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ABSTRACT OF THE DISSERTATION

Robust Communication and Optimization over Dynamic Networks

by

Can Karakus

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2018

Professor Suhas N. Diggavi, Chair

Many types of communication and computation networks arising in modern systems have

fundamentally dynamic, time-varying, and ultimately unreliably available resources. Specifi-

cally, in wireless communication networks, such unreliability may manifest itself as variability

in channel conditions, intermittent availability of undedicated resources (such as unlicensed

spectrum), or collisions due to multiple-access. In distributed computing, and specifically in

large-scale distributed optimization and machine learning, this phenomenon manifests itself

in the form of communication bottlenecks, straggling or failed nodes, or running background

processes which hamper or slow down the computational task. In this thesis, we develop

information-theoretically-motivated approaches that make progress towards building robust

and reliable communication and computation networks built upon unreliable resources.

In the first part of the thesis, we focus on three problems in wireless networks which

involve opportunistically harnessing time-varying resources while providing theoretical per-

formance guarantees. First, we show that in full-duplex uplink-downlink cellular networks,

a simple, low-overhead user scheduling scheme that exploits the variations in channel con-

ditions can be used to optimally mitigate inter-user interference in the many-user regime.

Next, we consider the use of intermittently available links over unlicensed spectral bands

to enhance communication over the licensed cellular band. We show that channel output

feedback over such links, combined with quantize-map-forward relaying, provides generalized-

degrees-of-freedom gain in interference networks. We characterize the information-theoretic
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capacity region of this model to within a constant gap. We finally consider the use of such

intermittent links in device-to-device cooperation to aid cellular downlink. We develop an

optimal dynamic resource allocation algorithm for such networks using stochastic approxi-

mation and graph theory techniques, and show that the resulting scheme results in up to

5-6x throughput gain for cell-edge users.

In the second part, we consider the problem of distributed optimization and machine

learning over large-scale, yet unreliable clusters. Focusing on a master-worker architecture,

where large-scale datasets are distributed across worker nodes which communicate with a

central parameter server to optimize a global objective, we develop a framework for embed-

ding redundancy in the dataset to combat node failures and delays. This framework consists

of an efficient linear transformation (coding) of the dataset that results in an overcomplete

representation, combined with a coding-oblivious application of a distributed optimization

algorithm. We show that if the linear transformation is designed to satisfy certain spectral

properties resembling the restricted isometry property, nodes that fail or delay their com-

putation can be dynamically left out of the computational process, while still converging

to a reasonable solution with fast convergence rates, obviating the need for explicit fault-

tolerance mechanisms and significantly speeding up overall computation. We implement

the techniques on Amazon EC2 clusters to demonstrate the applicability of the proposed

technique to various machine learning problems, such as logistic regression, support vector

machine, ridge regression, and collaborative filtering; as well as several popular optimization

algorithms including gradient descent, L-BFGS, coordinate descent and proximal gradient

methods.
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CHAPTER 1

Introduction

1.1 Dynamic Networks

Modern communication and computation networks have reached an unprecedented scale,

both in terms of their size, and the amount of data they handle per second. Wireless

communication networks support an ever-increasing volume of data traffic over billions of

nodes, through a multitude of technologies and standards. Computation networks, consisting

of large clusters of processors in data centers or networks of mobile devices, process massive

amounts of data each second.

Such networks typically exhibit a high degree of dynamism, which can manifest itself in a

variety of ways, including time-varying availability of network resources, failures of network

components, and changes in network conditions and capacity. In designing any system

built upon such time-varying and intermittently available network resources, one needs to

explicitly account for such unreliability, since a system designed based on a static network

assumption might fail in the face of dynamism.

The most straightforward solution to handle such dynamism is to constantly monitor

network conditions, and change system operation whenever underlying network conditions

change. For instance, in a wireless network, one can design a different communication

strategy for different network conditions, and let the network choose the corresponding

strategy based on the current network state. Unfortunately, in many cases, the sheer scale

of the network, as well as time constraints might render accurate and timely tracking of

global network state infeasible, let alone adapting strategies. Building reliable systems over
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such dynamic networks instead requires designing communication and computation strategies

that are inherently robust to such changes in network conditions, and that are adaptive by

design.

In this thesis, we explore such strategies under a variety of scenarios over certain types

of communication and computation networks. First, we consider wireless communication

networks, and focus on three specific scenarios where we develop and analyze such schemes;

namely, interference networks with unreliable feedback, full-duplex uplink-downlink cellu-

lar networks, and device-to-device cooperation over downlink cellular networks. Next, we

consider distributed optimization and learning over computing networks with master-worker

architecture, and develop computing strategies that are robust against changing and unpre-

dictable network failures and bottlenecks.

We next describe in more detail how dynamism manifests itself specifically in wireless

networks and distributed computing.

1.1.1 Wireless networks

Variability is an integral part of most wireless networks. In the context of this thesis, it is

useful to distinguish between two types of variability: the one in channel states, and the one

in link availabilities.

In cellular networks, channel states typically vary in the order of milliseconds, due to

effects such as user mobility, changing environment, and effects arising due to the charac-

teristics of the wireless medium, such as multipath fading and shadowing. There is a vast

body of research focusing on the design of wireless networks under such variability [TV05].

Although this is a well-researched topic, its effects and implications in emerging types of wire-

less networks are still fairly unexplored. In this thesis, we focus on one such network, namely

full-duplex cellular networks, where the base stations are equipped with full-duplex radios,

capable of transmitting and receiving over the same frequency band at the same time. We

explore the effect of channel state variability in such networks, and design a communication
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strategy that specifically exploits the variations in channel state.

The second type of variability is the intermittent availability of certain communication

links in the network. Such intermittence arises when undedicated resources are used for com-

munication, such as unlicensed spectra. Since access to such resources are not coordinated,

transmissions can face collisions from other networks, and get dropped. In addition, con-

trol and back-off mechanisms employed in higher layers of the protocol stack (e.g., CSMA)

can also make a certain link momentarily unusable from the physical-layer perspective. In

this thesis, we consider schemes that make use of unlicensed bands to enhance communica-

tion over the licensed band, either through feedback or cooperation over such bands, while

accounting for the intermittent availability of these resources. We show that, by taking a

longer-term view of the network, it is possible to design schemes that harness these additional

resources to reliably improve communication over the network.

1.1.2 Distributed computing

Large-scale computing networks can suffer from node failures and delays. In computing clus-

ters in data centers, such failures and delays can arise from resources being shared with other

applications, running background processes, communication bottlenecks on the network, or

power limits [DB13]. In computations involving a large number of nodes, a small fraction of

such slow nodes, called stragglers, can significantly slow down the overall computation.

Specifically in distributed optimization and learning, databases are stored across a large

number of nodes, and these nodes alternate between processing their local data and com-

municating with a central server. In the case of node failures, the part of database stored in

the failed nodes are effectively lost from the learning procedure, degrading the quality of the

final solution. In the more common case of straggler nodes, learning is slowed down since

the entire procedure waits for the slowest nodes. These effects are especially dominant in

an emerging setting for distributed learning, called federated learning, where the local com-

putations are done by mobile devices across the world, which communicate with a central
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server. In this case, communication delays and available computational resources can vary

significantly across devices, and over time, and it is critical for the system to be robust to

such variations.

In this thesis, we propose a framework of encoded distributed optimization, which adds

redundancy in the data to counteract the effect of such failures and delays.

1.2 Thesis Outline

This thesis consists of the design and analysis of several communication and computation

techniques that are provably robust against the types of variability outlined in this section.

In Chapter 2, we consider the use of intermittent channel output feedback for interference

management in wireless networks. We develop a technique that harnesses such unreliable

feedback, and show that it approximately achieves the information-theoretic capacity region

for this model. The results of this chapter demonstrate that even unreliable feedback can be

used to mitigate the harmful effect of interference in wireless networks.

In Chapter 3, we focus on full-duplex cellular networks, where base station serves uplink

and downlink users over the same time-frequency resource, which results in interference from

uplink users to downlink ones. By exploiting the variations in the network state, we design

a simple, low-overhead joint uplink-downlink user scheduling algorithm, which is shown to

optimally mitigate inter-user interference in the many-user regime.

We explore the use of device-to-device (D2D) cooperation over unlicensed bands in Chap-

ter 4. We design a physical-layer D2D cooperation scheme that is shown to be information-

theoretically approximately optimal, and using this cooperation mechanism as a building

block, we develop a resource allocation policy that allocates the use of such D2D links in

a network, while accounting for various constraints such as interference over the unlicensed

band, and fairness considerations.

We turn to distributed computing in Chapter 5, and study node failures in distributed
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optimization under master-worker architecture. We introduce the encoded distributed op-

timization framework, which consists of encoding of the dataset to add redundancy, and a

coding-oblivious application of any distributed optimization algorithm. We theoretically and

numerically analyze the robustness achieved by this approach against node failures.

In Chapter 6, we develop the encoded distributed optimization framework further, ac-

counting for stragglers and temporal variations in network conditions. We theoretically

analyze the convergence of various popular optimization methods under this framework. We

also discuss code design and other practical issues, and present our experimental results over

computing clusters.

Finally, in Chapter 7, we present our conclusions and discuss open questions.

We point out that most of the material in this thesis has been published, or submitted

for publication as of this date. The contents of Chapter 2 were published in [KWD13b,

KWD13a, KWD15], those in Chapter 3 were published in [KD15], those in Chapter 4 can

be found in [KD17], those in Chapter 5 were in [KSD17a], and the contents of Chapter 6 are

partly published in [KSD17b], and partly submitted for publication in [KSD18].
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CHAPTER 2

Opportunistic Feedback for Interference Management

2.1 Introduction

From a physical-layer standpoint, the fundamental bottleneck limiting performance in mod-

ern wireless networks is interference. The coding and transmission techniques developed in

recent decades, such as MIMO [Tel99], LDPC codes [RSU01], turbo codes [BGT93], and po-

lar codes [Ari09] boosted the point-to-point transmission rates near their theoretical limits,

while rapid increase in wireless traffic demand resulted in dense deployment of networks. As

a result, most wireless networks today operate in the interference-limited regime. This phe-

nomenon has resulted in a myriad of research efforts in the last decade, aiming to mitigate

the effects of interference in wireless networks.

One appealing idea along this direction is to use feedback from receiver to transmitter.

Most modern wireless technologies and standards already employ the feedback mechanism

for various purposes from multiple-access to incremental redundancy and hybrid ARQ tech-

niques. The work in [ST11] showed that another type of feedback, namely channel output

feedback, can be an effective mechanism to alleviate the effect of interference in wireless

networks. The main idea underlying this approach is that channel output feedback informs

that transmitter of interference signals in the past transmissions, which then allows it to re-

process and forward this interference signal in the future transmission slots, which is useful

information for both its own intended destination -since it allows for the cancellation of past

interference- and the intended destination of the interfering transmission.

Although being promising, the techniques described in this work fundamentally relies
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on the assumption that the feedback is always perfectly available at the transmitter. How-

ever, such perfect availability is typically not feasible in modern wireless networks, which

have dynamically varying resources. In this work, we investigate the effect of feedback for

interference management when the feedback is only intermittently available at the transmit-

ter, due to such variations in resources. This model naturally leads to techniques that use

feedback more opportunistically, which we show is still useful for interference management.

The chapter is organized as follows. We provide background and motivation for studying

interference channel with intermittent feedback in Section 2.2. We formally state the problem

and establish the notation in Section 2.3. We present our main results in Section 2.5 and give

interpretations of them. We motivate our coding scheme and explain it through an example

in Section 2.4. We give the analysis of the coding scheme in Section 2.6. The outer bound

is developed in Section 2.7 and Section 2.8 concludes the chapter with a brief discussion of

possible extensions of the work. Many of the detailed proofs are given in Appendix A.

2.2 Interference Channel with Intermittent Feedback

The simplest information-theoretic model for studying interference is the two-user Gaussian

interference channel (IC). It has been shown that feedback can provide an unbounded gain

in capacity for two-user Gaussian interference channels [ST11], in contrast to point-to-point

memoryless channels, where feedback gives no capacity gain [Sha56], and multiple-access

channels, where feedback can at most provide power gain [Oza84]. This has been demon-

strated when the feedback is unlimited, perfect, and free of cost in [ST11]. Given the

optimistic result obtained under this setting, a natural question arises: Can feedback be

leveraged for interference management under imperfect feedback models?

There have been several pieces of work so far, attempting to answer this question. Vahid et

al. [VSA12] considered a rate-limited feedback model, where the feedback links are modeled

as fixed-capacity deterministic bit pipes. They developed a scheme based on decode-and-

forward at transmitters and lattice coding to extract the helping information in the feedback
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links, and showed that it achieves the sum-capacity to within a constant gap. The work

in [LTM12] studied a deterministic model motivated by passive feedback over AWGN chan-

nels, and [SAY09, SWT12] studied the two-way interference channel, where the feedback is

provided through a backward interference channel that occupies the same resource as the

forward channel. [LTM12, SAY09] and [SWT12] only dealt with the linear deterministic

model [ADT11] of the Gaussian IC.

In this work, we investigate how to exploit intermittent feedback for managing inter-

ference. Such intermittent feedback could occur in several situations. For example, one

could use a side-channel such as WiFi for feedback; in this case since the WiFi channel is

best-effort, dropped packets might cause intermittent feedback. In other situations, control

mechanisms in higher network layers could cause the feedback resource to be available inter-

mittently. For the feedback links, Bernoulli processes {S1[t]} and {S2[t]} control the presence

of feedback for user 1 and 2, respectively. The two processes can be dependent, but their

joint distribution is i.i.d. over time. We assume that the receivers are passive: they simply

feedback their received signals back to the transmitters without any processing. In other

words, each transmitter receives from feedback an observation of the channel output of its

own receiver through an erasure channel, with unit delay. We focus on the passive feedback

model as the intermittence of feedback is motivated by the availability of feedback resources

(either through use of best-effort WiFi for feedback or through feedback resource schedul-

ing). Therefore, it might be that the time-variant statistics of the intermittent feedback are

not a priori available at the receiver, precluding active coding. Moreover, the availability

of the feedback resource may not be known ahead of transmission, therefore motivating the

assumption of causal state information at the transmitter. If the receiver has a priori infor-

mation about the feedback channel statistics, it can perform active coding, in which case,

the intermittent feedback model reduces to the rate-limited model of [VSA12].

We study the effect of intermittent feedback for the two-user Gaussian IC inspired by

ideas we develop for the linear deterministic IC model [ADT11]. Our main contribution

is the approximate characterization of the capacity region of the interference channel with
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Figure 2.1: Generalized degrees of freedom with respect to interference strength α := log INR
log SNR

for symmetric channel parameters.

intermittent feedback, under the Gaussian model. We also derive an exact characterization

of the capacity region under the linear deterministic model, which agrees with the Gaussian

result. The capacity characterizations under both models depend only on the forward channel

parameters and the marginal distributions of S1 and S2; not on their joint distribution.

Our result shows that feedback can be harnessed to provide multiplicative gain in Gaus-

sian interference channel capacity even when it is unreliable and intermittent. The result

can be interpreted using the picture given in Figure 2.1, which is depicted (for convenience)

in terms of symmetric generalized degrees of freedom for the special case of symmetric chan-

nel parameters. The given GDoF curves suggest that as the feedback probability increases,

the achievable GDoF also increases for all interference regimes for which perfect feedback

provides any GDoF gain. One can also observe from the figure that the capacity gain from

intermittent feedback, which depends on the portion of time when the feedback is active,

remains unbounded, similar to the perfect feedback case.

A consequence of this result is that when the feedback links are active with large enough

probabilities, the sum-capacity of the perfect feedback channel can be achieved to within

a constant gap. Similarly for the linear deterministic case, the perfect feedback capacity

9



is exactly achieved even when there is only intermittent feedback, with large enough “on”

probability. In particular, under the symmetric setting, this threshold is 1/2 for each feedback

link. This is also reflected in Figure 2.1, where the “V-curve” achievable with perfect feedback

is already achievable when the feedback probability is only 1/2.

Our achievable scheme has three main differences from the previous schemes developed in

[ST11, VSA12] and [LTM12]. First, we use quantize-map-and-forward (QMF)1 [ADT11] at

the transmitters to send the information obtained through feedback, as opposed to (partial

or complete) decode-and-forward, which has been used in [ST11, VSA12, LTM12]. This is

because when there is intermittent feedback, the transmitters might not be able to decode

the other user’s (partial) message, but would still need to send useful information about the

interference. A similar situation arises in a relay network, where QMF enables forwarding of

evidence, without requiring decoding [ADT11]. Second, at the receivers, we perform forward

decoding of blocks instead of backward decoding, which results in a better delay performance.

Third, we do not use structured codes, i.e., we only perform random coding.

We also develop novel outer bounds that are within a constant of the achievable rate

region for the Gaussian IC and match the achievable region for the linear deterministic

IC. These outer bounds are based on constructing an enhanced channel and appropriate

side-information. These are illustrated in Section 2.7.

Lastly, we extend these results for packet transmission channels, modeled through parallel

channels which are M -symbol extensions of the original model. This can be considered as a

model for OFDM and packet drops over a best-effort channel.

10
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Figure 2.2: Two-user discrete memoryless interference channel with intermittent feedback

2.3 Model and Formulation

We consider the 2-user discrete memoryless interference channel (DM-IC) with intermittent

feedback, illustrated in Figure 2.2. We assume Transmitter i (Txi) has a messageWi intended

for Receiver i (Rxi), i = 1, 2. W1 ∈
[
2NR1

]
and W2 ∈

[
2NR2

]
are independent and uniformly

distributed, where, for n ∈ N, [n] := {k ∈ N : k ≤ n}. The signal transmitted by Txi at time

t is denoted by Xi,t ∈ Xi, while the channel output observed at Rxi is denoted by Yi,t ∈ Yi,
for i = 1, 2. For a block length N , the conditional probability distribution mapping the

input codeword to the output sequence is given by

p(Y N
1 , Y N

2 |XN
1 , X

N
2 ) =

N∏

t=1

p (Y1,t, Y2,t|X1,t, X2,t)

The feedback state sequence pair S :=
(
SN1 , S

N
2

)
have the joint distribution

p
(
SN1 , S

N
2

)
=

N∏

t=1

p (S1,t, S2,t) .

and marginally, at time t, Si,t ∼ Bernoulli(pi), for i = 1, 2, for all t and N . Note that, for

any fixed time slot t, the random variables S1,t and S2,t are not necessarily independent, that

is, the joint distribution p(S1,t, S2,t) can be arbitrary. We assume that receivers have access

to S strictly causally, that is, at time t, both receivers know the realization of St−1.

1The QMF scheme of [ADT11] was generalized to DMCs in [LKE11] (and the scheme was called noisy
network coding) and to lattices in [OD10, OD13]. In this work we develop the “short-messaging” version
of QMF [KH11] instead of the “long-messaging” version first studied in [ADT11] and extended to DMCs in
[LKE11]. For a longer discussion about this and other issues, refer to Section 2.8.
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At the beginning of time t, Txi observes the channel output received by Rxi at time t−1

through an erasure channel, i.e., it receives Ỹi,t−1 := Si,t−1Yi,t−1, for i = 1, 2. Note that this

is a passive feedback model, in that it does not allow the receiver to perform any processing

on the channel output; it simply forwards the received signal Yi at every time slot, which

gets erased with probability 1− pi.

For random variables A and B, we use the notation A
f
= B to denote that A is a

deterministic function of B2. Then our channel model implies Xi,t
f
=
(
Wi, S

t−1
i , Ỹ t−1

i

)
.

A rate pair (R1, R2) is said to be achievable if there exists a pair of codebooks (C1, C2)

at Tx1 and Tx2, with rates R1 and R2, respectively, and pairs of encoding and decoding

functions such that the average probability of error at any decoder goes to zero as the

block length N goes to infinity. The capacity region with feedback probabilities p1 and

p2, C(p1, p2), is defined as the closure of the set of all achievable rate pairs (R1, R2) when

S1 ∼ Bernoulli(p1) and S2 ∼ Bernoulli(p2). Sum-capacity is defined by

Csum(p1, p2) := sup {R1 +R2 : (R1, R2) ∈ C(p1, p2)} .

In this work, we consider two specific channel models (that is, two specific classes of

(X1,X2,Y1,Y2, p (y1, y2|x1, x2))

tuples), described in the following subsections.

2.3.1 Linear deterministic model

This channel model was introduced in [ADT11] and since then proved useful in providing

insight into the nature of signal interactions many network information theory problems (see

Figure 2.3).

We assume Xi,t ∈ Fq2, for i = 1, 2, where F2 is the binary field. The received signal at

2More formally, A
f
= B means that there exists a σ(B)-measurable function f such that A = f(B) almost

surely, where σ(B) is the sigma-algebra generated by B.
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Figure 2.4: Two-user Gaussian interference

channel with intermittent feedback

Rxi is given by

Yi,t = HiiXi,t + HijXj,t

for (i, j) = (1, 2), (2, 1). The channel matrices are given by Hij := Sq−nij for (i, j) ∈ {1, 2}2,

where q = max {n11, n12, n21, n22}, and S ∈ Fq×q2 is the shift matrix


 0T 0

Iq−1 0


, where 0 is

the zero vector in Fq−1
2 and Iq−1 is the identity matrix in F(q−1)×(q−1)

2 . We also define, for

(i, j) = (1, 2), (2, 1),

Vi,t = HjiXi,t.

The capacity region for the linear deterministic model will be denoted by CLDC(p1, p2), while

its sum-capacity will be denoted by Csum
LDC(p1, p2).

2.3.2 Gaussian model

Under the canonical Gaussian model (see Figure 2.4), the channel outputs are related to the

inputs through the equations

Y1,t = h11X1,t + h12X2,t + Z1,t

Y2,t = h21X1,t + h22X2,t + Z2,t
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where hij ∈ C, for (i, j) ∈ {1, 2}2, are channel gains, and Z1,t, Z2,t ∼ CN (0, 1) are circularly

symmetric complex white Gaussian noise. We assume an average transmit power constraint

of Pi at Txi, i.e., for any length-N codeword XN
i transmitted by Txi, 1

N

∑N
t=1 |Xi,t|2 ≤ Pi,

i = 1, 2. We also define

SNRi := |hii|2Pi

INRi := |hij|2Pj

and

Vi := hjiXi + Zj,

Ṽi := SjVi,

for (i, j) = (1, 2), (2, 1). Note that this definition of Vi,t is consistent with its definition under

linear deterministic model, in the sense that it is what remains out of the channel output

when the intended signal is completely cancelled.

The capacity region for the Gaussian model will be denoted by CG(p1, p2), while its sum-

capacity will be denoted by Csum
G (p1, p2). We will also use the notation Csum

G,p := Csum
G (1, 1),

denoting the sum-capacity under perfect feedback.

Gaussian parallel channel is described by the equations

Y1,t = h11X1,t + h12X2,t + Z1,t (2.1)

Y2,t = h21X2,t + h22X2,t + Z2,t (2.2)

Ỹ1,t = S1,tY1,t (2.3)

Ỹ2,t = S2,tY2,t (2.4)

where Xi,t,Yi,t ∈ CM , i = 1, 2, are the channel input and output, respectively, at user i; Z1,t

and Z2,t are independent and distributed with CN (0, I); and Ỹi,t, i = 1, 2 is the output of

the feedback channel of Txi, at time t. Note that the channel gains are scalars. It should

also be noted that any given time, the same feedback state variable Si,t controls the presence

of feedback for all sub-channels, i.e., the feedback is present either for all M channels, or for

none of them.
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2.4 Insights from Linear Deterministic Model

In this section, we illustrate our coding scheme through an example over the linear determin-

istic channel. This example is intended to demonstrate how and why the proposed scheme

works, and motivate the use of quantize-map-forward as a feedback strategy.

We consider the symmetric channel shown in Figures 2.5 and 2.6, with n11 = n22 = 4,

n12 = n21 = 2, and p1 = p2 = 0.5, and focus on the achievable symmetric rate. In this

example we will take a block length of N = 2 for illustration purposes. Although for this

particular case, the probability of decoding error is large due to short block length, in general

the same coding idea can be applied for a large block length, in which case arbitrarily small

error probability can be achieved by taking advantage of the law of large numbers.

We focus on two blocks of transmission. At each block, the users split their messages

into common and private parts. The common parts of the messages are decoded by both

receivers, whereas the private part is only decoded by the intended receiver, as in Han-

Kobayashi scheme for the interference channel without feedback [HK81]. In the first block,

Tx1 sends linear combinations of its two common information symbols, a1, a2 on its two com-

mon (upper) levels, and linear combinations of its private information symbols, a3, a4, a5, a6,

over its private (lower) two levels over a block of two time slots. Tx2 performs similar

operations for its common symbols b1, b2, and its private symbols b3, b4, b5, b6.

Note that at this point, the receivers can decode the symbols sent at their upper two

levels by solving the four equations in two unknowns.

After each time slot, the receivers feed back their channel outputs, but the transmitters

wait until the end of the block to collect sufficient information from feedback. We consider

a particular feedback channel realization
(
SN1 , S

N
2

)
= ((1, 0), (0, 1)) for illustration purposes.

After the first block, each transmitter gets from feedback two linear combinations of the

interfering symbols of the previous block, by subtracting their own linear combinations from

the channel outputs. In the second block, the transmitters perform further linear encoding

of these two linear combinations. These additional linear combinations of the interference
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Figure 2.5: First block of transmissions for the example coding scheme over linear determin-

istic channel. Receptions enclosed in green/solid rectangles represent the channel outputs

that the receivers are able to feed back; whereas those enclosed in red/dashed rectangles

represent the channel outputs that gets erased through the feedback channel.
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Figure 2.6: Second block of transmissions for the example coding scheme over linear deter-

ministic channel. The helping information sent by the interfering transmitters (a1, a2 at Rx1,

b1, b2 at Rx2) are omitted for brevity. Note that these are already known at the receivers

from previous block, and hence can be cancelled.

symbols are superimposed on top of the linear combinations of the fresh common informa-

tion symbols a7, a8 (and b7, b8 for Tx2) of the second block. On the private levels, linear
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combinations of new symbols a9, a10, a11, a12 at Tx1 and b9, b10, b11, b12 at Tx2 are sent, as in

the first block.

After the second block of transmission, the receivers collect the four linear equations

obtained in the lower two levels of the first block and the four linear equations obtained at

the upper two uninterfered levels in the second block. It is easy to check that these eight

equations are linearly independent, and hence the receivers can solve for the eight unknowns

(a3, a4, a5, a6, a7, a8, b1, b2 for Tx1, and b3, b4, b5, b6, b7, b8, a1, a2 for Tx2).

Having decoded the private information (and interference) of the first block and the

common information of the second block, the receivers next cancel the additional linear

combinations of the previously decoded common information received at the lower two levels

of the second block due to feedback. This means that Rx1 cancels the a1 and a2 symbols in

the lower two levels, and Rx2 cancels the b1 and b2 symbols.

Since the transmitters can also cancel this information from the received feedback (be-

cause it is a function of their own symbols), the state of each terminal reduces to that in the

end of the first block. Therefore, in each of the following blocks, the operation in the second

block can be repeated, each time letting the receivers decode the private information of the

previous block and the common information of the new block.

One caveat is that, the feedback channel realization will not be the same at each block.

To address this point, we first note that the only decoding error event is when the channel

realization is such that the resulting linear system in any of the receivers is not full rank.

For the particular code in the example, it is easy to check that the probability of this event

is zero for any feedback channel realization as long as SNi 6= (0, 0) for i = 1, 2. In general,

for any ε > 0, in order to achieve a symmetric rate Csym − ε, Txi needs to receive feedback

for at least N(pi − ε) time slots at each block. This condition is ensured by law of large

numbers by letting N →∞, and arbitrarily small error probability can be achieved3.

3Note that this does not prove the existence of a sequence of codes that allows arbitrarily small error
probability for an arbitrary block length. The intention in this section is to give an illustration of the coding
scheme; the precise achievability proof will be presented in Section 2.6.
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To find the symmetric rate achieved by this scheme, we assume the scheme is run for B

blocks. At the end, each receiver will have resolved 6B−4 information bits in 2B time slots.

Letting B → ∞ gives a symmetric rate of 3 bits/time slot. Note that without feedback, a

symmetric rate of at most 2 bits/time slot can be achieved. At the other extreme, it is also

easy to verify from the results in [ST11] that symmetric capacity under perfect feedback is

also 3 bits/time slot, which is in agreement with Figure 2.7 and Corollary 2.1.

This example also serves to demonstrate why we perform quantize-map-forward instead

of decode-and-forward as a feedback strategy. In general, to achieve the symmetric capacity,

Tx2 needs to send linear combinations of N information symbols on its common levels, while

Tx1 receives 2Np1 of these linear combinations on the average. Hence, if p1 < 0.5, Tx1 will

not be able to decode the interference of the previous block. Instead, Tx1 performs a linear

mapping of the received feedback information, which turns out to achieve the symmetric

capacity.

Finally, we point out that decoding in this scheme is sequential, i.e., the receiver decodes

the blocks in the same order they are encoded4. This is in contrast to earlier feedback coding

schemes proposed for interference channel, which perform backward coding. The obvious

advantage of using sequential decoding is better delay performance, since the receiver does

not need to wait for the end of the entire transmission to start to decode.

2.5 Capacity Results for Interference Channels with Intermittent

Feedback

In this section, we present our results and discuss their consequences for both linear deter-

ministic and Gaussian models.

4An alternate scheme based on backward decoding was presented in [KWD13b], for the case of linear
deterministic channel.
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R1 ≤ min
{

max(n11, n12), n11 + p2(n21 − n11)+
}

(2.5)

R2 ≤ min
{

max(n22, n21), n22 + p1(n12 − n22)+
}

(2.6)

R1 +R2 ≤ max(n11, n12) + (n22 − n12)+ (2.7)

R1 +R2 ≤ max(n22, n21) + (n11 − n21)+ (2.8)

R1 +R2 ≤ max
{
n12, (n11 − n21)+

}
+ max

{
n21, (n22 − n12)+

}

+ p1 min
{
n12, (n11 − n21)+

}
+ p2 min

{
n21, (n22 − n12)+

}
(2.9)

2R1 +R2 ≤ max(n11, n12) + max
{
n21, (n22 − n12)+

}
+ (n11 − n21)+

+ p2 min
{
n21, (n22 − n12)+

}
(2.10)

R1 + 2R2 ≤ max(n22, n21) + max
{
n12, (n11 − n21)+

}
+ (n22 − n12)+

+ p1 min
{
n12, (n11 − n21)+

}
(2.11)

2.5.1 Linear deterministic model

The following theorem captures our main result for the linear deterministic model.

Theorem 2.1. The capacity region CLDC(p1, p2) of the linear deterministic interference

channel with intermittent feedback is given by the set of rate pairs (R1, R2) satisfying (2.5)–

(2.11).

Proof. See Section 2.6 for achievability, and Section 2.7 for converse.

The following corollary shows that it is possible to achieve perfect feedback sum-capacity

even when feedback probabilities are less than one.

Corollary 2.1. For n12, n21 > 0, there exists p∗ < 1 such that

Csum
LDC(p1, p2) = Csum

LDC(1, 1)

for all p1, p2 ≥ p∗.
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Proof. See Appendix A.7.

We illustrate Corollary 2.1 through an example. Let us assume n12 = n21 = m, n11 =

n22 = n, and p1 = p2 = p. It is easy to see that if p1 = p2 = 0.5, the bounds on R1 + R2,

2R1 +R2 and R1 +2R2 that involve p1 and p2 become redundant, and the sum-capacity does

not increase beyond this point, for all (m,n).

2.5.2 Gaussian model

We define, for any set R of rate pairs (R1, R2) and scalar δ ∈ R,

R− δ := {(R1, R2) : (R1 + δ, R2 + δ) ∈ R} ,

R+ δ := {(R1, R2) : (R1 − δ, R2 − δ) ∈ R} .

The following theorem captures our main result for the Gaussian model.

Theorem 2.2. The capacity region CG(p1, p2) of the Gaussian interference channel with

intermittent feedback satisfies

C̄(p1, p2)− δ1 ⊆ CG(p1, p2) ⊆ C̄(p1, p2) + δ2 (2.12)

where C̄ (p1, p2) is the set of (R1, R2) satisfying (2.13)–(2.17) for (i, j) = (1, 2), (2, 1) and

δ1 < 2 log 3 + 3 (p1 + p2) bits, and δ2 < log 3 + p1 + p2 bits.

Proof. Section 2.6 proves an inner bound region Ri
G(p1, p2), Section 2.7 proves an outer

bound region Ro
G(p1, p2), and Appendix A.6 shows that C̄(p1, p2) − δ1 ⊆ Ri

G(p1, p2) and

Ro
G(p1, p2)− δ2 ⊆ C̄(p1, p2).

Remark 2.1. Theorem 2.2 uniformly approximates the capacity region under Gaussian

model to within a gap of 3 log 3 + 4 (p1 + p2) bits, independent of channel parameters. To

our knowledge, this is the first constant-gap capacity region characterization for interference

channel with noisy feedback with arbitrary channel parameters.
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Ri < log (1 + SNRi + INRi) (2.13)

Ri < log (1 + SNRi) + pj log

(
1 +

INRj
1 + SNRi

)
(2.14)

Ri +Rj < log

(
1 +

SNRi
1 + INRj

)
+ log (1 + SNRj + INRj) (2.15)

Ri +Rj < log

(
1 +

SNRi
1 + INRj

+ INRi

)
+ log

(
1 +

SNRi
1 + INRj

+ INRi

)

+ pi log




(1 + INRi)
(

1 + SNRi
1+INRj

)

1 + SNRi
1+INRj

+ INRi


+ pj log




(1 + INRj)
(

1 +
SNRj

1+INRi

)

1 +
SNRj

1+INRi
+ INRj


 (2.16)

2Ri +Rj < log

(
1 +

SNRi
1 + INRj

)
+ log

(
1 +

SNRj
1 + INRi

+ INRj

)

+ log (1 + SNRi + INRi) + pj log




(1 + INRj)
(

1 +
SNRj

1+INRi

)

1 +
SNRj

1+INRi
+ INRj


 (2.17)

Remark 2.2. As will be seen in the achievability proof, the proposed coding scheme achieves

a smaller gap than what is given in Theorem 2.2; however, for simplicity in the achievability

proof, we lower bound the achievable rate terms with computationally more tractable ones,

which articifically contributes to the claimed gap. Moreover, one can optimize over the pa-

rameters of the proposed coding scheme, such as power allocation and quantization distortion,

to further reduce the gap, but this issue will not be dealt with in this work.

Theorem 2.2 allows us to characterize the symmetric generalized degrees of freedom under

symmetric channel parameters, which is a metric often used to compare the capabilities of

the interference channel under different settings.

Corollary 2.2 (Generalized Degrees of Freedom). For symmetric channel parameters (SNR1 =

SNR2 = SNR, INR1 = INR2 = INR, p1 = p2 = p), the symmetric generalized degrees of free-

dom of freedom, defined by

dsym := lim
SNR→∞

INR=SNRα

Csym(SNR, INR, p)

log SNR
,
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where Csym(SNR, INR, p) := sup {R : (R,R) ∈ CG(p, p)}, is given by

dsym =





min {1− α/2, 1− (1− p)α} , α ≤ 1/2

min {1− α/2, p+ (1− p)α} , 1/2 ≤ α ≤ 1

min {α/2, (1− p) + pα} , α ≥ 1

Figure 2.7 plots the available generalized degrees of freedom with respect to interference

strength for various values of p. As can be observed, as p is increased, gradually better

curves are obtained. It should be noted that once p ≥ 0.5, the “V-curve” that is achieved

by perfect feedback [ST11] is already achieved. Next, this observation will be made precise.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

α

d sy
m

 

 
p=0
p=0.1
p=0.25
p=0.5

Figure 2.7: Generalized degrees of freedom with respect to interference strength α := log INR
log SNR

for symmetric channel parameters.

The perfect feedback outer bound on the sum-capacity, Csum
G,p , is given in Theorem 3 of

[ST11] as follows.

Csum
G,p ≤ sup

0≤ρ≤1
min {ζ1(ρ), ζ2(ρ)}

ζ1(ρ) = log

(
1 +

(1− ρ2)SNR1

1 + (1− ρ2)INR2

)
+ log

(
1 + SNR2 + INR2 + 2ρ

√
SNR2 · INR2

)

ζ2(ρ) = log

(
1 +

(1− ρ2)SNR2

1 + (1− ρ2)INR1

)
+ log

(
1 + SNR1 + INR1 + 2ρ

√
SNR1 · INR1

)

The next corollary shows that when p1 and p2 are sufficiently large, the sum-capacity of the

perfect feedback Gaussian channel can be achieved with intermittent feedback, to within a
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constant gap. Hence, this corollary is the Gaussian counterpart of the similar result given

in Corollary 2.1, for the linear deterministic channel.

Corollary 2.3. For INR1, INR2 > 0, there exists p∗ < 1 such that

Csum
G,p − Csum

G (p1, p2) ≤ δp

for all p1, p2 ≥ p∗, where δp is a constant independent of channel parameters.

Proof. See Appendix A.7.

In our intermittent feedback model, erasures are symbol-wise, that is, each symbol can

get erased independently of others. However, in a best-effort channel, erasures might occur

on packet-level instead. In order to study this scenario, we consider the parallel channel

model described by the equations (2.1)–(2.4), which is simply the M -symbol extension of

the Gaussian channel, where the channel parameters are the same for each subchannel.

Each extended symbol over this channel models a packet. The result in Theorem 2.2 easily

generalizes to parallel channel model, as shown by the following corollary.

Corollary 2.4 (Parallel channel). The capacity region C(M)
G (p1, p2) of any parallel channel

of size M with feedback probabilities p1 and p2 satisfies

M C̄(p1, p2)−Mδ1 ⊆ C(M)
G (p1, p2) ⊆M C̄(p1, p2) +Mδ2

where C̄(p1, p2), δ1 and δ2 are as defined in Theorem 2.2.

Remark 2.3. Although strictly speaking, the claim in Corollary 2.4 is more general than

that in Theorem 2.2, the achievability and converse proofs for the scalar channel directly

extend to the parallel channel without any non-trivial modification. Hence, for simplicity, we

focus on the scalar case here, and omit a separate proof for the parallel channel.
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Figure 2.8: The interference network unfolded over a block of K time slots. The node Ti[t]

corresponds to the copy of Txi at time t, while Ri[t] corresponds to the copy of Rxi at time

t. The feedback channel for time t is an erasure channel controlled by S1[t] and S2[t], while

the forward channel is a Gaussian interference channel with channel matrix H[t].

2.5.3 Discussion of results

2.5.3.1 Feedback strategy

Our result shows that even unreliable feedback provides multiplicative gain in interference

channels. The key insight in showing this result is using quantize-map-forward as a feedback

strategy at the transmitters. This is in contrast to the schemes proposed for perfect feed-

back [ST11] and rate-limited feedback [VSA12], which use decode-and-forward to extract

the feedback information. When the feedback channel is noisy, such schemes can result in

rates arbitrarily far from optimality. In order to see this, consider unfolding the channel

over time, as shown in Figure 2.8. This transformation effectively turns this channel into a

relay network, where it is known that decode-and-forward based relaying schemes can give

arbitrarily loose rates. This also motivates using quantize-map-forward as a feedback strat-

egy, which has been shown to approximately achieve the relay network capacity [ADT11].

