specificity supports direction selectivity in the retina.
Nature, 509, 331-336.

Kim, C.E., Perez, A., Perkins, G.A., Ellisman, M.H., and Dauer, W.T. (2010). A molecular
mechanism underlying the neural-specific defect in torsinA mutant mice. Proceedings of
the National Academy of Sciences U.S.A., 107(21), 9861-9866.

Kind, P.C., Kelly, G.M., Fryer, H.J.L., Blakemore, C., and Hockfield, S. (1997).
Phospholipase C-beta1 is present in the botrysome, an intermediate compartment-like
organelle, and is regulated by visual experience in cat visual cortex. The Journal of
Neuroscience, 17, 1471-1480.

Kirillov, O.I., and Kurilenko, L.A. (1977). Adrenal cortex of mice: circadian cycle of mitotic
activity and volume of cell nuclei. Endokrinologie, 69(1), 112-114.

Kirillov, O.I., and Kurilenko, L.A. (1979). Effect of ACTH on circadian periodicity of nuclear
volume and mitotic division in the zona fasciculate externa of the adrenal cortex of mice.
The International Journal of Chronobiology, 6, 51-55.

Kishi, K. (1972). Fine structural and cytochemical observations on cytoplasmic
nucleoluslike bodies in nerve cells of rat medulla oblongata. Z. Zellforsch. Mikrosk. Anat.,
132, 523-532.

Kittler, J., and Illingorth, J. (1986). Minimum error thresholding. Pattern Recognition, 19,
41-47.

Kleinfeld, D., Bharioke, A., Blinder, P., Bock, D.D., Briggman, K.L., Chklovskii, D.B., Denk,
W., Helmstaedter, M., Kaufhold, J.P., Lee, W.-C.A., Meyer, H.S., Micheva, K.D.,
Oberlaender, M., Prohaska, S., Reid, R.C., Smith, S.J., Takemura, S., Tsai, P.S., and
Sakmann, B. (2011). Large-scale automated histology in the pursuit of connectomes. The
Journal of Neuroscience, 31(45), 16125-16138.

Knott, A.B., Perkins, G., Schwarzenbacher, R., and Bossy-Wetzel, E. (2008).
Mitochondrial fragmentation in neurodegeneration. Nature Reviews Neuroscience, 9, 505-
518.

Knott, G., Marchman, H., Wall, D., and Lich, B. (2008). Serial sectioning scanning electron
microscopy of adult brain tissue using focused ion beam milling. The Journal of
Neuroscience, 28(12), 2959-2964.

350

Knott, G., and Genoud, C. (2013). Is EM dead? The Journal of Cell Science, 126, 4545-
4552.

Koenderink, J.J., and van Doorn, A.J. (1992). Surface shapes and curvature scales. Image
and Vision Computing, 10(8), 557-564.

Kremer, J.R., Mastronarde, D.N., and McIntosh, J.R. (1996). Computer visualization of
three-dimensional image data using IMOD. The Journal of Structural Biology, 116, 71-76.

Kreshuk, A., Straehle, C.N., Sommer, C., Koethe, U., Cantoni, M., Knott, G., and
Hamprecht, F.A. (2011). Automated detection and segmentation of synaptic contacts in
nearly isotropic serial electron microscopy images. PLoS one, 6(10).

Kreshuk, A., Koethe, U., Pax, E., Bock, D.D., and Hamprecht, F.A. (2014). Automated
detection of snyapses in serial section transmission electron microscopy image stacks.
PLoS one, 9(2), e87531.

Kumar, R., Vazquez-Reina, A., and Pfister, H. (2010). Radon-like features and their
application to connectomics. IEEE Computer Society Workshop on Mathematical Methods
in Biomedical Image Analysis 2010, 186-193.

Ladinsky, M., Mastronarde, D.N., McIntosh, J.R., Howell, K.E., and Staehelin, L.A. (1999).
Golgi structure in three dimensions: Functional insights from the normal rat kidney cell.
The Journal of Cell Biology, 144(6), 1135-1149.

Lafarga, M., Berciano, M.T., Martinez-Guijarro, F.J., Mellstrom, B., Lopez-Garcia, C., and
Naranjo, J.R. (1992). Fos-like expression and nuclear size in osmotically stimulated
supraoptic nucleus neurons. Neuroscience, 50(4), 867-875.

Lafontant, P.J., Behzad, A.R., Brown, E., Landry, P., Hu, N., and Burns, A.R. (2013).
Cardiac myocyte diversity and a fibroblast network in the junctional region of the zebrafish
heart revealed by transmission and serial block-face scanning electron microscopy. PLoS
one, 8(8), e72388.

Lamond, A.I., and Spector, D.L. (2003). Nuclear speckles: a model for nuclear organelles.
Nature Reviews Molecular Cell Biology, 4, 605-612.

Lammerding, J., Dahl, K.N., Discher, D.E., and Kamm, R.D. (2007). Nuclear mechanics
and methods. Methods in Cell Biology, 83, 269-294.

Lawrence, A., Bouwer, J.C., Perkins, G., and Ellisman, M.H. (2006). Transform-based
backprojection for volume reconstruction of large format electron microscope tilt series.
The Journal of Structural Biology, 154(2), 144-167.

Leighton, S.B. (1981). SEM images of block faces, cut by a miniature microtome within
the SEM – A technical note. Scanning Electron Microscopy, 2, 73-76.

351

Le Beaux, Y.J. (1972). An ultrastructural study of a cytoplasmic filamentous body, termed
Nematosome, in the neurons of the rat and cat substantia nigra. Z. Zellforsch., 118, 147-
155.

Lee, D. (2013). Scientific analysis by the crowd: A system for implicit collaboration
between experts, algorithms, and novices in distributed work. (Doctoral dissertation).

Levinthal, C., and Ware, R. (1972). Three dimensional reconstruction from serial sections.
Nature, 236, 207-210.

Lew, G.M., Payer, A., and Quay, W.B. (1982). The pinealocyte nucleolus. Ultrastructural
and stereological analysis of twenty-four-hour changes. Cell and Tissue Research, 224,
195-206.

Lew, G.M., Washko, K., and Quay, W.B. (1984). Quantitation of ultrastructural twenty-four
hour changes in pineal nuclear dimensions. The Journal of Pineal Research, 1, 61-68.

Lewczuk, B., Nowicki, M., Prusik, M., and Przybylska-Gornowicz, B. (2004). Diurnal
rhythms of pinealocyte ultrastructure, pineal serotonin content and plasma melatonin level
in the domestic pig. Folia Histochecmica Et Cytobiologica, 42(3), 155-164.

Li, F.L., and Dickinson, H.G. (1986). The structure and function of nuclear invaginations
characteristic of microsporogenesis in Pinus banksiana. Annals of Botany, 60(3), 321-330.

Li, S.H., Gutekunst, C., Hersch, S.M., and Li, X. (1998a). Association of HAP1 isoforms
with a unique cytoplasmic structure. The Journal of Neurochemistry, 71, 2178-85.

Li, S.H., Gutekunst, C.A., Hersch, S.M., and Li, X.J. (1998b). Interactino of huntingtin-
associated protein with dynactin P150Glued. The Journal of Neuroscience, 18, 1261-
1269.

