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Electron microscopy (EM) facilitates analysis of the structure, distribution, and
functional status of organelle networks within the nervous system. Recent breakthroughs
in EM specimen preparation and instrumentation have furnished scientists with the ability

to automatically collect volumetric datasets large enough to cover significant swaths of
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neuroanatomical subdivisions at nano-resolution. The quantification of biological
morphologies from these data, however, typically requires image segmentation, which is
a long-standing and well-recognized bottleneck. Though datasets may now be collected
at rates exceeding teravoxels per day, the manual segmentation and analysis of all
features from such a volume requires many years of human labor. As technological
advances driven by the desire to reconstruct entire nervous systems continue to push
instrument throughput skyward, it is clear that our ability to model brain ultrastructure will
be limited by the rate of image analysis rather than that of image acquisition.

The body of work described in this dissertation represents a contribution towards
alleviating this impediment. A pipeline for the automatic segmentation, morphological
quantification, and spatial characterization of organelles from high resolution datasets at
the teravoxel-scale is presented. Segmentations were generated using a highly
parallelized, supervised machine learning approach that reduces the required human
effort from years to just a few hours. A host of generic and organelle-specific post-
segmentation filters were developed, and it is shown that their application improves
segmentation accuracy. Accelerated approaches for generating surface renderings from
these large-scale segmentations are introduced, and a workflow for the automatic
computation and reporting of morphological, topological, and spatial metrics is described.
These methods were then applied to study the spatiotemporal changes of organelles in
neurons of the mouse suprachiasmatic nucleus across the diurnal cycle. Novel findings
pertaining to nuclear structure and organization are reported and discussed. Taken
together, the methods described here provide a series of tools for expediting the
quantitative analysis of organelle structure-function relationships in the current era of big

data in biological microscopy.
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Chapter 1

Methods for Whole Cell Imaging at High Resolution and Their Applications

in the Neurosciences



1.1. Introduction

Over the past decade, the field of neuroscience has experienced a renewed
enthusiasm and commitment towards exploring and understanding the structural
underpinnings of how the brain works. Such pursuits have generated a palpable buzz in
the scientific community that has noticeably extended to the general population. Indeed,
the launches of the BRAIN Initiative and Human Brain Project, two ventures driven by the
desire to better map and understand the human brain, have brought mainstream attention
to a field that was previously bereft of it (Abbott, 2013; Insel et al., 2013). It is widely
acknowledged that this rejuvenation is the product of the rapid development and
proliferation of technologies for preparing, imaging, and reconstructing regions of the brain
at unprecedented scale and resolution (Knott and Genoud, 2013; Peddie and Collinson,
2014). As a result of this technological progress, neuroscientists now have a toolbox of
modalities at their disposal that enables the rapid and automatic imaging of large volumes
of the brain at the level of ultrastructural, and sometimes molecular, resolution.

The rest of this chapter will serve as an introduction to the individual components
of this imaging toolbox, describing their histories, applications, and associated
technological breakthroughs. Particular focus will be paid to the ability of each modality to
image organelles and other nanoscale features within the subcellular compartment.
Finally, the conclusion of this chapter will feature a look towards the future of the field and

establish the importance of the technologies developed in this dissertation.

1.2. Light microscopy
From the pioneering neuroanatomical studies of Santiago Ramoén y Cajal and
Camillo Golgi (Cajal, 1906; Golgi, 1906) to the current wealth of modalities designed to

surpass the resolution barrier imposed by light’s diffraction limit (Patterson et al., 2010),



light microscopy (LM) and its associated technologies have proven indispensable to the
neurosciences. In early studies, such as those of Ramoén y Cajal and Golgi, cells could
only be visualized if they were first darkly stained to provide contrast in the optical
microscope. As an additional hurdle, useful depictions were only possible if this staining
was unique to just a very small subset of neurons within the field of view; if too many
neurons were dark, the resultant microscopic image would resemble an indecipherable
mass of stain. Though unproven at the time, this additional layer of complexity was present
because individual fibers of the neuropil are frequently smaller than the wavelength of
light, rendering them unresolvable from one another by conventional LM (Denk and
Horstmann, 2004). Fortunately, the staining method developed by and named after Golgi
achieved this requisite selective labeling via the deposition of silver chromate at neuronal
membranes following fixation of tissues with potassium dichromate and silver nitrate
(Pannese, 1999). By a mechanism that remains unknown, Golgi’s method specifically and
randomly labels only a small subset of neurons in their entirety, a fact that made it ideal
for early studies on neuronal morphology.