This observation also suggests that quantize-map-forward might be a promising feedback

strategy for the additive white Gaussian noise (AWGN) feedback model of [LTM12] in order

to uniformly achieve its capacity region to within a constant gap.

It is instructive to compare the achievable rate region for the case of p1 = p2 = 1 with

the outer bound region of the perfect feedback model of [ST11]. Evaluating the region

C̄(p1, p2) − δ1 with p1 = p2 = 1, we see that the perfect feedback bound (2.15) becomes
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redundant, and the achievable region comes within (3 + 3 log 3) bits of the outer bound region

of [ST11] (see Appendix A.6 for details). We note that this gap is larger than what is achieved

by the decode-and-forward based scheme of [ST11]. This shows that uniform approximation

of capacity region via quantize-map-forward comes at the expense of an additional (but

constant) gap5. The source of this additional gap is the quantization step at the transmitters,

which introduces a distortion in the feedback signal, and eventually incurs a constant rate

penalty whose amount depends on the distortion level.

2.5.3.2 Perfect feedback sum capacity with intermittent feedback

Corollary 2.3 shows that for any set of channel parameters, there exists a threshold p∗ on

the feedback probability above which perfect feedback sum-capacity is achieved to within a

constant gap. Although the exact closed-form expression of p∗ is not clean, an examination

of the symmetric case (see Figure 2.7) reveals that in some cases it can be as low as 0.5.

The intuition behind this result lies in the fact that it takes the transmitter forward-

channel resources to send the information obtained through feedback. Note that the larger p

is, the larger the amount of additional information about the past reception can be obtained

through intermittent feedback at the transmitters. If the amount of such information is

larger than a threshold, then sending it to the receivers will limit the rate for delivering

fresh information. Hence, once this threshold is reached, having more feedback resource is

no longer useful. However, this property is not observed for the entire capacity region, since

if one of the users transmit at a low rate, then it will have sufficient slackness in rate to

forward the entire feedback information.

5Although we stated that the quantize-map-forward scheme achieves a smaller gap than what is claimed
in Theorem 2.2, the actual gap is still expected to be larger than that of the decode-and-forward based
scheme for perfect feedback, due to quantization distortion.
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2.6 Achievability

In this section, we describe the coding scheme in detail and derive an inner bound Ri
G (p1, p2)

on the rate region.

2.6.1 Overview of the achievable strategy

The main idea of the coding scheme is the same as the one presented for the example in

Section 2.4. However, it substantially generalizes the example scheme in order to account

for possible channel noise, different interference regimes and an arbitrary target rate point

in the achievable region.

The scheme consists of transmission over B blocks, each of length N . At the beginning

of block b, upon reception of feedback, transmitters first remove their own contribution from

the feedback signal and obtain a function of the interference and noise realization of block

b − 1. This signal is then quantized and mapped to a random codeword, which will be

called the helping information. Finally, a new common codeword, which is to be decoded

by both receivers, and a private codeword, to be decoded by only the intended receiver, are

superimposed to the helping information, and transmitted.

The decoding operation depends on the desired rate point (see Figure 2.10). To achieve

the rate points for which the common component of the message is large, the receiver simply

performs a variation of Han-Kobayashi decoding [HK81], i.e., it decodes the intended infor-

mation jointly with the common part of the interference. Note that this does not make use

of the helping information.

To achieve the remaining rate points, the helping information is used. For weak inter-

ference, at block b, we assume that the receiver has already decoded the intended common

information of block b− 1. After receiving the transmission of block b, the receivers jointly

decode the intended private information and the interference of block b− 1 jointly with the

common information of block b, while using the helping information sent at block b as side

information. For strong interference, the roles of intended common information and the
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interfering common information get switched.

Next, we present a detailed description of the coding scheme and proof of achievability.

2.6.2 Codebook generation

Fix p(xie)p(xic)p(xip) for i = 1, 26, and p(ui|ṽj) that achieves E
[
d(Ui, Ṽj)

]
≤ Di for (i, j) =

(1, 2), (2, 1), where d : U × V → R is the distortion measure, where U and V are the

alphabets of Ui and Ṽj, respectively. Generate 2Nri quantization codewords UN
i i.i.d. ∼

p(ui) =
∑

ṽj
p(ui|ṽj)p(ṽj), for (i, j) = (1, 2), (2, 1). For i = 1, 2, generate 2Nri codewords XN

ie

i.i.d. ∼ p(xie). Further generate, for i = 1, 2, 2NRic codewords XN
ic i.i.d. ∼ p(xic) and 2NRip

codewords XN
ip i.i.d. ∼ p(xip). For i = 1, 2, define symbol-by-symbol mapping functions

xi : Xif ×Xip → Xi and xif : Xie×Xic → Xif , where Xie, Xic, Xip, and Xif are the alphabets

for the symbols Xie, Xic, Xip, and Xif , respectively.

2.6.3 Encoding

Encoding is performed over blocks (indexed by b) of length N . See Figure 2.9 for a system

diagram. At the beginning of block b, Txi receives the punctured feedback signal Ỹ N
i (b−1) =

SNi (b−1)Y N
i (b−1) containing information about the channel output in block b−1, where the

multiplication is element-wise. Upon reception of Ỹ N
i , Txi first removes its own contribution

from the feedback signal to obtain Ṽ N
j (b−1) = SNi (b−1)V N

j (b−1). For linear deterministic

model, this is done by

Ṽ N
j (b− 1) = Ỹ N

i (b− 1)− SNi (b− 1)HiiX
N
i (b− 1),

whereas for Gaussian model, it can be obtained by

Ṽ N
j (b− 1) = Ỹ N

i (b− 1)− SNi (b− 1)hiiX
N
i (b− 1)

for (i, j) = (1, 2), (2, 1).

6Although the scheme loses beamforming gain by generating independent codebooks at the two users,
this only results in a constant rate penalty.
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Ỹ N
1 (b− 1)

−SN
1 h11X

N
1 (b− 1) (for Gaussian ch.)

−SN
1 H11X

N
1 (b− 1) (for lin.det.ch.)

p(u1|ṽ2)
UN
1 (b)

XN
1e(b)

XN
1p(b)

x1f (·, ·)x1(·, ·)

Quantize Map

SuperposeSuperpose

EncodeEncode

+ Ṽ N
2 (b− 1)

XN
1 (b)

XN
1c(b)

p(x1e)

p(x1c)p(x1p)

W1c(b)W1p(b)

Figure 2.9: Encoder diagram at Tx1

The interference signal Ṽ N
j (b− 1) is then quantized by finding an index Qi(b) such that

(
Ṽ N
j (b− 1), UN

i (Qi(b))
)
∈ A(n)

ε ,

where T (N)
ε denotes the ε-typical set with respect to the distribution p(ṽj)p(ui|ṽj), and p(ṽj)

is induced by the channel and the input distributions. If such an index Qi(b) has been found,

the codeword XN
ie (Qi(b)) that has the same index is chosen to be sent for block b. If there are

multiple such indices, the smallest one is chosen. If no such index is found, the quantization

index 1 is chosen.

Next, the message Wi(b) ∈
[
2NRi

]
to be sent at block b is split into common and private

components (Wic(b),Wip(b)) ∈
[
2NRic

]
×
[
2NRip

]
. Depending on the desired message indices

(Wic(b),Wip(b)), a common codeword XN
ic (Wic(b)), and a private codeword XN

ip (Wip(b)) is

chosen from the respective codebooks.

Finally, the using the symbol-wise maps xif (·, ·) and xi (·, ·), we obtain the codewords

XN
if (b) = xif

(
XN
ie (b), XN

ic (b)
)

XN
i (b) = xi

(
XN
if (b), XN

ip (b)
)

where the functions are applied to vectors element-wise. XN
i (b) is sent at Txi over N channel

uses.
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2.6.4 Decoding

The message indices for common and private messages, and the quantization indices of Txi

at block b will be denoted by mi(b), ni(b), and qi(b), respectively. When there are two

quantization indices to be decoded from the same user, the second one will be denoted with

q′i(b).

In order to describe the decoding process, we need to introduce some notation. Define

the following sequence of sets:

B(N)
i ((qj,mj)(b− 1))

:=
{
qi(b) :

(
SN(b− 1), XN

jf ((qj,mj)(b− 1)), (UN
i , X

N
ie )(qi(b))

)
∈ T (N)

ε

}
.

for (i, j) = (1, 2), (2, 1). Loosely, B(N)
i is the set of quantization indices of Txi that are jointly

typical with the interference of the previous round. If any of the indices (qj,mj) is known,

we will suppress the dependence to that index, e.g., if both are known, we simply denote

B(N)
i (b) :=

{
qi(b) :

(
SN(b− 1), XN

jf (b− 1), (UN
i , X

N
ie )(qi(b))

)
∈ T (N)

ε

}

where XN
jf (b− 1) refers to the codeword corresponding to the known message indices.

We assume that the set B(N)
i (b) has cardinality 2NKi(b). Specifically,

Ki(b) =
log
∣∣∣
{
qi(b) :

(
Ṽ N
j (b− 1), UN

i (qi(b))
)
∈ A(n)

ε

}∣∣∣
N

Note that due to random codebook generation, Ki(b), i = 1, 2, are random variables. The

following lemma shows that Ki(b) is almost surely bounded for sufficiently large N .

Lemma 2.1. For any ε > 0, there exists a block length N , and a quantization scheme such

that Ki(b) < κi + δ(ε), where

κi := I(Ṽj;Ui|Si)− I(Xjf ;Ui|Si)

for (i, j) = (1, 2), (2, 1), and δ(ε) is such that δ(ε)→ 0 as ε→ 0.

Proof. See Appendix A.1.
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Lemma 2.1 suggests that for each interference codeword, there is a constant number

of plausible quantization codewords, for sufficiently large block length (to see that κi is

a constant independent of channel parameters, refer to Appendix A.3). This means that

the cost of jointly decoding the quantization indices together with the actual messages is a

constant reduction in the achievable rate, which will be a useful observation in deriving the

constant-gap result.

We also define Ci = κi + 2κj, for (i, j) = (1, 2), (2, 1). The reason for this particular

definition will become clear in the error analysis. Intuitively, Ci represents the rate cost

associated with performing quantization to forward the feedback information, which intro-

duces distortion. However, as we will show later in the proof, the upper bound given in

Lemma 2.1 can be evaluated as a constant independent of channel parameters.

Given an input distribution, Rx1 is said to be in weak interference if I(X2;Y1|X1) ≤
I(X1;Y1|X2), and in strong interference otherwise. These regimes are defined similarly for

Rx2.

Decoding operation depends on the interference regime and the desired operating point

(R1, R2). In order to describe the relevant regimes of operating points, we define

Iwi := I(Xif ;Yi|X1e, X2e)− Ci, (2.18)

Isi := I(Xjf ;Yi|X1e, X2e)− Ci, (2.19)

for (i, j) = (1, 2), (2, 1). In what follows, for clarity, we will focus only on Rx1. The operations

performed at Rx2 are similar.

2.6.4.1 Weak interference (I(X2;Y1|X1) ≤ I(X1;Y1|X2))

If, for the desired operating point, R1c > Iw1, where Iw1 is as defined in (2.18), the helping

information is not used, and a slight modification of Han-Kobayashi scheme is employed.

Otherwise, the helping information is used to decode the information of block b − 1. We

describe the decoding for the two cases below.

R1c ≥ Iw1 : At block b, we assume that XN
1e(b) and XN

1 (b− 1) are known. The decoder
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Jointly decode W1p(b− 1),W2c(b− 1),W1c(b),
and quantization index Q1(b)

Weak Interference

Strong Interference

R1c ≥ Iw1

R1c < Iw1

R2c ≥ Is1

R2c < Is1 Jointly decode W1p(b− 1),W1c(b− 1),W2c(b),
and quantization index Q2(b)

Jointly decode W1p(b),W1c(b), and W2c(b)
(do not use helping information)

Jointly decode W1p(b),W1c(b), and W2c(b)
(do not use helping information)

Interference
Regime

Operating
Point

Decoding Operation

Figure 2.10: A high-level summary of the decoding policy at Rx1 (Details are omitted).

attempts to find unique indices (m1(b), n1(b),m2(b)) ∈
[
2NR1c

]
×
[
2NR1p

]
×
[
2NR2c

]
, and some

q2(b) ∈
[
2Nr2

]
such that


 SN(b− 1), XN

1f (b− 1), XN
1e(b), X

N
2e(q2(b)), XN

1f (m1(b)),

XN
1 (m1(b), n1(b)), XN

2f (q2(b),m2(b)), Y N
1 (b)


 ∈ T (N)

ε (2.20)

where the known message indices are suppressed. If the receiver can find a unique collection

of such indices, it declares them as the decoded message indices
(
Ŵ1c(b), Ŵ1p(b), Ŵ2c(b)

)
;

otherwise it declares an error.

After decoding, given the knowledge of XN
1 (b), Rx1 reconstructs XN

1e(b+ 1) by imitating

the steps taken by Tx1 at the beginning of block b+ 1, thereby maintaining the assumption

that XN
1e(b) is known at the beginning of block b. Further, note that XN

2e(b) is not uniquely

decoded, hence in block b + 1, it will still be jointly (but still, non-uniquely) decoded with

the variables of that block. We resort to non-unique decoding of this codeword since unique

decoding imposes an additional rate constraint on the helping information, thereby limiting

the amount of rate enhancement it can provide.

R1c < Iw1 : At block b, it is assumed that XN
1f (b− 1) and XN

1 (b− 2) are known at Rx1.

To decode, Rx1 attempts to find unique indices (m1(b), n1(b− 1),m2(b− 1)) ∈
[
2NR1c

]
×

31



[
2NR1p

]
×
[
2NR2c

]
and some triple (q2(b−1), q2(b), q1(b)) ∈

[
2Nr2

]
×
[
2Nr2

]
×
[
2Nr1

]
such that




SN(b− 1), XN
1f (b− 2), XN

1f (b− 1), XN
1 (n1(b− 1)),

XN
2e(q2(b− 1)), XN

2c(m2(b− 1)),
(
UN

1 , X
N
1e

)
(q1(b)), XN

2e(q2(b)),

XN
1c(m1(b)), Y N

1 (b− 1), Y N
1 (b)


 ∈ T

(N)
ε (2.21)

If a unique collection of such indices exists, then these are declared as the decoded message

indices
(
Ŵ1c(b), Ŵ1p(b− 1), Ŵ2c(b− 1)

)
. Otherwise, an error is declared.

In (2.21), the dependence of XN
1 (b−1) to the indices q1(b−1) and m1(b−1) is suppressed,

since these indices correspond to messages that have already been decoded.

In words, the decoder jointly decodes the private information and the interference of

block b− 1 jointly with the helping information and common information from block b.

Note that non-unique decoding is performed for XN
1e(b), but we have assumed thatXN

1f (b−
1)
(
and thus, XN

1e(b− 1)
)

is uniquely known at the beginning of block b. In order to maintain

this assumption for the next block, XN
1e(b) is reconstructed at Rx1. To achieve this, given

the knowledge of XN
1 (b − 1), and the quantization codebook, Rx1 imitates the operations

performed by Tx1 at the beginning of block b.

2.6.4.2 Strong interference (I(X2;Y1|X1) > I(X1;Y1|X2))

As in the weak interference case, decoding depends on the operating point. For R2c < Is1,

where Is1 is as defined in (2.19), helping information is used, otherwise, it is not used.

R2c ≥ Is1 : The operations performed are identical to those for the case of R1c ≥ Iw1

under weak interference.

R2c < Is1 : We assume XN
1 (b− 2), XN

1e(b− 1), and XN
2c(b− 1) are known at Rx1 at block

b.

To decode, Rx1 attempts to find unique indices (m1(b− 1), n1(b− 1),m2(b)) ∈
[
2NR1c

]
×
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[
2NR1p

]
×
[
2NR2c

]
and some (q2(b− 1), q2(b), q1(b)) ∈

[
2Nr2

]
×
[
2Nr2

]
×
[
2Nr1

]
such that




SN(b− 1), XN
1f (b− 2), XN

1e(b− 1), XN
2e(q2(b− 1)),

XN
1c(m1(b− 1)), XN

1p(n1(b− 1)), XN
2c(m2(b)),

(UN
2 , X

N
2e)(q2(b)), XN

1e(q1(b)), Y N
1 (b− 1), Y N

1 (b)


 ∈ T

(N)
ε (2.22)

If a unique collection of such indices exists, they are declared as the decoded message indices(
Ŵ1c(b− 1), Ŵ1p(b− 1), Ŵ2c(b)

)
. Otherwise, an error is declared. Using the information of

XN
1 (b − 1), Rx1 can now uniquely reconstruct XN

1e(b − 1) by following the steps taken by

Tx1 at the beginning of block b.

2.6.5 Error analysis

Without loss of generality, we only consider the error events occurring at Tx1 and Rx1. All

arguments here will be applicable to the other Tx-Rx pair. We define the following decoding

error events at Rx1, for block b and block length N :

DFB,w(b,N) =
{
Ŵ1c(b) = W1c(b), Ŵ1p(b− 1) = W1p(b− 1),

Ŵ2c(b− 1) = W2c(b− 1)
}c

DFB,s(b,N) =
{
Ŵ1c(b− 1) = W1c(b− 1), Ŵ1p(b− 1) = W1p(b− 1),

Ŵ2c(b) = W2c(b)
}c

DNFB(b,N) =
{
Ŵ1(b) = W1(b), Ŵ2c(b) = W2c(b)

}c

The overall decoding error events at Rx1 is given by

DFB,w(N) =
B⋃

b=1

DFB,w(b), DFB,s(N) =
B⋃

b=1

DFB,w(b)

DNFB(N) =
B⋃

b=1

DNFB(b)

We first prove that in order to find the rate achieved after transmission of B blocks, it is

sufficient to focus on the error events at an arbitrary block b. Without loss of generality,

consider the error event DFB,w(N). Assume that, after B blocks of transmission, the effective
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rate achieved by Txi is R̄i (Note that at the end of block B, some of the information

pertaining to block B is still undecoded), which can be lower bounded by R̄i ≥ B−2
B
Ri, by

ignoring the partial information decoded in the first block and the last one. We can also

upper bound the overall probability of error by

P (DFB,w) ≤
B∑

b=2

P
(
DFB,w(b,N)|

{
Dc
FB,w(b′, N)

}b−1

b′=2

)

≤ BP
(
DFB,w(b,N)|

{
Dc
FB,w(b′, N)

}b−1

b′=2

)

=: BP (DFB,w(b,N))

for an arbitrary block b, where the second line follows by the fact that the encoding and

decoding processes are identical in each block, and we made a definition in the last line

for brevity7. Setting B = N = N ′, we see that for any N ′, an error probability less than

N ′P (DFB,w(b,N ′)) can be achieved with rate N ′−1
N ′

Ri. Therefore, in order to show that rate

Ri is achievable, it is sufficient to show that NP (DFB,w(b,N)) → 0 as N → ∞. Using

the same arguments, one can show the same result for DFB,s(N) and DNFB(N), and define

DFB,s(b,N) and DNFB(b,N) similarly.

Now we analyze the weak and strong interference regimes separately.

2.6.5.1 Weak interference

The following lemmas characterize the rate constraints for reliable communication with Rx1

for feedback and non-feedback strategies, respectively, under weak interference.

Lemma 2.2. For weak interference at Rx1, NP (DFB,w(b,N))→ 0 as N →∞ if

R1c < I(X1f ;Y1|S,X1e, X2e)− C1 (2.23)

R1p < I(X1;Y1|S,X1f , X2f )− C1 (2.24)

R2c < I(X2f ;Y1|S,X2e, X1)− C1 (2.25)

7The event DFB,w is defined in the filtered probability space formed by the conditioning.
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R1p +R2c < min
{
I(X1, X2f ;Y1, U1|S,X1f , X2e)− 2C1,

I(X1, X2f ;Y1|S,X1c, X2e)− C1

}
(2.26)

R1 +R2c < I(X1, X2f ;Y1|S,X1e, X2e)− C1 (2.27)

Proof. See Appendix A.2.

Lemma 2.3. For weak interference at Rx1, NP (DNFB(b,N))→ 0 as N →∞ if

R1c > I(X1f ;Y1|S,X1e, X2e)− C1 (2.28)

R1p < I(X1;Y1|S,X1f , X2f )− κ2 (2.29)

R2c < I(X2f ;Y1|S,X2e, X1)− κ2 (2.30)

R1 < I(X1;Y1|S,X2f , X1e)− κ2 (2.31)

R1 +R2c < I(X1, X2f ;Y1|S,X1e, X2e)− C1 − κ2 (2.32)

Proof. See Appendix A.2.

2.6.5.2 Strong interference

The following lemmas give the rate constraints for the feedback and non-feedback modes

under strong interference at Rxi.

Lemma 2.4. For strong interference at Rx1, NP (DFB,s(b,N))→ 0 as N →∞ if

R2c < I(X2f ;Y1|S,X1e, X2e)− C1 (2.33)

R1p < I(X1;Y1|S,X1f , X2f )− C1 (2.34)

R1 < min {I(X1;Y1, U2|S,X1e, X2f ), (2.35)

I(X1, X2e;Y1|S,X1e, X2c)} − C1 (2.36)

R1 +R2c < I(X1, X2f ;Y1|S,X1e, X2e)− C1 (2.37)

Proof. See Appendix A.2.
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Lemma 2.5. For strong interference at Rx1, NP (DNFB(b,N))→ 0 as N →∞ if

R2c > I(X2f ;Y1|S,X1e, X2e)− C1 (2.38)

R1p < I(X1;Y1|S,X1f , X2f )− κ2 (2.39)

R1p +R2c < I(X1, X2f ;Y1|S,X1f , X2e)− κ2 (2.40)

R1 +R2c < I(X1, X2f ;Y1|S,X1e, X2e)− C1 − κ2 (2.41)

Proof. See Appendix A.2.

2.6.6 Rate region evaluation

In this subsection, we first explicitly derive the set of achievable (R1, R2) pairs for linear

deterministic and Gaussian models, from the results of the previous subsection.

We first find the conditions for decodability at Rx1 under weak interference. Recall that

feedback mode is used at Rx1 only if (2.23) is satisfied; otherwise Han-Kobayashi decoding

is performed. If we define R := (R1c, R2c, R1p), and

Rw
FB := {R : (2.24)-(2.27) is satisfied} ,

Rw
NFB := {R : (2.29)-(2.32) is satisfied} ,

Rw
d := {R : (2.23) is satisfied} ,

then the set of rate points Rw that ensure decodability at Rx1 under weak interference

contains

Rw = (Rw
FB ∩Rw

d ) ∪ (Rw
NFB ∩Rw,c

d )

⊇ (Rw
NFB ∩Rw

FB ∩Rw
d ) ∪ (Rw

NFB ∩Rw
FB ∩Rw,c

d )

= Rw
NFB ∩Rw

FB

where Rw,c
d is the complement of the set Rw

d . Therefore, the rate constraints for decodability

at Rx1 for the described strategy for weak interference are given by (2.24)-(2.27) and (2.29)-

(2.32), for all joint distributions
∏2

i=1 p(xie)p(xic)p(xip), symbol-wise mappings xif (xie, xic),

xi(xif , xip), and p(ui|ṽj), (i, j) = (1, 2), (2, 1), consistent with the distortion constraints.
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One can perform the same line of arguments as in the case of weak interference to

show that the rate constraints for decodability at Rx1 for strong interference are given by

(2.34)-(2.37) and (2.39)-(2.41), for all joint distributions
∏2

i=1 p(xie)p(xic)p(xip), symbol-

wise mappings xif (xie, xic), xi(xif , xip), and p(ui|ṽj), (i, j) = (1, 2), (2, 1), consistent with the

distortion constraints.

Next, we consider linear deterministic and Gaussian models separately, and derive the

achievable rate regions explicitly for both cases.

2.6.6.1 Rate region for linear deterministic model

To obtain the achievable rate region, we first evaluate the mutual information terms with

specific input distributions. In particular, we choose the distributions and mappings

Xie ∼ Unif
[
Fnji2

]
(2.42)

Xic ∼ Unif
[
Fnji2

]
(2.43)

Xip ∼ Unif
[
F(nii−nji)+

2

]
(2.44)

Ui = Ṽj (2.45)

xif : Fnji2 × Fnji2 → Fnji2 ,

xi : Fnji2 × F(nii−nji)+

2 → Fmax(nii,nji)
2 ,

xi = [Xif Xip]
T , xif (a, b) = a+ b (2.46)

for (i, j) = (1, 2), (2, 1), where Unif [A] denotes uniform distribution over the set A. Evalu-

ating the mutual information terms of the previous subsection with this set of distributions,

and applying Fourier-Motzkin elimination (see Appendix A.3 for details), we obtain the rate

region given in (2.5)–(2.11).

2.6.6.2 Rate region for Gaussian model

Now we evaluate the rate constraints obtained in the previous section, and obtain the final

achievable rate region. Assuming available power Pi at Txi, we assign the following input
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distributions, for (i, j) = (1, 2), (2, 1):

Xie ∼ CN (0,
1

2
Pi) (2.47)

Xic ∼ CN (0,
1

2
(1− Pip)Pi) (2.48)

Xip ∼ CN (0,
1

2
min

(
1

|hji|2Pi
, 1

)
Pi) (2.49)

Ui|Ṽj ∼ CN (Ṽj, Di) (2.50)

xif : C× C→ C, xi : C× C→ C,

xif (a, b) = a+ b, xi(a, b) = a+ b (2.51)

where Di > 0 are the distortion parameters. Using these input distributions, and applying

Fourier-Motzkin elimination (See Appendix A.3 for details), we can show that the rate region

(A.18)–(A.20), given in Appendix A.3, is achievable.

2.7 Converse

We now prove an outer bound region that exactly matches the region given in (2.5)–(2.11),

and is within a constant gap of the region in (2.13)–(2.17).

The main idea between the novel bounds on R1 and R2 is based on a genie argument,

where the receivers are provided with side-information about the messages. The bounds on

R1 + R2, 2R1 + R2 and R1 + 2R2 are proven through a channel enhancement technique,

resembling the one used for the multiple-access channel in [KL13].

2.7.1 Bounds on R1 and R2

Since any outer bound for perfect feedback is also an outer bound for intermittent feedback,

we have the perfect feedback bound

Ri ≤ max (nii, nij) (2.52)
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for linear deterministic model, and the bound

Ri ≤ sup
0≤ρ≤1

log
(

1 + SNRi + INRi + 2ρ
√

SNRi · INRi
)

(2.53)

for Gaussian model, for (i, j) = (1, 2), (2, 1), which are both proved in [ST11]. Next, we

prove a novel bound for both models.

Without loss of generality, we focus on the bound on R1. In order to prove the novel

bound on R1, the main idea is to provide
(
W2, Ṽ

N
1

)
as side-information to Rx1. The

intuition behind this particular choice is revealed when we consider the interference regime

and operating point in which this bound is active. First, due to the structure of the capacity

region, this bound is relevant only when the message (i.e., the rate) of the interfering user

is small enough. Hence, for that regime, W2 does not carry too much information, and thus

providing this to Rx1 still results in a tight outer bound. Second, note that this bound is

only active in the strong interference regime, where feedback from Rx2 to Tx2 creates an

alternative path for the transmission of W1. Therefore, by forwarding this information, Tx2

indeed provides the information contained in Ṽ N
1 to Rx1.

Based on this idea, we prove the bound

Ri ≤ nii + pj (nji − nii)+ (2.54)

for linear deterministic model in Appendix A.4, and the bound

Ri ≤ log (1 + SNRi) + pj log

(
1 +

INRj
1 + SNRi

)
(2.55)

for the Gaussian model in Appendix A.5, for (i, j) = (1, 2), (2, 1).

2.7.2 Bounds on R1 +R2, 2R1 +R2 and R1 + 2R2

We have the perfect feedback outer bounds

Ri +Rj ≤ max (nii, nij) + (njj − nji)+ (2.56)

for linear deterministic model, and

Ri +Rj < sup
0≤ρ≤1

log

(
1 +

(1− ρ2)SNRi
1 + (1− ρ2)INRj

)
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+ log
(

1 + SNRj + INRj + 2ρ
√

SNRj · INRj
)

(2.57)

for Gaussian model, for (i, j) = (1, 2), (2, 1).

Next, we prove novel outer bounds on the capacity region. In order to prove these bounds,

we first define a notion of enhanced channel. Considering our achievable scheme, feedback

can be interpreted as a mechanism for the receivers to separate the interference and the

intended signal, to the extent allowed by the erasure probability in the feedback channel.

In the weak interference regime, this allows the receiver to cancel the interference. In the

strong interference regime, through the alternate path created by the interfering user, it

allows the reception of additional information about the intended message. Therefore we

consider an enhanced channel where the receivers observe the interference and the intended

signal individually whenever the feedback is available, and their sum otherwise. In addition

to this enhancement, we provide Rxi with the side-information of V N
i as well, as was done

in [ETW08]. To make this more precise, we consider the two models separately.

2.7.2.1 Linear deterministic model

We define the enhanced linear deterministic channel with intermittent feedback by the fol-

lowing equations

Y̆i =





Yi, if Si = 0

(HiiXi, Vj) , if Si = 1

for (i, j) = (1, 2), (2, 1), where Y̆i is the channel output of the enhanced channel at Rxi, Yi

is the channel output of the original channel, and Xi and Vj are as defined for the original

channel. The output of the feedback channel is given by Ỹi = SiYi, i.e., the same as the

original channel. Note that any scheme that achieves arbitrarily small error probability in

the original channel can also achieve arbitrarily small error probability for the enhanced

channel, using the fact that Yi = HiiXi + Vj. This means that the capacity region of the

original channel is a subset of that of the enhanced channel, and we can derive an outer

bound for the enhanced channel instead.
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Figure 2.11: The enhanced channel for Gaussian model. The block [+] is a conditional

adder, which outputs the sum of the other two inputs if Si = 0, and outputs the two inputs

separately otherwise.

It is easy to see that this enhancement is equivalent to providing the Rxi with Ṽ N
2 ,

since for time slots where Si = 1, Rxi can use this information to individually obtain the

interference and the intended symbol.

Using the channel enhancement technique, we arrive at the following outer bounds on the

capacity region of the linear deterministic interference channel with intermittent feedback,

which are explicitly proved in Appendix A.4.

R1 +R2 ≤ max
{
n12, (n11 − n21)+}+ max

{
n21, (n22 − n12)+}

+ p1 min
{
n12, (n11 − n21)+}+ p2 min

{
n21, (n22 − n12)+} (2.58)

2R1 +R2 ≤ max (n11, n12) + max
{
n21, (n22 − n12)+}+ (n11 − n21)+

+ p2 min
{
n21, (n22 − n12)+} (2.59)

R1 + 2R2 ≤ max (n22, n21) + max
{
n12, (n11 − n21)+}+ (n22 − n12)+

+ p1 min
{
n12, (n11 − n21)+} (2.60)

2.7.2.2 Gaussian model

Next, we extend the enhanced channel idea to the Gaussian model. In this case, while

splitting the interference and the intended signal, we also split the noise evenly between
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these two variables (see Figure 2.11). Specifically, we consider the channel defined by the

equations

Y̆i =





Ȳi, if Si = 0

(Yii, Yij) , if Si = 1

for (i, j) = (1, 2), (2, 1), where Y̆i is the output of the enhanced channel, and

Yii = hiiXi + Zii

Yij = hijXj + Zij

Ȳi = Yii + Yij = hiiXi + hijXj + Z̄i

with Zij, Zii are independent and distributed with CN (0, 1
2
), and we define Z̄i = Zii + Zij.

The output of the feedback channel at Txi is given by SiȲi = Si · (Yii + Yij), i.e., the same

as the original channel. It is worth noting that unlike the linear deterministic case, this

enhancement is not equivalent to providing Rxi with Ṽ N
j , since giving this side-information

allows the receiver to completely cancel the noise for some time slots, resulting in an infinitely

loose bound.

Let Ce(p1, p2) denote the capacity region of the enhanced channel.

The next lemma shows that the capacity region of the enhanced channel indeed dominates

the original one.

Lemma 2.6. For all 0 ≤ p1, p2 ≤ 1,

CG(p1, p2) ⊆ Ce(p1, p2)

Proof. The proof has two steps. First, we consider an intermediate channel, with capacity

region Ci(p1, p2), and the channel output at Rxi is given by

Yi = hiiXi + hijXj + Z̄i

for (i, j) = (1, 2), (2, 1), where Z̄i = Zii+Zij is the sum of two independent CN (0, 1
2
) random

variables as in the enhanced channel. Since Z̄i and Zi (the noise in the original channel)
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have the same probability distribution and are both i.i.d. processes across time and across

users, the joint distribution of the channel p(y1, y2|x1, x2) is identical for both channels, and

hence they have the same feedback capacity region, i.e., Ci(p1, p2) = CG(p1, p2).

Next, comparing the intermediate channel and the enhanced channel, we note that any

rate pair (R1, R2) achievable in the intermediate channel is also achievable for the enhanced

channel using the same pair of codes, using the fact that Ȳi = Yii+Yij. Therefore, Ci(p1, p2) ⊆
Ce(p1, p2), which completes the proof.

Remark 2.4. We note that a similar channel enhancement technique has been applied be-

fore by Khisti and Lapidoth [KL13], for Gaussian multiple-access channel with intermittent

feedback. In that work, the variances of the random variables Zii and Zij are not fixed, but

are arbitrary, subject to the constraint that they sum to one. Although one can optimize over

the noise variances in order to obtain the tightest bound, this only results in a small and

constant improvement. Hence, for simplicity, we stick to the fixed variance of 1
2

for the noise

variables of the enhanced channel.

Using Lemma 2.6, we can instead prove outer bounds for the enhanced channel. In

Appendix A.5, we prove the following bounds.

R1 +R2 ≤ log

(
1 + INR1 +

SNR1 + 2
√
SNR1 · INR1

1 + INR2

)

+ log

(
1 + INR2 +

SNR2 + 2
√
SNR2 · INR2

1 + INR1

)

+ p1 log




(1 + 2INR1)
(

1 + SNR1

INR2+ 1
2

)

1 + INR1 + SNR1+2
√
SNR1·INR1

1+INR2




+ p2 log




(1 + 2INR2)
(

1 + SNR2

INR1+ 1
2

)

1 + INR2 + SNR2+2
√
SNR2·INR2

1+INR1


 (2.61)

2R1 +R2 ≤ log
(

1 + SNR1 + INR1 + 2
√
SNR1 · INR1

)
+ log

(
1 +

SNR1

1
2

+ INR2

)

+ log

(
1 + INR2 +

SNR2 + 2
√
SNR2 · INR2

1 + INR1

)
+
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p2 log




(1 + 2INR2)
(

1 + SNR2

INR1+ 1
2

)

1 + INR2 + SNR2+2
√
SNR2·INR2

1+INR1


 (2.62)

R1 + 2R2 ≤ log
(

1 + SNR2 + INR2 + 2
√
SNR2 · INR2

)
+ log

(
1 +

SNR2

1
2

+ INR1

)

+ log

(
1 + INR1 +

SNR1 + 2
√
SNR1 · INR1

1 + INR2

)
+

p1 log




(1 + 2INR1)
(

1 + SNR1

INR2+ 1
2

)

1 + INR1 + SNR1+2
√
SNR1·INR1

1+INR2


 (2.63)

2.8 Discussion and Extensions

We considered the interference channel with intermittent feedback, and derived an approx-

imate characterization of the capacity region under Gaussian model, as well as an exact

characterization for the linear deterministic case. The result shows that even intermittent

feedback provides multiplicative gain in capacity in interference channels. The achievability

result was based on quantize-map-forward relaying at the transmitters, and the outer bound

result was based on a channel enhancement technique.

In this work, we considered short messaging, i.e., a new message is sent at every block of

transmission. An alternate approach one could try is long messaging, where the transmitters

send codewords describing the same message at every block, and the receivers jointly decode

all blocks to recover the message. The clear advantage of short messaging approach is better

delay performance, since each message is decoded immediately after the transmission of the

corresponding block, instead of waiting for the end of the entire transmission. However,

combined with forward decoding, the rate region achievable by this strategy cannot approx-

imate the entire capacity region by itself, as can be seen from the results of Section 2.6; we

need to take the union with Han-Kobayashi rate region to approximate the entire capacity

region. This is because while decoding block b, part of the message of block b + 1 is jointly

decoded by treating the interference of block b + 1 as noise, which limits the rate in cer-

tain operating points. Hence, long-messaging approach would remove the need for taking
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union with Han-Kobayashi region and simplify the proof, since all blocks are jointly decoded.

Such an approach has been taken in [Zai14] to derive an inner bound on the capacity region

of interference channels with generalized feedback, which overlaps with the capacity region

(2.5)–(2.11) for the special case of linear deterministic IC with intermittent feedback.

The extension to parallel channels is carried out for the special case of identical subchan-

nels in this work. An important generalization can be the case where the channel gains of

the subchannels are not necessarily the same. The main obstacle in generalizing our achiev-

able scheme to this case is that it distinguishes the cases of weak and strong interference,

although such a separation is not possible for vector channels. Again, long-messaging can be

a strategy to circumvent this issue, since it removes the need for making such a distinction

between weak and strong interference regimes [Zai14], albeit at the cost of a much larger

delay.

Another important extension could be to the additive white Gaussian noise (AWGN)

feedback model of [LTM12]. Since this model assumes passive feedback as well, our quantize-

map-forward based scheme can be directly applied to to this channel model. The results of

this chapter indicate that quantize-map-forward, as a feedback strategy, might be a promis-

ing candidate as an approximately-capacity-achieving scheme for AWGN feedback model.

However, this investigation is not the focus of this paper, and is left as future work.
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CHAPTER 3

Opportunistic Scheduling in Full-duplex Cellular

Networks

3.1 Introduction

Full-duplex wireless communication is becoming closer to reality, in light of recent experi-

mental results demonstrating its feasibility [DS10, CJS10]. Especially the development of

massive MIMO can create opportunities for full-duplex communication, since all implemen-

tations of full-duplex use multiple antennas. The first application of full-duplex in a practical

system is expected to be in base stations instead of mobile devices, due to relative flexibility

in design. Since mobile devices remain half-duplex, the uplink-downlink nature of a cellular

system is retained, even when the base station is full-duplex. By serving uplink and downlink

simultaneously over the same band, a full-duplex cellular system might have the potential to

double the spectral efficiency. However, in order to realize this gain, one is immediately faced

with a challenge that is not present in half-duplex systems: uplink-to-downlink interference.

The problem of uplink-to-downlink interference management in full-duplex systems has

been considered in [SDS13] and [BS13] with several interference management strategies pro-

posed, based on interference alignment or message splitting. However, such sophisticated

solutions, which require very tight coordination between nodes and a large amount of over-

head to exchange channel information, are not well-suited for large-scale, dynamic networks,

where a large number of high-mobility nodes can have rapidly changing channel states.