Li, S.H., Li, H., Torre, E.R., Li, and X.J. (2000). Expression of huntingtin-associated
protein1 in neuronal cells implicates a role in neuritic growth. Molecular and Cellular
Neuroscience, 16, 168-183.

Lich, B., Zhuge, X., Potocek, P., Boughorbel, F., and Mathisen, C. (2013). Bringing
deconvolution algorithmic techniques to the electron microscope. The Biophysical Journal,
104, 500A.

Lich, B.H., Boughorbel, F., Potocek, P., van den Boogaard, R., Hekking, L., Korkmaz, E.,
Cernohorsky, P., Hovorka, M., and Langhorst, M. (2014). 3D isotropic reconstruction of
biological samples through cycles of physical and virtual sectioning in electron
microscopy. Program No. 98.06. 2014 Neuroscience Meeting Planner. Washington, D.C.:
Society for Neuroscience, 2014. Online.

Lichtman, J.W., and Denk, W. (2011). The big and the small: challenges of imaging the
brain’s circuits. Science, 334, 618-623.

352

Lipke, E., Hörnschemeyer, T., Pakzad, A., Booth, C.R., and Michalik, P. (2014). Serial
block-face imaging and its potential for reconstructing diminutive cell systems: a case
study from arthropods. Microscopy and Microanalysis, 20(3), 946-955.

Liu, H.K. (1977). Two- and three-dimensional boundary detection. Computer Graphics and
Image Processing, 6, 123-134.

Liu, T., Jones, C., Seyedhosseini, M., and Tasdizen, T. (2013). A modular hierarchical
approach to 3D electron microscopy image segmentation. The Journal of Neuroscience
Methods, 226, 88-102.

Lorensen, W.E., and Cline, H.E. (1987). Marching cubes: A high resolution 3D surface
construction algorithm. Computer Graphics, 21(4), 163-169.

Lu, W., Bushong, E.A., Shih, T.P., Ellisman, M.H., and Nicoll, R.A. (2014). The cell-
autonomous role of excitatory synaptic transmission in the regulation of neuronal structure
and function. Neuron, 78(3), 433-439.

Lucchi, A., Smith, K., Achanta, R., Knott, G., and Fua, P. (2012). Supervoxel-based
segmentation of mitochondria in EM image stacks with learned shape features. IEEE
Transactions on Medical Imaging, 31(2), 474-486.

Ludtke, S.H., Chen, D.-H., Song, J.-L., Chuang, D.T., and Chiu, W. (2004). Seeing GroEL
at 6Å resolution by single particle electron cryomicroscopy. Structure, 12(7), 1129-1136.

Luhmann, U.F.O., Lange, C.A., Robbie, S., Munro, P.M.G., Cowing, J.A., Armer, H.E.J.,
Luong, V., Carvalho, L.S., MacLaren, R.E., Fitzke, F.W., Bainbridge, J.W.B., and Ali, R.R.
(2012). Differential modulation of retinal degeneration by Ccl2 and Cx3cr1 chemokine
signaling. PLoS one, 7(4), e35551.

Macagno, E.R., Levinthal, C., and Sobel, I. (1979). Three-dimensional computer
reconstruction of neurons and neuronal assemblies. Annual Reviews of Biophysics and
Bioengineering, 8, 323-351.

Macke, J., Maack, N., Gupta, R., Denk, W., Schölkopf, B., and Borst, A. (2008). Contour-
propagation algorithms for semi-automated reconstruction of neural processes. The
Journal of Neuroscience Methods, 167, 349-357.

Madeira, M.D., Sousa, N., Santer, R.M., Paula-Barbosa, M.M., and Gundersen, H.J.G.
(1995). Age and sex do not affect the volume, cell numbers, or cell size of the
suprachiasmatic nucleus of the rat: An unbiased stereological study. The Journal of
Comparative Neurology, 361, 585-601.

Malhas, A., Goulbourne, C., and Vaux, D.J. (2011). The nucleoplasmic reticulum: form
and function. Trends in Cell Biology, 21(6), 362-373.

Malhas, A., and Vaux, D.J. (2014). “Nuclear envelope invaginations and Cancer,” in
Cancer Biology and the Nuclear Envelope. Recent Advances May Elucidate Past
Paradoxes. Springer, New York. pp. 523-535.

353

Marabini, R., and Carazo, J.-M. (1994). Pattern recognition and classification of images of
biological macromolecules using artificial neural networks. The Biophysical Journal, 66,
1804-1814.

Martell, J.D., Deerinck, T.J., Sancak, Y., Poulos, T.L., Mootha, V.K., Sosinsky, G.E.,
Ellisman, M.H., and Ting, A.Y. (2012). Engineered ascorbate peroxidase as a genetically
encoded reporter for electron microscopy. Nature Biotechnology, 30, 1143-1148.

Marx, V. (2013). Neurobiology: brain mapping in high resolution. Nature, 503, 147-152.

Masri, S., Cervantes, M., and Sassone-Corsi, P. (2013). The circadian clock and cell cycle:
Interconnected biological circuits. Current Opinion in Cell Biology, 25, 730-734.

Mastronarde, D.N. (1997). Dual-axis tomography: An approach with alignment methods
that preserve resolution. The Journal of Structural Biology, 120, 343-352.

Mastronarde, D.N. (2003). SerialEM: A program for automated tilt series acquisition on
Tecnai microscopes using prediction of specimen position. Miroscopy and Microanalysis,
9(Suppl. 2), 1182-1183.

Matthews, B.W. (1975). Comparison of the predicted and observed secondary structure
of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure, 405(2),
442-451.

Mauger, J.-P. (2012). Role of the nuclear envelope in calcium signaling. Biology of the
Cell, 104, 70-83.

Mayhew, T.M., and Astle, D. (1997). Photoreceptor number and outer segment disk
membrane surface area in the retina of the rat: stereological data for whole organ and
average photoreceptor cell. The Journal of Neurocytology, 26, 53-61.

McComb, T., Cairncross, O., Noske, A.B., Wood, D.L.A., Marsh, B.J., and Ragan, M.A.
(2009). Illoura: a software tool for analysis, visualization and semantic querying of cellular
and other spatial biological data. Bioinformatics, 25(9), 1208-1210.

McEwen, B.F., and Marko, M. (2001). The emergence of electron tomography as an
important tool for investigating cellular ultrastructure. The Journal of Histochemistry and
Cytochemistry, 49(5), 553-563.

Messaoudil, C., Boudier, T., Sorzano, C.O.S., and Marco, S. (2012). TomoJ: Tomography
software for three-dimensional reconstruction in transmission electron microscopy. BMC
Bioinformatics, 8, 288.

Metzeger, S., Rong, J., Nguyen, H.P., Cape, A., Tomiuk, J., Soehn, A.S., Propping, P.,
Freudenberg-Hua, Y., Freudenberg, J., Tong, L., Li, S.H., Li, X.J., and Riess, O. (2008).
Huntingtin-associated protein-1 is a modifier of the age-at-onset of Huntington’s disease.
Human Molecular Genetics, 17, 1137-1146.

