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 Electron microscopy (EM) facilitates analysis of the structure, distribution, and 

functional status of organelle networks within the nervous system. Recent breakthroughs 

in EM specimen preparation and instrumentation have furnished scientists with the ability 

to automatically collect volumetric datasets large enough to cover significant swaths of  
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neuroanatomical subdivisions at nano-resolution. The quantification of biological 

morphologies from these data, however, typically requires image segmentation, which is 

a long-standing and well-recognized bottleneck. Though datasets may now be collected 

at rates exceeding teravoxels per day, the manual segmentation and analysis of all 

features from such a volume requires many years of human labor. As technological 

advances driven by the desire to reconstruct entire nervous systems continue to push 

instrument throughput skyward, it is clear that our ability to model brain ultrastructure will 

be limited by the rate of image analysis rather than that of image acquisition.  

 The body of work described in this dissertation represents a contribution towards 

alleviating this impediment. A pipeline for the automatic segmentation, morphological 

quantification, and spatial characterization of organelles from high resolution datasets at 

the teravoxel-scale is presented. Segmentations were generated using a highly 

parallelized, supervised machine learning approach that reduces the required human 

effort from years to just a few hours. A host of generic and organelle-specific post-

segmentation filters were developed, and it is shown that their application improves 

segmentation accuracy. Accelerated approaches for generating surface renderings from 

these large-scale segmentations are introduced, and a workflow for the automatic 

computation and reporting of morphological, topological, and spatial metrics is described. 

These methods were then applied to study the spatiotemporal changes of organelles in 

neurons of the mouse suprachiasmatic nucleus across the diurnal cycle. Novel findings 

pertaining to nuclear structure and organization are reported and discussed. Taken 

together, the methods described here provide a series of tools for expediting the 

quantitative analysis of organelle structure-function relationships in the current era of big 

data in biological microscopy.
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Chapter 1 

Methods for Whole Cell Imaging at High Resolution and Their Applications 

in the Neurosciences 
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1.1. Introduction 

Over the past decade, the field of neuroscience has experienced a renewed 

enthusiasm and commitment towards exploring and understanding the structural 

underpinnings of how the brain works. Such pursuits have generated a palpable buzz in 

the scientific community that has noticeably extended to the general population. Indeed, 

the launches of the BRAIN Initiative and Human Brain Project, two ventures driven by the 

desire to better map and understand the human brain, have brought mainstream attention 

to a field that was previously bereft of it (Abbott, 2013; Insel et al., 2013). It is widely 

acknowledged that this rejuvenation is the product of the rapid development and 

proliferation of technologies for preparing, imaging, and reconstructing regions of the brain 

at unprecedented scale and resolution (Knott and Genoud, 2013; Peddie and Collinson, 

2014). As a result of this technological progress, neuroscientists now have a toolbox of 

modalities at their disposal that enables the rapid and automatic imaging of large volumes 

of the brain at the level of ultrastructural, and sometimes molecular, resolution. 

The rest of this chapter will serve as an introduction to the individual components 

of this imaging toolbox, describing their histories, applications, and associated 

technological breakthroughs. Particular focus will be paid to the ability of each modality to 

image organelles and other nanoscale features within the subcellular compartment. 

Finally, the conclusion of this chapter will feature a look towards the future of the field and 

establish the importance of the technologies developed in this dissertation. 

 

1.2. Light microscopy 

 From the pioneering neuroanatomical studies of Santiago Ramón y Cajal and 

Camillo Golgi (Cajal, 1906; Golgi, 1906) to the current wealth of modalities designed to 

surpass the resolution barrier imposed by light’s diffraction limit (Patterson et al., 2010), 
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light microscopy (LM) and its associated technologies have proven indispensable to the 

neurosciences. In early studies, such as those of Ramón y Cajal and Golgi, cells could 

only be visualized if they were first darkly stained to provide contrast in the optical 

microscope. As an additional hurdle, useful depictions were only possible if this staining 

was unique to just a very small subset of neurons within the field of view; if too many 

neurons were dark, the resultant microscopic image would resemble an indecipherable 

mass of stain. Though unproven at the time, this additional layer of complexity was present 

because individual fibers of the neuropil are frequently smaller than the wavelength of 

light, rendering them unresolvable from one another by conventional LM (Denk and 

Horstmann, 2004). Fortunately, the staining method developed by and named after Golgi 

achieved this requisite selective labeling via the deposition of silver chromate at neuronal 

membranes following fixation of tissues with potassium dichromate and silver nitrate 

(Pannese, 1999). By a mechanism that remains unknown, Golgi’s method specifically and 

randomly labels only a small subset of neurons in their entirety, a fact that made it ideal 

for early studies on neuronal morphology. 

Though such methods laid the groundwork for modern neuroscience, they were 

limited to the depiction of gross cellular morphologies; intricate views of subcellular 

compartments remained largely beyond the capabilities of LM alone. This changed with 

the advent and widespread adoption of fluorescence microscopy, which, combined with 

significant advances in instrumentation, has enabled neuroscientists to view subcellular 

components with increasing levels of clarity (Wilt et al., 2009). Though early applications 

of fluorescence microscopy were limited to organic dyes attached to proteins of interest 

via antibodies, fluorophores that could directly recognize organelles (Buckman et al., 

2001), DNA (Kapuscinski, 1995; Smith et al., 2000), lipids (Gan et al., 2000), and ions 

(Grynkiewicz et al., 1985; Miyawaki et al., 1997) were subsequently developed. The 
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introduction of genetically encodable fluorescent proteins, such as green fluorescent 

protein (GFP), allowed for precise fluorophore targeting via covalent linkage to the protein 

of interest and the generation of fluorescence without the need for additional cofactors 

(Tsien, 1998; Giepmans et al., 2006). From an instrumentation standpoint, the 

commercialization of confocal microscopes (White and Amos, 1987) and the subsequent 

introduction of two-photon systems (Denk et al., 1990) have enabled researchers to image 

fluorescent signals with improved clarity from increasing tissue depths. Modalities that 

allow for the localization of fluorophores at resolutions finer than the diffraction limit of light 

(Gustafsson, 2000; Betzig et al., 2006; Rust et al., 2006) have found numerous 

applications in the neurosciences, including the detailed localization of synaptic 

cytoskeletal filaments (Pielage et al., 2008) and receptor proteins (Dani et al., 2011).  

Though the aforementioned breakthroughs have increased our ability to resolve 

the location of small intercellular components using LM, such visualizations remain 

restricted to compartments or proteins that have been fluorescently tagged. Structures 

that have not been tagged remain hidden, and even tagged structures do not yield a 

continuous view of ultrastructure or membrane topology. Ideally, images of the same 

region could be acquired using both EM and fluorescence LM and combined with one 

another to simultaneously yield both molecular localization and fine ultrastructure. This 

process, known as correlated light and electron microscopy (CLEM), is currently a major 

focus within the community. One early success in the field of CLEM was the use of 

quantum dots, which can be engineered to label desired protein targets for LM and 

possess a molecular weight great enough to scatter electrons and appear opaque in 

electron micrographs (Giepmans et al., 2005; Silva, 2006). Though such approaches were 

promising, microscopists, inspired by the success of GFP, desired a probe for CLEM that 

could be genetically encoded. One such approach involves the use of a genetically 
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encodable fluorophore that can also generate the singlet oxygen required to polymerize 

diaminobenzadine (DAB) through a process known as photoconversion (Deerinck et al., 

1994). Such DAB precipitates are osmiophilic, and therefore render the same tagged 

structures visible as electron dense clouds in EM micrographs. This principle led to the 

development of a number of genetically encodable tags for CLEM, including FLAsH and 

ReAsH (Gaietta et al., 2002; Sosinsky et al., 2003), miniSOG (Shu et al., 2011), and APEX 

(Martell et al., 2012). In addition, a recent report has demonstrated the retention of GFP 

fluorescence following resin embedding and EM preparation (Peddie et al., 2014), a 

process that provides an alternative, but still genetically encodable, pathway for CLEM.  

Although such CLEM techniques are promising, they remain in the early stages of 

development. Furthermore, though some researchers have acquired large-scale volumes 

of the brain using multiphoton fluorescence microscopy with stage mosaicking (Chow et 

al., 2006; Berlanga et al., 2011), Brainbow labeling (Cai et al., 2013), and CLARITY 

(Chung and Deisseroth, 2013), the resolution of such methods is limited. For example, the 

volume of -synuclein immunoreactivity in the mouse brain acquired by Price and 

colleagues has a lateral pixel size of 0.24 μm (Price et al., 2006), a value that is far too 

coarse to resolve the ultrastructure of individual organelles or track membrane curvature. 

As such, the electron microscope and its related technologies remain uniquely adapted 

for providing images that can be used to simultaneously study subcellular ultrastructure 

as well as the connectivity between cells of the nervous system. 

 

1.3. Serial section transmission electron microscopy 

The invention of the first glass knife microtome capable of cutting thin sections 

from plastic-embedded specimens (Porter and Blum, 1953) allowed for TEM-based 

ultrastructural studies of a number of organelles, including mitochondria (Palade, 1952), 
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ribosomes (Palay and Palade, 1955), and the endoplasmic reticulum (Palade and Porter, 

1954). These ground-breaking studies established much of our baseline knowledge of the 

structure and function of the machines that drive biological processes at the cellular level. 

However, since many subcellular components and organelles are significantly larger than 

the thickness (~50-100 nm) of the sections used for conventional TEM, individual 

micrographs can be misleading with respect to organelle morphology. The most intuitive 

first approach to circumventing this problem is to cut thicker sections that have a greater 

probability of containing entire organelles. Unfortunately, as section thickness increases, 

so do electron scattering events and chromatic aberration, effects that quickly degrade 

image quality. Since early TEMs did not operate at voltages sufficient enough to limit these 

effects by increasing the initial acceleration of the electron beam, microscopists had to 

develop other methods to explore complete 3D morphologies.  

In the first of these methods, known as serial section transmission electron 

microscopy (ssTEM), ribbons of consecutive thin sections are cut from the block-face 

using a microtome and collected, in the same order in which they were cut, onto EM grids 

(Gay and Anderson, 1954; Sjöstrand, 1958). The same region of interest (ROI) is then 

imaged from each section, resulting in a stack of images spaced apart by the cutting 

thickness of the microtome. Such a stack can then be used to track individual organelles 

or neuronal processes across sections, producing complete and high resolution 3D 

morphologies. The development and evolution of methods to furnish such 3D 

reconstructions are discussed in detail in Chapter 2.  

Early studies using ssTEM explored the frog muscle spindle (Karlsson et al., 1966) 

and studied the organization of organelles in neuronal somata of the rat lateral geniculate 

nucleus (Karlsson, 1966). In the latter study, quantitative data, including length, surface 

area, and volume, of organelles such as the Golgi apparatus, mitochondria, and nucleus 
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were provided. A sampling of subsequent studies reveals that ssTEM has been employed 

to establish both structure (Fiala et al., 1998; Harris, 1999; Huang et al., 1998) and 

connectivity (Sjöstrand, 1974; Chalfie et al., 1985; Hall and Russell, 1991; Mishchenko et 

al., 2010; Cardona et al., 2010) in the brain. In a seminal study conducted by a team led 

by Sydney Brenner at the MRC Laboratory for Molecular Biology, the entire nervous 

system of the nematode Caenorhabditis elegans, including all neuronal processes and 

synapses, was mapped using ssTEM (White et al, 1986). Though this task was certainly 

simplified by the fact that the entire C. elegans nervous system contains only 302 neurons, 

this study remains the only instance in which the entire neuronal wiring diagram, or 

connectome, of any organism has been successfully mapped. 

Despite the fact that ssTEM still enjoys widespread use (Lu et al., 2014; Fuchs et 

al., 2014), its labor-intensive reputation is well established. Even today, all steps involved 

in the process, including specimen preparation, section cutting and collecting, imaging, 

and reconstruction, require some degree of interaction by highly trained experts. 

Consequently, the technique is highly prone to human error; if sections or images from the 

middle of a series are lost or damaged, the whole series may be jeopardized. As a result 

of such errors, the reconstruction of the C. elegans connectome necessitated the 

combination of images from different regions of several worms (Seung, 2013). Further, 

even if the high risk for human error is ignored, the sheer task of collecting large volumes 

with ssTEM remains daunting. The C. elegans dataset consisted of images from roughly 

8,000 sections cut to thicknesses of 50 nm (White et al., 1986), and Karlsson’s datasets 

of the frog muscle spindle approached 10,000 sections each (Karlsson et al., 1996). On 

account of these astonishingly large numbers, it is readily apparent that ssTEM would 

become much more feasible if the need to manually cut and collect sections were removed 

from the equation. Moreover, one can imagine that further ease would be introduced if the 
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imaging process could be automatically synchronized to coincide with each successive 

cut. Fortunately, practitioners of the field were in luck; the introduction of the serial block-

face scanning electron microscope (SBEM; Leighton, 1981; Denk and Horstmann, 2004) 

simultaneously achieved both of these goals and revolutionized the field of large-scale 3D 

EM.  

 

1.4. Serial block-face scanning electron microscopy 

With the aid of hindsight, the idea that led to the invention of SBEM seems 

relatively intuitive: instead of cutting thin sections from a block and producing images of 

these sequential sections, the block itself is imaged following repeated section removals. 

If this continuously repeating cycle of cuts followed by image acquisitions could be 

automated, the entire process of ssTEM would be emulated without the need for human 

manipulation, thereby significantly reducing the risk of section loss or damage (Figure 1.1). 

Furthermore, if the surface of the block were imaged at a fixed position relative to the 

primary electron beam and detector, the output stack of images would already be 

essentially aligned from one section to the next without the risk of section warping or the 

need to re-align the microscope following each cut.  

A machine capable of automating this process requires two principle components: 

(1) a microscope other than the TEM, whose electron beam must penetrate the sample to 

produce image contrast, and (2) a means to automatically plane thin sections off of the 

block-face from within the chamber of the microscope. Both of these needs were first 

addressed by Leighton (Leighton, 1981) who, in 1981, developed an ultramicrotome 

capable of cutting sections off of a resin-embedded block from within the chamber of a 

scanning electron microscope (SEM). The SEM used by Leighton, which produced image 

contrast based on the detection of electrons emitted from the sample’s surface when it 
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was scanned by a primary electron beam, seemed perfect for imaging block-faces. 

However, Leighton’s images based on the detection of these so-called secondary 

electrons were marred by a significant artifact: surface charging. Plastic-embedded 

biological samples are not naturally conductive and therefore act as insulators in the SEM, 

trapping electrons at and just below the surface of the sample. This accumulation of 

negative charge leads to a surface potential across the block face and a deceleration of 

incident electrons. Due to the heterogeneous nature of biological tissues, these reduced 

landing energies are non-uniform across the block, a problem that causes significant 

distortions in the resultant image.  For this reason, Leighton had to remove the sample 

from the chamber and coat it with a layer of conductive metal before satisfactory images 

could be obtained. Since such coating steps made full automation impossible, and 

because image collection and storage systems remained primitive in 1981, Leighton’s 

invention did not immediately catch on. 

One approach to mitigating the impact of surface charging when imaging non-

conductive specimens is the use of an environmental scanning electron microscope 

(ESEM), which maintains a low concentration of gas within its chamber (Donald, 2003). 

Positively charged ions are generated as the primary electron beam impinges upon gas 

molecules in the ESEM’s chamber, and these ions serve to neutralize the negative charge 

that accumulates at the block-face. The use of this “low-vacuum” mode of operation was 

the first of many innovations employed by Denk in his version of the SBEM (Denk and 

Horstmann, 2004). Additionally, Denk opted to use a significantly higher beam 

accelerating voltage (7.5 keV) to allow for the detection of backscattered electrons (BSEs), 

which are incident electrons from the primary beam that have been elastically scattered 

out of the specimen’s interacting volume due to collisions with its atoms. Importantly, BSE
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Figure 1.1. A schematic of the SBEM imaging process. (Top) A BSE image of the 
block-face (yellow) is acquired while the diamond knife (blue) is retracted. After this image 
has been acquired, the block is advanced in the direction of the knife by the desired axial 
step size, a value that typically falls in the range of 20-100 nm. The diamond knife is then 
advanced across the block-face (right), planing off a section of the user-specified 
thickness (bottom). These loose sections can often accumulate on the knife, and therefore 
must be removed from time to time to minimize the risk of block-face occlusion. The knife 
is then retracted across the planed block-face to its initial position (left). A new image is 
acquired once it has been fully retracted, thus starting the cycle anew. The X and Y 
dimensions are specified by the raster size at the plane of the block-face, while the Z 
dimension is specified by incremental steps through the depth of the block. The black 
semi-circle represents tissue that has been processed for SBEM imaging to provide 
optimal contrast and surface conductivity. 
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detection holds a major advantage over secondary electron detection when imaging the 

block face: BSE scattering is strongly dependent upon the charge of the atomic nucleus 

that the primary electron collides with. This creates ideal contrast when imaging blocks 

embedded with conventional heavy metal stains, and the BSE images acquired by Denk 

closely resembled conventional TEM micrographs. To maintain the block in the same 

position for optimal slice-to-slice registration, Denk designed a custom diamond knife 

microtome in which the block is advanced by a specified amount prior to cutting. Such a 

design maintains the lateral position of the block-face as a constant and facilitates 

registration without the need to re-focus after each cut (Denk and Horstmann, 2004).  

Unfortunately, a major disadvantage of imaging in low-vacuum mode lies in the 

fact that the gas molecules within the chamber can scatter primary and backscattered 

signals, leading to a reduction in signal-to-noise ratio (SNR). Therefore, the dwell time, 

measured as the time the primary electron beam must spend to generate one pixel on the 

detector, must be increased to provide more signal. Although dwell times used for SBEM 

are typically no more than a few microseconds, the size of current detectors, such as the 

one used in this dissertation (7.68 x 108 pixels), is large enough to make this the rate-

limiting step of the SBEM process. Ideally, the SEM chamber should be maintained at as 

high of a vacuum as possible to allow for decreased dwell times. However, this would of 

course require an alternate method for increasing specimen conductivity. One obvious 

way to achieve this is to coat the block face with a thin layer of metal after each cut has 

been made. Though a device capable of this in-chamber coating has been produced (Titze 

and Denk, 2013), it is still in the early stages of development. Furthermore, such layers 

may also decrease SNR by generating BSEs of their own that do not contain information 

about the block-face. An alternative method introduced by Deerinck and colleagues, and 

one that has proven very successful, is to enhance conductivity by increasing the amount 
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of heavy metals deposited while the tissue is being stained (Deerinck et al., 2010). This is 

done using an osmium tetroxide-thiocarbohydrazide-osmium tetroxide (OTO) stain to 

increase osmium deposition followed by uranyl acetate treatment and en bloc lead 

aspartate staining. Specimens stained in such a manner produce high contrast images 

mostly devoid of surface charging artifacts even in chambers held at ultrahigh vacuum 

levels, thereby allowing pixel dwell times to be decreased. 

The automated nature of SBEM means that the amount of data that can be 

collected from one block is practically bounded by how long the experimenter wants to 

leave the machine running and how much storage space they have available. A single-

slice, 16-bit SBEM image of pixel dimensions 32,000 x 24,000 requires approximately 1.54 

GB of hard disk space. This means that typical image stacks in the range of 1,000 sections 

require multiple terabytes of space just to store the raw images. Further, as a conservative 

estimate, the storage space needed should be doubled to account for any ensuing post-

processing or reconstruction steps. In some of the largest scale SBEM studies to be 

published thus far, researchers working with Denk used mosaicking to collect datasets 

with dimensions of 8,192 x 7,072 x 3,200 (1.2 x 106 μm3; Helmstaedter et al., 2013) and 

3,584 x 21,658 x 13,000 (6.3 x 106 μm3; Briggman et al., 2011) voxels. These datasets 

were used to create connectomics-based wiring diagrams of circuits in the mouse retina. 

Although most large-scale SBEM reconstructions have been inspired by connectomics, a 

number of smaller scale studies have dealt with more manageable biological questions, 

including the organization of chromatin (Rouquette et al., 2009), the volumes of synaptic 

boutons and dendritic spines (Wilke et al., 2014), and the lengths of collagen fibrils (Kalson 

et al., 2013). 

Image stacks generated by SBEM can cover a wide range of pixel and raster sizes, 

making the modality adaptable to the various goals of individual experiments. A recent 



14 

 

survey of the SBEM literature found that reported lateral resolutions ranged from 5-80 

nm/pixel, while reported axial resolutions ranged from 25-100 nm/slice (Peddie and 

Collinson, 2014). One commonality is that in almost all practical use cases, SBEM is an 

anisotropic imaging modality; the cutting thickness tends to be many times greater than 

the lateral pixel size. While this is typically not an issue, some segmentation and 

reconstruction algorithms yield superior results when voxel dimensions are isotropic 

(Sommer et al., 2011). Additionally, some features, such as ER sheets, synaptic vesicles, 

and postsynaptic densities, are difficult to reliably track across sections spaced >20 nm 

apart. For experiments in which a finer axial resolution is desired, another serial block-

face imaging technique, known as focused ion beam scanning electron microscopy 

(FIBSEM), was developed. FIBSEM, like SBEM, allows for the acquisition of serial BSE 

images of the block-face following section removal, but achieves this removal by a 

different mechanism – the ablation of material from the block’s surface using a focused 

beam of gallium ions.  

 

1.5. Focused ion beam scanning electron microscopy 

FIBSEM systems consist of a dual-beam microscope with both a scanning electron 

beam used for imaging and a focused beam of gallium ions used for surface ablation 

(Heymann et al., 2006; Knott, G. et al., 2008). Samples for FIBSEM imaging can be 

prepared using the same staining and embedding procedures employed for ssTEM and 

SBEM (Bushby et al., 2011), and images with contrast and lateral resolution comparable 

to those attainable by SBEM are achieved by the detection of BSEs under high vacuum 

using electron beam voltages in the range of 2-5 kV (Knott, G. et al., 2008). As previously 

discussed, the main advantage of FIBSEM over SBEM is its improved axial resolution; the 

use of a focused ion beam allows for the milling of sections from the block-face with 
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thicknesses as small as 3-15 nm (Peddie and Collinson, 2014). As such, FIBSEM datasets 

can achieve isotropic resolutions comparable to the lateral resolution attainable by TEM. 

Another advantage of FIBSEM lies in the fact that only the portion of the block-face 

targeted for ablation by the focused ion beam is irreversibly destroyed. This affords the 

microscopist the ability to collect a dataset from a small section of the block, then re-

sample other regions of interest at a later time. This is not possible when using the 

diamond knife sectioning employed by SBEM, which irreversibly removes entire sections 

of the block-face. 

Unfortunately, the increased axial resolution afforded by FIBSEM comes at the 

expense of data collection speed and the attainable field of view. A recent report has 

stated that consistent ion beam milling with 4-5 nm/pixel resolution can only be achieved 

over, at most, a 20 μm x 20 μm region of the block-face (Knott and Genoud, 2013). Though 

such a size may be sufficient for reconstructing patches of neuropil, it is only large enough 

to contain perhaps a few neuronal somata. This limitation, combined with the fact that ion 

beam milling is significantly slower than diamond knife sectioning, has drastically restricted 

the size of FIBSEM datasets. As a consequence, the majority of studies employing 

FIBSEM have examined relatively small volumes in the range of 10 - 3,000 μm3 (Peddie 

and Collinson, 2014). An example of one such study was that of Wei and colleagues, who 

used FIBSEM to reconstruct the organelle networks of high-pressure frozen, freeze 

substituted Saccharomyces cerevisiae cells (Wei et al., 2012). Their reconstruction was 

generated from a FIBSEM dataset with 3 nm isotropic voxels and a total volume of 

approximately 8 μm x 10 μm x 8 μm (640 μm3). The collection of this dataset took about 

35 hours, which is a rather substantial period of time for such a small volume.  

Despite these limitations, some relatively large volumes have been collected using 

FIBSEM (70,000 μm3: Bushby et al., 2011; 1.7x106 μm3: Armer et al., 2009). Such efforts, 
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however, are currently the exception rather than the norm. Though the improved axial 

resolution afforded by FIBSEM makes it preferable for the study of small features, such 

fine resolution is often not necessary for larger structures, such as membrane-bound 

organelles. A single mitochondrion is likely to persist across 10s to 100s of axial steps on 

the order of 30-60 nm, and a nucleus will persist across many 100s of such steps. Even 

in cases where mitochondria are highly branched, individual branches can be reliably 

tracked across thicker SBEM slices without issue. Taking this, as well as the desire to 

rapidly collect larger volumes, into consideration, SBEM was chosen as the primary 

imaging modality for this dissertation. Each SBEM dataset used in this dissertation has an 

axial resolution of 30 nm, covers roughly 600,000 μm3
, and was collected in about 5-6 

days. This represents an almost 1,000-fold increase in tissue volume with only a 4-fold 

increase in collection time over the FIBSEM dataset recently reported by Wei and 

colleagues (Wei et al., 2012).  

In recent years, electron tomography (ET), another high resolution, isotropic, 3D 

EM technique, has been increasingly applied as a complementary modality for SBEM-

centric studies (West et al., 2010; Boassa et al., 2013; Kalson et al., 2013; Vihinen et al., 

2013; Wong et al., 2013). While SBEM datasets achieve large fields of view at coarser 

resolutions, ET, similarly to FIBSEM, achieves finer, isotropic voxel dimensions over 

smaller fields of view. Unlike FIBSEM, however, sequential slices through ET datasets are 

generated by virtual, in silico reconstruction rather than physical sectioning. Additionally, 

ET reconstructions typically feature equal or finer resolutions when compared to FIBSEM 

image stacks (Gan and Jensen, 2012), and their acquisition takes on the order of one to 

two hours rather than days. In the following subsection, the history and theory of ET will 

be reviewed. This will be followed by a statement of ET’s power as a complementary 

technique for serial block-face modalities and its applicability to the present study. 
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1.6. Electron tomography 

 Early biological applications of high resolution TEM for 3D structure determination 

include electron crystallography (Glaeser, 1999), single-particle reconstruction for 

macromolecules and their assemblies (Frank, 2002), and helical reconstruction for 

structures with repeating helical subunits (DeRosier et al., 1999). These techniques have 

provided a wealth of knowledge in the structural biology community, a small sampling of 

which includes the atomic structure of the tubulin dimer (Nogales et al., 1998), the 

structure of bacterial flagellar motors (Francis et al., 1994), the architecture of the nuclear 

pore complex (Yang et al., 1998), and a reconstruction of GroEL (Ludtke et al., 2004). To 

yield a more complete biological view, such high resolution structures, which are often 

determined using isolated complexes, may be fit and oriented into lower resolution TEM 

images by a process known as docking (Baker and Johnson, 1996). However, these 

methods for 3D reconstruction often require the averaging of thousands of similar copies 

of the structure of interest to generate sufficient resolution. As such, they are unsuitable 

for studying many subcellular components, such as organelles and membranes, whose 

structures vary widely even within the same cell (McEwen and Marko, 2001). The desire 

to study organelles at close to the resolution afforded by these averaging-based 

approaches combined with the increased availability of high voltage TEMs led to the birth 

of electron tomography. 

The introduction of TEMs that operate at substantially increased voltages allowed 

microscopists to image thicker sections while still attaining useful contrast and resolution. 

High accelerating voltages facilitate the imaging of thicker sections by increasing the 

mean-free path of electrons traveling through the sample and limiting chromatic aberration 

(Frank, 2008). While some groups have employed ultrahigh voltage electron microscopes 

(UHVEMs) operating in the megavolt range (Takaoka et al., 2000), most practical 
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applications involve the use of intermediate voltage electron microscopes (IVEMs) 

operating in the 300-400 kV range. Unfortunately, even when using IVEMs, electron 

micrographs of samples with a thickness of greater than a few hundred nanometers tend 

to be difficult to analyze due to the confounding effect that features from all depths of the 

sample are superimposed onto the same 2D projection. This results in micrographs that 

appear blurred or smeared, especially in the vicinity of objects whose topologies change 

significantly throughout the depth of the sample. 

To circumvent this issue and produce useful reconstructions of subcellular 

components using IVEMs without the need for ssTEM, researchers adapted the principles 

of x-ray computed tomography (CT) to the electron microscope (DeRosier and Klug, 

1968). The resulting technique, ET, enables the reconstruction of a 3D digital volume with 

isotropic pixel dimensions from a set of 2D projections of the sample acquired at different 

orientations with respect to the primary electron beam. In a typical ET experiment, this set 

of projections, called a tilt series, is acquired by tilting and imaging the sample in angular 

increments about an axis perpendicular to the electron beam. Reconstruction is possible 

because, assuming that the electron paths are known or can be estimated, the only 

unknown is the manner in which the sample’s density is distributed across the imaging 

plane (McEwen and Marko, 2001). This unknown distribution can be computed by an 

algorithm known as back-projection, in which the known densities of a given projection 

image are distributed evenly over rays that re-trace the imaging path. This is repeated for 

each image in the tilt series, and as the rays from all projections intersect, they sum to 

form a 3D reconstruction of the original sample.  

In practice, tilt series are recorded by rotating the sample over a range of ±60-70° 

in 1-2° increments using a computer-controlled goniometer. Though progress is being 

made (Palmer and Löwe, 2014), rotations outside of this range are typically not attainable 
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due to obstruction of the electron beam by the specimen holder at angles approaching 

90°. This results in a so-called “missing wedge” of information corresponding to the 

angular range between the maximum tilt angle and 90° (Frey et al., 2005). The missing 

wedge has the deleterious effect of reducing the axial resolution of the final reconstruction, 

and may introduce biases to post-reconstruction analyses such as sub-tomogram 

averaging (Nickell et al., 2005; Nicastro et al., 2006). Fortunately, the size of the missing 

wedge can be reduced by collecting an initial tilt series, rotating the sample by 90° about 

the TEM’s optical axis, collecting a second tilt series, and computationally combining both 

reconstructions. This process, known as dual-axis ET (Mastronarde, 1997), improves the 

resolution of the output tomogram at the expense of increased specimen damage as well 

as increased collection and processing times. Recent works have demonstrated that the 

missing wedge can be further reduced by combining reconstructions from more than two 

axes in an analogous manner (Ellisman et al., 2014). Additionally, methods such as high 

pressure freezing and freeze substitution can enhance ultrastructural preservation for ET 

and result in higher quality tomograms (Sosinsky et al., 2008). 

Since each successive tilt angle changes the working thickness of the sample that 

the electron beam must penetrate, the focus and positioning of the TEM have to be slightly 

adjusted in between collecting each projection image. Traditionally, this meant that tilt 

series collection was extremely labor intensive; a human operator had to be present at the 

TEM to rotate the goniometer, manually adjust alignments, collect an image, and repeat. 

However, computational advances have allowed for software that can interface with the 

TEM and automatically adjust these parameters in between each tilt (Mastronarde, 2003). 

After imaging, the tilt series must be post-processed in a number of ways before a 

successful reconstruction can be attained. The most important of these steps is the 

computational alignment of successive projection images with one another, and this 
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alignment is typically performed with the assistance of fiducial markers in the form of gold 

nanoparticles (AuNPs) that are fixed to the top and bottom of the sample prior to imaging. 

A number of software packages have been developed for tilt series post-processing and 

reconstruction, and include IMOD (Kremer et al., 1996), TOM (Nickell et al., 2005), EM3D 

(Harlow et al., 2001), TomoJ (Messaoudil et al., 2012), and TxBR (Lawrence et al., 2006; 

Phan et al., 2012). 

 Perhaps not surprisingly, the field of ET progressed towards the reconstruction and 

stacking of tomograms from serial thick sections, a technique known as serial section 

electron tomography (ssET) (Soto et al., 1994). In ssET, tilt series are acquired for each 

section and individually reconstructed. This series of reconstructions is then stacked 

together by computationally aligning user-placed fiducial marks between the last and first 

tomographic slices from consecutive reconstructions. Though extremely laborious, ssTEM 

has been successfully applied to build high resolution reconstructions of the Golgi 

apparatus (Ladinsky et al., 1999), the node of Ranvier (Sosinsky et al., 2005) and even 

full cell models of pancreatic beta cells (Noske et al., 2008) and hair stereocilia (Vranceanu 

et al., 2012). 

 Despite the aforementioned successes, the reconstruction of even partial neurons 

by ssTEM is currently infeasible if any structures in addition to the soma are desired. From 

personal experience, the automated collection of a single tilt series using a JEOL JEM 

4000EX with two degree increments takes roughly one hour, without accounting for the 

time required for TEM startup and alignment. Fiducial tracking for tilt series alignment may 

take an additional two to three hours per tilt series, a figure that is highly dependent upon 

the image quality of the tilt series and the experience of the researcher. The two whole-

cell reconstructions of Noske and colleagues necessitated 46 and 27 sections cut to 

thicknesses of 300-400 nm (Noske et al., 2008). Such reconstructions were possible due 
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in large part to the roughly spherical nature of pancreatic beta cells; tracking the same cell 

from section to section was trivial. Now, consider a neuron, whose neurites may branch 

from 10s to 100s of microns away from its soma after only a few steps through the stack 

of serial sections. Such branched processes would be impossible to find on the TEM when 

looking in axial increments of 300-400 nm; the microscopist simply wouldn’t know which 

region of the sample to image. 

In spite of this, ET maintains an important presence in the toolbox of modalities for 

large-scale structural studies of the brain (Vihinen et al., 2013). As previously discussed, 

ET is employed in this dissertation to provide a high resolution complement to SBEM. 

Whereas SBEM is preferable for the determination of gross morphological parameters 

and distributions of organelles across whole neurons, ET can be used to correlatively 

address questions at the single organelle level, such as the distribution of nuclear pores 

or the geometry of mitochondrial cristae. 

 

1.7. Array Tomography 

A final modality in the toolbox for large-scale neuronal reconstructions is array 

tomography (AT), an all-encompassing term used to describe a variety of methods based 

on the collection of a 3D volume from serially sectioned tissue using an SEM. Unlike the 

serial-block face techniques, sections for AT are cut and collected on a substrate prior to 

insertion into the chamber of the SEM for imaging (Wacker and Schroeder, 2013). AT, 

therefore, has more in common with ssTEM and the serial-block face imaging techniques 

than it does ET; the word “tomography” is used here to refer to physical rather than 

computational slicing. 

AT was first introduced to the biological sciences by Micheva and Smith as an 

approach for CLEM (Micheva and Smith, 2007). Driven by a desire to achieve axial 



22 

 

resolutions better than those afforded by confocal microscopy, Micheva and Smith turned 

to ultrathin cryosections, which provide better resolution than thicker, conventional 

cryostat sections (Mori et al., 2006). Such serial ultrathin sections were sequentially 

imaged to yield 3D distributions of fluorescent antibodies, and could then be cyclically 

eluted, re-labeled, and re-imaged with a different set of antibodies. Furthermore, by the 

use of LRWhite embedding media (Newman and Hobot, 1999), these same sections were 

capable of being post-stained with heavy metals and stably imaged in the SEM using the 

detection of BSE signals. In this way, Micheva and Smith were able to produce overlays 

of fluorescent signals on EM images with reasonably maintained ultrastructure. Such 

methods, however, are of course a trade-off between fluorescence preservation and the 

maintenance of tissue ultrastructure at the EM level. Oberti and colleagues were able to 

achieve better ultrastructural preservation and regain some fluorescence lost during the 

embedding process by the application of anti-dye antibodies (Oberti et al., 2011). A 

subsequent study introduced super-resolution imaging to AT, implementing direct 

stochastic optical reconstruction microscopy (dSTORM) to yield 28 nm lateral resolution 

(Nanguneri, et al., 2012). 

 An alternative approach to AT is to forego antibody labeling in favor of acquiring 

large SEM volumes of thinner sections with better ultrastructural preservation (Horstmann 

et al., 2012). Such an approach represents a potential improvement over the 

aforementioned large-scale EM modalities in a number of ways. First, the use of an SEM 

with BSE detection eliminates the need to place sections on the less stable, electron 

transmissive substrates that would be required for ssTEM. Secondly, unlike the serial-

block-face modalities, AT is non-destructive; sections are not significantly damaged after 

imaging and can be re-imaged at different magnifications or configurations if desired. To 

compete with the high throughputs of the serial block-face modalities, however, the 
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process of section cutting and collecting in such a scheme must be automated. A device 

capable of this automation, the automatic tape-collecting ultramicrotome (ATUM), was 

introduced by Kenneth Hayworth and Jeff Lichtman in 2006. The ATUM is designed to cut 

ultrathin sections of 30-35 nm and automatically collect them from the knife’s waterboat 

onto specially designed copper tape fed by a conveyor belt (Hayworth et al., 2006; 

Hayworth et al., 2014). A recent report demonstrated the power of this approach, citing 

the collection of 2,100 consecutive, 29 nm-thick sections using the ATUM (Schalek et al., 

2011). After sectioning, the section-containing copper tapes are then cut and placed onto 

silicon wafers that contain on the order of 100s of ultrathin sections, generating so-called 

ultrathin section libraries (UTSLs; Hayworth et al., 2014). Individual sections from each 

UTSL can then be sequentially imaged by BSE detection in an SEM. This approach 

confers the additional advantage of reducing the time required for image collection, since 

individual UTSLs can in theory be imaged in parallel on multiple SEMs. Parallelization of 

this degree is not currently possible using the serial block-face modalities, which must 

physically remove a section before the next one is revealed. Despite the power of this 

technique, its applications in the field have so far been limited, likely due in large part to 

its reliance on highly specialized, custom-built machines (Peddie and Collinson, 2014). 

 

1.8. Discussion and future perspectives 

Advances in technologies for specimen preparation, imaging, data storage, and 

data analysis have fueled a renaissance in the field of quantitative 3D EM. Data obtained 

from modalities such as SBEM provide unprecedented volumetric snapshots of the in situ 

biological organization of the mammalian brain across a multitude of scales (Figure 1.2). 

When optimized staining protocols are employed (Deerinck et al., 2010), the resultant 

datasets possess enough breadth of field and resolution to be mined for answers to a 
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Figure 1.2. A comparison of the pixel sizes and total image volumes used in a 
sampling of publications that employed 3D EM methods. The reported lateral pixel 
sizes, axial pixel sizes, and total volumes are compared for studies published using four 
3D EM modalities: ssET, SBEM, FIBSEM, and AT. A study of interest from each modality 
is denoted by its citation on all graphs. In (A) and (B), lateral and axial pixel sizes are 
compared to total volume, where total volume is plotted on a log scale. With the noteable 
exception of the study by Noske and colleagues, which achieved a total volume 
comparable to that of many FIBSEM reports, ssET studies demonstrate the finest pixel 
sizes but smallest total volumes. On the other end of the spectrum, SBEM has been the 
modality of choice for most high-volume studies, with the noteable exception of the large-
scale volumetric FIBSEM dataset (~1.7x106 μm3) collected by Armer and coworkers. Most 
high-volume studies have, however, come at the expense of resolution in either the lateral 
or axial directions, or in some cases, both. The SBEM work reported by Briggman and 
colleagues represents one example of a massive dataset that was still collected at 
relatively fine pixel sizes (12 nm lateral, 25 nm axial, ~6.3x106 μm3 volume). A comparison 
of reported lateral and axial pixel sizes (C) demonstrates that very few large-scale 3D EM 
studies have utilized isotropic voxel dimensions (isotropy is indicated by the dashed line). 
Outside of ssET, FIBSEM studies are most likely to utilize near-isotropic voxels, while a 
few SBEM studies have reported isotropic voxels by utilizing coarse lateral pixel sizes to 
closely match their axial step sizes.  
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number of biologically relevant hypotheses. A single dataset, for example, could be used 

to simultaneously map the distribution of synapses (Kreshuk et al., 2011; Morales et al., 

2011; Kreshuk et al., 2014; Plaza et al., 2014; Staffler et al., 2014), quantify the 

morphologies of dendritic spines (Wilke et al., 2013; Wilke et al., 2014), explore the 

ultrastructure and distribution of organelle networks (Kalson et al., 2011; Motskin et al., 

2011; Hatori et al., 2012; Zhuravleva et al., 2012), analyze the composition of chromatin 

(Rouquette et al., 2009), and establish connectivities between neurons (Briggman et al., 

2011; Helmstaedter et al., 2013; Kim et al., 2014). Historically, however, most 3D EM 

datasets have been collected with only a very specific scientific goal in mind. Such 

datasets are used to extract the desired images or quantities and are then sent to archival 

storage, where they are oftentimes forgotten and never looked at again. As a 

consequence, there already exists a wealth of archived data that could be re-analyzed to 

answer a host of other intriguing scientific questions. This amount of data is only growing; 

microscopes are already capable of collecting terabytes of image data per day, and this 

number will soon grow as technologies such as an SEM capable of imaging with 61 beams 

in parallel become adopted (Marx et al., 2013; Keller et al, 2014). Therefore, it is 

abundantly clear that in order for such analyses to be feasible and desirable to the average 

scientist, rapid and largely automated tools for analysis are needed. 

 Although these relatively new modalities are flexible enough to enable studies with 

diverse biological goals, advances in the fields of segmentation and data analysis remain 

largely driven by the pursuit of connectomics (Kleinfeld et al., 2011; Lichtman and Denk, 

2011; Briggman and Bock, 2012; Plaza et al., 2014). With an eye towards this goal, semi-

automatic segmentation algorithms capable of labeling and tracking individual fibers 

through dense tangles of neuropil are currently a major focus of the community (Jurrus et 

al., 2009; Straehle et al., 2011; Andres et al., 2012; Liu et al., 2013). Though analogous 
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algorithms have been developed for organelles such as mitochondria (Giuly et al., 2012; 

Lucchi et al., 2012; Seyedhosseini et al., 2013a) and nuclei (Jaume et al., 2012), published 

reports of their applications to full, large-scale datasets are few and far between (Tek et 

al., 2014). Despite their obvious biological importance, organelles and other constituents 

of the subcellular compartment have been largely ignored at the quantitative level in state-

of-the-art, large-scale 3D EM reconstructions. Indeed, some connectome-centric SBEM 

datasets have even utilized staining protocols specifically designed to leave the 

subcellular compartment unlabeled (Briggman et al., 2011; Helmstaedter et al., 2013).  

 In light of this, it is evident that there remains a substantial, and predominantly 

untapped, opportunity for the application of serial block-face imaging modalities to the 

study of subcellular structure-function relationships across large scales. Data resulting 

from such efforts could be viewed as complementary to the endeavors of the 

connectomics community, and the combination of reconstructions from both would yield a 

more complete picture of cellular neuroanatomy. With this in mind, one of the major goals 

of the work presented in this dissertation was to establish a workflow for the semi-

automatic segmentation and morphological characterization of organelles in large-scale 

3D EM datasets. In Chapter 2, the work leading to the development of such a workflow 

will be described. An architecture for achieving accurate segmentations of organelles will 

be outlined, and the ability to scale this architecture to large SBEM datasets will be 

demonstrated. Chapter 3 will introduce streamlined methods for enhancing and 

quantifying the morphologies and 3D distributions of automatically segmented structures. 

Finally, Chapter 4 will implement these previously developed technologies to study a 

biologically intriguing question, namely, the chronomorphology of organelles in the 

suprachiasmatic nucleus. 
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Chapter 2 

The Automatic Segmentation of Multi-scale Neuroanatomical Features in 

3D EM Image Stacks 
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2.1. Introduction 

The generation of models from a series of 2D observations has long been 

recognized as the rate-limiting step of quantitative 3D EM. Accounting for a span of time 

ranging from the first microscopic observations of van Leeuwenhoek to the modern age 

of EM automation, Stephen Senft recently wrote that, for the neurosciences, the 

“bottleneck to reconstruction from each epoch has been processing speed, data access…, 

and most importantly, processing intelligence” (Senft, 2011). Fortunately, the specimen 

preparation and instrumentation advances discussed in Chapter 1 have combined to 

address one of these roadblocks, furnishing neuroscientists with unparalleled access to 

vast amounts of microscopic data. The last two impediments, processing speed and 

intelligence, remain topics in need of advancement, and both will be addressed in part by 

the technologies developed and described throughout the remainder of this dissertation. 

Before the introduction of these technologies, however, this chapter will begin with 

a brief historical discussion of the methods that have been employed by the community to 

furnish accurate 3D models. Following this will be a review of contributions towards 

automating these processes, and a discussion of the current state of the field. 

 

2.1.1. The manual segmentation bottleneck 

 Prior to the advent of modern computers, researchers resorted to a host of 

innovative, yet extremely labor-intensive methods for the construction of physical models 

from ssTEM micrographs. Early experimenters manually traced structures onto sheets of 

transparent cellophane, which were then serially aligned and glued together to provide 3D 

information (Bang and Bang, 1957; Sjöstrand, 1958). Subsequent researchers used 

photographic enlargers to project the negative of each micrograph onto white cardboard. 

Structures of interest were then hand-drawn onto the cardboard, cut out, and glued 
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together to form 3D models (Sotelo et al., 1973). Conceptually similar methods involved 

stacking cut-outs of polystyrene (Pedlar and Tilly, 1966) and graph paper (Hoffman and 

Avers, 1973), as well as segments of string wrapped around the perimeter of the structure 

of interest (Braverman and Keh-Yen, 1983).  

Though such models facilitated easier views of structure than the set of 2D images 

from which they were derived, they remained bounded by the restraints of the physical 

world; a model could only grow so large before it would require supports to prevent it from 

toppling over like a tower of Jenga blocks. Furthermore, such models required physical 

storage space and were difficult to morphologically quantify with a high degree of 

precision. As technology advanced and more ambitious imaging projects were initiated, 

the need for computer-based reconstruction systems became clear (Levinthal and Ware, 

1972). Since early microcomputers did not readily permit the simultaneous display of EM 

images and collection of user input, preliminary systems consisted of digital 

microcomputers that received user input from drawing tablets interfaced with optical 

devices (Cowan and Wann, 1973; Wiley et al., 1973; Fox et al., 1975; Moens and Moens, 

1981; Prothero and Prothero, 1982). Using such systems, 3D renderings and basic 

morphological parameters could be calculated and output to a connected oscilloscope or 

plotter (Macagno et al., 1979). To accelerate the analysis of large stacks of micrographs, 

systems were built in which serial images could be manually aligned to one another and 

analyzed as they were automatically played as a filmstrip on a TV camera (Harris and 

Stevens, 1988). During the mapping of the C. elegans connectome, a process that 

spanned many years, some attempts at utilizing computer-aided reconstruction were 

made (Stevens and White, 1979; White et al., 1986). Computerized systems, however, 

remained in their formative stages at this time. Therefore, much of the work was still 

performed by manually annotating neuronal processes on prints with drafting pens.  
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Over the next decade, improvements in computer hardware brought with them a 

number of upgraded systems and software packages for the manual reconstruction and 

visualization of objects from EM micrographs (Young et al., 1987; Allen and Levinthal, 

1990). The SYNU software package facilitated the classification and computation of 3D 

meshes from segmentations (Hessler et al., 1992). It also permitted the simultaneous 

display of numerous meshed objects and enabled the user to create high resolution 

movies from distinct orientations. The IMOD software package, which was introduced in 

1996 and still receives frequent use today, allows microscopists to segment structures of 

interest by drawing contours around them using a mouse or other input device (Kremer et 

al., 1996). Such contours are sorted into hierarchical objects that can be individually 

meshed, displayed, and morphologically quantified. IMOD utilizes the MRC image format 

(Crowther et al., 1996), which provides the advantage of appending all micrographs from 

a series into one file as a 3D stack. Such single files are much easier to store, keep track 

of, and generate models from than a series of thousands of individual files. Since the 

introduction of IMOD, a multitude of other software packages for the manual segmentation 

and reconstruction of objects in 3D EM datasets have been introduced, including 

Xvoxtrace (Perkins et al., 1997), Bsoft (Heymann, 2001), UCSF Chimera (Pettersen et al., 

2004), XMIPP (Sorzano et al., 2004), Reconstruct (Fiala, 2005), AUTO3DEM (Yan et al., 

2007), EMAN2 (Tang et al., 2007), Viking (Anderson et al., 2010), KNOSSOS (Briggman 

et al., 2011), and TrakEM2 (Cardona et al., 2012). This list will surely continue to grow as 

the needs of the community expand and evolve.  

 Despite the plethora of software options currently available to the field, human-

based manual annotations remain necessary to ensure accurate reconstructions. As an 

example, consider the reconstruction of a neuron and all of its processes across 1,000 

SBEM slices. Even if an automated algorithm could achieve an accuracy of 99.9% for the 
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segmentation of this neuron (a value that is substantially better than any such algorithm 

has ever performed), it would still almost certainly produce at least one fatal error in the 

form of a falsely merged or separated neurite. Researchers, therefore, are typically 

presented with three options when confronted with the need for a reconstructed model: 

(1) use an automatic algorithm and accept its associated errors, (2) apply an automatic 

algorithm and manually correct the errors of its output, or (3) perform purely manual 

segmentation. Unfortunately, the first two approaches tend to be ignored by all but a few 

groups, since most automatic approaches are not readily accessible or easily 

implementable on the systems of a standard lab.  

 Most neuroscientists, therefore, routinely opt for the manual segmentation option. 

Though such a choice may be serviceable for small studies, it essentially precludes the 

completion of any large-scale reconstructions in a timely manner. Even when using 

expedited methods and shortcuts such as skipping slices or approximating organelles as 

spheres or cylinders, manual segmentation remains a laborious endeavor (Noske et al., 

2008). Reconstructing neurons from even small regions of the Drosophila melanogaster 

visual system has been reported to take several months to years in terms of labor 

(Chklovskii et al., 2010; Plaza et al., 2012). The manual segmentation of mitochondria on 

all slices of an SBEM dataset the size of the one used in this chapter (~450,000 μm3) 

would require an estimated 2.3 years of work (Figure 2.1). This means that manually 

reconstructing all mitochondria from a dataset the size of a full mouse brain (~500 mm3) 

would necessitate about one year of nonstop work from every citizen in the city of Chicago 

(~2.7 million people). An analogous effort for the human brain would require the same 

workload from every person living on the continents of Asia and Africa combined (~5.5 

billion people). 
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Figure 2.1. The manual segmentation of organelles from SBEM image stacks 
represents a significant bottleneck to quantitative analyses. A scatter plot of the 
amount of time required for a highly trained neuroanatomist to segment all instances of a 
specific organelle in SBEM tiles of size 2,000 x 2,000 pixels demonstrates this 
impediment. Average values are represented by horizontal bars (mitochondria = 5.01 min., 
lysosomes = 3.43 min., nuclei = 0.93 min., nucleoli = 1.24 min.). Since mitochondria are 
ubiquitously present throughout most tissues, extrapolation of their average segmentation 
time per tile to the size of a full dataset can reliably predict the actual segmentation time 
required for such a volume.  For a dataset the size of the one used in this report (stack 
volume ~ 450,000 μm3, tile size ~ 60 μm2), the manual segmentation of all mitochondria 
would require roughly 2.3 years, placing it well outside the realm of feasibility. This effect 
is further exacerbated when experiments requiring segmentations from SBEM stacks over 
multiple samples or experimental conditions are desired. 
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 As outlandish as these hypothetical efforts may seem, this sort of outsourcing has 

already been attempted, albeit on much smaller scales. In their partial reconstruction of 

the retinal wiring diagram, Kevin Briggman and Winfried Denk employed over 200 

segmenters to trace skeletons through neuronal processes (Briggman et al., 2011). As a 

first attempt at achieving large-scale reconstructions of organelles, I initially employed a 

similar method with a group of undergraduate student volunteers. In collaboration with 

Monica Berlanga, volunteers were recruited via job postings to the UCSD Career Services 

website and trained on-site to segment using IMOD. To overcome resource limitations 

and create a flexible work environment, the trained volunteers installed the IMOD software 

on their own personal computers and segmented remotely. For remote segmentation to 

be possible, however, SBEM stacks first had to be decomposed into smaller sub-stacks 

that could reasonably fit into the hard disk and memory of a standard laptop computer. 

Thus, each image stack was first manually inspected for features of interest, which were 

then extracted to sub-volumes precisely large enough to contain the feature of interest in 

its entirety. The size of a typical sub-volume was ~1-2 GB, which is small enough for even 

outdated laptop computers to reasonably handle. A diagram of this workflow is shown in 

Figure 2.2. 

To organize the group, I created a web portal through which volunteers could 

download sub-volumes to work on, upload model files when their segmentations were 

complete, and ask questions or receive advice. The portal was created as part of the 

SLASH (Scalable system for large data analysis and segmentation utilizing a hybrid 

approach) group’s Google website, and files were distributed using Google Drive. The 

portal was password protected so that files were only available for download by team 

members. When logged in, seven tabs were available for volunteers to access (Figure 

2.3), the purposes of which are described here: 
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1. About – Contained links that introduced the volunteers to concepts relevant to the 

project, such as SBEM and the SCN. 

2. Calendar – Provided dates for deadlines, training days, and open office hours. 

3. Challenges – Provided details specific to the current segmentation task, including 

the nature of the feature of interest, the pixel dimensions of the current sub-

volumes, and the desired colors, numbers, and names for IMOD objects (Figure 

2.4). 

4. Discussion Board – Provided an interactive environment in which volunteers could 

ask and answer questions pertaining to the current segmentation task (Figure 2.5). 

5. The Team – Contained the names and contact information of all volunteers. 

6. Tutorials – Contained links to tutorials and instructional videos for segmentation 

using IMOD. 