In this work we propose and analyze a solution that is much more suited to such dy-

namic networks. In fact, the solution is explicitly centered around exploiting this dynamic
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nature of the network, rather than attempting to manage it. This is based on adapting the

opportunistic beamforming and scheduling [VTL02] ideas to this new scenario that arises in

full-duplex networks with dynamically varying channel states. This approach enables us to

design an opportunistic joint uplink-downlink scheduling algorithm that, in a homogeneous

network with a large number of half-duplex users and a multi-antenna full-duplex base sta-

tion, asymptotically achieves the sum of the capacities of the isolated uplink and downlink

systems, thus doubling the spectral efficiency. The main idea underlying the result is to

apply random transmit and receive beamforming at the base station [VTL02], and exploit

the multiuser diversity in the system to schedule the uplink and downlink users that conflict

the least with each other. Such a solution also has the advantage of requiring much less

channel training overhead, as we will explore.

The chapter is organized as follows. Section 3.2 reviews existing work on the problem and

contrasts our approach with it. Section 3.3 presents our mathematical model and notation.

Section describes our proposed opportunistic joint uplink-downlink scheduling scheme, and

presents our main results. Section discusses the case of clustered networks, how the presented

approach might fail in such networks, and discusses user cooperation as a potential solution

for this scenario. The proofs of these results are provided in Appendix B.

3.2 Related Work and Contributions

Many authors (including[SH05, YG06], among others) have studied the problem of MIMO

downlink scheduling in the many-user regime, and it has been demonstrated that the same

scaling law as the optimal dirty-paper coding sum rate can be achieved via beamforming

with scheduling. It was also shown that the gap between the sum rate achievable with

beamforming with scheduling and dirty-paper coding goes to zero [BK08, WLZ08]. There

has also been works that explore how to exploit multiuser diversity in the presence of in-

terference, under multi-cell downlink [LL06], and spectrum sharing cognitive radio [BCJ09]

scenarios. However, the schemes developed in these works are either intended for an iso-
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lated downlink system, or fail to provide any theoretical performance guarantees on the

overall system throughput when translated into a full-duplex system, where the goal is to

simultaneously extract uplink and downlink multiuser diversity gains while dealing with the

uplink-to-downlink interference. Based on the existing literature on opportunistic schedul-

ing, it is not clear whether downlink sum rate optimality through scheduling is maintained

in the presence of uplink interference, especially when the uplink sum rate optimality is also

sought.

We have two main contributions in this work. First, we show that the asymptotic sum

rate optimality in both uplink and downlink can be maintained individually, even in the pres-

ence of uplink-to-downlink interference. To achieve this, we develop a simple opportunistic

scheduling algorithm based on random beamforming. The algorithm does not require the

base station or the uplink users to have channel information about the interference links.

Moreover, very little CSI is required at the base station due to random beamforming. We

also show that the spatial multiplexing gain offered by the multiple antennas is retained in

the full-duplex system when the number of antennas scale logarithmically with the number

of users, as was shown for isolated downlink in [SH05].

This asymptotic decoupling result relies on there being sufficient channel diversity in the

network. Although a homogeneous network with i.i.d. fading links provides sufficient diver-

sity for this purpose, such diversity may not be present in a real network. For instance, there

might be areas in a cell where users are densely clustered, and some other areas that are

mostly deserted, resulting in a lack of sufficiently rich channel conditions. In a full-duplex

system, in addition to diversity in channels to and from the base station, diversity in inter-

ference links is also required to realize the multiuser diversity gains. Our second contribution

is to show that for a simple class of heterogeneous networks, it is not possible to achieve such

gains, by deriving an upper bound on the achievable sum rate. In particular, the gap between

the achievable sum rates of the full-duplex system and the decoupled system grows linearly

with the number of antennas and logarithmically with downlink SNR. Although our hetero-

geneous network model is rather simple, it features the key property of the lack of channel
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Figure 3.1: A cellular system with a full-duplex base station with M = 2 antennas and

n = 2 uplink and downlink half-duplex users. Uplink users are represented with white dots,

downlink users are represented with black dots, and the interference links are represented

with dashed lines.

diversity. To address this limitation in heterogeneous networks, we demonstrate through an

example that establishing device-to-device cooperation over orthogonal side-channels can be

effective.

3.3 Model and Notation

We consider a cellular system with a single full-duplex base station, equipped with M an-

tennas for uplink and M antennas for downlink communication (see Figure 1). We assume

there are n uplink, and n downlink half-duplex users, each with a single antenna, request-

ing communication over the same band. We assume the base station is able to completely

cancel self-interference, but the uplink transmission interferes with the received signal at the

downlink users.

We first consider a homogeneous network, where all links in the network, including the

interference links, are are generated i.i.d. from a CN (0, 1) distribution; but once drawn, they

remain fixed throughout the duration of transmission.

The uplink channel is described by the equation

ȳ = H̄nx̄+ z̄,

where ȳ ∈ CM×1 is the vector of channel outputs at the base station, x̄ ∈ Cn×1 is the
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vector of channel inputs from n uplink users, subject to a per-user block power constraint

1
T

∑T
t=1 |x̄k[t]|

2 ≤ P̄ for a block length of T , for k = 1, . . . , n,

H̄n =
[
h̄1 . . . h̄n

]
∈ CM×n

is the matrix of channel gains, with each element generated i.i.d. according to CN (0, 1), and

z̄ ∼ CN (0, IM) is the vector of complex Gaussian noise. Throughout the chapter, we use the

bar notation whenever a variable pertains to the uplink transmission, whereas we use plain

letters for variables pertaining to downlink transmission, including the uplink-to-downlink

interference link gain.

The downlink of the system is described by

y = H∗nx+Gnx̄+ z,

where y ∈ Cn×1 is the vector of channel output at the n downlink users, x ∈ CM×1 is

the vector of channel inputs from M antennas, subject to a total block power constraint

1
T

∑T
t=1 x

∗[t]x[t] ≤ P , Hn ∈ Cn×M is the matrix of channel gains and Gn ∈ Cn×n is the

matrix of interference link gains, with each element of the matrices generated i.i.d. according

to CN (0, 1), and z ∼ CN (0, In) is the vector of complex Gaussian noise.

The set of all link gains in the network is denoted by Hn =
(
H̄n, Hn, Gn

)
. Further, the

rate of ith downlink (uplink) user is denoted by Ri (Hn) (R̄i (Hn)), and the sum uplink and

downlink rates are denoted by

R̄n (Hn) =
n∑

i=1

R̄i (Hn) , Rn (Hn) =
n∑

i=1

Ri (Hn) .

All logarithms throughout the chapter are assumed to be in base e. We also define

[n] := {k ∈ N : 1 ≤ k ≤ n} .

We impose the constraint that at most M uplink users can simultaneously transmit to

the base station, i.e., the vector x̄ can only have M non-zero elements per time slot1.

1This constraint is placed to prevent total uplink power in the system from growing unboundedly.
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3.4 Opportunistic Scheduling for Homogeneous Networks

3.4.1 Opportunistic scheduling

We consider an opportunistic scheduling algorithm that performs random beamforming

[VTL02] independently for uplink and downlink, and schedules the users whose channels

best fit to the current beamforming patterns, and least interfere with each other. In partic-

ular, the base station first constructs a random unitary matrix Φ̄ and multiplies this with

the received uplink channel output

Φ̄∗ȳ = Φ̄∗H̄nx̄+ Φ̄∗z̄

Note that since Φ̄ is unitary, Φ̄∗z̄ is still distributed as CN (0, IM). We consider the scheduling

of M uplink users for transmission at a given time. In particular, each element of the vector

Φ̄∗ȳ is assigned to a user, and the signal of that user is decoded from this component of the

effective channel output, treating inter-stream interference as noise2. Note that this can be

viewed as choosing an M ×M submatrix of Φ̄∗H̄n. We use the following rule to choose the

user Um ∈ {1, . . . , n} assigned to the mth stream:

Ūm = arg min
k∈S̄m

∣∣φ̄∗mh̄k
∣∣2

where

S̄m = {1 ≤ k ≤ n :
∣∣φ̄∗mh̄k

∣∣2 ≤ εn, ∀r 6= m}

for some εn such that εn → 0 as n→∞3, where φ̄m is the mth column of Φ̄. Note that this

scheduling algorithm first determines a set of candidate users for stream m, by eliminating

all users whose interference to any other stream exceeds a certain threshold, and then picks

2Although successive cancellation decoding can also be used, this does not improve our main result, hence
we treat interference as noise for simplicity.

3Note that εn must be scaled down slow enough to ensure that
∣∣S̄m

∣∣ > 0 with high probability. The exact

scaling of εn is left unspecified here, but in the proof of our main result, it will be seen that εn = O
(

1
logn

)

is a good choice.
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the user whose channel has the largest projection along the mth beamforming vector in the

candidate set. We denote the set of uplink users scheduled in this way as T̄ = {Ūm}Mm=1.

Next, we consider the scheduling of downlink users, based on the uplink user selection.

As in the uplink case, we begin by generating a random beamforming matrix Φ, and precode

the transmitted signal with it, so that the vector of received signals at the n downlink users

becomes

y = H∗nΦx+Gnx̄+ z,

We use the following rule to choose the user Um ∈ {1, . . . , n} assigned to the mth stream:

Um = arg min
k∈Sm

|φ∗mhk|2

where

Sm = {1 ≤ k ≤ n : |φ∗mhk|2 ≤ εn,∀r 6= m;

|gkj|2 ≤ εn,∀j ∈ T̄ }

for the same εn sequence as in the downlink, where φm is the mth column of Φ, i.e., the

candidate set of users for stream m are the users who receive bounded uplink interference

as well as bounded inter-stream interference. We denote the set of uplink users scheduled in

this way as T = {Um}Mm=1.

Remark 3.1. Originally, random beamforming was considered for downlink communication

in order to artifically induce channel variations and realize the multiuser diversity effect

[VTL02]. However, in a full-duplex system, one also needs to induce variations in the level

of interference to each user to extract this gain. Since each user has a single antenna, this

is not possible through random beamforming at the uplink user side. However, one can still

perform receive beamforming for uplink at the base station, which results in scheduling a

different subset of users at each time slot, which in turn causes variations in the aggregate

interference strength observed at each downlink user, as desired.
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Remark 3.2. Note that the base station or the uplink users do not require the channel

knowledge of the interfering links for this scheme to work. If the downlink users are able

to track the uplink interference strength they receive (which can potentially be arranged by

overhearing the uplink pilots), they can send SNR feedback for their own channels only if the

current interference level is below the threshold, and the base station can perform scheduling

based only on this information.

3.4.2 Asymptotic sum capacity for fixed number of antennas

Define the achieved uplink and downlink gaps from individual uplink and downlink capacities

as

η̄ (Hn) := C̄MAC-M
n (Hn)− R̄n (Hn)

η (Hn) := CBC
n (Hn)−Rn (Hn)

respectively, where C̄MAC-M
n (Hn) is the sum capacity of the multi-antenna MAC formed by

considering the isolated uplink system, subject to the constraint that only M users can

transmit simultaneously, and CBC
n (Hn) is the sum capacity of the multi-antenna broadcast

channel formed by isolating downlink system, achieved by dirty-paper coding [WSS06].

Clearly, C̄MAC-M
n (Hn)+CBC

n (Hn) is an upper bound on the sum rate Rn (Hn)+ R̄n (Hn)

achievable in the full-duplex system. Our main result is that in a homogeneous network, this

upper bound is asymptotically achievable as the number of users n goes to infinity. This is

more precisely stated in the following theorem.

Theorem 3.1. For any δ > 0,

lim
n→∞

P (η̄ (Hn) + η (Hn) > δ) = 0

See Appendix B.1 for proof.

Theorem 3.1 implies that for a homogeneous network with sufficiently many users, the

uplink-to-downlink interference can be mitigated through proper user scheduling to the ex-

tent that the uplink and downlink systems gets asymptotically decoupled. The main idea
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underlying this result is to exploit multiuser diversity, in terms of both the richness in the

channel vectors to and from the base station, and richness in the strength of the interfering

link.

Another important point in Theorem 3.1 is that not only does the sum rate has the

same scaling law as the decoupled system (which scales as M log log n for both uplink and

downlink, as in the isolated uplink and downlink systems [SH05]), but the additive gap

between the decoupled system sum capacity and the achievable full-duplex sum rate goes to

zero. A similar behavior has been observed before for MIMO broadcast channels, where it

has been shown that the achievable rate difference between zero-forcing beamforming and

dirty-paper coding goes to zero as n → ∞ [BK08]. Our result shows that through random

beamforming, the same result can be obtained for simultaneous uplink and downlink, in the

presence of uplink-to-downlink interference.

3.4.3 Scaling the number of antennas

An important assumption in Theorem 3.1 is that the number of antennas remain fixed as n

grows. This is a crucial assumption, since as M grows, one would need to schedule a growing

number of users simultaneously in order to realize the full multiplexing gain of the system,

which would result in increasing uplink-to-downlink and inter-stream interference. Hence,

an important question is whether a similar result would hold in the case where M is scaling.

In [SH05], it is shown that for an isolated downlink system, the spatial multiplexing gain can

be preserved if M is scaled like O (log n). Here, we show a similar result for the full-duplex

system, which is given in the following theorem.

Theorem 3.2. If limn→∞
M

logn
= α for some α > 0,

lim
n→∞

R̄n (Hn) + Rn (Hn)

2M
= β

for some β > 0, almost surely.

See Appendix B.2 for proof.
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Hence, even when the number of antennas grows to support the large number of users,

the full sum degrees of freedom of the system can still be fully utilized despite the growing

level of uplink interference, provided that the number of antennas does not scale faster than

logarithmically in n.

3.5 D2D Cooperation for Clustered Full-Duplex Networks

The main idea underlying the result in Theorem 3.1 was to exploit the channel richness

in the network to asymptotically decouple the uplink and downlink transmissions. We have

seen that the homogeneous model described in Section 3.3 provides sufficient richness for this

purpose. However, such homogeneity may not present in an actual network. Instead, users

may be densely clustered in certain areas, and sparsely located in others. In such a scenario,

it may not be possible to simultaneously approach uplink and downlink sum capacities, since

the lack of channel diversity might force one to schedule an uplink-downlink user pair with

significant interference in between.

In order to study this opposite regime, we consider a specific class of clustered networks

that takes such non-homogeneity to the extreme, and prove that it is not possible to achieve

the sum capacity of the decoupled system in such networks. Although the model of networks

that we consider is rather specific, the main insight derived from this model might apply to

more general heterogeneous networks.

3.5.1 Heterogeneous model

We consider a network with M clusters (see Figure 2), hosting a total of n uplink and n

downlink users that are uniformly distributed among them. We consider a simplified model

where each cluster is assigned a spatial direction hi, with h∗ihj = 0 for i 6= j, and ‖hi‖ = h

for all 1 ≤ i ≤M . We assume that all users (both uplink and downlink) within a cluster has

the identical channel vector hi. Further, we assume an all-or-none interference model, i.e., if

κ(i) denotes the cluster index of user i, then the interference link gain magnitude from user
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Figure 3.2: A heterogeneous cellular system with a full-duplex base station with M = 2

clusters and n = 2 uplink and downlink half-duplex users. The uplink and downlink users

within the same cluster have the same channel, and users in different clusters do not interfere

with each other.

j to user i is given by

|Gij| =





g, if κ(i) = κ(j)

0, otherwise

As in the homogeneous case, we impose the constraint that at most M uplink users can

transmit simultaneously. Although this is a very simplified model, the unusual way in which

the multi-antenna MAC and the BC interact with each other still makes this a non-trivial

problem.

Henceforth, this model will be referred to as a (M,h, g)-clustered network. Next, we

derive an upper bound on the sum capacity of the network.

3.5.2 Sum rate upper bound and the gap from the decoupled system capacity

Theorem 3.3. If
(
R̄n,Rn

)
is an achievable rate pair in a (M,h, g)−clustered network, then

R̄n + Rn < M log

(
1 +

h2P̄

1 + g2P̄

)

+M log

(
1 + h2 P

M
+ g2P̄ + 2gh

√
P̄P

M

)

Proof. Let y(m) and z(m) denote the vector of channel outputs and the vector of noise at the

users in cluster m. Since the downlink users do not cooperate, the capacity does not depend
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on the covariance matrix Σz of the noise at the downlink, as long as Σz ≥ 0 and the diagonal

consists of 1’s [Sat78]. Hence, we assume that within the same cluster, all downlink users are

subject to the same noise process, i.e., z
(m)
t ∼ CN (0,11T ), where 1 is the all ones vector.

The noise processes at different clusters are independent4. Under these assumptions, using

a genie-aided argument we show in Appendix B.3 that for a block length of N ,

N
(
R̄n + Rn

)
< max∑M

m=1 km,t≤M
max

1
N

∑
(m,t)∈N Pm,t≤P

N∑

t=1

M∑

m=1

log

(
1 + h2Pm,t + km,tg

2P̄ + 2gh
√
km,tPm,tP̄

)

+ log

(
1 +

km,th
2P̄

1 + km,tg2P̄

)
, (3.1)

where km,t is the number of uplink users scheduled from cluster m at time t, Pm,t is the

power allocated to mth channel at the base station at time t, and N := [M ]× [N ]. It can be

verified that the log terms in (3.1) are concave and monotonically increasing in (Pm,t, km,t),

and hence the result follows by Jensen’s inequality.

It is easy to see that the sum of the isolated uplink and downlink capacities for a (M,h, g)-

clustered network is given by

C̄MAC-M + CBC = M log

(
1 + h2 P

M

)
+M log

(
1 + h2P̄

)
(3.2)

Define the gaps form isolated systems, η and η̄ as in the homogeneous case. Also set SNR :=

h2 P
M

, SNRα := g2P̄ , SNRβ := h2P̄ . The following corollary of Theorem 3.3 characterizes the

scaling behavior of η + η̄.

Corollary 3.1. For a (M,h, g)-clustered network with number of users n ≥M ,

lim
SNR→∞

η + η̄

M log SNR
≥ 1

4For a general broadcast channel, it is known that assuming independent noise processes gives a loose
bound while using Sato upper bound [VT03]; however, this does not matter in this case, since the links are
orthogonal.
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See Appendix B.4 for proof.

Note that this is the gap between an upper bound on the sum capacity and the decoupled

system capacity. Hence, regardless of the scheme applied, the achieved sum rate can get

arbitrarily far from the decoupled system sum capacity.

3.5.3 Potential for cooperation over side-channels

In order to remedy this inherent limitation in heterogeneous networks, we propose the use of

device-to-device side-channels for user cooperation to resolve the full-duplex interference. In

particular, we consider a system architecture where each uplink user is capable of allocating

some λ ∈ [0, 1] fraction of its power to an orthogonal channel that is used for cooperation

with the downlink users. The side-channels are modeled by

ỹi = gx̃j + z̃i

with the power constraint E
∣∣∣X̃j

∣∣∣
2

≤ λP̄ , for each uplink user j and downlink user i such that

κ(i) = κ(j), with z̃i ∼ CN (0.1). Hence, the side-channels can be considered as orthogonal

broadcast channels for each uplink user (we assume each broadcast channel operates over a

different band, hence they do not interfere).

It is easy to see that cooperation over such orthogonal side-channels can help mitigate the

device-to-device interference. Some schemes have been proposed in [BS13] regarding how to

use such side-channels. Here, we focus on the following very simple scheme as an example to

demonstrate that side-channels can indeed be effective in mitigating full-duplex interference

in clustered networks.

Each uplink user j replicates its symbol over the main channel on the side-channel, with

equal power allocation, i.e., x̃j = x̄j, and λ = 1
2
. Each downlink user i subtracts the output

received over the side-channel ỹi from its output in the main channel yi to obtain

yi − ỹi = hix+ zi − z̃i

Note that as a result, the effective channels of each uplink and downlink gets isolated, but
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the signal-to-noise ratio gets halved for both uplink and downlink due to power allocation

and noise superposition, respectively. Therefore, this scheme can achieve

R̄n + Rn < M log

(
1 + h2 P

2M

)
+M log

(
1 + h2 P̄

2

)

which is easily seen to be within 2M bits of the isolated system capacity with the side-

channels (since the side-channel cannot increase capacity in the isolated case [BS13]), inde-

pendent of SNR.
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CHAPTER 4

Opportunistic D2D Cooperation in Cellular Networks

4.1 Introduction

One of the biggest challenges in wireless networks is to provide uniform connectivity experi-

ence throughout the service area. The problem is especially difficult at the cell-edge, where

users with unfavorable channel conditions need to receive reliable and high-rate communica-

tions. One of the ambitious visions of 5G network design is to achieve 10x reduction in data

rate variability in the cell [OHT16] (over existing 4G single-user MIMO OFDM architecture

with proportional fair scheduling), without sacrificing the overall sum throughput in the sys-

tem. In this chapter, we propose and study a solution that, realistic simulations indicate, can

give up to approximately 6x improvement in data rate for cell-edge (bottom fifth-percentile)

users while still improving the overall throughput under various system constraints.

The proposed solution is centered around opportunistically using the unlicensed band

through device-to-device (D2D) cooperation to improve the performance of the licensed

multiple-antenna downlink transmission. This solution can be enabled without the presence

of any WiFi hotspots, or other data off-loading mechanisms. The main idea is an architecture

where a multiple-antenna downlink channel is enhanced through out-of-band D2D relaying

to provide multiple versions of the downlink channel outputs, forming virtual MIMO links,

which is then opportunistically harnessed through scheduling algorithms designed for this

architecture. Note that due to mobility of users, and the fact that the unlicensed band used

for cooperation is undedicated, the opportunities for cooperation arise intermittently and

unreliably, requiring the opportunistic use of the cooperative resources.
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The architecture is predicated on two complementary developments. The first is that

infrastructure is becoming more powerful, with the use of a growing number of multiple

antennas through massive MIMO for 5G. The other development is on the user equipment

(UE) side, with mobile devices becoming more powerful, both in terms of spectrum access

and computational power. Most of the mobile devices currently in widespread use can access

multiple bands over the ISM spectrum, including the 2.4GHz and 5GHz bands. Further-

more, dense clusters of users constitute a challenging scenario for increasing capacity through

massive MIMO, which is precisely the scenario where D2D cooperation is the most useful,

since the D2D links are much stronger.

The main technical question involving the architecture is that of how and when to enable

the D2D links in a network with many users to boost the cell-edge gains. Our analysis,

which uses the network utility maximization framework, leads to an optimal resource al-

location algorithm for scheduling these links in a centralized manner, while accounting for

system constraints such as limited network state knowlede at the base station; uncoordinated

interference over the unlicensed band; fairness in throughput and fairness in the amount of

relaying performed by users. Extensive simulations based on 3GPP channel models demon-

strate that the proposed architecture combined with our resource allocation algorithm can

yield up to approximately 6x throughput gain for the bottom fifth-percentile of users in

the network and up to approximately 4x gain for median users over the state-of-the-art

single-user MIMO (SU-MIMO) currently implemented in LTE systems, without degrading

the throughput of the high-end users.

Since the architecture relies on opportunistically using the unlicensed ISM bands, an

important question is how the D2D transmissions would affect other wireless technologies

using the unlicensed bands, such as WiFi. As a co-existence mechanism, one can consider

strategies similar to LTE-U [ZWC15]: a user can search for an available (unused) channel

within the unlicensed band to use for D2D cooperation. If none exists, the user can either

declare itself unavailable for D2D cooperation, or transmit only for a short duty cycle.

We study the effect of a simplified co-existence mechanism that does the former through
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simulations, and find that the throughput loss in WiFi users is small compared with the

gains in the cell-edge users, since the fraction of time D2D transmission is required from a

given user is small.

The chapter is organized as follows. In Section 4.2, we review the literature and delineate

our main contributions. In Section 4.3, we present our model and the proposed architecture.

In Section 4.4, we present the physical-layer cooperation scheme, prove its approximate

optimality, describe its extension to multiuser MIMO (MU-MIMO), and study the scaling

behavior of the minimum effective SNR in the network. In Section 4.5, we formulate the

downlink cooperative scheduling problem within the utility optimization framework and

present our scheduling algorithm, along with the proposed cooperative utility metric, and in

Section 4.6, we present our simulation results. Most of the lengthy proofs can be found in

Appendix C.

4.2 Related Work and Contributions

The relevant literature can be broadly classified into three areas: (i) cooperative cellular

communications; (ii) dynamic downlink scheduling; (iii) D2D in cellular communications;

each of which we will summarize next.

In cooperative cellular communications, the idea is to allow users overhearing transmis-

sions to perform relaying to increase spatial diversity and minimize outage probability. This

line of work (for instance, [SEA03, NHH04, LTL06], and the references therein) typically

focuses on uplink and in-band cooperation, where users that overhear other users’ transmis-

sion over the licensed band relay their version to the base station. In contrast, we focus

on downlink communication and out-of-band cooperation, where users perform relaying for

each other’s downlink traffic by opportunistically using the unlicensed band. As will be seen,

the use of orthogonal bands for cooperation can significantly simplify coding schemes.

There is also a large literature in cellular downlink scheduling. Some of these works focus

on scaling behavior of the achievable rate under various scheduling schemes [SH05, YG06],
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some focus on the low-complexity algorithms [DS05], while some others also account for

fairness and various system constraints using the cross-layer optimization approach [LCS01,

TG05, LSS06, GNT06, SCN10]. While our work uses the cross-layer optimization paradigm

as well, none of the proposed resource allocation algorithms directly applicable to our coop-

erative scenario, since we consider an architecture where the broadcast nature of the wireless

medium is explicitly used at the physical-layer, precluding an abstraction into isolated bit

pipes in upper layers, which is a prevalent model in existing works on cross-layer optimiza-

tion.

Embedding D2D communication in cellular network has also received considerable at-

tention in the past (see [AWM14] for a comprehensive survey). A majority of these works

(e.g., [DRW09, LLG12, WTS13]) focus on direct proximal communication between devices,

where one device directly transmits a message for another over the licensed band, skipping

infrastructure nodes. This type of proximal D2D communication also has been part of the

4G LTE-Advanced standard [LKM15]. The main focus in this line of work is to do resource

allocation and interference management across D2D and/or uplink/downlink message flows.

In contrast, we focus on D2D cooperation to aid downlink communication, which is the use

of physical D2D transmissions to assist downlink message flows intended for other devices.

This can be considered as a new way the D2D capability can be used in the next-generation

5G networks, in addition to the existing proximal communication in 4G. Considering the fact

that the volume of downlink traffic far exceeds the volume of proximal D2D communication

traffic, the cooperation architecture has the potential to exploit the D2D capability to a

much higher degree. This is also in line with one of the envisioned goals in 5G, which is to

enable multihop communication in cellular networks [CZ14].

Conceptually, the most relevant work in the literature to our problem is the one in

[AM13], where the authors propose an architecture where users form clusters through the

use of unlicensed bands, and all communication with the base station is performed through

the cluster head. In another line of work [WR13], the authors suggest using out-of-band D2D

for traffic spreading, where a user performs sends request and receives downlink content on
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behalf of another user, in a base-station transparent manner. In both works, the authors

numerically demonstrate various throughput, fairness and energy-efficiency benefits of D2D.

In contrast to these works, our physical-layer scheme is not based on routing; it explicitly

uses the direct link from the base station to the destination user in addition to the relay links.

We also consider a much more general scheduling algorithm based on utility optimization

and dynamic user pairing, while accounting for fairness and cooperation cost.

The main technical contributions of this work can be summarized as follows.

• We analyze a physical-layer scheme based on compress-and-forward relaying and MIMO

Tx/Rx processing that approximately achieves (within 2 bits/s/Hz) the capacity of

two-user downlink channel with D2D cooperation (Section 4.4.1), and describe how the

scheme can be extended to MU-MIMO (Section 4.4.2). We characterize the gains in

terms of cell-edge SNR-scaling due to D2D cooperation for a specific model of clustered

networks (Section 4.4.3).

• We develop a resource allocation policy for selectively enabling such D2D links for

cooperation, using the utility maximization framework (Section 4.5.1). Since the ex-

isting cross-layer design tools are not directly applicable in our scenario when D2D

transmission conflicts are taken into account, we propose a novel scheduling policy for

such D2D-enabled networks that takes into account such conflicts (Section 4.5.3). The

policy consists of an extension of the single-user scheduling algorithm of [TG05] to

the cooperative MU-MIMO scenario with incomplete network state knowledge, and a

novel flow control component based on an explicit characterization of an inner bound

on the stability region of the system. The proposed algorithm is shown to be optimal

with respect to this inner bound on the stability region. We also introduce a novel

class of utility functions for cooperative downlink communication, which incorporates

the cost of cooperation and leads to desirable fairness properties (Section 4.5.5).

• We present an extensive simulation study using 3GPP specifications to study the per-

formance of the proposed architecture (Section 4.6). The main results include (i) a
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throughput gain ranging from 4.3x up to 6.3x (depending on system constraints, chan-

nel estimation accuracy etc.) for the users in bottom fifth-percentile for MU-MIMO

with D2D cooperation versus the state-of-the-art SU-MIMO, without degrading the

throughput of the stronger users, (ii) a throughput gain ranging from 3.7x up to

4.9x for the bottom fifth-percentile users versus non-cooperative MU-MIMO without

degrading throughput of stronger users, (iii) a reduction of more than 50% in the re-

laying load in the network through the use of novel utility functions, while still giving

gains close to proportional fair case, (iv) a basic study of an architecture wherein D2D

cooperation coexists (and interferes) with WiFi in the network via a simple co-existence

mechanism where cooperation is disabled within WiFi range, where it is shown that

despite the residual interference, the throughput loss in WiFi users is small (10% for

median user) compared with the gains in the cell-edge users (130% for fifth-percentile

user), since the fraction of time D2D transmission is required from a given user is small

(in the simulation 80% of users performed relaying less than 10% of the time).

4.3 System Architecture and Model

4.3.1 Overview of the architecture

Consider a single cell in a multi-cell downlink cellular system1 with a base station equipped

with M antennas, and a setN of single-antenna users, where |N | = n. An example operation

is depicted in Figure 4.1. We assume slotted time, with m representing the physical-layer

time index. A frame, indexed by t, is defined as T consecutive discrete time slots2. We will

use the notation m @ t to mean that the physical-layer slot m lies within the frame t, i.e.,

(t− 1)T < m ≤ tT .

1Since the base stations are uncoordinated, for the purposes of designing a scheduling algorithm, it is
sufficient to consider a single cell in isolation. We will consider the multi-cell system in Section 4.6 for
evaluation purposes.

2We will use square brackets to denote physical-layer time indices, and round brackets for frame indices.
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ŷ5(t)

y2(t)

y6(t)

y4(t)

y8(t)

y3(t)

y5(t)
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Figure 4.1: An example scheduling decision made by the base station, where the table reflects

the selected active set. The red arrows denote the corresponding downlink transmissions, all

taking place throughout frame t, and the dashed blue arrows represent scheduled side-channel

transmissions, taking place at a later time, determined by multiple-access protocol I. Once

the active set is selected, the required side-channel transmissions are queued at the users

(the transmissions scheduled in frame t are highlighted in red). In this example, user 5 is

selected to share a function of its channel output to relay for users 4 and 6; user 2 is selected

to relay for user 3; and user 8 is scheduled without any relays.
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In the proposed architecture, the base station selects an active set A(t) ⊆ N 2 for each

frame t, which consists of pairs (i, j) of users, where the first index i refers to the destination

node scheduled for data, and the second index j refers to user assigned as a relay for user

i. We define (i, i) to represent the case where user i is scheduled with no relay assigned.

Note that a user can be designated as a relay for a stream and a destination for another

stream simultaneously, as exemplified in Figure 4.1. It is also possible within this framework

to assign multiple relays to the same destination by having (i, j), (i, k) ∈ A(t). We define

Aij(t) = 1 if (i, j) ∈ A(t), and Aij(t) = 0 otherwise.

Once the selection A(t) is made, the base station transmits a sequence of vectors x[m] ∈
CM , m = 1, . . . , T , over M antennas and T time slots of the frame t. The channel output

yi[m] at user i is given by

yi[m] = h∗i (t)x[m] + w[m], (4.1)

for m @ t, where hi(t) ∈ CM is the time-variant complex channel vector of user j at frame t

(note that we are assuming that channel stays constant within a frame, but can arbitrarily

vary over time slots), x[m] is the input vector to the channel at time m, and w[m] ∼ CN (0, 1)

is the circularly symmetric complex white Gaussian noise process. We assume an average

power constraint 1
T

∑T
m=1 tr (x[m]x∗[m]) ≤ 1, and define H(t) := {hi(t)}i.

If user j is assigned as a relay for user i at frame t, a transmission from user j to i is

queued at user j, to be transmitted at a later frame τ > t. At frame τ , user j transmits the

sequence xj[m] ∈ C, m @ τ , which is a deterministic function of the receptions corresponding

to earlier frame t, i.e., yj[m̃] for m̃ @ t. User i performs decoding by combining its own

channel outputs yi[m], m @ t, with the receptions from j, ȳj[m̃], m̃ @ τ , which is a function

of yj[m], m @ t (the specific D2D link model generating ȳj[m̃] will be discussed later). Note

that user i can combine receptions corresponding to multiple frames to decode.

We will specify the details of the model and formulate the specific mathematical problem.
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Table 4.1: Notation for variables corresponding to the D2D link (i, j)
Notation Explanation

gij D2D channel gain

Qij State of the queue at relay j for destination i

φij ,Φ Path-loss factor(s)

µij Binary service process (transmission permission indicator) for the queue Qij

ζij , Z Fading parameter(s)

Aij Binary arrival process (D2D link scheduling indicator) for the queue Qij

Bij D2D link availability indicator

Jij D2D interference indicator

Cij The capacity of the D2D link

βij Arrival rate to the queue Qij

4.3.2 D2D link model and conflict graph

For any pair (i, j) ∈ N 2, i 6= j, the time-variant channel gain is given by gij(t) =
√
φijζij(t),

where φij ∈ R is the path loss component, and ζij(t) ∼ CN (0, 1) is the fading component

for the pair (i, j), i.i.d. across MAC layer slots. We assume reciprocal side-channels, i.e.,

gij(t) = gji(t), and define Z(t) := {ζij(t)}i,j and Φ := {φij}i,j.

We defineBij(t) as an i.i.d. Bernoulli(pij) process for each (i, j) ∈ N 2, i 6= j, representing

whether or not the link (i, j) is available at frame t. This models unavailability due to

external transmissions (e.g., WiFi access points, or another application on the same device

attempting to use WiFi etc.) in the same unlicensed band. The realization of Bij(t) is known

at the users strictly causally (at frame t + 1), and unknown at the base station. We define

B(t) := {Bij(t)}i 6=j.

Define the connectivity graph G = (V , E) such that V = N , and E is such that (i, j) ∈ E
if i = j or φij > θ for some threshold θ > 0 (e.g., noise level). We further define the conflict

graph Gc = (Vc, Ec) such that

Vc :=
{

(i, j) ∈ [n]2 : i 6= j
}

(4.2)

Ec := {((i, j), (k, `)) : (i, j) 6= (k, `) and ((i, `) ∈ E or (j, k) ∈ E)} .

The conflict graph represents the pairs of D2D transmissions (i, j), (k, `) that are not
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allowed to simultaneously occur due to interference3. Given these definitions, the channel

from user j ∈ N to user i ∈ N − {j} is modeled by

ȳi[m] = Bij(t)Jij(t) (gij(t)xj[m] + w̄i[m])

for m @ t, where

Jij(t) =





0, ∃(k, `): ((i, j), (k, `)) ∈ Ec and ‖x`[m̃]‖2 > 0 for some m̃ @ t

1, otherwise
,

which captures interference between conflicting D2D transmissions, and w̄i[m] ∼ CN (0, 1)

is the complex white Gaussian noise process. We assume an average power constraint

1
T

∑T
m=1 ‖xj[m]‖2 ≤ 1, absorbing the input power into the channel gain. The capacity of the

D2D link (i, j) at time t (assuming it is available) is given by Cij(t) := log (1 + ‖gij(t)‖2).

We assume the base station has knowledge of the average SNR, i.e., the path-loss component

φij for each (i, j) pair, but has no knowledge of the fading realization ζij(t).

4.3.3 D2D transmission queues

We assume that each user j ∈ N maintains (n− 1) queues, whose states are given by Qij(t),

i ∈ N − {j}, each representing the number of slots of transmission4 to be delivered to node

i. We assume the queue states evolve according to

Qij(t+ 1) = (Qij(t)−Bij(t)Jij(t)µij(t))
+ + Aij(t), (4.3)

where µij(t) is a binary process that is induced by the multiple-access protocol I used by

the nodes, indicating whether or not the flow (i, j) is granted permission for transmission

at frame t. The protocol I is a mapping from the current queue states {Qij(t)}i 6=j and the

D2D interference structure {Jij(t)}i 6=j to the binary service processes {µij(t)}i 6=j.

3The interference model that induces the conflict graph Gc as defined in (4.2) is similar to the two-hop
interference model of [Ari84], but also takes into account the directionality of the transmission

4Note that Qij(t) does not represent the number of bits to be transmitted, but the number of slots of
transmission. This is because the reception of relay does not directly translate into information bits, but is
rather a refinement of the reception of the destination node.
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We define the average arrival rates as βij(t) := 1
t

∑t
τ=1 Aij(t), and βij := lim supt→∞ βij(t).

For a given vector of arrival rates β := {βi,j}i 6=j, the system is said to be stable if the average

queue sizes are bounded, i.e., for all (i, j), lim supt→∞ E [Qij(t)] <∞. The set of arrival-rate

vectors β for which there exists service processes {µij(t)}i 6=j such that the system is stable is

called the stability region of the queueing system, and will be denoted by Λ. Note that the

arrival rates need to remain in the stability region in order to ensure that the D2D trans-

missions eventually occur with a finite delay. Within the scope of this work, we do not focus

on the details of I, and simply assume that the nodes implement a protocol I that achieves

the stability region Λ, i.e., if the arrival rates β ∈ Λ, protocol I can find a schedule for D2D

transmissions such that each transmission is successfully delivered with finite delay5.

4.3.4 Problem formulation

If the vector of arrival rates β ∈ Λ, we can assume that a noiseless logical link with capacity

R̄ij(t) is available at time t, where R̄ij(t) = Cij(τ) for some finite τ ≥ t, where τ is the frame

where the actual physical D2D transmission takes place, carrying traffic scheduled at frame

t. Note that at frame t, the base station has no knowledge of Cij(τ), but can still compute

the average capacity EZ(τ) [Cij(τ) |φij ] for a given link (i, j), for a transmission decision.

We define Z̄(t) = Z(τ). Let C(t) denote the instantaneous information-theoretic capacity

region of the system consisting of the channels (4.1) and the set of logical links (i, j) with

capacities R̄ij(t)Aij(t), with no knowledge of Z̄(t) at the base station6. A physical-layer

strategy γ is a map
(
H(t),Φ, Z̄(t)

)
7→ {Ri(t)}i whose output vector (interpreted as the

vector of information rates delivered to users, in bits/s/Hz) satisfies {Ri(t)}i ∈ C(t) for all i

and t.