354

Michevam K.D., and Smith, S.J. (2007). Array tomography: a new tool for imaging the
molecular architecture and ultrastructure of neural circuits. Neuron, 55, 25-36.

Miller, B.H., McDearmon, E.L., Panda, S., Hayes, K.R., Zhang, J., Andrews, J.L., Antoch,
M.P., Walker, J.R., Esser, K.A., Hogenesch, J.B., and Takahashi, J.S. (2007). Circadian
and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation.
Proceedings of the National Academy Of Sciences U.S.A., 104(9), 3342-3347.

Mishchenko, Y., Hu, T., Spacek, J., Mendenhall, J., Harris, K.M., and Chklovskii, D.B.
(2010). Ultrastructural analysis of hippocampal neuropil from the connectomics
perspective. Neuron, 67, 1009-1020.

Miyawaki, A., Llopis, J., Heim, R., McCaffery, J.M., Adams, J.A., Ikura, M., and Tsien, R.Y.
(1997). Fluorescent indicators for Ca2+ based on green fluorescent proteins an
calmodulin. Nature, 388, 882-887.

Moens, P.B., and Moens, T. (1981). Computer measurements and graphics of three-
dimensional cellular ultrastructure. The Journal of Ultrastructure Research, 75, 131-141.

Mohammadi-Gheidari, and Kruit, A. (2011). Electron optics of multi-beam scanning
electron microscope. Nuclear Instruments and Methods A, 645, 60-67.

Moore, H.L., Chen, J., Gibson, E., Donelan, J.M., and Beg, M.F. (2010). A semi-automated
method for identifying and measuring myelinated nerve fibers in scanning electron
microscope images. The Journal of Neuroscience Methods, 201, 149-158.

Moore, R.Y., Speh, J.C., Leak, R.K. (2002). Suprachiasmatic nucleus organization. Cell
and Tissue Resarch, 309, 89-98.

Mori, M., Ishikawa, G., Takeshita, T., Goto, T., Robinson, J.M., and Takizawa, T. (2006).
Ultrahigh-resolution immunofluorescence microscopy using ultrathin cryosections:
subcellular distribution of caveolin-1alpha and CD31 in human placental endothelial cells.
The Journal of Electron Microscopy, 55, 107-112.

Morin, L.P. (2007). SCN organization revisited. The Journal of Biological Rhythms, 22, 3-
13.

Morin, L.P. (2013). Neuroanatomy of the extended circadian rhythm system. Experimental
Neurology, 243, 4-20.

Mohawk, J.A., Green, C.B., and Takahashi, J.B. (2012). Central and peripheral circadian
clocks in mammals. Annual Review of Neuroscience, 35, 445-462.

Morales, J., Alonso-Nanclares, L., Rodriguez, J.-R., DeFelipe, J., Rodriguez, A., and
Merchan-Perez, A. (2011). Espina: A tool for the automated segmentation and counting
of synapses in larges stacks of electron microscopy images. Frontiers in Neuroanatomy,
5(18).

355

Motoi, Y., Aizama, T., Haga, S., Nakamura, S., Namba, Y., and Ikeda, K. (1999). Neuronal
localization of a novel mosaic apolipoprotein E receptor, LR11, in rat and human brain.
Brain Research, 833, 209-215.

Motskin, M., Müller, K., Genoud, C., Monteith, A.G., and Skepper, J.N. (2011). The
sequestration of hydroxyapatite nanoparticles by human monocyte-macrophages in a
compartment that allows free diffusion with the extracellular environment. Biomaterials,
32(35), 9470-9482.

Müller, O.M., and Gerber, H.B. (1985). Circadian changes of the rat pancreas acinar cell.
A quantitative morphological investigation. The Scandinavian Journal of
Gastroenterology, 20(s112), 12-19.

Mun, J.Y., Jeong, S.Y., Kim, J.H., Han, S.S., and Kim, I.-H. (2010). A low fluence Q-
switched Nd:YAG laser modifies the 3D structure of melanocyte and ultrastructure of
melanosome by subcellular-selective photothermolysis. The Journal of Electron
Microscopy, dfq068.

Murakami, G., and Uchiyama, Y. (1986). Bimodal variations in subcellular structures of rat
thyroid follicular cells during 24 hours: fine structural and morphometric studies. The
American Journal of Anatomy, 175, 1-13.

Murphy, G.E., Lowekamp, B.C., Zerfas, P.M., Chandler, R.J., Narasimha, R., Venditti,
C.P.m and Subramaniam, S. (2010). Ion-abrasion scanning electron microscopy reveals
distorted liver mitochondrial morphology in murine methylmalonic academia. The Journal
of Structural Biology, 171, 125-132.

Mustafi, D., Avishai, A., Avishai, N., Engel, A., Heuer, A., and Palczewski, K. (2011). Serial
sectioning for examination of photoreceptor cell architecture by focused ion beam
technology. The Journal of Neuroscience Methods, 198, 70-76.

Mustafi, D., Kevany, B.M., Genoud, C., Bai, X., and Placzewski, K. (2013). Photoreceptor
phagocytosis is mediated by phosphoinositide signaling. The FASEB Journal, 27(11),
4585-4595.

Myronenko, A., and Song, X. (2012). Point set registration: coherent point drift. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32(12), 2262-2275.

Najm, F.J., Lager, A.M., Zaermba, A., Wyatt, K., Caprariello, A.V., Factor, D.C., Tarl, R.T.,
Maeda, T., Miller, R.H., and Tesar, P.J. (2013). Transcription factor-mediated
reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor
cells. Nature Biotechnology, 31, 426-433.

Nanguneri, S., Flottmann, B., Horstmann, H., Heilemann, M., and Kuner, T. (2012). Three-
dimensional, tomographic super-resolution fluorescence imaging of serially sectioned
thick samples. PLoS one, 7(5), e38098.
Narashima, R., Ouyang, H., Gray, A., McLaughlin, S.W., and Subraniam, S. (2009).
Automatic joint classification and segmentation of whole cell 3D images. Pattern
Recognition, 42, 1067-1079.

356

Nelson, W.G., Pienta, K.J., Barrack, E.R., and Coffey, D.S. (1986). The role of the nuclear
matrix in the organization and function of DNA. Annual Review of Biophysics and
Biophysical Chemistry, 15, 457-75.

Nemeth, A., and Langst, G. (2011). Genome organization in and around the nucleolus.
Trends in Genetics, 27, 149-156.

Newman, G.R., and Hobot, J.A. (1999). Resins for combined light and electron
microscopy: A half century of development. The Histochemical Journal, 31, 495-505.

Nicastro, D., Schwartz, C., Pierson, J., Gaudette, R., Porter, M.E., and McIntosh, J.R.
(2006). The molecular architecture of axonemes revealed by cryoelectron tomography.
Science, 313, 944-948.

Nickell, S., Forster, F., Linaroudis, A., Net, W.D., Beck, F., Hegerl, R., Baumesiter, W.,
and Plitzko, J.M. (2005). TOM software toolbox: Acquisition and analysis for electron
tomography. The Journal of Structural Biology, 149, 227-234.