7. Upload – Allowed the volunteers to upload their completed model files to a shared 

Google Drive folder. 

This portal was vital for facilitating the remote segmentation process, since it afforded 

volunteers an easy way to exchange files without the need to physically come into the lab.  

 The results obtained from this so-called “collaborative segmentation” endeavor 

were critical in establishing the need for a more powerful analysis method. Though such 

collaborative efforts have proven to yield satisfactory segmentations, they are clearly not 

viable, long-term solutions to the manual segmentation bottleneck. First, the quality of 

work from volunteers cannot always be trusted without substantial post-verification or 

redundancy. Furthermore, the task of manual segmentation is an acquired taste; many 

volunteers do not enjoy the work and quickly lose the desire to contribute. Finally, 

volunteers need to be recruited, trained, and coordinated, and each of these tasks require 

substantial investments on the part of the primary investigator. 
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Figure 2.2.  The collaborative segmentation workflow. After imaging, alignment, and 
downsampling, each dataset was manually inspected for instances of the feature of 
interest, in this case nuclei, that were fully contained within the volume. Each instance was 
assigned a numerical value and extracted to individual subvolumes using the IMOD 
programs trimvol and boxstartend. These subvolumes were then distributed to trained 
volunteers for segmentation and analysis on their own workstations. Subvolumes were 
generally limited to sizes of no larger than 1 GB to keep them manageable for personal 
computers and laptops. After completion, volunteers uploaded their segmentations to a 
shared Google Drive folder via a custom-designed web portal. Completed segmentations 
were subsequently downloaded, checked for accuracy, and added to the pipeline for 
morphological analysis and quantification.  
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Figure 2.3. An online portal to facilitate collaborative segmentation. The password-
protected portal was designed as a sub-group under the main SLASH website. Each 
volunteer was granted access to the portal by signing in via their Google account. Once 
inside the portal, volunteers could access a calendar of upcoming deadlines, read 
instructions for the current task, ask or answer questions on the discussion board, and 
upload completed segmentations to a shared Google Drive folder.  
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Figure 2.4. The instructions given to volunteers for the task of segmenting nuclei 
and nucleoli. In addition to being trained in person, volunteers were able to access 
instructions for the current segmentation task from the ‘Challenges’ tab of the main portal. 
The instructions included detailed information on how to identify the structure of interest, 
how to generate the proper IMOD model file, and the naming and color conventions for 
each object. Shown here is an excerpt of the instructions given for the segmentation of 
nuclei and nucleoli, as visualized from within the portal. 
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Figure 2.5. A discussion board for volunteers to ask and answer questions 
encountered while segmenting. When volunteers encountered a problem related to the 
IMOD segmentation software or their specific subvolume, they were asked to post the 
question to an interactive discussion board within the portal (names have been blacked 
out to protect identities). This scheme conferred two advantages: (1) questions could be 
answered by myself or another volunteer in a timely manner, and (2) such answers would 
be preserved in case other volunteers subsequently encountered the same problem. 
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 Most of the aforementioned drawbacks of collaborative segmentation can be 

circumvented if contributions towards reconstructions are made in parallel by many 

thousands of laypeople. Such approaches, known as crowd-sourcing, have been 

increasingly applied towards navigating the bottleneck of manual segmentation (Ball, 

2014; Valeo, 2014). Rather than being restricted to highly trained experts, crowd-sourcing 

methodologies leverage upon the recruitment of micro-laborers from the general 

population. Such micro-laborers are then trained effortlessly with little or no cost to the 

investigator; training frequently involves the presumptive laborer reading a simple 

paragraph and producing accurate results on a few test examples, all of which are 

provided to them automatically by a web interface. Achieving reasonable results with this 

minimal degree of training is possible because the tasks given to crowd-sourced laborers 

are relatively simple; instead of being asked to trace a neuron in its entirety, one might 

simply be asked whether or not two points are located within the same neurite (Giuly et 

al., 2013). With well-stained material and quality images, such decisions are incredibly 

easy for a human to make, even with little-to-no practical training. 

 The most well-known example of crowd-sourcing in the neurosciences is 

Sebastian Seung’s EyeWire (Kim et al., 2014). In this web-based application, users are 

tasked with tracking the processes of a single neuron through a 3D cube of EM data 

overlaid with a supervoxel oversegmentation. To keep its users captivated and make them 

feel as if they are playing a competitive game, EyeWire displays 3D renderings as the 

player generates them and maintains a ranking system complete with weekly 

competitions, player levels, and profile badge rewards. According to its website, EyeWire 

has been used to reconstruct over 100 neurons by 130,000 users based in 145 different 

countries (http://eyewire.org). Brainflight, another attempt at generating crowd-sourced 

reconstructions by immersing users in a video game-like atmosphere, is currently being 
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developed by Moritz Helmstaedter’s group (http://brainflight.org). In this game, which will 

be released for iOS and Android mobile phones and tablets, users are tasked with 

correctly linking adjacent supervoxels generated by oversegmentations (Dow et al., 2014). 

Like EyeWire, Brainflight features enough flashy graphics and reward mechanisms to 

make its users feel as if they are playing a game rather than tediously correcting 

segmentations. Though they are certainly helpful, useful scientific contributions can still 

be aggregated from the crowd without the assistance of game-like environments. One 

such example is the use of micro-laborers to accurately pick out the spherical objects 

corresponding to true positives from automatically generated segmentations (Lee, 2013).   

 Although advances in computational architectures and the introduction of crowd-

sourcing techniques have helped to partially expedite the pursuit of large-scale 

neuroanatomical reconstructions, the manual segmentation bottleneck is still firmly 

entrenched. Even today, scientists remain far away from developing methodologies that 

can emulate the collective labor force of billions of humans. Achieving this will require a 

high degree of automation; even the crowd-sourcing approaches discussed here rely upon 

accurate automatic segmentations as starting points. Thus, it has become clear that the 

most important contributions towards achieving this goal will come from improvements in 

the speed and accuracy of automatic segmentation algorithms. A review of the history and 

current state of such algorithms will follow. 

 

2.1.2. Automatic segmentation algorithms and their applications to the 

neurosciences 

The advent of computer-based systems for generating manual segmentations 

brought with it the hope that future researchers might be able to harness the power of 

these machines to produce such segmentations automatically. In 1979, Macagno, 
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Levinthal, and Sobel concluded their review of 3D computer reconstruction systems in the 

neurosciences with the following speculative glance to the future: 

…it seems quite clear that the rapid advances in electronics will make more 
and more automation possible at a reasonable cost. Within a few years we 
can expect that systems will be available that can easily recognize and 
digitize some features automatically, leaving for the investigator only those 
cases that are difficult or ambiguous. (Macagno, Levinthal, and Sobel, 
1979) 

 
Although history has proven their estimate of a few years to be overly optimistic, much 

progress has been made towards achieving this goal. The rest of this section will be 

dedicated to providing a historical account of this progress as applied to 3D EM datasets, 

followed by a discussion of the current deficiencies that led to the development of the 

technologies outlined in this dissertation. 

 Early reports of automated 3D image segmentation focused primarily on tasks 

such as separating various tissue types in computed tomography (CT) and magnetic 

resonance imaging (MRI) scans. A number of techniques were developed to specifically 

segment images from these modalities, and included innovative boundary detectors (Liu, 

1977; Zucker and Hummel, 1981), the marching cubes algorithm (Lorensen and Cline, 

1987), and simple intensity thresholding (Höhne et al., 1990). Despite the success of these 

approaches within the medical community, very few of them proved useful when applied 

to 3D EM datasets for a number of reasons. First, EM micrographs contain numerous 

membrane-bound structures whose intensity and texture profiles often overlap 

extensively. This overlap significantly degrades the quality of results obtainable from any 

operations based heavily on the histogram of the image. Second, most serial EM 

modalities are highly anisotropic and may simultaneously yield lateral pixel sizes in the 

range of 3-50 nm and axial pixel sizes in the range of 30-100 nm. This anisotropy means 

that features of the same object may appear significantly different from one section to the 
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next. Finally, even relatively small 3D EM datasets of the brain may contain thousands of 

fibers with unpredictable orientations. The membrane of a dendrite running perpendicular 

to the cutting plane often resembles a solid, dark, closed contour. However, after a few 

axial steps through the depth of the dataset, this same dendrite might bend in such a way 

that situates it parallel to the cutting plane, giving its membrane the appearance of a more 

diffuse spread of lighter, unconnected pixels. The design of an algorithm to detect both of 

these instances as membranes of the same dendrite is no trivial task. 

As a result of this complexity, the image processing community was rather delayed 

in tackling the challenge of developing algorithms for the automatic segmentation of serial 

EM data. One of the first such attempts was performed by Carlbom and colleagues, who 

used interactive deformable contours, or snakes (Kass et al., 1988), to segment dendrites 

from ssTEM images of the rat hippocampus (Carlbom et al., 1994). A similar approach 

was also used to semi-automatically segment nuclei from EM micrographs of HIV-infected 

cells (Bron et al., 1994). These works were subsequently improved upon by the 

introduction of algorithms to better complete neuronal boundaries by minimizing a 

geodesic function (Vazquez et al., 1998) and improve membrane contrast by optimizing a 

coherence-enhancing diffusion filter (Tasdizen et al., 2005). This approach is still in use 

today, and a number of groups have recently reported on the successful use of variations 

of the deformable, or active, contour approach to segment neural processes (Macke et 

al., 2008; Jeong et al., 2009; Jurrus et al., 2009). However, since it relies on either user-

specified initial contours approximating the object boundary or poorly defined image 

gradients to drive the segmentation, the deformable contour approach is not ideal in terms 

of either speed or accuracy. 

The deluge of new data introduced by the adoption of automated serial EM 

techniques such as SBEM brought with it an increased interest in the development of fully 
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automated segmentation algorithms (Briggman and Denk, 2006). To achieve the goal of 

reconstructing even a small volume of the brain without employing a city’s worth of human 

laborers, semi-automatic methods such as user-seeded contour evolution are not 

sufficient. As such, the field of EM image segmentation began to shift towards 

experimenting with approaches developed by the machine learning and artificial 

intelligence communities. Upon reviewing the field in 2004, Nöel Bonnet predicted that: 

…image processing tools will be based on methods originating from the 
fields of pattern recognition and artificial intelligence. Neural networks and 
expert systems will play an increasing part. Automatic classification, in the 
supervised or the unsupervised mode, will become more important when 
certain experimental techniques currently under development come into 
routine use. (Bonnet, 2004) 
 

Though machine intelligence had previously been employed to address various aspects 

of biological microscopy, including the classification of macromolecules (Van Heel, 1984; 

Van Heel, 1989; Frank, 1990; Marabini and Carazo, 1994; Pascual, et al., 2000) and the 

segmentation of boundaries of cultured cells (Wu et al., 1996), it had yet to be applied to 

the segmentation of structures from serial EM datasets, and certainly not on the scale of 

what would be required to reconstruct even partial subcellular models or wiring diagrams 

of the brain. 

 Machine learning approaches developed for biological image segmentation fall 

into one of two categories: supervised or unsupervised. For the former, the user must 

supply the algorithm with a set of training images and labels that dictates how the different 

classes should be discriminated. If, for example, a membrane segmentation is desired, 

the user might supply the raw EM image as well as a binary image of the same size that 

partitions each pixel into the class “membrane” or “not membrane.” If the algorithm 

supports it, additional labels may be added as desired, e.g. “membrane,” “mitochondrion,” 

and “background.” In the case of unsupervised learning, no such training sets are required, 
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and the algorithm performs the classification solely based on information present in the 

image that is to be segmented. The major advantage of unsupervised algorithms is that 

they do not require the generation of training data, which must be performed by a human 

and, ideally, should be painstakingly accurate. The generation of such training data may 

take anywhere from a few hours to weeks, depending upon the needs of the given 

algorithm and the feature for which training is desired. However, supervised methods have 

consistently outperformed their unsupervised brethren when applied to complicated EM 

images (Tasdizen, et al., 2014). Since the correction of automatic segmentations, even 

those generated by the highest performing algorithms available, still requires considerable 

human effort (Plaza et al., 2014), the better performing supervised approaches remain the 

gold standards of the field. 

 A number of open-source software packages that perform supervised pixel 

classification for EM data have been made available to the public in recent years. The Fiji 

distribution of ImageJ (Schindelin et al., 2012) contains a “Trainable Weka Segmentation” 

plugin that uses the WEKA machine learning libraries (Hall et al., 2009) to train a Random 

Forest pixel classifier on a host of selectable image features. The plugin provides a GUI 

by which the user can create a training set by manually tracing lines corresponding to 

different classes on the input image. The trained model can be saved and intuitively 

applied to classify naïve test datasets. Though fairly user-friendly, this plugin for pixel 

classification has not seen widespread adoption by the biological sciences, in part 

because it requires a significant amount of time and memory to generate its classifiers. 

 While other open-source software packages for pixel classification, such as 

CellProfiler (Carpenter, et al., 2006) and BIOCAT (Zhou et al., 2013), have been 

introduced, it is the contribution of Fred Hamprecht’s group, ilastik (Sommer et al., 2011), 

that has seen the most extensive use in the 3D EM community. Similar to Fiji’s WEKA 
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plugin, ilastik provides a GUI that allows the user to interactively add labels to a training 

set. The user then selects the features and scales they wish to utilize for the training of a 

Random Forest classifier, and the generated voxel classifications for all classes are shown 

in real-time as they are generated. The classifier can then be stored to disk in the HDF5 

format (Folk et al., 1999) and applied to test images in a batch mode. Alternatively, the 

user can operate in the so-called “headless mode”, where training and voxel classification 

are performed through the command line using previously generated training sets. 

Applications of ilastik to 3D EM datasets have been numerous, and include the 

segmentation of membranes (Andres et al., 2012), synapses (Kreshuk et al., 2014; 

Kreshuk et al., 2011), and cell nuclei (Tek et al., 2014). One caveat of ilastik is that its 

classifiers are trained on 3D features; it employs voxel classification rather than pixel 

classification. This is of minor concern for isotropic imaging modalities such as FIBSEM, 

but may cause issues for anisotropic modalities such as SBEM and ssTEM. First, SBEM 

or ssTEM image stacks may need to be downsampled, often dramatically, in-plane to 

achieve near-isotropic voxels. Second, 3D classification leaves the results susceptible to 

any number of errors that may occur during imaging and processing, including surface 

charging, focal gradients, specimen overlap, and imperfectly aligned sections.  

 With relatively few exceptions, most machine learning approaches for organelle 

segmentation have focused on mitochondria (Vitaladevuni et al., 2008; Narashima et al., 

2009; Smith et al., 2009; Kumar et al., 2010; Seyedhosseini et al., 2013a). Recently, Giuly 

and co-workers proposed a method to segment mitochondria utilizing patch classification 

followed by isocontour pair classification and level sets (Giuly, et al., 2012). Lucchi and 

colleagues (Lucchi, et al., 2012; Lucchi et al., 2010) developed an approach that trains a 

classifier to detect supervoxels that are most likely to belong to the boundary of the desired 

organelle. A method to automatically segment cell nuclei using ilastik to train a Random 
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forest voxel classifier followed by morphological post-processing and object classification 

was proposed by Tek and colleagues (Tek, et al., 2014).  

 One drawback of these proposed methods is that they make critical assumptions 

about the geometry of their segmentation target that render their expansion to other 

organelles nontrivial. The workflow developed by Tek and colleagues to produce nuclear 

segmentations, for example, would not be readily applicable to the segmentation of 

mitochondria without heavy modifications to its filters. Additionally, many published 

methods have only been tested on very small subregions of datasets. The method of Giuly 

and colleagues, for example, was only tested on a 350 x 350 x 30 voxel slab of data (Giuly 

et al., 2012). Since most large-scale 3D EM datasets contain a heterogeneous mixture of 

organelle morphologies spread across different cell types, it is unclear if such methods 

would achieve uniform results when applied to such datasets. Astrocytic mitochondria, for 

example, are known to be more elongated than their neuronal counterparts (Fernandez et 

al., 1983). Filters based on geometry and morphology may therefore preferentially accept 

mitochondria from one cell type and reject those from another.  

 Taking the above into consideration, it is clear that there remains a need for a 

method to accurately segment various organelles in SBEM stacks without any a priori 

assumptions about organelle morphology.  In this chapter, a method for the robust and 

accurate automatic segmentation of morphologically and functionally diverse organelles 

in EM image stacks is presented. Organelle-specific pixel classifiers are trained using the 

cascaded hierarchical model (CHM; Seyedhosseini et al., 2013b), a state-of-the-art, 

supervised, multi-resolution framework for image segmentation that utilizes only 2D image 

information. Critically, since only 2D features are considered, this method is equally 

applicable to both isotropic and anisotropic imaging modalities. A series of tunable 2D 

filters are then applied to generate accurate segmentations from the outputs of pixel 
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classification. In the final processing step, 3D connected components are meshed 

together in a manner that minimizes the deleterious effects of local and global imaging 

artifacts. Finally, an efficient workflow for scaling this method to teravoxel-sized datasets 

that leverages upon parallelization with supercomputing resources is presented.  

 

2.2. Methods Development and Results 

 In this section, an algorithm developed for the automatic segmentation of multi-

scale features in SBEM image stacks will be described. The steps of the algorithm, which 

utilizes CHM for pixel classification, will be outlined in detail, and performance metrics will 

be presented for a variety of sub-cellular organelles (mitochondria, lysosomes, nuclei, and 

nucleoli) using a single SBEM image stack as the test dataset. The strength of this 

algorithm will then be established by means of a comparison to a recently reported method 

for the automatic segmentation of nuclei in SBEM datasets (Tek et al., 2014). 

In the first sub-section, the parameters used for imaging and pre-processing of the 

dataset will be defined. Scripts for expediting image downsampling, conversion, and 

histogram modification will be introduced. In the second sub-section, the generation of 

organelle-specific CHM pixel classifiers will be outlined, and the description of a 

computationally feasible workflow for the application of these classifiers to teravoxel-sized 

image stacks will follow. A novel method for the binarization of CHM probability maps will 

then be introduced, and its performance will be compared against that of other published 

methods.  

 

2.2.1. Data Collection and Pre-processing 

2.2.1.1. Tissue processing and SBEM image stack acquisition 
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The suprachiasmatic nucleus (SCN) of one three-month-old, male C57BL/6J 

mouse was harvested and prepared for SBEM using a standard protocol (Wilke, et al., 

2013). The resin-embedded tissue was mounted on an aluminum specimen pin and 

prepared for SBEM imaging as previously described (Holcomb, et al., 2013). Imaging was 

performed by detection of backscattered electrons (BSE) using a Zeiss Merlin scanning 

electron microscope equipped with a 3View ultramicrotome (Gatan). The SBEM image 

stack was acquired in ultrahigh vacuum mode using an accelerating voltage of 1.9 kV, a 

pixel dwell time of 500 ns, and a spot size of 1.0. Sectioning was performed with a cutting 

thickness of 30 nm. BSE images were acquired at 800x magnification with a raster size of 

32,000 pixels x 24,000 pixels, yielding a pixel size of 3.899 nm/pixel. A total of 1,283 serial 

images were acquired, resulting in an image stack with tissue dimensions of roughly 124.8 

μm x 93.6 μm x 38.5 μm (~450,000 μm3). The specimen was then removed from the 

chamber, and an image of a diffraction grating replica specimen (Ted Pella, Redding, CA, 

U.S.A.) was acquired at the same magnification for calibration of the lateral pixel size. Low 

magnification images of the block-face were acquired before and after sectioning.  

 

2.2.1.2. SBEM stack alignment 

All individual images of the input SBEM stack were converted to the MRC format 

and appended to an 8-bit MRC stack using the IMOD programs dm2mrc and newstack, 

respectively (Kremer, et al., 1996). Sequential images within the stack were then 

translationally aligned to one another in the XY-plane using the cross-correlational 

alignment algorithm of the IMOD program tiltxcorr.  

The lateral pixel size of the stack was determined using the calibration image of 

the diffraction grating replica specimen. The calibration image was opened in 3dmod, and 

an object containing twenty open contours was initialized. On each contour, a line covering 
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ten grid boxes was traced, and the pixel lengths of each open contour were computed 

using the IMOD program imodinfo. Each length was divided by ten to give the number of 

pixels per grid box, and subsequently converted to nanometers using the known size of 

each grid box. The average of these lengths for all twenty contours was determined, and 

this value was used as the final lateral pixel size of the stack. The header information of 

the aligned MRC stack was then edited to reflect the true pixel size using the IMOD 

program alterheader.   

 

2.2.1.3. Image downsampling and conversion 

 Since working with a 32,000 x 24,000 pixel image size is unwieldy even for modern 

computers, the ability to laterally downsample images in the stack without sacrificing the 

accuracy of automatically generated segmentations is highly beneficial. Downsampling by 

only a factor of two would reduce the single image size to 16,000 x 12,000 pixels, a total 

size reduction of four times. However, the allowable degree of downsampling is likely to 

vary depending on the segmentation target; larger targets, such as nuclei, may allow for 

higher levels of downsampling before an impact on segmentation accuracy is noticeable. 

In order to test this, laterally downsampled versions of the same dataset were generated 

with binning factors of 2, 4, 6, 8, and 10. Additionally, a version with isotropic voxels was 

generated by laterally downsampling by a factor of 7.694, the ratio of the axial resolution 

to the lateral pixel size. 

 To allow for easy and efficient downsampling, newstack_bin.sh, a Bash script that 

incorporates IMOD programs, was written (Appendix C.2.1). The script requires three 

inputs: (1) the location of the original MRC stack, (2) the factor by which it should be 

downsampled, and (3) the name for the downsampled MRC stack.  Each slice in the  
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Table 2.1. An expedited approach to the downsampling of SBEM image stacks. All 
slices from an SBEM stack were individually extracted and downsampled in a two-step 
process. The number of pixels per slice is indicated at each level of downsampling. The 
average times for slice extraction and downsampling are reported as the mean ± standard 
deviation. Following this process, all images were appended to a final, downsampled 
stack; the time required for this stacking is also indicated. Though extraction time is 
independent of image size, both downsampling and stacking times decrease as the size 
of the input image decreases. 
 

 

input stack is extracted to a temporary, single-image MRC file and then downsampled by 

the user-specified factor using the IMOD program newstack. Afterwards, all binned, single-

image MRC files are appended to a new MRC stack with the user-specified output name. 

By downsampling only single images, this approach eliminates the risk of stalling that may 

occur when using the entire stack as input to the newstack program. The number of pixels, 

average time per slice for extraction and downsampling, and the total time required for 

stacking are reported in Table 2.1. Plots indicating the time required for extraction and 

downsampling for every slice in the stack are shown in Figure 2.6. The results shown in 

Figure 2.6 demonstrate that downsampling using the script newstack_bin.sh runs 

smoothly without any stalling for the entirety of the stack. 

 The code for pixel classification with CHM requires test images to be in the 

Portable Network Graphics (PNG) format. Each downsampled MRC stack was converted 

to a set of sequentially numbered PNG files using the Bash script mrcstack2png.sh 

(Appendix C.2.2). This script requires two inputs: (1) the location of the MRC stack and 

(2) the path to store output PNG files to. An array job is then submitted using the Sun Grid  

Binning 
Factor 

Number of 
Pixels 

Average Extraction 
Time Per Slice (sec.) 

Average Downsampling 
Time Per Slice (sec.) 

Stacking Time 
(min.) 

1 7.68 x 108 - - - 
2 1.92 x 108 15.77 ± 1.20 4.85 ± 0.43 52.35 
4 4.80 x 107 15.46 ± 0.72 2.48 ± 0.74 13.23 
8 1.20 x 107 15.29 ± 0.87 1.42 ± 0.26 4.09 

10 7.68 x 106 15.64 ± 1.06 1.46 ± 0.15 2.69 
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Figure 2.6. The proposed method for image downsampling processes entire 
datasets without stalling. The times required to extract and downsample each slice from 
the same native resolution SBEM dataset are shown at different levels of downsampling 
(A, 2x downsampling; B, 4x downsampling; C, 8x downsampling; D, 10x downsampling). 
The proposed method runs smoothly for all images without demonstrating any significant 
spikes in the time required. Extraction times are, as expected, relatively consistent and 
independent of the desired level of downsampling. Downsampling times roughly scale with 
the desired level of downsampling over the range of 2x – 8x. At 10x downsampling, the 
average downsampling time per slice is virtually the same as for 8x (C,D).  
 
 
 
 

 

 

 

 

 

 



53 

 

 



54 

 

Engine (SGE) job script mrcstack2png.q (Appendix C.2.3). This allows slices to be 

processed in parallel and expedites the conversion process.  

 

2.2.1.4. Histogram Equalization 

 The histograms of all images in the stack were equalized using a MATLAB (The 

MathWorks, Inc., Natick, MA, U.S.A.) implementation of the exact histogram specification 

(EHS) algorithm (Coltuc et al., 2006). Unlike global histogram equalization (GHE), which 

attempts to improve contrast by assigning equal numbers of pixels to the intensity bins of 

the image, histogram specification attempts to fit the image’s histogram to a given function 

or spread. The EHS algorithm is a type of histogram specification that allows for the 

modification of an image’s histogram to fit any desired histogram with discrete bins. 

Therefore, the first step is to generate a reference histogram that all images in the stack 

will be normalized to.  Two approaches for generating this reference histogram are 

considered: (1) the use of the histogram of a single slice, and (2) the use of the summed 

histogram of the entire stack.  

 Irrespective of which approach is chosen, artifacts introduced by image borders 

must be eliminated before an accurate histogram for specification can be extracted. When 

lateral translations are needed to align successive slices to one another via cross-

correlation, a border of uniform pixel intensity is formed around the image to maintain the 

same image dimensions following translation (Figure 2.7, A-B). Such a border causes a 

spike in the histogram at this pixel intensity (Figure 2.7, D). Using simple translational 

alignments, borders may exist on as many as two edges and as few as zero. If more 

advanced alignments accounting for warping are implemented, borders can exist on all 

four edges and may result in a sheared image with non-uniform borders. Therefore, an 
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automatic method for detecting borders that could be applied to an image aligned with any 

method was necessary.  

 The implemented method for border detection calculates the magnitude of the 

numerical pixel gradient of the input image.  Since borders have the same pixel intensity 

throughout, the gradient magnitude of pixels belonging to borders will be approximately 

zero. Gradients are computed using a MATLAB script, find_nonborder_pixels.m 

(Appendix C.2.4), which calculates the horizontal (Gx) and vertical (Gy) gradients of the 

input image (I) of size M x N pixels according to the following formulae:  

Gxi,j =

{
 

 
I2,j − I1,j, i = 1

1

2
(Ii+1,j − Ii−1,j), 2 ≤ i ≤ M− 1          ∀ j ∈ {1,… , N}

IM,j − IM−1,j, i = M

 

Gyi,j = {

Ii,2 − Ii,1, j = 1

1

2
(Ii,j+1 − Ii,j−1), 2 ≤ j ≤ N − 1

Ii,N − Ii,N−1, j = N

           ∀ i ∈ {1, … ,M} 

The gradient magnitude is then calculated for each pixel: 

|G|i,j = √Gxi,j
2 + Gyi,j

2  

This gradient magnitude image is binarized using a single-level threshold at a low value 

(~0.01) to automatically detect border pixels. Occasionally, false positives may be 

detected on the interior of the image; such false positives typically occur at blood vessels, 

whose lumens may also have very small pixel gradients. To eliminate such false positives, 

the mask obtained from thresholding is inverted, and 2D hole-filling is performed.  Thus, 

the final binary mask output from find_nonborder_pixels.m has all image pixels marked as 

positive and all border pixels marked as negative. An example of this mask is shown in 

Figure 2.7C, which depicts the automatically detected non-border pixels with a transparent 

green overlay. The histogram of the whole masked image slice is shown in Figure 2.7E,
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Figure 2.7. The automatic detection of image borders. As a result of various alignment 
algorithms, SBEM image slices often possess borders of uniform pixel intensity (A, boxed 
region magnified in B). Such borders add a spike artifact to the image histogram (C) that 
is not representative of the true data in the image. By computing the magnitude of the 
image gradient to detect non-border pixels, image pixels can be reliably discriminated from 
border pixels (D). The histogram of only the true image pixels can then be determined; 
such a histogram is shown to be devoid of the spike artifact (E) and is acceptable for use 
in histogram specification algorithms. 
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which displays the same shape of the histogram in Figure 2.7D, but without the spike in 

pixel intensity due to border pixels.  

 Reference histogram generation is performed by invoking the Bash wrapper script 

generate_reference.sh (Appendix C.2.5), which requires three inputs: (1) the path 

containing the stack of PNG images generated in Section 2.2.1.3, (2) an output path for 

reference histograms, and (3) the desired mode of operation. If single-slice mode is 

chosen, the desired slice number for the reference image must be specified. In this case, 

the SGE job script generate_reference.q (Appendix C.2.6) is submitted, which invokes the 

MATLAB function generate_reference.m (Appendix C.2.7) to mask non-border pixels of 

the input slice as previously described. The 8-bit histogram of these non-border pixels is 

then computed and written to an ASCII file with 256 lines, in which each line corresponds 

to the pixel count at the given pixel intensity. If full-stack mode is chosen, 

generate_reference.q is submitted as an array job such that ASCII files specifying the 

histogram of every image in the stack are output. 

 Once reference histograms have been generated, histogram equalization is 

performed using a MATLAB implementation of the EHS algorithm downloaded from the 

MATLAB File Exchange (File ID: #26309). EHS processing is initialized using the Bash 

wrapper script run_ehs.sh (Appendix C.2.8), which requires three inputs: (1) the path to 

the stack of PNG images, (2) the path to the reference histogram ASCII files, and (3) an 

output path to store equalized PNG images to. This wrapper script submits an SGE array 

job using the job script run_ehs.q (Appendix C.2.9), such that images can be processed 

in parallel. Each job invokes the MATLAB function run_ehs.m (Appendix C.2.10), which 

first loads and sums all reference histograms in the specified path to yield the final full-

stack reference histogram. If single-slice mode was used, the single reference histogram 

will be loaded without summation. EHS is then applied to the non-border pixels of the 
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image using the summed reference histogram as the target. The conclusion of this 

process yields a stack of PNG images whose overall histograms are all essentially 

identical to one another. 

 

2.2.2. Pixel classification 

2.2.2.1. Generation of training labels 

 For each organelle target, a set of training images and labels was generated. First, 

a set of 50 seed points, P, were selected for each organelle throughout the processed 

SBEM stack such that: 

Pi = (x, y, z) ∀ i ∈ {1,… ,50} 

These points were chosen in a manner that yielded a wide distribution throughout the 

stack. Since subtle alterations in image quality may occur throughout an SBEM dataset, 

this wide distribution was preferable to simply taking training images from the same region 

of consecutive slices, as such a sub-volume may not be representative of the whole 

dataset.  

 After the selection of seed points, every instance of the chosen organelle was 

manually segmented in a 500 x 500 pixel tile centered at each Pi. To maintain consistency, 

the manually segmented contours were placed on the inside of the membrane of 

membrane-bound organelles. Once segmentations were completed, training images and 

labels were extracted using the scripts process_td.sh (Appendix C.2.11) and process_td.q 

(Appendix C.2.12). These scripts work by first extracting the coordinates of the points Pi 

to a text file using the IMOD program model2point. Then, using the IMOD program trimvol, 

2D tiles of size 500 x 500 pixels are extracted, masked using imodauto with the manually 

generated contours, and converted to PNGs with the IMOD program mrc2tif. These 

masked images are binary representations of the organelle of interest, and serve as 
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training labels. Training images are then extracted from the corresponding full-size images 

in the EHS PNG stack using ImageMagick’s convert program. Thus, the final outputs from 

training data generation are (1) a stack of 8-bit, grayscale training images, Ti, and (2) a 

stack of corresponding binary organelle masks, Bi. A flow chart illustrating this procedure 

for training data generation is shown in Figure 2.8. Training sets were generated for four 

organelles of interest: nuclei, nucleoli, mitochondria, and lysosomes. The training images 

and labels used for training each classifier are shown in Appendix B. Additional training 

sets were also generated for the downsampled image stacks created in Section 2.2.1.3 

using the same manual segmentations. Thus, for each organelle, training sets were 

created for levels of downsampling of 2, 4, 6, 8, and 10. 

 

2.2.2.2. Training organelle-specific classifiers 

 The CHM consists of bottom-up and top-down steps cascaded in multiple stages 

(Seyedhosseini, et al., 2013b). The bottom-up step occurs in a user-specified number of 

hierarchical levels, L. At each level, the input stacks Ti and Bi are sequentially 

downsampled and a classifier is trained based on features extracted from the 

downsampled data as well as information from all lower levels of the hierarchy. After 

classifiers have been trained at all levels, the top-down path combines the coarse 

contextual information from higher levels into a single classifier that is applicable to images 

at native resolution. This whole process is then cascaded in a number of stages, S, where 

the output classifier from the previous stage serves as the input classifier for the 

subsequent stage. The final output is a pixel classifier, CS,L, that is applicable to images at 

the native pixel size of Ti and Bi. For optimal results, the number of stages chosen should 

be greater than one. The exact number of stages and levels chosen depends on a host of 

factors, including the size of Ti and Bi and the computational resources available to the  
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Figure 2.8. A flow chart of the steps involved in training data generation. The 
generation of a set of training data for mitochondrial automatic segmentation is shown 
here. First, a set of seed points, Pi, were selected such that a wide distribution throughout 
the volume is achieved (bottom left). Tiles of size 500 x 500 centered at each seed point 
were extracted to serve as training images, Ti. All instances of the desired organelle target 
were manually segmented on each training image. These manual segmentations were 
then used as masks to binarize each Ti such that pixels of value one correspond to pixels 
of Ti that are positive for the desired organelle. This process was repeated 50 times to 
yield stacks of training images and their corresponding training labels, Bi.  
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experimenter. 

For each organelle target, 90 seed points were placed throughout the SBEM stack 

as described in Section 2.2.2.1. Of the 90 tiles generated for each organelle, 50 were 

randomly selected for use in training a CHM classifier; the other 40 were set aside to use 

as test data and ground truth for evaluating classifier performance. CHM classifiers were 

trained with two stages and two levels for each target organelle, and at each level of 

downsampling. The wallclock time and memory requirements for training each classifier 

are given in Table 2.2. All classifiers were trained using the high memory node (monster-

2.8) of the National Biomedical Computation Resource (NBCR) cluster, rocce.ucsd.edu 

(http://rocce-mgr.ucsd.edu/). 

 

2.2.2.3. Computation of probability maps 

 For each organelle and level of downsampling, the corresponding set of 40 test 

tiles were subjected to pixel classification using the appropriate trained classifier. Pixel 

classification was performed in parallel by submitting the SGE array job script 

CHM_array_testTile.q. An example of this script is shown in Appendix C.2.13. A tiling 

routine was built and incorporated into the script for cases in which the test images are 

significantly larger than the data used to train the classifier. When desired, the user can 

specify a desired number of tiles in the X and Y directions. For example, if the test image 

has dimensions of 4,000 pixels x 2,000 pixels and the classifier was trained on images of 

size 500 x 500, tiling with dimensions of 8 x 4 would be appropriate. Each input image is 

then decomposed into the specified number of tiles using a routine built around a series 

of ImageMagick commands (Appendix C.2.13). The user is also able to specify the 

number of pixels by which adjacent tiles should overlap. Probability maps are then 

computed for each tile. Once all tiles have been generated, they are automatically stitched  
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Table 2.2. Computational requirements for organelle-specific pixel classification. 
The dimensions of the stack of training images and labels used to train the classifier are 
given. The values for pixel classification correspond to the average values required to 
generate a probability map for one tile of roughly 60 μm2 at the tissue level (1,000 x 1,000 
pixels at 2x downsampling). Values are reported as the mean and standard deviation (N 
= 40 for each). Time is reported as the wall clock time for the indicated process. 
 

 Classifier Training  Pixel Classification 

nm/pixel Dimensions Time (hr.) RAM (GB)  Time (min.) RAM (GB) 

       
Mitochondria 
7.79 500 x 500 x 50 22.27 78.54  13.25 ± 1.18 4.54 ± 0.04 
15.59 250 x 250 x 50 17.69 39.40  4.66 ± 2.07 2.08 ± 0.05 
23.39 166 x 166 x 50 7.74 18.09  2.07 ± 0.06 1.69 ± 0.05 
31.19 125 x 125 x 50 2.68 10.77  1.17 ± 0.03 1.49 ± 0.08 
38.90 100 x 100 x 50 2.59 7.31  0.93 ± 0.05 1.40 ± 0.06 
Lysosomes 
7.79 500 x 500 x 50 43.45 75.78  13.12 ± 0.61 4.53 ± 0.03 
15.59 250 x 250 x 50 38.39 39.34  4.71 ± 0.18 2.09 ± 0.06 
23.39 166 x 166 x 50 12.13 18.06  2.06 ± 0.05 1.68 ± 0.05 
31.19 125 x 125 x 50 6.65 10.78  1.11 ± 0.01 1.51 ± 0.04 
38.90 100 x 100 x 50 4.08 7.35  0.82 ± 0.02 1.47 ± 0.04 
Nuclei 
7.79 500 x 500 x 50 23.98 87.24  12.73 ± 0.90 4.54 ± 0.03 
15.59 250 x 250 x 50 20.35 39.38  4.67 ± 0.15 2.08 ± 0.04 
23.39 166 x 166 x 50 7.95 18.16  2.03 ± 0.03 1.68 ± 0.05 
31.19 125 x 125 x 50 4.71 10.83  1.18 ± 0.02 1.52 ± 0.04 
38.90 100 x 100 x 50 3.18 7.38  0.90 ± 0.04 1.41 ± 0.04 
Nucleoli 
7.79 500 x 500 x 50 20.67 81.80  13.56 ± 1.70 4.54 ± 0.03 
15.59 250 x 250 x 50 22.67 39.35  4.76 ± 0.16 2.09 ± 0.04 
23.39 166 x 166 x 50 10.10 18.06  2.06 ± 0.04 1.69 ± 0.04 
31.19 125 x 125 x 50 5.75 10.84  1.17 ± 0.02 1.50 ± 0.04 
38.90 100 x 100 x 50 3.06 7.34  0.89 ± 0.02 1.41 ± 0.04 
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together to yield the final, full-sized probability map of the complete image. During 

stitching, regions of overlap are handled by taking either the average or maximum pixel 

intensity across the overlapped regions from all appropriate tiles. Following stitching, the 

final probability map is normalized such that each pixel ranges from [0,…,1], with one 

representing the greatest probability of a true positive. 

 

2.2.2.4. Assessment of classifier performance 

  Following pixel classification of all test images, classifier performance was 

assessed by comparing the output, normalized probability maps to their corresponding, 

manually segmented ground truth. Receiver operating characteristic (ROC) and precision-

recall curves (Fawcett, 2006) were generated by applying pixel intensity thresholds 

ranging from 0 to 1 in increments of 0.01 to each probability map. The confusion matrix 

was computed at each threshold value, and the true positive rate (TPR, or recall), false 

positive rate (FPR), and precision were calculated according to the following formulae:  

TPR = 
TP

TP+FN
 

FPR = 
FP

FP+TN
 

 

Precision = 
TP

TP+FP
 

 
ROC curves were generated by plotting TPR against FPR for all threshold values, and 

precision-recall curves were generated by plotting precision against TPR for all threshold 

values. The computation of these values was performed using the MATLAB script 

segStats.m (Appendix C.2.14). ROC curves for the four organelle targets at a 

downsampling level of 2x are shown in Figure 2.9. In addition to the values described 

above, the script segStats.m also calculates a host of other segmentation evalutation 
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Figure 2.9. ROC curves for CHM classifiers of various organelles. ROC curves for 
mitochondrial (A), lysosomal (B), nuclear (C), and nucleolar (D) CHM classifiers generated 
with two stages and two levels. 
 

 



66 

 

metrics, including the true negative rate (TNR), false negative rate (FNR), false discovery 

rate (FDR), negative predictive value (NPV), accuracy, F-value, Jaccard coefficient 

(Powers, 2011; Lucchi et al., 2012), geometric mean (Seyedhosseini et al., 2013b), and 

Matthew’s correlation coefficient (Matthews, 1975; Baldi et al., 2000). These metrics are 

calculated according to the following formulae: 

TNR = 
TN

FP+TN
 

FNR = 
FN

FN+TP
 

NPV= 
TN

TN+FN
 

Accuracy = 
TP+TN

TP+FN+FP+TN
 

Jaccard = 
TP

FP+TP+FN
 

G-mean = √TPR × TNR 

MCC= 
TP×TN-FP×FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 

 

2.2.2.5. Binarization of probability maps 

 Each probability map, Mj, is binarized by evolving active contours (Chan and Vese, 

2001) at automatically determined initial positions. For an unsupervised determination of 

the initial positions, the probability map M is first thresholded using Otsu’s multi-level 

method (Otsu, 1979) with G unique gray levels. The output from this operation is Oj, a 

map in which each pixel of Mj has been classified into one of G unique levels, with the 

zeroth level corresponding to the approximate background. This map is then binarized by 

thresholding Oj at a pixel intensity of G, yielding a mask of initial positions, Kj. This binary 

mask is then made smaller by applying two iterations of morphological shrinking and used 
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to initialize the evolution of active contours with a number of iterations and smoothing 

factor specified by  and , respectively. Each 2D connected component of Kj serves as 

a unique initial position for contour evolution. For best results,  should be at least 50. The 

choice of  depends largely on the organelle target and pixel size of the test images, but 

in general should fall in the range of 0-8. Larger values of  can be used when the pixel 

size is small. If the pixel size is too large (i.e. above 10 nm/pixel), smoothing should be 

turned off by setting  to zero. The value of G significantly alters the results, and its choice 

is dependent on the goals of the experimenter. Low values of G tend to emphasize true 

positives at the risk of retaining false positives. As G is increased, false positives are more 

readily removed, but so are true positives. The final output from this process is SEGj, the 

organelle segmentation of the input grayscale image, Ij. An illustration of this process is 

shown for two test images in Figure 2.10. This binarization algorithm is implemented in 

the MATLAB script binarize_pm_activecontour.m (Appendix C.2.15). 

 The results of this method were compared to segmentations generated from the 

same probability maps, but with a number of different unsupervised binarization 

algorithms: (1) Minimum error thresholding (Kittler and Illingworth, 1986), (2) Maximum 

entropy thresholding (Kapur, et al., 1985), and (3) Otsu’s single-level method (Otsu, 1979). 

The performance of each algorithm, as quantified by the F-value, Jaccard index, precision, 

and recall, was compared against that of the proposed method for each organelle target. 

The results of this comparison are shown in Table 2.3. The proposed active contour 

segmentation method resulted in a superior recall for all four organelles and a superior F-

value for mitochondria, lysosomes, and nucleoli when compared to the other segmentation 

methods. The F-value for nuclear segmentation is negligibly better using Otsu’s single-

level method. The lack of distinction between these two binarization methods for nuclei is 

due largely to the already high quality of nuclear probability maps. The accuracy values 
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Figure 2.10. The binarization of probability maps using active contours initialized 
by a multi-level Otsu threshold yields accurate segmentation results.  Colorized 
maps, M, of a nucleus (A) and lysosomes (D) generated by applying Otsu’s method with 
multiple levels to probability maps obtained by CHM pixel classification. Each color 
corresponds to a unique level of the threshold. Six gray levels (G = 6) were used for the 
nucleus and four (G = 4) were used for the lysosomes. Initial positions (B, E) were 
determined by selecting pixels corresponding to only the highest levels of each threshold 
followed by two iterations of morphological shrinking. Output segmentations (C, F) were 
obtained by evolving active contours about each of the initial positions in (B) and (E) with 

100 iterations and a smoothing factor of 8 ( = 100,  = 8). In the case of the lysosome 
images, note that a myelinated axon that was originally detected by the classifier as a 
false positive (D, arrow) has been removed from the final segmentation by the application 
of our method (F, arrow). 
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Table 2.3. Segmentation evaluation metrics for the tested organelle targets using 
various methods of probability map binarization. 
 
 F-value Precision Recall Jaccard Index 

     
Mitochondria  
Minimum Error 0.635 0.994 0.466 - 
Max. Entropy 0.669 0.991 0.505 - 
Otsu Single-level 0.816 0.957 0.712 - 
Active Contours 0.877 0.867 0.886 0.780 
Lysosomes  
Minimum Error 0.433 0.985 0.277 - 
Max. Entropy 0.492 0.940 0.508 - 
Otsu Single-level 0.812 0.899 0.737 - 
Active Contours 0.841 0.854 0.828 0.726 
Nuclei  
Minimum Error 0.963 0.958 0.968 - 
Max. Entropy 0.644 0.603 0.692 - 
Otsu Single-level 0.971 0.979 0.963 - 
Active Contours 0.970 0.973 0.968 0.942 
Nucleoli  
Minimum Error 0.781 0.998 0.641 - 
Max. Entropy 0.811 0.996 0.684 - 
Otsu Single-level 0.898 0.973 0.835 - 
Active Contours 0.910 0.902 0.918 0.835 

 

obtained for each stack using active contour segmentation were 0.985, 0.997, 0.972, and 

0.979 for mitochondria, lysosomes, nuclei, and nucleoli, respectively. 

 A comparison of the proposed active contour binarization method to the other 

methods tested is shown in Figure 2.11 using mitochondria as an example. Since the 

Golgi apparatus can sometimes display a texture similar to that of the mitochondrial matrix, 

the presence of this organelle can confuse the mitochondrial classifier (Figures 2.11A and 

2.11B, arrows). Segmentations generated with the maximum entropy algorithm (Figure 

2.11C, recall = 0.992, precision = 0.498, F-value = 0.670, accuracy = 0.948) and Otsu’s 

single-level method (Figure 2.11D, recall = 0.958, precision = 0.687, F-value = 0.812, 

accuracy = 0.977) retain elements of the Golgi apparatus as false positives. However, 

probability map binarization using the proposed active contour method eliminates these 

false positives (Figure 2.11D, recall = 0.908, precision = 0.804, F-value = 0.863, accuracy 
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= 0.985) when compared to the ground truth (Figure 2.11E). Output probability maps and 

active contour segmentations from example test images of each organelle are shown in 

comparison to their corresponding ground truth in Figure 2.12. 

 

2.2.2.6. Comparison to a previously published algorithm 

 The results of the proposed method for nuclear segmentation were validated by 

comparison to the results obtained by the algorithm of Tek and colleagues (Tek, et al., 

2014). The full dataset was first downsampled to isotropic voxel dimensions (30 nm x 30 

nm x 30 nm), resulting in a stack of size 4029 x 3120 x 1283 voxels. Training data and 

images consisted of a 500 x 500 x 50 subvolume of the downsampled stack containing 

two adjacent nuclei. Ground truth data were generated by manual segmentation of all 

neuronal, glial, and endothelial cell nuclei across fifty consecutive slices from the center 

of the dataset. A CHM pixel classifier with two stages and two levels was trained and 

applied to all images in the stack. Similarly, an ilastik voxel classifier was trained using all 

possible features with the same training images serving as input (Sommer, et al., 2014). 

This classifier was subsequently applied to all images in the downsampled stack. CHM 

probability maps (Figure 2.13) were binarized using the proposed method. The ilastik 

probability maps (Figure 2.14) were binarized by thresholding at the level p = 0.5, followed 

by the application of the object detection algorithm of Tek and colleagues with Vth1 and 

Vth2 set to 25 and 10000, respectively (Tek, et al., 2014). The proposed method achieved 

a precision, recall, and F-value of 0.976, 0.977, and 0.977, respectively. The method of 

Tek and colleagues achieved a precision, recall, and F-value of 0.976, 0.542, and 0.697, 

respectively, when applied to the same dataset using the same training data. ROC and 

precision-recall curves for the CHM and ilastik classifiers are given in Figures 2.15 and 

2.16, respectively. 
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Figure 2.11. Binarization of probability maps using active contours outperforms 
other methods. A CHM classifier for mitochondria was applied to a 500 x 500 pixel test 
image (A), generating the probability map shown in (B). Note that regions of pixels 
corresponding to the Golgi apparatus (yellow arrows) were detected in the probability map. 
The Golgi apparatus can often confuse mitochondrial pixel classifiers because it has a 
texture very similar to that of the mitochondrial matrix. The results of binarization of the 
probability map using maximum entropy (C) and Otsu’s single-level method (D) are 
shown. Using these techniques, regions of the Golgi are permitted into the final 
segmentation as false positives. The resultant segmentation obtained by our method of 

binarization with active contours (G = 2,  = 100,  = 8) is shown in (E). Instances of the 
Golgi apparatus were automatically removed during processing. This segmentation (F-
value = 0.863, accuracy = 0.985) is a highly faithful representation of the ground truth (F). 
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Figure 2.12. The results of the proposed method are consistent when applied to 
diverse organelle targets. The application of our method to different organelle targets 
yields consistent results without the need to significantly change the input parameters. 
Shown here are test images, each of size 500 x 500 pixels, and their corresponding 
probability maps, segmentations, and manually segmented ground truth images. The final 
column shows a transparent overlay of the segmentation onto the test image. The 
evaluation metrics for each test image are as follows: Mitochondria, F-value = 0.844, 
accuracy = 0.984; lysosomes, F-value = 0.872, accuracy = 0.997; nuclei, F-value = 0.971, 
accuracy = 0.971; nucleoli, F-value = 0.91, accuracy = 0.977. 
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Figure 2.13. A full-slice CHM probability map for nuclei. The full dataset was first 
downsampled to isotropic voxel dimensions (30 nm x 30 nm x 30 nm), resulting in a stack 
of size 4029 x 3120 x 1283 voxels. Training data and images consisted of a 500 x 500 x 
50 subvolume of the downsampled stack containing two adjacent nuclei. These training 
data were used to train a CHM pixel classifier with two stages and two levels, which was 
then used to generate full-slice probability maps for all 1,283 images in the stack. Shown 
here is a single slice from the stack (A) and its corresponding nuclear probability map (B). 
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Figure 2.14. A full-slice ilastik probability map for nuclei. An ilastik voxel classifier was 
trained using the same training set used to produce the pixel classification show in Figure 
2.13. All possible features and scales were included during classification. Shown here is 
a single slice from the stack (A) and its corresponding nuclear probability map (B). This 
probability map is significantly noisier than the one generated with the CHM. 
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Figure 2.15. ROC and precision-recall curves for CHM nuclear classifiers. The 
performance of a CHM classifier trained on a 3D subvolume of data (red) is compared to 
that of a CHM classifier trained on an equivalent amount of data collected from 2D tiles 
that were distributed throughout the volume (green). Both ROC (A) and precision-recall 
(B) curves demonstrate better performances for the classifier trained on 2D data. The 
performances of both classifiers were verified against the same ground truth. 



78 

 

 
 

 

Figure 2.16. ROC and precision-recall curves for an ilastik voxel classifier. The ilastik 
classifier evaluated here was trained using the same training data and evaluated against 
the same ground truth as the CHM_3D classifier in Figure 2.15. The classifier was trained 
using the “headless” mode of operation. Its performance, as evaluated by ROC (A) and 
precision-recall (B) curves is significantly worse than that of both CHM pixel classifiers 
shown in Figure 2.15. It is possible that ilastik may perform better with less labels or a 
different proportion of label to background in its provided training labels. 
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2.2.2.7. The impact of image downsampling on automatic segmentation 

performance 

 The results of the downsampling experiment are shown in Figure 2.17. The 

resultant F-value for segmentation of nuclei and nucleoli remains remarkably consistent 

across the whole range of pixel sizes tested. The F-values for mitochondria and lysosomes 

exhibit substantial reductions at pixel sizes greater than ~15 nm/pixel, corresponding to 

an overall downsampling of the original SBEM stack by a factor of four. The persistence 

of a high F-value across all scales tested for nuclei and nucleoli is likely due to their larger 

size and more regular texture in comparison to the other organelles. This is especially true 

for mitochondria, whose cristae architectures may differ dramatically from region to region. 

 The required wall clock time and random access memory (RAM) required for CHM 

classifier training and pixel classification for each organelle at each level of downsampling 

were given in Table 2.2. The time and RAM required for probability map binarization are 

not shown because they are negligible with respect to training and classification. These 

results indicate that, in cases where segmentation accuracy is not dramatically affected, 

a vast amount of time and computational resources can be saved by downsampling the 

input image stacks. Simple extrapolation of pixel classification times shows that the time 

required by a single CPU to apply a nuclear pixel classifier to our full test dataset would 

be reduced from ~5.9 years to ~0.4 years when the input data are downsampled by a 

factor of 10.  Examples of full image probability maps of nuclei, nucleoli, and mitochondria 

generated from downsampled data are shown in Figure 2.18. 