5One can design such a protocol by having the nodes coordinate with the base station to circumvent the
hidden terminal problem, and then use any of the existing stability-region-achieving distributed scheduling
algorithms, e.g., [TE92, JW10, MSZ06]

6Note that the D2D link is assumed to have zero capacity if Aij(t) = 0, i.e., if the base station did not
schedule the link (i, j) at time t.
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Note that even though the transmission decisions of the base station does not depend on

the unknown components of the network state Z(t), by allowing the rate vector {Ri(t)}i to

be anywhere inside the instantaneous capacity region, we implicitly assume an idealized rate

adaptation scenario, where once the transmission occurs, the capacity corresponding to the

realization of Z̄(t) is achievable. In practice this can be implemented through incremental

redundancy schemes such as hybrid ARQ.

Assume an infinite backlog of data to be transmitted to each user i ∈ N . The long-term

average rate of user i up to time t is defined as ri(t) = 1
t

∑t
τ=1Ri(τ), where Ri(τ) is the

rate delivered to user i by the physical layer scheme γ(t) chosen at time t. The long-term

throughput of user i is ri = lim inft→∞ ri(t). Define r(t) = {ri(t)}i, and r = {ri}i.

Given the stability-region-achieving D2D MAC protocol I, and a set of physical-layer

strategies Γ, at every frame t, the base station chooses an active set A(t), and a strategy

γ(t) ∈ Γ consistent with A(t). A scheduling policy π is a collection of mappings

(r(t− 1), β(t− 1), H(t),Φ) 7→ (A(t), γ(t)) ,

indexed by t. If βπ represents the vector of arrival rates to the queues under policy π, and

rπ the throughputs under policy π, then the policy π is called stable if βπ ∈ Λ. Our goal is

to design a stable policy π that maximizes any given concave, twice-differentiable network

utility function U(rπ, βπ) of the throughputs and the fraction of time nodes spend relaying

for others7.

4.4 Physical-layer Cooperation

In this section, we describe a class of physical layer cooperation strategies that will be used as

a building block for our proposed architecture, and derive its achievable rates. We will first

focus on the two-user case, where we show the approximate information-theoretic optimality

of the scheme. We consider the extension to MU-MIMO in Section 4.4.2.

7Note that since π is stable, the relaying fraction is the same quantity as the arrival rate β.

71



The main idea behind the cooperation strategy is that the D2D side-channel can be used

by the destination node to access a quantized version of the channel output of the relay

node, which combined with its own channel output, effectively forms a MIMO system. The

base station can perform signaling based on singular value decomposition over this effective

MIMO channel, to form two parallel AWGN channels accessible by the destination node.

Next, we describe the strategy in detail, and derive the rate it achieves.

4.4.1 Cooperation strategy

We isolate a particular user pair (i, j), and without loss of generality assume (i, j) = (1, 2).

The effective network model is given by8

yi = h∗ix + zi, i = 1, 2, ȳ1 = g12x2 + z̄1, (4.4)

where x2[m] is a function of ym−1
2 , the past receptions of user 2, and user 1 has access to y1

and ȳ1.

By Wyner-Ziv Theorem [WZ76], if

R̄12 ≥ min
p(w|y2)
ŷ2(w,y1)

:E[‖ŷ2−y2‖2]≤D
I(y2;w|y1)

for a given joint distribution of channel outputs p(y1, y2), then given a block of outputs yN2 ,

user 1 can recover a quantized version ŷN2 of outputs such that9 E [‖ŷ2 − y2‖2] ≤ D.

Choosing x ∼ CN (0,Q), i.i.d. over time, we get (y1, y2) ∼ CN (0,Σ) i.i.d. over time, for

some covariance matrix Σ = HQH∗ induced by the channel, with H = [h1 h2]∗. We further

choose w = y2 + q2, where q2 ∼ CN (0, D) is independent of all other variables, and we set

the mapping ŷ2(w, y1) = w. We also choose D =
σ2

2|1

|g12|2
, where σ2

2|1 = Σ22 − Σ21Σ−1
11 Σ12 is the

8We focus on a particular frame t to characterize the instantaneous capacity, i.e., the achievable rate for
a given set of network parameters.

9This is achieved by performing appropriate quantization and binning of the channel outputs at user 2
(see [WZ76] for details).
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conditional variance of y2 given y1. With this set of choices, it can be shown that user 1 can

access ŷ2 = y2 + q2, where q2 ∼ CN (0, D).

Once user 1 recovers ŷ2, it can construct the effective MIMO channel

y =


 y1

ŷ2


 = Hx +


 z1

z2 + q2


 . (4.5)

It follows that all rates R < RMIMO are achievable over the effective MIMO channel (4.5),

where

RMIMO = max
tr(Q)≤1

log
∣∣I2 + K−1HQH∗

∣∣ ,

with K = diag

(
1, 1 +

σ2
2|1

|g12|2

)
. Note that due to orthogonality of the links incoming to the

destination, the encoding and decoding is significantly simplified compared to traditional

Gaussian relay channel with superposition, since there is no need for complex schemes such

as block Markov encoding and joint decoding, and point-to-point MIMO codes are sufficient

from the point of view of the source.

Note that the MIMO channel (4.5) can be equivalently viewed as two parallel AWGN

channels, using the singular value decomposition (SVD). It will also be useful to lower bound

the rates individually achievable over these two parallel streams. Assuming H = USV∗ is

an SVD, it can be shown that the rates

RMIMO,d = log


1 +

s2
dPd

1 + |u2d|2
σ2

2|1

|g12|2


 , d = 1, 2 (4.6)

are achievable respectively10, over the two streams, by transmit beamforming using the

matrix V and receive beamforming using U∗, where sd is the dth singular value, u2,d is the

(2, d)th element of U, and the power allocation parameters satisfy P1 + P2 ≤ 1.

The next theorem shows that the gap between the rate achievable with the cooperation

scheme described in the previous subsection is universally within 2 bits/s/Hz of the capacity

of the network.

10We perform the SVD on H directly, instead of performing on K−1/2H, in order to obtain closed-form
expressions for the subsequent analysis.
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Theorem 4.1. For any set of parameters
(
H, R̄12,M

)
, the capacity C̄ of the MIMO single

relay channel with orthogonal links from relay to destination and from source to destination

satisfies C̄ ≥ RMIMO ≥ C̄ − 2.

The proof is provided in the Appendix C.3.

Remark 4.1. The relay channel with orthogonal links from relay to destination and from

source to destination was studied by [LV05] and [ZME04]. In the former, the authors con-

sider a relaying strategy based on decode-and-forward relaying, and focus on performance

optimization problems such as optimal bandwidth allocation. The latter work focuses on lin-

ear relaying functions for such channels, and characterizes the achievable rates for scalar

AWGN case. Here, we propose a relaying scheme based on compress-and-forward [Ct79] that

achieves a rate that is within 2 bits/s/Hz of the information-theoretic capacity for the MIMO

case.

Remark 4.2. Note that this strategy can also be implemented through quantize-map-forward

relaying. Although the proposed architecture supports other relaying strategies ( e.g., amplify-

forward, decode-forward etc.), we stick with compress-forward (or quantize-map-forward im-

plementation) due to the theoretical approximate optimality [ADT11] as well as practical

feasibility, which was shown in [DSB13] through real testbed implementation.

4.4.2 Cooperation with MU-MIMO

In this subsection, we demonstrate how the scheme described for two users in the previous

subsection can be extended to MU-MIMO with pairs of cooperative users.

Given the set N of users, let us index all possible downlink streams that can be generated

by the scheme by (i, j, d) ∈ N 2 × {1, 2}, where (i, j) is represents the cooperative pair, and

d represents the stream index corresponding to this pair. We assume d 6= 2 if i = j,

representing the case where user i is scheduled without a relay.

By a slight abuse of notation, we assume that a schedule set S ⊆ N 2×{1, 2} is scheduled,

consisting of such triples (i, j, d), where (i, j, d) ∈ S for some k if and only if Aij = 1 (note
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that schedule set also contains the stream index unlike active set A). Next, consider the

“virtual users” (i, j, d) ∈ S with the channels

ỹijd := u∗ijd


 yi

ŷj


 = u∗ijdHijx + u∗ijd


 zi

zj + qij


 := h̃∗ijdx + z̃ijd,

where Hij = [hi hj]
∗, and assuming Hij = UijSijV

∗
ij is an SVD of Hij, uijd is the kth column

of Uij. By convention, we assume that Uii =
[

1 0
]∗

. The variance of z̃ijd is given by

1+ |uijd(2)|2Dij, where uijd(2) is the second element of uijd, and Dij =
σ2
j|i

|gij |2
is the distortion

introduced by quantization at node j. Note that, when i = j, we have h̃ijd = hi, and we set

R̄ii =∞ so that Dii = 0.

Note that through the use of SVD over the virtual MIMO channel (4.5), we have reduced

the system into a set of |S| single-antenna virtual users with channel vectors 1

1+|uijd(2)|2Dij h̃ijd.
Given such a set of channel vectors, one can implement any MU-MIMO beamforming strat-

egy (e.g., zero-forcing, conjugate beamforming, SLR maximization etc.), by precoding the

transmission with the corresponding beamforming matrix.

4.4.3 Scaling of SNR gain in clustered networks

In this subsection, we consider a specific clustered network model as an example, and char-

acterize the achievable demodulation SNR gain due to D2D cooperation for the weakest user

in the network, under this model. In this analysis, we use several simplifying assumptions

on the channel and network model for analytical tractability, in order to get a feel for the

scale of the possible gains that can be attained through cooperation. This simplification is

limited to the scope of this particular subsection, and the results in the rest of the chapter

do not depend on these assumptions.

Consider a network where users are clustered in a circular area of radius r, whose center

is a distance d away from the base station, where r � d. The users are assumed to be

uniformly distributed within the circular area. In general, a network might consist of several

such clusters, but here we focus on one, assuming other clusters are geographically far relative
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to r.

We assume that the downlink channel vector of user i at time t is modeled by11

hi(t) =
√
ρ

P∑

k=1

ξi,k(t)e (θi,k(t)) ,

where ρ is the path loss factor (assumed constant across users in the same cluster since

r � d), P is the number of signal paths, ξi,k(t) ∼ CN (0, 1) is the complex path gain for the

kth path of user i at time t, θi,k is the angle of departure of the kth path of the ith user at

time t, and e(θ) is given by

e(θ) :=
[

1 ej2π∆ cos(θ) ej2π2∆ cos(θ) . . . ej2π(M−1)∆ cos(θ)

]∗
,

for an antenna separation ∆. The path gains ξi,k(t) are i.i.d. across different i, k, and t.

Path loss between users is modeled by φij = φ0d
c
ij for some constant φ0, where dij is the

distance between i and j, and c > 2 is the path loss exponent.

For simplicity of analysis, in this example network we will assume that only one coop-

erative pair per time slot is scheduled. Our goal is to characterize the cooperation gains in

SNR when one is allowed to choose the most suitable relay j for a given destination i.

Invoking (4.6), we define the cooperative SNR for the pair (i, j), SNRcoopij to be

SNRcoopij :=
s2
ij1

1 + |uij1(2)|2 σ2
j|i

|gij |2

,

where sij1 is the first singular value corresponding to the pair (i, j). Since we are inter-

ested in the achievable SNR gain, in defining this quantity, we have allocated all power to

only one of the available streams, ignoring the multiplexing gain that could be achieved by

scheduling two parallel streams to user i. The maximal non-cooperative SNR for user i is

given by SNRnon−coopi := ‖hi‖2, achieved by beamforming along the direction of hi. Minimum

cooperative and non-cooperative SNRs in the network are respectively defined as

SNRcoopmin := min
i∈N

SNRcoopij∗(i), SNRnon−coopmin := min
i∈N

SNRnon−coopi ,

11This is written for a uniform linear transmit array for simplicity, but our analysis using this model can
be generalized for any array configuration.
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where j∗(i) = arg maxj∈N E
[
SNRcoopij

∣∣φij,hj
]
, which arises due to relay selection, and the

expectation is taken over the D2D side-channel fading ζij(t).

The next theorem, whose proof is in Appendix C.1, summarizes our results on how the

SNR of the weakest user in either case scales with the number of users n in the cluster.

Theorem 4.2.

lim
n→∞

P
(
SNRcoopmin <

1

2
Mρ

(
1

2
log n− 2 log log n

)
− 1

)
= O

(
e− log2 n+2 logn

)
,

and

lim
n→∞

P
(
SNRnon−coopmin > Mρn−

γ
2P ψ(2P )

)
= O

(
e−n

1−γ
)
,

for any 0 < γ < 1, where ψ(`) = (`!)
1
` , and P is the number of signal paths.

Theorem 4.2 highlights the importance of having multiple options in relay selection. In

the non-cooperative case, the factor n−
γ

2P appears due to the fact that as the number of

users in the cluster grows, the minimum is taken over a larger set of users, and hence it is

expected for the SNR of the weakest user to decay, in the absence of cooperation. On the

other hand, in the presence of cooperation, the SNR of the weakest user actually grows. This

is due to the multiuser diversity gain, which is present due to our ability to schedule the

user with the most favorable channel conditions as a relay. In other words, as the number

of users grows, so does the number of possible paths from the base station to each user, and

thus the maximal SNR, even when the weakest user is considered.

4.5 Scheduling for Dynamic Networks Under D2D Cooperation

Although our analysis of the SNR gain with relay selection in the previous section is infor-

mative of the potential gains of cooperation, one should note that its scope is limited. For

a more thorough understanding of how to perform relay selection, we formulate the prob-

lem within the network utility maximization framework, which has been extensively studied
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in the context of resource allocation and scheduling problems for wireless/wired networks

[GNT06, LSS06].

Note that due to interference from other D2D links as well as from external sources, not

all D2D users can transmit at a given time, which implicitly imposes a constraint on relay

selection. In particular, one needs to ensure that the relays can find a slot for transmission

to the destination user after a finite delay, i.e., the relay queues remain stable. The exist-

ing cross-layer optimization algorithms, e.g., [GNT06, LSS06] (e.g., virtual queues, dynamic

backpressure routing etc.) are not immediately applicable to this scenario. This is firstly

because our physical-layer signaling is not based on routing, and makes explicit use of the

broadcast nature of the wireless medium, by using both the direct link to the destination

node, and the alternate link formed by relay. Consequently, the full network cannot be

abstracted into a graph with isolated links, which is widely assumed in the literature. Sec-

ond, since our utility metric is a function of the average amount of relaying done by users,

different choices of relay for the same user results in different rewards, even when the rates

offered in these choices are equal. Existing formulations do not capture this generalization,

which necessitates a special treatment of the downlink resource allocation problem with D2D

cooperation.

To achieve this, we take an approach consisting of

1. A generalization of the single-user scheduling algorithm of [TG05] based on the maxi-

mization of the derivative of the utility function to the cooperative scenario with relay

selection, MU-MIMO, and incomplete network state knowledge,

2. A relay flow control scheme integrated into scheduling, which involves explicitly im-

posing a set of hard linear constraints on the relaying frequency of users,

3. A novel utility metric that is specific to the cooperative architecture, exhibiting desir-

able fairness properties.

In particular, the second point requires the use of a novel technique using exponential barrier
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functions to handle the stability constraint, and the generalizations of the first point requires

several modifications to the proof of [TG05].

4.5.1 Utility maximization formulation

As discussed in Section 4.3, our goal is to design a stable policy π that maximizes a network

utility function U(r, β) =
∑n

i=1 Ui(ri, βi), where Ui : [0,∞) × [0, 1] → R, for i = 1, . . . , n,

are twice continuously differentiable concave functions that are non-decreasing in the first

argument, and non-increasing in the second argument. Note that unlike the existing works,

the utility function is not only a function of the throughput (first argument), but also a

function of the amount of relaying performed for others by the user (second argument). This

definition naturally introduces a penalty each time a D2D link is scheduled, and thus the

out-of-band resources are not “free”. The utility function Ui (ri, βi) then jointly captures

the reward of having received an average throughput of ri, and the cost of having relayed βi

fraction of time, for user i. We will consider a specific form of utility function in Section 4.5.5,

and demonstrate its properties in terms of fairness and relaying cost.

Fixing the transmission strategy as the one described in Section 4.4.2, the problem of

selecting the pair (A(t), γ(t)) reduces to the selection of a schedule set S(t) ⊆ N 2×{1, 2} for

every frame t, which specifies the active set A(t) as well as the stream index corresponding

to each pair (i, j) ∈ A(t). The schedule set chosen by policy π at frame t will be denoted by

Sπ(t).

Let the network state be represented by the pair (K(t), Z(t)), where K(t) = (H(t),Φ)

represents the network parameters causally known at the base station, and Z(t) is the fading

parameter, which is unknown (all variables are as defined in Section 4.3, Table 4.1). We

assume that K(t) and Z(t) take values over the arbitrarily large but finite sets K and Z,
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respectively12. Define

απskz(t) =
1

t

t∑

τ=1

ISπ(τ)=sIK(τ)=kIZ(τ)=z,

for s ⊆ N 2×{1, 2}, k ∈ K, and z ∈ Z, and IE is the indicator variable for the event E; i.e.,

απskz(t) is the average fraction of time the network was in state (k, z), and the policy π chose

the schedule set s up to time t. Under this definition, our joint scheduling/relay selection

problem can be formulated as the following utility optimization problem.

maximize
∑

i∈N

Ui (ri, βi) s.t. (r, β) ∈ R, β ∈ Λ, (4.7)

where R is such that (r, β) ∈ R if and only if there exists a scheduling policy π such that

lim inf
t→∞

∑

s:i∈s1

∑

k∈K

∑

z∈Z

R
(i)
skzα

π
skz(t) = ri, lim sup

t→∞

∑

s:i∈s2

∑

k∈K

∑

z∈Z

απskz(t) = βi,

almost surely for all i ∈ N , where

s1 := {i : (i, j, d) ∈ s} ,

s2 := {j : (i, j, d) ∈ s, i 6= j}

, and R
(i)
skz is the rate delivered to user i when Sπ = s,K = k,Z = z, which can be computed

based on the results from Section 4.4. Note that in the optimization problem (4.7), the

first constraint simply ensures feasibility of the pair (r, β), and the second one imposes the

stability constraint for the relay queues, given the conflict graph Gc between the flows (i, j)

available in the network.

4.5.2 Stability Region Structure

Let Λ (Gc) denote the stability region corresponding to the conflict graph Gc. In general,

an explicit characterization of Λ (Gc) is difficult to obtain. However, it turns out one can

12The finiteness assumption is made for technical convenience in proofs; however the proposed scheduling
algorithm itself does not rely on this assumption. By assuming a large cardinality, one can model the general
case with uncountable alphabets arbitrarily closely.
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explicitly obtain a reasonably large inner bound by appropriately inserting edges in the

conflict graph, and thus backing off from the optimal stability region. The following theorem

characterizes this inner bound.

Theorem 4.3. Given the conflict graph Gc = (Vc, Ec) and the non-zero link availability

probabilities {pij}, there exists a polynomial-time algorithm that generates another graph

Ḡc =
(
Vc, Ēc

)
such that Λ

(
Ḡc
)
⊆ Λ (Gc), and β ∈ Λ

(
Ḡc
)

if and only if βQ :=
∑

(i,j)∈Q
βij
pij
≤ 1

for every maximal clique13 Q of Ḡc. Further, the number of maximal cliques of Ḡc is at most

n2, and these cliques can be listed in polynomial time.

The proof of Theorem 4.3, given in Appendix C.6, relies on standard results from [TE92]

specialized to our one-hop network consisting of user pairs, as well as certain graph-theoretic

results on perfect graphs, i.e., graphs whose chromatic numbers equal their clique number.

The relay flow control component of our scheduling algorithm uses the inner bound of

Theorem 4.3 to ensure the stability of the relay queues. Defining Λ̄ := Λ
(
Ḡc
)
, we reformulate

the optimization (4.7) as

maximize
∑

i∈N

Ui (ri, βi) s.t. (r, β) ∈ R, β ∈ Λ̄. (4.8)

The optimality of the proposed scheduling algorithm is with respect to (4.8).

4.5.3 Optimal scheduling

Let Q be the set of maximal cliques of Gc. Consider the following policy, which we call π∗:

Given (r(t− 1), β(t− 1), H(t),Φ), choose the schedule set s∗ such that s∗ = arg max
s⊆N̄ (t)×{1,2}

f(s),

where

f(s) =
∑

(i,j,d)∈s

EZ(t)

[
R

(i)
sK(t)Z(t)

∣∣∣K(t)
] ∂Ui
∂ri

∣∣∣ri=ri(t−1)
βi=βi(t−1)

+
∂Uj
∂βj

∣∣∣rj=rj(t−1)
βj=βj(t−1)

, (4.9)

13A maximal clique is a clique that is not a subset of another clique.
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N̄ (t) := {(i, j) ∈ N 2 : βQ(t) ≤ 1 for all Q ∈ Q s.t. (i, j) ∈ Q}, and R
(i)
sK(t)Z(t) = R

(i)
skz with

K(t) = k and Z(t) = z. Note that (i, i) ∈ N̄ (t) is vacuously true for all i, corresponding to

the scenario where user i is scheduled without relay.

There are a few key points to note in the definition of policy π∗. First, note that the

maximization is performed over the available streams (i, j, d) in the network, as opposed to

over the set of users themselves. Second, at any frame t, any stream (i, j, d) that involves a

pair of users (i, j) that is part of a clique Q that currently violates its constraint βQ(t) ≤ 1

is ignored in the maximization, which is the relay flow control component of the algorithm

to ensure stability of the relay queues. Third, the asymptotic optimality of π∗ reveals that

it is sufficient to average the rate R
(i)
sK(t)Z(t) over the part of the network state Z(t) that is

unknown at the base station, which is consistent with the results in [SCN10].

Theorem 4.4. Let the optimal value of the maximization in (4.8) be OPT. Define the

empirical utility of π∗ as U∗(t) =
∑

i∈N Ui (r
∗
i (t), β

∗
i (t)), where r∗i (t) and β∗i (t) correspond to

variables ri(t) and βi(t), respectively, under policy π∗. Then the following events hold with

probability 1 ( i.e., almost surely) in the probability space generated by the random network

parameters K(t) and Z(t):

1. limt→∞ inf
{
‖β∗(t)− β‖1 : β ∈ Λ̄

}
= 0,

2. limt→∞ U
∗(t) = OPT.

The proof outline is provided in Section 4.5.6, with details in Appendix C.2. Theorem 4.4

shows that policy π∗ asymptotically achieves the optimum of (4.8).

4.5.4 Greedy implementation

Although converging to the optimal solution, policy π∗ suffers from high computational

complexity, since it involves an exhaustive search over all subsets of streams. To reduce the

complexity, we consider a suboptimal greedy implementation of the policy, similar to [DS05]

for non-cooperative MU-MIMO. The algorithm works by iteratively building the schedule
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set, at each step adding the stream (i∗, j∗, d∗) that contributes the largest amount to the

objective f(s), and committing to this choice in the following iterations, until there are no

streams left that can result in a utility increment factor of (1 + ε) to the existing schedule

set (see Algorithm 1). The worst-case complexity of the algorithm is O (NDn), where D

is the maximum node degree in G, and N is the maximum number of streams that can be

scheduled at a time.

Algorithm 1 Greedy cooperative scheduling
1: iter = 1, schedule set = ∅, initialize ε > 0.

2: while iter ≤ N do

3: (i∗, j∗, d∗) = arg max(i,j,d)∈N̄ (t)×{1,2} f (schedule set ∪ (i, j, d))

4: f∗(iter) = f (schedule set ∪ (i∗, j∗, d∗))

5: if f∗(iter) > (1 + ε)f∗(iter − 1) then

6: schedule set = schedule set ∪ (i∗, j∗, d∗)

7: iter = iter + 1

8: else

9: for all Q ∈ Q do

10: βQ(t+ 1) = update clique states(βQ(t), schedule set)

11: end for

12: stop

13: end if

14: end while

4.5.5 Choice of utility function

We focus on utility functions of the form14

Ui (ri, βi) = log(ri) + κ log(1− βi), (4.10)

where κ ≥ 0 is a parameter that controls the trade-off between fairness in throughput and

fairness in relaying load. Using the concavity of the objective, it can be shown that (see

Appendix C.5 for details) for any feasible pair (r, β), the optimum
(
r̃, β̃
)

with respect to

14Note that this choice means that the function is not defined for βi = 1 and ri = 0, but we ignore this
since no user will operate at these points.
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the objective (4.10) satisfies

∑

i

ri − r̃i
r̃i

≤ κ
∑

i

(1− β̃i)− (1− βi)
1− β̃i

. (4.11)

The condition (C.11) admits a meaningful interpretation. Note that the left-hand side repre-

sents the sum of the relative gains in throughput due to the perturbation, whereas the right

hand-side represents the sum of the relative decrease in time spent idle (not relaying). The

condition in (C.11) then suggests that any perturbation to the optimal values will result in

a total percentage throughput gain that is less than the total percentage increase in relaying

cost, with the parameter κ acting as a translation factor between throughput and relaying

cost. This can be considered a generalization of well-studied proportional fairness, which

implies that any perturbation to the optimal operating point results in a total percentage

throughput loss. Our generalization allows for a positive total relative throughput change,

albeit only at the expense of a larger total relative cost increase in relaying. For this utility

function, we can evaluate the scheduling rule (4.9) as

s∗ = arg max
s⊆N̄ (t)×{1,2}

EZ(t)

[
R

(i)
sK(t)Z(t)

∣∣∣K(t)
]

ri(t)
− κ

1− βij(t)
.

4.5.6 Proof outline of Theorem 4.4

We provide the outline for the proof of Theorem 4.4, leaving details to Appendix C.2.

We begin with the first claim. Due to Theorem 4.3, it is sufficient to show that for any

maximal clique Q ⊆ Vc, lim sup β∗Q(t) ≤ 1 almost surely. We state this in the following

lemma, whose proof is relatively straightforward and provided in Appendix C.4.

Lemma 4.1. For all maximal cliques Q of Gc, lim sup β∗Q(t) ≤ 1 with probability 1 in the

probability space generated by K(t) and Z(t).

The proof of the second claim uses stochastic approximation techniques similar to the

main proof in [TG05], but also features several key differences to account for D2D cooper-

ation, multiuser MIMO, partial network knowledge, relay queue stability, and generalized
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utility functions. To prove the second claim, we first reformulate (4.8) in terms of the

variables αskz, as follows

maximize U(y) :=
∑

i∈N

Ui

(∑

s:i∈s1

∑

k∈K

∑

z∈Z

R
(i)
skzαskz,

∑

s:i∈s2

∑

k∈K

∑

z∈Z

αskz

)
(4.12)

s.t. αskz ≥ 0,
∑

s

αskz ≤ pkqz, αskz = qz
∑

z′

αskz′ , ∀s, k, z (4.13)

∑

(i,j)∈Q

∑

s:i∈s1j∈s2

∑

k∈K

∑

z∈Z

αskz ≤ 1, ∀Q ∈ Q, (4.14)

where pk = P (K(t) = k), and qz = P (Z(t) = z), where αskz are deterministic; they represent

the fraction of time spent in state (s, k, z) throughout the transmission. The last condition

in (4.13) reflects the fact that the scheduling decision cannot depend on the realization of

Z(t), since this information is not available at the base station.

Lemma 4.2. Let OPT′ denote the optimal value of (4.12). Then OPT′ ≥ OPT.

Lemma 4.2 is proved in Appendix C.4 using properties of compact sets.

Using Lemma 4.2, it is sufficient to show that Uπ(t) converges to the optimum value of

(4.12). We state this in the following lemma, whose proof is provided in Appendix C.2.

Lemma 4.3. limt→∞ U
∗(t) = OPT′, with prob. 1 in the probability space generated by

(K(t), Z(t)).

The proof of Lemma B.4 extends the stochastic approximation techniques from [TG05,

BGT95] to our setup. In particular, we consider the relaxed version of the optimization

problem by augmenting the objective with the stability constraint using a sequence of ex-

ponential barrier functions. We then determine the optimal policy for the relaxed problem,

and take the limit in the slope of the barrier function to prove the result for the original

problem.
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Parameter Value Parameter Value

Cellular bandwidth 40MHz DL carrier freq. 2GHz

D2D bandwidth 40MHz D2D carrier freq. 5GHz

# BS antennas 32 (linear array) OFDM FFT size 2048

# UE antennas 1 cell.+1 ISM Power allocation equal

Antenna spacing 0.5λ BS power 46dBm

BS antenna gain 0 dBi UE power 23dBm

BS antenna pattern Uniform Penetration loss 0dB

Table 4.2: System parameters used in the simulations

Large Cell Small/Hetero.

Inter-site distance (a
√

3) 1732m 500m

No. cells (Ω) 5 19

No. active users/cell (n) 25 10

Cluster radius std. dev. (σ) 20m 10m

Mean # clusters ( 3
√

3
2
λa) 5 3

Utility trade-off param. (κ) 7 8

Table 4.3: Default cell-size-specific parameters

4.6 Numerical Results

4.6.1 Simulation setup

4.6.1.1 Geographic distribution

For the regular network model, we consider a hexagonal grid of Ω cells (see Figure 4.2),

each of radius a, with a base station at the center, and n users at each cell. For each cell,

we first generate a set of cluster centers according to a homogeneous Poisson point process

with intensity λ. Next, we randomly assign each user to a cluster, where user locations

for cluster i are chosen i.i.d. according to CN (ci, σ
2I2), where ci is the i’th cluster center,

with σ determining how localized the cluster is. In the heterogeneous network model (see

Figure 4.3), we place the Ω base stations uniformly at random, generate cluster centers

through a homogeneous Poisson process, and assign users to clusters uniformly at random.

Next, each user associates with the nearest base station. In both cases, for each set of

spatial parameters, we generate eight “drops”, i.e., instantiations of user distributions, and
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Figure 4.2: Sample geographic distribution

of users for large cells..

Figure 4.3: Example realization of user

and base station realizations for the het-

erogeneous network model.

the CDFs are computed by aggregating the results across the drops.

4.6.1.2 Channel model

For each (BS, user) pair, we generate a time series of 100 channel vectors for each OFDM

subcarrier using the 3GPP Spatial Channel Model (SCM) implementation [SDS05], assum-

ing a user mobility of 3m/s. For each user pair, we use the models from 3GPP D2D Channel

Model [TR314] to generate the path loss parameter φij and the log-normal shadowing pa-

rameter χij. The channel between the user pair (i, j) for each resource block (RB) is then

computed as φijχijζij, where ζij ∼ CN (0, 1) is i.i.d. fading parameter for a given RB. The

D2D fading parameters are assumed i.i.d. across RBs. For the main results, we use the

line-of-sight (LOS) model, but we also explore the effect of non-line-of-sight links later in

the section. For each drop, the channels are computed and stored a priori, and all the

simulations are run for the same sequences of channel realizations.

4.6.1.3 System operation

Various system parameters are given in Table 4.2. We assume an infinite backlog of data to

be transmitted for each user. At every time slot, the base station obtains an estimate of the
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Figure 4.4: Throughput CDF for large

cells.

Figure 4.5: Throughput CDF for small

cells.

current network state (estimation error modeled normally distributed with variance propor-

tional to the total energy of the channel gains across the OFDM subcarriers, independently

for each antenna), and makes a scheduling decision. The scheduling decision is made without

knowledge of the inter-cell interference. In the cooperative case, scheduling is done according

to Algorithm 4.5.4. In the non-cooperative case, we similarly use the greedy scheduling al-

gorithm of [DS05]. Once the scheduling decision is made, the throughput is computed using

the results of Section 4.4 based on the actual channel realizations with inter-cell interference,

assuming regularized zero-forcing beamforming, and a 3dB SNR back-off to model practical

coding performance. We also take into account various rate back-offs including OFDM cyclic

prefix and guard intervals, channel training and uplink data bursts. After the transmission,

user throughputs and relaying fractions are updated through exponentially-weighted moving

average filters, with averaging window Tw = 50 frames.

4.6.2 Throughput distribution for regular cells

For the setup described, we simulate the system with and without cooperation, under the

utility function introduced in Section 4.5, as well as conventional proportionally fair (PF)

scheduler. We consider large and small cells, with parameters corresponding to either case

provided in Table 4.3. For each case, we simulate the system with and without channel
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estimation errors, using pij = 1 for all (i, j) (we explore smaller values of pij later in the

section).

The CDF of the long-term average throughput received by the users in the network is

plotted in Figures 4.4 and 4.5 (“err.” represents the case with channel estimation errors, and

“perf.” represents perfect channel estimation). These plots can be interpreted as a cumula-

tive throughput histogram in the network, where the value on the vertical axis represents the

fraction of users who experience a throughput that is less than or equal to the corresponding

value on the horizontal axis.

One can observe from Figures 4.4 and 4.5 that, cooperation is most helpful for the weakest

(cell-edge) users in the network, providing a throughput gain ranging from 3x up to 4.5x for

the bottom fifth-percentile of users depending on cell size, channel estimation quality and

utility function used, compared to non-cooperative MU-MIMO. The gain for the median

user similarly ranges from 1.4x up to 2.1x depending on the scenario.

When the baseline is taken as non-cooperative SU-MIMO, the fifth percentile gain ranges

from 3.5x to 5.7x, whereas the median gain ranges from 2.4x up to 4.1x.

4.6.3 Throughput distribution for heterogeneous networks

We consider the same setup under the heterogeneous network model (Figure 4.3), with

the utility function of Section 4.5, and with the same cell-size specific parameters as those

for small cells (see Table 4.3). Each user associates with the closest base station, and

the resulting CDF is obtained by aggregating the results from independently generated

drops, where the base station locations are different across drops. We observe that similar

results can be obtained for randomly placed base stations of the heterogeneous model (see

Figure 4.6). The fifth-percetile gain is 4.2x, while the median user gain is 1.8x, with respect

to non-cooperative MU-MIMO.
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Figure 4.6: Throughput CDF for hetero-

geneous network.

Figure 4.7: CDF for the fraction of time

spent relaying for large cells.

4.6.4 Relaying cost

We consider the CDF of the fraction of time a user has performed relaying, for the same runs

of simulation as in the previous subsection, in Figure 4.7. In this figure, the values on the

vertical axis represent the fraction of users that perform relaying a fraction of time less than

or equal to the corresponding value at the horizontal axis, e.g., 90% of users perform relaying

less than 22% of the time for PF with relaying cost, and less than 45% of the time for pure PF

utility. We observe that our proposed utility function results in more than 50% drop in the

total relaying load, with a relatively small penalty in throughput. In particular, the median

throughput drop across users is 10%, and the maximum drop is 16%. Therefore, the novel

utility function proposed in Section 4.5 enables a more efficient utilization of out-of-band

resources, from a throughput-per-channel-access perspective.

4.6.5 D2D link intermittence

We re-run the simulation in Section 4.6.2 for smaller values of pij. The results are plotted in

Figure 4.8, which suggests that the cell-edge gains are fairly robust to external interference of

the D2D links, and the gains degrade gracefully with decreasing link availability, resulting in
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Figure 4.8: Throughput CDF for large

cells, for intermittent side-channels.

Figure 4.9: Throughput changes in WiFi

and cellular users when D2D cooperation

is enabled.

approximately 2.5x gain at the bottom fifth percentile even when the links are only available

30% of the time.

4.6.6 Co-existence with WiFi

Since the existing WiFi networks use the same band as D2D cooperation, an important

question is whether co-existence of these technologies negates the possible gains due to

interference. In this section, we study this scenario through simulations, and demonstrate

that the combined overall benefit of WiFi access points (AP) and D2D dominates the loss

due to interference, and thus WiFi and D2D cooperation can co-exist harmoniously.

To study this scenario, we consider a network model where an AP is placed at each

cluster center ci. If a user is within the range of a AP, it only gets served by the AP, and is

unavailable for D2D cooperation, since the unlicensed band is occupied by AP transmissions

and we assume there is constant downlink traffic from the AP. Otherwise, the user is served

by the base station and is potentially available for D2D cooperation. In practice, this co-

existence mechanism can be implemented through a more aggressive policy, similar to LTE-U:

having the user search for an available channel within the unlicensed band for a specified

period of time, to use for D2D cooperation, and if none exists, having the user transmit for
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Figure 4.10: Throughput CDF for large

cells with APs, with σ = 100m.

Figure 4.11: Throughput CDF for large

cells with APs, with σ = 200m.

a short duty cycle. Note that the D2D transmissions from outside the AP range can still

interfere with the receptions of AP users.

We consider a simplified model for the rates delivered by the AP. If there are ` users

within the range of a given AP, then a user i at a distance di from the AP is offered a rate

Ri(t) = ηJi(t) min

(
R (di) ,

Rmax

`

)
,

where R (d) is a function that maps the user distance d from AP to the rate delivered to that

user, Rmax is the maximum rate the AP can deliver, 0 < η ≤ 1 is a back-off factor capturing

various overheads in the system, and Jk(t) is the binary variable that takes the value 0 if a

neighbor of k in the connectivity graph is transmitting at time t, and 1 otherwise. We use

the 802.11ac achievable rates reported in [Bro12] (3 streams, 80MHz, with rates normalized

to 40MHz) for the R (dk) and Rmax values, with η = 0.5. We reduce the device power to

17dBm for this setup. The throughput CDFs under this setup are given in Figures 4.10 and

4.11. If a user is served by WiFi, its throughput from WiFi is considered; otherwise, its

throughput from the D2D-enhanced cellular network is considered.

The results suggest that when D2D cooperation and WiFi AP are simultaneously enabled,

the performance is uniformly better than either of them individually enabled, despite the

interference from D2D transmissions to AP users, and the relatively fewer D2D opportunities
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Figure 4.12: CDF for the number of

streams scheduled for large cells.

Figure 4.13: CDF for the number of

streams scheduled for small cells.

due to users being served by AP. Note that this does not mean that the throughput of a given

WiFi user is not reduced when D2D interference takes place (see Figure 4.9, where median

WiFi user throughput drops by 10%, while the fifth-percentile cellular user throughput

grows by 130%); it means that, if the user falls within the bottom x-percentile after the D2D

interference, they are still better off than the bottom x-percentile when only WiFi is enabled.

The main reason D2D does not hurt WiFi too much is that D2D cooperation is used for a

relatively small fraction of time compared to WiFi for a given user (see Figure 4.7, which

shows 80% of users relay less than 10% of the time), which limits the amount of interference.

This may also suggest that the more aggressive LTE-U-type policies may also be feasible.

4.6.7 Number of streams scheduled

We compare the number of streams scheduled per time slot for cooperative and non-cooperative

cases, in the CDF in Figures 4.12 and 4.13. This can also be understood as the number of

steps it takes for Algorithm 1 to terminate.

One can observe that cooperation enables the base station to schedule 1-2 additional

streams on average, compared to the non-cooperative case. The reason underlying this

behavior is the richness in scheduling options, since data can be transmitted to a particular
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Figure 4.14: Throughput CDF for large

cells (without stability constraint).

Figure 4.15: Throughput CDF for small

cells (without stability constraint).

user through several relaying options, with a distinct beamforming vector corresponding

to each option. Since it is easier to find a stream (beamforming vector) that is compatible

(approximately orthogonal) with the already scheduled streams, on the average the algorithm

is able to schedule a larger number of users per time slot.

4.6.8 Relaxing the stability constraint

In the scenario where the cellular bandwidth is sufficiently smaller than the D2D bandwidth,

the interference constraint no longer active, since the devices can perform frequency-division

multiplexing to orthogonalize their transmissions. This scenario can be modeled by removing

the stability constraint, and performing the maximization in (4.9) over allN 2×{1, 2} streams

available for scheduling. The resulting throughput CDFs are given in Figures 4.14 and 4.15.