Nguyen, J.V., Soto, I., Kim, K.-Y., Bushong, E.A., Oglesby, E., Valiente-Soriano, F.J.,
Yang, Z., Davis, C.O., Bedont, J.L., Son, J.L., Wei, J.O., Buchman, V.L., Zack, D.J., Vidal-
Sanz, M., Ellisman, M.H., and Marsh-Armstrong, N. (2011). Myelin transition zone
astrocytes are constitutively phagocytic and have synuclein dependent reactivity in
glaucoma. Proceedings of the National Academy of Science U.S.A., 108(3), 1176-1181.

Nogales, E., Wolf, S.G., and Downing, K.H. (1998). Structure of the alpha beta tubulin
dimer by electron crystallography. Nature, 391, 199-203.

Noske, A.B., Costin, A.J., Morgan, G.P., and Marsh, B.J. (2008). Expedited approaches
to whole cell electron tomography and organelle mark-up in situ in high-pressure frozen
pancreatic islets. The Journal of Structural Biology, 161(3), 298-313.

Oberti, D., Kirschmann, M.A., and Hahnloser, R.H.R. (2011). Projection neuron circuits
resolved using correlative array tomography. Frontiers in Neuroscience, 5, 50.

O’Connell, M.K., Murthy, S., Phan, S., Xu, C., Buchanan, J., Spilker, R., Dalman, R.L.,
Zarins, C.K., Denk, W., Taylor, C.A. (2008). The three-dimensional micro- and
nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron
microscopy imaging. Matrix Biology, 27(3), 171-181.

Ollion, J., Cochennec, J., Loll, F., Escude, C., and Boudier, T. (2013). TANGO: A generic
tool for high-throughput 3D image analysis for studying nuclear organization.
Bioinformatics, btt276.

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man, and Cybernetics, 9(1), 62-66.
Ou, H.D., Kwiatkowski, W., Deerinck, T.J., Noske, A., Blain, K.Y., Land, H.S., Soria, C.,
Powers, C.J., May, A.P., Shu, X., Tsien, R.Y., Fitzpatrick, J.A.J., Long, J.A., Ellisman,
M.H., Choe, S., and O’Shea, C.C. (2012). A structural basis for the assembly and functions
of a viral polymer that inactivates multiple tumor suppressors. Cell, 151(2), 304-319.

357

Padeken, J., and Heun, P. (2014). Nucleolus and nuclear periphery: Velcro for
heterochromatin. Current Opinion in Cell Biology, 28, 54-60.

Palade, G.E. (1952). The fine structure of mitochondria. The Anatomical Record, 114, 427-
451.

Palade, G.E., and Porter, K.R. (1954). Studies on the endoplasmic reticulum. I. Its
identification in cells in situ. The Journal of Experimental Medicine, 100, 641-656.

Palay, S.L., and Palade, G.E. (1955). The fine structure of neurons. The Journal of
Biophysical and Biochemical Cytology, 1, 69-88.

Palmer, C.M., and Löwe, J. (2014). A cylindrical specimen holder for electron cryo-
tomography. Ultramicroscopy, 137, 20-29.

Panda, S., Nayak, S.K., Campo, B., Walker, J.R., Hogenesch, J.B., and Jegla, T. (2005).
Illumination of the melanopsin signaling pathway. Science, 307(5709), 600-604.

Pannese, E. (1999). The Golgi stain: Invention, diffusion and impact on neurosciences.
The Journal of the History of the Neurosciences, 8(2), 132-140.

Paridaen, J.T.M.L., Wilsch-Braüninger, M., and Huttner, W.B. (2013). Asymmetric
inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after
cell division. Cell, 155(2), 333-344.

Pascual, A., Barcena, M., Merelo, J.J., Carazo, J.-M. (2000). Mapping and fuzzy
classification of macromolecular images using self-organizing neural networks.
Ultramicroscopy, 84, 85-99.

Patterson, G., Davidson, M., Manley, S., Lippincott-Schwartz, J. (2010). Superresolution
imaging using single-molecule localization. Annual Review of Physical Chemistry, 61, 345-
367.

Paytubi, S., Wang, X., Lam, Y.W., Izquierdo, L., Hunter, M.J., Jan, E., Hundal, H.S., and
Proud, C.G. (2009). ABC50 promotes translation initiation in mammalian cells. The
Journal of Biological Chemistry, 284, 24061-24073.

Pébusque, M.-J., Robaglia, A., and Seïte, R. (1981a). Dirunal rhythm of nucleolar volume
in sympathetic neurons of the rat superior cervical ganglion. The European Journal of Cell
Biology, 24, 128-130.

Pébusque, M.-J., and Seïte, R. (1981b). Evidence of a circadian rhythm in nucleolar
components of rat superior cervical ganglion neurons with particular reference to the
fibrillar centers: an ultrastructural and stereological analysis. The Journal of Ultrastructure
Research, 77, 83-92.

Pébusque, M.-J., and Seïte, R. (1985). Ultrastructure and stereological analysis of nucleoli
of rat nodose ganglion neuron during a 24-h period: a comparison with sympathetic

358

neurons of the rat superior cervical ganglion. The Journal of the Autonomic Nervous
System, 13, 91-98.

Peddie, C.J., Blight, K., Wilson, E., Melia, C., Marrison, J., Carzaniga, R., Domart, M.-C.,
O’Toole, P., Larijani, B., and Collinson, L.M. (2014). Correlative and integrated light and
electron microscopy of in-resin GFP fluorescence, used to localize diacylglycerol in
mammalian cells. Ultramicroscopy, 143, 3-14.

Peddie, C.J., and Collinson, L.M. (2014). Exploring the third dimension: Volume electron
microscopy comes of age. Micron, 61, 9-19.

Pedlar, C, and Tilly, R. (1966). A new method of serial reconstruction from electron
micrographs. The Journal of the Royal Microscopical Society, 86(2), 189-197.

Pellettieri, J., Fitzgerald, P., Watanabe, S., Mancuso, J., Green, D.R., and Alvarado, A.S.
(2010). Cell death and tissue remodeling in planarian regeneration. Developmental
Biology, 338(1), 76-85.

Perkins, G.A., Renken, C.W., Song, J.Y., Frey, T.G., Young, S.J., Lamont, S., Martone,
M.E., Lindsey, S., and Ellisman, M.H. (1997). Electron tomography of large,
multicomponent biological structures. The Journal of Structural Biology, 120(3), 219-227.

Perkins, G.A., Sun, M.G., and Frey, T.G. (2009). Chapter 2 correlated light and electron
microscopy/electron tomography of mitochondria in situ. Methods in Enzymology, 456, 29-
52.

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C.,
and Ferrin, T.E. (2004). UCSF Chimera – A visualization system for exploratory research
and analysis. The Journal of Computational Chemistry, 25(13), 1605-1612.

Pfeifer, C.R., Shomorony, A., Aronoba, M.A., Zhang, G., Cai, T., Hu, X., Notkins, A.L., and
Leapman, R.D. (2014). Quantitative analysis of mouse pancreatic islet architecture by
serial block-face SEM. The Journal of Structural Biology,

Phan, S., Lawrence, A., Molina, T., Lanman, J., Berlanga, M., Terada, M., Kulungowski,
A., Obayashi, J., and Ellisman, M.H. (2012). TxBR montage reconstruction for large field
electron tomography. The Journal of Structural Biology, 180(1), 154-164.