Though such methods laid the groundwork for modern neuroscience, they were
limited to the depiction of gross cellular morphologies; intricate views of subcellular
compartments remained largely beyond the capabilities of LM alone. This changed with
the advent and widespread adoption of fluorescence microscopy, which, combined with
significant advances in instrumentation, has enabled neuroscientists to view subcellular
components with increasing levels of clarity (Wilt et al., 2009). Though early applications
of fluorescence microscopy were limited to organic dyes attached to proteins of interest
via antibodies, fluorophores that could directly recognize organelles (Buckman et al.,
2001), DNA (Kapuscinski, 1995; Smith et al., 2000), lipids (Gan et al., 2000), and ions

(Grynkiewicz et al., 1985; Miyawaki et al., 1997) were subsequently developed. The



introduction of genetically encodable fluorescent proteins, such as green fluorescent
protein (GFP), allowed for precise fluorophore targeting via covalent linkage to the protein
of interest and the generation of fluorescence without the need for additional cofactors
(Tsien, 1998; Giepmans et al., 2006). From an instrumentation standpoint, the
commercialization of confocal microscopes (White and Amos, 1987) and the subsequent
introduction of two-photon systems (Denk et al., 1990) have enabled researchers to image
fluorescent signals with improved clarity from increasing tissue depths. Modalities that
allow for the localization of fluorophores at resolutions finer than the diffraction limit of light
(Gustafsson, 2000; Betzig et al., 2006; Rust et al., 2006) have found numerous
applications in the neurosciences, including the detailed localization of synaptic
cytoskeletal filaments (Pielage et al., 2008) and receptor proteins (Dani et al., 2011).
Though the aforementioned breakthroughs have increased our ability to resolve
the location of small intercellular components using LM, such visualizations remain
restricted to compartments or proteins that have been fluorescently tagged. Structures
that have not been tagged remain hidden, and even tagged structures do not yield a
continuous view of ultrastructure or membrane topology. Ideally, images of the same
region could be acquired using both EM and fluorescence LM and combined with one
another to simultaneously yield both molecular localization and fine ultrastructure. This
process, known as correlated light and electron microscopy (CLEM), is currently a major
focus within the community. One early success in the field of CLEM was the use of
quantum dots, which can be engineered to label desired protein targets for LM and
possess a molecular weight great enough to scatter electrons and appear opaque in
electron micrographs (Giepmans et al., 2005; Silva, 2006). Though such approaches were
promising, microscopists, inspired by the success of GFP, desired a probe for CLEM that

could be genetically encoded. One such approach involves the use of a genetically



encodable fluorophore that can also generate the singlet oxygen required to polymerize
diaminobenzadine (DAB) through a process known as photoconversion (Deerinck et al.,
1994). Such DAB precipitates are osmiophilic, and therefore render the same tagged
structures visible as electron dense clouds in EM micrographs. This principle led to the
development of a number of genetically encodable tags for CLEM, including FLAsH and
ReAsH (Gaietta et al., 2002; Sosinsky et al., 2003), miniSOG (Shu et al., 2011), and APEX
(Martell et al., 2012). In addition, a recent report has demonstrated the retention of GFP
fluorescence following resin embedding and EM preparation (Peddie et al., 2014), a
process that provides an alternative, but still genetically encodable, pathway for CLEM.
Although such CLEM techniques are promising, they remain in the early stages of
development. Furthermore, though some researchers have acquired large-scale volumes
of the brain using multiphoton fluorescence microscopy with stage mosaicking (Chow et
al., 2006; Berlanga et al., 2011), Brainbow labeling (Cai et al., 2013), and CLARITY
(Chung and Deisseroth, 2013), the resolution of such methods is limited. For example, the
volume of a-synuclein immunoreactivity in the mouse brain acquired by Price and
colleagues has a lateral pixel size of 0.24 ym (Price et al., 2006), a value that is far too
coarse to resolve the ultrastructure of individual organelles or track membrane curvature.
As such, the electron microscope and its related technologies remain uniquely adapted
for providing images that can be used to simultaneously study subcellular ultrastructure

as well as the connectivity between cells of the nervous system.