Comparing the result to those in Figures 4.4 and 4.5, we see that the stability constraint

has a rather small effect on the cooperative cell-edge gains in throughput for large cells,

and a relatively larger effect for small cells. This is because the users are located more

densely in small cells, and thus the interference (and thus, the stability) constraint is more

restrictive. We observe that under this setup, the fifth-percentile gains with respect to SU-

MIMO baseline range from 3.5× up to 6.3×, depending on cell size, channel estimation

quality and the utility function used. The median gain for large cells reaches almost 4.5×.
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Figure 4.16: Median and 5-percentile throughput vs. cluster radius

The fifth-percentile gains with respect to non-cooperative MU-MIMO are similarly between

3.3× and 4.9×, and the median user gain ranges up to 2.3×.

4.6.9 Effect of clustering

For large cells, we vary the cluster radius σ to study its effect in the throughput CDF

in the network. Figure 4.16 plots the throughputs corresponding to the median and the

bottom fifth-percentile users in the network, for a range of cluster radii, cooperative and

non-cooperative cases, and line-of-sight (LOS) and non-line-of-sight (NLOS) D2D links. We

observe that at 23dBm device power, for LOS links, most of the median and fifth-percentile

throughput gains are preserved up to a cluster radius of 200m15. The decay in throughput

is much faster for NLOS D2D links, and the gain completely disappears at a cluster radius

of 200m. The performance in a real scenario would be somewhere in between the LOS and

NLOS curves, since in a real scenario only a fraction of the links would be LOS.
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Figure 4.17: Throughput CDF for large

cells with APs, with σ = 100m (AP users

served by AP and base station).

Figure 4.18: Throughput CDF for large

cells with APs, with σ = 200m (AP users

served by AP and base station).

4.6.10 Co-existence with WiFi off-loading

One can also consider an off-loading scenario where the base station continues serving the

WiFi users. In this case, the WiFi users are still not available for D2D cooperation, but

they can receive from both the AP and directly from the base station whenever they are

scheduled based on their past throughputs. We compute the rate delivered to a WiFi user

as the sum of the rate that is delivered from the base station (whenever scheduled) and the

rate that is delivered from the AP. Figures 4.17 and 4.18 plot the throughput CDFs under

this scenario. The results follow a similar pattern to the case where WiFi users are served

only by the AP, with a small additional gain in the curves with AP off-loading.

15Note that the cluster radius is the standard deviation of user locations from each cluster center. User
pairs with pairwise distance much smaller than the cluster radius can still exist within the cluster.
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CHAPTER 5

Encoded Distributed Optimization I: Node Failures

5.1 Introduction

Recent years have seen an enormous surge in interest for large-scale data analytics and

machine learning. Typically, solving such large problems require storing data over a large

number of distributed nodes and running optimization algorithms over these nodes. In such

networks, an important concern is the sudden onset of unresponsive or failed nodes [DB13].

This can be caused by network failures, background processes, or (in the case of low-cost

cloud computing) sudden deallocation of compute resources. In the case of short-term, or

intermittent unavailability, such failures can significantly slow down the computation, since

speed may be dictated by the slowest node. In longer-term unavailability, it might affect the

accuracy of the final solution itself, since a fraction of data is effectively eliminated from the

optimization process. In this chapter, we focus on this latter case.

A natural approach to combat node failure is to use redundancy in the form of additional

nodes, for example, by simply replicating the data across multiple nodes. However, recently,

distributed coded computing has received some attention from the information theory com-

munity [LMA16, LLP16, TLD16, DCG16]. In particular, [LLP16] used coding-theoretic ideas

to provide robustness in two specific linear operations: distributed matrix multiplication and

data shuffling. The work in [DCG16] also focused on linear operations, where the idea is to

break up large dot products into shorter dot products, and perform redundant copies of the

short dot products to provide resilience against failures. On the other hand, [TLD16] con-

siders synchronous gradient descent, and proposes an architecture where each data sample
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is replicated s times across nodes, and designs a code such that the exact gradient can be

recovered as long as fewer than s nodes fail.

In contrast to these works, which mainly focus on adding redundancy in the imple-

mentation of a distributed algorithm, we embed the redundancy in the formulation of the

optimization problem. The idea is to linearly encode the data variables in the optimization,

place the encoded data in the nodes, and let the nodes operate as if they are solving the

original problem, ignoring failed nodes and stragglers. This is inspired by the randomized

sketching techniques [Mah11] used for dimensionality reduction in optimization; however, the

purpose, operating regime, and the tools used are different in our problem. The main obser-

vation underlying our approach is that one needs much less redundancy than in [TLD16] if

one backs off from requiring exact recovery of the solution. For instance, for e node failures,

the results in [TLD16] imply that one needs a redundancy factor of e+ 1 for exact recovery,

whereas we show that the solution can be reasonably approximated with a redundancy factor

of 2. Such relaxation is motivated by fields like machine learning, where approximate solu-

tions that achieve good generalization error are sufficient. The main design objective then

becomes how to design codes so that with increasing number of failed nodes, the solution

accuracy degrades as slowly as possible. In particular, we observe (numerically and analyti-

cally) that equiangular tight frames (ETF) are attractive options as coding vectors, since (i)

they contain inherent redundancy; (ii), the individual elements provide as much independent

information as possible; and (iii), they allow reconstruction of the exact solution when no

nodes fail. We also consider random codes, which asymptotically (data length) achieve good

performance; however, as numerical evidence suggests, cannot achieve (iii) for finite lengths.

Our approach is not limited to a specific computational operation, but is applicable

directly to large class of practically relevant optimization problems; specifically, any opti-

mization that can be formulated as a least-squares minimization over a convex set, including

linear regression, support vector machines, compressed sensing, projection etc. Further,

since the nodes are oblivious to coding, the existing distributed computing infrastructure

and software can be directly used without additional control/coordination messaging.
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In this chapter we focus on a model where nodes become unavailable for the time frame

of computation, where a failed node does not recover throughout the duration of the com-

putation. This can also be thought of as a model where slow/straggling nodes are the same

ones throughout the computation, and these nodes are ignored by the system. The case with

asynchronous/intermittent failures and delays is a natural ongoing extension.

Our main contributions are as follows. First, we derive a general bound on relative ob-

jective error for encoding with tight frames, and specialize this to equiangular tight frames1.

Second, using results from analytic number theory, we obtain a tighter bound for a specific

construction with redundancy factor 2, which is constructed using Paley graphs [SH03]. To

the best of our knowledge, this is the first analysis of the this particular tight frame con-

struction in the context of robustness against erasures. We also present an error bound

for random coding vectors. Bounds for other constructions with other redundancy factors

are possible. Third, we prove a lower bound on the objective error for the special case of

unconstrained least squares optimization. Fourth, we numerically demonstrate performance

over three problems, two of which use real world datasets, namely, ridge regression, binary

support vector machine classification, and low rank approximation. The results show that

the Paley construction outperforms uncoded, replication, and random coding approaches.

The rest of the chapter is organized as follows: Section 5.2 presents our model and metrics

of interest, Section 5.3 provides our results on encoding with tight frames and random codes,

Section 5.4 gives lower bounds for general linear encoding, and Section 5.5 contains the

numerical results on real datasets.

1Performance of frames under erasures have been studied in [GKK01, HP04, CK03], though not in the
context of convex optimization. Further, these works either focus on exact reconstruction, or only one or
two erasures, or otherwise do not provide a general error bound for arbitrary tight frames under arbitrary
number of erasures.
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‖S1(Xθ − y)‖2 ‖S2(Xθ − y)‖2 ‖Sm(Xθ − y)‖2
N1 N2 Nm

M

Figure 5.1: A distributed optimization network, where m nodes communicate directly with a

centralized server. The local nodes compute terms specific to their data (such as gradients),

and the central node aggregates such terms and computes simple steps, like small-dimension

projections.

5.2 Model and Notation

Consider the minimization

min
θ∈C

g (θ) := min
θ∈C
‖Xθ − y‖2, (5.1)

where C ⊆ Rd is an arbitrary convex set (that is globally known), X ∈ Rn×d is the data

matrix, and y ∈ Rn is the data vector. We will denote a solution of this optimization as θ∗.

Consider mapping this optimization problem into a distributed computing setup (see

Figure 5.1), where the data variables Xi and yi are collectively stored across m worker nodes,

and a centralized server computes the solution without ever seeing the data itself. Such

an architecture is present in most of the popular distributed computing and optimization

frameworks [DG08, ZCD12]. Each worker node has sufficient memory to store `(d + 1)

variables (i.e., ` rows of data), where m` ≥ n. We define the redundancy factor β := m`
n
≥

1, which captures the amount of additional storage space available. We consider a linear

mapping of the data, where worker node i ∈ [m] stores Zi = Si [X y], where Si ∈ R`×n is

an encoding matrix. We define S =
[
S>1 S>2 . . . S>m

]>
. Note that, by setting S = In, or
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S = [In In . . .]>, this framework covers uncoded and repetition schemes as well2.

We assume that after the data placement, a subset A ⊆ [m] of the nodes are unavailable,

and the data stored in the unavailable nodes is assumed to be lost throughout the duration

of optimization, where |A| = e. We define, for a set U ⊆ [m], SU = [Si]i∈U , i.e., SU is the

submatrix of S corresponding to the set of nodes U , and Ac = [m]\A.

Given a mapping S of the data, the worker nodes directly communicate with the central-

ized server via (two-way) links with no communication constraints, but cannot communicate

with each other. The worker nodes are also oblivious to the encoding (i.e., they do not have

access to {Si}). These two assumptions imply that the nodes effectively attempt to solve

the encoded problem minθ∈C ḡ (θ), where

ḡ (θ) := ‖SXθ − Sy‖2 =
m∑

i=1

‖SiXθ − Siy‖2 (5.2)

using any distributed optimization algorithm (e.g., batch or stochastic gradient descent, L-

BFGS, proximal gradient descent etc.). Since the objective function (5.2) is a sum of local

terms, by having all worker nodes compute, for instance, local gradient terms, and summing

them at the centralized server, the centralized solution of (5.2) can be achieved.

We also assume that the available nodes (Ac) are oblivious to the failed nodes (A), and

they operate as if all nodes are available. This assumption, and the fact that the failed nodes

(A) are unavailable throughout optimization imply that the effective problem whose solution

is reached is

min
θ∈C

g̃ (θ) := min
θ∈C
‖SAc(Xθ − y)‖2. (5.3)

We denote a solution to (5.3) as θ̂(S;X, y;A). Given an encoding matrix S, data variables

(X, y), and a failure pattern A, the relative error η∗(S;X, y;A) is defined as the smallest

2From a technical standpoint, such linear encoding resembles the sketching technique [Mah11] used to
approximate optimization problems by dimensionality reduction. However, sketching uses randomized, short
and wide S matrices for dimensionality reduction; we use tall, deterministic S matrices to increase the
problem dimensions and add redundancy.
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η ≥ 1 such that

‖Xθ̂ − y‖2 ≤ η‖Xθ∗ − y‖2.

For a given S, the worst-case relative error is given by

γ(S, e) := sup
X,y

max
A:|A|=e

η∗(S;X, y;A).

Our goal is to design a matrix S such that γ(S, e) is minimized and grows slowly with e, i.e.,

whose worst-case relative error degrades gracefully with increasing number of failed nodes.

5.3 Encoded Distributed Convex Programs

Intuitively, one would expect a good encoding matrix S to satisfy a number of properties.

First, it must contain some form of redundancy in its set of encoding vectors (the rows s>i of

S). Second, drawing from the intuition of the channel coding theorem, individual encoding

vectors must provide as much independent information as possible. Third, the encoding

matrix should not add error; that is, when there are no failures, the exact solution must be

recoverable, assuming nodes are oblivious to coding.

5.3.1 Equiangular tight frames

Given such requirements, we turn to equiangular tight frames (ETF) as a natural choice of

set of encoding vectors. Loosely speaking, ETFs constitute an overcomplete basis for Rn,

and whose individual elements are as decorrelated as possible. More formally, a (unit-norm)

tight frame for Rn is a set {hi}nβi=1 ⊆ Rn of unit vectors (with β ≥ 1), such that for any

u ∈ Rn,

nβ∑

i=1

|〈hi, u〉|2 = β‖u‖2. (5.4)

The reader is referred to [Dau92, SH03] for more information on frames.
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Define the maximal inner product of a tight frame H by

ε(H) := max
hi,hj∈H
i 6=j

|〈hi, hj〉| .

A tight frame for which |〈hi, hj〉| = ε(H) for every i 6= j is called an equiangular tight frame

(ETF).

Proposition 5.1 (Welch bound, [Wel74]). Let H = {hi}nβi=1 be a tight frame. Then ε(H) ≥√
β−1

2nβ−1
. Moreover, equality is satisfied if and only if H is an equiangular tight frame.

Therefore, an ETF minimizes the correlation between its individual elements.

We define the tangent cone of the constraint set at the optimum by

K := clconv
{
u ∈ Rd : u = t(θ − θ∗), t ≥ 0, θ ∈ C

}
,

where clconv denotes closure of the convex hull, and the linearly transformed cone is defined

by XK := {Xu : u ∈ K}. We also define, for a set U , and a symmetric matrix P ,

λUmax(P ) = sup
u∈U , ‖u‖2=1

‖Pu‖2.

The case λR
n

max(P ) = λmax(P ), the largest eigenvalue of P in absolute value (which is the

spectral norm, since P is symmetric).

Our first result bounds the relative error under encoding with tight frames.

Theorem 5.1. Let S be such that {si}nβi=1 is a tight frame over Rn. Then for any encoded

optimization problem in the form (5.3),

η∗(S;X, y;A) ≤ min
0≤c≤β

(
1 +

2λXKmax

(
S>ASA − cI

)

β − λmax

(
S>ASA

)
)2

.

Corollary 5.1. Under the setup of Theorem 5.1,

γ(S, e) ≤
(

β

β −maxA:|A|=e
∥∥S>ASA

∥∥
2

)2

.
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The proofs are given in Appendix D.1, which relies on techniques from [PW15], as well

as convex optimality conditions and properties of tight frames. Note that the bound only

depends on the spectral properties of the lost component of the encoding matrix S.

Theorem 5.1 and Corollary 5.1 show that when one encodes the data with tight frames,

worst-case relative error can be uniformly bounded, and the error depends on the spectral

properties of the relevant submatrices SA of the encoding matrix. We note that (as expected),

as the redundancy factor β grows, relative error goes to 1, and when e = 0, it is exactly 1,

which implies perfect recovery when no failures occur. Note that this is not necessarily true

for an arbitrary matrix S whose Gram matrix S>S has non-zero eigenvalue spread, including

random matrices. We also note that to minimize the error, one must design S such that any

possible submatrix SA has spectral norm close to 1.

Next we prove explicit bounds for equiangular tight frames, by bounding the spectral

norm of the submatrices SA. Although these bounds are non-trivial, numerical evidence

suggests that tighter bounds may hold.

Theorem 5.2. If the rows of S form an equiangular tight frame, then for 1 ≤ e < β−1
α(m,n)

,

γ(S, e) ≤
(

β

β − 1− eα(m,n)

)2

,

where α(m,n) = 1
m

√
nβ(β−1)

1−(nβ)−1 .

See Appendix D.2 for proof. For a specific construction obtained by using Paley confer-

ence matrices [SH03], we can in fact prove a tighter result that holds with high probability

(under random failures). Let q be a prime number such that q ≡ 1 (mod 4), and let Fq be

the finite field of size q. Consider the graph Gq whose vertices are the elements of Fq, and the

elements a 6= b are adjacent if and only if there exists r ∈ Fq such that a − b ≡ r2 (mod q)

(in which case a − b is called a quadratic residue, and Gq is known as Paley graph). It can

be shown that [SH03] if Aq+1 is the 0-1 adjacency matrix of the graph formed by combining

Gq with an isolated node u, then the matrix Mq+1 := 1√
q
(Jq+1− Iq+1− 2Aq+1) + Iq+1, where
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Jq+1 is the all-ones matrix, can be decomposed as

Mq+1 = Sq+1S
>
q+1,

where the rows of Sq+1 form an equiangular tight frame with ε(Sq+1) = 1√
q
. Using number-

theoretic results on multiplicative quadratic residue characters in finite fields (see Appendix D.3),

we can obtain the following tighter bound for this construction.

Theorem 5.3. Let S̆ be an ETF constructed from Paley graph as above, where q + 1 = 2n

(so that redundancy factor β = 2). Let S = PS̆, where P is a random permutation matrix

that is drawn uniformly random over all (2n)! permutation matrices. Let A be uniformly

random over all cardinality-e subsets of [m]. Then for 1 ≤ e <
(

1
cα̃(m,n)

)4/3

and for any

c > 1,

P

(
η(S;X, y;A) >

(
2

1− ce3/4α̃(m,n)

)2
)
≤ 1

c4
,

where α̃(m,n) :=
√

2
m− 1

`

(
2n
m

)1/4
.

To the best of our knowledge, Theorem 5.3 is the first analysis of the erasure-robustness

of Paley ETFs. This result shows that if we scale the number of nodes m faster than n
1
3 ,

then the error is small with high probability, even under a large number of node failures.

In fact, based on numerical evidence, we believe the following, even tighter, deterministic

bound holds for this construction.

Conjecture 5.1. If S is an ETF constructed from Paley graph as above, where q + 1 = 2n,

then for 1 ≤ e < 1
α̃2(m)

,

γ(S, e) ≤
(

2

1−√eα̃(m)

)2

,

where α̃(m) := c√
m

for a universal constant c.

Note that there is no dependence on n in this bound.
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5.3.2 Random coding

Another natural approach in designing S could be choosing its elements i.i.d. random, e.g.,

with Gaussian entries. In particular, using results from [PW15], and the scaling behavior of

singular values of i.i.d. Gaussian matrices [Sil85], it can be shown that the following holds

(the details are in Appendix D.4).

Proposition 5.2. For fixed β = m`
n

, consider a family of encoding matrices Sm ∈ Rm`×m`
β ,

indexed by the number of worker nodes m. Choose all entries of Sm i.i.d. from N
(
0, 1

n

)
.

Denote the relative error for m machines as η∗m(Sm;X, y;A), for any A with |A| = e < mβ−1
β

.

Then, for any (X, y),

lim
m→∞

η∗m(Sm;X, y;A) ≤




√
β
(
1− e

m

)
+ 1

√
β
(
1− e

m

)
− 1




4

.

Note that random coding can achieve a bound independent of n as well, albeit asymptot-

ically. In practice, however, we observe that the spectral norm of submatrices of Paley ETF

grows slower than those of i.i.d. random matrices, and thus Paley ETF achieves a slightly

tighter bound on relative error for finite data, as claimed in Conjecture 5.1, and further

evidenced in the results of the next section.

5.4 Lower Bound for Unconstrained Optimization

Given the results of Section 5.3, one may wonder how they compare with the performance of

other possible encoding techniques. In this section, we derive a lower bound on the relative

error for unconstrained optimization (C = Rd) for arbitrary linear encoding. The bound is

not necessarily tight, but it still provides insight into how one should design the encoding

matrix.

Theorem 5.4. For any encoding matrix S, worst-case relative error for unconstrained op-
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Figure 5.2: Performance for ridge regression, where X is 1000× 750 and µ = 0.1. There are

750 processors and S has 2000 rows.

timization is lower bounded by

γ(S, e) ≥ 1

4
(1 + max

A:|A|=e
κ(SAc))

2

where κ(Q) is the condition number of matrix Q.

The proof is provided in Appendix D.5, which is based on constructing an adversarial

data pair (X, y) for any given encoding matrix S. Theorem 5.4 implies that in order to

control the error, one needs to design the encoding matrix so that any relevant submatrix

SAc is well-conditioned, which is similar to the restricted isometry condition in compressed

sensing [CT05].

5.5 Numerical Results

We explore three machine learning problems, two of which use real world datasets. In each

example, we compare four cases: uncoded (S = In), replication code, Gaussian (Sij ∼
N (0, 1)), and Paley ETF. The redundancy factor β = 2 in each case except the uncoded

one. In the simulations, we consider probabilistic availability of the nodes, where each node

independently fails with probability p. In each case we plot relative error (η(p), representing

relative error at failure probability p) over 100 trials with different failure patterns, with

error bars at a 95% interval.
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5.5.1 Ridge regression

The encoded ridge regression problem solves

minimize
θ

‖S(Xθ − y)‖2
2 + µ‖θ‖2

2, (5.5)

where µ > 0 is a regularization parameter. The rows of X and y represent data feature

vectors and labels respectively, and the entries of the solution θ∗ are the feature regressors.

Figure 5.2 shows the relative error performance with respect to failure probability, where

y = Xz + n and each element of X, y, and n is drawn independently from a Gaussian

distribution. The data matrix X is 1000 × 750 and the generated encoding matrices have

1000 (uncoded), 2000 (replication, Gaussian, Paley3) rows. The problem is solved using

gradient descent, where each worker node computes gradient terms corresponding to their

own data and the central node only performs the aggregation and descent step.

5.5.2 Binary SVM classification

The MNIST dataset contains 28× 28 binary images for handwritten digits 0-9 [LCB98]. We

attempt to disambiguate 4’s from 9’s using binary support vector machines, by solving the

reformulation suggested by [PW15, §3.4]:

minimize
θ

‖W Tdiag(d)θ‖2
2 + µ‖θ‖2

2 = ‖Xθ‖2
2

subject to
∑

i θi = 1, θi ≥ 0,∀i.
(5.6)

The rows Wi are ith vectorized binary images (demeaned), and di ∈ {1,−1} indicates if the

ith sample is a 4 or 9. The objective can be reformulated with X = [diag(d)W, I]T , and the

encoded problem has objective ‖SXθ‖2
2.

We reduce the MNIST train and test dataset to only the digits 4 and 9, and additionally

only use the first 1000 train samples (W ∈ R1000×784). Fig. 5.3 shows the relative error

3Since Paley ETF has size (q + 1)× (q + 1)/2 for prime q, we take the smallest prime s.t. q ≡ 1 (mod 4)
(in this case, 2017) larger than the required dimension, and take an arbitrary submatrix that matches the
required dimensions. The error due to this subsampling is negligible.
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Figure 5.3: Performance for solving SVM on reduced MNIST set for 4 vs. 9 disambiguation.

Here X is 1000× 784 and µ = 0.1. There are 500 processors.

performance, where (5.6) is solved using FISTA [BT09], where the worker nodes evaluate

gradients and the centralized server aggregates terms and computes the projection on the

simplex.

5.5.3 Low-rank approximation

The movielens ml-100k dataset [RK98] contains recommendations of users for movies. The

task is, given ratings in a training set, predict the ratings in a separate test set. Given

rating matrix R, where Rij is the rating user i provided movie j (if exists in the training

set), and find the nearest low rank approximate matrix completion of R. The following

is an encoded version of a popular convex approximation of the rank-constrained matrix

completion problem:

minimize
Θ

‖SXvec(Θ−R)‖2
F

subject to ‖Θ‖∗ ≤ τ.
(5.7)

Here, ‖Z‖∗ is the nuclear norm (sum of the singular values of Z) and serves as a convex

proxy for rank. The matrix X is such that Xvec(R) selects only the provided ratings Rij.

We subsample the movielens dataset to leave only users and movies that contribute the

most ratings, resulting in 133 users and 56 movies, with 5,514 provided ratings evenly split

between train and test sets. (Resulting X is 2757 × 7448.) (5.7) is solved using FISTA
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Figure 5.4: Performance for solving the matrix completion problem with the subsampled

movielens dataset. Here, X is 2757 × 7448, and τ = 100. There are 100 processors and S

has twice the number of rows as X.

[BT09], with τ = 100. Figure 5.4 shows relative error results and the mean squared error

in test ratings, defined as 1
|T |
∑

(i,j)∈T ((Rtest)ij −Xij)
2 where Rtest is the test ratings matrix

and T contains the (user, movie) pairs included in the test set.

In all three examples, it is clear that coding increases robustness in the presence of large

numbers of node failures, both in the relative error of the objective and in test error metrics

on real datasets. The tightness of the Paley frames is also observed; in all cases there is no

degradation when no nodes fail, which is not true when using random encoding matrices.
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CHAPTER 6

Encoded Distributed Optimization II: Node Delays

6.1 Introduction

Solving learning and optimization problems at present scale often requires parallel and dis-

tributed implementations to deal with otherwise infeasible computational and memory re-

quirements. However, such distributed implementations often suffer from system-level issues

such as slow communication and unbalanced computational nodes. The runtime of many

distributed implementations are therefore throttled by that of a few slow nodes, called strag-

glers, or a few slow communication links, whose delays significantly encumber the overall

learning task. In this chapter we further develop the encoded distributed optimization frame-

work of the previous chapter, and generalize it to the case of node delays, with the aim of

mitigating the effect of straggler nodes. In particular, we propose a distributed optimization

framework based on proceeding with each iteration without waiting for the stragglers, and

encoding the dataset across nodes to add redundancy in the system in order to mitigate the

resulting potential performance degradation due to lost updates.

We consider the master-worker architecture, where the dataset is distributed across a set

of worker nodes, which directly communicate to a master node to optimize a global objective.

The encoding framework consists of an efficient linear transformation (coding) of the dataset

that results in an overcomplete representation, which is then partitioned and distributed

across the worker nodes. The distributed optimization algorithm is then performed directly

on the encoded data, with all worker nodes oblivious to the encoding scheme, i.e., no explicit

decoding of the data is performed, and nodes simply solve the effective optimization problem
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after encoding. In order to mitigate the effect of stragglers, in each iteration, the master

node only waits for the first k updates to arrive from the m worker nodes (where k ≤ m

is a design parameter) before moving on; the remaining m − k node results are effectively

erasures, whose loss is compensated by the data encoding.

The framework is applicable to both the data parallelism and model parallelism paradigms

of distributed learning, and can be applied to distributed implementations of several popular

optimization algorithms, including gradient descent, limited-memory-BFGS, proximal gradi-

ent, and block coordinate descent. We show that if the linear transformation is designed to

satisfy a spectral condition resembling the restricted isometry property, the iterates resulting

from the encoded version of these algorithms deterministically converge to an exact solution

for the case of model paralellism, and an approximate one under data parallelism, where

the approximation quality only depends on the properties of encoding and the parameter k.

These convergence guarantees are deterministic in the sense that they hold for any pattern

of node delays, i.e., even if an adversary chooses which nodes to delay at every iteration.

In addition, the convergence behavior is independent of the tail behavior of the node delay

distribution. Such a worst-case guarantee is not possible for the asynchronous versions of

these algorithms, whose convergence rates deteriorate with increasing node delays. We point

out that our approach is particularly suited to computing networks with a high degree of

variability and unpredictability, where a large number of nodes can delay their computations

for arbitrarily long periods of time.

Our contributions are as follows: (i) We propose the encoded distributed optimization

framework, and prove deterministic convergence guarantees under this framework for gra-

dient descent, L-BFGS, proximal gradient and block coordinate descent algorithms; (ii) we

provide three classes of encoding matrices, and discuss their properties, and describe how

to efficiently encode with such matrices on large-scale data; (iii) we implement the proposed

technique on Amazon EC2 clusters and compare their performance to uncoded, replication,

and asynchronous strategies for problems such as ridge regression, collaborative filtering,

logistic regression, and LASSO. In these tasks we show that in the presence of stragglers,
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the technique can result in significant speed-ups (specific amounts depend on the underlying

system, and examples are provided in Section 6.6) compared to the uncoded case when all

workers are waited for in each iteration, to achieve the same test error.

The rest of the chapter is organized as follows. In Section 6.2, we review the relevant

literature and contrast our work. In Section 6.3, we present our encoded distributed opti-

mization framework that is generalized for node delays, and present the main optimization

algorithms we consider. In Section 6.4, we prove our analytical convergence results. In

Section 6.5, we discuss several families of code constructions, and discuss how to efficiently

implement encoding. In Section 6.6, we present our numerical results from our distributed

implementations on Amazon EC2 clusters.

6.2 Related work

The approaches to mitigating the effect of stragglers can be broadly classified into three

categories: replication-based techniques, asynchronous optimization, and coding-based tech-

niques.

Replication-based techniques consist of either re-launching a certain task if it is delayed,

or pre-emptively assigning each task to multiple nodes and moving on with the copy that

completes first. Such techniques have been proposed and analyzed in [GZD15, AGS13,

SLR16, WJW15, YHG16], among others. Our framework does not preclude the use of such

system-level strategies, which can still be built on top of our encoded framework to add

another layer of robustness against stragglers. However, it is not possible to achieve the

worst-case guarantees provided by encoding with such schemes, since it is still possible for

both replicas to be delayed.

Perhaps the most popular approach in distributed learning to address the straggler prob-

lem is asynchronous optimization, where each worker node asynchronously pushes updates

to and fetches iterates from a parameter server independently of other workers, hence the

stragglers do not hold up the entire computation. This approach was studied in [RRW11,
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AD11, DCM12, LAP14] (among many others) for the case of data parallelism, and [LWR15,

YLL16, PXY16, SHY17] for coordinate descent methods (model parallelism). Although this

approach has been largely successful, all asynchronous convergence results depend on either

a hard bound on the allowable delays on the updates, or a bound on the moments of the

delay distribution, and the resulting convergence rates explicitly depend on such bounds. In

contrast, our framework allows for completely unbounded delays. Further, as in the case of

replication, one can still consider asynchronous strategies on top of the encoding, although

we do not focus on such techniques within the scope of this work.

A more recent line of work that address the straggler problem is based on coding-theory-

inspired techniques [TLD17, LLP16, DCG16, KSD17a, KSD17b, YGK17, HAS17, RPP17].

Some of these works focus exclusively on coding for distributed linear operations, which are

considerably simpler to handle. The works in [TLD17, HAS17] propose coding techniques

for distributed gradient descent that can be applied more generally. However, the approach

proposed in these works require a redundancy factor of r + 1 in the code, to mitigate r

stragglers. Our approach relaxes the exact gradient recovery requirement of these works,

consequently reducing the amount of redundancy required by the code.

The proposed technique, especially under data parallelism, is also closely related to ran-

domized linear algebra and sketching techniques in [Mah11, DMM11, PW15], used for di-

mensionality reduction of large convex optimization problems. The main difference between

this literature and the proposed coding technique is that the former focuses on reducing

the problem dimensions to lighten the computational load, whereas encoding increases the

dimensionality of the problem to provide robustness. As a result of the increased dimen-

sions, coding can provide a much closer approximation to the original solution compared

to sketching techniques. In addition, unlike these works, our model allows for an arbitrary

convex regularizer in addition to the encoded loss term.
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‖X1w − y1‖2 ‖X2w − y2‖2 ‖Xmw − ym‖2
N1 N2 Nm

M

Figure 6.1: Uncoded distributed optimiza-

tion with data parallelism, where X and

y are partitioned as X = [Xi]i∈[m] and

y = [yi]i∈[m].

‖S1(Xw − y)‖2 ‖S2(Xw − y)‖2 ‖Sm(Xw − y)‖2
N1 N2 Nm

M

Figure 6.2: Encoded setup with data par-

allelism, where node i stores (SiX,Siy), in-

stead of (Xi, yi). The uncoded case corre-

sponds to S = I.

6.3 Encoded Distributed Optimization for Straggler Mitigation

We will use the notation [j] = {i ∈ Z : 1 ≤ i ≤ j}. All vector norms refer to 2-norm, and all

matrix norms refer to spectral norm, unless otherwise noted. The superscript c will refer to

complement of a subset, i.e., for A ⊆ [m], Ac = [m]\A. For a sequence of matrices {Mi} and

a set A of indices, we will denote [Mi]i∈A to mean the matrix formed by stacking the matrices

Mi vertically. The main notation used throughout the chapter is provided in Table 6.1.

We consider a distributed computing network where the dataset {(xi, yi)}ni=1 is stored

across a set of m worker nodes, which directly communicate with a single master node. In

practice the master node can be implemented using a fully-connected set of nodes, but this

can still be abstracted as a single master node.

It is useful to distinguish between two paradigms of distributed learning and optimization;

namely, data parallelism, where the dataset is partitioned across data samples, and model

parallelism, where it is partitioned across features (see Figures 6.1 and 6.3). We will describe

these two models in detail next.
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Notation Explanation

[j] The set {i ∈ Z : 1 ≤ i ≤ j}
m Number of worker nodes

n, p The dimensions of the data matrix X ∈ Rn×p, vector y ∈ Rn×1

kt Number of updates the master node waits for in iteration t

ηt Fraction of nodes waited for in iteration, i.e., ηt = kt

m

At Subset of nodes [m] which send the fastest kt updates at iteration t

f(w), f̃(w) Original and encoded objectives, respectively, under data parallelism

g(w) = φ(Xw) Original objective under model parallelism

g̃(v) = φ(XS>v) The encoded objective under model parallelism

h(w) Regularization function (potentially non-smooth)

ν Strong convexity parameter

L Smoothness parameter for h(w) (if smooth), and g(w)

λ Regularization parameter

Ψt Mapping from gradient updates to step {∇fi(t)}i∈At
7→ dt

dt Descent direction chosen by the algorithm

αt, α Step size

M,µ Largest and smallest eigenvalues of X>X, respectively

β Redundancy factor (β ≥ 1)

S Encoding matrix with dimensions βn× n
Si ith row-block of S, corresponding to worker i

SA Submatrix of S formed by {Si}i∈A⊆[m] stacked vertically

Table 6.1: Notation used in the chapter.
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6.3.1 Data parallelism

We focus on objectives of the form

f(w) =
1

2n
‖Xw − y‖2 + λh(w), (6.1)

where X and y are the data matrix and data vector, respectively. We assume each row

of X corresponds to a data sample, and the data samples and response variables can be

horizontally partitioned as X =
[
X>1 X>2 · · · X>m

]>
and y =

[
y>1 y>2 · · · y>m

]>
. In the un-

coded setting, machine i stores the row-block Xi (Figure 6.1). We denote the largest and

smallest eigenvalues of X>X with M > 0, and µ ≥ 0, respectively. We assume λ ≥ 0, and

h(w) ≥ 0 is a convex, extended real-valued function of w that does not depend on data.

Since h(w) can take the value h(w) =∞, this model covers arbitrary convex constraints on

the optimization.

The encoding consists of solving the proxy problem

f̃(w) =
1

2n
‖S (Xw − y) ‖2 + λh(w) =

1

2n

m∑

i=1

‖Si (Xw − y) ‖2

︸ ︷︷ ︸
fi(w)

+λh(w), (6.2)

instead, where S ∈ Rβn×n is a designed encoding matrix with redundancy factor β ≥ 1,

partitioned as S =
[
S>1 S>2 · · · S>m

]>
across m machines. Based on this partition, worker

node i stores (SiX,Siy), and operates to solve the problem (6.2) in place of (6.1) (Figure 6.2).

We will denote ŵ ∈ arg min f̃(w), and w∗ ∈ arg min f(w).

In general, the regularizer h(w) can be non-smooth. We will say that h(w) is L-smooth

if ∇h(w) exists everywhere and satisfies

h(w′) ≤ h(w) + 〈∇h(w), w′ − w〉+
L

2
‖w′ − w‖2

for some L > 0, for all w,w′. The objective f is ν-strongly convex if, for all x, y,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
ν

2
‖x− y‖2.

Once the encoding is done and appropriate data is stored in the nodes, the optimization

process works in iterations. At iteration t, the master node broadcasts the current iterate
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wt to the worker nodes, and wait for kt gradient updates ∇fi(w) to arrive, corresponding to

that iteration, and then chooses a step direction dt and a step size αt (based on algorithm Ψt

that maps the set of gradients updates to a step) to update the parameters. We will denote

ηt = kt
m

. We will also drop the time dependence of k and η whenever it is kept constant.

The set of fastest kt nodes to send gradients for iteration t will be denoted as At. Once kt

updates have been collected, the remaining nodes, denoted Act , are interrupted by the master

node1. Algorithms 2 and 3 describe the generic mechanism of the proposed distributed

optimization scheme at the master node and a generic worker node, respectively.

The intuition behind the encoding idea is that waiting for only kt < m workers prevents

the stragglers from holding up the computation, while the redundancy provided by using a

tall matrix S compensates for the information lost by proceeding without the updates from

stragglers (the nodes in the subset Act).

We next describe the three specific algorithms that we consider under data parallelism,

to compute dt.

Gradient descent. In this case, we assume that h(w) is L-smooth. Then we simply set

the descent direction

dt = −
(

1

2nη

∑

i∈At

∇fi(wt) + λ∇h(wt)

)
.

We keep kt = k constant, chosen based on the number of stragglers in the network, or based

on the desired operating regime.

Limited-memory-BFGS. We assume that h(w) = ‖w‖2, and assume µ + λ > 0. Al-

though L-BFGS is traditionally a batch method, requiring updates from all nodes, its stochas-

tic variants have also been proposed by [MR15, BNT16]. The key modification to ensure

1If the communication is already in progress at the time when kt faster gradient updates arrive, the
communication can be finished without interruption, and the late update can be dropped upon arrival.
Otherwise, such interruption can be implemented by having the master node send an interrupt signal, and
having one thread at each worker node keep listening for such a signal.
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convergence in this case is that the Hessian estimate must be computed via gradient compo-

nents that are common in two consecutive iterations, i.e., from the nodes in At ∩ At−1. We

adapt this technique to our scenario. For t > 0, define ut := wt − wt−1, and

rt :=
m

2n |At ∩ At−1|
∑

i∈At∩At−1

(∇fi(wt)−∇fi(wt−1)) .

Then once the gradient terms {∇fi(wt)}i∈At are collected, the descent direction is computed

by dt = −Btg̃t, where g̃t = 1
2ηn

∑
i∈At ∇fi(wt), and Bt is the inverse Hessian estimate for

iteration t, which is computed by

B
(`+1)
t = V >j`,tB

(`)
t Vj`,t + ρj`,tuj`,tu

>
j`,t
, ρj =

1

r>j uj
, Vj = I − ρjrju>j

with j`,t = t − σ̃ + `, B
(0)
t =

r>t rt
r>t ut

I, and Bt := B
(σ̃)
t with σ̃ := min {t, σ}, where σ is the L-

BFGS memory length. Once the descent direction dt is computed, the step size is determined

through exact line search2. To do this, each worker node computes SiXdt, and sends it to

the master node. Once again, the master node only waits for the fastest kt nodes, denoted by

Dt ⊆ [m] (where in general Dt 6= At), to compute the step size that minimizes the function

along dt, given by

αt = −ρ d>t g̃t

d>t X̃
>
DX̃Ddt

, (6.3)

where X̃D = [SiX]i∈Dt , and 0 < ρ < 1 is a back-off factor of choice.

Proximal gradient. Here, we consider the general case of non-smooth h(w) ≥ 0, λ ≥ 0.

The descent direction dt is given by

dt = arg min
w

F̃t(w)− wt,

where

F̃t(w) :=
1

2ηn

∑

i∈At

fi(wt) +

〈
1

2ηn

∑

i∈At

∇fi(wt), w − wt
〉

+ λh(w) +
1

2α
‖w − wt‖2.