Philippens, K.M.H. (1980). “Synchronization of rhythms to meal timing,” in Chronobiology:
Principles and Applications to Shifts in Schedules, pp. 403-416. Sijthoff and Noordhoff,
Alphen aan den Rijn, The Netherlands.

Pielage, J., Cheng, L., Fetter, R.D., Carlton, P.M., Sedat, J.W., and Davis, G.W. (2008).
A presynaptic giant ankyrin stabilizes the NMJ through regulation of presynaptic
microtubules and transsynaptic cell adhesion. Neuron, 58, 195-209.

Pinali, C., Bennett, H., Davenport, J.B., Trafford, A.W., and Kitmitto, A. (2013). 3-D
reconstruction of the cardiac sarcoplasmic reticulum reveals a continuous network linking

359

T-tubules: this organization is perturbed in heart failure. Circulation Research, 6(6), 845-
858.

Pinheiro, I., Margueron, R., Shukeir, N., Eisold, M., Fritzsch, C., Richter, F.M., Mittler, G.,
Genoud, C., Goyama, S., Kurokawa, M., Son, J., Reinberg, D., Lachner, M., and
Januwein, T. (2012). Prd3m and Prdm16 are H3K9me1 methyltransferases required for
mammalian heterochromatin integrity. Cell, 150(5), 948-960.

Pingel, J., Lu, Y., Starborg, T., Fredberg, U., Langberg, H., Nedergaard, A., Weis, M.,
Eyre, D., Kjaer, M., and Kadler, K.E. (2014). 3-D ultrastructure and collagen composition
of healthy and overloaded human tendon: evidence of tenocyte and matrix buckling. The
Journal of Anatomy, 224(5), 548-555.

Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., ter Haar
Romeny, B.M., Zimmerman, J.B., and Zuiderveld, K. (1987). Adaptive histogram
equalization and its variations. Computer Vision, Graphics and Image Processing, 39,
355-368.

Plaza, S.M., Parag, T., Huang, G.B., Olbris, D.J., Saunders, M.A., and Rivlin, P.K. (2014).
Annotating synapses in large EM datasets. arXiv preprint, 1409.1801.

Plaza, S.M., Scheffer, L.K., and Chklovskii, D.B. (2014). Toward large-scale connectome
reconstructions. Current Opinion in Neurobiology, 25, 201-210.

Plaza, S.M., Scheffer, L.K., and Saunders, M. (2012). Minimizing manual image
segmentation turn-around time for neuronal reconstruction by embracing uncertainty.
PLoS one, 7(9), e44448.

Pollier, J., Moses, T., Gonzalez-Guzman, M., De Geyter, N., Lippens, S., Vanden
Bossche, R., Marhavy, P., Kremer, A., Morreel, K., Guerin, C.J., Tava, A., Oleszek, W.,
Thevelein, J.M., Campos, N., Goormachtig, S., and Goossens, A. (2013). The protein
quality control system manages plant defence compound synthesis. Nature, 504(7478),
148-152.

Porter, K.R., and Blum, J. (1953). A study in microtomy in electron microscopy. The
Anatomical Record, 117, 685-710.

Porter, K.R., Claude, A., and Fullam, E.F. (1945). A study of tissue culture cells by electron
microscopy: Method and preliminary observations. The Journal of Experimental Medicine,
81(3), 233-246.

Poulet, A., Arganda-Carreras, I., Legland, D., Probst, A.V., Andrey, P., and Tatout, C.
(2014). NucleusJ: an ImageJ plugin for quantifying 3D images of interphase nuclei.
Bioinformatics, btu774.

Powers, D.M. (2011). Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness & correlation. The Journal of Machine Learning Technologies,
2(1), 37-63.

360

Powner, M.B., Scott, A., Zhu, M., Munro, P.M.G., Foss, A.J.E., Hageman, G.S., Gillies,
M.C., and Fruttiger, M. (2011). Basement memgrane changes in capillaries of the ageing
human retina. The British Journal of Ophthalmology, bjo-2011.

Price, D.L., Chow, S.K., MacLean, N.A.B., Hakozaki, H., Peltier, S., Martone, M.E., and
Ellisman, M.H. (2006). High-resolution large-scale mosaic imaging using multiphoton
microscopy to characterize transgenic mouse models of human neurological disorders.
Neuroinformatics, 4(1), 65-80.

Prothero, J., and Prothero, J. (1982). Three-dimensional reconstruction from serial
sections. I. A portable microcomputer-based software package in Fortran. Computers and
Biomedical Research, 15, 598-604.

Rezakhaniha, R., Fonck, E., Genoud, C., and Stergiopulos, N. (2011). Role of elastin
anisotropy in structural strain energy functions of arterial tissue. Biomechanics and
Modeling in Mechanobiology, 10, 599-611.

Rieger, B., Timmermans, F.J., van Vliet, L.J., and Verbeek, P.W. (2004). On curvature
estimation of ISO surfaces in 3D gray-value images and the computation of shape
descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8), 1088-
1094.

Robaglia, A., and Seïte, R. (1985). Changes in nucleoli and nucleolar fibrillar centres of
chromaffin cells in rat adrenal medulla over a 24-hour period: an ultrastructural and
stereological analysis. The Journal of Cell Science, 77, 255-262.

Romero, E., Cuisenaire, O., Denef, J.F., Delbeke, J., Macq, B., and Veraart, C. (2000).
Automatic morphometry of nerve histological sections. The Journal of Neuroscience
Methods, 97, 111-122.

Rouquette, J., Genoud, C., Vazquez-Nin, G.H., Kraus, B., Cremer, T., and Fakan, S.
(2009). Revealing the high-resolution three-dimensional network of chromatin and
interchromatin space: A novel electron-microscopic approach to reconstructing nuclear
architecture. Chromosome Research, 17(6), 801-810.

Röver, S., and Philippens, K.M.H. (1979). Circadian rhythm of binuclear rat liver cells.
Response to phase-shifted light-dark cycle. Chronobiologia, 6, 149.

Rust, M.J., Bates, M., Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic optical
reconstruction microscopy (STORM). Nature Methods, 3, 793-95.

Seung, H.-S. (2013). Connectome: How the Brain’s Wiring Makes Us Who We Are.
Houghton Mifflin Harcourt. New York, NY, U.S.A.

Seyedhosseini, M., Ellisman, M.H., and Tasdizen, T. (2013a). “Segmentation of
mitochondria in electron microscopy images using algebraic curves,” in 2013 IEEE 10th
International Symposium on Biomedical Imaging: From Nano to Macro. San Francisco,
CA, U.S.A.

361

Seyedhosseini, M., Sajjadi, M., and Tasdizen, T. (2013b). Image segmentation with
cascaded hierarchical models and logistic disjunctive normal networks. 2013 IEEE
International Conference on Computer Vision, 2168-2175.