 

2.3. Discussion 

 As recently as a few years ago, the notion of reconstructing and morphologically 

characterizing the organelle networks of even a few whole cells was considered a  
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Figure 2.17. Input images can be downsampled to various degrees before the 
segmentation results are negatively affected. Each organelle-specific stack was 
downsampled by factors of two, four, six, eight, and ten. Separate classifiers were trained 
at each different pixel size and segmentations were generated for each stack using our 
method. Here, the F-value of each resultant stack is compared across the different pixel 
sizes obtained after downsampling. The F-value of nuclei (blue) and nucleoli (magenta) is 
remarkably independent of the level of downsampling across all levels tested. The F-
values for mitochondria (red) and lysosomes (green) significantly decline as the level of 
downsampling is increased. 
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Figure 2.18. Automatic segmentation can be efficiently scaled to handle full slices 
from teravoxel-sized SBEM datasets. Probability maps of full images from the SCN 
dataset were generated by downsampling the image, computing probability maps of 
individual tiles, and stitching these tiled maps together. Shown here are probability maps 
of mitochondria (B), nuclei (C), and nucleoli (D) computed from the same full slice (A). The 
full slice was downsampled by a factor of two prior to mitochondrial pixel classification and 
a factor of eight before nuclear and nucleolar pixel classification. Common residual errors 
during mitochondrial pixel classification are the false detection of endothelial cells (arrow) 
and nucleoli or clusters of chromatin in the nucleus (asterisk). A common error 
encountered during nuclear pixel classification is the false detection or regions of 
cytoplasm devoid of membrane-bound organelles (arrowhead). These residuals are 
frequently removed by the application of the proposed probability map segmentation 
algorithm. Scale bar = 20 μm. 
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monumental challenge (Noske, et al., 2008). The advent and widespread adoption of high 

throughput, volumetric EM techniques has threatened to change that notion, with the 

caveat that our ability to segment and analyze data must first catch up with our ability to 

collect it. With that goal in mind, this study aimed to develop a method for the accurate 

automatic segmentation of organelles in EM image stacks that: (1) could be easily adapted 

to any organelle of interest, and (2) could be applied to teravoxel-sized datasets in a 

computationally efficient manner.  

 Since it does not make any large-scale, a priori assumptions about the morphology 

of the segmentation target, the proposed method can be applied to segment diverse 

organelles with ease. The only geometrical properties assumed throughout the method 

are boundary smoothness and a cross-sectional area that is sufficient enough to prevent 

the removal of true positives following binary shrinking. Both of these assumptions are 

valid for virtually all organelles under practical imaging conditions. CHM classifiers can be 

trained for any dataset or organelle target if given the proper training data, and the output 

segmentations from the proposed method can be tuned to the demands of unique 

experiments. For example, decreasing the number of gray levels, G, used in the multi-

level Otsu thresholding step will emphasize true positives at the expense of including false 

positives, which can often be excluded by post-processing filters. Additionally, it is easier 

to remove false positives by manual correction or crowd-sourcing (Giuly, et al., 2013) than 

it is to add missing true positives.  

 The proposed method performed favorably when compared to a recently published 

algorithm for the automatic segmentation of cell nuclei (Tek, et al., 2014). It is interesting 

to note that the performance of the proposed method was very similar when trained using 

either images from consecutive slices of the same nuclei (precision = 0.976, recall = 0.977) 

or single slice images from a variety of nuclei (precision = 0.973, recall = 0.968). This 
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similarity demonstrates the robustness of the CHM pixel classifier for this task. It is likely 

that the segmentation results obtained by applying the method of Tek and colleagues to 

the SCN dataset could be strengthened by training an ilastik voxel classifier against a 

greater diversity of nuclei. 

 Another advantage of the proposed method lies in its scalability to full datasets. 

The generation of probability maps from small tiles of the input image minimizes the 

required RAM. Additionally, it allows for computation to be easily expedited by parallelizing 

the processing of individual tiles across multiple CPUs. The demonstration that accurate 

results for certain organelles can be achieved on downsampled stacks also helps expedite 

processing. One can envision an experiment in which a teravoxel-sized SBEM stack 

collected at high resolution for axon tracking can then be downsampled and have its nuclei 

or mitochondria automatically segmented at a fraction of the computational cost that would 

have been required at its native resolution. As innovative methods to rapidly acquire even 

larger datasets continue to be developed (Helmstaedter, et al., 2013; Marx, 2013; 

Mohammadi-Gheidari and Kruit, 2011), this reduction in computational cost will prove 

critical. 

 In conclusion, the technologies proposed in this chapter introduce novel methods 

for the automatic segmentation of organelles from EM image stacks that are both robust 

and able to handle datasets of any size. These tools fill a critical need by allowing for the 

quantitative analysis of volumetric EM datasets at a scale between that of current 

connectomics approaches (Kim, et al., 2014; Helmstaedter, et al., 2013; Anderson, et al., 

2011; Bock, et al., 2011; Briggman, et al., 2011; Kleinfeld, et al., 2011; Varshney, et al., 

2011; Briggman and Denk, 2006) and that afforded by genetically encoded markers for 

small molecule localization (Boassa, et al., 2013; Martell, et al, 2012; Shu, et al., 2011). 
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Panda, S., Tasdizen, T., and Ellisman, M.H. The dissertation author was the primary 

investigator and author of this paper.  
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Chapter 3 

From Pixels to Structures: Constructing Models of Neuronal Microanatomy 
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3.1. Introduction 

Understanding the relationship between structure and function at the subcellular 

level is of fundamental importance to biology. Organelle positioning within cells is thought 

to follow non-random organizational schemes that are rooted in the functionality of 

molecular-scale signaling cascades (de Brito and Scorrano, 2010). Consequently, it is not 

difficult to envision a number of biological questions that could be addressed with the aid 

of easy access to high resolution models and quantifications of organelle ultrastructure. 

For example, changes in mitochondrial fission and fusion events are known to correlate 

with a number of neurodegenerative conditions, including Parkinson’s, Huntington’s, and 

Alzheimer’s diseases (Bossy-Wetzel et al., 2003; Knott, A.B. et al., 2008; Su et al., 2010). 

A neuroscientist studying one of these diseases might, therefore, wish to explore 

mitochondrial defects at the ultrastructural level across hundreds of cells from diseased 

tissue. In another example, a biologist may hope to obtain a high resolution depiction of 

how the knockout of certain motor proteins affects organelle localization throughout the 

cell (Tanaka et al., 1988). In addition, such whole-cell 3D models would undoubtedly 

benefit members of the computational modeling community, who might use such 

reconstructions to provide geometrical constraints for the modeling of Ca2+ diffusion or 

neurotransmitter release (Slepchenko et al., 2003; Buck et al., 2012). 

 As discussed in detail previously, the generation of the segmentations needed to 

produce such models requires a significant time investment in the form of either human or 

computational hours. Fortunately, the technologies described in Chapter 2 leverage upon 

machine learning approaches to yield such segmentations with minimal human 

interaction. The accurate, pixel-based segmentations output by these methods lay the 

groundwork for large-scale studies of cellular microanatomies. However, the modeling of 

representative biological morphologies from these data requires their expansion to the 
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third dimension, a step that is not trivial at larger scales. In this chapter, a series of 

computational methods for accelerating this process will be presented. An expeditious 

approach for the computation of 3D meshes from 2D binary segmentations will be 

outlined. Additionally, novel algorithms designed to enhance 2D segmentations by 

incorporating inter-slice contextual information will be described 

 However, even once accurate 3D models have been attained, the extraction of 

useful quantitative data from them remains no simple task. Quantitative analyses typically 

require the use of specialized software such as IMOD, Amira, or Imaris, and formatting 

the data into a structure recognizable by such programs may necessitate numerous 

intermediate steps and file conversions. Additionally, it is incumbent upon the user to 

ensure accuracy and store the results in a reliable, shareable, and reproducible format. 

Therefore, it is clear that the automation of these steps, from initiation to data reporting, 

would greatly enhance the accessibility of large-scale, quantitative analyses to the general 

scientific community. A few open-source software packages have been generated with 

this goal in mind (McComb et al., 2009). The MTK program contained in the IMOD 

distribution has been used for a variety of quantitative analyses, including the study of 

ribosome densities (Kang and Staehelin, 2008) and the distributions of microtubules 

(Austin et al., 2005), mitochondria (Höög et al., 2007), and synaptic vesicles (Gibeaux et 

al., 2013). Applications have been developed to automatically quantify and report label 

density in confocal datasets (Dayal and Hill, 2014) and morphological parameters from 

nuclei at the LM level (Ollion et al., 2013; Poulet et al., 2014). A recent contribution from 

Graham Knott and Pascual Fua, NeuroMorph, is an attempt at bringing such automated 

quantifications to the level of large-scale EM (Jorstad et al., 2014). Though this tool has 

been used for studying dendritic spines and synapses, there are no known analogous 
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tools for automating the analysis of organelle morphologies in teravoxel-sized 3D EM 

datasets. 

 With this need in mind, a final contribution of this chapter will be the description of 

a workflow for the automatic calculation and reporting of single-cell organelle 

morphologies and spatial distributions using the nucleus as a test case. Importantly, it will 

be demonstrated that these quantification steps can be linked to the automatic 

segmentation algorithms of Chapter 2 in a seamless workflow that automatically outputs 

numerical data following segmentation. Taken as a whole, this workflow represents a 

powerful tool that enables the quantification and modeling of subcellular 

microenvironments with high degrees of resolution and ease.  

 

3.1.1. Nuclear structure and function 

 The nucleus is generally the largest organelle found in eukaryotic cells and tends 

to be the most obvious and defining cellular feature when viewed at the microscopic level. 

According to both structural and functional criteria, the nucleus can be divided into two 

distinct compartments: (1) the nuclear envelope (NE) and (2) the nuclear interior, or 

nucleoplasm. The NE consists of two phospholipid bilayers, the inner (INM) and outer 

(ONM) nuclear membranes, which are separated by a roughly 30-50 nm wide lumen 

known as the perinuclear space (Zwerger et al., 2011). Large proteinaceous assemblies 

known as nuclear pore complexes (NPCs) are embedded across the nuclear surface. 

These complexes span both the INM and ONM, forming the sole gateway for the exchange 

of ions and macromolecules between the cytoplasm and nucleoplasm (Hoelz et al., 2011). 

At a mechanical level, the nucleus is physically coupled to the cell-wide cytoskeletal 

network via protein complexes that cross the perinculear space and link cytoskeletal 

elements with the nuclear lamina, a meshwork of proteins that lines the nucleoplasmic 
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face of the INM (Crisp et al., 2006; Tzur et al., 2006; Wang et al., 2009). Importantly, the 

ONM and perinuclear space are continuous with the lumen of the ER, and this system 

provides a reservoir of membrane that can, in theory, be used to accommodate nuclear 

shape changes and deformations (Lammerding et al., 2007).  

 The main function of the second nuclear compartment, the nucleoplasm, is to 

sequester the cell’s genetic material in the form of chromatin. The two distinct 

configurations of chromatin, heterochromatin and euchromatin, have been shown to 

occupy distinguishable and non-random regions of the nucleoplasm. Euchromatin, the 

more transcriptionally active of the two forms, tends to be found towards the nuclear 

interior whereas the less active heterochromatin is found closer to the nuclear periphery 

(Zwerger et al., 2011). Furthermore, it has been shown that individual chromosomes of 

interphase nuclei occupy defined regions of the nucleoplasm, called chromatin territories 

(Cremer and Cremer, 2001). The existence of a nuclear skeletal network that facilitates 

this compartmentalization has been proposed (Nelson et al., 1986; Ingber, 1997), but its 

existence is still the subject of much scientific debate. 

  In addition to chromatin, the nucleoplasm contains a number of other distinct 

structures that are readily identifiable at the EM level. The largest and most obvious of 

these is the nucleolus, which serves as the site of ribosomal RNA processing and 

ribosome biogenesis (Hetman and Pietzrak, 2012). The area surrounding the nucleolus, 

known as the perinucleolar compartment (Huang et al., 1997), is an ordered domain 

containing small RNAs and perinucleolar chromatin (Nemeth and Langst, 2011; Padeken 

and Heun, 2014). Coiled, or Cajal, bodies are another type of nuclear organelle, and these 

bodies are associated with states of cellular stress and are frequently localized in the 

perinucleolar vicinity (Cioce and Lamond, 2005). Nuclear speckles, named after their 

appearance when fluorescently labeled, contain large concentrations of small nuclear 
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ribonucleic particles (snRNPs; Handwerger and Gall, 2006). The location and composition 

of these organelles within the nucleoplasm changes in response to levels of mRNA 

transcription and protein phosphorylation (Lamond and Spector, 2003). The importance 

of these nuclear organelles, in both normal and diseased states, remains a topic of great 

interest within the community. 

 Disruptions of wildtype (WT) nuclear structure and mechanics are associated with 

a growing number of disease states. Changes in nuclear size and shape, as well as 

alterations in chromatin texture and nucleolar number, have long been used as markers 

for detecting tumor cells in clinical cancer diagnosis (Zink et al., 2004). The mutation of a 

single codon within the gene encoding the ER/NE resident protein torsinA leads to the 

development of the neurological movement disorder DYT1 dystonia (Tanabe et al., 2009). 

At the microscale, this mutation manifests as the selective blebbing of the ONM in neurons 

of mice, producing a grossly perturbed nuclear structure (Goodchild et al., 2005; Kim et 

al., 2010). Mutations in proteins of the nuclear lamina are associated with a set of human 

diseases collectively referred to as the laminopathies (Worman, 2012). The laminopathies 

typically result from mutations to the gene encoding the protein lamin A, and include 

Emery-Dreifuss muscular dystrophy, Hutchinson-Gilford progeria syndrome, and dilated 

cardiomyopathy (Capell and Collins, 2006). One hypothesis for the mechanism behind 

these diseases is that laminar mutations reduce the structural integrity of the nucleus, 

ultimately weakening it and leading to cell death in mechanically stressed tissues such as 

muscle (Zwerger et al., 2011). 

 One interesting structural characteristic of many interphase nuclei is the presence 

of deep grooves, or invaginations, of the nuclear surface. Such nuclear invaginations have 

been reported in a host of species and cell types, including plants (Li and Dickinson, 1986; 

Collings et al., 2000), yeast (Vitols et al., 1961), cultured 3T3 cells (Clubb and Locke, 
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1998) and myocytes (Abe et al., 2004), and mammalian B cells (Dardick et al., 1982) and 

hypothalamic neurons (van den Pol, 1980). Nuclear invaginations can be separated into 

two categories based on their ultrastructural nature: Type I invaginations involve only 

extensions of the INM into the nucleoplasm, while Type II invaginations involve the similar 

extension of both nuclear membranes (Malhas and Vaux, 2014). Studies using high 

molecular weight fluorescent tracers confirmed that the lumens of invaginations are 

contiguous with the cytoplasm (Malhas et al., 2011), and the presence of NPCs in 

invaginated regions of the NE was confirmed by ssTEM (Fricker et al., 2007).  

 The widespread distribution of nuclei displaying the invaginated phenotype has led 

many to believe that these folds serve a critical purpose in cell biology. Nucleoli are 

observed to be preferentially associated with invaginations (Fricker at al., 2007), and the 

cytoplasmic lumens of invaginations often contain membrane-bound organelles and 

markers of translational initiation (Paytubi et al., 2009). Therefore, invaginations may serve 

to expedite the translation of critical mRNAs that are generated adjacent to the fold and 

exported to the cytoplasm by invagination-localized NPCs. (Malhas et al., 2011). In a 

recent report, Mauger suggested that nuclear invaginations may also affect cellular Ca2+ 

dynamics and serve to regulate transcriptional activity (Mauger, 2012). Whatever the 

purpose of invaginations may be, it is likely that they are advantageous in a cell-specific 

manner rather than necessary for normal cell function; populations of both invaginated 

and non-invaginated nuclei can be found in different regions of the healthy mouse brain 

(Figure 3.1). 

 Despite such interest in the nature of nuclear folding, there are currently few 

reliable methods for quantifying it in 3D. On account of this, some studies have reported 

purely qualitative observations, commenting on the percentage of a certain cell type that 

displays an invaginated phenotype (Abe et al., 2004). The most obvious descriptor for the 
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Figure 3.1. Nuclear invaginations are specific to certain populations of cells. 
Depicted here are nuclear surface renderings from neurons of the mouse CA1 
hippocampus (A, column) and the mouse hypothalamic suprachiasmatic nucleus (B, 
column). Despite being reconstructed from the brain of the same species, nuclei from the 
CA1 hippocampus have almost perfectly smooth surfaces, while the nuclei from the 
suprachiasmatic nucleus are heavily invaginated. Therefore, by an unknown mechanism, 
the nuclear invagination phenotype is specific to certain populations of cell types. The 
surface renderings depicted here were automatically generated using the multiplane 
automatic segmentation algorithm described in this chapter. 
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degree of nuclear folding is the surface area to volume ratio (SVR), which should, in 

theory, be greater for more heavily invaginated nuclei (O’Connell et al., 2008). Lafarga 

and colleagues proposed a dimensionless invagination factor (IF2D) to quantify the extent 

of cross-sectional nuclear folding in ultrathin section TEM images. Their equation, in which 

A and P represent the cross-sectional area and perimeter of the nucleus, respectively, is 

given below (Lafarga et al., 1992): 

IF2D =
P

√A
× K2D 

𝐾2𝐷 =
1

2√𝜋
 

The IF is normalized such that it furnishes a value of one for a perfect circle and values 

greater than one in the presence of any degree of folding. Numerous other 2D shape 

descriptors, such as circularity, solidity, and eccentricity may also yield useful correlations 

to the degree of nuclear folding (Choi et al., 2011). In this chapter, a number of shape 

descriptors for the accurate quantification of 3D nuclear morphologies will be introduced 

and applied to automatically generated surface renderings. But first, in the following 

sections, two methods for enhancing segmentation results will be introduced and their 

application to improving the accuracy of automatically generated nuclear morphologies 

will be emphasized. 

 

3.2. Methods Development and Results 

3.2.1. The multiplane automatic segmentation algorithm 

 Large structures with heterogeneous textures may be difficult to automatically 

segment using a single classifier. An example of such a structure is the nucleus, which 

contains unpredictably distributed clumps of chromatin with different textures and patch 

sizes. This can lead to the erroneous assignment of low probabilities to pixels at the 
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nuclear border, where clumps of heterochromatin accumulate. Such low probabilities 

result in false negatives in the output segmentation, which typically manifest as an uneven 

or jagged nuclear border (Figure 3.3). This error is harmful when a quantification of exact 

nuclear morphology is desired, as it will lead to an often substantial overestimate of 

nuclear surface area. 

 When an SBEM dataset is re-sliced about an orthogonal plane (Figure 3.2) and 

this re-sliced representation is used as input to the pixel classification process, the 

classifier is presented with a different view of the data that may yield better segmentation 

accuracy. However, it is impossible to know which orientation will provide the best results 

a priori, and it is likely an aggregate of many views that will achieve optimal classification. 

In this section, a method for improving the results of 2D automatic segmentation is 

presented. The input SBEM dataset is first downsampled to isotropic voxels, then re-sliced 

to yield views in the XZ- and YZ-planes. A single pixel classifier is applied to all three 

stacks, and the results are averaged together to give a final probability map stack. In the 

following sub-sections, the principles behind this method, named the multiplane automatic 

segmentation (MPAS) algorithm, will be outlined. This will be followed by a description of 

its implementation and some results that demonstrate its use to achieve improvements in 

output nuclear segmentations. 

 

3.2.1.1. Description of the algorithm 

Consider an 8-bit SBEM stack, IXY, in its native orientation, with isotropic voxels 

and dimensions specified by (X, Y, Z) = (sX, sY, sZ). Since SBEM stacks have a coarser 

resolution in their axial dimension, the isotropic voxel size of IXY is equivalent to the axial 

step size, δ. Since the stack IXY is equivalent to a 3D matrix of pixel intensity values, it can 

be rotated by 90° about both its X and Y axes, yielding the rotated image stacks: 
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IXZ(i, j, k) = {0,… ,255} ∀ i ∈ {1,… , sX}, j ∈ {1,… , sZ}, k ∈ {1,… , sY} 

IYZ(i, j, k) = {0,… ,255} ∀ i ∈ {1,… , sY}, j ∈ {1,… , sZ}, k ∈ {1,… , sX} 

These rotated stacks depict views that are equivalent to slicing IXY in increments of δ nm 

about its XZ and YZ planes. Since voxels are isotropic, the texture, color, edge, and other 

pertinent image features of IXZ and IYZ are comparable in scale to those of IXY. Therefore, 

only one trained model is required to reliably classify the pixels for all three stacks. The 

application of a trained CHM pixel classifier to each stack yields the probability map stacks 

PXY, PXZ, and PYZ: 

PXY(i, j, k) = {0,… ,1} ∀ i ∈ {1,… , sX}, j ∈ {1,… , sY}, k ∈ {1,… , sZ} 

PXZ(i, j, k) = {0,… ,1} ∀ i ∈ {1,… , sX}, j ∈ {1, … , sZ}, k ∈ {1,… , sY} 

PYZ(i, j, k) = {0,… ,1} ∀ i ∈ {1,… , sY}, j ∈ {1,… , sZ}, k ∈ {1,… , sX} 

To combine results, the stacks PXZ and PYZ must first be converted back to the native, XY 

orientation. This is achieved by applying the reverse 90° rotations about the X and Y axes, 

giving the rotated stacks P’XZ and P’YZ, respectively. The average probability map stack is 

attained by taking the voxel-by-voxel geometric mean (gmean) of all three probability map 

stacks in the XY orientation: 

P̅(i, j, k) = gmean(PXY(i, j, k), PXZ
′ (i, j, k), PYZ

′ (i, j, k)) ∀ i ∈ {1,… , sX}, j ∈ {1, … , sY}, k

∈ {1,… , sZ} 

This average probability map is then binarized using the method described in Section 

2.2.2.5, giving the final segmentation: 

S(i, j, k) = {0,… , 1} ∀ i ∈ {1,… , sX}, j ∈ {1, … , sY}, k ∈ {1,… , sZ} 

 

3.2.1.2. Implementation and Results 

 The SBEM stack in its native XY orientation is first downsampled to isotropic voxels 

using the method described in Chapter 2.2.1.3. Re-sliced representations depicting views 
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in the XZ and YZ planes are generated using the IMOD program rotatevol. Each of these 

MRC stacks is then converted to a sequence of PNG images using the method described 

in Chapter 2.2.1.3. The PNG stacks from all three representations are subsequently 

classified using a CHM pixel classifier according to the methods described in Chapter 

2.2.2. MPAS post-processing is initiated using the script mpas.sh (Appendix C.3.1). This 

script requires paths to the three directories containing the full-dataset probability maps 

generated previously (XY, XZ, and YZ). In the first step, all PNG images are converted to 

single-slice MRC files using the script mpas_png2mrc.q (Appendix C.3.2). Single-file MRC 

stacks are made from each set of single-slice MRCs, and the XZ and YZ MRC stacks are 

rotated back into the XY orientation using the script mpas_stackandRotate.q (Appendix 

C.3.3). Once rotation has completed, all three stacks are averaged together with the script 

mpas_average.q (Appendix C.3.4). All of these steps are performed automatically and in 

parallel once the mpas.sh script has been initiated.  

 Examples of XY, XZ, and YZ probability maps generated using the MPAS process 

are shown in Figure 3.2. Consistent pixel classifications were achieved for all orientations 

using a classifier trained on images from the XY orientation only. The use of only one 

classifier is advantageous because it reduces the computational time needed for training 

as well as reduces the manual segmentation time necessary for generating training data 

about all orientations. A colorized representation of three orthogonal probability maps from 

the same nucleus (Figure 3.3A) further demonstrates this consistency. Figure 3.3B 

illustrates the improvements afforded by the MPAS algorithm in the context of nuclear 

segmentation. Averaging from multiple probability maps using the MPAS algorithm results 

in a better segmentation by filling in pixels at the nuclear periphery that were assigned low 

probabilities by the single XY classifier alone. Table 3.1 gives a quantitative example of 

this improvement in the context of parameters of nuclear morphology. The volume and
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Table 3.1. A nuclear segmentation generated automatically by MPAS yields a more 
faithful representation of ground truth morphology. The volume and surface area 
output automatically by single orientation segmentation and MPAS are compared to those 
of manually segmented ground truth. The nuclear rendering generated automatically by 
MPAS has a volume and surface area much closer to those of the ground truth. The 
biggest gain is seen in the quantification of surface area, for which MPAS is significantly 
more accurate. 
 
 

 

 

 

surface area of a nucleus were compared for renderings generated from (1) a manual 

segmentation, (2) a XY CHM segmentation, and (3) a MPAS CHM segmentation. The 

volume and surface area of the manually segmented surface were considered to be 

ground truth. The surface rendering generated automatically from the MPAS process had 

a volume and surface area much closer to those of the ground truth, yielding a far more 

accurate representation of true nuclear morphology than the single orientation 

segmentation. As anticipated, the largest gain of using the MPAS algorithm was made in 

the quantification of nuclear surface area. The single orientation automatic segmentation 

furnished a surface area that was 8.9% larger than ground truth, while the surface area 

generated by MPAS was only 2.35% greater. 

 

3.2.2. Interslice interpolation of 3D objects 

 One of the most significant drawbacks of automatic segmentation methods is that, 

even in the most ideal cases, some degree of manual correction is needed when the 

accurate quantification of single organelle morphologies is desired. One way to reduce, or 

potentially eliminate, this need is to implement an automatic method to detect poorly 

segmented slices and replace them with interpolations between slices that are presumed 

 
Volume 
(μm3) 

dV 
(μm3) 

dV (%) 
Surface 

Area (μm2) 
dS 

(μm2) 
dS (%) 

Ground Truth 317.39 - - 368.4 - - 

XY only 312.79 -4.60 -1.45 401.17 +32.71 +8.90 

MPAS 315.37 -2.02 -0.64 376.95 8.65 +2.35 
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Figure 3.2. The MPAS algorithm produces accurate probability maps for re-sliced 
data in different orientations using a single pixel classifier. Shown here are the raw 
XY, XZ, and YZ images (A) from an isotropic SBEM dataset. Since isotropic voxels were 
used, the XZ and YZ orientations do not appear to be compressed and demonstrate 
quality and features similar to those of the XY orientation. Shown below (B) are the CHM 
nuclear probability maps generated for each of the slices shown in (A). All probability maps 
were generated using the same classifier, which was trained on data solely in the XY 
orientation.  
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Figure 3.3. The application of MPAS to the automatic segmentation of nuclei helps 
properly classify pixels near the nuclear envelope. MPAS was used to segment nuclei 
from the SCN dataset. Shown in (A) are three orthogonal slices through a nucleus, 
demonstrating probabilities obtained by CHM pixel classification about the XY, XZ, and 
YZ planes. MPAS automatic segmentation helps to fill in higher probabilities to the 
boundaries of nuclei that may have been improperly classified by considering only one 
orientation (B, yellow arrows). Such misclassifications are typically the result of patches 
of heterochromatin and other inconsistent features of nuclei. MPAS helps alleviate these 
misclassifications by incorporating averages over multiple views of the same object.  
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to be properly segmented. In this section, an algorithm for generating accurate interslice 

interpolations between input and output 2D binary images will be described and tested. It 

will then be applied to correct segmentations of nuclei generated using the methods of the 

previous chapter. 

 The proposed method is inspired by the morphological skeleton interpolation (MSI) 

algorithm of Chatzis and Pitas (Chatzis and Pitas, 2000). The MSI algorithm consists of 

five principal steps: (1) Object skeletonization, (2) skeleton matching, (3) interpolation 

transformation calculation, (4) skeleton modification, and (5) object reconstruction. The 

inputs to the algorithm are two binary images, IA and IB, and the number of slices, L, to 

produce between them. In the context of correcting automatic segmentations from 3D EM 

datasets, IA and IB represent segmentations of the feature of interest on image slices A 

and B, which are separated from one another by L axial increments. In the first step of the 

MSI process, the binary objects of IA and IB are skeletonized, producing the skeletons SA 

and SB, respectively. Skeletonization is performed using a distance transform-based 

method, such that the skeleton is a grayscale representation in which the intensity of each 

pixel corresponds to the value of its Euclidean distance transform. Such skeletons have 

the advantage of maintaining information about image scale in addition to translation and 

rotation. Following skeleton generation, the transform, TAB, required to bring the skeletons 

SA and SB into registry with one another is determined. In their report of the MSI algorithm, 

Chatzis and Pitas used the iterative closest point (ICP) algorithm to furnish this transform 

(Besl and McKay, 1992; Zhang, 1994). TAB is then scaled to accommodate the number of 

slices specified by L, generating L intermediate transforms which are subsequently applied 

to SA to yield skeletons of all interpolated slices between IA and IB. In the final step, binary 

objects are reconstructed from each interpolated skeleton by applying the inverse distance 

transform in which all skeletal points are treated as centers of maximal binary disks. 
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 In the MATLAB implementation of MSI presented here, a number of modifications 

to the original algorithm have been made. First, skeletons are generated using the discrete 

curve evolution (DCE) algorithm of Bai and colleagues, which has been shown to preserve 

object topology in the presence of significant shape variations better than classical 

skeletonization algorithms (Bai et al., 2007). A second improvement in this implementation 

of MSI is the use of the coherent point drift (CPD) algorithm for the nonrigid point set 

registration of the skeletons SA and SB (Myronenko and Song, 2010). This algorithm was 

demonstrated to be more robust than ICP, even in the presence of noise, for a variety of 

complex shapes. Finally, a second mode of operation involving the registration and 

transformation of object perimeters, rather than skeletons, was implemented. Both modes, 

skeletonization and perimeterization, are available in the code presented here. 

 The process is initiated using the MATLAB script msi3d_dce_cpd.m (Appendix 

C.3.5), which requires the user to supply IA, IB, L, and the desired mode (skeletonization 

or perimeterization). Skeletonization is performed using a MATLAB implementation of the 

DCE skeletonization algorithm that was downloaded from the author’s website 

(https://sites.google.com/site/xiangbai). The MATLAB functions im2cpd.m (Appendix 

C.3.6) and cpd2im.m (Appendix C.3.7) are used to convert image coordinates to the 

format needed for CPD and vice versa. Point set registration is performed using a 

MATLAB implementation of the CPD algorithm downloaded from the author’s personal 

website (https://sites.google.com/site/myronenko/research/cpd). Skeleton transformation 

is performed in the main script, and object reconstruction from these skeletons is 

performed by the function skel2obj.m (Appendix C.3.8). When the perimeterization mode 

is selected, interpolated objects are filled using the function perimFill.m (Appendix C.3.9). 

If the lateral dimensions of IA and IB are M x N, the final output of this process is an image 

matrix of size M x N x (L+2) that contains both IA and IB as well as all interpolated slices 
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between them. A MATLAB script, msi3d_display.m (Appendix C.3.10) was created to 

provide easy visualization of results as well as track the scaling, translational, and 

rotational changes that occur from slice-to-slice. 

 To test the algorithm, three scripts were written to produce example input images 

for use as IA and IB. These scripts, genCircleTest.m, genSquareTest.m, and 

genArbitraryTest.m (Appendix C.3.11-C.3.13), generate images in the form of circles, 

squares, and arbitrary binary objects, respectively. Furthermore, they allow for the user-

specified translation and rotation of IA and IB, providing a robust test for the CPD-based 

registration of interpolated slices. Figures 3.4-3.7 illustrate the use of these scripts to 

create test images and show the output interpolations generated by the proposed MSI 

process. These examples demonstrate the robustness of the process; accurate results 

were obtained for translated and scaled circles (Figures 3.4 and 3.5) and differently 

scaled, translated, and rotated squares (Figure 3.6) and nuclear profiles (Figure 3.7). The 

validity of the interpolations are confirmed by demonstrating the consistency of their 

translations, rotations, and scalings from slice to slice. 

 An example use case for this algorithm is illustrated in Figures 3.8 and 3.9. Shown 

in Figure 3.8 are eight consecutive slices through an automatic segmentation of a nucleus 

generated using the method described in Chapter 1. By overlaying the binary 

segmentations on the original image, it is clear that slices 2-5 contain clumps of false 

positive pixels at the top of the nuclear profile. Though such false positives would not 

significantly impact the results of nuclear detection or centroid localization, they are 

extremely detrimental if accurate nuclear morphologies are desired, and would typically 

require manual removal. However, it is demonstrated that these errors can be 

automatically and reliably removed using the novel implementation of the MSI algorithm 

described here. In Figure 3.9, the automatic segmentations of slices 2-5 have been 
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removed and replaced by interslice interpolations generated using slice 1 as IA, slice 6 as 

IB, and a value of four for L. Such interpolations yield results that are much more faithful 

to the correct nuclear morphology. A method for automatically detecting such erroneous 

automatic segmentations will allow MSI to be applied immediately after automatic 

segmentation, drastically reducing the manual correction time a human would need to 

invest. The development of such a method will be the goal of future work. 

 

3.2.3. Contour and mesh generation 

 The result of automatic segmentation is a stack of N binary images in the TIF 

format with the same dimensions as the input dataset. In order to visualize and accurately 

quantify organelle morphologies, these binary images must be converted to 3D meshes. 

Using the IMOD software package, this would traditionally be performed in a three-step 

process consisting of the following steps: (1) append all individual TIF files to a single 

MRC stack, (2) create contours around each 2D connected component, and (3) generate 

meshes using the contours of all 3D connected components. However, the second step 

in this workflow is extremely rate-limiting for certain organelles. For example, in a typical 

dataset of size 32,000 x 24,000 x 1,500, each 2D segmentation would likely contain many 

thousands of mitochondrial cross-sections. Using a single CPU, contour generation for 

such a dataset using the program imodauto takes on the order of days.  

 To expedite this process, a workflow for its parallelization was developed and 

implemented. A flowchart of this entire workflow is shown in Figure 3.10. Parallelization is 

achieved by the submission of SGE array jobs on the NBCR cluster, rocce.ucsd.edu. All 

processes are invoked by the wrapper script contourgen.sh (Appendix C.3.14). At a 

minimum, this script requires (1) the path containing the series of segmented TIF images, 

(2) an output path, and (3) either the location of the original MRC stack or the origin and
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Figure 3.4. A single interslice interpolation between two differently scaled and 
translated circles. A single slice (L = 1) was interpolated between two differently scaled 
circles that were translated with respect to one another. The first circle has a radius of 100 
pixels (IA) whilte the second circle has a radius of 200 pixels and is translated by 200 pixels 
away from the center of the image in both X and Y (IB). The results of interslice interpolation 
using the MSI algorithm are shown (middle left). The plots on the middle right indicate the 
area, rotation, change in X centroid, and change in Y centroid of each slice. Values for 
rotation and centroid position are considered to be zero for IA. A solid line on each plot 
indicates the linear regression formed by all points. The inputs to the MATLAB scripts 
used to produce these data are displayed at the bottom of the image. Interpolation was 
performed using perimeterization since it is faster than interpolation by skeletonization and 
the enhanced accuracy afforded by skeletonization was not necessary for simple shapes 
such as circles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



108 

 



109 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Multiple interslice interpolations between two differently scaled and 
translated circles. Eight slices (L = 8) were interpolated between two differently scaled 
circles that were translated with respect to one another. The first circle has a radius of 200 
pixels and is translated by +200 pixels from the center of the image in X (IA). The second 
circle has a radius of 50 pixels and is translated by -200 pixels from the center of the image 
in X (IB). The results of interslice interpolation using the MSI algorithm show consistent 
scaling and translation across all eight interpolated slices, as indicated visually as well as 
by the linearity of the changes in centroid location and area of each slice. 
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Figure 3.6. Multiple interslice interpolations between two differently scaled and 
rotated squares. Three slices (L = 3) were interpolated between two differently scaled 
squares that were rotated with respect to one another. The first square has a dimension 
of 100 pixels and is rotated by -10° from the horizontal (IA). The second square has a 
dimension of 200 pixels and is rotated by +10° from the horizontal (IB). The results of 
interslice interpolation using the MSI algorithm demonstrate consistent scaling and 
rotation across all interpolated slices. Interpolation was performed using skeletonization, 
since the improved accuracy was helpful when interpolating the linear edges present in 
squares. 
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Figure 3.7. Multiple interslice interpolations between two differently scaled and 
rotated segmentations of an invaginated nucleus. Four slices (L = 4) were interpolated 
between two differently scaled automatic segmentations of an invaginated SCN nucleus 
that were also rotated with respect to one another. The first nucleus is scaled by a factor 
of 0.5 and rotated by +5° from the horizontal (IA). The second nucleus was left at its original 
size and rotated by -5° from the horizontal (IB). The results of interslice interpolation using 
the MSI algorithm demonstrate consistent scaling and rotation across all interpolated 
slices. Interpolation was performed using skeletonization. Importantly, interslice 
interpolations generated by transforming skeletons maintain their membrane topology; 
invaginations remain present and properly scaled in all interpolated slices. 
 
 

 

 

 

 

 

 

 



114 

 



115 

 

 

 

 

 

 

 

 

 

Figure 3.8. An example scenario in which automatic segmentation accuracy 
benefits from post-processing by interslice interpolation. Depicted here are eight 
slices from the automatic segmentation of a single nucleus generated using the method 
described in Chapter 2. Shown to the right of each automatic segmentation is its overlay 
on the original image. As can frequently occur with automatically generated 
segmentations, some clusters of false positive pixels are present at the top of the nuclear 
profiles in slices 2-5. Such artifacts have a deleterious effect when quantifying nuclear 
morphologies, such as volume, surface area, and membrane curvature. Using interslice 
interpolation, these poorly segmented slices can be rejected and replaced with more 
accurate interslice interpolations using the segmentation of slice #1 as IA, the 
segmentation of slice #6 as IB, and a value of four for L. The results of this interpolation is 
shown in Figure 3.7. 
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Figure 3.9. Replacing poorly segmented slices with interslice interpolations 
increases morphological accuracy. Depicted here are the same eight slices from Figure 
3.6, but with the inaccurate segmentations of slices 2-5 replaced by their interslice 
interpolations generated using the MSI code presented here. The accuracy of these 
interpolated segmentations is demonstrated by visualizing their overlay on the original 
image data. Meshes generated from these interpolations would be significantly more 
representative of the true nuclear morphology. 
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pixel spacing specified by the header of the original MRC stack. Optionally, the user can 

also specify smoothing parameters to be applied during contour generation. 

 In the first step, contourgen.sh submits an array job using the SGE submission 

script tif2mod2D.q (Appendix C.3.15). All images contained in the segmentation stack are 

processed in parallel, and a sequence of operations are performed on each image. In the 

first step, the image is converted to the MRC format using the IMOD program tif2mrc. The 

header of this new, single-slice MRC file is then edited to reflect the origin and pixel 

spacing of the original MRC stack using the IMOD program alterheader. Contours are then 

generated around each 2D connected component using the IMOD program imodauto, 

which generates one, single-slice model file for each image. The program imodtrans is 

then used to translate each model file to its proper axial location. The number of contours, 

NC, contained in each model file is determined by parsing an ASCII representation of the 

model, obtained by the program imodinfo. This number is then written to a separate text 

file for use by subsequent programs. The final outputs from this job script are: (1) N single-

slice model files and (2) N ASCII files specifying the number of contours contained in each 

model file.  

 When all of these invididual model files are joined together using the program 

imodjoin, each slice is given its own object, resulting in a final model with N objects. This 

scenario does not allow for accurate meshing using imodmesh, which will not make 

connections across contours of different objects. Thus, to ensure proper meshing, all 

contours need to be joined into a single object. The next step of the workflow achieves 

this via submission of an array job using the SGE script mod2point2D.q (Appendix C.3.16). 

For each single-slice model file, this script runs the MATLAB function mod2point2D.m 

(Appendix C.3.17), which uses the MatTomo (http://bio3d.colorado.edu/imod/matlab.html) 

library to read the IMOD model file binary and output the desired point listings. First, each 
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model file is converted to an ASCII representation of point listings compatible with the 

IMOD program point2model. In this representation, each line contains five space-delimited 

integer values, formatted as follows: 

Object_number Contour_number X_coordinate Y_Coordinate Z_coordinate 

The object number is one for all slices and contours. The starting contour number, C0, for 

each model file is determined by summing the number of contours contained in the ASCII 

files from all previous slices according to the following formula, in which i represents the 

current slice number: 

C0
i = 1 +∑NC

j

i−1

j=1

 

All subsequent contours within each file are numbered sequentially. The final output from 

this process is a series of N ASCII files specifying the coordinates of every point on each 

slice. 

 In the final step, all N ASCII files are appended to one single point listing file, which 

is then converted to a model file using the IMOD program point2model. This is performed 

using the script point2mod3D.q (Appendix C.3.18). Thus, the final output of the entire 

workflow is a model file with one object that consists of contours around all 2D connected 

components in the entire segmented stack. This model file consists of one object 

containing contours around all 2D connected components. All 3D connected components 

are then meshed together using the program imodmesh. Individual 3D components are 

then sorted into separate objects using the IMOD program sortsurf. These individual 

objects are then remeshed following separation to yield the final, automatically generated, 

and dataset-wide organelle surface renderings. Examples of dataset-wide surface 

renderings generated using this method are depicted in Figures 3.11-3.13. 
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Figure 3.10. A flowchart of the steps involved in contour and mesh generation from 
large-scale automatic segmentations.  Segmentations are generated from probability 
maps using binarization with automatically seeded active contours, as previously 
described. The result of this step is a stack of N binary images the size of the original stack 
(SEG_1.tif, …, SEG_N.tif). Following segmentation, the script contourgen.sh is run, which 
parallelizes contour generation by submitting SGE array jobs. In the first step, each 
segmented image is converted to the MRC format, then edited so that the MRC header 
information matches that of the original stack. IMOD contours are then generated around 
each 2D connected component using the IMOD program imodauto.   
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3.2.4. Tools for the automatic analysis of nuclear morphology 

3.2.4.1. Nuclear and nucleolar morphology and positioning 

 To facilitate rapid analysis, a workflow for the automatic reporting of nuclear 

metrics and statistics was developed. This process is initiated by the script 

sbem_analyze_nuclei.sh (Appendix C.3.19), which uses the dataset-wide surface 

renderings (Figures 3.11-3.13) generated using the methods of the previous section as 

input. The script outputs metrics on nuclei and nucleoli if model files containing 

segmentations of both are provided; alternatively, it can output statistics of only one or the 

other if desired. The rest of this section will focus on the case in which both model files 

have been provided.  

 The first task is to automatically group the segmented nucleoli with their 

corresponding nucleus. This is done by analyzing the centroids of the nucleoli and 

determining which centroids fall within the bounding box of a given nucleus. A loop is run 

over all nucleolus objects, and the centroid of each nucleolus is output to a temporary text 

file using the program imodinfo. After this, a loop is run over all nucleus objects. For each 

nucleus, the coordinates of the eight points specifying the corners of its 3D bounding box 

are extracted using the program imodinfo. All nucleoli whose centroids fall within the 

bounds of this box are assigned to the given nucleus. A new IMOD model is initiated, and 

the objects corresponding to these nucleoli are then joined to the object corresponding to 

the nucleus. At the end of this loop, NN new model files will have been produced, where 

NN is the number of nucleus objects in the input, dataset-wide model file. 

 In the next step, volume and surface area are computed for each nucleus and 

nucleolus and output to corresponding ASCII files. A loop is run over each of the newly 

generated model files. For each file, the nuclear volume and surface area are computed 

using the program imodinfo, and the nuclear surface area to volume ratio is then calculated  
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Figure 3.11. Automatically generated surface renderings of nuclei from the ZT04 
SCN SBEM dataset. Multiple views of surface renderings generated from automatic 
segmentations are shown here. The top figures depict the renderings from orthogonal 
views in the XY, XZ, and YZ planes. The bottom figure depicts the renderings in a rotated 
volume to illustrate depth. Eighty-one total nuclei were included in this representation, and 
most nuclei are heavily invaginated (scale bar = 10 μm). 
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Figure 3.12. Automatically generated surface renderings of nucleoli from the ZT04 
SCN SBEM dataset. Multiple views of surface renderings generated from automatic 
segmentations are shown here. The top figures depict the renderings from orthogonal 
views in the XY, XZ, and YZ planes. The bottom figure depicts the renderings in a rotated 
volume to illustrate depth (scale bar = 10 μm). 
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Figure 3.13. Combined renderings of automatically segmented nuclei and nucleoli 
from the ZT04 SCN SBEM dataset. Shown here are different views of the combination 
of renderings of nucleoli (cyan) and all 81 nuclear surface renderings (yellow, translucent). 
From this visualization, it is clear that while most nuclei contain a single nucleolus, there 
are many instances of cells with multiple nucleoli (scale bar = 10 μm). 
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from these two values. These three metrics are written to a single line of the output ASCII 

file nucleus_morphology.txt such that each line of the file corresponds to the metrics of 

the ith nucleus. The file is written in a comma-separated values (CSV) format to allow easy 

import to analytical programs such as Microsoft Excel. The contents of this file for the 

current test SCN dataset (CCDBID: 81739) are given in Appendix D.1. Within the same 

loop, the individual volumes of all nucleoli belonging to the ith nucleus are computed and 

written to the output CSV file nucleolus_morphology.txt. In addition, the total number of 

nucleoli, the total nucleolar volume, and the nucleolar volume fraction for the current 

nucleus are written to this file. The contents of this file for the current dataset are given in 

Appendix D.2. A graphical depiction of these values for a single nucleus as well as 

screenshots of the output CSV files are shown in Figure 3.14. 

 Following the extraction of morphological parameters, metrics pertaining to 

nucleolar positioning within the nucleus are computed. The positions of all nuclear and 

nucleolar centroids are calculated, and the distances between each nucleolar centroid and 

its corresponding nuclear centroid are computed using the IMOD program mtk. These 

distance values are output to the CSV file dist_centroid.txt, and the contents of this file for 

the current dataset are given in Appendix D.3. A graphical representation of these 

distances is given in Figure 3.15. Next, the distances between the surfaces of each 

nucleolus and its corresponding nucleus are calculated using mtk. These values are 

output to the CSV file dist_nuclear_envelope.txt. The contents of this file for the current 

dataset are given in Appendix D.4., and a graphical representation of these distances is 

given in Figure 3.16. Definitions for all computed metrics are given in Table 3.2. 
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Table 3.2. The metrics automatically computed and output during the morphological 
analysis of nuclei. Parameters are computed using the script sbem_analyze_nuclei.sh 
and output to CSV files to enable further analysis. The metrics for which no equation is 
given are computed directly from IMOD programs. For all metrics: N = nucleus, NL = 
nucleolus, C = centroid, NE = nuclear envelope, i = nuclear index, j = nucleolar index.   
 

Metric Variable Equation 

   

Nuclear volume Vi
N N/A 

   

Nuclear surface area Si
N N/A 

   

Nuclear surface area to 
volume ratio 

SVRi
N 

Si
N

Vi
N

 

   

Number of nucleoli Ni
NL N/A 

   

Nucleolar volume Vi,j
NL N/A 

   

Total nucleolar volume Vi
NL ∑Vi,j

NL

Ni
NL

j=1

 

   

Nucleolar volume fraction fi
NL 

Vi
NU

Vi
N

 

   
Distance between 

nucleolar and nuclear 
centroids 

di,j
NL−C N/A 

   
Distance between 

nucleolar and nuclear 
surfaces 

di,j
NL−NE N/A 

 
 
 

3.2.4.2. Advanced metrics for characterizing nuclear topology 

 In this section, a number of metrics for characterizing nuclear topology and 

membrane folding are proposed. The validity of each of these metrics was ascertained by 

comparison to qualitatively assigned degrees of nuclear folding.  The most intuitive and 

widely used metric for this quantification is the SVR, which was automatically computed 

using the methods of the previous section. However, preliminary observations suggested 
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Figure 3.14. An example of the nuclear morphological characterization workflow. 
Shown at the bottom of the figure is the same combined nuclear and nucleolar surface 
rendering depicted in Figure 3.13. The model file specifying this rendering was supplied 
as input to the morphological characterization workflow described here. A single nucleus 
from this rendering (nucleus #21) is magnified to highlight the morphological parameters 
calculated in the first step of the workflow, namely nuclear and nucleolar volumes and 
surface areas. Screenshots of the CSV files generated by the workflow are shown to the 
right. The row of each CSV file pertaining to the nucleus shown is highlighted in yellow to 
show correspondence. (Bottom scale bar = 10 μm) 
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Figure 3.15. An example of the nucleolar positioning workflow. The same nucleus 
depicted in Figure 3.14 is shown here. The centroids of each nucleolus and the nucleus 
are denoted by red spheres. The distances between the nuclear centroid and each 
nucleolar centroid are indicated by red lines and the corresponding variable. Each of these 
distances was calculated using the proposed workflow, and the results are shown in a 
screenshot of the CSV generated by the script. The row pertaining to the current nucleus 
is highlighted in yellow. (Scale bar = 10 μm) 
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Figure 3.16. An example of the nucleolar positioning workflow, Continued. The same 
nucleus depicted in Figures 3.14 and 3.15 is shown here. The minimum distance between 
the surfaces of each nucleolus and the nuclear envelope were computed using the IMOD 
program mtk. These distances are indicated here by green lines, and the points of contact 
on each surface are denoted by green spheres. The results are shown in a screenshot of 
the CSV generated by the script. The row pertaining to the current nucleus is highlighted 
in yellow. (Scale bar = 10 μm) 
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that the SVR alone did not appear to be an adequate descriptor for the degree of folding 

seen in the nuclei of this dataset. Therefore, three other metrics were developed, and their 

validity for quantifying the degree of nuclear invagination was ascertained. The first of 

these metrics, the 3D invagination factor (IF3D), is an expansion of the 2D IF proposed by 

Lafarga and colleagues that was previously introduced in Chapter 3.1.1 (Lafarga et al., 

1992).  In their formulation of the IF, the ratio of perimeter to cross-sectional area was 

normalized such that it yielded a value of one for a perfect circle, and values greater than 

one when any folds were present. This formula was expanded to 3D by considering the 

ratio of surface area to volume rather than that of perimeter to area. The same 

normalization was implemented, such that the ratio of surface area (S) to volume (V) 

produces a value of one for a perfect sphere. The formula that yields such a normalization 

is: 

𝐼𝐹3𝐷 =
𝑆

𝑉2/3
× 𝐾3𝐷 

𝐾3𝐷 = 0.25 (
16

9𝜋
)
1/3

 

The IF3D can be calculated directly from the automatically generated results from the 

previous section. 

 The second metric, the convex hull difference (CHD), is the difference between the 

volume of the nuclear convex hull (CH) and the volume of the nucleus: 

CHDi
N = Vi

CH,N − Vi
N 

Nuclear CH computation is intiated using the Bash wrapper script sbem_convexHull.sh 

(Appendix C.3.20). This script works on each single-nucleus model file output by the 

methods of the previous section. The CH is computed using the MATLAB script 

sbem_convexHull.m (Appendix C.3.21), which calculates the 3D CH from the Delaunay 

triangulation of the points comprising the nuclear boundary. The output CH is saved as a 
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series of images, which are then converted to an IMOD model file using the program 

imodauto. The volume of the CH is subsequently computed using the program imodinfo. 

Examples of the CHs generated using this method are shown in Figures 3.17 and 3.18.  

 The final metric considered here is the nuclear shape index, σ. First introduced by 

Koenderink and van Doorn, the shape index is a single, angular measure that describes 

local shape and surface topology as a function of the two principal curvatures, Kmax and 

Kmin. Possible values for the shape index range from -1 to +1, where negative values 

indicate a more convex, or cup-like, local topology, and positive values imply a more 

concave, or cap-like, local topology (Koenderink and van Doorn, 1992). The local shape 

index is given by the following: 

σ =
2

π
arctan

Kmax + Kmin
Kmax − Kmin

 

Values of the shape index are computed locally by calculating the principal curvatures at 

each triangle vertex of the mesh. Nuclear meshes generated using the previous methods 

are first converted from the IMOD model file format to the VRML format using the IMOD 

program imod2vrml.  The VRML object is imported to Amira and then remeshed to 

optimize the distribution of vertices. The principal curvatures at each vertex are 

determined, and the local shape index at each vertex is calculated according to the 

formula given above. The surface integral of the shape index over the nuclear surface is 

given by:  

σi
N =

2

π
∫ arctan

Kmax + Kmin
Kmax − Kmin

dA
S

 

This integral is computed by exporting the vertex positions and shape index scalar field to 

a custom MATLAB script. The integral is then normalized by dividing by the nuclear 

surface area. The final output of this process is a final value, the total nuclear shape index, 

which ranges from -1 to +1. A number closer to -1 indicates that the nucleus is more 
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heavily invaginated, while a number closer to +1 indicates a smoother, more spherical 

nucleus. Shape index calculation is initiated using the wrapper script 

sbem_totalCurvature.sh (Appendix C.3.22), which handles file conversions and launches 

Amira. The Amira Tcl script sbem_totalCurvature.hx (Appendix C.3.23) is then launched, 

which performs remeshing, shape index calculation, and vertex and scalar field output. It 

also generates movie representations featuring 360° rotations of the nucleus about two 

axes in both the MPEG and GIF formats. Integration is performed with the MATLAB script 

totalCurvature.m (Appendix C.3.24). Meshed representations of nuclei overlaid with their 

local shape index scalar fields are given in Figure 3.19-3.21. 

 After these metrics were calculated for all 81 nuclei, the goal was to determine 

which of them gave the most faithful correspondence to qualitatively observed degrees of 

nuclear folding. Each nucleus was assigned a numerical value of 0-3 to indicate its 

qualitative degree of invagination, where a score of zero represented no folding and a 

score of three represented a heavily folded nucleus. Examples of nuclei assigned values 

of 1, 2, and 3 are shown in in Figures 3.19, 3.20, and 3.21, respectively. The values of 

SVR, IF3D, CHD, and σ belonging to each score were grouped together, and the groups 

of each metric were compared to one another by means of multiple one-way analysis of 

variance (ANOVA) tests with Tukey’s post-hoc tests for multiple comparisons (Table 3.3; 

Figure 3.22). The null hypothesis for each test was that the population means of each 

score were the same.  