We keep the step size αt = α and kt = k constant.

2Note that exact line search is not more expensive than backtracking line search for a quadratic loss,
since it only requires a single matrix-vector multiplication.
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Algorithm 2 Generic encoded distributed optimization procedure under data parallelism,

at the master node.
1: Given: Ψt, a sequence of functions that map gradients {∇fi(wt)}i∈At

to a descent direction dt

2: Initialize w0, α0

3: for t = 1, . . . , T do

4: broadcast wt to all worker nodes

5: wait to receive kt gradient updates {∇fi(wt)}i∈At

6: send interrupt signal the nodes in Act

7: compute the descent direction dt = Ψt
(
{∇fi (wt)}i∈At

)
8: determine step size αt

9: take the step wt+1 = wt + αtdt

10: end for

Algorithm 3 Generic encoded distributed optimization procedure under data parallelism,

at worker node i.
1: Given: fi(w) = ‖Si(Xw − y)‖2

2: for t = 1, . . . , T do

3: wait to receive wt

4: while not interrupted by master do

5: compute ∇fi(wt)

6: end while

7: if computation was interrupted then

8: continue

9: else

10: send ∇fi(wt)

11: end if

12: end for
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6.3.2 Model parallelism

Under the model parallelism paradigm, we focus on objectives of the form

min g(w) := min
w
φ (Xw) = min

w
φ

(
m∑

i=1

Xiwi

)
, (6.4)

where the data matrix is partitioned as X = [X1 X2 · · · Xm], the parameter vector is par-

titioned as w =
[
w>1 w>2 · · · w>m

]>
, φ is convex, and g(w) is L-smooth. Note that the data

matrix X is partitioned horizontally, meaning that the dataset is split across features, instead

of data samples (see Figure 6.3). Common machine learning models, such as any regression

problem with generalized linear models, support vector machine, and many other convex

problems fit within this model.

We encode the problem (6.4) by setting w = S>v, and solving the problem

min
v
g̃(v) := φ

(
XS>v

)
= min

v
φ

(
m∑

i=1

XS>i vi

)
, (6.5)

where w ∈ Rp and S> =
[
S>1 S>2 · · · S>m

]
∈ Rp×βp (see Figure 6.4). As a result, worker

i stores the column-block XS>i , as well as the iterate partition vi. Note that we increase

the dimensions of the parameter vector by multiplying the dataset X with a wide encoding

matrix S> from the right, and as a result we have redundant coordinates in the system.

As in the case of data parallelism, such redundant coordinates provide robustness against

erasures arising due to stragglers. Such increase in coordinates means that the problem is

simply lifted onto a larger dimensional space, while preserving the original geometry of the

problem. We will denote ui,t = XS>i vi,t, where vi,t is the parameter iterates of worker i at

iteration t. In order to compute updates to its parameters vi, worker i needs the up-to-date

value of z̃i :=
∑

j 6=i uj, which is provided by the master node at every iteration.

Let S = arg minw g(w), and given w, let w∗ be the projection of w onto S. We will say

that g(w) satisfies ν-restricted-strong convexity ([LY13]) if

〈∇g(w), w − w∗〉 ≥ ν‖w − w∗‖2
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N1 N2 Nm

M

f (X1w1 + z1) f(X2w2 + z2) f(Xmwm + zm)

Figure 6.3: Uncoded distributed optimiza-

tion with model parallelism, where ith

node stores the ith partition of the model

wi. For i = 1, . . . ,m, zi =
∑

j 6=iXjwj.

N1 N2 Nm

M

f (XS1v1 + u1) f(XS2v2 + u2) f(XSmvm + um)

Figure 6.4: Encoded setup with model

parallelism, where ith node stores

the partition vi of the model in the

“lifted” space. For i = 1, . . . ,m,

z̃i =
∑

j 6=i uj =
∑

j 6=iXS
>
j vj.

for all w. Note that this is weaker than (implied by) strong convexity since w∗ is restricted

to be the projection of w, but unlike strong convexity, it is satisfied under the case where φ

is strongly convex, but X has a non-trivial null space, e.g., when it has more columns than

rows.

For a given w ∈ Rp, we define the level set of g at w as Dg(w) := {w′ : g(w′) ≤ g(w)}.
We will say that the level set at w0 has diameter R if

sup {‖w − w′‖ : w,w′ ∈ Dg(w0)} ≤ R.

As in the case of data parallelism, we assume that the master node waits for k updates

at every iteration, and then moves onto the next iteration (see Algorithms 4 and 5). We

similarly define At as the set of k fastest nodes in iteration t, and also define

Ii,t =





1 i ∈ At
0 i /∈ At.

Under model parallelism, we consider block coordinate descent, described in Algorithm 4,

where worker i stores the current values of the partition vi, and performs updates on it, given

the latest values of the rest of the parameters. The parameter estimate at time t is denoted
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Algorithm 4 Encoded block coordinate descent at worker node i.
1: Given: Xi, vi.

2: for t = 1, . . . , T do

3: wait to receive (Ii,t−1, z̃i,t)

4: if Ii,t == 1 then

5: take step vi,t = vi,t−1 + di,t−1

6: else

7: set vi,t = vi,t−1

8: end if

9: while not interrupted by master do

10: compute next step di,t = αSiX
>∇φ

(
XS>i vi,t + z̃i,t

)
11: compute ui,t = XS>i vi,t

12: end while

13: if computation was interrupted then

14: continue

15: else

16: send ui,t to master node

17: end if

18: end for

Algorithm 5 Encoded block coordinate descent at the master node.
1: for t = 1, . . . , T do

2: for i = 1, . . . ,m do

3: send (Ii,t−1, z̃i,t) to worker i

4: end for

5: wait to receive k updated parameters {ui,t}i∈At

6: send interrupt signal the nodes in Act

7: set ui,t = ui,t−1 for i ∈ Act
8: compute z̃i,t =

∑
j 6=i uj,t for all i

9: end for
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by vi,t, and we also define z̃i,t =
∑

j 6=i ui,t =
∑

j 6=iXS
>
j vj. The iterates are updated by

vi,t − vi,t−1 = ∆i,t :=




−α∇ig̃(vt−1), if i ∈ At

0, otherwise,

for a step size parameter α > 0, where ∇i refers to gradient only with respect to the variables

vi, i.e., ∇g̃ = [∇ig̃]i∈[m]. Note that if i /∈ At then vi does not get updated in worker i, which

ensures the consistency of parameter values across machines. This is achieved by lines 4–8

in Algorithm 4. Worker i learns about this in the next iteration, when Ii,t−1 is sent by the

master node.

6.4 Convergence Analysis

In this section, we prove convergence results for the algorithms described in Section 6.3.

Note that since we modify the original optimization problem and solve it obliviously to this

change, it is not obvious that the solution has any optimality guarantees with respect to the

original problem. We show that, it is indeed possible to provide convergence guarantees in

terms of the original objective under the encoded setup.

6.4.1 A spectral condition

In order to show convergence under the proposed framework, we require the encoding matrix

S to satisfy a certain spectral criterion on S. Let SA denote the submatrix of S associated

with the subset of machines A, i.e., SA = [Si]i∈A. Then the criterion in essence requires that

for any sufficiently large subset A, SA behaves approximately like a matrix with orthogonal

columns. We make this precise in the following statement.

Definition 6.1. Let β ≥ 1, and 1
β
≤ η ≤ 1 be given. A matrix S ∈ Rβn×n is said to

satisfy the (m, η, ε)-block-restricted isometry property ((m, η, ε)-BRIP) if for any A ⊆ [m]

with |A| = ηm,

(1− ε)In �
1

η
S>ASA � (1 + ε)In. (6.6)
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Note that this is similar to the restricted isometry property used in compressed sensing

([CT05]), except that we do not require (6.6) to hold for every submatrix of S of size Rηn×n.

Instead, (6.6) needs to hold only for the submatrices of the form SA = [Si]i∈A, which is a

less restrictive condition. In general, it is known to be difficult to analytically prove that a

structured, deterministic matrix satisfies the general RIP condition. Such difficulty extends

to the BRIP condition as well. However, it is known that i.i.d. sub-Gaussian ensembles

and randomized Fourier ensembles satisfy this property ([CT06]). In addition, numerical

evidence suggests that there are several families of constructions for S whose submatrices

have eigenvalues that mostly tend to concentrate around 1. We point out that although

the strict BRIP condition is required for the theoretical analysis, in practice the algorithms

perform well as long as the bulk of the eigenvalues of SA lie within a small interval (1−ε, 1+ε),

even though the extreme eigenvalues may lie outside of it (in the non-adversarial setting). In

Section 6.5, we explore several classes of matrices and discuss their relation to this condition.

6.4.2 Convergence of encoded gradient descent

We first consider the algorithms described under data parallelism architecture. The following

theorem summarizes our results on the convergence of gradient descent for the encoded

problem.

Theorem 6.1. Let wt be computed using encoded gradient descent with an encoding matrix

that satisfies (m, η, ε)-BRIP, with step size αt = 2ζ
M(1+ε)+L

for some 0 < ζ ≤ 1, for all t. Let

{At} be an arbitrary sequence of subsets of [m] with cardinality |At| ≥ ηm for all t. Then,

for f as given in (6.1),

1.

1

t

t∑

τ=1

f(wτ )− κ1f(w∗) ≤ 4εf(w0) + 1
2α
‖w0 − w∗‖2

(1− 7ε) t

2. If f is in addition ν-strongly convex, then

f(wt)−
κ2

2(κ2 − γ)

1− κ2γ
f (w∗) ≤ (κ2γ)t f(w0), t = 1, 2, . . . ,
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where κ1 = 1+3ε
1−7ε

, κ2 = 1+ε
1−ε , and γ =

(
1− 4νζ(1−ζ)

M(1+ε)+L

)
, where ε is assumed to be small enough

so that κ2γ < 1.

The proof is provided in Appendix E.1, which relies on the fact that the solution to

the effective “instantaneous” problem corresponding to the subset At lies in a bounded

set {w : f(w) ≤ κf(w∗)} (where κ depends on the encoding matrix and strong convexity

assumption on f), and therefore each gradient descent step attracts the iterate towards a

point in this set, which must eventually converge to this set. Theorem 6.1 shows that encoded

gradient descent can achieve the standard O
(

1
t

)
convergence rate for the general case, and

linear convergence rate for the strongly convex case, up to an approximate minimum. For

the convex case, the convergence is shown on the running mean of past function values,

whereas for the strongly convex case we can bound the function value at every step. Note

that although the nodes actually minimize the encoded objective f̃(w), the convergence

guarantees are given in terms of the original objective f(w).

Theorem 6.1 provides deterministic, sample path convergence guarantees under any (ad-

versarial) sequence of active sets {At}, which is in contrast to the stochastic methods, which

show convergence typically in expectation. Further, the convergence rate is not affected by

the tail behavior of the delay distribution, since the delayed updates of stragglers are not

applied to the iterates.

Note that since we do not seek exact solutions under data parallelism, we can keep the

redundancy factor β fixed regardless of the number of stragglers. Increasing number of

stragglers in the network simply results in a looser approximation of the solution, allowing

for a graceful degradation. This is in contrast to existing work [TLD17] seeking exact

convergence under coding, which shows that the redundancy factor must grow linearly with

the number of stragglers.
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6.4.3 Convergence of encoded L-BFGS

We consider the variant of L-BFGS described in Section 6.3. For our convergence result

for L-BFGS, we need another assumption on the matrix S, in addition to (6.6). Defining

S̆t = [Si]i∈At∩At−1
for t > 0, we assume that for some δ > 0,

δI � S̆>t S̆t (6.7)

for all t > 0. Note that this requires that one should wait for sufficiently many nodes to

send updates so that the overlap set At ∩ At1 has more than 1
β

nodes, and thus the ma-

trix S̆t can be full rank. When the columns of X are linearly independent, this is satisfied

if η ≥ 1
2

+ 1
2β

in the worst-case, and in the case where node delays are i.i.d. across ma-

chines, it is satisfied in expectation if η ≥ 1√
β
. One can also choose kt adaptively so that

kt = min
{
k : |At(k) ∩ At−1| > 1

β

}
. We note that although this condition is required for the

theoretical analysis, the algorithm may perform well in practice even when this condition is

not satisfied.

We first show that this algorithm results in stable inverse Hessian estimates under the

proposed model, under arbitrary realizations of {At} (of sufficiently large cardinality), which

is done in the following lemma.

Lemma 6.1. Let µ + λ > 0. Then there exist constants c1, c2 > 0 such that for all t, the

inverse Hessian estimate Bt satisfies c1I � Bt � c2I.

The proof, provided in Appendix E.1, is based on the well-known trace-determinant

method. Using Lemma 6.1, we can show the following convergence result.

Theorem 6.2. Let µ+λ > 0, and let wt be computed using the L-BFGS method described in

Section 6.3, with an encoding matrix that satisfies (m, η, ε)-BRIP. Let {At}, {Dt} be arbitrary

sequences of subsets of [m] with cardinality |At| , |Dt| ≥ ηm for all t. Then, for f as described

in Section 6.3,

f(wt)−
κ2(κ− γ)

1− κγ f (w∗) ≤ (κγ)t f(w0),
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where κ = 1+ε
1−ε , and γ =

(
1− 4(µ+λ)c1c2

(M+λ)(1+ε)(c1+c2)2

)
, where c1 and c2 are the constants in

Lemma 6.1.

The proof is given in Appendix E.1. Similar to Theorem 6.1, the proof is based on

the observation that the solution of the effective problem at time t lies in a bounded set

around the true solution w∗. As in gradient descent, coding enables linear convergence

deterministically, unlike the stochastic and multi-batch variants of L-BFGS, e.g., [MR15,

BNT16].

6.4.4 Convergence of encoded proximal gradient

Next we consider the encoded proximal gradient algorithm, described in Section 6.3, for ob-

jectives with potentially non-smooth regularizers h(w). The following theorem characterizes

our convergence results under this setup.

Theorem 6.3. Let wt be computed using encoded proximal gradient with an encoding matrix

that satisfies (m, η, ε)-BRIP, with step size αt = α < 1
M

, and where ε < 1
7
. Let {At} be

an arbitrary sequence of subsets of [m] with cardinality |At| ≥ ηm for all t. Then, for f as

described in Section 6.3,

1. For all t,

1

t

t∑

τ=1

f(wτ )− κf(w∗) ≤ 4εf(w0) + 1
2α
‖w0 − w∗‖2

(1− 7ε) t
,

2. For all t,

f(wt+1) ≤ κf(wt),

where κ = 1+7ε
1−3ε

.

The proof is given in Appendix E.2. As in the previous algorithms, the convergence

guarantees hold for arbitrary sequences of active sets {At}. Note that as in the gradient

descent case, the convergence is shown on the mean of past function values. Since this does
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not prevent the iterates from having a sudden jump at a given iterate, we include the second

part of the theorem to complement the main convergence result, which implies that the

function value cannot increase by more than a small factor of its current value.

6.4.5 Convergence of encoded block coordinate descent

Finally, we consider the convergence of encoded block coordinate descent algorithm. The

following theorem characterizes our main convergence result for this case.

Theorem 6.4. Let wt = S>vt, where vt is computed using encoded block coordinate descent

as described in Section 6.3. Let S satisfy (m, η, ε)-BRIP, and the step size satisfy α < 1
L(1+ε)

.

Let {At} be an arbitrary sequence of subsets of [m] with cardinality |At| ≥ ηm for all t. Let

the level set of g at the first iterate Dg(w0) have diameter R. Then, for g(w) = φ(Xw) as

described in Section 6.3, the following hold.

1. If φ is convex, then

g(wt)− g(w∗) ≤ 1
1
π0

+ Ct
,

where π0 = g(w0)− g(w∗), and C = (1−ε)α
R

(
1− αL′

2

)
.

2. If g is ν-restricted-strongly convex, then

g(wt)− g(w∗) ≤
(

1− 1

ξ

)t
(g(w0)− g(w∗)) ,

where ξ = 1
ν(1−ε)α

(
1− L(1+ε)α

2

)−1

.

The proof is given in Appendix E.3. Theorem 6.4 demonstrates that the standard O
(

1
t

)

rate for the general convex, and linear rate for the strongly convex case can be obtained

under the encoded setup. Note that unlike the data parallelism setup, we can achieve exact

minimum under model parallelism, since the underlying geometry of the problem does not

change under encoding; the same objective is simply mapped onto a higher-dimensional

space, which has redundant coordinates. Similar to the previous cases, encoding allows for

129



deterministic convergence guarantees under adversarial failure patterns. This comes at the

expense of a small penalty in the convergence rate though; one can observe that a non-zero

ε slightly weakens the constants in the convergence expressions. Still, note that this penalty

in convergence rate only depends on the encoding matrix and not on the delay profile in the

system. This is in contrast to the asynchronous coordinate descent methods; for instance,

in [LWR15], the step size is required to shrink exponentially in the maximum allowable

delay, and thus the guaranteed convergence rate can exponentially degrade with increasing

worst-case delay in the system. The same is true for the linear convergence guarantee in

[PXY16].

6.5 Code Design

6.5.1 Block RIP condition and code design

We first discuss two classes of encoding matrices with regard to the BRIP condition; namely

equiangular tight frames, and random matrices.

Tight frames. A unit-norm frame for Rn is a set of vectors F = {ai}nβi=1 with ‖ai‖ = 1,

where β ≥ 1, such that there exist constants ξ2 ≥ ξ1 > 0 such that, for any u ∈ Rn,

ξ1‖u‖2 ≤
nβ∑

i=1

|〈u, ai〉|2 ≤ ξ2‖u‖2.

The frame is tight if the above satisfied with ξ1 = ξ2. In this case, it can be shown that

the constants are equal to the redundancy factor of the frame, i.e., ξ1 = ξ2 = β. If we

form S ∈ R(βn)×n by rows that form a tight frame, then we have S>S = βI, which ensures

‖Xw−y‖2 = 1
β
‖SXw−Sy‖2. Then for any solution ŵ to the encoded problem (with k = m),

∇f̃(ŵ) = X>S>S(Xŵ − y) = βX>(Xŵ − y) = β∇f(ŵ).
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Therefore, the solution to the encoded problem satisfies the optimality condition for the

original problem as well:

−∇f̃(ŵ) ∈ ∂h(ŵ), ⇔ −∇f(ŵ) ∈ ∂h(ŵ),

and if f is also strongly convex, then ŵ = w∗ is the unique solution. This means that for

k = m, obliviously solving the encoded problem results in the same objective value as in the

original problem.

Define the maximal inner product of a unit-norm tight frame F = {ai}nβi=1, where ai ∈
Rn,∀i, by

ω(F ) := max
ai,aj∈F
i 6=j

|〈ai, aj〉| .

A tight frame is called an equiangular tight frame (ETF) if |〈ai, aj〉| = ω(F ) for every i 6= j.

Proposition 6.1 ([Wel74]). Let F = {ai}nβi=1 be a tight frame. Then ω(F ) ≥
√

β−1
nβ−1

.

Moreover, equality is satisfied if and only if F is an equiangular tight frame.

Therefore, an ETF minimizes the correlation between its individual elements, making

each submatrix S>ASA as close to orthogonal as possible. This, combined with the property

that tight frames preserve the optimality condition when all nodes are waited for (k = m),

make ETFs good candidates for encoding, in light of the required property (6.6). We specif-

ically evaluate the Paley ETF from [Pal33] and [GS67]; Hadamard ETF from [Szo13] (not

to be confused with Hadamard matrix); and Steiner ETF from [FM12] in our experiments.

Although the derivation of tight eigenvalue bounds for subsampled ETFs is a long-

standing problem, numerical evidence (see Figures 6.5, 6.6) suggests that they tend to have

their eigenvalues more tightly concentrated around 1 than random matrices (also supported

by the fact that they satisfy Welch bound, Proposition 6.1 with equality).

Note that our theoretical results focus on the extreme eigenvalues due to a worst-case

analysis; in practice, most of the energy of the gradient lies on the eigen-space associated

with the bulk of the eigenvalues, which the following proposition shows can be identically 1.
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Figure 6.5: Sample spectrum of S>ASA

for various constructions with high redun-

dancy, and small k (normalized).

Figure 6.6: Sample spectrum of S>ASA for

various constructions with moderate re-

dundancy, and large k (normalized).

Proposition 6.2. If the rows of S are chosen to form an ETF with redundancy β, then for

η ≥ 1− 1
β

, 1
β
S>ASA has n(1− β(1− η)) eigenvalues equal to 1.

This follows immediately from Cauchy interlacing theorem, using the fact that SAS
>
A and

S>ASA have the same spectra except zeros. Therefore for sufficiently large η, ETFs have a

mostly flat spectrum even for low redundancy, and thus in practice one would expect ETFs

to perform well even for small amounts of redundancy. This is also confirmed by Figure 6.6,

as well as our numerical results.

Random matrices. Another natural choice of encoding could be to use i.i.d. random

matrices. Although encoding with such random matrices can be computationally expensive

and may not have the desirable properties of encoding with tight frames, their eigenvalue

behavior can be characterized analytically. In particular, using the existing results on the

eigenvalue scaling of large i.i.d. Gaussian matrices from [Gem80, Sil85] and union bound, it

can be shown that

P

(
max
A:|A|=k

λmax

(
1

βηn
S>ASA

)
>

(
1 +

√
1

βη

)2
)
→ 0 (6.8)

P

(
min

A:|A|=k
λmin

(
1

βηn
S>ASA

)
<

(
1−

√
1

βη

)2
)
→ 0, (6.9)

as n → ∞, if the elements of SA are drawn i.i.d. from N(0, 1). Hence, for sufficiently large

redundancy and problem dimension, i.i.d. random matrices are good candidates for encoding
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as well. However, for finite β, even if k = m, in general the optimum of the original problem

is not recovered exactly, for such matrices.

6.5.2 Efficient encoding

In this section we discuss some of the possible practical approaches to encoding. Some of the

practical issues involving encoding include the the computational complexity of encoding, as

well as the loss of sparsity in the data due to the multiplication with S, and the resulting

increase in time and space complexity. We address these issues in this section.

6.5.2.1 Efficient distributed encoding with sparse matrices

Let the dataset (X, y) lie in a database, accessible to each worker node, where each node

is responsible for computing their own encoded partitions SiX and Siy. We assume that S

has a sparse structure. Given S, define Bi(S) = {j : Sij 6= 0} as the set of indices of the

non-zero elements of the ith row of S. For a set I of rows, we define BI(S) = ∪i∈IBi(S).

Let us partition the set of rows of S, [βn], into m machines, and denote the partition

of machine k as Ik, i.e.,
⊔m
k=1 Ik = [βn], where t denotes disjoint union. Then the set of

non-zero columns of Sk is given by BIk(S). Note that in order to compute SkX, machine k

only requires the rows of X in the set BIk(S). In what follows, we will denote this submatrix

of X by X̃k, i.e., if x>i is the ith row of X, X̃k :=
[
x>i
]
i∈BIk (S)

. Similarly ỹk = [yi]i∈BIk (S),

where yi is the ith element of y.

Consider the specific computation that needs to be done by worker k during the iterations,

for each algorithm. Under the data parallelism setting, worker k computes the following

gradient:

∇fk(w) = X>S>k Sk(Xw − y)
(a)
= X̃>k S

>
k Sk(X̃kw − ỹk) (6.10)

where (a) follows since the rows of X that are not in BIk get multiplied by zero vector.

Note that the last expression can be computed without any matrix-matrix multiplication.
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This gives a natural storage and computation scheme for the workers. Instead of computing

SkX offline and storing it, which can result in a loss of sparsity in the data, worker k

can store X̃k in uncoded form, and compute the gradient through (6.10) whenever needed,

using only matrix-vector multiplications. Since Sk is sparse, the overhead associated with

multiplications of the form Skv and S>k v is small.

Similarly, under model parallelism, the computation required by worker k is

∇kg̃(v) = SkX
>∇kφ

(
XS>k vk + z̃k

)
= SkX̃

>
k ∇kφ

(
X̃kS

>
k vk + z̃k

)
, (6.11)

and as in the data parallelism case, the worker can store X̃k uncoded, and compute (6.11)

online through matrix-vector multiplications.

Example: Steiner ETF. We illustrate the described technique through Steiner ETF,

based on the construction proposed in [FM12], using (2, 2, v)-Steiner systems. Let v be a

power of 2, let H ∈ Rv×v be a real Hadamard matrix, and let hi be the ith column of H, for

i = 1, . . . , v. Consider the matrix V ∈ {0, 1}v×v(v−1)/2, where each column is the incidence

vector of a distinct two-element subset of {1, . . . , v}. For instance, for v = 4,

V =




1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1



.

Note that each of the v rows have exactly v − 1 non-zero elements. We construct Steiner

ETF S as a v2× v(v−1)
2

matrix by replacing each 1 in a row with a distinct column of H, and

normalizing by
√
v − 1. For instance, for the above example, we have

S =
1√
3




h2 h3 h4 0 0 0

h2 0 0 h3 h4 0

0 h2 0 h3 0 h4

0 0 h2 0 h3 h4



.
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We will call a set of rows of S that arises from the same row of V a block. In general, this

procedure results in a matrix S with redundancy factor β = 2v
v−1

. In full generality, Steiner

ETFs can be constructed for larger redundancy levels; we refer the reader to [FM12] for a

full discussion of these constructions.

We partition the rows of the V matrix into m machines, so that each machine gets

assigned v
m

rows of V , and thus the corresponding v
m

blocks of S.

This construction and partitioning scheme is particularly attractive for our purposes for

two reasons. First, it is easy to see that for any node k, |BIk | is upper bounded by v(v−1)
m

= 2n
m

,

which means the memory overhead compared to the uncoded case is limited to a factor3 of

β. Second, each block of Sk consists of (almost) a Hadamard matrix, so the multiplication

Skv can be efficiently implemented through Fast Walsh-Hadamard Transform.

Example: Haar matrix. Another possible choice of sparse matrix is column-subsampled

Haar matrix, which is defined recursively by

H2n =
1√
2


 Hn ⊗ [1 1]

In ⊗ [1 − 1]


 , H1 = 1,

where ⊗ denotes Kronecker product. Given a redundancy level β, one can obtain S by

randomly sampling n
β

columns of Hn. It can be shown that in this case, we have |BIk | ≤
βn log(n)

m
, and hence encoding with Haar matrix incurs a memory cost by logarithmic factor.

6.5.2.2 Fast transforms

Another computationally efficient method for encoding is to use fast transforms: Fast Fourier

Transform (FFT), if S is chosen as a subsampled DFT matrix, and the Fast Walsh-Hadamard

Transform (FWHT), if S is chosen as a subsampled real Hadamard matrix. In particular,

one can insert rows of zeroes at random locations into the data pair (X, y), and then take the

3In practice, we have observed that the convergence performance improves when the blocks are broken
into multiple machines, so one can, for instance, assign half-blocks to each machine.
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FFT or FWHT of each column of the augmented matrix. This is equivalent to a randomized

Fourier or Hadamard ensemble, which is known to satisfy the RIP with high probability

by [CT06]. However, such transforms do not have the memory advantages of the sparse

matrices, and thus they are more useful for the setting where the dataset is dense, and the

encoding is done offline.

6.5.3 Cost of encoding

Since encoding increases the problem dimensions, it clearly comes with the cost of increased

space complexity. The memory and storage requirement of the optimization still increases by

a factor of 2, if the encoding is done offline (for dense datasets), or if the techniques described

in the previous subsection are applied (for sparse datasets)4. Note that the added redundancy

can come by increasing the amount of effective data points per machine, by increasing the

number of machines while keeping the load per machine constant, or a combination of the

two. In the first case, the computational load per machine increases by a factor of β.

Although this can make a difference if the system is bottlenecked by the computation time,

distributed computing systems are typically communication-limited, and thus we do not

expect this additional cost to dominate the speed-up from the mitigation of stragglers.

6.6 Numerical Results

We implement the proposed technique on four problems: ridge regression, matrix factoriza-

tion, logistic regression, and LASSO.

4Note that the increase in space complexity is not higher for sparse matrices, since the sparsity loss can
be avoided using the techniques described in Section 6.5.2
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Figure 6.7: Left: Sample evolution of uncoded, replication, and Hadamard (FWHT)-coded

cases, for k = 12, m = 32. Right: Runtimes of the schemes for different values of η,

for the same number of iterations for each scheme. Note that this essentially captures the

delay profile of the network, and does not reflect the relative convergence rates of different

methods.

6.6.1 Ridge regression

We generate the elements of matrix X i.i.d. ∼ N(0, 1), and the elements of y are generated

from X and an i.i.d. N(0, 1) parameter vector w∗, through a linear model with Gaussian

noise, for dimensions (n, p) = (4096, 6000). We solve the problem minw
1

2n
‖S (Xw − y)‖2 +

λ
2
‖w‖2, for regularization parameter λ = 0.05. We evaluate column-subsampled Hadamard

matrix with redundancy β = 2 (encoded using FWHT), replication and uncoded schemes.

We implement distributed L-BFGS as described in Section 6.4 on an Amazon EC2 cluster

using mpi4py Python package, over m = 32 m1.small instances as worker nodes, and a

single c3.8xlarge instance as the central server.

Figure 6.7 shows the result of our experiments, which are aggregated from 20 trials. In

addition to uncoded scheme, we consider data replication, where each uncoded partition

is replicated β = 2 times across nodes, and the server discards the duplicate copies of a

partition, if received in an iteration. It can be seen that for low η, uncoded L-BFGS may not

converge when a fixed number of nodes are waited for, whereas the Hadamard-coded case

stably converges. We also observe that the data replication scheme converges on average,
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Figure 6.8: Test RMSE for m = 8 (left) and m = 24 (right) nodes, where the server waits for

k = m/8 (top) and k = m/2 (bottom) responses. “Perfect” refers to the case where k = m.

but its performance may deteriorate if both copies of a partition are delayed. Figure 6.7

suggests that this performance can be achieved with an approximately 40% reduction in the

runtime, compared to waiting for all the nodes.

6.6.2 Matrix factorization

We next apply matrix factorization on the MovieLens-1M dataset ([RK98]) for the movie

recommendation task. We are given R, a sparse matrix of movie ratings 1–5, of dimension

#users×#movies, where Rij is specified if user i has rated movie j. We withhold randomly

20% of these ratings to form an 80/20 train/test split. The goal is to recover user vectors

xi ∈ Rp and movie vectors yi ∈ Rp (where p is the embedding dimension) such that Rij ≈
xTi yj + ui + vj + b, where ui, vj, and b are user, movie, and global biases, respectively. The
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Figure 6.9: Total runtime with m = 8 and m = 24 nodes for different values of k, under

fixed 100 iterations for each scheme.

optimization problem is given by

min
xi,yj ,ui,vj

∑

i,j: observed

(Rij − ui − vj − xTi yj − b)2

+ λ

(∑

i

‖xi‖2
2 + ‖u‖2

2 +
∑

j

‖yj‖2
2 + ‖v‖2

2

)
. (6.12)

We choose b = 3, p = 15, and λ = 10, which achieves test RMSE 0.861, close to the current

best test RMSE on this dataset using matrix factorization5.

Problem (6.12) is often solved using alternating minimization, minimizing first over all

(xi, ui), and then all (yj, vj), in repetition. Each such step further decomposes by row and

column, made smaller by the sparsity of R. To solve for (xi, ui), we first extract Ii = {j |
rij is observed}, and minimize



[
yTIi ,1

]

xi
ui


− (RT

i,Ii
− vIi − b1)




2

+ λ

(∑

i

‖xi‖2
2 + ‖u‖2

2

)
(6.13)

for each i, which gives a sequence of regularized least squares problems with variable w =

[xTi , ui]
T , which we solve distributedly using coded L-BFGS; and repeat for w = [yTj , vj]

T ,

for all j.

5http://www.mymedialite.net/examples/datasets.html
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The Movielens experiment is run on a single 32-core machine with Linux 4.4. In or-

der to simulate network latency, an artificial delay of ∆ ∼ exp(10 ms) is imposed each

time the worker completes a task. Small problem instances (n < 500) are solved locally

at the central server, using the built-in function numpy.linalg.solve. To reduce over-

head, we create a bank of encoding matrices {Sn} for Paley ETF and Hadamard ETF, for

n = 100, 200, . . . , 3500, and then given a problem instance, subsample the columns of the

appropriate matrix Sn to match the dimensions. Overall, we observe that encoding overhead

is amortized by the speed-up of the distributed optimization.

Figure 6.8 gives the final performance of our distributed L-BFGS for various encoding

schemes, for each of the 5 epochs, which shows that coded schemes are most robust for small

k. A full table of results is given in Appendix E.4.

6.6.3 Logistic regression

In our next experiment, we apply logistic regression for document classification for Reuters

Corpus Volume 1 (rcv1.binary) dataset from [LYR04], where we consider the binary task of

classifying the documents into corporate/industrial/economics vs. government/social/markets

topics. The dataset has 697,641 documents, and 47,250 term frequency-inverse document

frequency (tf-idf) features. We randomly select 32,500 features for the experiment, and re-

serve 100,000 documents for the test set. We use logistic regression with `2-regularization

for the classification task, with the objective

min
w,b

1

n

n∑

i=1

log
(
1 + exp

{
−z>i w + b

})
+ λ‖w‖2,

where zi = yixi is the data sample xi multiplied by the label yi ∈ {−1, 1}, and b is the

bias variable. We solve this optimization using encoded distributed block coordinate descent

as described in Section 6.3, and implement Steiner and Haar encoding as described in Sec-

tion 6.5, with redundancy β = 2. In addition we implement the asynchronous coordinate

descent, as well as replication, which represents the case where each partition Zi is replicated

across two nodes, and the faster copy is used in each iteration. We use m = 128 t2.medium
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Figure 6.10: Test and train errors over time

(in seconds) for each scheme, for the bimodal

delay distribution. Steiner and Haar encod-

ing is done with k = 64, β = 2.
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Figure 6.11: Test and train errors over

time (in seconds) for each scheme. Num-

ber of background tasks follow a power law.

Steiner and Haar encoding is done with

k = 80, β = 2.

instances as worker nodes, and a single c3.4xlarge instance as the master node, which

communicate using the mpi4py package. We consider two models for stragglers. In the first

model, at each node, we add a random delay drawn from a Gaussian mixture distribution

qN (µ1, σ
2
1) + (1 − q)N (µ2, σ

2
2), where q = 0.5, µ1 = 0.5s, µ2 = 20s, σ1 = 0.2s, σ2 = 5s.

In the second model, we do not directly add any delay, but at each machine we launch a

number of dummy background tasks (matrix multiplication) that are executed throughout

the computation. The number of background tasks across the nodes is distributed according

to a power law with exponent α = 1.5. The number of background tasks launched is capped

at 50.

Figures 6.10 and 6.11 shows the evolution of training and test errors as a function of

wall clock time. We observe that for each straggler model, either Steiner or Haar encoded

optimization dominates all schemes. Figures 6.12 and 6.13 show the statistics of how frequent

each node participates in an update, for the case with background tasks, for encoded and

asynchronous cases, respectively. We observe that the stark difference in the relative speeds

of different machines result in vastly different update frequencies for the asynchronous case,

141



0 20 40 60 80 100 120

Node id (k)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

(k
 A

t)

Figure 6.12: The fraction of iterations each

worker node participates in (the empirical

probability of the event {k ∈ At}), plotted

for Steiner encoding with k = 80, m = 128.

The number of background tasks are dis-

tributed by a power law with α = 1.5

(capped at 50).

0 20 40 60 80 100 120

Node id (k)

0

0.005

0.01

0.015

0.02

0.025

F
ra

c
ti
o

n
 o

f 
u

p
d

a
te

s
 p

e
rf

o
rm

e
d

Figure 6.13: The fraction of updates per-

formed by each node, for asynchronous

block coordinate descent. The horizontal

line represents the uniformly distributed

case. The number of background tasks are

distributed by a power law with α = 1.5
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which results in updates with large delays, and a corresponding performance loss.

6.6.4 LASSO

We solve the LASSO problem, with the objective

min
w

1

2n
‖Xw − y‖2 + λ‖w‖2

1,

where X ∈ R130,000×100,000 is a matrix with i.i.d. N(0, 1) entries, and y is generated from X

and a parameter vector w∗ through a linear model with Gaussian noise:

y = Xw∗ + σz,

where σ = 40, z ∼ N(0, 1). The parameter vector w∗ has 7695 non-zero entries out of

100,000, where the non-zero entries are generated i.i.d. from N(0, 4). We choose λ = 0.6

and consider the sparsity recovery performance of the corresponding LASSO problem, solved

using proximal gradient (iterative shrinkage/thresholding algorithm).
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Figure 6.14: Evolution of F1 sparsity recovery performance for each scheme.

We implement the algorithm over 128 t2.medium worker nodes which collectively store

the matrix X, and a c3.4xlarge master node. We measure the sparsity recovery perfor-

mance of the solution using the F1 score, defined as the harmonic mean

F1 =
2PR

P +R
,

where P and R are precision recall of the solution vector ŵ respectively, defined as

P =
|{i : w∗i 6= 0, ŵi 6= 0}|

|i : ŵi 6= 0| , R =
|{i : w∗i 6= 0, ŵi 6= 0}|

|i : w∗i 6= 0|

.

Figure 6.14 shows the sample evolution of the F1 score of the model under uncoded,

replication, and Steiner encoded scenarios, with artificial multi-modal communication delay

distribution q1N (µ1, σ
2
1) + q2N (µ2, σ

2
2) + q3N (µ3, σ

2
3), where q1 = 0.8, q2 = 0.1, q3 = 0.1;

µ1 = 0.2s, µ2 = 0.6s, µ3 = 1s; and σ1 = 0.1s, σ = 0.2s, σ3 = 0.4s, independently at each node.

We observe that the uncoded case k = 80 results in a performance loss in sparsity recovery

due to data dropped from delayed noes, and uncoded and replication with k = 128 converges

slow due to stragglers, while Steiner coding with k = 80 is not delayed by stragglers, while

maintaining almost the same sparsity recovery performance as the solution of the uncoded

k = 128 case.
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CHAPTER 7

Conclusions and Open Problems

We studied techniques to achieve robust communication and optimization over networks

with unreliable and intermittently available resources. In the first part, we have focused

on communication over wireless networks, and developed and analyzed schemes that make

use of intermittently available links for feedback and cooperation. We have also considered

the problem of uplink-downlink interference in full-duplex cellular networks, and proposed

a simple scheduling scheme for networks with time-varying link strengths, to mitigate this

interference. In the second part, we considered distributed optimization over networks with

nodes that fail or delay their computation, and developed the encoded distributed optimiza-

tion framework to counteract the harmful effect of such nodes on the optimization. Along all

directions that are explored in this thesis, there are several open questions that are interesting

to study in the future.

Specifically, an interesting research direction could be to gain a more comprehensive

understanding of how unlicensed bands can be harnessed for communication over licensed

bands, in upcoming 5G networks. This could be a particularly important question since

5G is envisioned to be a network of billions of devices, each of which have different require-

ments, computational capabilities, power limitations, hardware constraints, and spectral

limitations, over the same infrastructure. Opportunistic use of such intermittent links to

support networking over 5G could be one of the ways to get closer to this goal.