Schalek, R., Kasthuri, N., Hayworth, K., Berger, D., Tapia, J.C., Morgan, J.L., Turaga,
S.C., Fagerholm, E., Seung, H.S., and Lichtman, J.W. (2011). Development of high-
throughput, high-resolution 3D reconstruction of large-volume biological tissue using
automated tape collection ultramicrotomy and scanning electron microscopy. Microscopy
and Microanalysis, 17(Suppl 2), 966-967.

Schindelin, J., Agranda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J.,
Hartenstein, V., Eliceiri, K., Tomancak, P., and Cardona, A. (2012). Fiji: An open-source
platform for biological-image analysis. Nature Methods, 9, 676-682.

Schwartz, C.L., Heumann, J.M., Dawson, S.C., and Hoenger, A. (2012). A detailed,
hierarchical study of Giardia lamblia’s ventral disc reveals novel microtubule-associated
protein complexes. PLoS one, 7(8), e43783.

Senft, S.L. (2011). A brief history of neuronal reconstruction. Neuroinformatics, 9, 119-
128.

Shinoda, K., Mori, S., Ohtsuki, T., and Osawa, Y (1992). An aromatase-associated
cytoplasmic inclusion, the “Stigmoid Body,” in the rat brain: I. Distribution in the forebrain.
The Journal of Comparative Neurology, 322, 360-76.

Shinoda, K., Nagano, M., and Osawa, Y. (1993). An aromatase-associated cytoplasmic
inclusion, the “Stigmoid Body,” in the rat brain: II. Ultrastructure (with a review of its history
and nomenclature). The Journal of Comparative Neurology, 329, 1-19.

Shu, X., Lev-Ram, V., Deerinck, T.J., Qi, Y., Ramko, E.B., Davidson, M.W., Jin, Y.,
Ellisman, M.H., Tsien, R.Y. (2011). A genetically encoded tag for correlated light and
electron microscopy of intact cells, tissues, and organisms. PLoS Biology, 9(4), e1001041.

Silva, G.A. (2006). Neuroscience nanotechnology: Progress, opportunities and
challenges. Nature Reviews Neuroscience, 7, 65-74.
Sjöstrand, F.S. (1958). Ultrastructure of retinal rod synapses of the guinea pig eye as
revealed by three-dimensional reconstructions from serial sections. The Journal of
Ultrastructure Research, 2, 122-170.

Sjöstrand, F.S. (1974). A search for the circuitry of directional selectivity and neural
adaptation through three-dimensional analysis of the outer plexiform layer of the rabbit
retina. The Journal of Ultrastructural Research, 49, 60-156.

Slepchenko, B.M., Schaff, J.C., Macara, I., and Loew, L.M. (2003). Quantitative cell
biology with the Virtual Cell. TRENDS in Cell Biology, 13(11), 570-576.

Smith, P.J., Blunt, N., Wiltshire, M., Hoy, T., Teesdale-Spittle, P., Craven, M.R., Watson,
J.V., Amos, W.B., Errington, R.J., and Patterson, L.H. (2000). Characteristics of a novel

362

deep red/infrared fluorescent cell-permeant DNA probe, DRAQ5, in intact human cells
analyzed by flow cytometry, confocal, and multiphoton microscopy. Cytometry, 40(4), 280-
291.

Smith, K., Carleton, A., and Lepetit, V. (2009). Fast ray features for learning irregular
shapes. IEEE 12th International Conference on Computer Vision, 397-404.

Sommer, C., Straehle, C., Kothe, U., and Hamprecht, F.A. (2011). “ilastik: Interactive
learning and segmentation toolkit,” in 2011 IEEE International Symposium on Biomedical
Imaging: From Nano to Macro, 230-233.

Sorzano, C.O.S., Marabini, R., Velazquez-Muriel, J., Bilbao-Castro, J.R., Scheres, S.H.w.,
Carazo, J.M., and Pascual-Montano, A. (2004). XMIPP: a new generation of an open-
source image processing package for electron microscopy. The Journal of Structural
Biology, 148(2), 194-204.

Sosinsky, G.E., Gaietta, G.M., Hand, G., Deerinck, T.J., Han, A., Mackey, M., Adams,
S.R., Bouwer, J., Tsien, R.Y., and Ellisman, M.H. (2003). Tetracysteine genetic tags
complexed with biarsenical ligands as a tool for investigating gap junction structure and
dynamics. Cell Communication and Adhesion, 10, 181-186.

Sosinsky, G.E., Deerinck, T.J., Greco, R., Buitenhuys, C.H., Bartol, T.M., and Ellisman,
M.H. (2005). Development of a model for microphysiological simulations: Small nodes of
Ranvier from peripheral nerves of mice reconstructed by electron tomography.
Neuroinformatics, 3, 133-162.

Sosinsky, G.E., Crum, J., Jones, Y.Z., Lanman, J., Smarr, B., Terada, M., Martone, M.E.,
Deerinck, T.J., Johnson, J.E., and Ellisman, M.H. (2008). The combination of chemical
fixation procedures with high pressure freezing and freeze substitution preserves highly
labile tissue ultrastructure for electron tomography applications. The Journal of Structural
Biology, 161(3), 359-371.

Sotelo, J.R., Garcia, R.B., and Wettstein, R. (1973). Serial sectioning study of some
meiotic stages in Scaptericus borrelli (Grylloidea). Chromosma, 42, 307-333.

Soto, G.E., Young, S.J., Martone, M.E., Deerinck, T.J., Lamont, S., Carragher, B.O.,
Hama, K., and Ellisman, M.H. (1994). Serial section electron tomography: A method for
three-dimensional reconstruction of large structures. NeuroImage, 1(3), 230-243.

Staffler, B., van der Smagt, P., and Helmstaedter, M. (2014). Automated synapse
detection in large-scale serial block-face electron microscopy data. Program No. 98.07.
2014 Neuroscience Meeting Planner. Washington, D.C.: Society for Neuroscience, 2014.
Online.

Stephan, F.K., and Zucker, I. (1979). Circadian rhythms in drinking behavior and
locomotor activity of rats are eliminated by hypothalamic lesions. Proceedings of the
National Academy of Sciences U.S.A., 69(6), 1583-1586.

363

Stevens, B.J., and White, J.G. (1979). Computer reconstruction of mitochondria from
yeast. Methods in Enzymology, 56, 718-728.

Storch, K.F., Lipan, O., Leykin, I., Viswanathan, N., Davis, F.C., Wong, W.H., and Weitz,
C.J. (2002). Extensive and divergent circadian gene expression in liver and heart. Nature,
417, 78-83.

Straehle, C.N., Kothe, U., Knott, G., and Hamprecht, F.A. (2011). Carving: scalable
interactive segmentation of neural volume electron microscopy images. Medical Image
Computing and Computer-assisted Intervention, 14, 653-660.

Su, B., Wang, X., Zheng, L., Perry, G., Smith, M.A., and Zhu, X. (2010). Abnormal
mitochondrial dynamics and neurodegenerative diseases. Biochimica et Biophysica Acta
(BBA) – Molecular Basis of Disease, 1802(1), 135-142.

Takaoka, A., Yoshida, K., Mori, H., Hayashi, S., Young, S.J., and Ellisman, M.H. (2000).
International telemicroscopy with a 3 MV ultrahigh voltage electron microscope.
Ultramicroscopy, 83(1), 93-101.