1.3. Serial section transmission electron microscopy
The invention of the first glass knife microtome capable of cutting thin sections
from plastic-embedded specimens (Porter and Blum, 1953) allowed for TEM-based

ultrastructural studies of a number of organelles, including mitochondria (Palade, 1952),



ribosomes (Palay and Palade, 1955), and the endoplasmic reticulum (Palade and Porter,
1954). These ground-breaking studies established much of our baseline knowledge of the
structure and function of the machines that drive biological processes at the cellular level.
However, since many subcellular components and organelles are significantly larger than
the thickness (~50-100 nm) of the sections used for conventional TEM, individual
micrographs can be misleading with respect to organelle morphology. The most intuitive
first approach to circumventing this problem is to cut thicker sections that have a greater
probability of containing entire organelles. Unfortunately, as section thickness increases,
so do electron scattering events and chromatic aberration, effects that quickly degrade
image quality. Since early TEMs did not operate at voltages sufficient enough to limit these
effects by increasing the initial acceleration of the electron beam, microscopists had to
develop other methods to explore complete 3D morphologies.

In the first of these methods, known as serial section transmission electron
microscopy (ssTEM), ribbons of consecutive thin sections are cut from the block-face
using a microtome and collected, in the same order in which they were cut, onto EM grids
(Gay and Anderson, 1954; Sjostrand, 1958). The same region of interest (ROI) is then
imaged from each section, resulting in a stack of images spaced apart by the cutting
thickness of the microtome. Such a stack can then be used to track individual organelles
or neuronal processes across sections, producing complete and high resolution 3D
morphologies. The development and evolution of methods to furnish such 3D
reconstructions are discussed in detail in Chapter 2.

Early studies using ssTEM explored the frog muscle spindle (Karlsson et al., 1966)
and studied the organization of organelles in neuronal somata of the rat lateral geniculate
nucleus (Karlsson, 1966). In the latter study, quantitative data, including length, surface

area, and volume, of organelles such as the Golgi apparatus, mitochondria, and nucleus



were provided. A sampling of subsequent studies reveals that ssTEM has been employed
to establish both structure (Fiala et al., 1998; Harris, 1999; Huang et al., 1998) and
connectivity (Sjéstrand, 1974; Chalfie et al., 1985; Hall and Russell, 1991; Mishchenko et
al., 2010; Cardona et al., 2010) in the brain. In a seminal study conducted by a team led
by Sydney Brenner at the MRC Laboratory for Molecular Biology, the entire nervous
system of the nematode Caenorhabditis elegans, including all neuronal processes and
synapses, was mapped using ssTEM (White et al, 1986). Though this task was certainly
simplified by the fact that the entire C. elegans nervous system contains only 302 neurons,
this study remains the only instance in which the entire neuronal wiring diagram, or
connectome, of any organism has been successfully mapped.

Despite the fact that ssTEM still enjoys widespread use (Lu et al., 2014; Fuchs et
al., 2014), its labor-intensive reputation is well established. Even today, all steps involved
in the process, including specimen preparation, section cutting and collecting, imaging,
and reconstruction, require some degree of interaction by highly trained experts.
Consequently, the technique is highly prone to human error; if sections or images from the
middle of a series are lost or damaged, the whole series may be jeopardized. As a result
of such errors, the reconstruction of the C. elegans connectome necessitated the
combination of images from different regions of several worms (Seung, 2013). Further,
even if the high risk for human error is ignored, the sheer task of collecting large volumes
with ssTEM remains daunting. The C. elegans dataset consisted of images from roughly
8,000 sections cut to thicknesses of 50 nm (White et al., 1986), and Karlsson’s datasets
of the frog muscle spindle approached 10,000 sections each (Karlsson et al., 1996). On
account of these astonishingly large numbers, it is readily apparent that ssTEM would
become much more feasible if the need to manually cut and collect sections were removed