The encoded optimization framework we developed in this thesis assumes convex prob-

lems. Given the recent rise of deep learning, an important question is to understand how to

extend these ideas to non-convex problems, and specifically to the training of deep neural
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networks. Especially under the emerging federated learning scenario, where the user devices

which act as worker nodes can be highly unreliable, the problem of straggler mitigation be-

comes critical to the training performance and quality of the trained model. Therefore an

exciting research question is whether we can extend the encoding idea to such a scenario.

Another worthwhile direction is to understand if the encoding idea can be used for privacy

purposes, where a central server receives a version of the data that is jumbled through

encoding. Ideally, such encoding would reveal little about the data itself, but its output

would still be useful for the learning objective.

There are many exciting and interesting future research directions in understanding how

to design robust communication and computation systems over unreliable networks. We hope

that this thesis contributes to the development of the foundational ideas to build reliable

future systems.
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APPENDIX A

Proofs for Chapter 2

A.1 Proof of Lemma 2.1

Choose ε > 0. We suppress the dependence of variables on block index b for simplicity.

Consider, for (i, j) = (1, 2), (2, 1),

E
[
2NKi

]
= E




2Nri∑

qi=1

1{
qi:(XN

jf ,U
N
i (qi))∈A(n)

ε

}



=
2Nri∑

qi=1

P
((
XN
jf , U

N
i (qi)

)
∈ A(n)

ε

)

= 2NriP
((
XN
jf , U

N
i (1)

)
∈ A(n)

ε

)

Since UN
i (1) is generated independently from XN

jf , by packing lemma [GK11], there exists

δ(ε) with δ(ε)→ 0 such that

E
[
2NKi

]
≤ 2Nri2−N[I(Xjf ;Ui)−δ(ε)/3]

for all N .

Next consider the variance of 2NKi .

var(2NKi) = var




2Nri∑

qi=1

1{
qi:(XN

jf ,U
N
i (qi))∈A(n)

ε

}



(a)
=

2Nri∑

qi=1

var

(
1{

qi:(XN
jf ,U

N
i (qi))∈A(n)

ε

})

=
2Nri∑

qi=1

E
[
1{

qi:(XN
jf ,U

N
i (qi))∈A(n)

ε

}] ·
(

1− E
[
1{

qi:(XN
jf ,U

N
i (qi))∈A(n)

ε

}])
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=
2Nri∑

qi=1

P
((
XN
jf , U

N
i (qi)

)
∈ A(n)

ε

)
·
(
1− P

((
XN
jf , U

N
i (qi)

)
∈ A(n)

ε

))

(b)
= 2NripN(1− pN) ≤ 2NripN

where (a) is due to independence of the indicator variables, and we have defined pN :=

P
((
XN
jf , U

N
i (1)

)
∈ A(n)

ε

)
in (b). Hence, there exists N1 such that for all N > N1,

var(2NKi) ≤ 2Nri2−N[I(Xjf ;Ui)−δ(ε)]

for some δ(ε) with δ(ε)→ 0 as ε→∞.

Define η := 2Nri2−N[I(Xjf ;Ui)−δ(ε)/3](2Nδ(ε)/3 − 1), and the sequence of events

En :=
{∣∣2(n+N1)Ki − E

[
2(n+N1)Ki

]∣∣ > η
}

indexed by n ≥ 1.

Borel-Cantelli lemma [Dur10] states that if
∑∞

n=1 P (En) <∞, then

P (En infinitely often) = 0.

Then consider
∞∑

n=1

P (En) =
∞∑

n=1

P
(∣∣2(n+N1)Ki − E

[
2(n+N1)Ki

]∣∣ > η
)

(a)

≤
∞∑

n=1

var
(
2(n+N1)Ki

)

η2

≤
∞∑

n=1

1

2n[ri−I(Xjf ;Ui)+δ(ε)/3](2nδ(ε)/3 − 1)2

(b)
< ∞

where (a) follows by Chebyshev’s inequality, and (b) is because exponentially decaying series

converge, and ri > I(Ṽj;Ui) ≥ I(Xjf ;Ui) where the first inequality is by covering lemma

[GK11], and the second is by data processing inequality (recall that Xjf−Ṽj−Ui is a Markov

chain). Therefore, with probability one, there exists a finite integer N2 ≥ N1 such that for

all N ≥ N2,

2NKi < 2Nri2−N[I(Xjf ,Ui)−2δ(ε)/3]
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Choosing ri = I(Ṽj;Ui) + δ(ε)/3, taking the logarithm of both sides, and dividing by N , we

get the desired result.

A.2 Proofs of Lemmas 2.2, 2.3, 2.4 and 2.5

A.2.1 Notation

We will often suppress the dependence on block index b and block length N for brevity.

For any given set of message indices (m1, n1,m2), define the following events, with a little

abuse of notation

T (m1, n1,m2) := {∃ (q1, q2, q
′
2) s.t. (2.21) holds for (m1, n1,m2, q1, q2, q

′
2)} ,

T (m1, n1,m2, q1, q2, q
′
2) := {(2.21) holds for the indices(m1, n1,m2, q1, q2, q

′
2)}

We also define the following quantization error event at Txi

Ei =
{
Ṽ N
j ∈ T (N)

ε′ ,
(
Ṽ N
j , U

N
i (qi)

)
/∈ A(n)

ε ∀qi
}
∪
{
Ṽ N
j /∈ T (N)

ε′

}

for (i, j) = (1, 2), (2, 1), and E := E1 ∪ E2.

Without loss of generality, we assume that the correct message and quantization indices

correspond to the index 1, i.e. (W1c,W1p,W2c, Q1, Q2) = (1, 1, 1, 1, 1) for all blocks. We

introduce the notation

B̄i(b) := Bi(b) \ {1}

An arbitrary element of the set B̄i(b) will be denoted with q̄i, or q̄′i. In this analysis, we focus

on an arbitrary block b, but we will also need to refer to variables from block b − 1. The

variables associated with block b−1 will be represented with a caron notation when in single

letter form. For example, while X̌2e is the single letter form for XN
2e(b− 1), X2e is the single

letter form for XN
2e(b). The feedback state pair S = (S1, S2) is assumed to be conditioned

upon in all the mutual information terms (since the receivers have access to this information

causally), but will be omitted for brevity.
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A.2.2 Claims

In this subsection, we will prove two simple claims that will be useful in bounding the

probability of decoding error.

Claim A.1. Let Ak, k = 1, 2, ... be a sequence of i.i.d. events. Let S ⊂ N be a random subset

of natural numbers (not necessarily independent from the events Ak) such that |S| ≤M a.s.

for some real number M , and P (Ak|S) = P (Am|S) a.s. for all (k,m) pairs. Then

P

(⋃

k∈S

Ak

)
≤MP (Aj)

for an arbitrary j.

Proof.

P

(⋃

k∈S

Ak

)
= E

[
E
[
1∪k∈SAk |S

]]
≤ E

[
E

[∑

k∈S

1Ak

∣∣∣∣∣S
]]

(a)
= E [E [|S|1A1|S]] = E [|S|E [1A1|S]]

≤ E [ME [1A1|S]] = ME [E [1A1|S]] = MP (A1)

where (a) follows by the fact that P (Ak|S) is the same for all k.

Claim A.2. Let
(
XN , Y N , ZN

)
be distributed i.i.d. according to p(x, y, z), and

(
X̃N , Ỹ N , Z̃N

)

be distributed i.i.d. according to p(x)p(y)p(z). Then there exists δ(ε) with limε→0 δ(ε) = 0

such that

P
((
X̃N , Ỹ N , Z̃N

)
∈ A(n)

ε

)
≤ 2−N [I(X;Y )+I(Z;X,Y )−δ(ε)]

Proof.

P
((
X̃N , Ỹ N , Z̃N

)
∈ A(n)

ε

)
≤ 2−N[D(PX,Y,Z ||PXPY PZ)−δ(ε)]

= 2−N [I(X;Y )+I(Z;X,Y )−δ(ε)]

where D (P ||Q) is the relative entropy between probability distributions P and Q.
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A.2.3 Proof of Lemma 2.2

We will show that there exists a sequence of codes such that P (DFB,w) → 0 exponentially,

if the given rate constraints are satisfied, which implies the claimed result. The probability

of the decoding error event DFB,w can be bounded by

P (DFB,w) = P (E)P (DFB,w|E) + P (Ec)P (DFB,w|Ec)

≤ P (E) + P (DFB,w|Ec)

≤ P (E1) + P (E2) + P (DFB,w|Ec) (A.1)

If we choose the rates of the quantization codebooks such that ri > I(Ṽj;Ui), for (i, j) =

(1, 2), (2, 1), by covering lemma [GK11], P (E1) ,P (E2) → 0. Therefore, it is sufficient to

show that P (DFB,w|Ec) vanishes if the conditions in the lemma are satisfied.

The decoding error event DFB,w can also be expressed as the following union of events.

DFB,w =
⋃

m1 6=1

T (m1, 1, 1) ∪
⋃

n1 6=1

T (1, n1, 1) ∪
⋃

m2 6=1

T (1, 1,m2) ∪
⋃

m1 6=1
n1 6=1

T (m1, n1, 1)

∪
⋃

m1 6=1
m2 6=1

T (m1, 1,m2) ∪
⋃

n1 6=1
m2 6=1

T (1, n1,m2) ∪
⋃

m1 6=1
n1 6=1
m2 6=1

T (m1, n1,m2) ∪ T c(1, 1, 1) (A.2)

Using the union bound on (A.2), probability of decoding error conditioned on quantization

success can be bounded by

P (DFB,w|Ec) = 2NR1cP (T (m1, 1, 1)|Ec) + 2NR1pP (T (1, n1, 1)|Ec)

+ 2NR2cP (T (1, 1,m2)|Ec) + 2NR1P (T (m1, n1, 1)|Ec)

+ 2N(R1c+R2c)P (T (m1, 1,m2)|Ec) + 2N(R1p+R2c)P (T (1, n1,m2)|Ec)

+ 2N(R1+R2c)P (T (m1, n1,m2)|Ec) + P (T c(1, 1, 1)|Ec) (A.3)

Note that conditioned on successful quantization, the relevant random variables are dis-

tributed i.i.d. over time according to the joint distribution

p(x̌1p, x̌2e, x̌2c, u1, x1e, x1c, x2e, y̌1, y1) = p(x̌1p)p(x̌2e)p(x̌2c)p(x1e)p(x1c)p(x2e)
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Figure A.1: Markov network showing the dependence of the relevant variables. The variables

connected with the dashed arrow are independent in the single-letter form, although in

multi-letter form they are not.

· p(u1|y̌1, x̌1p)p(y̌1|x̌2e, x̌2c, x̌1p)p(y1|x1e, x1c, x2e) (A.4)

Next, we bound the error terms one by one. In what follows, joint typicality is sought with

respect to the joint distribution in (A.4). The first term is bounded by P (T c(1, 1, 1)|Ec) < ε

by law of large numbers.

The second error term in (A.3) can be bounded as follows.

P (T (m1, 1, 1)|Ec) = P


 ⋃

q1,q2,q′2

T (m1, 1, 1, q1, q2, q
′
2)

∣∣∣∣∣∣
Ec




= P




⋃

q1 6=1,q2 6=1
q′2 6=1

T (m1, 1, 1, q1, q2, q
′
2) ∪

⋃

q2 6=1
q′2 6=1

T (m1, 1, 1, 1, q2, q
′
2)

∪
⋃

q1 6=1
q′2 6=1

T (m1, 1, 1, q1, 1, q
′
2) ∪

⋃

q1 6=1
q2 6=1

T (m1, 1, 1, q1, q2, 1) ∪
⋃

q1 6=1

T (m1, 1, 1, q1, 1, 1)

∪
⋃

q2 6=1

T (m1, 1, 1, 1, q2, 1) ∪
⋃

q′2 6=1

T (m1, 1, 1, 1, 1, q
′
2) ∪ T (m1, 1, 1, 1, 1, 1)

∣∣∣∣∣∣∣∣
Ec




(a)
= P




⋃

q1∈B̄1(1,q2)
q2∈B̄2(b−1),q′2∈B̄2(b)

T (m1, 1, 1, q1, q2, q
′
2) ∪

⋃

q2∈B̄2

q′2∈B̄2(b)

T (m1, 1, 1, 1, q2, q
′
2)

151



∪
⋃

q1∈B̄1(b)
q′2∈B̄2(b)

T (m1, 1, 1, q1, 1, q
′
2) ∪

⋃

q1∈B̄1(1,q2)
q2∈B̄2(b−1)

T (m1, 1, 1, q1, q2, 1)

∪
⋃

q1∈B̄1(b)

T (m1, 1, 1, q1, 1, 1) ∪
⋃

q2∈B̄2(b−1)

T (m1, 1, 1, 1, q2, 1)

∪
⋃

q′2∈B̄2(b)

T (m1, 1, 1, 1, 1, q
′
2) ∪ T (m1, 1, 1, 1, 1, 1)

∣∣∣∣∣∣∣∣
Ec




(b)

≤ P




⋃

q1∈B̄1(1,q2)
q2∈B̄2(b−1),q′2∈B̄2(b)

T (m1, 1, 1, q1, q2, q
′
2)

∣∣∣∣∣∣∣∣∣
Ec




+ P




⋃

q2∈B̄2(b−1)
q′2∈B̄2(b)

T (m1, 1, 1, 1, q2, q
′
2)

∣∣∣∣∣∣∣∣∣
Ec




+ P




⋃

q1∈B̄1(b)
q′2∈B̄2(b)

T (m1, 1, 1, q1, 1, q
′
2)

∣∣∣∣∣∣∣∣∣
Ec




+ P




⋃

q1∈B̄1(1,q2(b−1))
q2∈B̄2(b−1)

T (m1, 1, 1, q1, q2, 1)

∣∣∣∣∣∣∣∣
Ec




+ P


 ⋃

q1∈B̄1(b)

T (m1, 1, 1, q1, 1, 1)

∣∣∣∣∣∣
Ec


+ P


 ⋃

q2∈B̄2(b−1)

T (m1, 1, 1, 1, q2, 1)

∣∣∣∣∣∣
Ec




+ P


 ⋃

q′2∈B̄2(b)

T (m1, 1, 1, 1, 1, q
′
2)

∣∣∣∣∣∣
Ec


+ P (T (m1, 1, 1, 1, 1, 1)|Ec)

(c)
= 2N(κ1+2κ2)P (T (m1, 1, 1, q1, q2, q

′
2)|Ec) + 22Nκ2P (T (m1, 1, 1, 1, q2, q

′
2)|Ec)

+ 2N(κ1+κ2)P (T (m1, 1, 1, q1, 1, q
′
2)|Ec) + 2N(κ1+κ2)P (T (m1, 1, 1, q1, q2, 1)|Ec)

+ 2Nκ1P (T (m1, 1, 1, q1, 1, 1)|Ec) + 2Nκ2P (T (m1, 1, 1, 1, q2, 1)|Ec)

+ 2Nκ2P (T (m1, 1, 1, 1, 1, q
′
2)|Ec) + P (T (m1, 1, 1, 1, 1, 1)|Ec)
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(d)

≤ 2N(κ1+2κ2)2−N[I(U1;X̌2e)+I(X̌2e,U1,X1f ,X2e;Y1,Y̌1,X̌2c|X̌1)−δ(ε)]

+ 22Nκ22−N[I(X1f ,X2e,X̌2e;Y̌1,Y1|U1,X1e,X̌2c,X̌1)−δ(ε)]

+ 2N(κ1+κ2)2−N[I(U1;X̌2e)+I(X̌2e,U1,X1f ;Y1,Y̌1,X̌2c|X̌1,X2e)−δ(ε)]

+ 2N(κ1+κ2)2−N[I(X1f ,X2e,U1;Y1,Y̌1,X̌2f |X̌1)−δ(ε)]

+ 2Nκ12−N[I(X1f ,U1;Y1,Y̌1,X̌2f |X̌1,X2e)−δ(ε)]

+ 2Nκ22−N[I(X1f ,X̌2e;U1,Y1,Y̌1|X1e,X2e,X̌1,X̌2c)−δ(ε)]

+ 2Nκ22−N[I(X1f ,X2e;Y1|X1e,U1,Y̌1,X̌1,X̌2f )−δ(ε)]

+ 2−N[I(X1f ;Y1|X1e,U1,Y̌1,X̌1,X̌2f ,X2e)−δ(ε)]

(e)
= 2N(κ1+2κ2)2−N[I(U1;X̌2e)+I(X1f ,X2e;Y1)+I(X̌2e;Y̌1|X̌1,X̌2c)−δ(ε)]

+ 2−N[I(X1f ,X2e,X̌2e;Y̌1,Y1|U1,X1e,X̌2c,X̌1)−2κ2−δ(ε)]

+ 2N(κ1+κ2)2−N[I(U1;X̌2e)+I(X1f ;Y1|X2e)+I(X̌2e;Y̌1|X̌1,X̌2c)−δ(ε)]

+ 2−N[I(X1f ,X2e;Y1)+I(U1;Y̌1|X̌1,X̌2f )−κ1−κ2−δ(ε)]

+ 2−N[I(X1f ;Y1|X2e)+I(U1;Y̌1|X̌1,X̌2f )−κ1−δ(ε)]

+ 2−N[I(X1f ,X̌2e;U1,Y1,Y̌1|X1e,X2e,X̌1,X̌2c)−κ2−δ(ε)]

+ 2−N[I(X1f ,X2e;Y1|X1e)−κ2−δ(ε)]

+ 2−N[I(X1f ;Y1|X1e,X2e)−δ(ε)]

(f)

≤ 8 · 2−N[I(X1f ;Y1|X1e,X2e)−C1−δ(ε)]

where

• (a) is since T (m1, 1, 1, q1, q2, q
′
2) is empty set for q1 /∈ B1(b), q2 /∈ B2(b − 1), or q′2 /∈

B2((q2,m2)(b)), since for random variables (X, Y, Z) ∼ p(x, y, z), (X, Y, Z) ∈ A(n)
ε

implies (X, Y ) ∈ A(n)
ε ,

• (b) follows by union bound,

• (c) follows by Claim A.1, where the upper bound on the size of the B̄i sets for sufficiently

large N is given by Lemma 2.1,
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• (d) follows by packing lemma and Claim A.2,

• (e) is by manipulating the mutual information terms using the dependence structure

of the involved variables (see Figure A.1),

• (f) is by upper bounding each of the eight terms with the same bound, using chain

rule and non-negativity of mutual information.

Next, we bound the term P (T (1, n1,m2)|Ec). We apply steps (a)-(d), which are also

applicable here, to obtain the following.

P (T (1, n1,m2)|Ec) ≤ 2N(κ1+2κ2)2−N[I(U1;X̌2f )+I(X̌1,X̌2f ,X2e,U1,X1e;Y1,Y̌1,X1c|X̌1f )−δ(ε)]

+ 22Nκ22−N[I(X̌1,X̌2f ,X2e;Y̌1,Y1,U1|X1f ,X̌1f )−δ(ε)]

+ 2N(κ1+κ2)2−N[I(U1;X̌2f )+I(X̌2f ,X̌1,U1,X1e;Y1,Y̌1|X̌1f ,X1c,X2e)−δ(ε)]

+ 2N(κ1+κ2)2−N[I(X̌2f ,X̌1,U1,X1e,X2e;Y1,Y̌1|X̌1f ,X1c,X̌2e)−δ(ε)]

+ 2Nκ12−N[I(X̌1,X̌2f ,U1,X1e;Y1,Y̌1,X̌2e|X̌1f ,X1c,X2e)−δ(ε)]

+ 2Nκ22−N[I(X̌1,X̌2f ;U1,Y1,Y̌1|X1f ,X2e,X̌1f )−δ(ε)]

+ 2Nκ22−N[I(X̌1,X̌2f ,X2e;Y1,Y̌1,U1|X̌1f ,X1f ,X̌2e)−δ(ε)]

+ 2−N[I(X̌1,X̌2f ;Y̌1,U1|Y1,X̌1f ,X̌2e,X1e,X2e)−δ(ε)]

(e)

≤ 4 · 2−N[I(X̌2f ,X̌1,U1,X1e;Y1,Y̌1|X̌1f ,X̌2e,X1c,X2e)−δ(ε)]

+ 4 · 2−N[I(X̌2f ,X̌1;Y1,Y̌1,U1|X̌1f ,X̌2e,X1f ,X2e)−δ(ε)]

(f)

≤ 4 · 2−N[I(X2f ,X1;Y1|X1c,X2e)−δ(ε)]

+ 4 · 2−N[I(X̌2f ,X̌1;Y̌1,U1|X̌1f ,X̌2e)−δ(ε)]

where (e) is by upper bounding the first, third, fourth and fifth terms with the first term in

(j), and the rest of the terms with the second; (f) is by rearranging the mutual information

terms using chain rule and the fact that the distribution of variables is the same for each

block. The conditioning on X̌1f is because the messages corresponding to this variable has

already been decoded in the previous block.
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In order to bound the term P (T (1, n1, 1)|Ec) in (A.3), we note that the the joint distri-

bution (A.4) has a similar structure with respect to X1c and X̌1p, with the following mapping

between random variables

X̌1p ↔ X1c,

(
Y̌1, U1

)
↔ Y1,

(
X̌2e, X̌2c

)
↔ (X1e, X2e)

Therefore, one can perform the steps (a)-(f) for the third error term as well, by switching

the variables as above, to obtain the following bound

P (T (1, n1, 1)|Ec) ≤ 4 · 2−N[I(X̌1;Y̌1,U1|X̌1f ,X̌2f )−C1−δ(ε)]

+ 4 · 2−N[I(X̌1;Y̌1,U1|X̌1c,X̌2f )−C1−δ(ε)]

≤ 8 · 2−N[I(X̌1;Y̌1|X̌1f ,X̌2f )−C1−δ(ε)]

= 8 · 2−N[I(X1;Y1|X1f ,X2f )−C1−δ(ε)]

We have dropped the U1 variable from the mutual information term for the sake of simplicity

in evaluating the rate region, since its contribution is small. In the final step, we used

the fact that the distribution of variables is the same for each block. We can obtain the

following bounds for each error term in a similar way, by exploiting the structure of the

joint distribution as done above and noting that the steps (a)-(f) are applicable with an

appropriate mapping between the variables.

P (T (1, 1,m2)|Ec) ≤ 8 · 2−N[I(X̌2f ;Y̌1,U1|X̌1,X̌2e)−C1−δ(ε)]

≤ 8 · 2−N[I(X̌2f ;Y̌1|X̌1,X̌2e)−C1−δ(ε)]

= 8 · 2−N[I(X2f ;Y1|X1,X2e)−C1−δ(ε)]

P (T (m1, n1, 1)|Ec) ≤ 8 · 2−N[I(X̌1,X1f ;Y̌1,Y1,U1|X̌1f ,X̌2f ,X1e,X2e)−C1−δ(ε)]

≤ 8 · 2−N[I(X̌1,X1f ;Y̌1,Y1|X̌1f ,X̌2f ,X1e,X2e)−C1−δ(ε)]

= 8 · 2−N[I(X̌1;Y̌1|X̌1f ,X̌2f )+I(X1f ;Y1|X1e,X2e)−C1−δ(ε)]

= 8 · 2−N[I(X1;Y1|X1f ,X2f )+I(X1f ;Y1|X1e,X2e)−C1−δ(ε)]
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P (T (m1, 1,m2)|Ec) ≤ 8 · 2−N[I(X̌2f ,X1f ;Y̌1,Y1,U1|X̌1,X̌2e,X1e,X2e)−C1−δ(ε)]

≤ 8 · 2−N[I(X̌2f ,X1f ;Y̌1,Y1|X̌1,X̌2e,X1e,X2e)−C1−δ(ε)]

= 8 · 2−N[I(X̌2f ;Y̌1|X̌1,X̌2e)+I(X1f ;Y1|X1e,X2e)−C1−δ(ε)]

= 8 · 2−N[I(X2f ;Y1|X1,X2e)+I(X1f ;Y1|X1e,X2e)−C1−δ(ε)]

P (T (m1, n1,m2)|Ec) ≤ 8 · 2−N[I(X̌1,X̌2f ,X1f ;Y̌1,Y1,U1|X̌1f ,X̌2e,X1e,X2e)−C1−δ(ε)]

≤ 8 · 2−N[I(X̌1,X̌2f ,X1f ;Y̌1,Y1|X̌1f ,X̌2e,X1e,X2e)−C1−δ(ε)]

= 8 · 2−N[I(X̌1,X̌2f ;Y̌1|X̌1f ,X̌2e)+I(X1f ;Y1|X1e,X2e)−C1−δ(ε)]

= 8 · 2−N[I(X1,X2f ;Y1|X1f ,X2e)+I(X1f ;Y1|X1e,X2e)−C1−δ(ε)]

= 8 · 2−N[I(X1,X2f ;Y1|X1e,X2e)−C1−δ(ε)]

Using these bounds in (A.3), it is easy to see that if the following are satisfied, then

P (DFB,w|Ec) → 0 as N → ∞ (Note that the bounds on R1p + R1c and R1c + R2c are

redundant, as they can be expressed as a sum of other bounds),

R1p < I(X1;Y1|X1f , X2f )− C1 (A.5)

R1c < I(X1f ;Y1|X1e, X2e)− C1 (A.6)

R1p +R2c < min {I(X2f , X1;Y1|X1c, X2e),

I(X2f , X1;Y1, U1|X1f , X2e)} − C1 (A.7)

R1 +R2c < I(X1, X2f ;Y1|X1e, X2e)− C1 (A.8)

The rate constraint on R1p +R2c provided in the lemma is slightly stricter, which allows us

to show the redundancy of some of the bounds obtained later.

A.2.4 Proof of Lemma 2.4

We will show that there exists a sequence of codes such that P (DFB,s)→ 0 exponentially, if

the given rate constraints are satisfied, which implies the claimed result.

Similar to the case of weak interference, choosing the quantization rates such that ri >

156



I(Ṽj;Ui), for (i, j) = (1, 2), (2, 1), probability of decoding error can be bounded by

P (DFB,s|Ec) = P (T c(1, 1, 1)|Ec) + 2NR1pP (T (1, n1, 1)|Ec)

+ 2NR2cP (T (1, 1,m2)|Ec) + 2NR1P (T (m1, n1, 1)|Ec)

+ 2N(R1p+R2c)P (T (1, n1,m2)|Ec)

+ 2N(R1+R2c)P (T (m1, n1,m2)|Ec) (A.9)

Note that conditioned on successful quantization, the relevant random variables are dis-

tributed i.i.d. over time according to the joint distribution

p(x̌1c, x̌1p, x̌2e, x2c, u2, x2e, x1e, y̌1, y1) = p(x̌1c)p(x̌1p)p(x̌2e)p(x1e)p(x1c)p(x2e)

· p(u2|x̌1c, x̌1p)p(y̌1|x̌1c, x̌1c, x̌2e)p(y1|x1e, x2e, x2c). (A.10)

Next, we bound the error terms one by one. In what follows, joint typicality is sought with

respect to the joint distribution in (A.10). The first term is bounded by P (T c(1, 1, 1)|Ec) < ε

by law of large numbers.

Now we take the third term, which is bounded as follows.

P (T (1, n1, 1)|Ec) = P


 ⋃

q1,q2,q′2

T (1, n1, 1, q1, q2, q
′
2)|Ec




= P




⋃

q1 6=1,q2 6=1
q′2 6=1

T (1, n1, 1, q1, q2, q
′
2) ∪

⋃

q2 6=1
q′2 6=1

T (1, n1, 1, 1, q2, q
′
2)

∪
⋃

q1 6=1
q′2 6=1

T (1, n1, 1, q1, 1, q
′
2) ∪

⋃

q1 6=1
q2 6=1

T (1, n1, 1, q1, q2, 1) ∪
⋃

q1 6=1

T (1, n1, 1, q1, 1, 1)

∪
⋃

q2 6=1

T (1, n1, 1, 1, q2, 1) ∪
⋃

q′2 6=1

T (1, n1, 1, 1, 1, q
′
2) ∪ T (1, n1, 1, 1, 1, 1)

∣∣∣∣∣∣∣∣
Ec




(a)
= P




⋃

q1∈B̄1(q2),q2∈B̄2(b−1)
q′2∈B̄2(b)

T (1, n1, 1, q1, q2, q
′
2) ∪

⋃

q2∈B̄2(b−1)
q′2∈B̄2(b)

T (1, n1, 1, 1, q2, q
′
2)
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∪
⋃

q1∈B̄1(q2)
q′2∈B̄2(b)

T (1, n1, 1, q1, 1, q
′
2) ∪

⋃

q1∈B̄1(q2)
q2∈B̄2(b−1)

T (1, n1, 1, q1, q2, 1)

∪
⋃

q1∈B̄1(q2)

T (1, n1, 1, q1, 1, 1) ∪
⋃

q2∈B̄2(b−1)

T (1, n1, 1, 1, q2, 1)

∪
⋃

q′2∈B̄2((b)

T (1, n1, 1, 1, 1, q
′
2) ∪ T (1, n1, 1, 1, 1, 1)

∣∣∣∣∣∣∣∣
Ec




(b)

≤ P




⋃

q1∈B̄1(q2),q2∈B̄2(b−1)
q′2∈B̄2(b)

T (1, n1, 1, q1, q2, q
′
2)

∣∣∣∣∣∣∣∣∣
Ec




+ P




⋃

q2∈B̄2(b−1)
q′2∈B̄2(b)

T (1, n1, 1, 1, q2, q
′
2)

∣∣∣∣∣∣∣∣∣
Ec




+ P




⋃

q1∈B̄1(q2)
q′2∈B̄2(b)

T (1, n1, 1, q1, 1, q
′
2)

∣∣∣∣∣∣∣∣∣
Ec


+ P




⋃

q1∈B̄1(q2)
q2∈B̄2(b−1)

T (1, n1, 1, q1, q2, 1)

∣∣∣∣∣∣∣∣
Ec




+ P


 ⋃

q1∈B̄1(q2)

T (1, n1, 1, q1, 1, 1)

∣∣∣∣∣∣
Ec


+ P


 ⋃

q2∈B̄2(b−1)

T (1, n1, 1, 1, q2, 1)

∣∣∣∣∣∣
Ec




+ P


 ⋃

q′2∈B̄2(b)

T (1, n1, 1, 1, 1, q
′
2)

∣∣∣∣∣∣
Ec


+ P (T (1, n1, 1, 1, 1, 1)|Ec)

(c)

≤ 2N(κ1+2κ2)P (T (1, n1, 1, q1, q2, q
′
2)|Ec) + 22Nκ2P (T (1, n1, 1, 1, q2, q

′
2)|Ec)

+ 2N(κ1+κ2)P (T (1, n1, 1, q1, 1, q
′
2)|Ec) + 2N(κ1+κ2)P (T (1, n1, 1, q1, q2, 1)|Ec)

+ 2Nκ1P (T (1, n1, 1, q̄1, 1, 1)|Ec) + 2Nκ2P (T (1, n1, 1, 1, q̄2, 1)|Ec)

+ 2Nκ2P (T (1, n1, 1, 1, 1, q̄
′
2)|Ec) + P (T (1, n1, 1, 1, 1, 1)|Ec)

(d)

≤ 2N(κ1+2κ2)2−NI(U2;X̌1p|X̌1e)2−N[I(X̌1p,X̌2e,U2,X1e,X2e;Y1,Y̌1,X2c,X̌1c|X̌1e,X̌2c)−δ(ε)]

+ 22Nκ22−NI(U2;X̌1p)2−N[I(X̌1p,X̌2e,U2,X2e;Y1,Y̌1,X1e,X2c,X̌1c|X̌1e,X̌2c)−δ(ε)]

+ 2N(κ1+κ2)2−NI(U2;X̌1p)2−N[I(X̌1p,U2,X1e,X2e;Y1,Y̌1,X̌2e,X2c,X̌1c|X̌1e,X̌2c)−δ(ε)]
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+ 2N(κ1+κ2)2−N[I(X̌1p,X̌2e,X1e;Y1,Y̌1,U2,X2f ,X̌1c|X̌1e,X̌2c)−δ(ε)]

+ 2Nκ12−N[I(X̌1p,X1e;Y1,Y̌1,X̌2f ,U2,X2f ,X̌1c|X̌1e,X̌2c)−δ(ε)]

+ 2Nκ22−NI(U2;X̌1p|X̌1e)2−N[I(X̌1,U2,X2e;Y1,Y̌1,X̌2e,X2c,X1e,X̌1c|X̌1e,X̌2c)−δ(ε)]

+ 2Nκ22−N[I(X̌1p,X̌2e;Y1,Y̌1,X2c,U2,X1e,X2e,X̌1c|X̌1e,X̌2c)−δ(ε)]

+ 2−N[I(X̌1p;Y1,Y̌1,X̌2c,X̌2e,U2,X1e,X2e,X̌1c|X̌1e,X̌2c)−δ(ε)]

(e)

≤ 2N(κ1+2κ2)2−N[I(X̌1p,X̌2e,X1e,X2e;Y̌1,Y1,U2|X̌1f ,X2c,X̌2c)−δ(ε)]

+ 22Nκ22−N[I(X̌1p,X̌2e,U2,X2e;Y1,Y̌1|X̌1f ,X1e,X2c,X̌2c)−δ(ε)]

+ 2N(κ1+κ2)2−N[I(X̌1p,X1e,X2e;Y̌1,Y1,U2|X̌1e,X̌1c,X̌2f ,X2c)−δ(ε)]

+ 2N(κ1+κ2)2−N[I(X̌1p,X̌2e,X1e;Y1,Y̌1,U2|X̌1f ,X̌2c,X2f )−δ(ε)]

+ 2Nκ12−N[I(X̌1p,X1e;Y1,Y̌1,U2|X̌1f ,X̌2f ,X2f )−δ(ε)]

+ 2Nκ22−N[I(X̌1p,X2e;Y̌1,Y1,U2|X̌1f ,X̌2f ,X1e,X2c)−δ(ε)]

+ 2Nκ22−N[I(X̌1p,X̌2e;Y1,Y̌1,U2|X̌1f ,X̌2c,X1e,X2f )−δ(ε)]

+ 2−N[I(X̌1p;Y1,Y̌1,U2|X̌1f ,X̌2f ,X1e,X2e)−δ(ε)]

(f)

≤ 4 · 2−N[I(X̌1;Y̌1,U2|X̌1f ,X̌2f )−C1−δ(ε)]

+ 4 · 2−N[I(X̌1,X2e;Y̌1,Y1|X̌1e,X̌2f ,X1e,X2c)−C1−δ(ε)]

(g)
= 4 · 2−N[I(X1;Y1,U2|X1f ,X2f )−C1−δ(ε)]

+ 4 · 2−N[I(X1,X2e;Y1|X1f ,X2c)−C1−δ(ε)]

(h)

≤ 8 · 2−N[I(X1;Y1|X1f ,X2f )−C1−δ(ε)]

where

• (a) is since T (1, n1, 1, q1, q2, q
′
2) is empty set for q1 /∈ B1(b), q2 /∈ B2(b − 1), or q′2 /∈

B2((q2,m2)(b)), since for random variables (X, Y, Z) ∼ p(x, y, z), (X, Y, Z) ∈ A(n)
ε

implies (X, Y ) ∈ A(n)
ε ,

• (b) follows by union bound,

• (c) follows by Claim A.1, where the upper bound on the number of terms is given by
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Lemma 2.1,

• (d) is by packing lemma, Claim A.2, and the fact that XN
1e(b− 1) is already known at

the decoder,

• (e) is by rearranging mutual information terms using chain rule and independence (see

Figure A.1),

• (f) follows by upper bounding four of the terms with the first expression, the remaining

terms with the second expression, and using the definition of C1,

• (g) is because the distribution of variables is the same for all blocks,

• (h) is by upper bounding the two terms with the same expression.

Once again, we use the structure of the joint distribution (A.10) to show that a similar

bounding can be performed for other error terms as follows.

P (T (1, 1,m2)|Ec) ≤ 8 · 2−N[I(X2f ;Y1|X1e,X2e)−C1−δ(ε)]

P (T (m1, n1, 1)|Ec) ≤ 4 · 2−N[I(X1;Y1,U2|X1e,X2f )−C1−δ(ε)]

+ 4 · 2−N [I(X1,X2e;Y1|X1e,X2c)−C1−δ(ε)]

P (T (1, n1,m2)|Ec) ≤ 8 · 2−N[I(X̌1,X2f ;Y̌1,Y1,U2|X̌1f ,X̌2e,X1e,X2e)−C1−δ(ε)]

= 8 · 2−N[I(X1,X2f ;Y1,U2|X1f ,X2e)−C1−δ(ε)]

≤ 8 · 2−N[I(X1,X2f ;Y1|X1f ,X2e)−C1−δ(ε)]

P (T (m1, n1,m2)|Ec) ≤ 8 · 2−N[I(X̌1,X2f ;Y̌1,Y1,U2|X̌1e,X̌2e,X1e,X2e)−C1−δ(ε)]

= 8 · 2−N[I(X1,X2f ;Y1,U2|X1e,X2e)−C1−δ(ε)]

≤ 8 · 2−N[I(X1,X2f ;Y1|X1e,X2e)−C1−δ(ε)]

Using these bounds in (A.9), we see that if the conditions in the lemma are satisfied,

P (DFB,s|Ec)→ 0 as N →∞.
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A.2.5 Proof of Lemmas 2.3 and 2.5

Extending the notation defined in the first subsection, we define

T (m1, n1,m2, q2) := {(2.20) holds for the indices (m1, n1,m2, q2)}

We will show that there exists a code such that P (DNFB) → 0 exponentially, if the given

rate constraints are satisfied, which implies the claimed result. The decoding error event

DNFB can be expressed as follows.

DNFB =

(⋂

q2

T c(1, 1, 1, q2)

)
∪
⋃

n1 6=1

T (1, n1, 1, 1) ∪
⋃

m2 6=1

T (1, 1,m2, 1)

∪
⋃

m1 6=1
n1 6=1

T (m1, n1, 1, 1) ∪
⋃

n1 6=1
m2 6=1

T (1, n1,m2, 1) ∪
⋃

m2 6=1
q2 6=1

T (1, 1,m2, q2)

∪
⋃

m1 6=1
n1 6=1
m2 6=1

T (m1, n1,m2, 1) ∪
⋃

n1 6=1
m2 6=1
q2 6=1

T (1, n1,m2, q2) ∪
⋃

m1 6=1,n1 6=1
m2 6=1,q2 6=1

T (m1, n1,m2, q2)

Similar to the previous proofs, choosing ri > I(Ṽj;Ui) ensures quantization success with high

probability. Then since

P (DNFB) ≤ P (E1) + P (E2) + P (DNFB|Ec) ,

it is sufficient to show that P (DNFB|Ec)→ 0. Using union bound, packing lemma, Lemma

2.1, and Claim A.1, we can upper bound the probability of decoding error conditioned on

quantization success by

P (DNFB|Ec) ≤ εN + 2NR1p2−N[I(X1;Y1|X1f ,X2f )−δ(ε)] + 2NR2c2−N[I(X2f ;Y1|X1,X2e)−δ(ε)]

+ 2NR12−N[I(X1;Y1|X1e,X2f )−δ(ε)] + 2N(R1p+R2c)2−N[I(X1,X2f ;Y1|X1f ,X2e)−δ(ε)]

+ 2N(R2c+C′2)2−N[I(X2f ;Y1|X1)−δ(ε)] + 2N(R1+R2c)2−N[I(X1,X2f ;Y1|X1e,X2e)−δ(ε)]

+ 2N(R1p+R2c+C′2)2−N[I(X1,X2f ;Y1|X1f )−δ(ε)] + 2N(R1+R2c+C′2)2−N[I(X1,X2f ;Y1|X1e)−δ(ε)].

where εN → 0 as N →∞. Note that the conditions in both lemmas are sufficient to ensure

P (DNFB|Ec)→ 0 as N →∞.
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A.3 Evaluation of Rate Regions

In this section, we consider the set of rate conditions derived in Section 2.6 for decodability

(i.e., (2.24)–(2.27), (2.29)–(2.32) for weak interference; (2.34)–(2.37), (2.39)–(2.41) for strong

interference), and obtain an explicit rate region for both linear deterministic and Gaussian

models.