Takahashi, J.S., Hong, H.-K., Ko, C.H., and McDearmon, D.L. (2008). The genetics of
mammalian circadian order and disorder: implications for physiology and disease. Nature
Reviews Genetics, 9, 764-775.

Takeuchi, I.K., and Takeuchi, Y.K. (1982). Ultrastructural and cytochemical studies on
nucleolus-like bodies in early postimplantation rat embryos. Cell and Tissue Research,
226, 257-266.

Tanaba, L.M., Kim, C.E., Alagem, N., and Dauer, W.T. (2009). Primary dystonia:
molecules and mechanisms. Nature Reviews Neurology, 5, 598-609.

Tanaka, Y., Kanai, Y., Okada, Y., Nonaka, S., Takeda, S., Harada, A., and Hirokawa, N.
(1998). Targeted disruption of mouse conventional kinesin heavy chain kif5B, results in
abnormal perinuclear clustering of mitochondria. Cell, 93(7), 1147-1158.

Tang, G., Peng, L., Baldwin, P.R., Mann, D.S., Jiang, W., Rees, I., Ludtke, S.J. (2007).
EMAN2: An extensible image processing suite for electron microscopy. The Journal of
Structural Biology, 157(1), 38-46.

Tasdizen, T., Whitaker, R., Marc, R., and Jones, B. (2005). “Enhancement of cell
boundaries in transmission electron microscopy images,” in 2005 IEEE International
Conference on Image Processing, 2, 129-32.

Tasdizen, T., Seyedhosseini, M., Liu, T., Jones, C., and Jurrus, E. (2014). “Image
segmentation for connectomics using machine learning,” in Computational Intelligence in
Biomedical Imaging, pp. 237-278. Springer New York.

Tek, F.B., Kroeger, T., Mikula, S., and Hamprecht, F.A. (2014). “Automated cell nucleus
detection for large-volume electron microscopy of neural tissue,” in 2014 IEEE 11th
International Symposium on Biomedical Imaging, 69-72. Beijing, China.

364

Thaunat, O., Granja, A.G., Barral, P., Filby, A., Montaner, B., Collinson, L., Martinez-
Martin, N., Harwood, N.E., Bruckbauer, A., and Batista, F.D. (2012). Asymmetric
segregation of polarized antigen on B cell devision shapes presentation capacity. Science,
335, 475-479.

Titze, B., and Denk, W. (2013). Automated in-chamber specimen coating for serial block-
face electron microscopy. The Journal of Microscopy, 250(2), 101-110.

Torre, E.R., Coleman, S., Yi, H., and Gutekunst, C. (2003). A protocol for isolation and
biochemical characterization of stigmoid bodies from rat brain. The Journal of
Neuroscience Methods, 125, 27-32.

Tsien, R.Y. (1998). The green fluorescent protein. Annual Review of Biochemistry, 67,
509-544.

Tzur, Y.B., Wilson, K.L., and Gruenbaum, Y. (2006). SUN-domain proteins: ‘Velcro’ that
links the nucleoskeleton to the cytoskeleton. Nature Reviews Molecular Cell Biology, 7,
782-788.

Valeo, T. (2014). How does the retina detect motion? More than 120,000 volunteers offer
some clues. Neurology Today, 14(11), 50-52.

van den Pol, T. (1980). The hypothalamic suprachiasmatic nucleus of rat: intrinsic
anatomy. The Journal of Comparative Neurology, 191, 661-702.

van der Horst, G.T.J., Maijtjens, M., Kobayashi, K., Takano, R., Kanno, S.-I., Takao, M.,
de Wit, J., Verkerk, A., Eker, A.P.M., van Leenen, D., Buijs, R., Bootsma, D., Hoeijmakers,
J.H.J., and Yasui, A. (1999). Mammalian Cry1 and Cry2 are essential for maintenance of
circadian rhythms. Nature, 398, 627-630.

van Heel, M. (1984). Multivariate statistical classification of noisy images (randomly
oriented biological macromolecules). Ultramicroscopy, 13, 165-184.

van Heel, M. (1989). Classification of very large electron microscopical image data sets.
Optik, 82, 114-126.

van Vliet, L.J., and Verbeek, P.W. (1993). Curvature and bending energy in digitized 2D
and 3D images. Proceedings of the Eighth Scandinavian Conference on Image Analysis,
1403-1410.

Varshney, L.R., Chen, B.L., Paniagua, E., Hall, D.H., and Chklovskii, D.B. (2011).
Structural properties of the Caenorhabditis elegans neuronal network. PLoS
Computational Biology, 7(2), e1001066.

Vazquez, L., Sapiro, G., and Randall, G. (1998). “Segmenting neurons in electronic
microscopy via geometric tracing,” in Proceedings of the 1998 International Conference
on Image Processing, 3, 814-818. Chicago, IL, U.S.A.

365

Vihinen, H., Belevich, I., and Jokitalo, E. (2013). Three dimensional electron microscopy
of cellular organelles by serial block face SEM and ET. Microsc. Anal., 27, 7-10.

Vitaladevuni, S.N., Mischenko, Y., Genkin, A., Chklovskii, D., and Harris, K. (2008).
Mitochondria detection in electron microscopy images. Workshop on Microscopic Image
Analysis with Applications in Biology, 42.

Vitols, E., North, R.J., and Linnane, A.W. (1961). Studies on the oxidative metabolism of
Saccharomyces cervisiae. I. Observations on the fine structure of the yeast cell. The
Journal of Cell Biology, 9(3), 689-699.

Volkova, E.G., Kurchashova, S.Y., Polyakov, V.Y., and Sheval, E.V. (2011). Self-
organization of cellular structures induced by the overexpression of nuclear envelope
proteins: a correlative light and electron microscopy study. The Journal of Electron
Microscopy, 60(1), 51-57.

von Mayersbach, H. (1983). “An overview of the chronobiology of cellular morphology,” in
Biological Rhythms and Medicine: Cellular, Metabolic, Physiopathologic, aned
Pharmacologic Aspects, pp. 47-78. Springer New York.

Vranceanu, F., Perkins, G.A., Terada, M., Chidavaenzi, R.L., Ellisman, M.H., and
Lysakowski, A. (2012). Striated organelle, a cytoskeletal structure positioned to modulate
hair-cell transduction. Proceedings of the National Academy of Sciences U.S.A., 109(12),
4473-4478.

Wacker, I., and Schroeder, R.R. (2013). Array tomography. The Journal of Microscopy,
252(2), 93-99.

Wang, N., Tytell, H.D., and Ingber, D.E. (2009). Mechanotransduction at a distance:
mechanically coupling the extracellular matrix with the nucleus. Nature Reviews Molecular
Cell Biology, 10, 75-82.

Watanabe, T., Matsuba, H., and Uchiyama, Y. (1988). Correlation of 24-hour fluctuations
in renin granules of juxtaglomerular cells and in renin and angiotensinogen in blood
plasma of the rat. Cell and Tissue Research, 254, 593-598.