 For the SVR, there was a statistically significant difference between score groups 

(F = 8.920). A Tukey post-hoc test revealed significant differences between groups 0-2 (p 

< 0.01), 0-3 (p < 0.0001), and 1-3 (p < 0.01).  There were no statistically significant 

differences between other groups. Therefore, the SVR is unable to unambiguously 

differentiate between small qualitative differences in folding (i.e. between groups 0-1, 1-2, 
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Table 3.3. The shape index and convex hull difference are able to discern small 
qualitative differences in nuclear invagination. Reported here are the results from 
multiclass comparisons via one-way ANOVAs with Tukey’s post-hoc tests.  The CHD 
yields statistically significant differences between all qualitative score groups. The SVR 
does not yield statistically significant differences between adjacent score groups (i.e. 0-1, 
1-2, and 2-3). 
 

 

and 2-3).  There was also a statistically significant difference between score groups for 

the IF3D (F = 11.64). However, similarly to the SVR, there were no statistically significant 

differences between groups 0-1 and 1-2 (Table 3.3). There was, however, a statistically 

significant difference btween groups 2-3 (p < 0.05). The shape index and CHD provide 

much better metrics of nuclear invagination. For the shape index, statistically significant 

differences existed between all scoring groups except for the group 2-3. For the CHD, 

statistically significant differences existed between all scoring groups. The results of these 

comparisons are depicted graphically in Figure 3.22. 

 

3.2.5. Delineation of individual neuronal compartments 

 Though nucleoli can be sorted into their corresponding cells based on overlap with 

nuclear bounding boxes, this same type of separation cannot be easily attained for 

cytoplasmic organelles such as mitochondria. Such accurate segregation is only possible 

if the cellular boundaries are previously demarcated. These cellular boundaries can then 

be used as binary masks to exclude all organelles that lie outside of them. Ideally, such 

segmentations would be obtained through one of the automatic methods discussed in  

Chapter 2.1.2, and such methods will be implemented in the future. Here, as a proof of 

 Class Comparisons 

 F 0-1 0-2 0-3 1-2 1-3 2-3 

SVR 8.920 ns p < 0.01 p < 0.0001 ns p < 0.01 ns 
IF 11.64 ns p < 0.01  p < 0.0001 ns p < 0.001 p < 0.05 
σ 14.60 p < 0.01  p < 0.0001 p < 0.0001 p < 0.05 p < 0.001 ns 

CHD 17.59 p < 0.05 p < 0.0001 p < 0.0001 p < 0.05 p < 0.0001 p < 0.01 
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concept, neuronal membranes were manually segmented in their entirety throughout the 

dataset. Manual segmentation was performed in IMOD. Contours were traced on sections 

spaced a variable number of axial steps apart. The number of sections that could be 

skipped depended upon the feature being traced. When manually tracing a non-spiny 

neuronal cell body, as many as 5-10 slices could be skipped without significantly 

jeopardizing interslice accuracy. However, branched neurites, especially spiny dendrites, 

often required manually traced contours on every slice or every other slice. Following 

manual tracing, missing contours were filled in via an interslice interpolation algorithm. 

Each final segmentation was then meshed using the program imodmesh to provide a 

visual representation (Figure 3.23). 

 A stack of binary masks, BN,j, where N indicates the index of the neuron and j 

indicates the slice number, were produced from each neuronal segmentation using the 

program imodmop. Mitochondria were automatically segmented from the same dataset by 

the methods described in Chapter 2, producing a stack of binary segmentations, Sj. 

Automatically segmented mitochondria were separated into their appropriate neuron by 

taking the slice-by-slice intersection of BN,j and Sj, yielding the stack of neuron-specific 

mitochondrial masks, MN,j: 

MN,j = BN,j⋂Sj     ∀ j ∈ {1, … , Nslices} 

Surface renderings were then produced from these masked segmentations using the 

methods introduced in Chapter 3.2.3 (Figure 3.24). This method facilitates the cell-specific 

morphological and spatial analysis of automatically segmented organelles. A workflow for 

the automatic analysis of mitochondrial morphologies using such cell-specific models as 

input is currently being developed. 
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Figure 3.17. The 3D convex hull for a single nucleus. The automatically generated 
surface rendering of a single nucleus is shown in the lower left corner. Three 2D slices 
from this nucleus are depicted on the right, with overlays of the nuclear segmentation 
(translucent yellow) and the contour of the 3D convex hull (red). The convex hull imitates 
a rubber band being wrapped around the contour of the nucleus. The CHD can be 
visualized as the region between the CH and the nucleus, and is thus one of the more 
accurate descriptors of nuclear invagination. (Scale bar = 2 μm) 
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Figure 3.18. 3D convex hull renderings for nuclei from a full SBEM volume. 3D CHs 
were computed for all 81 nuclei depicted in Figures 3.14-3.16 using the method described 
here. A cross-sectional slice through the volume depicts eight accurately computed CHs 
overlaid on the original image data (A, scale bar = 5 μm). The volumes of each CH were 
computed directly from the surface renderings shown in B (scale bar = 10 μm). 
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Figure 3.19. The local shape index scalar field for a nucleus with a single 
invagination. The local shape index was computed at each triangular vertex of the 
nuclear mesh using the method described in Chapter 3.2.4.2. Shown here are twelve 
views from the automatically generated movie of the local shape index scalar field overlaid 
on the mesh of a nucleus with a single, deep invagination. The degree of invagination of 
this nucleus was assigned a score of one on a scale of 0-3 by qualitative observation. 
Each image represents a successive rotation of 30° about the same axis of the nucleus. 
The shape index scalar field is coded to a colormap ranging from -1 to +1, as depicted at 
the bottom of the figure. Negative values indicate that the local shape is more concave, 
while positive values indicate a more convex local shape. As expected, the local shape 
index is more negative in the proximity of the invagination.  
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Figure 3.20. The local shape index scalar field for a nucleus with multiple 
invaginations. The local shape index was computed at each triangular vertex of the 
nuclear mesh using the method described in Chapter 3.2.4.2. Shown here are twelve 
views from the automatically generated movie of the local shape index scalar field overlaid 
on the mesh of a nucleus with multiple invaginations. The degree of invagination of this 
nucleus was assigned a score of two on a scale of 0-3 by qualitative observation. Each 
image represents a successive rotation of 30° about the same axis of the nucleus. The 
shape index scalar field is coded to a colormap ranging from -1 to +1, as depicted at the 
bottom of the figure. Negative values indicate that the local shape is more concave, while 
positive values indicate a more convex local shape. As expected, the local shape index is 
more negative in the proximity of invaginations.  
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Figure 3.21. The local shape index scalar field for a heavily invaginated nucleus. 
The local shape index was computed at each triangular vertex of the nuclear mesh using 
the method described in Chapter 3.2.4.2. Shown here are twelve views from the 
automatically generated movie of the local shape index scalar field overlaid on the mesh 
of a heavily invaginated nucleus. The degree of invagination of this nucleus was assigned 
a score of three on a scale of 0-3 by qualitative observation. Each image represents a 
successive rotation of 30° about the same axis of the nucleus. The shape index scalar 
field is coded to a colormap ranging from -1 to +1, as depicted at the bottom of the figure. 
Negative values indicate that the local shape is more concave, while positive values 
indicate a more convex local shape. As expected, the local shape index is more negative 
in the proximity of invaginations. 
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Figure 3.22. The shape index and convex hull difference are able to discern small 
qualitative differences in nuclear invagination. The average SVR, IF3D, shape index, 
and CHD are displayed graphically for each qualitatively assessed score of nuclear 
invagination. Error bars represent the standard deviation. The mean of the SVR was not 
significantly different between any adjacent score classes. The mean of the IF3D was not 
significantly different between score classes 0-1 and 1-2, but was significantly different 
between score classes 2-3. The opposite was true for the shape index, whose means 
were significantly different between score classes 0-1 and 1-2, but not significantly 
different between score classes 2-3. The CHD was the only metric to demonstrate 
statistically significant differences between all adjacent score classes. (ns: not significant; 
*:  < 0.05; **: p < 0.01). 
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Figure 3.23. Neuronal compartments were delineated by manual segmentation of 
the plasmalemma. Neuronal plasma membranes were manually segmented to provide a 
means by which automatically segmented organelles could be sorted into their 
corresponding cells. Contours were manually drawn on sections spaced a variable 
number of axial steps apart. The number of sections that could be skipped depended upon 
the feature being traced. When manually tracing a neuronal cell body, as many as 5-10 
slices could be skipped without significantly jeopardizing accuracy. However, branched 
neurites, such as spiny dendrites, often required manually traced contours on every slice 
or every other slice. Following manual tracing, skipped slices were automatically filled in 
via an interslice interpolation algorithm. Shown here are surface renderings of seven 
manually traced neurons from the test SCN dataset (A). These renderings are overlaid on 
an SBEM slice, and transparent cross-sectional overlays of the renderings are shown on 
this same slice (B). The overlays in (B) are representative of what would have been 
manually traced or filled in by interpolation (scale bar = 10 μm). 
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Figure 3.24. Binary masks generated from neuronal segmentations are used to 
separate organelles into their proper cellular compartments. The segmentations 
shown in Figure 3.23 were used as binary masks to separate organelles into their proper 
cells. The intersection of each neuronal binary mask with a single slice of a mitochondrial 
automatic segmentation (A) demonstrates this process. A cross-section from the same 
plane of the magenta neuron shown in (A) is overlaid on the original SBEM image in (B) 
to demonstrate this segregation. The mitochondrial profiles shown here correspond 
exactly to the binary connected components shown in the mask.  All mitochondria falling 
outside of the mask specified by the magenta neuron are excluded (B). These cell-specific 
mitochondrial groupings are then meshed, sorted, and manually edited to produce the 
rendering seen in (C). This rendering consists of all mitochondria contained within the 
magenta neuron. Each mitochondrial rendering was given a different color to illustrate 
individual morphologies. 
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Figure 3.25. Dataset-wide renderings of mitochondria belonging to three SCN 
neurons. The method described in Chapter 3.2.5 was used to generate cell-specific 
models of mitochondria. Depicted here are three manually segmented neuronal 
renderings filled with automatically generated mitochondrial reconstructions. The models 
are overlaid on a slice of the original SBEM image stack. These models can be used to 
quantify mitochondrial morphology and study how mitochondria are distributed throughout 
the cell, including in the soma, dendrites, and axon. 
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3.3. Discussion 

 In the first section of this chapter, the MPAS algorithm for enhancing segmentation 

performance for isotropic datasets was introduced. Since most SBEM datasets must be 

downsampled significantly in the lateral dimension to achieve isotropic voxels, this 

algorithm is most applicable to features such as nuclei and nucleoli, whose segmentation 

performance does not dramatically decrease with increased pixel sizes (Figure 2.17). For 

the dataset tested here, the isotropic pixel size was 30 nm, which is too coarse to allow 

for quality automatic segmentations of mitochondria. It is likely that the improvement 

provided by the use of the MPAS algorithm would be outweighed by the deleterious effect 

of image downsampling. For datasets in which the isotropic pixel size is in the range of 15 

nm or less, this algorithm should be able to improve segmentation accuracy for all of the 

organelles tested here. Such datasets can be acquired using FIBSEM or SBEM with a 

smaller section thickness. 

 Another drawback of the MPAS method is the increased computational time 

required, since the automatic segmentation of all images re-sliced about three orthogonal 

planes requires three times the computational load. This load could potentially be 

alleviated by performing the re-slicing and orthogonal automatic segmentations in only 

certain regions of the entire volume. For example, if nuclei are being segmented, one 

would first run the normal automatic segmentation in the XY plane. If this segmentation is 

not satisfactory, MPAS could be initiated, but only run on areas of the XY segmentation 

that clearly possessed nuclei. These regions could be automatically determined by a 

simple algorithm that looks for regions of maximum probability in the XY probability maps. 

Such regions would then be subjected to the MPAS algorithm, and the region they were 

extracted from would be replaced by the averaged MPAS probability map. This 

implementation should be simple to achieve, and will be explored in the future.  
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 The MSI interslice interpolation algorithm presented here will soon be incorporated 

into the nuclear automatic segmentation workflow to provide corrections. Poorly 

segmented slices will be detected by looking for abnormal spikes in the perimeter or cross-

sectional area of segmented objects, or by looking for slices in which the centroid shifts 

dramatically from one section to the next. Alternative metrics, such as descriptors of 

boundary irregularity, could also prove useful. These sections can then be automatically 

removed and replaced by interslice interpolations. The whole process of correction can 

fortunately be parallelized by working on one 3D connected component per processor, a 

fact that should drastically reduce processing time. This method can also be applied to the 

correction of segmentations from smaller objects such as mitochondria. However, the 

rules it would need to follow for the determination of poorly segmented slices would likely 

be different than those required for larger features such as nuclei. 

 The rest of the methods presented in this chapter provide a seamless workflow for 

providing quantifiable models from 2D automatic segmentations. A script for calculating 

parameters of nuclear morphology and spatial organization was presented, and its results 

were demonstrated (Appendix D). The average run time for this script is in the range of 5-

10 minutes for a full dataset containing hundreds of nuclei, which is trivial when compared 

to the time required for pixel classification. It also eliminates the need for individual users 

to learn how to operate multiple analytical software packages, which should make these 

types of analyses much more accessible to the average scientist. By writing outputs to 

simple CSV files, the proposed method provides a reproducible bookkeeping system that 

facilitates easy import into Microsoft Excel and software packages for statistical analyses.  

 Finally, a workflow for the cell-specific analysis of smaller cytoplasmic organelles, 

such as mitochondria, was presented. While this method does require segmentations of 

cell boundaries, such segmentations have the potential to be acquired through some of 
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the automatic algorithms already present in the literature (Jurrus et al., 2009; Straehle et 

al., 2011; Andres et al., 2012; Liu et al., 2013). A script similar to the one presented here 

for nuclei is currently in development for the morphological quantification and spatial 

characterization of cytoplasmic organelles segmented and separated using this approach. 

The incorporation of all of the technologies presented here into a seamless, automatic 

workflow for organelle characterization will be discussed in greater detail in Chapter 5. 
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Chapter 4 

Chronomorphological Studies of the Mammalian Suprachiasmatic Nucleus 
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4.1. Introduction 
 
 
 Living organisms exhibit remarkably accurate rhythms in almost all known 

biological activities. Such rhythms are the result of an evolutionarily conserved internal, or 

circadian, clock that can be traced back to earth’s most primitive life forms (Mohawk et al., 

2012). Circadian control over biological activities has been demonstrated in both 

unicellular and multicellular organisms, and entire fields are dedicated to the study of 

rhythms in species as diverse as cyanobacteria, fruit flies, algae, rodents, and humans 

(Bell-Pedersen, 2005). To be defined as circadian, a biological rhythm must exhibit two 

important characteristics: (1) it must have a period of roughly 24 hours, and (2) its 

rhythmicity must persist when removed from environmental influences and placed under 

constant conditions. This persistent, intrinsic oscillation, known as a free-running rhythm, 

can be entrained through the detection of environmental cues, or zeitgebers. The most 

well-known zeitgeber is light, which allows organisms to become entrained to the solar 

light:dark (LD) cycle. In turn, these entrained rhythms regulate most known physiological 

parameters, including the sleep-wake cycle, body temperature, athletic ability, feeding 

behavior, hormone secretion, blood pressure, and glucose metabolism (Takahashi et al., 

2008). 

 Decades of research have definitively identified the suprachiasmatic nucleus 

(SCN) as the master circadian pacemaker of mammals. The SCN consists of two anterior 

hypothalamic nuclei of roughly 10,000 neurons each, situated dorsal to the optic chiasm 

and paired bilaterally across the third ventricle (Figure 4.1). SCN neurons receive light 

cues via direct innervation from the retinohypothalamic tract, and this information is carried 

by a specific subset of melanopsin-expressing neurons known as intrinsically  

photosensitive retinal ganglion cells (ipRGCs) (Hattar et al., 2002; Panda et al., 2005). 
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Figure 4.1. An overview of SCN neuroanatomy. A low magnification image of the block-
face collected prior to SBEM image acquisition. The image depicts a single SCN and its 
surrounding anatomical structures (scale bar = 20 μm). The SCN sits directly above the 
optic chiasm (OC) and is paired bilaterally across the third ventricle (3V, other SCN not 
depicted). The density of cell packing can be used to delineate the SCN from its 
surrounding hypothalamus; the somata of SCN neurons tend to pack into long clusters, 
while those of the hypothalamus do not. The SCN is also relatively devoid of myelinated 
axons, a feature that is especially apparent due to its juxtaposition with the OC. 
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Ablation of the SCN destroys behavioral rhythmicity in rats (Stephan and Zucker, 1972), 

and the transplantation of a WT SCN into mutant hamsters with genetically shortened 

circadian periods restores the mutants to normal periods of roughly 24 hours (Ralph, et 

al., 1990). Interestingly, the same is true in reverse; transplantation of the SCN from a 

mutant hamster into a WT animal causes it to adopt the shortened circadian period of the 

mutant.  

 Although these studies provided intriguing evidence that the period of mammalian 

circadian rhythms is determined by the SCN, the question of how the SCN synchronizes 

the rest of the body to operate under the same clock remained. When neurons from SCN 

explants are dissociated and grown in culture, they demonstrate independently phased 

firing rhythms and rhythms of gene expression that can persist without dampening for up 

to 50 days (Welsh et al., 1995; Yamazaki et al., 2002). However, the same did not appear 

to hold true for explants from other tissues; circadian gene expression in cultured 

fibroblasts was inexplicably found to be detectable only following a change of the culture 

medium, and this rhythm disappeared within a few days (Balsalobre et al, 1998). However, 

it was later proven that this lack of rhythmicity was simply an artifact of looking at the gene 

expression data of the collection of cells as a whole. A subsequent study employing single-

cell resolution demonstrated that individual fibroblasts did indeed show rhythmicity, but 

that these rhythms were out of phase with one another (Welsh et al., 2004). Thus, when 

looking at the aggregate expression data of all cells, the summation of out-of-phase 

oscillations appeared arrhythmic. Therefore, the oscillation that Balsalobre and colleagues 

saw following the change of culture medium was due to synchronization of the 

independent phases of the fibroblasts, and not to the generation of new rhythms within 

individual cells. Subsequent studies determined that, like these fibroblasts, nearly all 

mammalian cells possess their own cell-autonomous circadian clocks, and that it is the 
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SCN’s job to synchronize these so-called peripheral clocks to the light cues it receives 

from the retina. This is achieved in part due to the phase diversity of firing rates among 

SCN neurons, which allows the SCN to provide differently phased outputs to different 

tissues and organ systems (Welsh et al., 2010).  

 At the molecular level, the mechanism of the mammalian circadian clock is 

governed by a negative-feedback transcriptional loop consisting of proteins whose 

expressions oscillate rhythmically. At the beginning of the cycle, the transcriptional 

activators CLOCK and BMAL1 interact with one another to up-regulate expression of 

transcription factors belonging to the Period (PER1, PER2) and Cryptochrome families 

(CRY1, CRY2). These Per and Cry gene products undergo nucleocytoplasmic export and 

are translated in the cytosol, where their protein products accumulate as the cycle 

progresses and dimerize with one another. PER-CRY heterodimers are subsequently 

imported back into the nucleus, where they act to repress the CLOCK/BMAL1 complex 

and suppress their own transcription (Mohawk et al., 2012). PER and CRY are 

progressively phosphorylated as the cycle progresses, and such phosphorylation events 

target them for ubiquitination and degradation by proteasomes (Takahashi et al., 2008). 

Once this occurs, CLOCK and BMAL1 renew their upregulation of PER and CRY 

expression, restarting the feedback loop. This whole cycle, of course, has a period of 

roughly 24 hours, and is known to be present in both SCN neurons and cells of peripheral 

tissues. Mutations to components of this loop cause significant mammalian arrhythmias; 

the double knockout of both the Cry1 and Cry2 genes, for example, abolishes free-running 

rhythms in mice (van der Horst et al., 1999). 

 Components of this core feedback loop, however, aren’t the only mammalian 

proteins whose expressions display significant circadian rhythmicity. In 2002, Panda and  
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Figure 4.2. The core transcriptional-translational feedback loop of the mammalian 
circadian clock. Mammalian cells possess a delicately balanced negative-feedback loop 
consisting of rhythmically expressed proteins. Inside the nucleus, the transcriptional 
activators CLOCK and BMAL1 form a complex with one another, and this complex acts to 
up-regulate the expression of the PER and CRY transcription factors by binding to the E-
box of their genes. Per and Cry transcripts then undergo nucleocytoplasmic export and 
are translated in the cytosol. While in the cytosol, PER undergoes phosphorylation by 
casein kinase 1 (CK1) ε and CK1δ. Phosphorylated PER can undergo heterodimerization 
with CRY, and this PER/CRY complex is able to achieve nucleocytoplasmic import. Within 
the nucleoplasm, the PER/CRY complex interacts with the CLOCK/BMAL1 complex in a 
way that inhibits the subsequent transcription of PER and CRY. As time passes and the 
PER/CRY complex degrades in the nucleoplasm, this inhibition is removed and the cycle 
is able to begin anew.  
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colleagues used gene expression profiling to demonstrate the rhythmic expression of over  

650 gene transcripts in the mouse SCN and liver (Panda et al., 2012). Interestingly, most 

cycling transcripts were specific to either the SCN or the liver; only 28 transcripts cycled 

in both tissues. Furthermore, the cycling transcripts that are unique to either the SCN or 

liver play critical roles in the physiological function of their tissue. Examples of cycling 

transcripts in the SCN are those that control neuropeptide synthesis, while genes involved 

in sugar metabolism cycle in the liver. This demonstrates the ability of peripheral clocks, 

such as those of the liver, to oscillate in a manner that suits their own physiological 

demands.   

 Since this study and a number of others since it (Storch et al., 2002; Miller et al., 

2007; Hughes et al., 2009) have established that the levels of as many as 3-10% of all 

mRNAs in a given tissue are governed by the circadian clock (Mohawk et al., 2012), it is 

reasonable to ask if such oscillations are also present at the level of tissue ultrastructure. 

From the 1970s to the 1980s, long before such molecular-level details were known, a 

number of researchers intrigued with answering this very question established the field of 

chronomorphology – the study of how biological structures change with respect to the 

circadian cycle. In his review of the field in 1983, the German chronomorphologist Heinz 

von Mayersbach wrote the following:  

Temporal variations in such biological components as hormones and 
enzymes, for example, are undoubtedly the expression of temporal 
alterations in metabolic processes. Since metabolic processes are based 
on cellular functions, the question arises: To what extent are structural 
manifestations during the circadian cycle visible at the cellular level? (von 
Mayersbach, 1983) 
 

Despite the fact that it was posed over 30 years ago, this question remains largely 

unanswered, and the study of chronomorphology at the ultrastructural level has mostly 

fallen by the wayside.  
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 Though recent evidence supports the day-night plasticity of SCN neurons at the 

level of their glial coverage (Becquet et al., 2008; Girardet et al., 2014), no known work 

investigating plasticity at the level of subcellular ultrastructure has been performed. A 

possible explanation for this is that, prior to the introduction of block-face imaging, the 

acquisition of 3D EM datasets comprising enough cells to achieve statistical relevance 

was a monumental task. Early chronomorphological studies relied on 2D stereology to 

compute the volume fractions of subcellular components; 3D morphologies could only be 

estimated by making geometrical assumptions, such as the approximation of the nucleus 

as a sphere or ellipsoid.  

  This chapter will describe the application of the technologies developed in this 

dissertation to the study of SCN neuronal chronomorphology. Organelle morphologies 

were quantified and compared using SBEM datasets, and electron tomography was 

employed as a complementary technique. The rest of this introduction will contain a brief 

overview of SCN neuroanatomy followed by a survey of findings from previous 

chronomorphological studies of the brain and peripheral organ systems. 

 
 
4.1.1. Neuroanatomy of the suprachiasmatic nucleus 

 
 The first comprehensive studies of SCN neuroanatomy were conducted by Fritz 

Güldner (Güldner, 1976) and Anthony van den Pol (van den Pol, 1980), both of whom 

used the rat as a model organism. Through the use of a variety of techniques, including 

Golgi impregnation, Nissl stains, and high resolution EM, van den Pol’s work provided 

important insight into not only the gross anatomy of the rat SCN, but also the structure 

and microanatomy of its neurons and glial cells. Though its delineation from the 

surrounding hypothalamus is difficult to the untrained eye, van den Pol presented a 

number of unique anatomical features that can be used to identify the SCN. First, SCN 
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neurons exhibit tight packing and frequently form chains in which multiple somata are in 

apposition with one another or separated only by thin glial processes; this cell packing is 

even more prominent in the dorsomedial (DM) regions of the nucleus (van den Pol, 1980).  

While an obvious “cell-free” zone devoid of such cell bodies separates the third ventricle 

from the SCN, the other boundaries are often less obviously demarcated and must 

typically be identified based on changes in cell body apposition. A final telling sign is that 

the SCN contains significantly fewer myelinated axons than the surrounding 

hypothalamus. 

 The dendrites and axons of most SCN neurons terminate locally within the 

nucleus, though dendrites extending into the hypothalamus are found in its dorsal and 

lateral regions (van den Pol, 1980). Axons are derived from somata and dendrites in a 

roughly 50/50 ratio and create both terminal and en passant boutons that may spread 

diffusely throughout the nucleus or establish a more restricted field of influence near their 

soma.  Through his observations of Golgi impregnated tissue, van den Pol grouped SCN 

neurons into five classes, distinguished primarily by the morphologies of their neurites: 

(1) Simple bipolar cells, which possess two primary dendrites at opposite sides of the 

soma. They are mostly devoid of spines and have dendrites that rarely branch. 

(2) Monopolar cells, which have a single primary dendrite that bifurcates into many 

smaller, distal dendrites 

(3) Curly bipolar cells, whose dendrites often bend and change directions. Spines are 

typically present on both dendrites and soma. 

(4) Radial multipolar cells, which possess many dendrites that radially extend from the 

soma. 
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(5) Spiny neurons, which are the most amorphous of the classes and possess 

predominantly spherical cell bodies with spines and appendages of varying shapes 

and sizes. 

 

The majority of SCN neurons have multiple nucleoli, which are situated on opposing sides 

of the nucleus and in close proximity to the nuclear envelope. In cells with a single 

nucleolus, the nucleolus is situated more towards the middle of the nucleus. SCN neurons 

and astrocytes demonstrate significantly invaginated nuclear membranes, a 

morphological trait that serves to increase the surface area-to-volume (SAV) ratio as well 

as decrease the distance from nucleoli to the nuclear periphery. (van den Pol, 1980). 

 Traditionally, each ellipsoidal SCN is split into two anatomical subdivisions: (1) a 

ventrolateral (VL) shell, and (2) a dorsomedial (DM) core (Moore et al., 2002; Colwell, 

2011). Though it is believed that all SCN neurons synthesize GABA (Morin, 2013), their 

synthesis of other neuropeptides has historically formed the basis for the demarcation of 

these subdivisions. Neurons in the core, which lies adjacent to the optic chiasm, generally 

produce vasoactive intestinal polypeptide (VIP) and gastrin-releasing peptide (GRP). This 

central core is surrounded by a shell of neurons that predominantly produce arginine 

vasopressin (AVP). These core/shell delineations were first made by employing 

immunocytochemistry with antibodies specific to the aforementioned neuropeptides 

(Moore et al., 2002). However, recent groups have argued that this classical model is 

inaccurate, and a more accurate topographical classification schema is needed (Morin, 

2007; Hundahl et al., 2010). For example, neuronal phenotypes and patterns of rhythmicity 

do not directly correlate with neuropeptide chemistry. Additionally, such anatomical 

patterns of neuropeptide chemistry are not identical across organisms, differing even 

amongst species of rodents (Morin, 2013). 
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 Güldner first estimated the volume of a single SCN to be 0.05 mm3; a value he 

arrived at by measuring the major and minor axes of the SCN and approximating it as an 

ellipsoid (Güldner, 1976). This number was refined by van den Pol, who, using camera 

lucida tracings from serial paraffin sections, arrived at a value of 0.068 mm3. Subsequent 

measurements have fallen within the range of 0.02 – 0.07 mm3, with variations likely due 

to differing methods for specimen preparation (Madeira et al., 1995). The rat retina, a 

tissue that has received the bulk of attention from the connectomics community, has an 

estimated volume of roughly 16 mm3 (Mayhew and Astle, 1997). Thus, when compared to 

the retina, the SCN presents a size that is significantly more amenable to large-scale 

reconstructions.     

 

4.1.2. A history of biological chronomorphology 

 
 A circadian influence on cell cycle progression has been demonstrated for a 

variety of tissue types in numerous organisms, including plants, cyanobacteria, zebrafish, 

and rodents (Masri et al., 2013). Mitotic activity, as measured by the number of mitotic 

events per 1,000 cells, is rhythmically controlled by tissue-specific zeitgebers. For 

example, the mitotic index in the corneal epithelium of rats closely follows the light cycle, 

while the same index closely follows the feeding pattern in the liver (Philippens, 1980). 

Given the functions of these two systems, and that mRNA transcripts are known to cycle 

in a tissue-dependent manner (Panda et al., 2002), such findings are intuitive. Importantly, 

since progression through the cell cycle involves significant changes in nuclear 

architecture, it stands to reason that nuclear morphologies are also under a degree of 

circadian control in non-senescent cell types. Indeed, reports demonstrating pronounced 

rhythmic variations of nuclear size in liver hepatocytes had surfaced as early as the 1930s 
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(von Mayersbach, 1983). Rhythms in the percentage of hepatocytes with a binuclear 

phenotype have been reported in rats, with a binucleation peak occurring during the 

subjective night and a trough occurring during the subjective day (Röver and Philippens, 

1979). The authors attempted to explain these data by hypothesizing an oscillating 

sequence of amitotic nuclear divisions and nuclear fusion processes. At a molecular level, 

the extent to which 32P-labeled precursors (Barnum et al., 1958) and tritiated thymidine 

(Eling, 1967) are incorporated into the DNA of rat hepatocytes depends significantly upon 

the time of injection. 

These early findings sparked a number of subsequent studies exploring alterations 

in nuclear morphology across the diurnal cycle in a variety of tissues. Diehl reported daily 

fluctuations in the nuclear volume of rat pinealocytes, and that pinealocytes in the medulla 

and cortex demonstrate different patterns of fluctuation (Diehl, 1981). Ensuing studies 

were in disagreement as to the phasing of this pattern, with peaks of pinealocyte nuclear 

volume reportedly occurring at the transition between the light and dark phases (Diehl et 

al., 1984), during the middle of the light phase (Lew et al., 1984; Hira et al., 1989), and 

during the dark phase (Karasek et al., 1990). One possible explanation for these 

discrepancies is that each study used slightly different specimen preparation and 

quantification methods. Another is that different LD cycles were used; Karasek and 

colleagues used a 14 hr:12 hr LD cycle, while all other studies used the more standard 12 

hr:12 hr LD cycle. Bimodal fluctuations in nuclear morphology were reported in rat thyroid 

follicular cells (Murakami and Uchiyama, 1986), juxtaglomerular cells of the kidney 

(Watanabe et al., 1988), pancreatic islet cells (Watanabe and Uchiyama, 1988), and 

alveolar type II cells (Ishii et al., 1989). Importantly, these findings demonstrate the need 

to sample with a high temporal resolution; if only 2-4 time points are sampled, bimodal 

behaviors would likely be masked or incorrectly classified as unimodal.  
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Interestingly, Lew and coworkers reported a qualitative finding that pinealocyte 

nuclei were more heavily invaginated during the middle of the light period, a morphological 

factor that had not previously been considered oscillatory (Lew et al., 1984). A study of 

tadpole nuclei showed that thyroid follicular cells oscillate between small and elongated to 

large and spherical during a 12 hr:12 hr LD cycle (Wright et al., 1995). The elongated 

morphology was observed one hour after the onset of light, and the spherical morphology 

was observed during the dark period and late light period. Nuclei demonstrating the 

spherical morphology also stained lighter with toluidine blue and had more visible 

chromatin. These findings suggest that daily fluctuations in nuclear morphology may 

involve concomitant changes in sub-nuclear compartmentalization, affecting parameters 

such as chromosome positioning and the location of chromosome territories (Cremer and 

Cremer, 2001).   

Though most of the aforementioned studies arrived at their quantifications using 

thin section EM combined with stereological methods, a few used traced measurements 

of nuclei combined with geometrical approximations. Kirillov and Kurilenko approximated 

nuclear volume in cells of the adrenal cortex using the formula for a rotary ellipsoid: 

Vnuc =
π

6
L2B 

in which L is the maximum diameter and B is the minimum diameter of the nucleus in 

cross-section, as determined by measurements from hematoxylin and eosin (H&E) 

stained, paraffin-embedded sections (Kirillov and Kurilenko, 1977; Kirillov and Kurilenko, 

1979). Diehl subsequently employed the same formula in his study of nuclear volume in 

rat pinealocytes (Diehl, 1981; Diehl et al., 1984). Becker and Vollrath, operating with tissue 

from the same staining method, employed a formula for nuclear volume that accounts for 

the circumference, as determined by cross-sectional tracings: 
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Vnuc =

4
9𝜋 (

𝐶 + √𝜋 ∙ 𝐴) ∙ 𝐴

𝐾
 

Here, K is a constant and C and A denote the circumference and area of the 2D nuclear 

profile, respectively (Becker and Vollrath, 1983). 

Though none have been as extensively studied as the nucleus, a plethora of 

chronomorphological studies have been conducted on other organelles. In studies 

conducted on rat lung (Ishii et al., 1989) and porcine pineal gland (Lewczuk et al., 2004) 

tissue, mitochondrial volume fractions were found to fluctuate and peak during the time of 

activity of the animal. Lysosomes have been shown to exhibit circadian variations in 

number, size, activity, and position within hepatocytes of the rat liver lobule, with a peak 

in number that occurs at the end of the light period (Groh and von Mayersbach 1981). 

Since autophagic processes also peak during the light period in the liver of nocturnal 

rodents, the phasing of this maximum in lysosomal quantity makes intuitive sense (von 

Mayersbach, 1983). Armstrong and Hatton reported that the percentage of cells with 

multiple nucleoli peaks during the dark phase in the rat supraoptic nucleus (Armstrong 

and Hatton, 1978). However, this study was likely confounded by the use of only single 

sections for quantification. Raymond Seïte and his colleagues published a series of 

studies demonstrating nucleolar volume fluctuations in a variety of rat tissues (Pébusque 

and Seïte, 1981a; Pébusque and Seïte, 1981b; Bessone and Seïte, 1985; Pébusque and 

Seïte, 1985; Robaglia and Seïte, 1985). Significant and differentially phased rhythms of 

nucleolar volume were found in all tissues studied except the nodose ganglion (Pébusque 

and Seïte, 1985). A comprehensive listing of other significant chronomorphological studies 

and their relevant findings is given in Table 4.1.  
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4.2. Methods 

4.2.1. Tissue processing and SBEM imaging 

 Wildtype C57BL/6J mice were housed in light-impermeable boxes and entrained 

to a 12:12-hr light-dark (LD) cycle as previously described (Miller et al., 2007). The local 

time of “lights on” was 6:00 A.M. (ZT0), while the corresponding time of “lights off” was 

6:00 P.M. (ZT12). Following entrainment, mice were isolated in a manner that did not 

expose them to ambient white light, anesthetized, and transcardially perfused at two 

distinct time points in the diurnal cycle: ZT4-6 and ZT16-18. Time ranges are used in 

reporting due to the uncertain delay between animal isolation and perfusion. The VL SCN 

of two animals at each time point were harvested and prepared using a standard protocol 

(Wilke et al., 2013). The resin-embedded tissue was mounted on an aluminum specimen 

pin and prepared for SBEM imaging as previously described (Holcomb, et al., 2013). 

Animal perfusions, dissections, and tissue preparation steps were performed by Eric 

Bushong and Keun-Young Kim at NCMIR. 

 The first ZT4-6 SBEM dataset and both ZT16-18 datasets were collected using a 

raster size of 32,000 x 24,000 pixels, an axial step size of 30 nm, a magnification of 800x, 

a lateral pixel size of 3.899 nm/pixel, a spot size of 1.0, and a pixel dwell time of 500 ns 

(ZT4-6 animal #1: CCDBID 81739; ZT16-18 animal #1: CCDBID 90850; ZT16-18 animal 

#2: CCDBID 93678). The corresponding accelerating voltage used and number of 

sections collected are reported in Table 4.2. Low magnification images of the block-face 

were collected before and after SBEM imaging, and the lateral pixel size was confirmed 

using an image of a diffraction grating replica specimen as previously described (Chapter 

2.2.1.2). SBEM imaging was performed by detection of BSEs using a Zeiss Merlin SEM 

equipped with a 3View ultramicrotome (Gatan). SBEM imaging was performed by Tom   
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Table 4.2. Imaging parameters used during SBEM dataset acquisition. 

CCDBID ZT 
Animal 

# 
Raster Size 

Number of 
Slices 

Axial 
Step Size 

(nm) 

Lateral 
Pixel Size 

(nm) 

81739 4-6 1 32,000 x 24,000 1,283 30 3.899 
90850 16-18 1 32,000 x 24,000 1,604 30 3.899 
93678 16-18 2 32,000 x 24,000 1,311 30 3.899 

       

CCDBID 
Dwell 

Time (ns) 
Spot 
Size 

Accelerating 
Voltage (kV) 

Magnification   

81739 500 1.0 1.9 800   
90850 500 1.0 2.2 800   
93678 500 1.0 1.9 800   

 

Deerinck in collaboration with Monica Berlanga and myself. A dataset from the second 

animal of the ZT4-6 time point was collected by Keun-Young Kim and will be used in future 

analyses (ZT4-6 animal #2: CCDBID 5215795). 

 

4.2.2. The subcellular chronomorphology of SCN neurons 

4.2.2.1. Nuclei and nucleoli 

 All datasets were converted to the MRC format, translationally aligned, and 

downsampled to isotropic voxels using the methods described in Chapter 2.2.1.3. Training 

images and labels for nuclei and nucleoli from each dataset were generated by manual 

segmentation as described in Chapter 2.2.2.2. All training sets had pixel dimensions of 

500 x 500 x 50, and individual training slices were taken from points scattered throughout 

the image stack (Figure 2.8). For each set of training data, a CHM pixel classifier was 

trained with two stages and two levels as described in Chapter 2.2.2.3. Since isotropic 

voxels were used, the MPAS algorithm was employed as described in Chapter 3.2.1. The 

resultant, full-stack probability maps were generated by taking the pixel-by-pixel geometric 

mean of PXY, P’XZ, and P’YZ. Segmentations were produced using the automatically-

seeded active contour algorithm described in Chapter 2.2.2.5. Nuclear segmentations 
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were produced using the following values: G = 2,  = 300,  = 8. Nucleolar segmentations 

were produced using the following values: G = 2,  = 90,  = 10. An overlap of 50 pixels 

was used during the tiling and stitching process for all datasets. Surface renderings were 

produced from each segmentation using the scripts presented in Chapter 3.2.3. A post-

rendering size exclusion filter was applied to reject erroneously small or large objects 

using a custom script. The results for each automatic segmentation were manually 

inspected for accuracy and corrected when necessary. Metrics of nuclear and nucleolar 

morphology and spatial orientation were calculated automatically using the method of 

Chapter 3.2.4.1. Advanced metrics of nuclear topology were calculated using the scripts 

outlined in Chapter 3.2.4.2. Output CSV files were imported to Microsoft Excel and used 

for subsequent analyses. 

 

4.2.2.2. Mitochondria 

 The converted and aligned datasets produced in the previous section were 

downsampled by a factor of two in the XY plane using the method presented in Chapter 

2.2.1.3. Mitochondrial training sets with pixel dimensions of 500 x 500 x 50 were produced 

by manual segmentation. Mitochondria from neurons, astrocytes, and the neuropil were 

all contained in these training data. This is of particular note because mitochondria from 

each of these distinct localizations display slightly different textures and grayscale levels. 

CHM pixel classifiers were trained with two stages and two levels. Pixel classification was 

performed using a PANFISH implementation of the methods of Chapter 2.2.2.3 developed 

by Christopher Churas (Churas et al., 2013). Since these datasets were not isotropic, the 

MPAS algorithm was not used. Segmentations were achieved using the automatically-

seeded active contour method with the following values: G = 3,  = 80,  = 7. An overlap 

of 20 pixels was used for the tiling of all datasets during pixel classification. Surface 
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renderings were produced from each segmentation using the scripts presented in Chapter 

3.2.3. Neurons from each dataset were manually segmented in their entirety, and 

mitochondria were automatically separated to the appropriate neuron using the methods 

of Chapter 3.2.5. These data are being used to drive the development of an automatic 

workflow for the analysis of mitochondrial morphology and distribution throughout cells. 

 

4.2.2.3. Stigmoid bodies 

 Qualitative inspection of the SBEM datasets of the SCN revealed an unusual 

neuronal cytoplasmic structure that resembled a nucleolus. Despite initial confusion as to 

what the structure was, a literature search revealed it to be an organelle known as the 

stigmoid body (STB). The STB is a membrane-free, proteinaceous inclusion found in the 

cytoplasm of neurons in many brain regions, including the thalamus, hippocampus, 

amygdala, and hypothalamus (Shinoda et al., 1992). At the ultrastructural level, the STB 

resembles a spherical distribution of closely packed clusters of heterogeneous electron-

dense granules and fibrils interspersed with seemingly empty pockets (Shinoda et al., 

1993). As a whole, STBs are very highly spherical, possess diameters in the range of 0.5-

4 μm, and are significantly less electron dense than the nucleolus. Sheets of ER and 

polyribosomes are frequently seen in the immediate vicinity of STBs (Gutekunst et al., 

2003). Reports of cytoplasmic inclusion bodies can be found throughout the history of 

microscopy in the neurosciences, and structures very closely resembling STBs have been 

given a plethora of unique names, including nematosomes (Le Beux, 1972; Hindelang-

Gertner et al., 1974), botrysomes (Kind et al., 1997), cytoplasmic bodies (Weakley, 1969), 

giant granular filamentous bodies (Blazquez et al., 1995), and nucleolus-like bodies 

(Kessel, 1969; Kishi, 1972; Hindelang-Gertner et al., 1974; Takeuchi and Takeuchi, 1982). 
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To maintain consistency with what is perceived to be the current standard in the 

community, the name stigmoid body will be used throughout the rest of this dissertation. 

 Though not much is known about the function of STBs, it has been hypothesized 

that they play a protective role against Huntington’s disease (HD) by sequestering 

huntingtin and the androgen receptor, two causative proteins associated with HD 

(Metzeger et al., 2008; Fujinaga et al., 2009). An interacting partner of huntingtin, 

Huntingtin-associated protein-1 (HAP1), has been identified as a constituent of STBs and 

is commonly used as a marker for antibody labeling (Gutekunst et al., 1998; Li et al., 

1998a). HAP1 has been shown to play a role in neurite outgrowth (Li et al., 2000), and 

also influences microtubule trafficking by directly binding to motor proteins (Li et al., 

1998b). As a consequence of this, Fujinaga and colleagues demonstrated that STB 

formation is microtubule-dependent and occurs in a two-step process in vitro (Fujinga et 

al., 2009). The first step, for which microtubules are not necessary, involves the formation 

of small, HAP1-positive, STB-like inclusions. In the second step, these small inclusions 

fuse together in a microtubule-dependent process to form spherical, mature STBs. 

Subsequent studies have demonstrated that the apolipoprotein E receptor, SorLA/LR11, 

and sortilin co-localize with HAP1 in STBs (Motoi et al., 1999; Gutekunst et al., 2003). 

Such data indicate that STBs are heterogeneous in both ultrastructure and protein 

constituency.  

 Since the function of STBs largely remains a mystery and no large-scale studies 

of STB ultrastructure have been performed, the morphology and distribution of STBs in 

the SCN were studied. The number of SCN neurons containing STBs was determined for 

each dataset. All STBS were then manually segmented using IMOD. Automatic 

segmentation of STBs was not attempted because they are rather easy to find and 

segment manually. The volume and surface area of each STB were computed using the 
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Figure 4.3. Stigmoid bodies are cytoplasmic inclusions found in SCN neurons. 
Stigmoid bodies are roughly spherical and resemble the nucleolus in terms of texture and 
size (A, scale bar = 2 μm). Expanded views of the boxed regions depict a stigmoid body 
and nucleolus. Nucleoli are, in general, more electron dense than stigmoid bodies. To 
demonstrate this discrepancy, histograms of pixel intensities are shown for the center of 
a cross-section through a stigmoid body and nucleolus (B).  
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IMOD program imodinfo. 

 

4.2.3. Electron tomography of SCN organelles 

4.2.3.1. Serial section electon tomography of the stigmoid body 

 The same SCN tissues blocks used for SBEM imaging were subsequently utilized 

to create grids of serial thick sections for ssET. Ribbons of 250 nm serial sections were 

cut using an ultramicrotome and collected on Luxel slot grids. Five grids containing ribbons 

of 4-5 sections each were prepared. All grids were carbon coated and glow discharged, 

and a 50:50 solution of 5% bovine serum albumin (BSA) and 15/20 nm colloidal gold 

particles (AuNPs) was applied to each grid. No poststaining was performed. This process 

was repeated for the tissue of one animal from both time points.  

 Microscopy was performed using a JEOL 4000EX IVEM operating at 300 kV. 

Samples were loaded using a rotation holder to permit the collection of tilt series about a 

second axis without the need to remove the holder from the column. Low magnification 

maps of a STB across multiple sections were recorded, and it was confirmed that the 

entire STB was contained and undamaged in the serial series before imaging. Tilt series 

were acquired at 30,000x magnification, corresponding to a lateral pixel size of 0.497 nm. 

All tilt series were acquired in 1° angular increments, and most were acquired with the tilt 

range of ±60°. The SerialEM software package (Mastronarde et al., 2003) was used to 

automatically track and maintain focus between successive tilts. Each tilt series was 

recorded in two steps: (1) 0 to -60° and (2) 0 to +60°. Following the collection of tilt series 

for all sections of each grid, the grid was rotated by 90° and second tilt series were 

acquired about the same region of each grid. 

 Two serial series were acquired using the above procedure. The first was a STB 

from a ZT16-18 neuron and consisted of data for ten 250 nm sections. The second was a 
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STB from a ZT4-6 neuron and consisted of data for six 250 nm sections. Tilt series were 

processed and aligned, and tomographic reconstructions were computed using the Etomo 

GUI of IMOD as previously described (Kremer et al., 1996; Perkins et al., 2009). Serial 

sections have not yet been stacked, but will be in the future. 

 

4.2.3.2. Electron tomography of neuronal nuclei 

 Multiple high magnification tilt series of neuronal nuclei were acquired from the 

same grids prepared in the previous section. Single, non-serial tilt series were collected 

from both ZT4-6 and ZT16-18 grids. A list of the tilt series acquired and their corresponding 

imaging parameters is given in Table 4.3. Tomographic reconstruction was performed as 

described in the previous section.  

 

Table 4.3. Imaging parameters used for the collection of tomographic tilt series of 
SCN nuclei 
 

 
Feature 
Imaged 

CCDBID 
Section 

Thickness 
(nm) 

Accelerating 
Voltage (kV) 

Pixel Size 
(nm) 

Angular 
Min, Max, 
Increment 

       
ZT4-6 NE 66441 500 400 0.49 -58,+58,2 

       
ZT4-6 NE 66526 500 400 0.49 -56,+56,2 

       
ZT4-6 NE 66610 500 400 0.92 -50,+54,2 

       

ZT4-6 
NE 

Invagination 
66971 500 400 0.49 -54,+54,2 

       
ZT4-6 NE 67132 500 400 0.49 -58,+48,2 

       
ZT4-6 NE 67833 500 400 0.49 -50,+58,2 

       
ZT16-18 NE 69548 250 300 0.33 -58,+58,2 

       

ZT16-18 
NE 

Invagination 
69011 250 400 0.62 -58,+58,2 

       

ZT16-18 
NE 

Invagination 
69459 250 400 0.62 -58,+58,2 
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4.3. Results 

4.3.1. Nuclear volume, surface area, and topology 

 Automatically generated segmentations appeared consistent in all three datasets. 

Due to the extremely labor intensive nature of generating ground truth for comparison, 

segmentation evaluation metrics were not computed for the ZT16-18 datasets. The 

segmentation evaluation metrics for the ZT4-6 dataset were reported in Chapter 2 (Table 

2.3; Figure 2.15). The results of the morphological characterization of SCN neuronal nuclei 

from all three SBEM datasets are reported in Table 4.4. Only nuclei that were fully 

contained in the dataset were included in the analysis. Histograms of nuclear volume and 

surface area are given in Figures 4.4 and 4.5, respectively. A graphical representation 

comparing the advanced topological metrics for each dataset is shown in Figure 4.6. 

Tomographic reconstruction demonstrate the presence of NPCs and membranous debris 

or vesicles in the lumen of nuclear invaginations (Figure 4.7). 

 

Table 4.4. The results of nuclear morphological characterization for three SCN 
SBEM datasets. Metrics were automatically computed using the methods previously 
described. All values are reported as the mean ± standard deviation. 
 

 ZT4-6, Animal #1 ZT16-18, Animal #1 ZT16-18, Animal #2 

    
Count 81 72 96 

    
Volume (μm3) 331.51 ± 32.84 305.07 ± 31.19 287.60 ± 29.51 

    
Surface Area (μm2) 316.13 ± 38.09 289.74 ± 37.27 300.79 ± 46.33 

    
Surface Area to 
Volume Ratio 

0.957 ± 0.107 0.951 ± 0.093 1.043 ± 0.091 

    
Invagination Factor 1.367 ± 0.143 1.322 ± 0.130 1.423 ± 0.147 

    
Shape Index 0.377 ± 0.052 0.446 ± 0.059 0.381 ± 0.050 

    
Convex Hull 

Difference (%) 
4.396 ± 2.195 3.026 ± 1.747 4.973 ± 2.075 

    
Sphericity 0.740 ± 0.077 0.763 ± 0.074 0.710 ± 0.072 
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4.3.2. Nucleolar number and volume 

 The proposed workflow for automatic analysis accurately separated all nucleoli 

into their proper nuclei, as confirmed by visual inspection. Histograms of the computed 

total neuronal nucleolar volume per cell are displayed in Figure 4.7 for all three datasets. 

The mean total nucleolar volume was 3.18 ± 0.64 μm3 for the ZT4-6 dataset and 3.03 ± 

1.03 μm3 and 3.04 ± 0.65 μm3
 for the two ZT16-18 datasets. In addition to total volume, 

the number of neurons containing one, two, or greater than two nucleoli is also compared 

in Figure 4.6. Fifty-seven percent of neurons in the ZT4-6 dataset and 69% and 84% of 

neurons in the ZT16-18 datasets contained just one nucleolus. Nucleoli from cells 

containing a single nucleolus were clustered and morphologically compared to nucleoli 

from cells containing multiple nucleoli. The mean nucleolar volume and distance to the 

nuclear centroid were computed for each group and the results are reported in Table 4.5. 

Histograms of the nucleolar volume fraction are showin in Figure 4.8 for all datasets. 

 

4.3.3. Stigmoid body number and morphology 

 Histograms demonstrating the frequency of STB volumes are given in Figure 4.10 

for each dataset. The percentage of neurons containing zero, one, and two STBs in each 

dataset are also reported in Figure 4.10. Average STB shape was assessed by computing 

the sphericity and invagination factor for every STB analyzed. The mean values of these 

metrics for each dataset are shown in Figure 4.11. As expected, STBs were uniformly very 

close to spherical in all datasets. Some STBs containing tunnels were found in SBEM 

datasets (Figure 4.12). Such tunnels were commonly associated with ER, and the ER 

network could frequently be tracked from one end of the tunnel to the other. The lumens  

of these tunnels possess electron densities similar to those of the cytoplasm. Other 
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Table 4.5. Nucleolar volume and positioning in SCN neurons with single and 
multiple nucleoli. All values are reported as the mean ± standard deviation. 
 

 ZT4-6, Animal #1 ZT16-18, Animal #2 ZT16-18, Animal #2 

 Single Multiple Single Multiple Single Multiple 

       
Number of 
Nucleoli (N) 

46 80 50 49 80 37 

       
Nucleolar 

Volume (μm3) 
3.26 ± 
0.61 

1.36 ± 
1.88 

3.17 ± 
0.94 

1.21± 
0.79 

3.04 ± 
0.61 

1.24 ± 
0.86 

       
Distance to 

Nuclear Centroid 
(μm) 

3.62 ± 
1.66 

6.10 ± 
2.47 

3.39 ± 
1.46 

5.03 ± 
2.49 

3.71 ± 
2.01 

5.91 ± 
2.29 

 

membrane-bound organelles, such as mitochondria and lysosomes, were also found in 

close proximity to STBs. 