from the equation. Moreover, one can imagine that further ease would be introduced if the



imaging process could be automatically synchronized to coincide with each successive
cut. Fortunately, practitioners of the field were in luck; the introduction of the serial block-
face scanning electron microscope (SBEM; Leighton, 1981; Denk and Horstmann, 2004)
simultaneously achieved both of these goals and revolutionized the field of large-scale 3D

EM.

1.4. Serial block-face scanning electron microscopy

With the aid of hindsight, the idea that led to the invention of SBEM seems
relatively intuitive: instead of cutting thin sections from a block and producing images of
these sequential sections, the block itself is imaged following repeated section removals.
If this continuously repeating cycle of cuts followed by image acquisitions could be
automated, the entire process of ssTEM would be emulated without the need for human
manipulation, thereby significantly reducing the risk of section loss or damage (Figure 1.1).
Furthermore, if the surface of the block were imaged at a fixed position relative to the
primary electron beam and detector, the output stack of images would already be
essentially aligned from one section to the next without the risk of section warping or the
need to re-align the microscope following each cut.

A machine capable of automating this process requires two principle components:
(1) a microscope other than the TEM, whose electron beam must penetrate the sample to
produce image contrast, and (2) a means to automatically plane thin sections off of the
block-face from within the chamber of the microscope. Both of these needs were first
addressed by Leighton (Leighton, 1981) who, in 1981, developed an ultramicrotome
capable of cutting sections off of a resin-embedded block from within the chamber of a
scanning electron microscope (SEM). The SEM used by Leighton, which produced image

contrast based on the detection of electrons emitted from the sample’s surface when it



was scanned by a primary electron beam, seemed perfect for imaging block-faces.
However, Leighton’s images based on the detection of these so-called secondary
electrons were marred by a significant artifact: surface charging. Plastic-embedded
biological samples are not naturally conductive and therefore act as insulators in the SEM,
trapping electrons at and just below the surface of the sample. This accumulation of
negative charge leads to a surface potential across the block face and a deceleration of
incident electrons. Due to the heterogeneous nature of biological tissues, these reduced
landing energies are non-uniform across the block, a problem that causes significant
distortions in the resultant image. For this reason, Leighton had to remove the sample
from the chamber and coat it with a layer of conductive metal before satisfactory images
could be obtained. Since such coating steps made full automation impossible, and
because image collection and storage systems remained primitive in 1981, Leighton’s
invention did not immediately catch on.

One approach to mitigating the impact of surface charging when imaging non-
conductive specimens is the use of an environmental scanning electron microscope
(ESEM), which maintains a low concentration of gas within its chamber (Donald, 2003).
Positively charged ions are generated as the primary electron beam impinges upon gas
molecules in the ESEM’s chamber, and these ions serve to neutralize the negative charge
that accumulates at the block-face. The use of this “low-vacuum” mode of operation was
the first of many innovations employed by Denk in his version of the SBEM (Denk and
Horstmann, 2004). Additionally, Denk opted to use a significantly higher beam
accelerating voltage (7.5 keV) to allow for the detection of backscattered electrons (BSEs),
which are incident electrons from the primary beam that have been elastically scattered