Watanabe, M., and Uchiyama, Y. (1988). Twenty-four hour variations in subcellular
structures of rat pancreatic islet B-, A-, and D-cells, and of portal plasma glucose and
insulin levels. Cell and Tissue Research, 253, 337-345.

Weakley, B. (1969). Granular cytoplasmic bodies in oocytes of the golden hamster during
the postnatal period. Z. Zellforsch, 101, 394-400.

Wei, D., Jacobs, S., Modla, S., Zhang, S., Young, C.L., Cirino, R., Caplan, J., and
Czymmek, K. (2012). High-resolution three-dimensional reconstrucgion of a whole yeast
cell using focused-ion beam scanning electron microscopy. BioTechniques, 53, 41-48.

366

Welsh, D.K., Logothetis, D.E., Meister, M., and Reppert, S.M. (1995). Individual neurons
dissociated from rat suprachiasmatic nucleus express independently phased circadian
firing rhythms. Neuron, 14, 697-706.

Welsh, D.K., Yoo, S.-H., Liu, A.C., Takahashi, J.S., and Kay, S.A. (1994).
Bioluminescence imaging of individual fibroblasts reveals persistent, independently
phased circadian rhythms of clock gene expression. Current Biology, 14, 2289-2295.

Welsh, D.K., Takahashi, J.K., and Kay, S.A. (2010). Suprachiasmatic nucleus: cell
autonomy and network properties. Annual Review of Physiology, 72, 551-577.

West, J.B., Fu, Z., Deerinck, T.J., Mackey, M.R., Obayashi, J.T., and Ellisman, M.H.
(2010). Structure-function studies of blood and air capillaries in chicken lung using 3D
electron microscopy. Respiratory Physiology & Neurobiology, 170(2), 202-209.

White, J.G., and Amos, W.B. (1987). Confocal microscopy comes of age. Nature, 328,
183-184.

White, J.G., Southgate, E., Thomson, J.N., and Brenner, S. (1986). The structure of the
nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of
the Royal Society B: Biological Sciences, 314(1165), 1-340.

Wiley, T.J., Schultz, R.L., and Gott, A.H. (1973). Computer graphics in three dimensions
for perspective reconstruction of brain ultrastructure. IEEE Transactions on Biomedical
Engineering, 4, 288-291.

Wilke, S.A., Antonios, J.K., Bushong, E.A., Badkoobehi, A., Malek, E., Hwang, M., Terada,
M., Ellisman, M.H., and Ghosh, A. (2013). Deconstructing complexity: Serial block-face
electron microscopic analysis of the hippocampal mossy fiber synapse. The Journal of
Neuroscience, 33(2), 507-522.

Wilke, S.A., Raam, T., Antonios, J.K., Bushong, E.A., Koo, E.H., Ellisman, M.H., and
Ghosh, A. (2014). Specific disruption of hippocampal mossy fiber synapses in a mouse
model of familial Alzheimer’s disease. PLoS one, 9(1), e84349.

Wilt, B.A., Burns, L.D., Ho, E.T.W., Ghost, K.K., Mukamel, E.A., and Schnitzer, M.J.
(2009). Advances in light microscopy for neuroscience. Annual Review of Neuroscience,
32, 435.

Wong, J., Baddeley, D., Bushong, E.A., Yu, Z., Ellisman, M.H., Hoshijima, M., and Soeller,
C. (2013). Nanoscale distribution of ryanodine receptors and caveolin-3 in mouse
ventricular myocytes: dilation of T-tubules near junctions. The Biophysical Journal,
104(11), L22-L24.

Worman, H.J. (2012). Nuclear lamins and laminopathies. The Journal of Pathology,
226(2), 316-325.

367

Wright, M.L., Blanchard, LS., Pikula, A., and Labieniec, K.E. (1995). Circadian rhythms of
thyroid secretion, morphometry, and cell division in prometamorphic and climax Rana
tadpoles. General and Comparative Endocrinology, 99, 75-84.

Wu, H.-S., Barba, J., and Gil, J. (1996). An iterative algorithm for cell segmentation using
short-time Fourier transform. The Journal of Microscopy, 184, 127-132.

Xiao, L., Michalski, N., Kronander, E., Gjoni, E., Genoud, C., Knott, G., and
Schneggenburger, R. (2013). BMP signaling specifies the development of a large and fast
CNS synapse. Nature Neuroscience, 16, 856-864.

Yamazaki, S., Straume, M., Tei, H., Sakaki, Y., Menaker, M., and Block, G.D. (2002).
Effects of aging on central and peripheral mammalian clocks. Proceedings of the National
Academy of Sciences, 99, 10801-10806.

Yan, X., Sinkovits, R.S., and Baker, T.S. (2007). AUTO3DEM – An automated and high
throughput program for image reconstruction of icosahedral particles. The Journal of
Structural Biology, 157, 73-82.

Yang, Q., Rout, M.P., and Akey, C.W. (1998). Three-dimensional architecture of the
isolated yeast nuclear pore complex: Functional and evolutionary implications. Molecular
Cell, 1(2), 223-234.

Young, I.T., Walker, J.E., and Bowie, J.E. (1974). An analysis technique for biological
shape. I. Information and Control, 25, 357-370.

Young, R.D., Knupp, C., Pinali, C., Png, K.M.Y., Ralphs, J.R., Bushby, A.J., Starborg, T.,
Kadler, K.E., and Quantock, A.J. (2014). Three-dimensional aspects of matrix assembly
by cells in the developing cornea. Proceedings of the National Academy of Sciences
U.S.A., 111(2), 687-692.

Young, S.J., Royer, S.M., Groves, P.M., and Kinnamon, J.C. (1987). Three-dimensional
reconstructions from serial micrographs using the IBM PC. The Journal of Electron
Microscopy Technique, 6(2), 207-217.

Zhang, Z. (1994). Iterative point matching for registration of free-form curves and surfaces.
The International Journal of Computer Vision, 13(2), 119-152.

Zhao, X., Pan, Z., Wu, J., Zhou, G., and Zeng, Y. (2010). Automatic identification and
morphometry of optic nerve fibers in electron microscopy images. Computerized Medical
Imaging and Graphics, 34(3), 179-184.

Zhou, J., Lamichhane, S., Sterne, G., Ye, B., and Peng, H. (2013). BIOCAT: A pattern
recognition platform for customizable biological image classification and annotation. BMC
Bioinformatics, 14(291).

Zhuravleva, E., Gut, H., Hynx, D., Marcellin, D., Bleck, C.K.E., Genoud, C., Cron, P.,
Keusch, J.J., Dummler, B., Esposti, M.D., and Hemmings, B.A. (2012). Acyl coenzyme A

368

thioesterase Them5/Acot15 is involved in cardiolipin remodeling and fatty liver
development. Molecular and Cellular Biology, 32(14), 2685-2697.

Zink, D., Fischer, A.H., and Nickerson, J.A. (2004). Nuclear structure in cancer cells.
Nature Reviews Cancer, 4, 677-687.

Zucker, S.W., and Hummel, R.A. (1981). A three-dimensional edge operator. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 3. 324-331.

Zwerger, M., Ho, C.Y., and Lammerding, J. (2011). Nuclear mechanics in disease. Annual
Review of Biomedical Engineering, 13, 397-428.