 

4.4. Discussion 

 The results of this chapter demonstrate the utility of the automatic segmentation 

and quantification workflow proposed in Chapters 2 and 3. This workflow was used to 

quantify the morphologies of SCN neuronal nuclei and nucleoli in three different, large-

scale SBEM datasets. Accurate results were achieved in all datasets. Mitochondrial 

segmentations have also been generated for all datasets described in this chapter, though 

the mitochondrial morphologies from these segmentations remain to be analyzed in future 

work. Some preliminary results obtained from this effort will be presented and discussed 

in Chapter 5. 

 The data reported here demonstrate a trend of increased nuclear volume during 

the middle of the light phase (ZT4-6), which corresponds to the period of inactivity of the 

nocturnal mouse (Figure 4.4). Metrics designed to quantify the extent of nuclear 

invagination do not show obvious variations in their average values across the three 

datasets analyzed (Figure 4.6). This is also supported by qualitative observation; nuclei in 
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all three datasets appear to be heavily invaginated. Volumetric increases across the 

diurnal cycle may be facilitated by the transient remodeling of the NE/ER system 

(Lammerding et al., 2007). However, since only one light phase dataset and two dark 

phase datasets were analyzed, these data are preliminary. More datasets will be analyzed 

in the future to increase the sample size and facilitate statistical analyses. 

 The total nucleolar volume and nucleolar volume fraction demonstrate remarkably 

similar averages and distributions for neurons in the three datasets analyzed (Figures 4.8 

and 4.9). The data of Figure 4.8 suggest that there may be a greater percentage of 

neurons with multiple nucleoli during the dark cycle, which corresponds to the period of 

activity for the animal. Nucleoli also occupy consistently similar positions within the 

nucleus in all datasets studied (Table 4.5). These observations will also need to be 

confirmed by the analysis of additional datasets. 

 Though stigmoid bodies have been previously identified in the SCN (Shinoda et 

al., 1992), this was the first known instance in which they were studied ultrastructurally 

using 3D EM. STBs in the SCN demonstrate a wide distribution of sizes (Figure 4.10) and 

are highly spherical (Figure 4.11). Many of the STBs included in this analysis were clearly 

smaller and ultrastructurally different than the canonical 1-4 μm diameter STB (Shinoda 

et al., 1993). Such STBs did not possess pockets, tunnels, or obvious associations with 

cytoplasmic organelles. It is possible that these small STBs are the precursors to mature 

STBs that have been reported in vitro (Fujinaga et al., 2009). The percentage of SCN 

neurons containing STBs was highly variable across all three datasets (Figure 4.10). 

Therefore, STB presence in neurons may vary by individual rather than being associated 

with any circadian cycle. However, it is interesting to note that the vast majority of neurons 

in the single light cycle dataset did not contain STBs. Data from more animals will need to 

be analyzed to establish if this trend holds. 
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 In conclusion, though the data presented here are preliminary, the results of this 

chapter demonstrate the power of automated SBEM analyses for the quantification of 

organelle morphologies. Such a study provides far greater insight into 3D organelle 

morphology and spatial organization than was afforded by the previous 

chronomorphological studies discussed in Chapter 4.1.2. In future analyses, it may be 

advisable to collect smaller SBEM datasets from more animals. Such an experimental 

design would facilitate the acquisition of statistically verifiable data and decrease the 

computational demand required for automatic segmentation. 
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Figure 4.4. The distribution of nuclear volumes in SCN neurons. The volumes of 
automatically segmented nuclei were computed using the workflow for morphological 
characterization reported in Chapter 3.2.4. Shown here are histograms illustrating the 
spread of nuclear volumes for SCN neurons from the three datasets analyzed. The mean 
nuclear volume is indicated by a dashed line on each histogram (ZT4-6 Animal #1: 331.51 
± 32.85 μm3, N = 81; ZT16-18 Animal #1: 305.07 ± 31.19 μm3, N = 72; ZT16-18 Animal 
#2: 287.60 ± 29.51 μm3, N = 96; values are reported as the mean ± standard deviation). 
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Figure 4.5. The distribution of nuclear surface areas in SCN neurons. The surface 
areas of automatically segmented nuclei were computed using the workflow for 
morphological characterization reported in Chapter 3.2.4. Shown here are histograms 
illustrating the spread of nuclear surface areas for SCN neurons from the three datasets 
analyzed. The mean nuclear surface area is indicated by a dashed line on each histogram 
(ZT4-6 Animal #1: 316.13 ± 38.08 μm2, N = 81; ZT16-18 Animal #1: 289.737 ± 37.27 μm2, 
N = 72; ZT16-18 Animal #2: 300.79 ± 46.33 μm2, N = 96; values are reported as the mean 
± standard deviation). 
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Figure 4.6. The mean values of topological descriptors for nuclear invagination in 
nuclei of SCN neurons. The mean values of the surface area to volume ratio, 
invagination factor (IF3D), shape index (σ), and convex hull difference (CHD) are reported 
for nuclei of SCN neurons from the three datasets analyzed. Error bars represent the 
standard deviation. The mean numerical values of each metric are given in Table 4.4. 



202 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Electron tomography of SCN nuclei reveals the ultrastructural 
characteristics of their nuclear invaginations. The results of tomographic 
reconstruction are shown here. A single slice through a tomogram depicts a nuclear 
invagination with cytoplasmic organelles in its vicinity (A). The lumen of the invagination 
in this reconstruction is devoid of membrane-bound organelles. As previously reported in 
other tissue types, SCN invaginations contain NPCs (B). A slice through another 
tomogram demonstrates the presence of membranous debris or large vesicles in the 
lumen of the invagination (C). The nature of these structures is unclear. (A: scale bar = 
200 nm; B: scale bar = 500 nm; C: scale bar = 200 nm). 
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Figure 4.8. The distribution of total nucleolar volume in SCN neurons and the 
percentage of neurons containing multiple nucleoli. (A) The volumes of automatically 
segmented nucleoli were computed using the workflow for morphological characterization 
reported in Chapter 3.2.4. Shown here are histograms illustrating the spread of total 
nucleolar volume per SCN neuron from the three datasets analyzed. The mean total 
nucleolar volume is indicated by a dashed line on each histogram (ZT4-6 Animal #1: 3.18 
± 0.64 μm3, N = 81; ZT16-18 Animal #1: 3.03 ± 1.03 μm3, N = 72; ZT16-18 Animal #2: 
3.04 ± 0.65 μm3, N = 96; values are reported as the mean ± standard deviation). (B) The 
percentages of nuclei containing one nucleolus, two nucleoli, or greater than two nucleoli 
are depicted graphically. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



205 

 

 



206 

 

 

 

Figure 4.9. The distribution of nucleolar volume fraction in SCN neurons. The 
nucleolar volume fraction, calculated as the ratio of nucleolar volume to nuclear volume, 
was calculated for each SCN neuron from the automatically segmented data. Shown here 
are histograms illustrating the spread of nucleolar volume fraction from the three datasets 
analyzed. The mean nucleolar volume fraction is indicated by a dashed line on each 
histogram (ZT4-6 Animal #1: 0.95 ± 0.15%, N = 81; ZT16-18 Animal #1: 0.98 ± 0.31 %, N 
= 72; ZT16-18 Animal #2: 1.05 ± 0.20 %, N = 96; values are reported as the mean ± 
standard deviation). 
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Figure 4.10. The distribution of stigmoid body volume in SCN neurons and the 
percentage of neurons containing stigmoid bodies. (A) The volumes of manually 
segmented stigmoid bodies were computed. Shown here are histograms illustrating the 
spread of stigmoid body volumes from the three datasets analyzed. (B) The percentages 
of SCN neurons containing zero, one, and two stigmoid bodies per soma are depicted 
graphically. 
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Figure 4.11. The mean values of topological descriptors for stigmoid bodies in SCN 
neurons. The mean values of the sphericity and invagination factor (IF3D) are reported for 
stigmoid bodies in SCN neurons from the three datasets analyzed. Error bars represent 
the standard deviation. The sphericity and invagination factor are exactly one for a perfect 
sphere; therefore, these data demonstrate that stigmoid bodies are remarkably spherical. 
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Figure 4.12. Stigmoid bodies contain tunnels associated with the endoplasmic 
reticulum. In addition to having numerous organelles such as mitochondria and 
lysosomes in their vicinity, STBs sometimes contain short tunnels by which ER crosses 
from one side of the STB to the other. Shown here (top, scale bar = 1 μm) is a manual 
reconstruction of the vicinity of a single STB (cyan) from a ZT16-18 SCN dataset. 
Mitochondria (magenta), ER (green), and the surrounding plasmalemma (translucent 
white) were also reconstructed. The STB is located at the extremity of a neuronal soma, 
in close proximity to the axon hillock. The boxed region is magnified in the second 
rendering (middle), which shows only the STB and its surrounding ER network. Part of the 
ER network traverses through a tunnel in the STB and emerges from the other end. The 
white lines on this rendering illustrate the top and bottom boundaries of the eight 
corresponding and sequentially numbered SBEM slices shown below. All slices were 
spaced 30 nm apart from one another. The ER tunnel is clearly visible in slices four and 
five (yellow arrowheads). The lumen of the tunnel appears to have a similar electron 
density to that of the cytoplasm. Electron tomograms of STBs also demonstrate the 
presence of membranous structures in what appears to be tunnels (data not shown), 
though the function of such tunnels remains unclear. 
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Chapter 5 

Conclusions and Future Perspectives 
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5.1. Contributions, significance, and limitations 

 Novel technologies such as SBEM, FIBSEM, and array tomography have supplied 

scientists with the tools necessary to image significant percentages of mammalian 

neuroanatomical regions at unprecedented scale and resolution. These methods currently 

facilitate the collection of teravoxels of image data per day, and new instruments promise 

to push this number significantly higher in the immediate future (Marx et al., 2013; Keller 

et al, 2014). Unfortunately, as has been the case for decades (Macagno et al., 1979), our 

ability to analyze such data continues to significantly lag behind out ability to collect it. 

Furthermore, many algorithmic approaches to automatic image analysis are not readily 

accessible or easily implementable to the general scientific community. As a result, most 

EM facilities are currently producing a vast surplus of image data that cannot practically 

be analyzed without significant breakthroughs from the image processing community. 

 The methods presented in this dissertation provide a workflow for the automatic 

analysis of organelles from such data in a reasonable time frame. The work of Chapter 2 

supplied a pipeline for the application of supervised machine learning algorithms to the 

task of automatically segmenting diverse organelle targets in SBEM datasets. An 

algorithm for the binarization of organelle-specific probability maps based on active 

contour evolution at automatically seeded points was implemented and described. 

Performance was assessed by mathematically comparing automatically generated 

segmentations to manually segmented ground truth, and accurate results were 

demonstrated for all four organelles tested. The results of this method were subsequently 

validated by comparison to another recently published, supervised algorithm. Finally, and 

perhaps most importantly, a method for the computationally efficient scaling of this 

workflow to teravoxel-sized datasets was presented. The decomposition of input images 

into small tiles decreases the memory demand for pixel classification and increases the 
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degree to which the process can be parallelized. Using such parallelization on 

supercomputing resources, dataset-wide automatic segmentations were achieved in the 

range of one to seven days. The only required human input to this process is the manual 

segmentation of training data, which, even in the worst case scenario, requires only a few 

hours. Considering it would take a single person many years to manually segment all 

organelles from a similarly sized dataset, the utility of this approach is obvious.  

 Surprisingly, very few reports of large-scale organelle segmentations of this nature 

exist in the literature. Furthermore, the use of such data for the reconstruction and 

quantification of organelle morphologies is even less common. While some dataset-wide 

automatic segmentations of organelles have been produced (Lucchi et al., 2012; Tek et 

al., 2014), these results were only used as proof-of-concept validations of their algorithmic 

approaches. The work of Noske and colleagues produced detailed characterizations of 

organelle morphologies, but their study was limited to only two cells (Noske et al., 2008). 

Since organelle structure is known to correlate with a host of normal and pathological 

processes in biology (Knott, A.B. et al., 2008; Worman, 2012), the generation of large-

scale maps of in situ organelle structure and distribution across hundreds of cells is highly 

desirable. The work presented in Chapter 3 addressed this need by introducing a 

quantitative analysis extension to the segmentation workflow of Chapter 2. First, an 

accelerated pipeline for generating 3D surface renderings from a stack of 2D 

segmentations was described. A script capable of automatically computing morphological 

parameters and spatial distributions from these renderings was developed, and the results 

of its application to nuclei and nucleoli from numerous datasets are reported in Chapter 4. 

Importantly, the quantitative analysis methods described in Chapter 3 can be linked 

directly to the output of automatic segmentations in a seamless workflow to automatically 

yield morphological metrics. 
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 A significant roadblock to the full automation of this process lies in the fact that 

automatically generated segmentations frequently need to be manually inspected and 

corrected before the morphologies extracted from them can be deemed accurate. In 

Chapter 3, two novel methods to decrease the need for manual editing were introduced. 

The first, the MPAS algorithm, produces representations of organelle morphology that are 

more accurate by averaging probability maps acquired from multiple views of the same 

object. It was demonstrated that this method can reduce the errors associated with 

estimations of nuclear volume and surface area to a few percent without the need for 

manual corrections. This increased accuracy, of course, comes at the cost of increased 

computational load. However, this increased load may be justified in cases where MPAS 

can dramatically reduce the time needed for manual correction by humans. A method for 

correcting segmentations by replacing poorly segmented slices of objects with their 

interslice interpolations was also introduced. This method can be used on single-axis 

probability maps or in tandem with MPAS to improve segmentation accuracy. The next 

step in its development will be to implement a set of rules for the automatic detection of 

poorly segmented slices; such rules will likely need to vary on an organelle-by-organelle 

basis. Taken together, both of these methods facilitate the improvement of segmentation 

results without the need for user interaction, and should dramatically reduce the time 

required for manual correction.  

 

5.2. Future perspectives 

 Data from a single SBEM dataset can be used to pose several interesting 

questions. However, obtaining answers to these questions typically necessitates the use 

of manual segmentation, which is untenable at the scale of teravoxel-sized SBEM image 

stacks (Figure 2.1). Additionally, the application of many existing automatic segmentation 
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approaches is hindered by a number of factors. First, many published algorithms have 

been tested on only a single dataset and, in many cases, only a small subset of a single 

dataset. Therefore, it is unclear if such algorithms will yield satisfactory results when 

applied to images of different anatomical regions that were acquired using a different 

instrument and imaging parameters than the published test dataset. Second, many 

algorithms contain numerous poorly defined variables that significantly affect 

segmentation performance. Such variables must be tuned to different factors of the input 

images, and it is frequently unclear how this tuning should be performed. Lastly, many 

open-source automatic segmentation packages contain numerous and often poorly 

defined dependencies. The simple act of successfully installing or compiling them on a 

machine may require several days and significant levels of frustration. 

 All of these factors have combined to make most automatic segmentation 

approaches unattractive to the general scientific community. A survey of published studies 

that employed SBEM from 2006-2014 (Appendix A) revealed that only 63% reported 

quantitative data derived from SBEM image analyses (Figure 5.1). Furthermore, only 18% 

of the studies that reported quantitative data employed automatic or semi-automatic 

segmentation techniques. This is a shockingly low number, and indicates that there is a 

great need within the field for intuitive and easy-to-apply automatic segmentation 

algorithms. The most well-known software package designed to address this need is ilastik 

(Sommer et al., 2011), which provides a user-friendly GUI and easy-to-follow tutorials. 

However, ilastik trains classifiers based on 3D rather than 2D features, a fact that makes 

it better situated to process data from modalities that provide voxel sizes that are close to 

isotropy, such as FIBSEM.  As discussed in detail in Chapter 1, however, SBEM  

is currently the modality of choice for large-scale studies covering significant tissue 
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Figure 5.1. A survey of the SBEM literature revealed that the vast majority of studies 
did not emply automatic or semi-automatic analyses. The numbers shown in this 
figure were generated from the SBEM publications listed in Appendix A, and cover a time 
span of 2006 through March 2014 (N = 49). 
 

volumes. The desire to segment organelles from SBEM datasets led to the development 

of the technologies described in this dissertation.  

 The workflow presented here circumvents many of the classical problems 

associated with automatic segmentation routines. First, no assumptions about organelle 

shape or geometry are necessary, which makes the method applicable to any target rather 

than just one specific organelle type. Second, though certain variables (Nstages, Nlevels, G, 

, ) are used, most do not have a dramatic impact on segmentation performance and 

there is rarely a need to change them. Accurate segmentations for all organelles studied 

have been achieved using the same parameter set (Nstages = 2, Nlevels = 2, G = 2,  = 100, 

 = 6). Finally, to allow for widespread accessibility, a web-based portal for submitting 

automatic segmentation jobs is currently being developed in collaboration with David Lee, 

Christopher Churas, and Willy Wong. The portal provides an intuitive and easy-to-use front 
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end for the methods described here; the user only has to select their training data, select 

their images to segment, and click the submit button. This eliminates the need for users 

to have to download, install, and compile software on their own, which should make the 

workflow easily accessible to a broad user base. 

 The techniques presented here are based upon the generation of 2D pixel 

classifications using the cascaded hierarchical model. However, the novel techniques 

described in Chapters 2 and 3 are all equally applicable to probabilities provided by any 

other 2D classification scheme. Thus, as the machine learning field evolves and better 

classification algorithms are developed, such approaches can be easily slotted into the 

proposed workflow. In addition to being more appropriate for anisotropic SBEM datasets, 

2D pixel classifications are also more robust against common SBEM imaging defects such 

as focal gradients, obscured slices, and surface charging. Furthermore, 2D pixel 

classification facilitates a high degree of parallelization; in theory, all images could be 

simultaneously classified and segmented in parallel if one had access to enough 

computational resources to allow it. This also sets up the potential for images to be 

processed and segmented as they are collected, and this scenario will be explored in the 

future. A flowchart illustrating how the pipeline described in this dissertation would fit into 

such a scenario is shown in Figure 5.2. The same workflow with the interslice interpolation 

step added to it is shown in Figure 5.3. One drawback of such a design is that it relies 

upon a pre-trained classifier. Such a classifier could be supplied from a dataset that is 

similar in terms of appearance, pixel size, and feature of interest. Whether accurate 

segmentations can be obtained from a classifier trained against a different dataset 

remains to be determined, and this will be explored in the future. Alternatively, training 

data could be manually generated from the first few slices of the image stack after they 

have been acquired. 
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 Workflows for the automatic quantification of cytoplasmic organelles are currently 

being developed. Such workflows will automatically provide morphological and spatial 

data in a manner analogous to the workflow presented for nuclei (Chapter 3.2.4.; Appendix 

D). A proof-of-concept illustration of this approach is shown in Figure 5.4 for mitochondrial 

characterization. Individual mitochondrial volumes were computed and displayed as a 

histogram, and the total mitochondrial volume and volume fraction were also calculated. 

As described previously, such analyses depend on accurate segmentations of cellular 

boundaries to group mitochondria into their appropriate neuron. In the preliminary data 

presented here, such boundaries were generated by manual segmentation (Figure 5.5). 

However, in the near future, methods for automatic segmentation of cell membranes will 

be explored and implemented into the workflow. 

 In summary, the work presented in this dissertation provides a novel method for 

the automatic segmentation of organelles and the quantification of their morphologies in 

3D EM datasets. The validity of the workflow was tested and established by applying it to 

diverse organelle targets in numerous datasets of the mouse SCN. Two novel algorithms 

for increasing segmentation accuracy were developed and introduced. Numerous steps, 

including image segmentation and model generation, were expedited via parallelization 

on supercomputing resources. As the field continues to progress towards its goal of 

reconstructing entire nervous systems, these tools address a critical need by allowing for 

the quantitative analysis of volumetric EM datasets at a scale between that of current 

connectomics approaches (Kim, et al., 2014; Helmstaedter, et al., 2013) and that afforded 

by genetically encoded markers for small molecule localization (Martell, et al, 2012; Shu, 

et al., 2011). 
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Figure 5.2. A flowchart of the workflow demonstrating proposed future 
developments.  The flowchart begins in the bottom-left corner (A). The chapter in which 
each step was described is given in parentheses. Processing is initialized for every SBEM 
image after it has been acquired. Each image is subjected to conversion, downsampling, 
and histogram equalization using the expedited methods outlined in this dissertation (B). 
Next, the image is classified using a previously trained CHM pixel classifier (C), and the 
output probability map is binarized using the active contour evolution algorithm as 
previously described. As an alternative to using a previously trained classifier, the user 
may wait until a few slices have been collected, generate training data from them, and 
train a new, dataset-specific classifier. After probability map binarization, contours are 
generated around each 2D connected component (D). All steps through this point are 
performed in parallel for each newly acquired slice. After image acquisition has been 
terminated and contour models of the segmentation on each slice have been generated, 
the 3D stack operations are initiated. Meshes are generated (E), and morphological filters 
are applied to excluse erroneously large or small objects. Alternatively, and object 
classifier may be applied at this stage. The output model file is then manually inspected 
for accuracy and corrected as necessary. Once manual corrections have been completed, 
the automatic quantification workflow is initiated, and results are output to CSV files for 
further analyses. 
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Figure 5.3. A flowchart of the workflow demonstrating proposed future 
developments that includes automatic corrections.  Steps A-C are identical to those 
of the flowchart shown in Figure 5.2. However, in this scenario, the contour generation 
step cannot follow directly after segmentation since the entire 3D stack of segmentations 
is needed for interslice interpolation. Following the automatic correction of all objects, the 
workflow then proceeds the same as previously. The generation of contours and meshes 
is parallelized (E) using the methods described in Chapter 3.2.3.  
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Figure 5.4. A demonstration of preliminary results from the automatic workflow for 
classifying mitochondrial morphology.  Mitochondria were automatically segmented 
and separated into their corresponding neuron using the methods described previously. 
All mitochondria in the neuron shown here were manually inspected and corrected as 
necessary. The bottom two panels demonstrate magnified views of parts of the neuronal 
soma (left) and axon (right). Mitochondria are preferentially localized to a specific side of 
the soma and continue down the entirety of the axon. The neuronal volume, total 
mitochondrial volume, and mitochondrial volume fraction were automatically calculated 
and are reported here. A histogram of individual mitochondrial volumes is also displayed. 
These data will be automatically output once the workflow has been finalized. 
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Figure 5.5. A subset of ten manually segmented neurons. Neurons were segmented 
and rendered using the methods previously described. Shown here are ten neurons from 
the second SCN ZT4-6 dataset. Both spiny (pink) and smooth (cyan) neurons are present 
in close proximity to one another. These segmentations will be used for the future analysis 
of cytoplasmic organelles. 
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Appendix A. A Survey of the Quantitative Methods Used in Published SBEM 
Studies 
 
 The results of a literature survey of studies employing SBEM from 2006 through 

March 2014 are presented here. The citation for each study is given, along with a 

description of what was quantified, how this quantification was performed, and whether 

manual or semi-automatic segmentation and quantification methods were employed. 
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Appendix B. Training Images and Labels 
 
 The training images and labels used in Chapter 2 for the generation of organelle-

specific CHM probability maps are displayed on the following pages. All training images 

were of the size 500 x 500 pixels and were extracted from the original stack after it was 

downsampled by a factor of two. Training labels were generated by manual segmentation 

of all organelles of interest using IMOD.  
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Appendix C. Source Code 

 
C.2.1. newstack_bin.sh 
 
1   #! /bin/bash 
2   
3   function show_help () { 
4   cat <<-END 
5   newstack_bin.sh 
6   Usage: 
7   ------ 
8       -i | --input (MRC filename) 
9           MRC stack to be binned 
10  
11      -o | --output (MRC filename) 
12          Desired name of output MRC stack 
13  
14      -b | --bin (Integer) 
15          Factor to bin the input stack by     
16    
17      -t | --time  
18          If specified, timing stats for each step will be output 
19  
20      -h | --help 
21          Display this help 
22  END 
23  } 
24  
25  while :; do 
26      case $1 in 
27          -h|--help) 
28              show_help 
29              exit 
30              ;; 
31          -i|--input) 
32              mrc_in=$2 
33              shift 2 
34              continue 
35              ;; 
36          -o|--output) 
37              mrc_out=$2 
38              shift 2 
39              continue 
40              ;; 
41          -b|--bin) 
42              bin=$2 
43              shift 2 
44              continue 
45              ;; 
46          -t|--time) 
47              time=1 
48              shift 1 
49              continue 
50              ;;
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51          *) 
52              break 
53      esac 
54      shift 
55  done 
56  
57  IMOD_BIN=${IMOD_DIR}/bin 
58  
59  #Check validity of input mrc stack 
60  if [[ ! $mrc_in ]]; then printf 'ERROR: input stack not specified.\n\n' >&2; show_help; exit 
1; fi 
61  if [[ ! -f $mrc_in ]]; then printf 'ERROR: input stack does not exist.\n\n' >&2; show_help; 
exit 1; fi 
62  ${IMOD_BIN}/header $mrc_in > /dev/null 
63  if [[ $? == 1 ]]; then printf 'ERROR: input stack is not a valid MRC file.\n\n' >&2; 
show_help; exit 1; fi  
64  
65  #Check validity of output 
66  if [[ ! $mrc_out ]]; then printf 'ERROR: output stack not specified.\n\n' >&2; show_help; 
exit 1; fi 
67  path_out=`dirname $mrc_out` 
68  if [[ ! -d $path_out ]]; then printf 'ERROR: output directory does not exist.\n\n' >&2; 
show_help; exit 1; fi 
69  
70  #Check validity of binning factor 
71  if [[ ! $bin ]]; then printf 'ERROR: binning factor not specified.\n\n' >&2; show_help; exit 1; 
fi 
72  if [[ ${bin//[0-9]/} ]]; then  
73      CMD="${IMOD_BIN}/newstack -shrink ${bin}" #Use "-shrink" if the input is not an 
integer  
74  else 
75      CMD="${IMOD_BIN}/newstack -bin ${bin}" #Use "-bin" if the input is an integer 
76  fi 
77  
78  #Create temporary directory and log directory (if necessary) 
79  mkdir ${path_out}/tmp_nb  
80  if [[ -n $time ]]; then mkdir ${path_out}/log_nb; fi  
81  
82  #Get number of slices in the input stack 
83  Nslices=`${IMOD_BIN}/header -size $mrc_in | tr -s ' ' | cut -d ' ' -f4` 
84  
85  #Loop over each slice. For each slice, first extract the given slice using "newstack -secs", 
then bin the  
86  #extracted slice using "newstack -bin". Record timing stats using /usr/bin/time if desired. 
87  for ((i=0;i<=$((Nslices-1));i+=1)); do 
88      N=`printf %04d $i` 
89      file_extract=${path_out}/tmp_nb/slice_${N}.mrc 
90      file_bin=${path_out}/tmp_nb/slice_bin_${N}.mrc 
91      if [[ -n $time ]]; then 
92          /usr/bin/time -v -o ${path_out}/log_nb/time_extract_${N}.txt ${IMOD_BIN}/newstack -
secs $i $mrc_in $file_extract 
93          /usr/bin/time -v -o ${path_out}/log_nb/time_bin_${N}.txt $CMD $file_extract $file_bin 
94      else 
95          ${IMOD_BIN}/newstack -secs $i $mrc_in $file_extract 
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96          $CMD $file_extract $file_bin 
97      fi 
98      rm -rf $file_extract 
99  done 
100 
101 #Append all single-slice, binned MRC files to the final stack 
102 if [[ -n $time ]]; then 
103     /usr/bin/time -v -o ${path_out}/log_nb/time_stack.txt ${IMOD_BIN}/newstack 
${path_out}/tmp_nb/slice_bin*.mrc $mrc_out 
104 else 
105    ${IMOD_BIN}/newstack ${path_out}/tmp_nb/slice_bin*.mrc $mrc_out  
106 fi 
107 
108 #Cleanup 
109 rm -rf ${path_out}/tmp_nb 

 
C.2.2. mrcstack2png.sh 
 
1  #! /bin/bash 
2  
3  function show_help () { 
4  cat <<-END 
5  mrcstack2png.sh 
6  Usage: 
7  ------ 
8      -i | --input (File name) 
9          MRC stack to be converted to PNG files 
10      
11     -o | --output (Directory name) 
12         Path to store output PNG files to 
13      
14     -a | --array 
15         Process in parallel as an array job 
16      
17     -h | --help 
18         Display this help 
19 END 
20 } 
21 
22 while :; do 
23     case $1 in 
24         -h|--help) 
25             show_help 
26             exit 
27             ;; 
28         -i|--input) 
29             input=$2 
30             shift 2 
31             continue 
32             ;; 
33         -o|--output) 
34             path_out=$2 
35             shift 2 
36             continue 
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37             ;; 
38         -a|--array) 
39             array=1 
40             shift 1 
41             continue 
42             ;; 
43         *) 
44             break 
45     esac 
46     shift 
47 done 
48 
49 if [[ ! $input ]] || [[ ! $path_out ]]; then 
50     printf 'ERROR: options -i and -o must be specified\n\n' >&2 
51     show_help 
52     exit 1 
53 fi 
54 
55 source /home/aperez/.bashrc 
56 
57 if [[ ! -d $path_out ]]; then mkdir ${path_out}; fi 
58 mkdir ${path_out}/test ${path_out}/log 
59 
60 #If array is not selected, launch a non-array job using standard mrc2tif. If it is set, launch 
a parallel job  
61 #using mrc2tif on single slices only. 
62 if [[ -z ${array+x} ]]; then 
63     qsub -v file_mrc=${input},path_out=${path_out} -o ${path_out}/log 
/data/aperez/sge/mrcstack2png.q 
64 else 
65     Nslices=`${IMOD_DIR}/bin/header -size $input | tr -s ' ' | cut -d ' ' -f4` 
66     qsub -t 1-${Nslices} -v file_mrc=${input},path_out=${path_out} -o ${path_out}/log 
/data/aperez/sge/mrcstack2png.q  
67 fi 

 
C.2.3. mrcstack2png.q 
 
1  #! /bin/bash 
2  
3  #$ -S /bin/bash 
4  #$ -N mrc2png 
5  #$ -j yes 
6  #$ -m eas 
7  #$ -M alexjperez@outlook.com 
8  #$ -l h_vmem=1G 
9  #$ -cwd 
10 #$ -V 
11 
12 source /home/aperez/.bashrc 
13 
14 base=${file_mrc%.mrc} 
15 if [[ $SGE_TASK_ID -eq 0 ]]; then 
16     ${IMOD_DIR}/bin/mrc2tif -p ${file_mrc} ${path_out}/test/${base} 
17 else 
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18     ${IMOD_DIR}/bin/mrc2tif -p -z $((SGE_TASK_ID-1)),$((SGE_TASK_ID-1)) ${file_mrc} 
${path_out}/test/${base} 
19     if [[ $((SGE_TASK_ID-1)) -lt 1000 ]]; then 
20         ext=`printf %03d $((SGE_TASK_ID-1))` 
21     else 
22         ext=$((SGE_TASK_ID-1)) 
23     fi 
24     mv ${path_out}/test/${base}.${ext}.png ${path_out}/test/${base}.`printf %04d 
$((SGE_TASK_ID-1))`.png 
25 fi 
 

C.2.4. find_nonborder_pixels.m 
 
1  function [PV,border] = find_nonborder_pixels( I ) 
2  % Returns the pixel values of an input image that are not part 
3  % of the border. The border is determined by computing the 
4  % gradient magnitude of the image, then searching for pixels 
5  % with gradient values that are approximately zero. This method 
6  % of determining the image border works for all types of borders, 
7  % including simple linear translations and shears. 
8  % 
9  %    INPUT 
10 %    ---------- 
11 %    I        Image to extract pixel values from 
12 % 
13 %    OUTPUT 
14 %    ---------- 
15 %    PV       1xM vector of non-border pixel values 
16 %    border   Binary image displaying the border pixels 
17 % 
18 
19 [FX,FY] = gradient(double(I)); 
20 border = sqrt(FX.^2 + FY.^2); %Gradient magnitude 
21 border = (border < 0.01); %Find where gradient is ~zero 
22 border = imfill(~border,'holes'); 
23 clear FX FY 
24 
25 RP = regionprops(border,I,'PixelValues'); 
26 PV = []; %Initialize pixel value vector 
27 for i = 1:numel(RP) 
28     PV = [PV RP(i).PixelValues']; 
29 end 
30 
31 end 

 
C.2.5. generate_reference.sh 
 
1  #! /bin/bash 
2  
3  function show_help () { 
4  cat <<-END 
5  generate_reference.sh 
6  Usage: 
7  ------ 
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8      -i | --input (Directory name) 
9          Path containing the stack of PNG files to run EHS on 
10 
11     -o | --output (Directory name) 
12         Path to store the reference histogram to 
13 
14     -f | --fullstack 
15         Compute the reference histogram as that of the full image stack specified by --input 
16 
17     -z (Integer) 
18         Compute the reference histogram as that of a single image in --input whose value is 
specified here 
19 
20     -h | --help 
21         Display this help 
22 END 
23 } 
24 
25 while :; do 
26     case $1 in 
27         -h|--help) 
28             show_help 
29             exit 
30             ;; 
31         -i|--input) 
32             path_in=$2 
33             shift 2 
34             continue 
35             ;; 
36         -o|--output) 
37             path_out=$2 
38             shift 2 
39             continue 
40             ;; 
41         -f|--fullstack) 
42             fullstack=1 
43             shift 1 
44             continue 
45             ;; 
46         -z) 
47             z=$2 
48             shift 2 
49             continue 
50             ;; 
51         *) 
52             break 
53     esac 
54     shift 
55 done 
56 
57 if [[ ! $path_in ]] || [[ ! $path_out ]]; then 
58     printf 'ERROR: options -i and -o must be specified\n\n' >&2 
59     show_help; exit 1 
60 fi 
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61 
62 if [[ ! $fullstack ]] && [[ ! $z ]]; then 
63     printf 'ERROR: must chose fullstack mode (-f) or single image mode (-z integer)\n\n' 
>&2 
64     show_help; exit 1 
65 fi 
66 
67 if [[ ! -d $path_in ]]; then 
68     printf 'ERROR: directory specified by -i does not exist\n\n' >&2 
69     show_help; exit 1 
70 fi 
71 
72 if [[ ! -d $path_out ]]; then mkdir ${path_out}; fi 
73 mkdir ${path_out}/log ${path_out}/err ${path_out}/ref 
74 
75 if [[ -z ${fullstack+x} ]]; then 
76     qsub -v path_in=${path_in},path_out=${path_out}/ref,N1=${z} -o ${path_out}/log 
generate_reference.q 
77 else 
78     Nslices=`ls ${path_in} | wc -l` 
79     qsub -t 1-${Nslices} -v path_in=${path_in},path_out=${path_out}/ref,N1=1 -o 
${path_out}/log -e ${path_out}/err generate_reference.q 
80 fi 

 
C.2.6. generate_reference.q 
 
1  #! /bin/bash 
2  
3  #$ -S /bin/bash 
4  #$ -N genRef 
5  #$ -m eas 
6  #$ -M alexjperez@outlook.com 
7  #$ -l h_vmem=5G 
8  #$ -cwd 
9  #$ -V 
10 
11 if [[ $SGE_TASK_ID -ne 0 ]]; then N1=${SGE_TASK_ID}; fi 
12 
13 matlab -nodisplay -nosplash -r "generate_reference('"${path_in}"','"${path_out}"',${N1})"; 
 

C.2.7. generate_reference.m 
 
1  function generate_reference( path_in, path_out, N ) 
2  % Generate a reference histogram for exact histogram specification 
3  %    Generates a histogram with 256 bins for an input 8-bit image. Prior 
4  %    to histogram calculation, borders are removed from the input image. 
5  %    The output histogram is stored to an ASCII text file. 
6  %     
7  %    INPUT 
8  %    ---------- 
9  %    path_in     Path to the stack of TIF/PNG files to process 
10 %    path_out    Path to output the histogram text file to 
11 %    N           Image number to analyze within path_in 
12 % 
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13 
14 %Parse path_in for test images 
15 imgs = dir(fullfile(path_in,'*.png')); 
16 if isempty(imgs) 
17     imgs = dir(fullfile(path_in,'*.tif')); 
18 end 
19 
20 file_out = fullfile(path_out,['ref_hist_' sprintf('%04d',N) '.txt']); 
21 
22 %Compute overall histogram. Each image is read, and its borders are removed. 
23 %The image histogram is computed only from the pixels remaining following 
24 %border removal. 
25 file_in = fullfile(path_in,imgs(N).name); 
26 img_in = uint8(imread(file_in)); 
27 [IR IC] = size(img_in); 
28 [PV_img,~] = find_nonborder_pixels(img_in); 
29 clear img_in 
30 fprintf('Analyzing %s\n',file_in); 
31 fprintf('Image size = %d\n',IR*IC); 
32 fprintf('Border size = %d\n',IR*IC - numel(PV_img)); 
33 hist_img = hist(double(PV_img),256); 
34 hist_img = hist_img'; 
35 
36 save(file_out,'hist_img','-ascii'); 
37 fprintf('Output written to %s\n',file_out); 
38 
39 end 
 

C.2.8. run_ehs.sh 
 
1  #! /bin/bash 
2  
3  function show_help () { 
4  cat <<-END 
5  run_ehs.sh 
6  Usage: 
7  ------ 
8      -i | --images (Directory name) 
9          Path containing input PNG files to be processed    
10   
11     -r | --reference (Directory name) 
12         Path containing reference histogram text files 
13      
14     -o | --output (Directory name) 
15         Path to save output to 
16      
17     -h | --help 
18         Display this help 
19 END 
20 } 
21 
22 while :; do 
23     case $1 in 
24         -h|--help) 
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25             show_help 
26             exit 
27             ;; 
28         -i|--images) 
29             path_images=$2 
30             shift 2 
31             continue 
32             ;; 
33         -r|--reference) 
34             path_ref=$2 
35             shift 2 
36             continue 
37             ;; 
38         -o|--output) 
39             path_out=$2 
40             shift 2 
41             continue 
42             ;; 
43         *) 
44             break 
45     esac 
46     shift 
47 done 
48 
49 if [[ ! $path_images ]] || [[ ! $path_ref ]] || [[ ! $path_out ]]; then 
50     printf 'ERROR: options -i, -r, and -o  must be specified\n\n' >&2 
51     show_help 
52     exit 1 
53 fi 
54 
55 if [[ ! -d $path_out ]]; then mkdir ${path_out}; fi 
56 mkdir ${path_out}/log ${path_out}/ehs 
57 
58 Nslices=`ls ${path_images} | wc -l` 
59 qsub -t 1-${Nslices} -v 
path_images=${path_images},path_ref=${path_ref},path_out=${path_out}/ehs -o ${path_out}/log 
run_ehs.q  
 

C.2.9. run_ehs.q 
 
1  #! /bin/bash 
2  
3  #$ -S /bin/bash 
4  #$ -N runEHS 
5  #$ -j yes 
6  #$ -m eas 
7  #$ -M alexjperez@outlook.com 
8  #$ -l h_vmem=15G 
9  #$ -cwd 
10 #$ -V 
11 
12 matlab -nodisplay -nosplash -r 
"run_ehs('"${path_images}"','"${path_ref}"','"${path_out}"',${SGE_TASK_ID})"; 
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C.2.10. run_ehs.m 
 
1  function run_ehs( path_imgs, path_ref, path_out, N ) 
2  
3  files_ref = dir(fullfile(path_ref,'*.txt')); 
4  imgs = dir(fullfile(path_imgs,'*.png')); 
5  if isempty(imgs) 
6      imgs = dir(fullfile(path_imgs,'*.tif')); 
7  end 
8  
9  %Compute summed histogram of all references 
10 hist_sum = zeros(256,1); 
11 for i = 1:numel(files_ref) 
12     hist_i = load(fullfile(path_ref,files_ref(i).name)); 
13     hist_sum = hist_sum + hist_i; 
14 end 
15 
16 I = uint8(imread(fullfile(path_imgs,imgs(N).name))); 
17 [PV_init,border] = find_nonborder_pixels(I); 
18 
19 [ehs,~] = exact_histogram(I,hist_sum,border); 
20 clear I border 
21 
22 [PV_ehs,~] = find_nonborder_pixels(ehs); 
23 
24 for i = 1:256 
25     fprintf('%d %d %d %d\n',i-1,hist_sum(i),PV_init(i),PV_ehs(i)); 
26 end 
27 
28 %Write output 
29 [~,base,ext] = fileparts(imgs(N).name); 
30 file_out = fullfile(path_out,[base '_EHS' ext]); 
31 imwrite(uint8(ehs),file_out); 
32 fprintf('Output written to %s\n',file_out); 
33 
34 end 
 

C.2.11. process_td.sh 
 
1   #! /bin/bash 
2   
3   function show_help () { 
4   cat <<-END 
5   process_td.sh 
6   Usage: 
7   ------ 
8       -i | --input (File name) 
9           MRC file the training contours were traced on 
10  
11      -m | --model (File name) 
12          Model file consisting of two objects. The first object consists of scattered seed points 
13          marking the center of each training image. The second object consists of closed 
contours 
14          representing manual traces of the object of interest. 
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15  
16      -e | --ehs (Directory name) 
17         Path to output stack of PNGs from EHS       
18    
19      -o | --output (Directory name) 
20          Path to save training images and labels to 
21  
22      -d | --dim (Integer,Integer) 
23          Dimensions of the training data in X and Y 
24  
25      -h | --help 
26          Display this help 
27  END 
28  } 
29  
30  while :; do 
31      case $1 in 
32          -h|--help) 
33              show_help 
34              exit 
35              ;; 
36          -i|--input) 
37              file_mrc=$2 
38              shift 2 
39              continue 
40              ;; 
41          -m|--model) 
42              file_mod=$2 
43              shift 2 
44              continue 
45              ;; 
46          -e|--ehs) 
47       path_ehs=$2 
48       shift 2 
49       continue 
50       ;; 
51          -o|--output) 
52       path_out=$2 
53       shift 2 
54       continue 
55       ;; 
56   -d|--dim) 
57       dim=$2 
58       shift 2 
59       continue 
60       ;; 
61          *) 
62              break 
63      esac 
64      shift 
65  done 
66  
67  source /home/aperez/.bashrc 
68  
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69  if [[ ! $file_mrc ]] || [[ ! $file_mod ]] || [[ ! $path_ehs ]] || [[ ! $path_out ]] || [[ ! $dim ]]; then 
70      printf 'ERROR: options -i, -m, -e, -o, and -d  must be specified\n\n' >&2 
71      show_help 
72      exit 1 
73  fi 
74  
75  if [[ ! -d $path_ehs ]]; then 
76      printf 'ERROR: the path specified by -e does not exist\n\n' >&2 
77      show_help 
78      exit 1 
79  fi 
80  
81  if [[ ! -f $file_mrc ]]; then 
82      printf 'ERROR: the MRC file specified by -i does not exist\n\n' >&2 
83      show_help 
84      exit 1 
85  fi 
86  
87  if [[ ! -f $file_mod ]]; then 
88      printf 'ERROR: the model file specified by -m does not exist\n\n' >&2 
89      show_help 
90      exit 1 
91  fi 
92  
93  Nobj=`${IMOD_DIR}/bin/imodinfo -a $file_mod | grep -m 1 '^imod' | cut -d ' ' -f2` 
94  
95  if [[ $Nobj -ne 2 ]]; then 
96      printf 'ERROR: the model file specified by -m must contain exactly two objects\n\n' >&2 
97      show_help 
98      exit 1 
99  fi 
100 
101 if [[ ! -d $path_out ]]; then mkdir ${path_out}; fi 
102 mkdir ${path_out}/td ${path_out}/tl ${path_out}/log 
103 
104 qsub -v 
file_mrc=${file_mrc},file_mod=${file_mod},path_ehs=${path_ehs},path_out=${path_out},dim=${di
m} -o ${path_out}/log process_td.q 
 

C.2.12. process_td.q 
 
1  #! /bin/bash 
2  
3  #$ -S /bin/bash 
4  #$ -N processTD 
5  #$ -j yes 
6  #$ -m eas 
7  #$ -M alexjperez@outlook.com 
8  #$ -l h_vmem=2G 
9  #$ -cwd 
10 #$ -V 
11 
12 source /home/aperez/.bashrc 
13 
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14 img_h=`${IMOD_DIR}/bin/header -size ${file_mrc} | tr -s ' ' | cut -d ' ' -f3` 
15 
16 dimx=`echo $dim | cut -d ',' -f1` 
17 dimy=`echo $dim | cut -d ',' -f2` 
18 radx=`echo "$dimx / 2" | bc` 
19 rady=`echo "$dimy / 2" | bc` 
20 
21 #Extract seed and contour model files 
22 file_seed=${file_mod%.mod}_seed.mod 
23 file_cont=${file_mod%.mod}_cont.mod 
24 
25 ${IMOD_DIR}/bin/imodextract 1 $file_mod $file_seed 
26 ${IMOD_DIR}/bin/imodextract 2 $file_mod $file_cont 
27 
28 #Output point listing of seed file to a text file 
29 ${IMOD_DIR}/bin/model2point $file_seed ${file_seed%.mod}.txt 
30 
31 C=1 
32 while read line; do 
33     #Extract point values from text file 
34     td_i=td_`printf '%03d' $C` 
35     tl_i=tl_`printf '%03d' $C` 
36     xi=`echo $line | cut -d ' ' -f1` 
37     yi=`echo $line | cut -d ' ' -f2` 
38     zi=`echo $line | cut -d ' ' -f3` 
39      
40     #Determine bounding box  
41     xmin=`echo "$xi - $radx" | bc` 
42     xmax=`echo "$xi + $radx -1" | bc` 
43     ymin=`echo "$yi - $rady" | bc` 
44     ymax=`echo "$yi + $rady -1" | bc` 
45 
46     #Trim the bounding box from the input mrc stack. Generate training labels with 
imodmop 
47     ${IMOD_DIR}/bin/trimvol -x ${xmin},${xmax} -y ${ymin},${ymax} -z $((zi+1)),$((zi+1)) 
$file_mrc ${tl_i}.mrc 
48     ${IMOD_DIR}/bin/imodmop -mask 1 $file_cont ${tl_i}.mrc ${tl_i}.mrc 
49     ${IMOD_DIR}/bin/mrc2tif -p ${tl_i}.mrc ${path_out}/tl/${tl_i}.png 
50     rm -rf ${tl_i}* 
51 
52     #Generate training data from EHS output 
53     file_td=`ls ${path_ehs} | sed -n ''$((zi+1))'p'` 
54     /home/aperez/usr/local/bin/convert ${path_ehs}/$file_td -crop 
${dimx}x${dimx}+${xmin}+$((img_h-ymax)) ${path_out}/td/${td_i}.png 
55 
56     C=$((C+1)) 
57 
58 done < ${file_seed%.mod}.txt 
59 
60 #Clean up intermediates 
61 rm -rf $file_seed $file_cont ${file_seed%.mod}.txt 
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C.2.13. CHM_array_testTile.q 
 
1   #! /bin/bash 
2   
3   #$ -V 
4   #$ -cwd 
5   #$ -j y 
6   #$ -S /bin/bash 
7   #$ -m eas 
8   #$ -M alexjperez@outlook.com 
9   #$ -N CHM 
10  #$ -l h_vmem=10G 
11  #$ -t 1-1283:1 
12  
13  ########## 
14  Dir_IM=/home/aperez/usr/local/bin 
15  classdir=/data/aperez/CHM_classifiers/nucleolus/ZT04/edge/Nstage2_Nlevel2 
16  testfolder=/data/aperez/ZT04/input_iso_full/XY/histeq/PNG 
17  testout=/data/aperez/ZT04/runCHM_nucleolus/XY 
18  Nstage=2 
19  Nlevel=2 
20  TileX=8 
21  TileY=6 
22  Overlap=200 
23  ######### 
24  
25  img_in=`ls ${testfolder}/*.png | sed -n ''${SGE_TASK_ID}','${SGE_TASK_ID}'p'` 
26  
27  base=`basename ${img_in}` 
28  base=${base%.*} 
29  
30  testTile=${testfolder}/${base} 
31  mkdir ${testTile}  
32  
33  ${Dir_IM}/convert ${img_in} -crop ${TileX}x${TileY}+${Overlap}+${Overlap}@\! +repage 
+adjoin ${testTile}/${base}_tile_%04d.png 
34  
35  testF="'${testTile}'" 
36  testO="'${testout}'" 
37  matlab -nodisplay -singleCompThread -r 
'TrainScript_test('${testF},${testO},${Nstage},${Nlevel}'); quit' 
38  
39  rm -rf ${testTile} #Remove input tiles 
40  
41  ##### 
42  # Stitching 
43  ##### 
44  
45  pwd 
46  cd ../output_testImages 
47  
48  DX=${TileX} #Number of tiles in X 
49  DY=${TileY} #Number of tiles in Y 
50  OX=${Overlap} #Overlap in X in pixels 
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51  OY=${Overlap} #Overlap in Y in pixels 
52  
53  if (( ${OX} == 0 & ${OY} == 0 )); then #Perform simple stitching if no overlap was 
specified 
54      ${Dir_IM}/montage ${base}_tile*.png -mode concatenate -tile ${DX}x${DY} 
${base}.png 
55      ${Dir_IM}/convert ${base}.png -equalize ${base}.png 
56      exit 0 
57  fi 
58  
59  # First, the row is stitched together in a west-to-east (left-to-right) manner. Rows are then 
stitched together in a 
60  # north-to-south (top-to-bottom) manner. Regions of overlap are handeld by taking the 
maximum pixel value in the  
61  # region 
62  C=1 
63  for ((j=1;j<=${DY};j+=1)); do #Loop over rows 
64      imgFirst=`ls ${base}_tile*.png | sed -n ''${C}','${C}'p'` #Name of first image in the row 
65      imgHeight=`${Dir_IM}/identify -format "%[fx:h]" ${imgFirst}` #Height of row 
66      for ((i=1;i<=${DX};i+=1)); do #Loop over each image within the row 
67          imgL=`ls ${base}_tile*.png | sed -n ''${C}','${C}'p'` #Name of first image 
68          imgLWidth=`${Dir_IM}/identify -format "%[fx:w]" ${imgL}` 
69          if (( i == 1 )); then #If first image in the row, no overlap is needed in the western 
direction 
70              imgR=`ls ${base}_tile*.png | sed -n ''$((C+1))','$((C+1))'p'` #Name of second 
image 
71       imgRWidth=`${Dir_IM}/identify -format "%[fx:w]" ${imgR}` 
72       ${Dir_IM}/convert ${imgL} -gravity west -crop -${OX}-0 ${base}_tempL.png 
#Crop non-overlap region of image1 
73       ${Dir_IM}/convert ${imgL} -gravity east -crop ${OX}x${imgHeight}-0-0 
${base}_tempML.png #Crop eastern overlap region of image1 
74       ${Dir_IM}/convert ${imgR} -gravity west -crop ${OX}x${imgHeight}-0-0 
${base}_tempMR.png #Crop western overlap region of image2 
75              ${Dir_IM}/convert ${base}_tempML.png ${base}_tempMR.png -compose lighten -
composite ${base}_tempM.png #Take max of overlap regions 
76       ${Dir_IM}/convert +append ${base}_tempL.png ${base}_tempM.png 
${base}_out_temp.png #Append 
77         elif (( i > 1 & i <= $((DX-1)) )); then #All middle images in the row 
78              imgR=`ls ${base}_tile*.png | sed -n ''$((C+1))','$((C+1))'p'` 
79              imgRWidth=`${Dir_IM}/identify -format "%[fx:w]" ${imgR}` 
80       ${Dir_IM}/convert ${imgL} -gravity center -crop $((imgLWidth-
2*OX))x${imgHeight}-0-0 ${base}_tempL.png #Crop non-overlap region of image1 
81       ${Dir_IM}/convert ${imgL} -gravity east -crop ${OX}x${imgHeight}-0-0 
${base}_tempML.png #Crop eastern overlap region of image1 
82       ${Dir_IM}/convert ${imgR} -gravity west -crop ${OX}x${imgHeight}-0-0 
${base}_tempMR.png #Crop western overlap region of image2 
83       ${Dir_IM}/convert ${base}_tempML.png ${base}_tempMR.png -compose 
lighten -composite ${base}_tempM.png #Take max of overlap regions 
84       ${Dir_IM}/convert +append ${base}_out_temp.png ${base}_tempL.png 
${base}_tempM.png ${base}_out_temp.png #Append 
85          else #Last image in the row, overlap has already been analyzed 
86              ${Dir_IM}/convert ${imgL} -gravity east -crop -${OX}-0 ${base}_tempL.png #Crop 
non-overlap region 
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87       ${Dir_IM}/convert +append ${base}_out_temp.png ${base}_tempL.png 
${base}_out_temp.png #Append 
88          fi 
89          rm -rf ${base}_temp*.png  
90      C=$((C+1)) 
91      done 
92      if (( j == 1 )); then #If first row, rename to out.png 
93          imgWidthTotal=`${Dir_IM}/identify -format "%[fx:w]" ${base}_out_temp.png` 
94   mv ${base}_out_temp.png ${base}_out.png 
95      else 
96          imgHeightOut=`${Dir_IM}/identify -format "%[fx:h]" ${base}_out.png` #Get height of 
total output to this point 
97   ${Dir_IM}/convert ${base}_out.png -gravity south -crop ${imgWidthTotal}x${OY}-
0-0 ${base}_tempMU.png  
98   ${Dir_IM}/convert ${base}_out.png -gravity north -crop 
${imgWidthTotal}x$((imgHeightOut-OY))-0-0 ${base}_tempU.png 
99   ${Dir_IM}/convert ${base}_out_temp.png -gravity north -crop 
${imgWidthTotal}x${OY}-0-0 ${base}_tempMD.png 
100  ${Dir_IM}/convert ${base}_out_temp.png -gravity south -crop 
${imgWidthTotal}x$((imgHeight-OY))-0-0 ${base}_tempD.png 
101  ${Dir_IM}/convert ${base}_tempMU.png ${base}_tempMD.png -compose lighten 
-composite ${base}_tempM.png 
102  ${Dir_IM}/convert -append ${base}_tempU.png ${base}_tempM.png 
${base}_tempD.png ${base}_out.png 
103     fi 
104     rm -rf ${base}_temp*.png ${base}_out_temp*.png 
105 done 
106 
107 rm -rf ${base}_tile*.png #Remove output tiles 
 