out of the specimen’s interacting volume due to collisions with its atoms. Importantly, BSE
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Figure 1.1. A schematic of the SBEM imaging process. (Top) A BSE image of the
block-face (yellow) is acquired while the diamond knife (blue) is retracted. After this image
has been acquired, the block is advanced in the direction of the knife by the desired axial
step size, a value that typically falls in the range of 20-100 nm. The diamond knife is then
advanced across the block-face (right), planing off a section of the user-specified
thickness (bottom). These loose sections can often accumulate on the knife, and therefore
must be removed from time to time to minimize the risk of block-face occlusion. The knife
is then retracted across the planed block-face to its initial position (left). A new image is
acquired once it has been fully retracted, thus starting the cycle anew. The X and Y
dimensions are specified by the raster size at the plane of the block-face, while the Z
dimension is specified by incremental steps through the depth of the block. The black
semi-circle represents tissue that has been processed for SBEM imaging to provide
optimal contrast and surface conductivity.
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detection holds a major advantage over secondary electron detection when imaging the
block face: BSE scattering is strongly dependent upon the charge of the atomic nucleus
that the primary electron collides with. This creates ideal contrast when imaging blocks
embedded with conventional heavy metal stains, and the BSE images acquired by Denk
closely resembled conventional TEM micrographs. To maintain the block in the same
position for optimal slice-to-slice registration, Denk designed a custom diamond knife
microtome in which the block is advanced by a specified amount prior to cutting. Such a
design maintains the lateral position of the block-face as a constant and facilitates
registration without the need to re-focus after each cut (Denk and Horstmann, 2004).
Unfortunately, a major disadvantage of imaging in low-vacuum mode lies in the
fact that the gas molecules within the chamber can scatter primary and backscattered
signals, leading to a reduction in signal-to-noise ratio (SNR). Therefore, the dwell time,
measured as the time the primary electron beam must spend to generate one pixel on the
detector, must be increased to provide more signal. Although dwell times used for SBEM
are typically no more than a few microseconds, the size of current detectors, such as the
one used in this dissertation (7.68 x 108 pixels), is large enough to make this the rate-
limiting step of the SBEM process. Ideally, the SEM chamber should be maintained at as
high of a vacuum as possible to allow for decreased dwell times. However, this would of
course require an alternate method for increasing specimen conductivity. One obvious
way to achieve this is to coat the block face with a thin layer of metal after each cut has
been made. Though a device capable of this in-chamber coating has been produced (Titze
and Denk, 2013), it is still in the early stages of development. Furthermore, such layers
may also decrease SNR by generating BSEs of their own that do not contain information
about the block-face. An alternative method introduced by Deerinck and colleagues, and

one that has proven very successful, is to enhance conductivity by increasing the amount
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of heavy metals deposited while the tissue is being stained (Deerinck et al., 2010). This is
done using an osmium tetroxide-thiocarbohydrazide-osmium tetroxide (OTO) stain to
increase osmium deposition followed by uranyl acetate treatment and en bloc lead
aspartate staining. Specimens stained in such a manner produce high contrast images
mostly devoid of surface charging artifacts even in chambers held at ultrahigh vacuum
levels, thereby allowing pixel dwell times to be decreased.

The automated nature of SBEM means that the amount of data that can be
collected from one block is practically bounded by how long the experimenter wants to
leave the machine running and how much storage space they have available. A single-
slice, 16-bit SBEM image of pixel dimensions 32,000 x 24,000 requires approximately 1.54
GB of hard disk space. This means that typical image stacks in the range of 1,000 sections
require multiple terabytes of space just to store the raw images. Further, as a conservative
estimate, the storage space needed should be doubled to account for any ensuing post-
processing or reconstruction steps. In some of the largest scale SBEM studies to be
published thus far, researchers working with Denk used mosaicking to collect datasets
with dimensions of 8,192 x 7,072 x 3,200 (1.2 x 10® ym3; Helmstaedter et al., 2013) and
3,584 x 21,658 x 13,000 (6.3 x 106 ym?3; Briggman et al., 2011) voxels. These datasets
were used to create connectomics-based wiring diagrams of circuits in the mouse retina.
Although most large-scale SBEM reconstructions have been inspired by connectomics, a
number of smaller scale studies have dealt with more manageable biological questions,
including the organization of chromatin (Rouquette et al., 2009), the volumes of synaptic
boutons and dendritic spines (Wilke et al., 2014), and the lengths of collagen fibrils (Kalson
et al., 2013).

Image stacks generated by SBEM can cover a wide range of pix