C.2.14. segStats.m 

 
1   function fid_out = segStats( Seg, GT, Border, Filename ) 
2   
3   % segStats 
4   %    Computes a variety of segmentation evaluation statistics comparing a 
5   %    single probability map or a 3D stack of probability maps to a single  
6   %    binary ground truth image or a 3D stack of binary ground truth images. 
7   %    Works with both: 
8   %        (1) Pre-imported image stacks 
9   %        (2) A directory specifying the location of images to load 
10  %    If the input probability maps are already binary because they have  
11  %    been pre-processed, statistics will be computed directly between this  
12  %    stack and the ground truth. If not, statistics will be computed at  
13  %    variable threshold levels, ranging from 0-255 in increments of 1. The 
14  %    metrics calculated are reported, in order, as follows: 
15  % 
16  %        (1) Threshold Value 
17  %        (2) Error Probability [11] 
18  %        (3) False Positive Rate (a.k.a. fall-out) [1] 
19  %        (4) False Negative Rate (a.k.a. miss rate) [1] 
20  %        (5) True Positive Rate (a.k.a. sensitivity, recall) [1]    
21  %        (6) True Negative Rate (a.k.a. specificity) [1] 
22  %        (7) Negative Predictive Value [1] 
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23  %        (8) False Discovery Rate [1] 
24  %        (9) Precision [1] 
25  %       (10) Rand Accuracy [1] 
26  %       (11) F-value (a.k.a. F-score, F-measure) [1] 
27  %       (12) Jaccard Similarity Coefficient [2,3] 
28  %       (13) Dice Coefficient [9,10] 
29  %       (14) Geometric Mean (a.k.a. G-Mean) [8] 
30  %       (15) Matthew's Correlation Coefficient [4,5] 
31  %       (16) Average Conditional Probability [5,6] 
32  %       (17) Area Under Curve [2] 
33  %       (18) Balanced Accuracy [7] 
34  %       (19) Informedness [2] 
35  %       (20) Markedness [2] 
36  %       (21) False Positives (total pixels) 
37  %       (22) False Negatives (total pixels) 
38  %       (23) True Positives (total pixels) 
39  %       (24) True Negatives (total pixels) 
40  %       (25) FP + FN + TP + TN (as a sanity check, should be equal to Image Size) 
41  %       (26) Image Size (total pixels) 
42  % 
43  %    Input 
44  %    -------------------- 
45  %    Seg         Single image or 3D stack of probability map images. There 
46  %                are two use cases: 
47  %                (1) Image stack has been previously loaded. In this case,  
48  %                Seg is the name of the matrix containing the stack. 
49  %                (2) Image stack needs to be loaded. In this case, Seg is 
50  %                a string specifying the directory of the files to load. 
51  %    GT          Single image or 3D stack of binary ground truth. The use 
52  %                cases are the same as Seg. 
53  %    Border      Integer value specifying the padding to remove around both 
54  %                the Seg and GT stacks. 
55  %    Filename    Path to write a text file containing the output statistics 
56  %                to. 
57  % 
58  %    Example 
59  %    -------------------- 
60  %    segStats(Out,GT,0,'stats/segStats_Out.txt'); 
61  %    segStats('/home/aperez/out','home/aperez/gt',50,'/home/aperez/stats.txt'); 
62  % 
63  %    References 
64  %    -------------------- 
65  %    [1] Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition  
66  %        letters, 27(8), 861-874. 
67  %    [2] Powers, D. M. (2011). Evaluation: from precision, recall and F-measure to  
68  %        ROC, informedness, markedness & correlation. Journal of Machine Learning  
69  %        Technologies, 2(1), 37-63. 
70  %    [3] Lucchi, A., Smith, K., Achanta, R., Knott, G., & Fua, P. (2012). Supervoxel- 
71  %        based segmentation of mitochondria in EM image stacks with learned shape  
72  %        features. Medical Imaging, IEEE Transactions on, 31(2), 474-486 
73  %    [4] Matthews, B. W. (1975). Comparison of the predicted and observed secondary  
74  %        structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein  
75  %        Structure, 405(2), 442-451. 
76  %    [5] Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A., & Nielsen, H. (2000).  
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77  %        Assessing the accuracy of prediction algorithms for classification: an  
78  %        overview. Bioinformatics, 16(5), 412-424.i 
79  %    [6] Burset, M., & Guigo, R. (1996). Evaluation of gene structure prediction  
80  %        programs. Genomics, 34(3), 353-367. 
81  %    [7] Brodersen, K. H., Ong, C. S., Stephan, K. E., & Buhmann, J. M. (2010).  
82  %        The balanced accuracy and its posterior distribution. In Pattern Recognition  
83  %        (ICPR), 2010 20th International Conference on (pp. 3121-3124). IEEE. 
84  %    [8] Seyedhosseini, M., Sajjadi, M., & Tasdizen, T. (2013). Image Segmentation with  
85  %        Cascaded Hierarchical Models and Logistic Disjunctive Normal Networks. 
Computer  
86  %        Vision. 
87  %    [9] Shattuck, D. W., Prasad, G., Mirza, M., Narr, K. L., & Toga, A. W. (2009).  
88  %        Online resource for validation of brain segmentation methods. NeuroImage,  
89  %        45(2), 431-439. 
90  %   [10] Dice, L. R. (1945). Measures of the amount of ecologic association between  
91  %        species. Ecology, 26(3), 297-302. 
92  %   [11] Celebi, M. E., Schaefer, G., Iyatomi, H., Stoecker, W. V., Malters, J. M., &  
93  %        Grichnik, J. M. (2009). An improved objective evaluation measure for border  
94  %        detection in dermoscopy images. Skin Research and Technology, 15(4), 444-450. 
95  % 
96  
97  if nargin < 4; Filename = ''; end 
98  if nargin < 3; Border = 0; end 
99  
100 % Import probability map. If the input is not a string, assume it is a matrix to which 
101 % the probability map images have been previously imported to. If it is a string,  
102 % check if it is a directory of a file. If it is a directory, import all images in the 
103 % directory to a 3D image stack. If not, import the single image. 
104 if isstr(Seg) & isdir(Seg) 
105     Dir_seg = Seg; 
106     Imgs_seg = dir([Dir_seg '/*.png']); 
107     if isempty(Imgs_seg) 
108         Imgs_seg = dir([Dir_seg '/*.tif']); 
109     end 
110     Img_seg = imread([Dir_seg '/' Imgs_seg(1).name]); 
111     Seg = zeros([size(Img_seg) numel(Imgs_seg)]); 
112     clear Img_seg 
113     for i = 1:numel(Imgs_seg) 
114         Seg(:,:,i) = imread([Dir_seg '/' Imgs_seg(i).name]); 
115     end 
116 elseif isstr(Seg) & ~isdir(Seg) 
117     Seg = imread(Seg); 
118 end 
119 Seg = uint8(Seg); 
120 
121 % Import ground truth stack in the same fashion. 
122 if isstr(GT) & isdir(GT) 
123     Dir_gt = GT; 
124     Imgs_gt = dir([Dir_gt '/*.png']); 
125     if isempty(Imgs_gt) 
126         Imgs_gt = dir([Dir_gt '/*.tif']); 
127     end 
128     Img_gt = imread([Dir_gt '/' Imgs_gt(1).name]); 
129     GT = zeros([size(Img_gt) numel(Imgs_gt)]); 
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130     clear Img_gt 
131     for i = 1:numel(Imgs_gt) 
132         GT(:,:,i) = imread([Dir_gt '/' Imgs_gt(i).name]); 
133     end 
134 elseif isstr(GT) & ~isdir(GT) 
135     GT = imread(GT); 
136 end 
137      
138 % Remove borders. 
139 [SegX SegY SegZ] = size(Seg); 
140 [GTX GTY GTZ] = size(GT); 
141 Seg = Seg(Border+1:SegX-Border,Border+1:SegY-Border,:); 
142 GT = GT(Border+1:GTX-Border,Border+1:GTY-Border,:); 
143 [SegX SegY SegZ] = size(Seg); 
144 N = SegX * SegY * SegZ; 
145 
146 % Open file to write output to 
147 if isempty(Filename) 
148     fid_out = 1; 
149 else 
150     fid_out = fopen(Filename,'a'); 
151 end 
152 
153 % Check if Seg is binary (i.e. the probability map has already been 
154 % thresholded). If so, set Tmax to 0. If not, set Tmax to 255, so 
155 % statistics will be calculated at each value of T. 
156 if numel(unique(Seg)) <= 2 
157     Tmax = 0; 
158 else 
159     Tmax = 255; 
160 end 
161 
162 % Calculate statistics 
163 T = [0:Tmax]; 
164 Seg_orig = Seg; 
165 for i = 1:numel(T) 
166     Seg = (Seg_orig > T(i)); 
167     fprintf('Calculating statistics for T = %d\n',T(i)); 
168     FP = numel(find( Seg == 1 & GT == 0 )); %[1], False positive OR Type I Error 
169     FN = numel(find( Seg == 0 & GT == 1 )); %[1], False negative OR Type II Error 
170     TP = numel(find( Seg == 1 & GT == 1 )); %[1], True positive OR Hit 
171     TN = numel(find( Seg == 0 & GT == 0 )); %[1], True negative OR Correct Rejection 
172     FPR(i,1) = FP/(FP+TN); %[1], False positive rate OR Fall-out 
173     FNR = FN/(FN+TP); %[1], False negative rate OR Miss rate 
174     TPR(i,1) = TP/(TP+FN); %[1], True positive rate OR Sensitivity OR Recall OR Hit Rate 
175     TNR = TN/(FP+TN); %[1], True negative rate OR Specificity 
176     NPV = TN/(TN+FN); %[1], Negative Predictive Value (NPV) 
177     FDR = FP/(FP+TP); %[1], False Discovery Rate (FDR) 
178     Precision = TP/(TP+FP); %[1], Precision OR Positive Predictive Value (PPV) 
179     F1 = (2*TP)/(2*TP+FP+FN); %[1], F1-score OR F-value OR F-measure 
180     Accuracy = (TP+TN)/(TP+FN+FP+TN); %[1], Rand Accuracy 
181     Jaccard = TP/(FP+TP+FN); %[2,3], Jaccard similarity coefficient OR VOC score 
182     MCC = (TP*TN-FP*FN)/sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)); %[4,5], Matthew's 
correlation coefficient 
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183     ACP = 0.25*((TP/(TP+FN))+(TP/(TP+FP))+(TN/(TN+FP))+(TN/(TN+FN))); %[5,6], 
Average conditional probability  
184     AUC = 1-((FPR(i,1)+FNR)/2);%[2], Area under curve 
185     Inform = TPR(i,1)+TNR-1;  %[2], Informedness 
186     Marked = Precision+NPV-1; %[2], Markedness 
187     AccBal = 0.5*(TPR(i,1)+TNR); %[7], Balanced accuracy 
188     GMean = sqrt(TPR(i,1)*TNR); %[8], Geometrical mean OR G-Mean 
189     Dice = (2*TP)/((FP+TP)+(TP+FN)); %[9,10], Dice Coefficient 
190     ErrorProb = (FP+FN)/(TP+FN+FP+TN); %[11], Error Probability 
191 
192     fprintf(fid_out,'%d %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %d 
%d %d %d %d %d\n',... 
193         
T(i),ErrorProb,FPR(i,1),FNR,TPR(i,1),TNR,NPV,FDR,Precision,Accuracy,F1,Jaccard,Dice,GMea
n,MCC,ACP,... 
194         AUC,AccBal,Inform,Marked,FP,FN,TP,TN,(FP+FN+TP+TN),N); 
195 end 
196 
197 % Calculate the area under the curve for the ROC plot 
198 %[FPR_sort,I] = sort(FPR,1,'ascend'); 
199 %TPR_sort = TPR(I); 
200 %AUC = trapz(FPR_sort,TPR_sort); 
201 %fprintf(fid_out,'%f\n',AUC); 
202 
203 
204 fclose(fid_out); 
205 
206 end 
 

C.2.15. binarize_pm_activecontour.m 
 
1  function [seg,mask,Q] = binarize_pm_activecontour( path_in, path_out, N, level, iter, 
smooth ) 
2  % Segments an input probability map by using the Chan-Vese method for active contour 
evolution 
3  % with seeds determined by multi-level Otsu thresholding. Requires MATLAB R2013a or 
later for 
4  % the functions multithresh, imquantize, and activecontour. 
5  % 
6  %    INPUT 
7  %    -------------------- 
8  %    path_in     Path containing probability maps to process 
9  %    path_out    Path to write segmented images to 
10 %    N           Image number within path_in to process 
11 %    level       Number of Otsu threshold levels to use for seed masking 
12 %    iter        Number of iterations of active contour evolution to use 
13 %    smooth      Degree of smoothing for active contour evolution 
14 %  
15 %    OUTPUT 
16 %    -------------------- 
17 %    seg         Output segmentation of the probability map specified by path_in and N 
18 %    mask        Binary mask used as seeds for active contour evolution 
19 %    Q           Image of the probability map after multi-level Otsu thresholding. Pixel values 
20 %                will be integers from [1,...,level+1]. 



274 

 

21 % 
22 %    USAGE 
23 %    -------------------- 
24 %    Helpful values of iter typically range from 50 - 400, depending on the feature 
segmented. 
25 %    Helpful values of level typically range from 2-10, depending on the feature 
segmented and  
26 %    the quality of the probability map. Noisy probability maps with higher noise will 
typically 
27 %    benefit more from increased levels. Helpful values of smooth range from 2-12. 
28 % 
29 %    EXAMPLE 
30 %    -------------------- 
31 %    [seg,mask,Q] = binarize_pm_activecontour('probMaps','seg',100,2,100,4); 
32 % 
33 %    REFERENCES 
34 %    -------------------- 
35 %    [1] Perez, A.J., Seyedhosseini, M., Deerinck, T.J., Bushong, E.A., Panda, S., 
Tasdizen, T., 
36 %        and Ellisman, M.H. (2014). A workflow for the automatic segmentation of 
organelles in 
37 %        electron microscopy image stacks. Frontiers in Neuroanatomy (in review). 
38 %    [2] Chan, T.F., and Vese, L.A. (2001). Active contours without edges. IEEE 
Transactions on  
39 %        Image Processing, 10(2), 266-277. 
40 % 
41 
42 tic; 
43 
44 if ~isdir(path_out); mkdir(path_out); end 
45 
46 imgs = dir(fullfile(path_in,'*.tif')); 
47 if isempty(imgs) 
48     imgs = dir(fullfile(path_in,'*.png')); 
49 end 
50 
51 % Single-slice probability maps output from CHM will sometimes have a third dimension, 
where each 
52 % slice along the third dimension is identical. If this is the case, reduce the dimensionality  
53 % of the input. 
54 img = imread(fullfile(path_in,imgs(1).name)); 
55 if ndims(img) == 3; img = img(:,:,1); end 
56 seg = zeros(size(img)); %Initialize empty output image 
57 clear img 
58 
59 file_in = fullfile(path_in,imgs(N).name); %Read probability map N within path_in 
60 P = double(imread(file_in)); 
61 if ndims(P) == 3; P = P(:,:,1); end %Reduce dimensionality if necessary 
62 P = P / 255; %Rescale from [0,...,255] to [0,...,1] 
63 fprintf('Input image %s read.\n',file_in); 
64 
65 fprintf('Generating seed image via Otsu multi-level thresholding with '); 
66 fprintf('%d levels.\n',level); 
67 thresh = multithresh(P,level); %Return multi-level threshold values 
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68 Q = imquantize(P,thresh); %Apply threshold values to the probability map 
69 mask = ( Q == level+1 ); %Mask Q at the top level of the threshold 
70 mask = bwmorph(mask,'shrink',2); %Shrink the mask slightly to serve as seeds 
71 
72 fprintf('Performing Chan-Vese active contour segmentation with %d ',iter); 
73 fprintf('iterations and a smoothing factor of %d.\n',smooth); 
74 seg = activecontour(P,mask,iter,'Chan-Vese',smooth); %Active contour evolution 
75 
76 file_out = fullfile(path_out,['out_' sprintf('%04d',N) '.tif']); 
77 imwrite(uint8(seg),file_out); %Write output in uint8 format 
78 fprintf('Output image %s written.\n',file_out); 
79 fprintf('Elapsed time: %0.2f\n',toc); 
80 
81 end 
 

C.2.XX. myelin_segment_sbem.q 
 
1  #! /bin/bash 
2  
3  #$ -V 
4  #$ -cwd 
5  #$ -j y 
6  #$ -S /bin/bash 
7  #$ -m eas 
8  #$ -M alexjperez@outlook.com 
9  #$ -N myelinSeg 
10 #$ -l h_vmem=2G 
11 #$ -t 1-1000:1 
12 
13 matlab -nodisplay -nosplash -r 
"myelin_segment_sbem('TIF_2Dbin10','out_2Dbin10',${SGE_TASK_ID},2,0)"; 
 

C.3.1. mpas.sh 

 
1  #! /bin/bash 
2  
3  function show_help () { 
4  cat <<-END 
5  mpas.sh 
6  Usage: 
7  ------ 
8      -i | --input (Dir1,Dir2,...,DirN) 
9          Paths to probability maps in orientations 1,2,...,N 
10      
11     -o | --output (Directory name) 
12         Path to store output and temporary files to 
13 
14     -r | --orientation (String1,String2,...,StringN) 
15         Orientations of the probability maps in paths 1,2,...,N 
16 
17     -s | --size (Integer,Integer,Integer) 
18         Size of the input stack (X,Y,Z) in the XY orientation 
19 
20     -h | --help  
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21         Display this help 
22 END 
23 } 
24 
25 while :; do 
26     case $1 in 
27         -h|--help) 
28             show_help 
29             exit 
30             ;; 
31         -i|--input) 
32             paths=$2 
33             shift 2 
34             continue 
35             ;; 
36         -o|--output) 
37             path_out=$2 
38             shift 2 
39             continue 
40             ;; 
41         -s|--size) 
42             size=$2 
43             shift 2 
44             continue 
45             ;; 
46         -r|--orientation) 
47             orientations=$2 
48             shift 2 
49             continue 
50             ;; 
51         *) 
52             break 
53     esac 
54     shift 
55 done 
56 
57 #Make output directory (if necessary) and temporary directories 
58 if [[ ! -d $path_out ]]; then mkdir $path_out; fi 
59 mkdir ${path_out}/tmp ${path_out}/log 
60 
61 #Parse the inputs to determine how many axes have been specified by the user 
62 size=`echo $size | tr ',' ' '` 
63 Npath=`echo $paths | tr -cd , | wc -c` 
64 Npath=$((Npath+1)) 
65 Nori=`echo $orientations | tr -cd , | wc -c` 
66 Nori=$((Nori+1)) 
67 if [[ $Npath -ne $Nori ]]; then printf 'ERROR: # of paths and orientations must be the 
same\n\n' >&2; show help; exit 1; fi 
68 
69 #Loop over all orientations. Submit appropriate jobs 
70 hold='' 
71 for ((i=1;i<=${Npath};i+=1)); do 
72     path_in=`echo $paths | cut -d ',' -f${i}` 
73     ori_in=`echo $orientations | cut -d ',' -f${i}` 
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74     Nimgs=`ls ${path_in}/*.png | wc -l` 
75     printf 'Orientation #%d: %s, %s\n' $i $ori_in $path_in 
76     qsub -N png2mrc${ori_in} -t 1-${Nimgs} -v 
path_in=${path_in},path_out=${path_out},orient=${ori_in} -o ${path_out}/log mpas_png2mrc.q  
77     qsub -hold_jid png2mrc${ori_in} -N snr${ori_in} -v 
path_in=${path_out}/tmp,path_out=${path_out}/tmp,orient=${ori_in},size="${size}" -o 
${path_out}/log mpas_stackAndRotate.q  
78     hold=${hold}snr${ori_in}, 
79 done 
80 hold=${hold%?} 
81 
82 #Average over all orientations 
83 qsub -hold_jid $hold -N mpas_avg -v path_in=${path_out}/tmp,path_out=${path_out} -o 
${path_out}/log mpas_average.q 
 

C.3.2. mpas_png2mrc.q 
 
1  #! /bin/bash 
2  
3  #$ -V 
4  #$ -cwd 
5  #$ -j y 
6  #$ -S /bin/bash 
7  #$ -m eas 
8  #$ -M alexjperez@outlook.com 
9  #$ -l h_vmem=1G 
10 
11 DIR_IMOD=/home/aperez/usr/local/imod_4.8.10/bin 
12 DIR_IM=/home/aperez/usr/local/bin 
13 
14 #Get file to process 
15 file_in=`ls ${path_in}/*.png | sed -n ''${SGE_TASK_ID}'p'` 
16 base=`basename $file_in` 
17 base=${base%.png} 
18 
19 #Convert PNG to TIF 
20 ${DIR_IM}/convert $file_in ${path_out}/tmp/${base}_${orient}.tif 
21 ${DIR_IMOD}/tif2mrc ${path_out}/tmp/${base}_${orient}.tif 
${path_out}/tmp/${base}_${orient}.mrc 
22 
23 #Cleanup 
24 rm -rf ${path_out}/tmp/${base}_${orient}.tif 
 

C.3.3. mpas_stackandRotate.q 
 
1  #! /bin/bash 
2  
3  #$ -V 
4  #$ -cwd 
5  #$ -j y 
6  #$ -S /bin/bash 
7  #$ -m eas 
8  #$ -M alexjperez@outlook.com 
9  #$ -l h_vmem=50G 
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10 
11 DIR_IMOD=/home/aperez/usr/local/imod_4.8.10/bin 
12 DIR_IM=/home/aperez/usr/local/bin 
13 
14 #Stack individual MRCs 
15 ${DIR_IMOD}/newstack ${path_in}/*${orient}.mrc ${path_out}/${orient}.st 
16 rm -rf ${path_in}/*${orient}.mrc 
17 
18 size=`echo $size | tr ' ' ','` 
19 echo $size 
20 
21 #Rotate, if necessary 
22 if [[ $orient == 'XZ' ]]; then 
23     ${DIR_IMOD}/rotatevol -angles 0,0,-90 -size $size ${path_out}/${orient}.st 
${path_out}/${orient}_rot.st 
24     rm -rf ${path_out}/${orient}.st 
25 elif [[ $orient == 'YZ' ]]; then 
26     ${DIR_IMOD}/rotatevol -angles 0,-90,0 -size $size ${path_out}/${orient}.st 
${path_out}/${orient}_rot.st 
27     rm -rf ${path_out}/${orient}.st 
28 fi 
 

C.3.4. mpas_average.q 
 
1  #! /bin/bash 
2  
3  #$ -V 
4  #$ -cwd 
5  #$ -j y 
6  #$ -S /bin/bash 
7  #$ -m eas 
8  #$ -M alexjperez@outlook.com 
9  #$ -l h_vmem=50G 
10 
11 DIR_IMOD=/home/aperez/usr/local/imod_4.8.10/bin 
12 DIR_IM=/home/aperez/usr/local/bin 
13 
14 #Perform averaging 
15 ${DIR_IMOD}/clip average ${path_in}/*.st ${path_out}/average.mrc 
16 
17 #Cleanup 
18 #rm -rf ${path_in}/*.st 
 

C.3.5. msi3d_dce_cpd.m 

 
1   % msi3d_dce_cpd 
2   %    Generates evenly distributed, interpolated binary images between two 
3   %    input binary images. This approach is inspired by the morphological 
4   %    skeleton interpolation (MSI) algorithm of Chatzis and Pitas [1]. 
5   %    Depending on the mode specified, the input images are simplified by 
6   %    reducing them to their skeleton or perimeter. Distance transform-based 
7   %    skeletonization is performed using the discrete curve evolution (DCE) 
8   %    algorithm of Bai, et al [2], and perimeterization is performed using 
9   %    bwperim. The reduced objects are registered to each other using the  
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10  %    non-rigid registration mode of the coherent point drift (CPD)  
11  %    algorithm of Myronenko and Song [3]. CPD determines the non-rigid  
12  %    mapping of pixels between the input and output reduced objects, and  
13  %    this correspondence is used to generate evenly spaced, interpolated  
14  %    objects between the two in the interpolation transformation step.  
15  %    Finally, the whole objects are reconstructed from the reduced  
16  %    simplifications. In the case of reduction by skeletonization,  
17  %    reconstruction is performed by creating the union of all circles  
18  %    centered at each pixel of the skeleton, with each pixel value  
19  %    specifying the radius of the given circle. In the case of reduction by 
20  %    perimeterization, reconstruction is performed by first running a 
21  %    gap-filling algorithm to connect all pixels of the interpolated 
22  %    perimeter, then filling the object using imfill(...,'holes'). 
23  % 
24  %    Input 
25  %    -------------------- 
26  %    I_A,I_B       Input binary images to interpolate between. 
27  %    L0            Number of interpolated slices to produce between the two 
28  %                  input images. 
29  %    mode          = 1, aligns the skeletons of the images. Skeletons are 
30  %                    generated using the DCE algorithm of Bai, et al. 
31  %                  = 2, aligns the perimeters of the images. 
32  %    image         = 1, will write intermediate plots and figures to disk. 
33  %                  = 0, will not save any intermediate images. 
34  %    verbose       = 1, will print text pertaining to intermediate steps. 
35  %                  = 0, will not print any text. 
36  %    compile       = 1, will compile CPD code. = 0, will not compile, 
37  %                  assuming code has been previously compiled. 
38  % 
39  %    Output 
40  %    -------------------- 
41  %    Out           Stack of interpolated images between I_A and I_B. 
42  %    time          1x3 vector specifying the runtimes, in seconds, for (1) 
43  %                  object reduction, (2) CPD registration, and (3) 
44  %                  interpolation transformation. 
45  % 
46  %    Example 
47  %    -------------------- 
48  %    interp = msi3d_cpd_perim( I1,I2,3,3,0,0,1);     
49  % 
50  %    Dependencies 
51  %    -------------------- 
52  %    [1] Requires the Coherent Point Drift toolbox, available for download  
53  %    here: https://sites.google.com/site/myronenko/research/cpd 
54  % 
55  %    [2] Requires the Matlab code for the DCE algorithms for skeleton 
56  %    generation, available for download here: 
57  %    https://sites.google.com/site/xiangbai/softwareforskeletonizationandskeletonpru 
58  %    NOTE: For compatibility with MATLAB R2013a, add the following between 
59  %    lines 41 and 42 in the file SkeletonGrow1.m: 
60  %         lab = single(lab); 
61  % 
62  %    References 
63  %    -------------------- 
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64  %    [1] Chatzis and Pitas (2000). Interpolation of 3-D binary images based 
65  %    on morphological skeletonization. IEEE Transactions on Medical 
66  %    Imaging, 19(7):699-710. 
67  % 
68  %    [2] Bai, Latecki, and Liu (2007). Skeleton pruning by contour 
69  %    partitioning with discrete curve evolution. IEEE Transactions on 
70  %    Pattern Analysis and Machine Intelligence. 29(3):1-14. 
71  % 
72  %    [3] Myronenko and Song (2012). Point Set Registration: Coherent Point 
73  %    Drift. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
74  %    32(12):2262-75. 
75  % 
76  % 
77  
78  function [Out,time,ratio] = msi3d_dce_cpd( I_A, I_B, L, mode, image, verbose, compile ) 
79  
80  if nargin < 7; compile = 1; end 
81  if nargin < 6; verbose = 0; end 
82  if nargin < 5; image = 0; end 
83  if nargin < 4; mode = 1; end %Default is to align the skeletons 
84  
85  % Add needed paths for CPD and compile 
86  if compile == 1; compileCPD; end 
87  
88  % Initialize output matrix 
89  Out = zeros([size(I_A),L+2]); 
90  Out(:,:,1) = I_A; 
91  Out(:,:,L+2) = I_B;  
92  
93  % Set options for CPD 
94  opt.method = 'nonrigid'; 
95  opt.tol = 1e-4; 
96  opt.beta = 1; 
97  opt.corresp = 1; 
98  opt.viz = 0; 
99  
100 C = 2; 
101 
102 %%%%%%%%%% 
103 %%% (1) Object Reduction 
104 %%%%%%%%%% 
105 
106 % Find number of connected components in input images 
107 CC_A = bwconncomp(I_A); 
108 CC_B = bwconncomp(I_B); 
109 
110 tic; % Start timer for object reduction 
111 
112 if mode == 1   
113     % Create skeleton images of both input images by using DCE 
114     S_A = div_skeleton_new(4,1,~I_A,15); 
115     fprintf('Skeletonization of Image A done.\n'); 
116 
117     S_B = div_skeleton_new(4,1,~I_B,15); 
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118     fprintf('Skeletonization of Image B done.\n'); 
119 else 
120     S_A = bwperim(I_A); 
121     fprintf('Perimeterization of Image A done.\n'); 
122     S_B = bwperim(I_B); 
123     fprintf('Perimeterization of Image B done.\n'); 
124 end 
125      
126 runtime_reduce = toc; % End timer for DCE skeletonization 
127 
128 A_A = numel(find(I_A > 0)); 
129 A_SA = numel(find(S_A > 0)); 
130 ratio(1) = A_SA/A_A; 
131 fprintf('Image A contains %d points.\n',A_A); 
132 fprintf('Reduction A contains %d points.\n',A_SA); 
133 fprintf('Reduction : Image Ratio A = %f\n',ratio(1)); 
134 
135 A_B = numel(find(I_B > 0)); 
136 A_SB = numel(find(S_B > 0)); 
137 ratio(2) = A_SB/A_B; 
138 fprintf('Image B contains %d points.\n',A_B); 
139 fprintf('Reduction B contains %d points.\n',A_SB); 
140 fprintf('Reduction : Image Ratio B = %f\n',ratio(2)); 
141 
142 %%%%%%%%%% 
143 %%% (2) Skeleton Matching 
144 %%%%%%%%%% 
145 
146 tic; % Start timer for CPD 
147 
148 % Convert from image format to a 3xM array of points, as required for CPD 
149 S_A_cpd = im2cpd(S_A); 
150 S_B_cpd = im2cpd(S_B); 
151 
152 % Run Coherent Point Drift Algorithm using rigid point set registration. 
153 % CPD is run to generate transforms in both directions: (1) From I_A to 
154 % I_B, and (2) from I_B to I_A. 
155 
156 fprintf('Running non-rigid CPD registration of A to B.\n'); 
157 [Transform_AB,X_AB] = cpd_register(S_B_cpd',S_A_cpd',opt); 
158 
159 runtime_cpd = toc; % End timer for CPD 
160 fprintf('CPD registration done.\n') 
161 
162 %%%%%%%% 
163 % (3) Interpolation Transformation Calculation 
164 %%%%%%%% 
165 
166 % Calculate the transforms in distance, in X and Y, and pixel intensity  
167 % in Z to apply to the original skeleton to match the destination 
168 % skeleton 
169 
170 tic; % Start timer for interpolation transformation  
171 
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172 clear D_AB 
173 for i = 1:numel(X_AB); D_AB(:,i) = S_B_cpd(:,X_AB(i)) - S_A_cpd(:,i); end 
174 
175 for l = 1:L 
176 
177     % Calculate coefficients for matching interpolations to the properly spaced 
178     % slice. l = [1...L]. 
179     C_AB = l / (L+1); 
180     fprintf('Transforming interpolation for l = %d, C_AB = %f.\n',l,C_AB); 
181 
182     % Scale transforms by the coefficients 
183     D_AB_scale = C_AB .* D_AB; 
184      
185     % Create new objects 
186     delta_AB = S_A_cpd + D_AB_scale; 
187     delta_AB(1:2,:) = round(delta_AB(1:2,:)); 
188     S_AB_delta = cpd2im(delta_AB,S_A); 
189      
190     %%%%%%%% 
191     % (4) Object Reconstruction 
192     %%%%%%%% 
193 
194     % Reconstruct objects 
195     if mode == 1 
196         O_interp_AB = skel2obj(S_AB_delta,2); 
197         O_interp_AB = bwmorph(O_interp_AB,'spur'); 
198         O_interp_AB = bwmorph(O_interp_AB,'hbreak');      
199     else 
200         O_interp_AB = perimFill(S_AB_delta); 
201         %O_interp_AB = imfill(O_interp_AB,'holes'); 
202     end 
203 
204     % Check for consistency in connected components. Remove artifacts 
205     % if necessary. 
206     CC_AB = bwconncomp(O_interp_AB,4); 
207 
208     if CC_A.NumObjects == CC_B.NumObjects 
209         if CC_AB.NumObjects ~= CC_A.NumObjects 
210             RP_AB = regionprops(O_interp_AB,'Area','PixelIdxList'); 
211             [Sort,Idx] = sort([RP_AB.Area],'descend'); 
212             Remove = Idx(CC_A.NumObjects+1:end); 
213             for q = 1:numel(Remove) 
214                 O_interp_AB(RP_AB(Remove(q)).PixelIdxList) = 0; 
215             end 
216         end 
217     end                      
218 
219     %%%%%%%% 
220     % Store output and set inputs for next iteration 
221     %%%%%%%% 
222 
223     Out(:,:,C) = O_interp_AB; 
224     C = C+1; 
225 
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226     %%%%%%%% 
227     % (OPTIONAL) 
228     %%%%%%%% 
229 
230     if image == 1 
231         figure; 
232         subplot(3,2,1); imshow(S_A,[]); title('P_A') 
233         subplot(3,2,2); imshow(S_B,[]); title('P_B') 
234         subplot(3,2,3); imshow(S_interp_AB,[]); title('P_{AB}') 
235         subplot(3,2,4); imshow(S_interp_BA,[]); title('P_{BA}') 
236         subplot(3,2,5); imshow(O_interp_AB,[]); title('O_{AB}') 
237         subplot(3,2,6); imshow(O_interp_BA,[]); title('O_{BA}'); 
238         figure; 
239         subplot(2,3,1); imshow(I_A,[]); 
240         subplot(2,3,2); imshow(O_interp_AB,[]); 
241         subplot(2,3,3); imshow(I_B,[]); 
242         subplot(2,3,4); imshow(I_A,[]); 
243         subplot(2,3,5); imshow(O_interp_BA,[]); 
244         subplot(2,3,6); imshow(I_B,[]); 
245     end 
246 end 
247 
248 runtime_interpTrx = toc; % End timer for interpolation transformation 
249 
250 Out = uint8(Out); 
251 
252 fprintf('Run time:\n'); 
253 fprintf('Image Reduction %f\n',runtime_reduce); 
254 fprintf('CPD Registration %f\n',runtime_cpd); 
255 fprintf('Interpolation Transformation %f\n',runtime_interpTrx); 
256 
257 time = [runtime_reduce runtime_cpd runtime_interpTrx]; 
258 
259 end 
 

C.3.6. im2cpd.m 
 
1  function Im_cpd = im2cpd( Im ) 
2  % im2cpd 
3  %    Converts an image to the 3xM indexed representation needed by the CPD 
4  %    algorithm. 
5  %          
6  %    Input 
7  %    -------------------- 
8  %    Im            Input binary image. 
9  % 
10 %    Output 
11 %    -------------------- 
12 %    Im_cpd        Mx3 representation of binary image. 
13 % 
14 %    Example 
15 %    -------------------- 
16 %    A_cpd = im2cpd(A); 
17      
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18 Idx = find( Im > 0 ); 
19 Im_cpd = zeros(3,numel(Idx)); 
20 [X Y] = ind2sub(size(Im),Idx); 
21 Im_cpd(1,:) = X'; 
22 Im_cpd(2,:) = Y'; 
23 Im_cpd(3,:) = Im(Idx)'; 
24 
25 end 

 
C.3.7. cpd2im.m 
 
1  function Im_out = cpd2im( cpd_mat,Im ) 
2  % cpd2im 
3  %    Converts from the 3xM indexed representation needed by the CPD 
4  %    algorithm to an image. 
5  %          
6  %    Input 
7  %    -------------------- 
8  %    cpd_mat       Input 3xM indexed representation 
9  %    Im            Image to match the size of the output image to. 
10 % 
11 %    Output 
12 %    -------------------- 
13 %    Im_out        Output image 
14 % 
15 %    Example 
16 %    -------------------- 
17 %    Im_trx = cpd2im(cpd_trx,Im); 
18      
19 [SX SY] = size(Im); 
20 Im_out = zeros(SX,SY); 
21 for i = 1:size(cpd_mat,2) 
22     if cpd_mat(1,i) <= 0; cpd_mat(1,i) = 1; end 
23     if cpd_mat(2,i) <= 0; cpd_mat(2,i) = 1; end 
24     if cpd_mat(3,i) >= 0 
25         Im_out(ceil(cpd_mat(1,i)),ceil(cpd_mat(2,i))) = cpd_mat(3,i); 
26     else 
27         Im_out(ceil(cpd_mat(1,i)),ceil(cpd_mat(2,i))) = 0; 
28     end 
29 end 
30 Im_out = Im_out(1:SX,1:SY); 
31 
32 end      
 

C.3.8. skel2obj.m 
 
1  % skel2obj 
2  %    Reconstructs an object from its distance transform-derived skeleton.  
3  %          
4  %    Input 
5  %    -------------------- 
6  %    skel          Skeleton image 
7  %    mode          = 1, uses the midpoint circle algorithm to append 
8  %                  circles to the image 
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9  %                  = 2, uses a function involving polymask to append 
10 %                  circles to the image 
11 % 
12 %    Output 
13 %    -------------------- 
14 %    obj           Image of reconstructed object 
15 % 
16 %    Example 
17 %    -------------------- 
18 %    A_obj = skel2obj(A_skel); 
19 % 
20 %    Dependencies 
21 %    -------------------- 
22 %    [1] Requires Peter Bone's implementation of the midpoint circle 
23 %    algorithm: 
24 %    http://www.mathworks.com/matlabcentral/fileexchange/14331-draw-a-circle-in-a-
matrix-image 
25 % 
26 %    References 
27 %    -------------------- 
28 %    http://reference.wolfram.com/mathematica/ref/InverseDistanceTransform.html 
29 % 
30 %    Mode 1: 
31 %    http://en.wikipedia.org/wiki/Midpoint_circle_algorithm 
32 % 
33 %    Mode 2: 
34 %    http://stackoverflow.com/questions/7648186/is-there-any-function-opposite-to-
bwmorphimage-skel-in-matlab-or-c-c-code 
35 % 
36 
37 function obj = skel2obj( skel, mode ) 
38 
39 if nargin < 2; mode = 1; end 
40 
41 if mode == 1 
42     Idx = find(skel > 0); 
43     [r c] = ind2sub(size(skel),Idx); 
44     obj = zeros(size(skel)); 
45     for i = 1:numel(Idx) 
46         obj = midpoint(obj,skel(Idx(i)),r(i),c(i),1); 
47     end 
48     obj = imfill(obj,'holes'); 
49 else 
50     t = linspace(0,2*pi,50); 
51     ct = cos(t); 
52     st = sin(t); 
53     [r c] = size(skel); 
54     obj = false(r,c); 
55     for j=1:c 
56         for k=1:r 
57             if skel(k,j)==0, continue; end 
58             mask = poly2mask(skel(k,j).*st + j, skel(k,j).*ct + k, r, c); 
59             obj(mask) = true; 
60         end 
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61     end      
62 end 
63 
64 end 
 

C.3.9. perimFill.m 
 
1  % perimFill 
2  %    Takes a thinned perimeter binary image, finds the pixels belonging to 
3  %    gaps in the perimeter, then fills them such that the perimeter can be 
4  %    properly filled using imfill(...,'holes'). 
5  %          
6  %    Input 
7  %    -------------------- 
8  %    Im            Binary perimeter image. 
9  % 
10 %    Output 
11 %    -------------------- 
12 %    Out           Filled image. 
13 % 
14 %    Example 
15 %    -------------------- 
16 %    P_filled = perimFill(P); 
17 % 
18 %    Dependencies 
19 %    -------------------- 
20 %    [1] Peter Kovesi's findendsjunctions.m for detecting the pixels 
21 %    surrounding gaps in the output perimeter map: 
22 %    http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/#edgelink 
23 %    [2] Jing Tian's func_drawLine.m for connecting end pixels: 
24 %    http://www.mathworks.com/matlabcentral/fileexchange/4211-connect-two-pixels 
25 % 
26 
27 function Out = perimFill( Im ) 
28 
29 % Bridge gaps that are separated by only one pixel 
30 Im = bwmorph(Im,'bridge'); 
31 
32 % Find points where ends occur 
33 [rj,cj,re,ce] = findendsjunctions(Im,0); 
34 re = [re; rj]; 
35 ce = [ce; cj]; 
36 
37 % Determine the pairs of points in re and ce that constitute both edges of 
38 % a gap. This is done by determining which points are closest to one 
39 % another by minimizing the distance. The gap is then closed by calling  
40 % func_DrawLine. 
41 while re 
42     R1 = re(1); 
43     C1 = ce(1); 
44     d = []; 
45     for i = 1:numel(re) 
46         d(i) = sqrt((R1-re(i))^2 + (C1-ce(i))^2); 
47     end 
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48     d(1) = Inf; 
49     [Min Idx] = min(d); 
50     Im = func_DrawLine(Im,R1,C1,re(Idx),ce(Idx),1); 
51     re(Idx) = []; re(1) = []; %Remove points from future consideration 
52     ce(Idx) = []; ce(1) = [];  
53 end    
54 
55 Out = Im; 
56 
57 end 

 
C.3.10. msi3d_display.m 
 
1   function msi3d_display( Im,filename,compile ) 
2   % msi3d_display 
3   %    Plots a variety of data pertaining to the output interpolations 
4   %    generated by msi3d_cpd. The plots generated are as follows (from left 
5   %    to right, top to bottom); 
6   %        1. A grayscale overlay of all slices, including the two original 
7   %        images and all interpolated images. Each image is coded to a 
8   %        unique grayscale value, as displayed in the legend. 
9   %        2. A plot of object area versus slice number, as determined by 
10  %        regionprops. 
11  %        3. A plot of object rotation versus slice number, as determined by 
12  %        registry using rigid transformations with CPD. 
13  %        4. A plot of the pixel location of the X centroid of each object 
14  %        versus slice number, as determined by regionprops. 
15  %        5. A plot of the pixel location of the Y centroid of each object 
16  %        versus slice number, as determiend by regionprops. 
17  %    If desired, images of the plot will be written to disk in both the 
18  %    .eps and .tif formats. 
19  %          
20  %    Input 
21  %    -------------------- 
22  %    Im            Output image stack from msi3d_cpd. 
23  %    filename      String specifying the filename to save images to. If a 
24  %                  filename is not specified, images will not be saved to  
25  %                  disk. 
26  %    compile       = 1, will compile CPD code. = 0, will not compile, 
27  %                  assuming code has been previously compiled. 
28  % 
29  %    Example 
30  %    -------------------- 
31  %    msi3d_display(msi3d_Out); 
32  % 
33  
34  if nargin < 3; compile = 1; end 
35  if nargin < 2; filename=''; end 
36  
37  % Compile CPD code 
38  if compile == 1; compileCPD; end 
39  
40  % Generate pixel values corresponding to each iteration 
41  [DimY DimX N] = size(Im); 
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42  M = floor(205/N); 
43  P = [50+M.*(1:(N-1)) 255]; 
44  P = fliplr(P); 
45  
46  % Determine if the image stack is growing or shrinking in size 
47  A_start = numel(find(Im(:,:,1) == 1)); 
48  A_end   = numel(find(Im(:,:,N) == 1)); 
49  if A_start >= A_end 
50      j = 1; 
51      k = N; 
52      inc = 1; 
53  else 
54      j = N; 
55      k = 1; 
56      inc = -1; 
57  end 
58  
59  Disp = Im(:,:,1); 
60  h = figure; 
61  set(h, 'Position', [0 0 1280 800]) 
62  
63  subplot(4,2,7); 
64  colormap('Gray'); 
65  
66  for i = j:inc:k 
67       
68      % Add slices to image at different grayscale values 
69      Idx = find( Im(:,:,i) ~= 0 ); 
70      Disp(Idx) = P(i); 
71       
72      % Compute statistics on each slice 
73      RP = regionprops(Im(:,:,i),'Area','Centroid'); 
74      A(i) = RP.Area; 
75      C(i,:) = RP.Centroid;  
76      if i == 1 
77          O(i) = 0; 
78      else 
79          O(i) = imregister_rotational(Im(:,:,1),Im(:,:,i),0); 
80      end 
81       
82      % Create legend patches and text 
83      patch([i-1 i-1 i i],[0.75 0.9 0.9 0.75],P(i)); 
84      if i == 1 | i == N; text(i-1 + 0.5,0.6,num2str(i)); end 
85  end 
86  
87  patch([N N N+1 N+1],[0.75 0.9 0.9 0.75],0); 
88  axis([-0.1 N 0 1]); 
89  text(0,0.98,'Legend, Z ='); 
90  axis off; grid off; 
91  
92  subplot(4,2,[1:2:5]); 
93  imshow(Disp,[]); 
94  
95  X = 1:size(A,2); 
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96  DX = (C(:,1) - C(1,1))'; 
97  DY = (C(:,2) - C(1,2))'; 
98  
99  % Change interval of X tickmarks if X is too large to display every other 
100 % tick properly 
101 if N < 20 
102     xtick = [1:X(end)]; 
103 else 
104     xtick = [1:2:X(end)]; 
105 end 
106 
107 subplot(4,2,2); 
108 set(gca, 'FontName', 'Arial'); 
109 plot(X,A,'ko','LineWidth',4);  
110 set(gca,'XTick',xtick); 
111 axis([1 X(end) min(A)*0.5 max(A)*1.5]); 
112 ylabel('Area (pix)'); 
113 linearRegression(X,A); 
114 
115 subplot(4,2,4) 
116 plot(X,O,'ko','LineWidth',4);  
117 set(gca,'XTick',xtick,'Ytick',-90:45:90); 
118 axis([1 X(end) -90 90]); 
119 ylabel('Rotation (deg)'); 
120 linearRegression(X,O); 
121 
122 subplot(4,2,6) 
123 plot(X,DX,'ko','LineWidth',4);  
124 set(gca,'XTick',xtick) 
125 axis([1 X(end) -DimX DimX]); 
126 ylabel('DX Centroid (pix)') 
127 linearRegression(X,DX); 
128 
129 subplot(4,2,8) 
130 plot(X,-DY,'ko','LineWidth',4);  
131 set(gca,'XTick',xtick) 
132 axis([1 X(end) -DimY DimY]); 
133 ylabel('DY Centroid (pix)'); 
134 linearRegression(X,-DY); 
135 
136 set(findall(h, '-property', 'FontSize'), 'FontSize', 11, 'fontWeight', 'bold') 
137 
138 % Write file to disk, if desired 
139 if ~isempty(filename) 
140     options.Format='eps2'; 
141     hgexport(h,[filename '.eps'],options); 
142     options.Format='tiff'; 
143     hgexport(h,[filename '.tif'],options); 
144 end 
145 
146
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
147 
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148 function linearRegression( X,Y ) 
149     p = polyfit(X,Y,1); 
150     yfit = polyval(p,X); 
151     yresid = Y - yfit; 
152     SSresid = sum(yresid.^2); 
153     SStotal = (length(Y)-1) *var(Y); 
154     Rsq = 1 - SSresid/SStotal;  
155     hold on; 
156     p = plot([X(1) X(end)],[yfit(1) yfit(end)],'r-','LineWidth',2); 
157     set(p,'Color',[0.25 0.25 0.25]); 
158     grid on; 
159 end 
160 
161
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
162 
163 end 

 
C.3.11 genCircleTest.m 
 
1  function [ I1, I2 ] = genCircleTest(R1,R2,t1,t2) 
2  % genCircleTest 
3  %  Generates a pair of binary images that are circular phantoms of specified  
4  %  radius and translation from the image center. 
5  %      
6  %    Input 
7  %    -------------------- 
8  %    R1,R2         Radii of  the circles in pixels 
9  %    t1,t2         1x2 vectors specifying the X and Y translations for 
10 %                  the circles. I.E.: t1 = [tx ty]. 
11 % 
12 %    Output 
13 %    -------------------- 
14 %    I1,I2         Output images  
15 % 
16 %    Example 
17 %    -------------------- 
18 %    [I1, I2] = genCircleTest(80,40,[20 10],[0 0]) 
19 if nargin < 4; t2 = [0 0]; end 
20 if nargin < 3; t1 = [0 0]; end 
21 if nargin < 2; error('Must specify at least two circle radii.'); end 
22 
23 % Calculate amount to pad each image based on input parameters 
24 Max_tx = max(abs([t1 t2])); 
25 Max_r  = max([R1 R2]); 
26 Pad = round((Max_tx + Max_r)/2); 
27 
28 % Initialize circles 
29 I1 = fspecial('disk',R1); I1 = (I1 > 0); 
30 I2 = fspecial('disk',R2); I2 = (I2 > 0); 
31 
32 % Make each image the same size by padding with zeros 
33 I1 = padarray(I1,[R2+Pad R2+Pad],0,'both'); 
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34 I2 = padarray(I2,[R1+Pad R1+Pad],0,'both'); 
35 
36 % Translate circles 
37 I1 = circTranslate(I1,t1(1),t1(2)); 
38 I2 = circTranslate(I2,t2(1),t2(2)); 
39 
40
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
41 
42 function Im_out = circTranslate( Im_in, dC, dR ) 
43     tx = maketform('affine',[1 0; 0 1; dC dR]); 
44     [SX SY] = size(Im_in); 
45     bounds = findbounds(tx,[1 1; size(Im_in)]); 
46     bounds(1,:) = [1 1]; 
47     Im_out = imtransform(Im_in,tx,'XData',bounds(:,2)','YData',bounds(:,1)'); 
48     Min = min([dC dR]); 
49     if Min < 0 
50         Im_out = padarray(Im_out,[abs(Min) abs(Min)],0,'post'); 
51     end 
52     Im_out = Im_out(1:SX,1:SY); 
53 end 
54 
55
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
56 
57 end 

 
C.3.12. genSquareTest.m 
 
1  function [ I1, I2 ] = genSquareTest(S1,S2,t1,t2,ang1,ang2) 
2  % genSquareTest 
3  %    Generates a pair of binary images that are square phantoms of  
4  %    specified size, XY rotation, and translation from the image center. 
5  %      
6  %    Input 
7  %    -------------------- 
8  %    S1,S2         Length of the squares in pixels. 
9  %    t1,t2         1x2 vectors specifying the X and Y translations for 
10 %                  the squares. I.E.: t1 = [tx ty]. 
11 %    ang1,ang2     Angle, in degrees, to rotate the squares about the XY 
12 %                  axis. 
13 % 
14 %    Output 
15 %    -------------------- 
16 %    I1,I2         Output images  
17 % 
18 %    Example 
19 %    -------------------- 
20 %    [I1, I2] = genSquareTest(80,40,[20 10],[0 0],0,30) 
21 % 
22 %    Dependencies 
23 %    -------------------- 
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24 %    Requires Jan Motl's rotateAround.m from the Mathworks File Exchange: 
25 %    http://www.mathworks.com/matlabcentral/fileexchange/40469-rotate-an-image-
about-a-point 
26 
27 if nargin < 6; ang2 = 0; end 
28 if nargin < 5; ang1 = 0; end 
29 if nargin < 4; t2 = [0 0]; end 
30 if nargin < 3; t1 = [0 0]; end 
31 if nargin < 2; error('Must specify at least two square sizes.'); end 
32 
33 % Calculate amount to pad each image based on input parameters 
34 Max_tx = max(abs([t1 t2])); 
35 Max_r  = max([S1 S2]); 
36 Pad = round((Max_tx + Max_r)); 
37 
38 % Initialize squares 
39 I1 = ones(S1,S1); 
40 I2 = ones(S2,S2); 
41 
42 % Make each image the same size by padding with zeros 
43 Max = abs(max([S1 S2])); 
44 
45 I1 = padarray(I1,[ceil((Max - S1)/2)+Pad ceil((Max - S1)/2)+Pad],0,'both'); 
46 I2 = padarray(I2,[ceil((Max - S2)/2)+Pad ceil((Max - S2)/2)+Pad],0,'both'); 
47 if mod((Max - S1),2) ~= 0; I2 = padarray(I2,[1 1],0,'post'); end 
48 if mod((Max - S2),2) ~= 0; I1 = padarray(I1,[1 1],0,'post'); end 
49 
50 % Translate squares 
51 I1 = sqTranslate(I1,t1(1),t1(2)); 
52 I2 = sqTranslate(I2,t2(1),t2(2)); 
53 
54 % Rotate squares. Rotation is performed about the centroid of each square 
55 % using rotateAround.m. 
56 RP_I1 = regionprops(I1,'Centroid'); 
57 RP_I2 = regionprops(I2,'Centroid'); 
58 I1 = rotateAround(I1,RP_I1.Centroid(2),RP_I1.Centroid(1),ang1); 
59 I2 = rotateAround(I2,RP_I2.Centroid(2),RP_I2.Centroid(1),ang2); 
60 
61
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
62 
63 function Im_out = sqTranslate( Im_in, dC, dR ) 
64     tx = maketform('affine',[1 0; 0 1; dC dR]); 
65     [SX SY] = size(Im_in); 
66     bounds = findbounds(tx,[1 1; size(Im_in)]); 
67     bounds(1,:) = [1 1]; 
68     Im_out = imtransform(Im_in,tx,'XData',bounds(:,2)','YData',bounds(:,1)'); 
69     Min = min([dC dR]); 
70     if Min < 0 
71         Im_out = padarray(Im_out,[abs(Min) abs(Min)],0,'post'); 
72     end 
73     Im_out = Im_out(1:SX,1:SY); 
74 end 
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75 
76
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
77 
78 end 

 
C.3.13. genArbitraryTest.m 
 
1   function [I1,I2] = genArbitraryTest( Im_string,scale1,scale2,t1,t2,ang1,ang2 ); 
2   % genArbitraryTest 
3   %    Takes a binary image as input, then creates two phantoms of this image 
4   %    that are scaled, translated, and rotated by the specified parameters. 
5   %      
6   %    Input 
7   %    -------------------- 
8   %    Im_string       String specifying the path of the binary image to be 
9   %                    loaded and made into phantoms. 
10  %    scale1,scale2   Factor by which to scale the two phantoms with respect 
11  %                    to the input image. 
12  %    t1,t2           1x2 vectors specifying the X and Y translations for 
13  %                    the phantoms. I.E.: t1 = [tx ty]. 
14  %    ang1,ang2       Angle, in degrees, to rotate the phantoms about the XY 
15  %                    axis. 
16  % 
17  %    Output 
18  %    -------------------- 
19  %    I1,I2         Output images  
20  % 
21  %    Example 
22  %    -------------------- 
23  %    [I1, I2] = genArbitraryTest('nucleus.0100.tif',1,0.5,[200 100],[0 0],0,30) 
24  % 
25  %    Dependencies 
26  %    -------------------- 
27  %    Requires Jan Motl's rotateAround.m from the Mathworks File Exchange: 
28  %    http://www.mathworks.com/matlabcentral/fileexchange/40469-rotate-an-image-
about-a-point 
29  
30  if nargin < 7; ang2 = 0; end 
31  if nargin < 6; ang1 = 0; end 
32  if nargin < 5; t2 = [0 0]; end 
33  if nargin < 4; t1 = [0 0]; end 
34  if nargin < 3; scale2 = 1; end 
35  if nargin < 2; scale1 = 1; end 
36  
37  Im = imread(Im_string); 
38  
39  % Crop input image to be tight around the binary blob 
40  RP = regionprops(Im,'BoundingBox'); 
41  BB = RP.BoundingBox; 
42  BB(1:2) = floor(BB(1:2)); 
43  BB(3:4) = ceil(BB(3:4)); 
44  Im = Im(BB(2):BB(2)+BB(4),BB(1):BB(1)+BB(3)); 
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45  
46  % Scale image 
47  I1 = imresize(Im,scale1); 
48  I2 = imresize(Im,scale2); 
49  
50  [Y1 X1] = size(I1); 
51  [Y2 X2] = size(I2); 
52  [MaxY IdxMaxY] = max([Y1 Y2]); 
53  [MaxX] = max([X1 X2]); 
54  
55  % Pad the smaller image to be the same size as the larger image, 
56  % post-scaling. 
57  if scale1 ~= scale2 & IdxMaxY == 1 
58      I2 = padarray(I2,[ceil((MaxY-Y2)/2) ceil((MaxX-X2)/2)],0,'both'); 
59      if mod((MaxY-Y2),2) == 1; I1 = padarray(I1,[1 0],0,'post'); end 
60      if mod((MaxX-X2),2) == 1; I1 = padarray(I1,[0 1],0,'post'); end 
61  elseif scale1 ~= scale2 & IdxMaxY == 2 
62      I1 = padarray(I1,[ceil((MaxY-Y1)/2) ceil((MaxX-X1)/2)],0,'both'); 
63      if mod((MaxY-Y1),2) == 1; I2 = padarray(I2,[1 0],0,'post'); end 
64      if mod((MaxX-X1),2) == 1; I2 = padarray(I2,[0 1],0,'post'); end 
65  end 
66  
67  % Pad again to account for translations 
68  Max = max([t1 t2]); 
69  I1 = padarray(I1,[Max+round(MaxY/2) Max+round(MaxX/2)],0,'both'); 
70  I2 = padarray(I2,[Max+round(MaxY/2) Max+round(MaxX/2)],0,'both'); 
71  
72  % Translate 
73  I1 = arbTranslate(I1,t1(1),t1(2)); 
74  I2 = arbTranslate(I2,t2(1),t2(2)); 
75  
76  % Rotate 
77  RP_I1 = regionprops(I1,'Centroid'); 
78  RP_I2 = regionprops(I2,'Centroid'); 
79  I1 = rotateAround(I1,RP_I1.Centroid(2),RP_I1.Centroid(1),ang1); 
80  I2 = rotateAround(I2,RP_I2.Centroid(2),RP_I2.Centroid(1),ang2); 
81  
82  figure; imshow(I1,[]) 
83  figure; imshow(I2,[]) 
84  
85 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
86  
87  function Im_out = arbTranslate( Im_in, dC, dR ) 
88      tx = maketform('affine',[1 0; 0 1; dC dR]); 
89      [SX SY] = size(Im_in); 
90      bounds = findbounds(tx,[1 1; size(Im_in)]); 
91      bounds(1,:) = [1 1]; 
92      Im_out = imtransform(Im_in,tx,'XData',bounds(:,2)','YData',bounds(:,1)'); 
93      Min = min([dC dR]); 
94      if Min < 0 
95          Im_out = padarray(Im_out,[abs(Min) abs(Min)],0,'post'); 
96      end 
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97      Im_out = Im_out(1:SX,1:SY); 
98  end 
99  
100
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
101 
102 end 

 
C.3.14. contourgen.sh 
 
1   #! /bin/bash 
2   
3   function show_help () { 
4   cat <<-END 
5   contourgen.sh 
6   Usage: 
7   ------ 
8       -i | --input (Directory name) 
9           Path to series of TIF files to be processed 
10       
11      -o | --output (Directory name) 
12          Path to store output model file to 
13  
14      -m | --mrc (MRC stack) 
15          Name of MRC stack to match to 
16  
17      -d | --del (Integer,Integer,Integer) 
18          Pixel size of MRC stack to match to (X,Y,Z) 
19  
20      -r | --org (Integer,Integer,Integer) 
21          Origin of MRC stack to match to (X,Y,Z)     
22  
23      -R | --point 
24          Tolerance for point shaving during model generation. 
25          R = [0,...,1]. Default value = 0. 
26  
27      -k | --sigma 
28          Smooth the data during model generation with a kernal filter 
29          whose Gaussian sigma is given by this value. Defaule value = 0. 
30  
31      -h | --help 
32          Display this help 
33  END 
34  } 
35  
36  while :; do 
37      case $1 in 
38          -h|--help) 
39              show_help 
40              exit 
41              ;; 
42          -i|--input) 
43              path_in=$2 
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44              shift 2 
45              continue 
46              ;; 
47          -o|--output) 
48              path_out=$2 
49              shift 2 
50              continue 
51              ;; 
52          -m|--mrc) 
53              mrc_stack=$2 
54              shift 2 
55              continue 
56              ;; 
57          -d|--del) 
58              del=$2 
59              shift 2 
60              continue 
61              ;; 
62          -r|--org) 
63              org=$2 
64              shift 2 
65              continue 
66              ;; 
67          -R|--point) 
68              pointred=$2 
69              shift 2 
70              continue 
71              ;; 
72          -k|--sigma) 
73              sigma=$2 
74              shift 2 
75              continue 
76              ;; 
77          *) 
78              break 
79      esac 
80      shift 
81  done 
82  
83  #Check for problems with input. Print help and exit if not correct 
84  if [[ ! $path_in ]] || [[ ! $path_out ]]; then 
85      printf 'ERROR: options -i and -o must be specified\n\n' >&2 
86      show_help 
87      exit 1 
88  fi 
89  
90  if [[ -n $mrc_stack ]] && [[ -n $del ]]; then 
91      printf 'ERROR: Use either the -m option OR the -d and -r options\n\n' >&2 
92      show_help 
93      exit 1 
94  elif [[ -n $mrc_stack ]] && [[ -n $org ]]; then 
95      printf 'ERROR: Use either the -m option OR the -d and -r options\n\n' >&2 
96      show_help 
97      exit 1 



297 

 

98  elif [[ ! $mrc_stack ]] && [[ ! $del ]] && [[ -n $org ]]; then 
99      printf 'ERROR: options -d and -r must both be specified\n\n' >&2 
100     show_help 
101     exit 1 
102 elif [[ ! $mrc_stack ]] && [[ -n $del ]] && [[ ! $org ]]; then 
103     printf 'ERROR: options -d and -r must both be specified\n\n' >&2 
104     show_help 
105     exit 1 
106 fi 
107 
108 source /home/aperez/.bashrc #Source IMOD 
109 
110 #Make output directory if necessary and make temporary subdirectories 
111 if [[ ! -d $path_out ]]; then mkdir ${path_out}; fi 
112 mkdir ${path_out}/log ${path_out}/mod ${path_out}/ncont ${path_out}/txt 
113 
114 Nslices=`ls ${path_in}/*.tif | wc -l` #Determine number of images 
115 
116 #If the original mrc stack is supplied, extract the pixel spacing and origin information 
117 #from the header of that file. If not, use the user-supplied values. These values are  
118 #critical to ensure the output model file aligns properly with the original mrc stack. 
119 if [[ -n $mrc_stack ]]; then 
120     del=`${IMOD_DIR}/bin/header -pixel $mrc_stack | tr -s ' '`  
121     org=`${IMOD_DIR}/bin/header -origin $mrc_stack | tr -s ' '` 
122 else 
123     del=`echo $del | tr ',' ' '` #Replace commas with spaces 
124     org=`echo $org | tr ',' ' '` 
125 fi 
126 
127 #Turn off point reduction and smoothing (i.e., set their values to zero) if they are not 
specified 
128 if [[ ! $pointred ]]; then pointred=0; fi 
129 if [[ ! $sigma ]]; then sigma=0; fi 
130 
131 #(1) Submit tif2mod2D.q as an array job to convert TIFS to model files.  
132 qsub -t 1-${Nslices} -v 
path_in=${path_in},path_out=${path_out},del="${del}",org="${org}",pointred=${pointred},sigma=${
sigma} -o ${path_out}/log tif2mod2D.q 
133 
134 #(2) Submit mod2point2D.q as an array job to convert model files to text files containing 
point listings. 
135 qsub -hold_jid tif2mod -t 1-${Nslices} -v 
path_mod=${path_out}/mod,path_txt=${path_out}/ncont,path_out=${path_out}/txt -o 
${path_out}/log mod2point2D.q 
136 
137 #(3) Submit point2mod3D.q to append all point listings to a single text file, and then 
generate a model from this using point2model. 
138 qsub -hold_jid mod2point -v path_out=${path_out},del="${del}",org="${org}" -o 
${path_out}/log point2mod3D.q 
 

C.3.15. tif2mod2D.q 
 
1  #! /bin/bash 
2  
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3  # tif2mod2D.q 
4  #    SGE script to convert a single binary image to a single model file. The output model 
file  
5  #    consists of a single object with individual contours drawn around each 2D connected 
component.  
6  #    The steps involved are: 
7  #        (1) Convert the TIF file to a 2D mrc file 
8  #        (2) Alter the header information of the 2D mrc file to match that of the original stack 
9  #        (3) Generate contours around 2d connected components using user-specified 
values for 
10 #            point reduction (-R) and Gaussian smoothing (-k). 
11 #        (4) Translate the model file in Z so it sits in the correct depth of the stack. 
12 #        (5) Convert the IMOD model file binary format to ASCII, and parse this output to 
determine 
13 #            the number of contours on this slice. Store this value to a text file, which will be 
14 #            used in future processing. 
15 #        (6) Clean up intermediates. 
16 # 
17 #    The next script to be run in the workflow is mod2point2D.q 
18 # 
19 #    INPUT 
20 #    -------------------- 
21 #    path_in     Path containing the segmented TIF images to process 
22 #    path_out    Output path to write model files to 
23 #    del         Pixel spacing of the original mrc file, delimited by spaces,  in the format "X Y 
Z" 
24 #    org         Origin of the original mrc file, delimited by spaces,  in the format "X Y Z" 
25 #    pointred    Value for point reduction during contour generation 
26 #    sigma       Value for Gaussian smoothing during contour generation 
27 # 
28 
29 #$ -S /bin/bash 
30 #$ -N tif2mod 
31 #$ -j yes 
32 #$ -m eas 
33 #$ -M alexjperez@outlook.com 
34 #$ -l h_vmem=1G 
35 #$ -cwd 
36 #$ -V 
37 
38 source /home/aperez/.bashrc #Source IMOD 
39 
40 file_in=`ls ${path_in}/*.tif | sed -n ''${SGE_TASK_ID}'p'` #Determine which image to work 
with 
41 base=`basename $file_in` 
42 base=${base%.*} 
43 
44 #STEP (1) 
45 ${IMOD_DIR}/bin/tif2mrc $file_in ${path_out}/mod/${base}.mrc 
46 
47 #STEP (2) 
48 echo -e "${path_out}/mod/${base}.mrc\ndel\n${del}\norg\n${org}\ndone\n" | 
${IMOD_DIR}/bin/alterheader 
49 
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50 #STEP (3) 
51 ${IMOD_DIR}/bin/imodauto -h 1 -R $pointred -k $sigma ${path_out}/mod/${base}.mrc 
${path_out}/mod/${base}.mod 
52 
53 #STEP (4) 
54 ${IMOD_DIR}/bin/imodtrans -tz $((SGE_TASK_ID-1)) ${path_out}/mod/${base}.mod 
${path_out}/mod/${base}.mod 
55 
56 #STEP (5) 
57 ${IMOD_DIR}/bin/imodinfo -a ${path_out}/mod/${base}.mod | grep -m 1 'object 0*' | cut -d 
' ' -f3 >> ${path_out}/ncont/${base}.txt 
58 
59 #STEP (6) 
60 rm -rf ${path_out}/mod/${base}.mrc ${path_out}/mod/${base}.mod~ 
 

C.3.16. mod2point2D.q 
 
1  #! /bin/bash 
2  
3  # mod2point2D.q 
4  #    SGE script to submit array jobs converting 2D model files to point listings compatible  
5  #    with the IMOD program point2model. Conversion is done using MATLAB, and is 
dependent on  
6  #    the MatTomo package of MATLAB scripts from IMOD. 
7  # 
8  #    INPUT 
9  #    -------------------- 
10 #    path_mod    Path containing the model files to process 
11 #    path_txt    Path containing the contour listings output from tif2mod2D.q 
12 #    path_out    Output path to write point listing text files to 
13 # 
14 
15 #$ -S /bin/bash 
16 #$ -N mod2point 
17 #$ -j yes 
18 #$ -m eas 
19 #$ -M alexjperez@outlook.com 
20 #$ -l h_vmem=5G 
21 #$ -cwd 
22 #$ -V 
24 matlab -nodisplay -nosplash -r 
"mod2point2D('"${path_mod}"','"${path_txt}"','"${path_out}"',${SGE_TASK_ID})"; 
 

C.3.17. mod2point2D.m 
 
1  function mod2point2D( path_models, path_txts, path_out, N ) 
2  % Converts an IMOD model file to a text file where each line corresponds to 
3  % one point of the model file. Each line consists of five numbers, arranged 
4  % as such: Object, Contour, X, Y, Z 
5  %     
6  % The starting contour is determined by parsing the text files output from  
7  % tif2mod2D.q.  
8  % 
9  %    INPUT 
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10 %    -------------------- 
11 %    path_models    Path containing the input IMOD model files 
12 %    path_txts      Path containing the text files of contour listings  
13 %                   generated by tif2mod2D.q 
14 %    path_out       Output path to write text files to 
15 %    N              Model number within path_models to process 
16 % 
17 %    DEPENDENCIES 
18 %    -------------------- 
19 %    The MatTomo package of PEET is needed: 
20 %    http://bio3d.colorado.edu/imod/matlab.html 
21 % 
22 %    EXAMPLE 
23 %    -------------------- 
24 %    mod2point2D('out/mod','out/ncont','out/txt',100); 
25 % 
26 
27 path_mattomo = '/data/aperez/mfiles/MatTomo'; %Path containing MatTomo 
28 addpath(genpath(path_mattomo)); 
29 
30 tic; 
31 models = dir(fullfile(path_models,'*.mod')); 
32 txts = dir(fullfile(path_txts,'*.txt')); 
33 
34 %Determine the starting contour number by reading and summing all contour 
35 %listings before the current value of N 
36 C = 1; 
37 for i = 1:N-1 
38     C = C + load(fullfile(path_txts,txts(i).name)); 
39 end 
40 
41 filei = fullfile(path_models,models(N).name); %Name of model file 
42 modi = ImodModel(filei); %Read model file to MATLAB 
43 obji = getObject(modi,1); %Get first object (should be the only object) 
44 Ncont = getNContours(obji); %Determine the total number of contours 
45 text_out = fullfile(path_out,['test_' sprintf('%03d',N) '.txt']); 
46 fprintf('Processing model %s\n',filei); 
47 fprintf('Model %s has %d contours.\n',filei,Ncont); 
48 for j = 1:Ncont %Loop over all contours 
49     contj = getContour(obji,j); %Read contour 
50     points = getPoints(contj)'; %Extract contour's points to a matrix 
51     [NR,NC] = size(points); 
52     points2write = zeros(NR,NC+2); %Generate a new matrix to add obj and cont listings 
53     points2write(:,1) = 1; %All contours will belong to object 1 
54     points2write(:,2) = C; %Second value is the contour number 
55     points2write(:,3:5) = points; 
56     %Append to the text file. The space delimiter is required by point2model. A high 
57     %precision is required because if the contour number exceeds this number of digits, 
58     %dlmwrite will output it in scientific notation, which point2model cannot understand. 
59     %A precision of 9 means the file can have one billion contours before this limit is 
60     %exceeded. 
61     dlmwrite(text_out,points2write,'delimiter',' ','-append','precision',9); 
62     C = C + 1; 
63 end 
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64 
65 fprintf('Elapsed time: %0.2f seconds\n',toc); 
66 
67 end 
 

C.3.18. point2mod3D.q 
 
1  #! /bin/bash 
2  
3  # point2mod3D.q 
4  #    Takes a directory of text files containing point listings for each 2D slice, appends 
5  #    them to one single file, and generates contours using this file as input to the IMOD 
6  #    program point2model. 
7  # 
8  #    INPUT 
9  #    -------------------- 
10 #    path_out    Output path 
11 #    del         Pixel spacing of the original mrc file, delimited by spaces,  in the format "X Y 
Z" 
12 #    org         Origin of the original mrc file, delimited by spaces,  in the format "X Y Z" 
13 # 
14 
15 #$ -S /bin/bash 
16 #$ -N point2mod 
17 #$ -j yes 
18 #$ -m eas 
19 #$ -M alexjperez@outlook.com 
20 #$ -l h_vmem=5G 
21 #$ -cwd 
22 #$ -V 
23 
24 source /home/aperez/.bashrc #Source IMOD 
25 
26 del=`echo $del | tr -s ' ' ','` #Replace space delimiter with commas 
27 org=`echo $org | tr -s ' ' ','` 
28 
29 rm -rf ${path_out}/mod ${path_out}/ncont #Remove intermediates 
30 
31 for file in ${path_out}/txt/*.txt; do #Append individual point listing files to one file 
32     cat $file >> ${path_out}/out.txt 
33 done 
34 
35 #Generate a model file from the complete point listing 
36 point2model -pixel ${del} -origin ${org} ${path_out}/out.txt ${path_out}/out.mod 
37 
38 rm -rf ${path_out}/out.txt ${path_out}/txt 
 

C.3.19. sbem_analyze_nuclei.sh 
 
1   #! /bin/bash 
2   
3   function show_help () { 
4   cat <<-END 
5   
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6   sbem_analyze_nuclei.sh 
7   Usage: 
8   ------ 
9      -h | --help 
10         Display this help 
11     -i | --input 
12         IMOD model file containing objects of interest 
13     -c1  
14         Color string for nuclei, in the format R,G,B (i.e., 1,1,0) 
15     -c2 
16         Color string for nucleoli, in the format R,G,B (i.e., 0,1,1) 
17  Example: 
18  -------- 
19  ./sbem_analyze_nuclei_nucleoli.sh -i ZT04_01_join.mod -c1 1,1,0 -c2 0,0,1 
20  
21  END 
22  } 
23  
24  function scientific_to_bc () { 
25      base=`echo ${1} | cut -d 'e' -f1 | bc` 
26      exp=`echo ${1} | cut -d '+' -f2 | bc` 
27      echo "${base}*10^${exp}"     
28  } 
29  
30  ########## 
31  ## (0) Parse input arguments 
32  ########## 
33  
34  while :; do 
35      case $1 in 
36          -h|--help) 
37       show_help 
38       exit 
39       ;; 
40   -i|--input) 
41       file=$2 
42       shift 2 
43              continue 
44       ;; 
45   -c1) 
46       c1=$2 
47       shift 2 
48       continue 
49       ;; 
50   -c2) 
51       c2=$2 
52       shift 2 
53       continue 
54       ;; 
55   *) 
56       break 
57      esac 
58      shift 
59  done 
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60  
61  if [ ! "$file" ] | [ ! "$c1" ] | [ ! "$c2" ]; then 
62      echo 'ERROR: options -i, -c1, and -c2 must be specified. See -help' >&2 
63      exit 1 
64  fi 
65  
66  ########## 
67  ## (1) Group nuclei with their corresponding nucleoli. This is done by taking the bounding 
box of each nucleus and 
68  ##     finding the centroids of nucleoli that lie within this bounding box. 
69  ########## 
70  
71  #Determine zscale of the model 
72  zscale=`imodinfo -a $file | grep -m 1 'scale' | cut -d ' ' -f4` 
73  
74  #Decompose color strings 
75  for i in 1 2 3; do 
76      cnuc[${i}]=`echo $c1 | cut -d ',' -f${i}` 
77      cnucl[${i}]=`echo $c2 | cut -d ',' -f${i}` 
78  done 
79  
80  #Parse IMOD model file for objects matching nuclear color and separate them into a new 
model file 
81  imodinfo -a $file | grep -B2 "color ${cnuc[1]} ${cnuc[2]} ${cnuc[3]}" | awk -F '\n' 'ln ~ /^$/ { 
ln = "matched"; print $1 } $1 ~ /^--$/ { ln = "" }' | cut -d ' ' -f2 >> sann_nuc.txt 
82  Nnuc=`cat sann_nuc.txt | wc -l` 
83  str_nuc="" 
84  while read line; do 
85      str_nuc=${str_nuc}$((line+1)), 
86  done < sann_nuc.txt 
87  str_nuc=${str_nuc%?} 
88  rm -rf sann_nuc.txt 
89  imodextract $str_nuc $file ${file}_nuclei 
90  
91  #Parse IMOD model file for objects matching nucleolar color and separate them into a 
new model file 
92  imodinfo -a $file | grep -B2 "color ${cnucl[1]} ${cnucl[2]} ${cnucl[3]}" | awk -F '\n' 'ln ~ /^$/ { 
ln = "matched"; print $1 } $1 ~ /^--$/ { ln = "" }' | cut -d ' ' -f2 >> sann_nucl.txt 
93  Nnucl=`cat sann_nucl.txt | wc -l` 
94  str_nucl="" 
95  while read line; do 
96      str_nucl=${str_nucl}$((line+1)), 
97  done < sann_nucl.txt 
98  str_nucl=${str_nucl%?} 
99  rm -rf sann_nucl.txt 
100 imodextract $str_nucl $file ${file}_nucleoli 
101 
102 #Create a temporary text file with the centroids of each nucleolus 
103 for ((i=1;i<=${Nnucl};i+=1)); do 
104     strcent=`imodinfo -o $i -F ${file}_nucleoli | grep 'Center' | tr -s ' ' | cut -d '(' -f2 | cut -d ')' 
-f1` 
105     xcent=`echo $strcent | cut -d ',' -f1` 
106     ycent=`echo $strcent | cut -d ',' -f2` 
107     zcent=`echo $strcent | cut -d ',' -f3` 
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108     zcent=`echo "$zcent / $zscale" | bc` 
109     xcent=`echo "($xcent+0.5)/1" | bc` 
110     ycent=`echo "($ycent+0.5)/1" | bc` 
111     zcent=`echo "($zcent+0.5)/1" | bc` 
112     echo $xcent $ycent $zcent >> sann_cent.txt 
113 done 
114 
115 #Find nucleoli that belong to each nucleus 
116 for ((i=1;i<=${Nnuc};i+=1)); do  
117     strbb=`imodinfo -o $i -F ${file}_nuclei | grep 'Bounding Box' | cut -d '{' -f2 | cut -d '}' -f1` 
118     strcent=`imodinfo -o $i -F ${file}_nuclei | grep 'Center' | tr -s ' ' | cut -d '(' -f2 | cut -d ')' -
f1` 
119     xcentnuc=`echo $strcent | cut -d ',' -f1` 
120     ycentnuc=`echo $strcent | cut -d ',' -f2` 
121     zcentnuc=`echo $strcent | cut -d ',' -f3` 
122     zcentnuc=`echo "$zcentnuc / $zscale" | bc` 
123     xmin=`echo $strbb | cut -d ',' -f1 | cut -d '(' -f2` 
124     ymin=`echo $strbb | cut -d ',' -f2` 
125     zmin=`echo $strbb | cut -d ',' -f3 | cut -d ')' -f1` 
126     xmax=`echo $strbb | cut -d ',' -f4 | cut -d '(' -f2` 
127     ymax=`echo $strbb | cut -d ',' -f5` 
128     zmax=`echo $strbb | cut -d ',' -f6 | cut -d ')' -f1` 
129     xcentnuc=`echo "($xcentnuc+0.5)/1" | bc` 
130     ycentnuc=`echo "($ycentnuc+0.5)/1" | bc` 
131     zcentnuc=`echo "($zcentnuc+0.5)/1" | bc`   
132     xmin=`echo "($xmin+0.5)/1" | bc` 
133     ymin=`echo "($ymin+0.5)/1" | bc` 
134     zmin=`echo "($zmin+0.5)/1" | bc` 
135     xmax=`echo "($xmax+0.5)/1" | bc` 
136     ymax=`echo "($ymax+0.5)/1" | bc` 
137     zmax=`echo "($zmax+0.5)/1" | bc` 
138     printf "Nucleus #%d: %d,%d,%d %d,%d,%d\n" $i $xmin $ymin $zmin $xmax $ymax 
$zmax 
139     strkeep="" 
140     count=1 
141     for ((j=1;j<=${Nnucl};j+=1)); do 
142         xcent=`sed ''$j'q;d' sann_cent.txt | cut -d ' ' -f1` 
143  ycent=`sed ''$j'q;d' sann_cent.txt | cut -d ' ' -f2` 
144  zcent=`sed ''$j'q;d' sann_cent.txt | cut -d ' ' -f3` 
145  if (($xcent < $xmax)) && (($xcent > $xmin)) && (($ycent < $ymax)) && (($ycent > 
$ymin)) && (($zcent < $zmax)) && (($zcent > $zmin)); then 
146             printf "    Nucleolus #%d: %d,%d,%d\n" $j $xcent $ycent $zcent 
147      echo $count $xcentnuc $ycentnuc $zcentnuc >> sann_cent_nucl.txt 
148      echo $count $xcent $ycent $zcent >> sann_cent_nucl.txt 
149      strkeep=${strkeep}${j}, 
150      count=$((count+1)) 
151  fi 
152     done 
153     strkeep=${strkeep%?} 
154     filei=nucleus_`printf "%03d" $i`.mod 
155     imodextract $i ${file}_nuclei tempnucleus.mod 
156     imodextract $strkeep ${file}_nucleoli tempnucleoli.mod 
157     point2model -input sann_cent_nucl.txt -output sann_cent_nucl.mod -circle 6 -sphere 
20 -color 255,0,0 > /dev/null 
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158     imodjoin tempnucleus.mod tempnucleoli.mod sann_cent_nucl.mod $filei > /dev/null 
159     rm -rf tempnucleus.mod tempnucleoli.mod sann_cent_nucl* 
160 done 
161 rm -rf sann_cent.txt 
162 
163 ########## 
164 ## (2) Volume and surface area measurements 
165 ########## 
166 
167 for ((i=1;i<=${Nnuc};i+=1)); do  
168     filei=nucleus_`printf "%03d" $i`.mod 
169     Nobj=`imodinfo -a $filei | grep -m 1 '^imod' | cut -d ' ' -f2` 
170     echo $((Nobj-2)) >> sann_sort.txt     
171 done 
172 maxnucl=`sort -r sann_sort.txt | head -1` 
173 
174 for ((i=1;i<=${Nnuc};i+=1)); do 
175     printf "Analyzing morphology for Nucleus #%d\n" $i 
176     filei=nucleus_`printf "%03d" $i`.mod 
177     Nobj=`imodinfo -a $filei | grep -m 1 '^imod' | cut -d ' ' -f2` 
178     imodmesh -e $filei $filei > /dev/null 
179     imodmesh -C -T -P 100 -l $filei $filei > /dev/null 
180     strvol=`imodinfo -c -o 1 $filei | grep "#--" -A1 | tail -1 | tr -s ' '`  
181     volnuc=`echo $strvol | cut -d ' ' -f4` 
182     sanuc=`echo $strvol | cut -d ' ' -f5` 
183     volnuc_bc=`scientific_to_bc $volnuc` 
184     sanuc_bc=`scientific_to_bc $sanuc` 
185     volnuc_um=`echo "scale=4; $volnuc_bc / 1000^3" | bc` 
186     sanuc_um=`echo "scale=4; $sanuc_bc / 1000^2" | bc` 
187     savratio=`echo "scale=4; $sanuc_um / $volnuc_um" | bc` 
188     echo $volnuc_um $sanuc_um $savratio >> nucleus_morphology.txt 
189     printf "%d " $((Nobj-2)) >> nucleolus_morphology.txt 
190     sumvolnucl=0 
191     for ((j=2;j<=$((maxnucl+1));j+=1)); do 
192         if (( $j <= $((Nobj-1)) )); then  
193             strvol=`imodinfo -c -o $j $filei | grep "#--" -A1 | tail -1 | tr -s ' ' ` 
194             volnuclj=`echo $strvol | cut -d ' ' -f4` 
195      volnuclj_bc=`scientific_to_bc $volnuclj` 
196      volnuclj_um=`echo "scale=4; $volnuclj_bc / 1000^3" | bc` 
197      sumvolnucl=`echo "$sumvolnucl + $volnuclj_um" | bc` 
198      printf "%0.4f " $volnuclj_um >> nucleolus_morphology.txt 
199  else 
200             printf "0 " >> nucleolus_morphology.txt 
201  fi 
202     done 
203     nuclvolfrac=`echo "scale=4; $sumvolnucl / $volnuc_um" | bc` 
204     printf "%0.6f %0.4f\n" $sumvolnucl $nuclvolfrac >> nucleolus_morphology.txt 
205 done 
206 
207 ########## 
208 ## (3) Distance to centroid measurements 
209 ########## 
210 
211 for ((i=1;i<=${Nnuc};i+=1)); do 
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212     printf "Analyzing centroid distances for Nucleus #%d\n" $i 
213     filei=nucleus_`printf "%03d" $i`.mod 
214     Nobj=`imodinfo -a $filei | grep -m 1 '^imod' | cut -d ' ' -f2` 
215     Nnucli=$((Nobj-2)) 
216     for ((j=1;j<=${Nnucli};j+=1)); do 
217         dist=`imodinfo -l -o $Nobj $filei | grep '#--' -A${Nnucli} | sed -n ''$((j+1))'p' | tr -s ' ' | 
cut -d ' ' -f5` 
218  dist_um=`echo "scale=4; $dist / 1000" | bc` 
219  printf "%0.4f " $dist_um >> dist_centroid.txt 
220     done 
221     printf "\n" >> dist_centroid.txt 
222 done 
223 
224 ########## 
225 ##  (4) Distance to nuclear envelope measurements 
226 ########## 
227 
228 for ((i=1;i<=${Nnuc};i+=1)); do 
229     printf "Analyzing nuclear envelope distances for Nucleus #%d\n" $i 
230     filei=nucleus_`printf "%03d" $i`.mod 
231     Nobj=`imodinfo -a $filei | grep -m 1 '^imod' | cut -d ' ' -f2` 
232     Nnucli=$((Nobj-2)) 
233     strobj=`seq -s ',' 2 $((Nnucli+1))`  
234     
strmtk="\n\n1\n0\n${filei}\n\n\n0,0\n0.05,200\n0\n2,0\n1\n0\n1\n${strobj}\n1\n17\n0,5\n0.5,20\n0\n
0\n21\n${filei}\n\n25\n" 
235     echo $Nobj 
236     echo $Nnucli 
237     echo $strobj 
238     echo $strmtk 
239     echo -e $strmtk | mtk > /dev/null 
240     for ((j=1;j<=${Nnucli};j+=1)); do 
241         dist=`imodinfo -l -o $((Nobj+1)) $filei | grep '#--' -A${Nnucli} | sed -n ''$((j+1))'p' | tr -s 
' ' | cut -d ' ' -f5` 
242  dist_um=`echo "scale=4; $dist / 1000" | bc` 
243  printf "%0.4f " $dist_um >> dist_nuclear_envelope.txt 
244     done 
245     printf "\n" >> dist_nuclear_envelope.txt 
246 done 
247 
248 
249 #cleanup 
250 #rm -rf nucleus_???.mod* 
 

C.3.20. sbem_convexHull.sh 
 
1  #! /bin/bash 
2  
3  #=#=#=#=#=#=#=#=#=# 
4  # 
5  # sbem_convexHull.sh 
6  # 
7  # Arguments: -i STRING       Name of input model file to generate convex hull model file 
for  
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8  #            -s STRING       Name of MRC stack that input model is derived from 
9  # 
10 # Example: sbem_convexHull -i SCN-
VL_WT_LD_ZT04_001_nucleus_003_2Dbin4_tc.subv -s ../../reconstruction/subv_nuclei/SCN-
VL_WT_LD_ZT04_001_nucleus_003_2Dbin4.mrc 
11 # 
12 #=#=#=#=#=#=#=#=#=# 
13 
14 # Parse command line arguments 
15 while getopts i:s: option 
16 do 
17     case "${option}" 
18         in 
19             i) INPUT=${OPTARG};; 
20      s) MRC_stack=${OPTARG};; 
21     esac 
22 done 
23 
24 BASENAME=`echo ${INPUT/.*/}` 
25 
26 mkdir temp_ch_mask 
27 echo "Generating binary mask..." 
28 imodmop -mask 1 ${INPUT} ${MRC_stack} ./temp_ch_mask/mask.mrc #Generate binary 
mask 
29 echo "Converting binary mask to a TIFF series..." 
30 mrc2tif ./temp_ch_mask/mask.mrc ./temp_ch_mask/mask #Convert binary mask to a 
series of TIF files 
31 
32 cd temp_ch_mask 
33 N_tifs=`ls mask*.tif | wc -l` 
34 echo "Computing the convex hull..." 
35 cp /home/aperez/mfiles/sbem_convexHull.m . 
36 grep -rl 'N_images=;' sbem_convexHull.m | xargs sed -i 
's|N_images=;|N_images='${N_tifs}';|g' 
37 matlab -nojvm -nosplash -nodesktop -nodisplay -r sbem_convexHull 
38 
39 echo "Converting to IMOD format..." 
40 mv temp_ch_points.txt .. 
41 cd .. 
42 point2model -image ${MRC_stack} -color 255,0,0 temp_ch_points.txt 
${BASENAME}_convexHull.subv 
43 imodjoin ${INPUT} ${BASENAME}_convexHull.subv 
${BASENAME}_convexHullJoin.subv 
44 rm -rf temp_ch* *_convexHull.subv~ 
 

C.3.21. sbem_convexHull.m 
 
1  N_images=; 
2  N_images=N_images-1; 
3  
4  fid=fopen('temp_ch_points.txt','w'); 
5  C=1; 
6  for N=0:N_images 
7      N_str=sprintf('%0*d',3,N); 
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8      INPUT=['mask.' N_str '.tif']; 
9      fprintf('Computing convex hull for Z=%s...\n',num2str(N)); 
10     I=imread(sprintf('%s',INPUT)); 
11     I=imrotate(I,-90); 
12     OUTPUT=zeros(size(I)); 
13     ONES=find(I == 1); 
14     if numel(ONES) > 3 
15         [X,Y]=ind2sub(size(I),ONES); 
16         DT=DelaunayTri(X,Y); 
17         CH=convexHull(DT); 
18         X_CH=DT.X(CH,1); 
19         Y_CH=DT.X(CH,2); 
20         Y_max=size(I,1); 
21         Y_CH_imod=Y_CH; 
22         P=[X_CH Y_CH_imod N*ones(size(X_CH))]; 
23         for i=1:size(P,1) 
24             fprintf(fid,'%g %f %f %g\n',C,P(i,1),P(i,2),P(i,3)); 
25         end 
26         C=C+1; 
27     end 
28 end 
29 fclose(fid); 
30 exit; 
 
 

C.3.22. totalCurvature.sh 
 
1   #! /bin/bash 
2   
3   #=#=#=#=#=#=#=#=#=# 
4   # 
5   # totalCurvature.sh 
6   # 
7   # Arguments: -i STRING       Name of subvolume being analyzed 
8   # 
9   # Example: sbem_totalCurvature -i SCN-
VL_WT_LD_ZT04_001_nucleus_008_2Dbin4.subv 
10  # 
11  #=#=#=#=#=#=#=#=#=# 
12  
13  # Parse command line arguments 
14  while getopts i: option 
15  do 
16      case "${option}" 
17          in 
18       i) INPUT_mod=${OPTARG};; 
19      esac 
20  done 
21  
22  if [ ! -d ../sbem_totalCurvature ]; then mkdir ../sbem_totalCurvature; fi 
23  
24  BASENAME=`echo ${INPUT_mod/.*/}` #Extract basename 
25  
26  echo ${INPUT_mod} 
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27  echo "Converting to VRML format..." 
28  
29  cp ${INPUT_mod} .. 
30  cd .. 
31  cp sbem_convexHull/${BASENAME}_convexHull.subv . 
32  imod2vrml2 -l ${INPUT_mod} ${BASENAME}.wml > /dev/null 
33  imod2vrml2 -l ${BASENAME}_convexHull.subv ${BASENAME}_convexHull.wml > 
/dev/null 
34  rm -rf ${INPUT_mod} ${BASENAME}_convexHull.subv 
35  
36  # Create Amira network file 
37  echo "Generating recomputed meshes and curvature vector/scalar fields and creating 
movies..." 
38  cp /home/aperez/amira_scripts/totalCurvature_withMovies.hx 
./sbem_totalCurvature/${BASENAME}_curvature.hx 
39  grep -rl 'BASENAME' ./sbem_totalCurvature/${BASENAME}_curvature.hx | xargs sed -i 
's|BASENAME|'${BASENAME}'|g' 
40  cd sbem_totalCurvature 
41  mkdir tif_Curvedness tif_GaussCurvature tif_MaxCurvature tif_MeanCurvature 
tif_ShapeIndex tif_MinCurvature tif_BendingEnergy tif_EulerCharacteristic 
42  
43  /ncmir/local.linux.amd64/Amira-5.4/bin/start ${BASENAME}_curvature.hx 
44  
45  N=`sed -n '4p' ${BASENAME}_remeshed.inp | cut -d ' ' -f1` #Extract number of vertices 
(N) 
46  M=`sed -n '4p' ${BASENAME}_remeshed.inp | cut -d ' ' -f2` #Extract number of faces (M) 
47  N_sphere=`sed -n '4p' ${BASENAME}_sphere_remeshed.inp | cut -d ' ' -f1` 
48  M_sphere=`sed -n '4p' ${BASENAME}_sphere_remeshed.inp | cut -d ' ' -f2` 
49  echo "N vertices nucleus: ${N}" 
50  echo "N faces nucleus:    ${M}" 
51  echo "N vertices sphere:  ${N_sphere}" 
52  echo "N faces sphere:     ${M_sphere}" 
53  
54  # Create animated GIFs from output 
55  for file in tif_*/*.tif; do convert ${file} ${file%.tif}.gif; done 
56  gifsicle -l --colors 256 ./tif_Curvedness/*.gif > ${BASENAME}_Curvedness.gif 
57  gifsicle -l --colors 256 ./tif_GaussCurvature/*.gif > ${BASENAME}_GaussCurvature.gif 
58  gifsicle -l --colors 256 ./tif_MaxCurvature/*.gif > ${BASENAME}_MaxCurvature.gif 
59  gifsicle -l --colors 256 ./tif_MeanCurvature/*.gif > ${BASENAME}_MeanCurvature.gif 
60  gifsicle -l --colors 256 ./tif_ShapeIndex/*.gif > ${BASENAME}_ShapeIndex.gif 
61  gifsicle -l --colors 256 ./tif_MinCurvature/*.gif > ${BASENAME}_MinCurvature.gif 
62  gifsicle -l --colors 256 ./tif_BendingEnergy/*.gif > ${BASENAME}_BendingEnergy.gif 
63  gifsicle -l --colors 256 ./tif_EulerCharacteristic/*.gif > 
${BASENAME}_EulerCharacteristic.gif 
64  rm -rf tif_Curvedness tif_GaussCurvature tif_MaxCurvature tif_MeanCurvature 
tif_ShapeIndex tif_MinCurvature tif_BendingEnergy tif_EulerCharacteristic 
65  
66  echo "Formatting output..." 
67  grep -v 'tri' ${BASENAME}_remeshed.inp >> temp_tc_verts.txt #Extract coordinates of 
vertices by matching everything without tri 
68  grep -i 'tri' ${BASENAME}_remeshed.inp >> temp_tc_tris.txt #Extract vertex identifiers for 
each trinagle by matching everything with tri 
69  grep -v 'tri' ${BASENAME}_sphere_remeshed.inp >> temp_tc_sphere_verts.txt 
70  grep -i 'tri' ${BASENAME}_sphere_remeshed.inp >> temp_tc_sphere_tris.txt 
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71  
72  N_lines=`cat temp_tc_verts.txt | wc -l` 
73  N_lines_sphere=`cat temp_tc_sphere_verts.txt | wc -l` 
74  sed -n '5,'${N_lines}'p' temp_tc_verts.txt >> temp_tc_verts2.txt #Remove AVS UCD 
format header information 
75  sed -n '5,'${N_lines_sphere}'p' temp_tc_sphere_verts.txt >> temp_tc_sphere_verts2.txt 
76  
77  # Remove extraneous information at the start, leaving just the three vertex identifiers  
78  while read line 
79  do 
80      echo "`echo ${line} | cut -d ' ' -f4-6`" >> temp_tc_tris2.txt 
81  done < temp_tc_tris.txt 
82  
83  while read line 
84  do 
85      echo "`echo ${line} | cut -d ' ' -f4-6`" >> temp_tc_sphere_tris2.txt 
86  done < temp_tc_sphere_tris.txt 
87  
88  # Extract curvature values from Amira mesh ASCII files 
89  sed -e '1,/@1/d' ${BASENAME}_MaxCurvature.am >> temp_tc_max.txt 
90  sed -e '1,/@1/d' temp_tc_max.txt >> temp_tc_max2.txt 
91  head -n -1 temp_tc_max2.txt >> ${BASENAME}_K_Max.txt #Remove final blank line 
92  
93  sed -e '1,/@1/d' ${BASENAME}_MeanCurvature.am >> temp_tc_mean.txt 
94  sed -e '1,/@1/d' temp_tc_mean.txt >> temp_tc_mean2.txt 
95  head -n -1 temp_tc_mean2.txt >> ${BASENAME}_K_Mean.txt 
96  
97  sed -e '1,/@1/d' ${BASENAME}_GaussCurvature.am >> temp_tc_gauss.txt 
98  sed -e '1,/@1/d' temp_tc_gauss.txt >> temp_tc_gauss2.txt 
99  head -n -1 temp_tc_gauss2.txt >> ${BASENAME}_K_Gaussian.txt 
100 
101 sed -e '1,/@1/d' ${BASENAME}_ShapeIndex.am >> temp_tc_shape.txt 
102 sed -e '1,/@1/d' temp_tc_shape.txt >> temp_tc_shape2.txt 
103 head -n -1 temp_tc_shape2.txt >> ${BASENAME}_s.txt 
104 
105 sed -e '1,/@1/d' ${BASENAME}_Curvedness.am >> temp_tc_curve.txt 
106 sed -e '1,/@1/d' temp_tc_curve.txt >> temp_tc_curve2.txt 
107 head -n -1 temp_tc_curve2.txt >> ${BASENAME}_C.txt 
108 
109 sed -e '1,/@1/d' ${BASENAME}_BendingEnergy.am >> temp_tc_be.txt 
110 sed -e '1,/@1/d' temp_tc_be.txt >> temp_tc_be2.txt 
111 head -n -1 temp_tc_be2.txt >> ${BASENAME}_EB.txt 
112 
113 sed -e '1,/@1/d' ${BASENAME}_EulerCharacteristic.am >> temp_tc_x.txt 
114 sed -e '1,/@1/d' temp_tc_x.txt >> temp_tc_x2.txt 
115 head -n -1 temp_tc_x2.txt >> ${BASENAME}_X.txt 
116 
117 sed -e '1,/@1/d' ${BASENAME}_MinCurvature.am >> temp_tc_min.txt 
118 sed -e '1,/@1/d' temp_tc_min.txt >> temp_tc_min2.txt 
119 head -n -1 temp_tc_min2.txt >> ${BASENAME}_K_Min.txt 
120 
121 sed -e '1,/@1/d' ${BASENAME}_sphere_MaxCurvature.am >> temp_tc_sphere_max.txt 
122 sed -e '1,/@1/d' temp_tc_sphere_max.txt >> temp_tc_sphere_max2.txt 
123 head -n -1 temp_tc_sphere_max2.txt >> ${BASENAME}_K_Max_sphere.txt  
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124 
125 sed -e '1,/@1/d' ${BASENAME}_sphere_MeanCurvature.am >> 
temp_tc_sphere_mean.txt 
126 sed -e '1,/@1/d' temp_tc_sphere_mean.txt >> temp_tc_sphere_mean2.txt 
127 head -n -1 temp_tc_sphere_mean2.txt >> ${BASENAME}_K_Mean_sphere.txt  
128 
129 sed -e '1,/@1/d' ${BASENAME}_sphere_GaussCurvature.am >> 
temp_tc_sphere_gauss.txt 
130 sed -e '1,/@1/d' temp_tc_sphere_gauss.txt >> temp_tc_sphere_gauss2.txt 
131 head -n -1 temp_tc_sphere_gauss2.txt >> ${BASENAME}_K_Gaussian_sphere.txt  
132 
133 sed -e '1,/@1/d' ${BASENAME}_sphere_ShapeIndex.am >> temp_tc_sphere_shape.txt 
134 sed -e '1,/@1/d' temp_tc_sphere_shape.txt >> temp_tc_sphere_shape2.txt 
135 head -n -1 temp_tc_sphere_shape2.txt >> ${BASENAME}_s_sphere.txt 
136 
137 sed -e '1,/@1/d' ${BASENAME}_sphere_Curvedness.am >> temp_tc_sphere_curve.txt 
138 sed -e '1,/@1/d' temp_tc_sphere_curve.txt >> temp_tc_sphere_curve2.txt 
139 head -n -1 temp_tc_sphere_curve2.txt >> ${BASENAME}_C_sphere.txt  
140 
141 sed -e '1,/@1/d' ${BASENAME}_sphere_BendingEnergy.am >> temp_tc_sphere_be.txt 
142 sed -e '1,/@1/d' temp_tc_sphere_be.txt >> temp_tc_sphere_be2.txt 
143 head -n -1 temp_tc_sphere_be2.txt >> ${BASENAME}_EB_sphere.txt 
144 
145 sed -e '1,/@1/d' ${BASENAME}_sphere_EulerCharacteristic.am >> temp_tc_sphere_x.txt 
146 sed -e '1,/@1/d' temp_tc_sphere_x.txt >> temp_tc_sphere_x2.txt 
147 head -n -1 temp_tc_sphere_x2.txt >> ${BASENAME}_X_sphere.txt 
148 
149 sed -e '1,/@1/d' ${BASENAME}_sphere_MinCurvature.am >> temp_tc_sphere_min.txt 
150 sed -e '1,/@1/d' temp_tc_sphere_min.txt >> temp_tc_sphere_min2.txt 
151 head -n -1 temp_tc_sphere_min2.txt >> ${BASENAME}_K_Min_sphere.txt 
152 
153 mv temp_tc_tris2.txt ${BASENAME}_meshIndices.txt #Rename 
154 mv temp_tc_verts2.txt ${BASENAME}_meshVertices.txt 
155 mv temp_tc_sphere_tris2.txt ${BASENAME}_meshIndices_sphere.txt 
156 mv temp_tc_sphere_verts2.txt ${BASENAME}_meshVertices_sphere.txt 
157 
158 rm -rf temp_tc_*.txt #Remove temporary files #Remove temporary files 
159 
160 mkdir ${BASENAME}_files #Create directory for files 
161 sed -n '1,110p' ${BASENAME}_curvature.hx | grep -v 'save' >> 
${BASENAME}_curvature_noSave.hx 
162 mv ${BASENAME}* ${BASENAME}_files >> /dev/null 2>&1 #Move intermediate files to 
_files directory 
163 mkdir ${BASENAME}_movies 
164 mv ${BASENAME}_files/*gif ${BASENAME}_files/*.mpg ${BASENAME}_movies 
165 #mv ../${BASENAME}*.wml . 
166 
167 
168 #Create MATLAB mfile to perform surface integrals 
169 echo "Computing surface integrals..." 
170 cp /home/aperez/mfiles/totalCurvature.m totalCurvature.m 
171 grep -rl 'BASENAME' totalCurvature.m | xargs sed -i 's|BASENAME|'${BASENAME}'|g' 
172 
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173 matlab -nojvm -nosplash -nodesktop -nodisplay -r totalCurvature #> /dev/null 2>&1 #Run 
mfile 
174 mv totalCurvature.m ./${BASENAME}_files 
175 rm -rf *~ 
176 echo "Done." 
 

C.3.23. totalCurvature_withMovies.hx 
 
1   # Amira Script 
2   
3   viewer setBackgroundColor 0.5 0.5 0.5; #Make background grey 
4   viewer setSize 900 900; #Set viewer size 
5   
6   ########## 
7   # Load the nucleus, remesh, and export 
8   ########## 
9   
10  load ../BASENAME.wml; #Load nucleus VRML file 
11  create HxGeometryToSurface {IvToSurface}; #Create Inventor-to-surf format conversion 
module 
12  IvToSurface data connect BASENAME.wml; #Connect converter to VRML file 
13  IvToSurface action setState index 0; 
14  IvToSurface action touch 0; 
15  IvToSurface fire; #Apply 
16  GeometrySurface save "AVS UCD ascii" BASENAME.inp; #Save surface model in AVS 
UCD format 
17  create HxRemeshSurface; #Create RemeshSurface module 
18  RemeshSurface data connect BASENAME.inp; #Connect to original surface 
19  RemeshSurface desiredSize setValue 2 100; #Set percentage of triangles to keep at 
100% 
20  RemeshSurface remeshOptions1 setValue 0 1; #Turn on contour correction  
21  RemeshSurface remeshOptions1 setValue 1 0; 
22  RemeshSurface remesh setState index 0; 
23  RemeshSurface remesh touch 0; 
24  RemeshSurface fire; #Apply 
25  BASENAME.remeshed save "AVS UCD ascii" BASENAME_remeshed.inp; #Save 
remeshed model in AVS UCD format 
26  
27  ########## 
28  # Load the convex hull, remesh, and compute surface area 
29  ########## 
30  
31  load ../BASENAME_convexHull.wml; 
32  create HxGeometryToSurface {IvToSurface}; 
33  IvToSurface2 data connect BASENAME_convexHull.wml; 
34  IvToSurface2 action setState index 0; 
35  IvToSurface2 action touch 0; 
36  IvToSurface2 fire; 
37  GeometrySurface save "AVS UCD ascii" BASENAME_convexHull.inp; 
38  create HxRemeshSurface; 
39  RemeshSurface2 data connect BASENAME_convexHull.inp; 
40  RemeshSurface2 desiredSize setValue 2 100; 
41  RemeshSurface2 remeshOptions1 setValue 0 1; 
42  RemeshSurface2 remeshOptions1 setValue 1 0; 
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43  RemeshSurface2 remesh setState index 0; 
44  RemeshSurface2 remesh touch 0; 
45  RemeshSurface2 fire; 
46  BASENAME_convexHull.remeshed save "AVS UCD ascii" 
BASENAME_convexHull_remeshed.inp; 
47  create HxSurfaceArea {Surface Area}; 
48  Surface-Area data connect BASENAME_convexHull_remeshed.inp; 
49  Surface-Area action setState index 0; 
50  Surface-Area action touch 0; 
51  Surface-Area fire; 
52  set A_CH [BASENAME_convexHull_remeshed.statistics getValue table1 2 1]; #Get 
surface area of convex hull 
53  
54  ########## 
55  # Calculate and export curvature fields for the nucleus 
56  ########## 
57  
58  create HxGetCurvature; #Create GetCurvature module 
59  GetCurvature data connect BASENAME_remeshed.inp; #Connect to remeshed surface 
60  GetCurvature output setValue 6; #Compute both principal curvatures 
61  GetCurvature method setValue 1; 
62  GetCurvature create; 
63  create HxArithmetic; #Maximum principal curvature 
64  Arithmetic inputA connect BothCurvatures; #Connect Arithmetic module to curvatures 
65  Arithmetic resultChannels setValue 1; 
66  Arithmetic expr0 setValue Ar; 
67  Arithmetic resultType setValue 0; 
68  Arithmetic create; 
69  Result save "Amiramesh ascii" BASENAME_MaxCurvature.am; #Save maximum 
principal curvatures as Amira mesh ASCII file 
70  create HxArithmetic; #Minimum principal curvature 
71  Arithmetic2 inputA connect BothCurvatures; 
72  Arithmetic2 resultChannels setValue 1; 
73  Arithmetic2 expr0 setValue Ai; 
74  Arithmetic2 resultType setValue 0; 
75  Arithmetic2 create; 
76  Result save "Amiramesh ascii" BASENAME_MinCurvature.am; #Save minimum principal 
curvatures as Amira mesh ASCII file 
77  create HxArithmetic; #Local bending energy 
78  Arithmetic3 inputA connect BASENAME_MaxCurvature.am; 
79  Arithmetic3 inputB connect BASENAME_MinCurvature.am; 
80  Arithmetic3 resultChannels setValue 1; 
81  Arithmetic3 resultType setValue 0; 
82  Arithmetic3 expr0 setValue pow(A,2)+pow(B,2); 
83  Arithmetic3 create; 
84  Result save "Amiramesh ascii" BASENAME_BendingEnergy.am; 
85  GetCurvature output setValue 2; #Set to Mean Curvature 
86  GetCurvature method setValue 1; 
87  GetCurvature create; 
88  GetCurvature output setValue 4; #Set to Gaussian Curvature 
89  GetCurvature method setValue 1; 
90  GetCurvature create; 
91  GetCurvature output setValue 10; #Set to ShapeIndex 
92  GetCurvature method setValue 1; 
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93  GetCurvature doIt setState index 0; 
94  GetCurvature doIt touch 0; 
95  GetCurvature fire; 
96  GetCurvature output setValue 11; #Set to Curvedness 
97  GetCurvature method setValue 1; 
98  GetCurvature doIt setState index 0; 
99  GetCurvature doIt touch 0; 
100 GetCurvature fire; 
101 GaussCurvature save "Amiramesh ascii" BASENAME_GaussCurvature.am; 
102 MeanCurvature save "Amiramesh ascii" BASENAME_MeanCurvature.am; 
103 ShapeIndex save "Amiramesh ascii" BASENAME_ShapeIndex.am; 
104 Curvedness save "Amiramesh ascii" BASENAME_Curvedness.am; 
105 create HxArithmetic; #Euler characteristic 
106 Arithmetic4 inputA connect BASENAME_GaussCurvature.am; 
107 Arithmetic4 resultChannels setValue 1; 
108 Arithmetic4 resultType setValue 0; 
109 Arithmetic4 expr0 setValue A/(2*2*cos(0)); 
110 Arithmetic4 create; 
111 Result save "Amiramesh ascii" BASENAME_EulerCharacteristic.am; 
112 
113 
114 ########## 
115 # Create a sphere with the same volume as the nucleus 
116 ########## 
117 
118 create HxSurfaceArea {Surface Area}; #Create SurfaceArea module 
119 Surface-Area2 data connect BASENAME_remeshed.inp; #Connect to remeshed surface 
120 Surface-Area2 action setState index 0; 
121 Surface-Area2 action touch 0; 
122 Surface-Area2 fire; #Compute 
123 set V [BASENAME_remeshed.statistics getValue Table1 3 3]; #Store surface volume to 
variable V 
124 #Compute the radius of a sphere with volume equivalent to the surface (r=(3V/4pi)^1/3) 
125 set A [expr ((3*$V)/(4*2*acos(0)))]; #2*acos(0) = pi 
126 set r [expr 
pow($A,0.33333333333333333333333333333333333333333333333333333333333)]; #Store 
radius to variable r 
127 create HxCreateSphere; #Create CreateSphere module 
128 CreateSphere radius setMinMax 0 1E+06; #Raise maximum for radius 
129 CreateSphere edgeLength setMinMax 0 1E+06; #Raise maximum for edgeLength 
130 CreateSphere radius setValue $r; #Set radius to variable r 
131 CreateSphere edgeLength setValue 20; #Set edgeLength to 20 (this gives a reasonable 
number of triangles) 
132 CreateSphere action setState index 0; 
133 CreateSphere action touch 0; 
134 CreateSphere fire; 
135 CreateSphere edgeLength setValue 20; 
136 CreateSphere action setState index 0; 
137 CreateSphere action touch 0; 
138 CreateSphere fire; #Compute 
139 SphereLat.surf save "AVS UCD ascii" BASENAME_sphere.inp; #Save sphere in AVS 
UCD format 
140 create HxRemeshSurface; #Create RemeshSurface module 
141 RemeshSurface3 data connect BASENAME_sphere.inp; #Connect to sphere 
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142 RemeshSurface3 desiredSize setValue 2 100; #Set percentage of triangles to keep at 
100% 
143 RemeshSurface3 remeshOptions1 setValue 0 1; 
144 RemeshSurface3 remeshOptions1 setValue 1 0; 
145 RemeshSurface3 remesh setState index 0; 
146 RemeshSurface3 remesh touch 0; 
147 RemeshSurface3 fire; #Apply 
148 BASENAME_sphere.remeshed save "AVS UCD ascii" 
BASENAME_sphere_remeshed.inp; #Save remeshed sphere in AVS UCD format 
149 
150 ########## 
151 # Write volume/radius of sphere and convex hull area to files 
152 ########## 
153 
154 set data "$V $r"; #Set string to print 
155 set filename "BASENAME_sphereRadius.txt"; #Set filename to save to 
156 set fileId [open $filename "w"]; #Open file 
157 puts $fileId $data; #Write data to file 
158 close $fileId; #Close file 
159 set data "$A_CH"; 
160 set filename "BASENAME_convexHullArea.txt"; 
161 set fileId [open $filename "w"]; 
162 puts $fileId $data; 
163 close $fileId; 
164 
165 ########## 
166 # Calculate and export curvature fields for the sphere 
167 ########## 
168 
169 create HxGetCurvature; #Create GetCurvature module 
170 GetCurvature2 data connect BASENAME_sphere_remeshed.inp; #Connect to remeshed 
surface 
171 GetCurvature2 output setValue 6; #Compute both principal curvatures 
172 GetCurvature2 method setValue 1; 
173 GetCurvature create; 
174 create HxArithmetic; #Maximum principal curvature 
175 Arithmetic5 inputA connect BothCurvatures; #Connect Arithmetic module to curvatures 
176 Arithmetic5 resultChannels setValue 1; 
177 Arithmetic5 expr0 setValue Ar; 
178 Arithmetic5 resultType setValue 0; 
179 Arithmetic5 create; 
180 Result save "Amiramesh ascii" BASENAME_sphere_MaxCurvature.am; #Save maximum 
principal curvatures as Amira mesh ASCII file 
181 create HxArithmetic; #Minimum principal curvature 
182 Arithmetic6 inputA connect BothCurvatures; 
183 Arithmetic6 resultChannels setValue 1; 
184 Arithmetic6 expr0 setValue Ai; 
185 Arithmetic6 resultType setValue 0; 
186 Arithmetic6 create; 
187 Result save "Amiramesh ascii" BASENAME_sphere_MinCurvature.am; #Save minimum 
principal curvatures as Amira mesh ASCII file 
188 create HxArithmetic; #Local bending energy 
189 Arithmetic7 inputA connect BASENAME_MaxCurvature.am; 
190 Arithmetic7 inputB connect BASENAME_MinCurvature.am; 
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191 Arithmetic7 resultChannels setValue 1; 
192 Arithmetic7 resultType setValue 0; 
193 Arithmetic7 expr0 setValue pow(A,2)+pow(B,2); 
194 Arithmetic7 create; 
195 Result save "Amiramesh ascii" BASENAME_sphere_BendingEnergy.am; 
196 GetCurvature2 output setValue 2; 
197 GetCurvature2 method setValue 1; 
198 GetCurvature2 create; 
199 GetCurvature2 output setValue 4; 
200 GetCurvature2 method setValue 1; 
201 GetCurvature2 create; 
202 GetCurvature2 output setValue 10; 
203 GetCurvature2 method setValue 1; 
204 GetCurvature2 doIt setState index 0; 
205 GetCurvature2 doIt touch 0; 
206 GetCurvature2 fire; 
207 GetCurvature2 output setValue 11; 
208 GetCurvature2 method setValue 1; 
209 GetCurvature2 doIt setState index 0; 
210 GetCurvature2 doIt touch 0; 
211 GetCurvature2 fire; 
212 GaussCurvature save "Amiramesh ascii" BASENAME_sphere_GaussCurvature.am; 
213 MeanCurvature save "Amiramesh ascii" BASENAME_sphere_MeanCurvature.am; 
214 ShapeIndex save "Amiramesh ascii" BASENAME_sphere_ShapeIndex.am; 
215 Curvedness save "Amiramesh ascii" BASENAME_sphere_Curvedness.am; 
216 create HxArithmetic; #Euler characteristic 
217 Arithmetic8 inputA connect BASENAME_GaussCurvature.am; 
218 Arithmetic8 resultChannels setValue 1; 
219 Arithmetic8 resultType setValue 0; 
220 Arithmetic8 expr0 setValue A/(2*2*cos(0)); 
221 Arithmetic8 create; 
222 Result save "Amiramesh ascii" BASENAME_sphere_EulerCharacteristic.am; 
223 
224 ########## 
225 # Create movies for Max Curvature 
226 ########## 
227 
228 SurfaceView setViewerMask 0; #Turn off previous SurfaceViews 
229 SurfaceView2 setViewerMask 0; 
230 create HxDisplaySurface {SurfaceView3}; #Create new SurfaceView module 
231 SurfaceView3 data connect BASENAME_remeshed.inp; #Connect to nucleus surface 
232 SurfaceView3 colorField connect BASENAME_MaxCurvature.am; #Connect to 
MaxCurvature scalar field 
233 SurfaceView3 drawStyle setValue 0; #Set draw style to outline triangles 
234 SurfaceView3 drawStyle setOutlineColor 0 0 0; #Set outline color to black 
235 SurfaceView3 drawStyle setState 0 1 1 1 1 0 1; #Set draw style to vertex normals 
236 [load ${AMIRA_ROOT}/data/colormaps/physics.icol] setLabel physics2.icol; #Load 
physics colormap 
237 physics2.icol Datafield connect BASENAME_MaxCurvature.am; #Connect colormap to 
MaxCurvature scalar field 
238 physics2.icol setAlphaCurve 0; #Set alpha to zero 
239 physics2.icol select; #Apply 
240 SurfaceView3 colormap connect physics2.icol; #Connect SurfaceView to physics 
colormap 
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241 SurfaceView3 colormap setLocalRange 0; #Set colormap range to that of the 
MaxCurvature scalar field 
242 SurfaceView3 buffer touch 4; #Apply changes 
243 SurfaceView3 fire; 
244 create HxDisplayColormap; #Create color map display 
245 DisplayColormap data connect physics2.icol; #Connect to physics colormap 
246 DisplayColormap options setValue 1 1; #Make display vertical 
247 DisplayColormap options setValue 3 1; #Make background transparent 
248 DisplayColormap setColor black; #Make text black 
249 DisplayColormap size setValue 300; #Make colormap display longer 
250 DisplayColormap select; #Apply 
251 create HxAnnotation; #Create annotation 
252 set INPUT [BASENAME.wml getLabel]; #Read in name of input wml file to variable 
INPUT 
253 Annotation text setValue "Maximum Principal Curvature"; #Set text of annotation 
254 Annotation font setFontName Helvetica; 
255 Annotation font setFontSize 24; 
256 Annotation font setFontColor black; 
257 Annotation fire; #Apply 
258 create HxAnnotation; 
259 Annotation2 text setValue "$INPUT"; 
260 Annotation2 font setFontName Helvetica; 
261 Annotation2 font setFontSize 14; 
262 Annotation2 font setFontColor black; 
263 Annotation2 position setValue 0 450; 
264 Annotation2 position setValue 1 5; 
265 Annotation2 fire; 
266 
267 create HxCircularCameraPath {CameraRotate}; #Create CameraRotate module 
268 create HxScriptObject {DemoMaker}; #Create DemoMaker module 
269 create HxMovieMaker {MovieMaker}; #Create MovieMaker module 
270 DemoMaker script setValue ${AMIRA_ROOT}/share/script-
objects/DemoMakerClassic.scro; #Load classic DemoMaker 
271 DemoMaker setVar scroTypeDemoMaker 1; #Set variables required for DemoMaker to 
work 
272 DemoMaker setVar isInitialized 1; 
273 DemoMaker setVar isDemoMakerActive 1; 
274 DemoMaker setVar funcKeysDefined 1; 
275 DemoMaker setVar lastStartTime 4; #Start time of last event 
276 DemoMaker setVar lastEndTime 8; #End time of last event (i.e., max time) 
277 DemoMaker setVar lastTimeStep 0; 
278 DemoMaker setVar internalEventList {dummy {numeric CameraRotate/Time 0 4 0 360 0 
360 {CameraRotate time setValue %0%; CameraRotate fire}} {select CameraRotate/Action 4 1 0 
{{most vertical} x-axis y-axis z-axis {up direction}} {CameraRotate action setOptValue %0%; 
CameraRotate fire}} {button CameraRotate/Action/recompute 4 0 0 0 { 
279             if %0% {CameraRotate action setShiftDown} 
280      if %1% {CameraRotate action setCtrlDown} 
281      if %2% {CameraRotate action setAltDown} 
282      CameraRotate action setValue 0 
283      CameraRotate fire 
284         }} {numeric CameraRotate/Time 4 8 0 360 0 360 {CameraRotate time setValue 
%0%; CameraRotate fire}}}; #Copy and paste from output 
285 DemoMaker fire; #Apply 
286 DemoMaker time setMinMax 0 8; #Set min and max times (min will always be 0) 
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287 
288 MovieMaker time connect DemoMaker; #Connect to DemoMaker 
289 MovieMaker fileFormat setValue 0; #Set output as MPEG movie 
290 MovieMaker frames setValue 240; #Set number of frames (such that time is equal to max 
time) 
291 MovieMaker compressionQuality setValue 1.0; #Set compression quality to 1 (max 
quality) 
292 MovieMaker filename setValue BASENAME_MaxCurvature.mpg; #Set name of output 
293 MovieMaker action setState index 0; 
294 MovieMaker action touch 0; 
295 MovieMaker fire; #Start recording 
296 MovieMaker fileFormat setValue 2; #Set output as TIF series to create animated GIF 
from 
297 MovieMaker frames setValue 50; #Lower number of frames 
298 MovieMaker filename setValue tif_MaxCurvature/BASENAME_MaxCurvature.tif; #Set 
filename for output series 
299 MovieMaker action setState index 0; 
300 MovieMaker action touch 0; 
301 MovieMaker fire; #Start recording 
302 
303 ########## 
304 ## Create movies for Min Curvature 
305 ########### 
306 
307 physics2.icol deselect; 
308 DisplayColormap deselect; 
309 SurfaceView3 colorField connect BASENAME_MinCurvature.am; 
310 physics2.icol Datafield connect BASENAME_MinCurvature.am; 
311 physics2.icol select; 
312 SurfaceView3 colormap connect physics2.icol; 
313 SurfaceView3 colormap setLocalRange 0; 
314 SurfaceView3 buffer touch 4; 
315 SurfaceView3 fire; 
316 DisplayColormap data connect physics2.icol; 
317 DisplayColormap select; 
318 Annotation text setValue "Minimum Prinicipal Curvature"; 
319 Annotation fire; 
320 
321 MovieMaker fileFormat setValue 0; 
322 MovieMaker frames setValue 240; 
323 MovieMaker compressionQuality setValue 1.0; 
324 MovieMaker filename setValue BASENAME_MinCurvature.mpg; 
325 MovieMaker action setState index 0; 
326 MovieMaker action touch 0; 
327 MovieMaker fire; 
328 MovieMaker fileFormat setValue 2; 
329 MovieMaker frames setValue 50; 
330 MovieMaker filename setValue tif_MinCurvature/BASENAME_MinCurvature.tif; 
331 MovieMaker action setState index 0; 
332 MovieMaker action touch 0; 
333 MovieMaker fire; 
334 
335 ########## 
336 # Create movies for Curvedness 
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337 ########## 
338 
339 physics2.icol deselect; 
340 DisplayColormap deselect; 
341 SurfaceView3 colorField connect BASENAME_Curvedness.am; 
342 physics2.icol Datafield connect BASENAME_Curvedness.am; 
343 physics2.icol select; 
344 SurfaceView3 colormap connect physics2.icol; 
345 SurfaceView3 colormap setLocalRange 0; 
346 SurfaceView3 buffer touch 4; 
347 SurfaceView3 fire; 
348 DisplayColormap data connect physics2.icol; 
349 DisplayColormap select; 
350 Annotation text setValue "Local Curvedness"; 
351 Annotation fire; 
352 
353 MovieMaker fileFormat setValue 0; 
354 MovieMaker frames setValue 240; 
355 MovieMaker compressionQuality setValue 1.0; 
356 MovieMaker filename setValue BASENAME_Curvedness.mpg; 
357 MovieMaker action setState index 0; 
358 MovieMaker action touch 0; 
359 MovieMaker fire;  
360 MovieMaker fileFormat setValue 2; 
361 MovieMaker frames setValue 50; 
362 MovieMaker filename setValue tif_Curvedness/BASENAME_Curvedness.tif; 
363 MovieMaker action setState index 0; 
364 MovieMaker action touch 0; 
365 MovieMaker fire; 
366 
367 ########## 
368 # Create movies for Mean Curvature 
369 ########## 
370 
371 physics2.icol deselect; 
372 DisplayColormap deselect; 
373 SurfaceView3 colorField connect BASENAME_MeanCurvature.am; 
374 physics2.icol Datafield connect BASENAME_MeanCurvature.am; 
375 physics2.icol select;  
376 SurfaceView3 colormap connect physics2.icol; 
377 SurfaceView3 colormap setLocalRange 0; 
378 SurfaceView3 buffer touch 4; 
379 SurfaceView3 fire; 
380 DisplayColormap data connect physics2.icol; 
381 DisplayColormap select; 
382 Annotation text setValue "Local Mean Curvature"; 
383 Annotation fire;  
384 
385 MovieMaker fileFormat setValue 0;  
386 MovieMaker frames setValue 240;  
387 MovieMaker compressionQuality setValue 1.0; 
388 MovieMaker filename setValue BASENAME_MeanCurvature.mpg; 
389 MovieMaker action setState index 0; 
390 MovieMaker action touch 0; 
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391 MovieMaker fire;  
392 MovieMaker fileFormat setValue 2; 
393 MovieMaker frames setValue 50;  
394 MovieMaker filename setValue tif_MeanCurvature/BASENAME_MeanCurvature.tif; 
395 MovieMaker action setState index 0; 
396 MovieMaker action touch 0; 
397 MovieMaker fire;  
398 
399 ########## 
400 # Create movies for Gaussian Curvature 
401 ########## 
402 
403 physics2.icol deselect; 
404 DisplayColormap deselect; 
405 SurfaceView3 colorField connect BASENAME_GaussCurvature.am; 
406 physics2.icol Datafield connect BASENAME_GaussCurvature.am; 
407 physics2.icol select; 
408 SurfaceView3 colormap connect physics2.icol; 
409 SurfaceView3 colormap setLocalRange 0; 
410 SurfaceView3 buffer touch 4; 
411 SurfaceView3 fire; 
412 DisplayColormap data connect physics2.icol; 
413 DisplayColormap select; 
414 Annotation text setValue "Local Gaussian Curvature"; 
415 Annotation fire; 
416 
417 MovieMaker fileFormat setValue 0; 
418 MovieMaker frames setValue 240; 
419 MovieMaker compressionQuality setValue 1.0; 
420 MovieMaker filename setValue BASENAME_GaussCurvature.mpg; 
421 MovieMaker action setState index 0; 
422 MovieMaker action touch 0; 
423 MovieMaker fire; 
424 MovieMaker fileFormat setValue 2; 
425 MovieMaker frames setValue 50; 
426 MovieMaker filename setValue tif_GaussCurvature/BASENAME_GaussCurvature.tif; 
427 MovieMaker action setState index 0; 
428 MovieMaker action touch 0; 
429 MovieMaker fire; 
430 
431 ########## 
432 # Create movies for Shape Index 
433 ########## 
434 
435 physics2.icol deselect; 
436 DisplayColormap deselect; 
437 SurfaceView3 colorField connect BASENAME_ShapeIndex.am; 
438 physics2.icol Datafield connect BASENAME_ShapeIndex.am; 
439 physics2.icol select; 
440 SurfaceView3 colormap connect physics2.icol; 
441 SurfaceView3 colormap setLocalRange 0; 
442 SurfaceView3 buffer touch 4; 
443 SurfaceView3 fire; 
444 DisplayColormap data connect physics2.icol; 
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445 DisplayColormap select; 
446 Annotation text setValue "Local Shape Index"; 
447 Annotation fire; 
448 
449 MovieMaker fileFormat setValue 0; 
450 MovieMaker frames setValue 240; 
451 MovieMaker compressionQuality setValue 1.0; 
452 MovieMaker filename setValue BASENAME_ShapeIndex.mpg; 
453 MovieMaker action setState index 0; 
454 MovieMaker action touch 0; 
455 MovieMaker fire; 
456 MovieMaker fileFormat setValue 2; 
457 MovieMaker frames setValue 50; 
458 MovieMaker filename setValue tif_ShapeIndex/BASENAME_ShapeIndex.tif; 
459 MovieMaker action setState index 0; 
460 MovieMaker action touch 0; 
461 MovieMaker fire; 
462 
463 ########## 
464 ## Create movies for Bending Energy 
465 ########### 
466 
467 physics2.icol deselect; 
468 DisplayColormap deselect; 
469 SurfaceView3 colorField connect BASENAME_BendingEnergy.am; 
470 physics2.icol Datafield connect BASENAME_BendingEnergy.am; 
471 physics2.icol select; 
472 SurfaceView3 colormap connect physics2.icol; 
473 SurfaceView3 colormap setLocalRange 0; 
474 SurfaceView3 buffer touch 4; 
475 SurfaceView3 fire; 
476 DisplayColormap data connect physics2.icol; 
477 DisplayColormap select; 
478 Annotation text setValue "Local Bending Energy"; 
479 Annotation fire; 
480 
481 MovieMaker fileFormat setValue 0; 
482 MovieMaker frames setValue 240; 
483 MovieMaker compressionQuality setValue 1.0; 
484 MovieMaker filename setValue BASENAME_BendingEnergy.mpg; 
485 MovieMaker action setState index 0; 
486 MovieMaker action touch 0; 
487 MovieMaker fire; 
488 MovieMaker fileFormat setValue 2; 
489 MovieMaker frames setValue 50; 
490 MovieMaker filename setValue tif_BendingEnergy/BASENAME_BendingEnergy.tif; 
491 MovieMaker action setState index 0; 
492 MovieMaker action touch 0; 
493 MovieMaker fire; 
494 
495 ########## 
496 ## Create movies for Euler Characteristic 
497 ########### 
498 
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499 physics2.icol deselect; 
500 DisplayColormap deselect; 
501 SurfaceView3 colorField connect BASENAME_EulerCharacteristic.am; 
502 physics2.icol Datafield connect BASENAME_EulerCharacteristic.am; 
503 physics2.icol select; 
504 SurfaceView3 colormap connect physics2.icol; 
505 SurfaceView3 colormap setLocalRange 0; 
506 SurfaceView3 buffer touch 4; 
507 SurfaceView3 fire; 
508 DisplayColormap data connect physics2.icol; 
509 DisplayColormap select; 
510 Annotation text setValue "Local Euler Characteristic"; 
511 Annotation fire; 
512 
513 MovieMaker fileFormat setValue 0; 
514 MovieMaker frames setValue 240; 
515 MovieMaker compressionQuality setValue 1.0; 
516 MovieMaker filename setValue BASENAME_EulerCharacteristic.mpg; 
517 MovieMaker action setState index 0; 
518 MovieMaker action touch 0; 
519 MovieMaker fire; 
520 MovieMaker fileFormat setValue 2; 
521 MovieMaker frames setValue 50; 
522 MovieMaker filename setValue 
tif_EulerCharacteristic/BASENAME_EulerCharacteristic.tif; 
523 MovieMaker action setState index 0; 
524 MovieMaker action touch 0; 
525 MovieMaker fire; 
526 
527 exit; 
528 

 
C.3.24. totalCurvature.m 
 
1   % Load nucleus data 
2   INDS=load('./BASENAME_files/BASENAME_meshIndices.txt'); 
3   VERTS=load('./BASENAME_files/BASENAME_meshVertices.txt'); 
4   K_max=load('./BASENAME_files/BASENAME_K_Max.txt'); 
5   K_mean=load('./BASENAME_files/BASENAME_K_Mean.txt'); 
6   K_gaussian=load('./BASENAME_files/BASENAME_K_Gaussian.txt'); 
7   s=load('./BASENAME_files/BASENAME_s.txt'); 
8   C=load('./BASENAME_files/BASENAME_C.txt'); 
9   X=load('./BASENAME_files/BASENAME_X.txt'); 
10  EB=load('./BASENAME_files/BASENAME_EB.txt'); 
11  K_min=load('./BASENAME_files/BASENAME_K_Min.txt'); 
12  
13  % Load sphere data 
14  INDS_sphere=load('./BASENAME_files/BASENAME_meshIndices_sphere.txt'); 
15  VERTS_sphere=load('./BASENAME_files/BASENAME_meshVertices_sphere.txt'); 
16  K_max_sphere=load('./BASENAME_files/BASENAME_K_Max_sphere.txt'); 
17  K_mean_sphere=load('./BASENAME_files/BASENAME_K_Mean_sphere.txt'); 
18  K_gaussian_sphere=load('./BASENAME_files/BASENAME_K_Gaussian_sphere.txt'); 
19  s_sphere=load('./BASENAME_files/BASENAME_s_sphere.txt'); 
20  C_sphere=load('./BASENAME_files/BASENAME_C_sphere.txt'); 
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21  X_sphere=load('./BASENAME_files/BASENAME_X_sphere.txt'); 
22  EB_sphere=load('./BASENAME_files/BASENAME_EB_sphere.txt'); 
23  K_min_sphere=load('./BASENAME_files/BASENAME_K_Min_sphere.txt'); 
24  
25  % Load convex hull area 
26  A_CH=load('./BASENAME_files/BASENAME_convexHullArea.txt'); 
27  
28  VERTS=VERTS(:,2:4); %Extract vertex coordinates only 
29  INDS=INDS+1; %Change indices to MATLAB format (starting at 1 instead of 0) 
30  VERTS_sphere=VERTS_sphere(:,2:4); 
31  INDS_sphere=INDS_sphere+1; 
32  
33  %Compute surface integrals for nucleus 
34  SUM_area=0; 
35  SUM_max=0; SUM_mean=0; SUM_gauss=0; SUM_s=0; SUM_C=0; SUM_X=0; 
SUM_EB=0; SUM_min=0; 
36  for i=1:size(INDS,1) 
37      P_A=VERTS(INDS(i,1),:); 
38      P_B=VERTS(INDS(i,2),:); 
39      P_C=VERTS(INDS(i,3),:); 
40      AREA=0.5*norm(cross(P_C-P_A,P_C-P_B)); 
41      K_max_i=mean(K_max(INDS(i,:))); 
42      K_mean_i=mean(K_mean(INDS(i,:))); 
43      K_gaussian_i=mean(K_gaussian(INDS(i,:))); 
44      s_i=mean(s(INDS(i,:))); 
45      C_i=mean(C(INDS(i,:))); 
46      X_i=mean(X(INDS(i,:))); 
47      K_min_i=mean(K_min(INDS(i,:))); 
48      EB_i=mean(EB(INDS(i,:))); 
49      SUM_max=SUM_max+K_max_i*AREA; 
50      SUM_mean=SUM_mean+K_mean_i*AREA; 
51      SUM_gauss=SUM_gauss+K_gaussian_i*AREA; 
52      SUM_s=SUM_s+s_i*AREA; 
53      SUM_C=SUM_C+C_i*AREA; 
54      SUM_X=SUM_X+X_i*AREA; 
55      SUM_EB=SUM_EB+EB_i*AREA; 
56      SUM_min=SUM_min+K_min_i*AREA; 
57      SUM_area=SUM_area+AREA; 
58  end 
59  
60  %Compute surface integrals for sphere 
61  SUM_area_sphere=0; 
62  SUM_max_sphere=0; SUM_mean_sphere=0; SUM_gauss_sphere=0; 
SUM_s_sphere=0; SUM_C_sphere=0; SUM_X_sphere=0; SUM_EB_sphere=0; 
SUM_min_sphere=0; 
63  for i=1:size(INDS_sphere,1) 
64      P_A=VERTS_sphere(INDS_sphere(i,1),:); 
65      P_B=VERTS_sphere(INDS_sphere(i,2),:); 
66      P_C=VERTS_sphere(INDS_sphere(i,3),:); 
67      AREA=0.5*norm(cross(P_C-P_A,P_C-P_B)); 
68      K_max_sphere_i=mean(K_max_sphere(INDS_sphere(i,:))); 
69      K_mean_sphere_i=mean(K_mean_sphere(INDS_sphere(i,:))); 
70      K_gaussian_sphere_i=mean(K_gaussian_sphere(INDS_sphere(i,:))); 
71      s_sphere_i=mean(s_sphere(INDS_sphere(i,:))); 
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72      C_sphere_i=mean(C_sphere(INDS_sphere(i,:))); 
73      X_sphere_i=mean(X_sphere(INDS_sphere(i,:))); 
74      EB_sphere_i=mean(EB_sphere(INDS_sphere(i,:))); 
75      K_min_sphere_i=mean(K_min_sphere(INDS_sphere(i,:))); 
76      SUM_max_sphere=SUM_max_sphere+K_max_sphere_i*AREA; 
77      SUM_mean_sphere=SUM_mean_sphere+K_mean_sphere_i*AREA; 
78      SUM_gauss_sphere=SUM_gauss_sphere+K_gaussian_sphere_i*AREA; 
79      SUM_s_sphere=SUM_s_sphere+s_sphere_i*AREA; 
80      SUM_C_sphere=SUM_C_sphere+C_sphere_i*AREA; 
81      SUM_X_sphere=SUM_X_sphere+X_sphere_i*AREA; 
82      SUM_EB_sphere=SUM_EB_sphere+EB_sphere_i*AREA; 
83      SUM_min_sphere=SUM_min_sphere+K_min_sphere_i*AREA; 
84      SUM_area_sphere=SUM_area_sphere+AREA; 
85  end 
86  
87  %Compute normalized, average, absolute values for nucleus 
88  Q=A_CH/SUM_area; 
89  KnaaMax=Q*sum(abs(K_max)); 
90  KnaaMin=Q*sum(abs(K_min)); 
91  KnaaMean=Q*sum(abs(K_mean)); 
92  KnaaGauss=Q*sum(abs(K_gaussian)); 
93  Snaa=Q*sum(abs(s)); 
94  Cnaa=Q*sum(abs(C)); 
95  Xnaa=Q*sum(abs(X)); 
96  EBnaa=Q*sum(abs(EB)); 
97  
98  %Compute normalized, average values for nucleus 
99  KnaMax=Q*sum(K_max); 
100 KnaMin=Q*sum(K_min); 
101 KnaMean=Q*sum(K_mean); 
102 KnaGauss=Q*sum(K_gaussian); 
103 Sna=Q*sum(s); 
104 Cna=Q*sum(C); 
105 Xna=Q*sum(X); 
106 EBna=Q*sum(EB); 
107 
108 fid=fopen('BASENAME_results.txt','w'); 
109 fprintf(fid,'K_max    %f %f %f %f %f 
%f\n',SUM_max,SUM_max_sphere,SUM_max/SUM_max_sphere,SUM_max-
SUM_max_sphere,KnaaMax,KnaMax); 
110 fprintf(fid,'K_min    %f %f %f %f %f 
%f\n',SUM_min,SUM_min_sphere,SUM_min/SUM_min_sphere,SUM_min-
SUM_min_sphere,KnaaMin,KnaMin); 
111 fprintf(fid,'K_mean   %f %f %f %f %f 
%f\n',SUM_mean,SUM_mean_sphere,SUM_mean/SUM_mean_sphere,SUM_mean-
SUM_mean_sphere,KnaaMean,KnaMean); 
112 fprintf(fid,'K_gauss  %f %f %f %f %f 
%f\n',SUM_gauss,SUM_gauss_sphere,SUM_gauss/SUM_gauss_sphere,SUM_gauss-
SUM_gauss_sphere,KnaaGauss,KnaGauss); 
113 fprintf(fid,'s        %f %f %f %f %f 
%f\n',SUM_s,SUM_s_sphere,SUM_s/SUM_s_sphere,SUM_s-SUM_s_sphere,Snaa,Sna); 
114 fprintf(fid,'C        %f %f %f %f %f 
%f\n',SUM_C,SUM_C_sphere,SUM_C/SUM_C_sphere,SUM_C-SUM_C_sphere,Cnaa,Cna); 
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115 fprintf(fid,'X        %f %f %f %f %f 
%f\n',SUM_X,SUM_X_sphere,SUM_X/SUM_X_sphere,SUM_X-SUM_X_sphere,Xnaa,Xna); 
116 fprintf(fid,'EB       %f %f %f %f %f 
%f\n',SUM_EB,SUM_EB_sphere,SUM_EB/SUM_EB_sphere,SUM_EB-
SUM_EB_sphere,EBnaa,EBna); 
117 fprintf(fid,'Area     %f\n',SUM_area); 
118 fprintf(fid,'CH Area  %f\n',A_CH); 
119 fclose(fid); 
120 exit; 
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Appendix D. Example output from automated nuclear analysis. 
 
Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset (CCDBID: 
81739) – Contents of nucleus_morphology.txt 
 

Cell # Nuclear Volume (μm3) 
Nuclear Surface 

Area (μm2) 
Nuclear Surface Area to 

Volume Ratio 

1 328.289 270.48 0.8239 

2 334.793 290.63 0.868 

3 355.311 338.51 0.9527 

4 353.863 330.25 0.9332 

5 323.646 353.98 1.0937 

6 298.639 274.52 0.9192 

7 369.18 337.52 0.9142 

8 361.215 295.76 0.8187 

9 374.046 349.27 0.9337 

10 328.484 276.18 0.8407 

11 308.978 324.97 1.0517 

12 354.269 336 0.9484 

13 311.194 268.38 0.8624 

14 332.515 269.09 0.8092 

15 322.815 341.06 1.0565 

16 299.195 284.22 0.9499 

17 314.6 331.33 1.0531 

18 400.399 309.5 0.7729 

19 358.404 370.76 1.0344 

20 303.43 295.95 0.9753 

21 398.756 294.07 0.7374 

22 265.793 328.58 1.2362 

23 298.679 299.7 1.0034 

24 325.7 303.42 0.9315 

25 345.7 340.45 0.9848 

26 276.831 240.17 0.8675 

27 352.463 411.85 1.1684 

28 381.835 322.97 0.8458 

29 368.115 383.41 1.0415 

30 289.182 296.71 1.026 

31 292.87 333.76 1.1396 

32 360.017 340.34 0.9453 

33 342.072 356.4 1.0418 

34 344.478 339.36 0.9851 

35 393.73 390.18 0.9909 

36 349.85 375.99 1.0747 
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Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset (CCDBID: 
81739) – Contents of nucleus_morphology.txt, Continued. 
 

Cell # Nuclear Volume (μm3) 
Nuclear Surface 

Area (μm2) 
Nuclear Surface Area to 

Volume Ratio 

37 315.065 348.02 1.1045 

38 350.649 332.14 0.9472 

39 299.036 288.31 0.9641 

40 283.925 307.25 1.0821 

41 393.831 331.85 0.8426 

42 320.992 298.6 0.9302 

43 334.407 347.49 1.0391 

44 353.524 301.5 0.8528 

45 363.566 358.86 0.987 

46 327.559 279.23 0.8524 

47 378.257 339.51 0.8975 

48 324.358 316.64 0.9762 

49 324.3 315.48 0.9728 

50 287.457 320.73 1.1157 

51 349.838 304.34 0.8699 

52 301.559 246.81 0.8184 

53 290.557 262.98 0.905 

54 262.882 239.85 0.9124 

55 301.02 256.53 0.8522 

56 370.761 378.57 1.021 

57 358.79 308.62 0.8601 

58 343.786 304.06 0.8844 

59 352.9 278.81 0.79 

60 361.938 329.45 0.9102 

61 301.145 280.45 0.9312 

62 334.374 368.31 1.1014 

63 339.283 332.91 0.9812 

64 330.531 336.58 1.0183 

65 363.945 347.46 0.9546 

66 288.755 303.51 1.051 

67 339.294 289.15 0.8522 

68 335.41 406.25 1.2112 

69 342.512 281.84 0.8228 

70 292.881 239.75 0.8185 

71 304.81 317.88 1.0428 

72 269.82 315.98 1.171 

73 348.26 370.05 1.0625 

74 316.729 303.97 0.9597 
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Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset (CCDBID: 
81739) – Contents of nucleus_morphology.txt, Continued. 

 

Cell # Nuclear Volume (μm3) 
Nuclear Surface 

Area (μm2) 
Nuclear Surface Area to 

Volume Ratio 

75 372.935 340.63 0.9133 

76 306.545 315.54 1.0293 

77 315.727 248.48 0.787 

78 288.008 280.11 0.9725 

79 373.179 314.8 0.8435 

80 330.767 305.78 0.9244 

81 287.432 305.8 1.0639 

 
 
Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset – Contents 
of nucleolus_morphology.txt. 
 

Cell 
# 

# of 
Nucleoli 

Volume: 
Nucleolus 
#1 (μm3) 

Volume: 
Nucleolus 
#2 (μm3) 

Volume: 
Nucleolus 
#3 (μm3) 

Volume: 
Nucleolus 
#4 (μm3) 

Total 
Nucleolar 
Volume 
(μm3) 

Nucleolar 
Volume 
Fraction 

1 2 1.7118 0.8404 0 0 2.5522 0.0077 

2 2 0.5372 2.8246 0 0 3.3618 0.01 

3 2 2.9809 0.674 0 0 3.6549 0.0102 

4 1 3.0072 0 0 0 3.0072 0.0084 

5 1 3.6435 0 0 0 3.6435 0.0112 

6 1 2.8928 0 0 0 2.8928 0.0096 

7 2 2.47 0.7057 0 0 3.1757 0.0086 

8 2 2.5347 0.5222 0 0 3.0569 0.0084 

9 1 3.3999 0 0 0 3.3999 0.009 

10 3 1.5026 1.0823 0.3535 0 2.9384 0.0089 

11 1 3.138 0 0 0 3.138 0.0101 

12 1 3.7283 0 0 0 3.7283 0.0105 

13 1 3.2668 0 0 0 3.2668 0.0104 

14 2 1.2899 1.1607 0 0 2.4506 0.0073 

15 1 2.6785 0 0 0 2.6785 0.0082 

16 3 0.814 0.5936 0.8032 0 2.2108 0.0073 

17 1 2.7775 0 0 0 2.7775 0.0088 

18 2 3.2294 1.08 0 0 4.3094 0.0107 

19 2 0.5631 2.891 0 0 3.4541 0.0096 

20 1 3.2697 0 0 0 3.2697 0.0107 

21 3 0.7816 1.2201 1.0732 0 3.0749 0.0077 

22 1 2.2766 0 0 0 2.2766 0.0085 

23 1 2.7743 0 0 0 2.7743 0.0092 

24 1 3.4016 0 0 0 3.4016 0.0104 
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Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset – Contents 
of nucleolus_morphology.txt, Continued. 

 

Cell 
# 

# of 
Nucleoli 

Volume: 
Nucleolus 
#1 (μm3) 

Volume: 
Nucleolus 
#2 (μm3) 

Volume: 
Nucleolus 
#3 (μm3) 

Volume: 
Nucleolus 
#4 (μm3) 

Total 
Nucleolar 
Volume 
(μm3) 

Nucleolar 
Volume 
Fraction 

25 1 3.4951 0 0 0 3.4951 0.0101 

26 1 2.7677 0 0 0 2.7677 0.0099 

27 1 4.2747 0 0 0 4.2747 0.0121 

28 3 0.9736 2.5109 0.8481 0 4.3326 0.0113 

29 1 3.7762 0 0 0 3.7762 0.0102 

30 2 1.527 0.8984 0 0 2.4254 0.0083 

31 2 2.3923 0.8598 0 0 3.2521 0.0111 

32 2 1.7329 1.7291 0 0 3.462 0.0096 

33 3 1.857 0.3322 0.5357 0 2.7249 0.0079 

34 2 1.0932 1.4355 0 0 2.5287 0.0073 

35 1 4.2308 0 0 0 4.2308 0.0107 

36 1 3.4081 0 0 0 3.4081 0.0097 

37 2 2.3611 0.1844 0 0 2.5455 0.008 

38 1 3.1578 0 0 0 3.1578 0.009 

39 1 3.5031 0 0 0 3.5031 0.0117 

40 1 2.5541 0 0 0 2.5541 0.0089 

41 1 3.8165 0 0 0 3.8165 0.0096 

42 3 2.8481 0.5932 0 0 3.4413 0.0107 

43 4 1.082 0.4939 0.3054 0.4313 2.3126 0.0069 

44 2 2.4653 0.8598 0 0 3.3251 0.0094 

45 1 3.7924 0 0 0 3.7924 0.0104 

46 2 0.8548 2.4587 0 0 3.3135 0.0101 

47 2 3.5278 0.2277 0 0 3.7555 0.0099 

48 1 3.2989 0 0 0 3.2989 0.0101 

49 1 2.9311 0 0 0 2.9311 0.009 

50 1 2.2792 0 0 0 2.2792 0.0079 

51 1 1.5986 0 0 0 1.5986 0.0045 

52 1 3.0276 0 0 0 3.0276 0.01 

53 1 2.6772 0 0 0 2.6772 0.0092 

54 2 1.1925 0.9631 0 0 2.1556 0.0081 

55 1 2.7659 0 0 0 2.7659 0.0091 

56 1 3.8223 0 0 0 3.8223 0.0103 

57 2 1.5294 1.3907 0 0 2.9201 0.0081 

58 1 3.6789 0 0 0 3.6789 0.0107 

59 1 4.1109 0 0 0 4.1109 0.0116 

60 1 4.4066 0 0 0 4.4066 0.0121 

61 1 2.9793 0 0 0 2.9793 0.0098 
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Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset – Contents 
of nucleolus_morphology.txt, Continued. 

 

Cell 
# 

# of 
Nucleoli 

Volume: 
Nucleolus 
#1 (μm3) 

Volume: 
Nucleolus 
#2 (μm3) 

Volume: 
Nucleolus 
#3 (μm3) 

Volume: 
Nucleolus 
#4 (μm3) 

Total 
Nucleolar 
Volume 
(μm3) 

Nucleolar 
Volume 
Fraction 

62 1 3.6055 0 0 0 3.6055 0.0107 

63 1 4.0165 0 0 0 4.0165 0.0118 

64 2 1.3151 1.508 0 0 2.8231 0.0085 

65 1 4.2344 0 0 0 4.2344 0.0116 

66 2 1.6483 0.5725 0 0 2.2208 0.0076 

67 3 0.8395 1.0996 0.4373 0 2.3764 0.007 

68 1 3.0971 0 0 0 3.0971 0.0092 

69 2 1.6449 1.8453 0 0 3.4902 0.0101 

70 3 1.9681 0.5075 0.4405 0 2.9161 0.0099 

71 1 2.7444 0 0 0 2.7444 0.009 

72 2 1.5272 0.2569 0 0 1.7841 0.0066 

73 1 3.5772 0 0 0 3.5772 0.0102 

74 1 3.5818 0 0 0 3.5818 0.0113 

75 2 4.2096 0.4054 0 0 4.615 0.0123 

76 1 2.2789 0 0 0 2.2789 0.0074 

77 2 2.4231 0.7827 0 0 3.2058 0.0101 

78 1 2.6452 0 0 0 2.6452 0.0091 

79 2 2.4552 1.5774 0 0 4.0326 0.0108 

80 2 1.4105 2.0149 0 0 3.4254 0.0103 

81 1 3.5928 0 0 0 3.5928 0.0124 

 
 
 
Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset – Contents 
of dist_centroid.txt. 
 

Cell # 
Distance: 

Nucleolus #1 
(μm) 

Distance: 
Nucleolus #2 

(μm) 

Distance: 
Nucleolus #3 

(μm) 

Distance: 
Nucleolus #4 

(μm) 

1 7.9436 6.1031 0 0 

2 6.8471 2.5216 0 0 

3 3.1866 8.7385 0 0 

4 7.6548 0 0 0 

5 4.7801 0 0 0 

6 3.4784 0 0 0 

7 5.0477 9.3676 0 0 

8 1.3088 4.4262 0 0 

9 4.2182 0 0 0 
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Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset – Contents 
of dist_centroid.txt, Continued. 

 

Cell # 
Distance: 

Nucleolus #1 
(μm) 

Distance: 
Nucleolus #2 

(μm) 

Distance: 
Nucleolus #3 

(μm) 

Distance: 
Nucleolus #4 

(μm) 

10 5.0035 7.8152 7.774 0 

11 3.966 0 0 0 

12 5.6642 0 0 0 

13 1.2586 0 0 0 

14 3.5343 3.4318 0 0 

15 5.0777 0 0 0 

16 10.0281 3.7503 8.0568 0 

17 1.5045 0 0 0 

18 6.2651 5.0259 0 0 

19 10.4327 3.8781 0 0 

20 1.5227 0 0 0 

21 8.3864 4.2999 5.1474 0 

22 4.0229 0 0 0 

23 3.0527 0 0 0 

24 3.0628 0 0 0 

25 2.8466 0 0 0 

26 2.0245 0 0 0 

27 1.5623 0 0 0 

28 8.18 2.5233 7.6754 0 

29 3.0441 0 0 0 

30 7.2927 4.9024 0 0 

31 3.8328 12.223 0 0 

32 5.0906 6.8841 0 0 

33 5.626 10.5948 10.0901 0 

34 8.9506 8.6125 0 0 

35 5.8478 0 0 0 

36 4.3511 0 0 0 

37 3.0174 7.6177 0 0 

38 3.2767 0 0 0 

39 2.3454 0 0 0 

40 3.9996 0 0 0 

41 4.019 0 0 0 

42 4.0502 9.6341 10.07 0 

43 6.5722 7.7395 5.5262 11.6972 

44 4.2894 3.4747 0 0 

45 5.1087 0 0 0 

46 5.7078 2.1161 0 0 
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Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset – Contents 
of dist_centroid.txt, Continued. 

 

Cell # 
Distance: 

Nucleolus #1 
(μm) 

Distance: 
Nucleolus #2 

(μm) 

Distance: 
Nucleolus #3 

(μm) 

Distance: 
Nucleolus #4 

(μm) 

47 4.9322 4.4599 0 0 

48 2.6322 0 0 0 

49 2.4348 0 0 0 

50 2.7891 0 0 0 

51 7.8406 0 0 0 

52 2.8402 0 0 0 

53 2.386 0 0 0 

54 5.3376 6.767 0 0 

55 4.1016 0 0 0 

56 2.959 0 0 0 

57 6.0671 4.8251 0 0 

58 2.1008 0 0 0 

59 1.4003 0 0 0 

60 5.3229 0 0 0 

61 4.5505 0 0 0 

62 4.7134 0 0 0 

63 2.5462 0 0 0 

64 5.7316 5.0322 0 0 

65 3.0135 0 0 0 

66 1.3655 9.2155 0 0 

67 7.3682 7.8983 7.1588 0 

68 4.0141 0 0 0 

69 3.4264 2.9334 0 0 

70 3.548 3.0666 8.9977 0 

71 3.9479 0 0 0 

72 5.0125 7.121 0 0 

73 4.6562 0 0 0 

74 0.8245 0 0 0 

75 4.8804 8.2702 0 0 

76 7.8593 0 0 0 

77 2.9941 5.0876 0 0 

78 3.5169 0 0 0 

79 6.1666 4.4882 0 0 

80 7.5027 5.83 0 0 

81 2.2331 0 0 0 
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Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset – Contents 
of dist_nuclear_envelope.txt. 
 

Cell # 
Distance: 

Nucleolus #1 
(μm) 

Distance: 
Nucleolus #2 

(μm) 

Distance: 
Nucleolus #3 

(μm) 

Distance: 
Nucleolus #4 

(μm) 

1 0 1.2194 0 0 

2 0.02 1.0684 0 0 

3 0.4894 0.0974 0 0 

4 0.0231 0 0 0 

5 0.9073 0 0 0 

6 0.7257 0 0 0 

7 1.3855 0.0654 0 0 

8 0.1744 0.0648 0 0 

9 0.8158 0 0 0 

10 0.8047 0.1014 0.0213 0 

11 0.963 0 0 0 

12 0.3777 0 0 0 

13 1.4539 0 0 0 

14 0.9015 0.8656 0 0 

15 0 0 0 0 

16 0.0433 0.7692 0.1214 0 

17 0.8347 0 0 0 

18 0.9725 1.3459 0 0 

19 0 0.664 0 0 

20 0.6991 0 0 0 

21 0.2414 0.7908 0.0178 0 

22 0.9405 0 0 0 

23 0.7386 0 0 0 

24 1.1308 0 0 0 

25 0.8245 0 0 0 

26 0.8742 0 0 0 

27 0.7205 0 0 0 

28 0.9496 1.176 0.1042 0 

29 0.1889 0 0 0 

30 0 0.897 0 0 

31 1.2875 1.6732 0 0 

32 0.138 0.2803 0 0 

33 0 0 0 0 

34 0.0077 0.0655 0 0 

35 0.3478 0 0 0 

36 0.9209 0 0 0 

37 0 0.8563 0 0 
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Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset – Contents 
of dist_nuclear_envelope.txt, Continued. 

 

Cell # 
Distance: 

Nucleolus #1 
(μm) 

Distance: 
Nucleolus #2 

(μm) 

Distance: 
Nucleolus #3 

(μm) 

Distance: 
Nucleolus #4 

(μm) 

38 0.6581 0 0 0 

39 0.8727 0 0 0 

40 0.5974 0 0 0 

41 0.547 0 0 0 

42 0 0 0 0 

43 0.1339 0.1716 0.0054 0.0458 

44 1.2674 0.0808 0 0 

45 0.7763 0 0 0 

46 0 0.979 0 0 

47 0.6622 0.1453 0 0 

48 1.0309 0 0 0 

49 0.752 0 0 0 

50 1.3005 0 0 0 

51 0.4094 0 0 0 

52 1.0623 0 0 0 

53 1.2228 0 0 0 

54 0.5688 0.0676 0 0 

55 1.2784 0 0 0 

56 0.7104 0 0 0 

57 0.6959 0.143 0 0 

58 1.5181 0 0 0 

59 1.9465 0 0 0 

60 1.0811 0 0 0 

61 1.3852 0 0 0 

62 0.2054 0 0 0 

63 0.292 0 0 0 

64 0.0387 0.0703 0 0 

65 0.8027 0 0 0 

66 0.2548 0.6244 0 0 

67 0.2699 0.9479 0.5666 0 

68 0.3923 0 0 0 

69 1.0019 0.9277 0 0 

70 1.0667 0.9677 0.0534 0 

71 0.9473 0 0 0 

72 0.0063 0 0 0 

73 1.0315 0 0 0 

74 1.1774 0 0 0 
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Output of automatic nuclear analysis for the ZT04_01 SCN SBEM dataset – Contents 
of dist_nuclear_envelope.txt, Continued. 

 

Cell # 
Distance: 

Nucleolus #1 
(μm) 

Distance: 
Nucleolus #2 

(μm) 

Distance: 
Nucleolus #3 

(μm) 

Distance: 
Nucleolus #4 

(μm) 

75 0.7432 0 0 0 

76 0 0 0 0 

77 1.1646 0.1955 0 0 

78 0.7599 0 0 0 

79 1.0683 0.1098 0 0 

80 0.9879 0.1151 0 0 

81 0.6593 0 0 0 
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