A.3.1 Rate region for linear deterministic model

Under the input distribution given by (2.42)–(2.46), the set of rate constraints for decod-

ability at Rx1 are evaluated as follows:

R1p ≤ H (Y1|V1, V2) = (n11 − n21)+

R2c ≤ H (Y1|X1) = n12

R1p +R2c ≤ min
{
H
(
Y1, Ṽ2|V1

)
, H (Y1)

}

= min
{
p1 (n11 − n21)+ + (1− p1) max

{
n12, (n11 − n21)+}+ p1n12,

max (n11, n12)
}

R1 +R2c ≤ H (Y1) = max (n11, n12)

for weak interference (n12 ≤ n11), and

R1p ≤ H (Y1|V1, V2) = (n11 − n21)+

R2c ≤ H (Y1|X1) = n12

R1 ≤ min
{
H
(
Y1, Ṽ1|V2

)
, H (Y1)

}

= min
{
p2 (n11 − n21)+ + (1− p2)n11 + p2n21,max (n11, n12)

}

R1 +R2c ≤ H (Y1) = max (n11, n12)

for strong interference (n12 > n11). Note that the set of conditions given above can be

summarized into the following five inequalities, valid for any interference regime.

R1p ≤ (n11 − n21)+
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Rip < Ai := log

(
3 +

SNRi
1 + INRj

)
− log 3− Ci (A.11)

Rjc < Bi := log (2 + INRi)− log 3− Ci (A.12)

Ri < Ci := log (3 + SNRi + INRi)− log 3− Ci (A.13)

Ri < Di := log (3 + SNRi)

+ 1{SNRi≤INRi}pj

[
log

(
1 +

INRj
3 + SNRi

)
− log

5

3

]
− log 3− Ci (A.14)

Rip +Rjc < Ei := log

(
2 + SNRi + INRi +

SNRi
1 + INRj

)
− log 3− Ci (A.15)

Rip +Rjc < Fi := log

(
2 + INRi +

SNRi
1 + INRj

)

+ 1{SNRi≥INRi}pi


log




(2 + INRi)
(

3 + SNRi
1+INRj

)

2 + SNRi
1+INRj

+ INRi


− log 6




− log 3− Ci − 1{SNRi≥INRi}Ci (A.16)

Ri +Rjc < Gi := log (2 + SNRi + INRi)− log 3− Ci − κj (A.17)

Ci := pi + 2pj, κj = pj

R1 ≤ n11 + p2 (n21 − n11)+

R2c ≤ n12

R1p +R2c ≤ max
{
n12, (n11 − n21)+}+ p1 min

{
n12, (n11 − n21)+}

R1 +R2c ≤ max (n11, n12)

Combining these inequalities with their Rx2 counterparts, and applying Fourier-Motzkin

elimination, we arrive at the set of inequalities given in (2.5)–(2.11).
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A.3.2 Rate region for Gaussian model

We consider the input distributions (2.47)–(2.51), and the set of input-output relationships

given by

Yi = hiiXi + hijXj + Zi

Ui = Si (hijXj + Zi) +Qi

for (i, j) = (1, 2), (2, 1), where Qi ∼ CN (0, Di). Choosing D1 = D2 = 3
2
, and using standard

techniques, it is straightforward to evaluate the rate inequalities derived in Section 2.6, and

show that the set of rate triples (R1p, R1c, R2c) defined by (A.11)–(A.17), for (i, j) = (1, 2) are

contained in the set defined by (2.24)–(2.27), (2.29)–(2.32) for weak interference, and (2.34)–

(2.37), (2.39)–(2.41) for strong interference. In (A.11)–(A.17), we used indicator functions

to unify the constraints for weak and strong interference.

In order to find the set of achievable (R1, R2) points, we first note that Ei ≥ Gi and

Ci ≥ Gi, and hence the bounds Ei and Ci are redundant. Considering the remaining bounds

for (i, j) = (1, 2), (2, 1), noting that Fi ≤ Ai +Bi, and applying Fourier-Motzkin elimination,

we find that the set of (R1, R2) points that satisfy the following are achievable.

Ri < min {Ai + Bj,Di} (A.18)

Ri +Rj < min {Ai + Gj,Fi + Fj} (A.19)

2Ri +Rj < Ai + Fj + Gi (A.20)

for (i, j) = (1, 2), (2, 1).

A.4 Proofs of Outer Bounds (2.54), (2.58), (2.59), and (2.60)

In this section, we prove the outer bounds for the linear deterministic channel, based on the

ideas presented in Section 2.7. We first prove four claims that will be useful in the main

proof.
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A.4.1 Proof of the bound (2.54)

By symmetry, we only focus on the bound on R1. By Fano’s inequality,

N (R1 − εN) ≤ I
(
W1;Y N

1 SN
)

= I
(
W1;Y N

1 , Ṽ N
1 ,W2, S

N
)

= I
(
W1;Y N

1 , Ṽ N
1 |W2, S

N
)

(a)
= H

(
Y N

1 , Ṽ N
1 |W2, S

N
)

= H
(
Y N

1 |Ṽ N
1 ,W2, S

N
)

+H
(
Ṽ N

1 |W2, S
N
)

(b)
= H

(
Y N

1 |Ṽ N
1 ,W2, X

N
2 , S

N
)

+H
(
Ṽ N

1 |W2, S
N
)

≤ H
(
Y N

1 |Ṽ N
1 , XN

2 , S
N
)

+H
(
Ṽ N

1 |SN
)

(c)

≤ n11 + p2 (n21 − n11)+

where (a) follows by the fact that channel is deterministic and hence all variables are

completely determined given
(
W1,W2, S

N
)
; (b) follows by Claim A.3, and (c) follows by

Claim A.7.

A.4.2 Proof of the bound (2.58)

By Fano’s inequality,

N (R1 +R2 − εN) ≤ I(W1;Y N
1 , SN) + I(W2;Y N

2 , SN)

= I(W1;Y N
1 |SN) + I(W2;Y N

2 |SN)

≤ I(W1;Y N
1 , V N

1 , Ṽ N
2 |SN) + I(W2;Y N

2 , V N
2 , Ṽ N

1 |SN)

= H
(
Y N

1 , V N
1 , Ṽ N

2 |SN
)

+H
(
Y N

2 , V N
2 , Ṽ N

1 |SN
)

−H
(
Y N

1 , V N
1 , Ṽ N

2 |W1, S
N
)
−H

(
Y N

2 , V N
2 , Ṽ N

1 |W2, S
N
)

(a)
= H

(
Y N

1 |V N
1 , Ṽ N

2 , SN
)

+H
(
Y N

2 |V N
2 , Ṽ N

1 , SN
)

+H
(
V N

1 , Ṽ N
2 |SN

)
+H

(
V N

2 , Ṽ N
1 |SN

)

−H
(
V N

2 , Ṽ N
1 |W1, S

N
)
−H

(
V N

1 , Ṽ N
2 |W2, S

N
)

= H
(
Y N

1 |V N
1 , Ṽ N

2 , SN
)

+H
(
Y N

2 |V N
2 , Ṽ N

1 , SN
)
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+ I
(
W2;V N

1 , Ṽ N
2 |SN

)
+ I

(
W1;V N

2 , Ṽ N
1 |SN

)

(b)

≤ N max
{
n12, (n11 − n21)+}+N max

{
n21, (n22 − n12)+}

+Np1 min
{
n12, (n11 − n21)+}+Np2 min

{
n21, (n22 − n12)+}

where (a) follows by Claim A.4, and (b) follows by Claims A.6 and A.7.

A.4.3 Proof of the bounds (2.59) and (2.60)

By symmetry, it is sufficient to prove (2.59). To prove this bound, we consider two copies

of Rx1, where one of the copies are enhanced as decribed in Section 2.7, while the other

one is provided with the output of the original channel. The only copy of Rx2 receives

the enhanced channel output as well. We would like to prove a sum rate bound for this

three-receiver channel. By Fano’s inequality,

N (2R1 +R2 − εN)

≤ I
(
W1;Y N

1 , SN
)

+ I
(
W2;Y N

2 , SN
)

+ I
(
W1;Y N

1 , SN
)

= I
(
W1;Y N

1 |SN
)

+ I
(
W2;Y N

2 |SN
)

+ I
(
W1;Y N

1 |SN
)

≤ I
(
W1;Y N

1 |SN
)

+ I
(
W2;Y N

2 , V N
2 , Ṽ N

1 |SN
)

+ I
(
W1;Y N

1 , V N
1 |SN ,W2

)

(a)
= H

(
Y N

1 |SN
)
−H

(
V N

2 , Ṽ N
1 |SN ,W1

)
+H

(
Y N

2 , V N
2 , Ṽ N

1 |SN
)

−H
(
Y N

2 , V N
2 , Ṽ N

1 |SN ,W2

)

+H
(
Y N

1 , V N
1 |SN ,W2

)

(b)
= H

(
Y N

1 |SN
)
−H

(
V N

2 , Ṽ N
1 |SN ,W1

)
+H

(
V N

2 , Ṽ N
1 |SN

)

+H
(
Y N

2 |V N
2 , Ṽ N

1

)
−H

(
V N

1 |SN ,W2

)
+H

(
Y N

1 , V N
1 |SN ,W2

)

= H
(
Y N

1 |SN
)

+ I
(
W1;V N

2 , Ṽ N
1 |SN

)

H
(
Y N

2 |V N
2 , Ṽ N

1

)
+H

(
Y N

1 |SN ,W2, V
N

1

)

(c)

≤ max (n11, n12) + max
{
n21, (n22 − n12)+}

+ (n11 − n21)+ + p2 min
{
n21, (n22 − n12)+}
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where (a) follows by Claim A.4 , (b) follows by Claim A.5, (c) follows by Claims A.6, A.7

and A.8.

A.4.4 Claims

Claim A.3. For (i, j) = (1, 2), (2, 1),

Xi,t
f
=
(
Wi, Ṽ

t−1
j , St−1

)
f
=
(
Wi, V

t−1
j , St−1

)

Proof. We focus on the case (i, j) = (1, 2) without loss of generality. Note that

X1,1
f
= W1

and by the definition of the channel,

X1,t
f
=
(
W1, Ỹ

t−1
1 , St

) (a)

f
=
(
W1, Ṽ

t−1
2 , X t−1

1 St
)
,

hence the result follows by induction on t. (a) follows because

Ỹ t−1
1 = St−1

1 H11X
t−1
1 + Ṽ t−1

2 .

Claim A.4. For (i, j) = (1, 2), (2, 1),

H
(
Y N
i |Wi, S

N
)

= H
(
V N
j , Ṽ

N
i |Wi, S

N
)
.

Proof. Let us focus on the case (i, j) = (1, 2).

H
(
Y N

1 |W1, S
N
)

=
N∑

t=1

H
(
Y1,t|W1, S

N , Y t−1
1

)

(a)
=

N∑

t=1

H
(
Y1,t|W1, S

N , Y t−1
1 , X t

1

)

=
N∑

t=1

H
(
V2,t|W1, S

N , V t−1
2 , X t

1

)

167



(b)
=

N∑

t=1

H
(
V2,t|W1, S

N , V t−1
2

)

= H
(
V N

2 , Ṽ N
1 |W1, S

N
)
,

where (a) is by definition, (b) is due to Claim A.3. The other holds similarly.

Claim A.5. For (i, j) = (1, 2), (2, 1),

H
(
Y N
i , V

N
i , Ṽ

N
j |Wi, S

N
)

= H
(
V N
j , Ṽ

N
i |Wi, S

N
)

= H
(
V N
j |Wi, S

N
)

Proof. Let us focus on the case (i, j) = (1, 2).

H
(
Y N

1 , V N
1 , Ṽ N

2 |W1, S
N
)

=
N∑

t=1

H
(
Y1,t, V1,t, Ṽ2,t|W1, S

N , Y t−1
1 , V t−1

1 , Ṽ t−1
2

)

(a)
=

N∑

t=1

H
(
Y1,t, V1,t, Ṽ2,t|W1, S

N , Y t−1
1 , V t−1

1 , Ṽ t−1
2 , X t

1

)

(b)
=

N∑

t=1

H
(
V2,t, Ṽ1,t|W1, S

N , V t−1
2 , Ṽ t−1

1 , X t
1

)

(c)
=

N∑

t=1

H
(
V2,t|W1, S

N , V t−1
2 , X t

1

)

where (a) follows by the fact that X1,t
f
=
(
W1, Ỹ

N
1 , SN

)
, (b) follows by subtracting X1,t from

Y1,t and because V1,t
f
= X1,t and Ṽ2,t

f
= (St, V2,t). Similarly, (c) follows since Ṽ1,t

f
= (X1,t, St).

Now, the two equalities in the claim can be easily obtained from (b) and (c) respectively,

by removing X t
1 from the conditioning by virtue of Claim A.3, and using chain rule.

Claim A.6. For (i, j) = (1, 2), (2, 1),

I
(
Wi;V

N
j , Ṽ

N
i |SN

)
≤ Npjnji.

Proof. Let us focus on the case (i, j) = (1, 2).

I
(
W1;V N

2 , Ṽ N
1 |SN

) (a)

≤ I
(
W1;W2, Ṽ

N
1 |SN

)
= I

(
W1; Ṽ N

1 |SN ,W2

)
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= H
(
Ṽ N

1 |SN ,W2

)
≤ H

(
Ṽ N

1 |SN2
)

= ESN2
[
H
(
(s2V1)N

) ∣∣SN2 = sN2
]

≤ ESN2

[
N∑

t=1

H (s2,tV1,t)

∣∣∣∣∣S
N
2 = sN2

]

≤ ESN2
[
N1

(
sN2
)
n21

∣∣∣SN2 = sN2

]
= Np2n21.

Here N1(·) denotes the number of 1’s in the sequence. (a) follows because

V N
2

f
=
(
W2, Ṽ

N
1 , SN

)
.

Claim A.7. For (i, j) = (1, 2), (2, 1),

N−1H
(
Y N
i |V N

i , Ṽ
N
j , S

N
)
≤ pi(nii − nji)+ + (1− pi) max

{
nij, (nii − nji)+

}
,

N−1H
(
Y N
i |V N

j , Ṽ
N
i , S

N
)
≤ pj(nii − nji)+ + (1− pj)nii,

Proof. Let us focus on the case (i, j) = (1, 2).

H
(
Y N

1 |V N
1 , Ṽ N

2 , SN
)
≤ H

(
Y N

1 |V N
1 , Ṽ N

2 , SN1

)

= ESN1
[
H
(
Y N

1 |V N
1 , (s1V2)N

) ∣∣SN1 = sN1
]

≤ ESN1

[
N∑

t=1

H (Y1,t|V1,t, s1,tV2,t)

∣∣∣∣∣S
N
1 = sN1

]

≤ ESN1


 N1

(
sN1
)

(n11 − n21)+

+N0

(
sN1
)

max {n12, (n11 − n21)+}

∣∣∣∣∣∣
SN1 = sN1




= Np1(n11 − n21)+ +N(1− p1) max
{
n12, (n11 − n21)+

}

Here N1(·) and N0(·) denote the number of 1’s and 0’s respectively in the sequence.

For the second inequality,

H
(
Y N

1 |V N
2 , Ṽ N

1 , SN
)
≤ H

(
Y N

1 |V N
2 , Ṽ N

1 , SN2

)
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= ESN2
[
H
(
Y N

1 |V N
2 , (s2V1)N

) ∣∣SN2 = sN2
]

≤ ESN2

[
N∑

t=1

H (Y1,t|V2,t, s2,tV1,t)

∣∣∣∣∣S
N
2 = sN2

]

≤ ESN2
[
N1

(
sN2
)

(n11 − n21)+ +N0

(
sN2
)
n11

∣∣∣SN2 = sN2

]

= Np2(n11 − n21)+ +N(1− p2)n11.

The case (i, j) = (2, 1) follows similarly.

Claim A.8. For (i, j) = (1, 2), (2, 1),

H
(
Y N
i |SN ,Wj, V

N
i

)
≤ N (nii − nji)+

Proof. We focus on (i, j) = (1, 2) without loss of generality.

H
(
Y N
i |SN ,Wj, V

N
i

) (a)
= H

(
Y N
i |SN ,Wj, V

N
i , V

N
j

)

≤ H
(
Y N
i |SN , V N

i , V
N
j

)
≤ N (n11 − n21)+

where (a) follows because V N
j

f
= XN

j
f
=
(
Wj, V

N
i , S

N
)

by Claim A.3.

A.5 Proofs of Outer Bounds (2.55), (2.61), (2.62), and (2.63)

In this section, we prove an outer bound region for the enhanced channel defined in Sec-

tion 2.7.

A.5.1 Notation

We define

V̆i =





V̄i, if Sj = 0

Yji, if Sj = 1

for (i, j) = (1, 2), (2, 1), where V̄i = Yji + Zjj = hjiXi + Z̄j, and

Mi = |{t : Si,t = 1}| ,
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Li = N −Mi.

For any random vector EN , we define

E(t) = {Et′}t′:Si,t′=1,t′≤t

E[t] = {Et′}t′:Si,t′=0,t′≤t

Ei,(t) =




∅, if Si = 0

Ei,t, if Si = 1

Ei,[t] =





Ei,t, if Si = 0

∅, if Si = 1

for i = 1 or 2. Note that in vector form, this notation omits any reference to user index i

for the sake of brevity. That is, although it is not clear whether E(t) is defined with respect

to S1 or S2, in the proof this will be clear from the context. For instance, Y
(t)

1 and V
(t)

2

are defined with respect to S1, since these variables refer to signals that pass through the

feedback channel controlled by S1. The partial average power for Txi, P
(jk)
i , is a random

variable defined as

P
(j0)
i =

1

Li

∑

t:Sj,t=0

Pi,t

P
(j1)
i =

1

Mi

∑

t:Sj,t=1

Pi,t

for j = 1, 2, where Pi,t ie the power used by Txi at time slot t.

Finally, we define hS (·) := h
(
·|SN = SN

)
for convenience, where h(·) denotes differ-

ential entropy, and SN is a particular realization of SN . Similarly, we define IS (·; ·) :=

IS
(
·; ·|SN = SN

)
.

A.5.2 Proof of the Bound (2.55)

We focus on the case (i, j) = (1, 2). By Fano’s inequality,

N(R1 − εN) ≤ I(W1;Y N
1 , SN) ≤ I(W1;Y N

1 , Ṽ N
1 ,W2, S

N)
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≤ I(W1;Y N
1 , Ṽ N

1 , SN |W2)

≤
N∑

t=1

I(W1;Y1,t, Ṽ1,t, St|W2, Y
t−1

1 , Ṽ t−1
1 , St−1)

=
N∑

t=1

I(W1;Y1,t, Ṽ1,t|W2, Y
t−1

1 , Ṽ t−1
1 , St)

(a)
=

N∑

t=1

I(W1;Y1,t, Ṽ1,t|W2, Y
t−1

1 , Ṽ t−1
1 , St, X2,t)

=
N∑

t=1

I(W1;Y1,t|W2, Y
t−1

1 , Ṽ t
1 , S

t, X2,t) + I(W1; Ṽ1,t|W2, Y
t−1

1 , Ṽ t−1
1 , St, X2,t)

=
N∑

t=1

h(Y1,t|W2, Y
t−1

1 , Ṽ t
1 , S

t, X2,t)− h(Y1,t|W2, Y
t−1

1 , Ṽ t
1 , S

t, X2,t,W1)

+ I(W1; Ṽ1,t|W2, Y
t−1

1 , Ṽ t−1
1 , St, X2,t)

(b)
=

N∑

t=1

h(Y1,t|W2, Y
t−1

1 , Ṽ t
1 , S

t, X2,t)− h(Y1,t|W2, Y
t−1

1 , Ṽ t
1 , S

t, X2,t,W1, X1,t)

+
N∑

t=1

I(W1; Ṽ1,t|W2, Y
t−1

1 , Ṽ t−1
1 , St, X2,t)

=
N∑

t=1

h(Y1,t|W2, Y
t−1

1 , Ṽ t
1 , S

t, X2,t)− h(Z1,t|W2, Y
t−1

1 , Ṽ t
1 , S

t, X2,t,W1, X1,t)

+ I(W1; Ṽ1,t|W2, Y
t−1

1 , Ṽ t−1
1 , St, X2,t)

(c)
=

N∑

t=1

h(Y1,t|W2, Y
t−1

1 , Ṽ t
1 , S

t, X2,t)− h(Z1,t) + I(W1; Ṽ1,t|W2, Y
t−1

1 , Ṽ t−1
1 , St, X2,t)

≤
N∑

t=1

h(Y1,t|Ṽ1,t, S2,t, X2,t)− h(Z1,t) + I(W1; Ṽ1,t|W2, Y
t−1

1 , Ṽ t−1
1 , St, X2,t)

≤
N∑

t=1

h(Y1,t|Ṽ1,t, S2,t, X2,t)− h(Z1,t) + I(W1, X1,t; Ṽ1,t|W2, Y
t−1

1 , Ṽ t−1
1 , St, X2,t)

=
N∑

t=1

h(Y1,t|Ṽ1,t, S2,t, X2,t)− h(Z1,t) + I(X1,t; Ṽ1,t|W2, Y
t−1

1 , Ṽ t−1
1 , St, X2,t)

+ I(W1; Ṽ1,t|W2, Y
t−1

1 , Ṽ t−1
1 , St, X2,t, X1,t)

(d)
=

N∑

t=1

h(Y1,t|Ṽ1,t, S2,t, X2,t)− h(Z1,t) + I(X1,t; Ṽ1,t|W2, Y
t−1

1 , Ṽ t−1
1 , St, X2,t)
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=
N∑

t=1

h(Y1,t|Ṽ1,t, S2,t, X2,t)− h(Z1,t) + h(Ṽ1,t|W2, Y
t−1

1 , Ṽ t−1
1 , St, X2,t)

− h(Ṽ1,t|W2, Y
t−1

1 , Ṽ t−1
1 , St, X2,t, X1,t)

≤
N∑

t=1

h(Y1,t|Ṽ1,t, S2,t, X2,t)− h(Z1,t) + h(Ṽ1,t|S2,t)

− h(Ṽ1,t|W2, Y
t−1

1 , Ṽ t−1
1 , St, X2,t, X1,t)

(e)
=

N∑

t=1

h(Y1,t|Ṽ1,t, S2,t, X2,t)− h(Z1,t) + h(Ṽ1,t|St)

− h(Ṽ1,t|S2,t, X1,t)

=
N∑

t=1

h(Y1,t|Ṽ1,t, S2,t, X2,t)− h(Z1,t) + I(X1,t; Ṽ1,t|S2,t)

(f)
= p2 log

(
1 +

SNR1

1 + INR2

)
+ (1− p2) log (1 + SNR1) + p2 log (1 + INR2)

= log (1 + SNR1) + p2 log

(
1 +

INR2

1 + SNR1

)

where

• (a) is due to Lemma A.1

• (b) is because X1,t
f
=
(
St−1,W1, Ỹ

t−1
1

)
f
=
(
St−1,W1, Y

t−1
1

)
,

• (c) is because Z1,t is independent from all past signals and messages,

• (d) is because W1 − X1,t − Ṽ1,t is a Markov chain, hence conditioned on X1,t, Ṽ1,t is

independent from W1 and all the other past signals,

• (e) is because given (S2,t, X1,t), Ṽ1,t is independent from all the other variables in the

conditioning,

• (f) is due to Lemma A.2
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A.5.3 Proof of Bound (2.61)

In this section, we exclusively focus on the enhanced channel defined in Section 2.7. By

Fano’s inequality.

N(R1 +R2 − εN) ≤ I(W1; Y̆ N
1 , SN) + I(W2; Y̆ N

2 , SN)

= I(W1; Y̆ N
1 |SN) + I(W2; Y̆ N

2 |SN)

≤ I(W1; Y̆ N
1 , V̆ N

1 |SN) + I(W2; Y̆ N
2 , V̆ N

2 |SN)

= h(Y̆ N
1 |SN , V̆ N

1 ) + h(Y̆ N
2 |SN , V̆ N

2 ) (A.21)

+ h(V̆ N
1 |SN) + h(V̆ N

2 |SN) (A.22)

− h(Y̆ N
1 , V̆ N

1 |SN ,W1)− h(Y̆ N
2 , V̆ N

2 |SN ,W2) (A.23)

Let us take one term from (A.21).

h(Y̆ N
1 |SN , V̆ N

1 ) = ESN
[
hS

(
Y̆ N

1 |V̆ N
1

)]

(a)
= ESN

[
hS

(
Ȳ L1

1 , Y M1
11 , Y M1

12 |V̆ N
1

)]

≤ ESN
[
hS

(
Ȳ L1

1 |V̆ N
1

)]
+ ESN

[
hS

(
Y M1

11 |V̆ N
1

)]

+ ESN
[
hS

(
Y M1

12 |V̆ N
1

)]

where (a) follows by (with a slight abuse of notation) decomposing Y̆ N
1 into

(
Y M1

11 , Y M1
12

)
for

time slots where S1,t = 1, and into Ȳ L1
1 for time slots for which S1,t = 0.

The other term in (A.21) can be bounded similarly. Let us take one term from (A.23).

−h(Y̆ N
1 , V̆ N

1 |SN ,W1) = −ESN
[
hS

(
Y̆ N

1 , V̆ N
1 |W1

)]

(b)
= −ESN

[
hS

(
V̆ N

2 , ZM1
11 , Z

L2
2 , ZM2

21 |W1

)]

(c)
= −

N∑

t=1

ESN
[
h
(
V̆2,t, Z11,(t), Z2,[t], Z21,(t)

∣∣∣W1, V̆
t−1

2 , Z
(t−1)
11 , Z

[t−1]
2 , Z

(t−1)
21

)]

(d)
= −E

[
N∑

t=1

hS

(
V̆2,t|W1, V̆

t−1
2 , Z

(t−1)
11 , Z

[t−1]
2 Z

(t−1)
21

)
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+
∑

t:S1,t=1

hS

(
Z11,t|W1, V̆

t−1
2 , Z

(t−1)
11 , Z

[t−1]
2 Z

(t−1)
21

)

+
∑

t:S2,t=0

hS

(
Z2,t|W1, V̆

t−1
2 , Z

(t−1)
11 , Z

[t−1]
2 Z

(t−1)
21

)

+
∑

t:S2,t=1

hS

(
Z21,t|W1, V̆

t−1
2 , Z

(t−1)
11 , Z

[t−1]
2 Z

(t−1)
21

)



(e)
= −ESN

[
N∑

t=1

hS

(
V̆2,t|W1, V̆

t−1
2 , Z

(t−1)
11 , Z

[t−1]
2 Z

(t−1)
21

)]

− ESN [L2h(Z2) +M2h(Z21) +M1h(Z11)]

= −ESN
[

N∑

t=1

hS

(
V̆2,t|W1, V̆

t−1
2 , Z

(t−1)
11 , Z

[t−1]
2 Z

(t−1)
21

)]

−N(1− p2)h(Z2)−Np2h(Z21)−Np1h(Z11)

where (b) follows by Lemma A.6, (c) follows by chain rule, (d) follows by the fact that for

a given time slot t, the involved noise terms are independent from each other and from V̆2,t;

and (e) is because the signals up to time t− 1 are independent from the noise at time t, and

because noise processes are i.i.d.

The other term in (A.23) can be bounded similarly.

Putting everything together, we have

N(R1 +R2 − εN) ≤ ESN
[
hS

(
Ȳ L1

1 |V̆ N
1

)]
+ ESN

[
hS

(
Y M1

11 |V̆ N
1

)]

+ ESN
[
hS

(
Ȳ L2

2 |V̆ N
2

)]
+ ESN

[
hS

(
Y M2

22 |V̆ N
2

)]

+ ESN
[
hS

(
V̆ N

1 , Y M1
12

)]
(A.24)

+ ESN
[
hS

(
V̆ N

2 , Y M2
21

)]
(A.25)

− ESN

[
N∑

t=1

hS

(
V̆2,t|W1, V̆

t−1
2 , Z

(t−1)
11 , Z

[t−1]
2 Z

(t−1)
21

)]
(A.26)

− ESN

[
N∑

t=1

hS

(
V̆1,t|W2, V̆

t−1
1 , Z

(t−1)
22 , Z

[t−1]
1 Z

(t−1)
12

)]
(A.27)

−N(1− p2)h(Z2)−Np2h(Z21)−Np1h(Z11)
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−N(1− p1)h(Z1)−Np1h(Z12)−Np2h(Z22)

Let us combine (A.24) and (A.27).

(A.24) + (A.27)

= ESN

[
hS

(
V̆ N

1 , Y M1
12

)
−

N∑

t=1

hS

(
V̆1,t|W2, V̆

t−1
1 , Z

(t−1)
22 , Z

[t−1]
1 Z

(t−1)
12

)]

= ESN

[
N∑

t=1

hS

(
V̆1,t|V̆ t−1

1 , Y
(t−1)

12

)
− hS

(
V̆1,t|W2, V̆

t−1
1 , Z

(t−1)
22 , Z

[t−1]
1 Z

(t−1)
12

)

+
∑

t:S1,t=1

hS

(
Y12,t|V̆ t

1 , Y
(t−1)

12

)



≤ ESN


 ∑

t:S1,t=1

hS (Y12,t) +
N∑

t=1

IS(V̆1,t;W2, Z
(t−1)
22 , Z

[t−1]
1 Z

(t−1)
12 |V̆ t−1

1 , Y
(t−1)

12




Similarly, we combine (A.25) with (A.26) to obtain the same expression with user indices

swapped. Plugging these back, we get

N(R1 +R2 − εN) ≤ ESN
[
hS

(
Ȳ L1

1 |V̆ N
1

)]
+ ESN

[
hS

(
Ȳ M1

11 |V̆ N
1

)]

+ ESN
[
hS

(
Ȳ L2

2 |V̆ N
2

)
+ hS

(
Ȳ M2

22 |V̆ N
2

)

+
N∑

t=1

IS(V̆1,t;W2, Z
(t−1)
22 , Z

[t−1]
1 Z

(t−1)
12 |V̆ t−1

1 , Y
(t−1)

12 )

+
N∑

t=1

IS(V̆2,t;W1, Z
(t−1)
11 , Z

[t−1]
2 Z

(t−1)
21 |V̆ t−1

2 , Y
(t−1)

21 )

]

+ ESN


 ∑

t:S1,t=1

hS (Y12,t)


+ ESN


 ∑

t:S2,t=1

hS (Y21,t)




−N(1− p2)h(Z2)−Np2h(Z21)−Np1h(Z11)

−N(1− p1)h(Z1)−Np1h(Z12)−Np2h(Z22)

We use Lemmas A.3, A.4, A.7 and A.8 to bound each of these terms, and use the fact that

noise distribution is Gaussian to obtain the desired bound.
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A.5.4 Proof of the Bounds (2.62) and (2.63)

We exclusively focus on the enhanced channel, defined in Section 2.7. By symmetry, it is

sufficient to prove (2.62). In addition to the enhanced interference channel in the case of sum

rate bound, we consider an additional copy of Receiver 1, who always receives Ȳ1 (i.e., as in

the original channel). The feedback signal of Tx1 is still given by S1 · Ȳ1, i.e., the same as

the original channel. We would like to prove a sum rate upper bound on this new channel.

By Fano’s inequality,

N(2R1 +R2 − εN) ≤ I(W1; Ȳ N
1 , SN) + I(W2; Y̆ N

2 , SN) + I(W1; Y̆ N
1 , SN)

= I(W1; Ȳ N
1 |SN) + I(W2; Y̆ N

2 |SN) + I(W1; Y̆ N
1 |SN)

= I(W1; Ȳ N
1 |SN) + I(W2; Y̆ N

2 , V̄ N
2 |SN)

+ I(W1; Y̆ N
1 , V̆ N

1 |W2, S
N) (A.28)

The first mutual information term in (A.28) can be bounded as follows

I(W1; Ȳ N
1 |SN) = h(Ȳ N

1 |SN)− h(Ȳ N
1 |W1, S

N)

= h(Ȳ N
1 |SN)−

N∑

t=1

h(Ȳ1,t|W1, Ȳ
t−1

1 , SN)

(a)
= h(Ȳ N

1 |SN)−
N∑

t=1

h(V̄2,t|W1, V̄
t−1

2 , SN)

≤
N∑

t=1

h(Ȳ1,t)− h(V̄2,t|W1, V̄
t−1

2 , SN)

where (a) follows by the fact that X1,t
f
=
(
W1, Ȳ

t−1
1 , St−1

)
and by subtracting X1,t from Ȳ1,t.

Let us consider the second mutual information term from (A.28).

I(W2; Y̆ N
2 , V̄ N

2 |SN) = ESN
[
hS

(
Y̆ N

2 , V̄ N
2

)
− hS

(
Y̆ N

2 , V̄ N
2 |W2

)]

(a)
= ESN

[
hS
(
Y M2

22 , Y M2
21 , Ȳ L2

2 , V̄ N
2

)
− hS

(
V̆ N

1 , ZN
1 , Z

M2
22 |W2

)]

= ESN
[
hS
(
Y M2

22 , Ȳ L2
2 |Y M2

21 , V̄ N
2

)]

+ ESN
[
hS
(
Y M2

21 , V̄ N
2

)
− hS

(
V̆ N

1 , ZN
1 , Z

M2
22 |W2

)]

177



(b)

≤ ESN
[
hS
(
Y M2

22 |V̄ N
2

)
+ hS

(
Ȳ L2

2 |V̄ N
2

)]

+ ESN

[
N∑

t=1

hS

(
V̄2,t|V̄ t−1

2 , Y
(t−1)

21

)
+

N∑

t:S2,t=1

hS

(
Y21,t|V̄ t−1

2 , Y
(t−1)

21

)

−
N∑

t=1

hS

(
V̆1,t, Z1,t, Z22,(t)|W2, V̆

t−1
1 , Zt−1

1 , Z
(t−1)
22

)]

(c)
= ESN

[
hS
(
Y M2

22 |V̄ N
2

)
+ hS

(
Ȳ L2

2 |V̄ N
2

)]

+ ESN




N∑

t=1

hS

(
V̄2,t|V̄ t−1

2 , Y
(t−1)

21

)
+

N∑

t:S2,t=1

hS

(
Y21,t|V̄ t−1

2 , Y
(t−1)

21

)



− ESN

[
N∑

t=1

hS

(
V̆1,t|W2, V̆

t−1
1 , Zt−1

1 , Z
(t−1)
22

)

+
N∑

t=1

hS

(
Z1,t|W2, V̆

t−1
1 , Zt−1

1 , Z
(t−1)
22

)

+
∑

t:S2,t=1

hS

(
Z22,t|W2, V̆

t−1
1 , Zt−1

1 , Z
(t−1)
22

)



(d)

≤ ESN
[
hS
(
Y M2

22 |V̄ N
2

)
+ hS

(
Ȳ L2

2 |V̄ N
2

)]

+ ESN




N∑

t=1

hS

(
V̄2,t|V̄ t−1

2 , Y
(t−1)

21

)
+
∑

t:S2,t=1

hS (Y21,t)




− ESN

[
N∑

t=1

hS

(
V̆1,t|W2, V̆

t−1
1 , Zt−1

1 , Z
(t−1)
22

)]

−Nh(Z1)−Np2h(Z22)

where (a) is by decomposing Y̆ N
2 into

(
Y M2

22 , Y M2
21

)
for time slots where S2,t = 1, and to

Ȳ L2
2 for time slots where S2,t = 0, and by Lemma A.6. (b) is because conditioning reduces

entropy and by chain rule. (c) is because for a given time slot t, the noise terms involved are

independent from each other and from V̆1,t. (d) is because conditioning reduces entropy and

the noise processes are i.i.d., and because the noise terms are independent from the signals

up to time t− 1.
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Next, we consider the third mutual information term from (A.28).

I(W1; Y̆ N
1 , V̆ N

1 |W2, S
N) = ESN

[
IS(W1; Y̆ N

1 , V̆ N
1 |W2)

]

(a)

≤ ESN
[
I(W1; Y̆ N

1 , V̆ N
1 |W2, Z

M2
22 , Z

M1
11 )
]

= ESN
[
hS

(
Y̆ N

1 , V̆ N
1 |W2, Z

M2
22 , Z

M1
11

)]

− ESN
[
hS

(
Y̆ N

1 , V̆ N
1 |W2, Z

M2
22 , Z

M1
11 ,W1

)]

=
N∑

t=1

ESN
[
hS

(
Y̆1,t, V̆1,t|Y̆ t−1

1 , V̆ t−1
1 ,W2, Z

M2
22 , Z

M1
11

)]

− ESN
[
hS

(
Y̆1,t, V̆1,t|Y̆ t−1

1 , V̆ t−1
1 ,W2, Z

M2
22 , Z

M1
11 ,W1

)]

=
N∑

t=1

ESN
[
hS

(
Y̆1,t|Y̆ t−1

1 , V̆ t
1 ,W2, Z

M2
22 , Z

M1
11

)]

+ ESN
[
hS

(
V̆1,t|Y̆ t−1

1 , V̆ t−1
1 ,W2, Z

M2
22 , Z

M1
11

)]

− ESN
[
hS

(
Y̆1,t, V̆1,t|Y̆ t−1

1 , V̆ t−1
1 ,W2, Z

M2
22 , Z

M1
11 ,W1

)]

(b)
=

N∑

t=1

ESN
[
hS

(
Y̆1,t|Y̆ t−1

1 , V̆ t
1 ,W2, Z

M2
22 , Z

M1
11 , X2,t

)]

+ ESN
[
hS

(
V̆1,t|Y̆ t−1

1 , V̆ t−1
1 ,W2, Z

M2
22 , Z

M1
11

)]

− ESN
[
hS

(
Y̆1,t, V̆1,t|Y̆ t−1

1 , V̆ t−1
1 ,W2, Z

M2
22 , Z

M1
11 ,W1, X1,t, X2,t

)]

(c)

≤
N∑

t=1

ESN
[
hS

(
Y̆1,t|V̆1,t, X2,t

)]
+ ESN

[
hS

(
V̆1,t|Y (t−1)

12 , V̆ t−1
1 ,W2, Z

M2
22 , Z

M1
11

)]

− ESN


 ∑

t:S2,t=0

hS (Z2,t) +
∑

t:S2,t=1

hS (Z21,t)




− ESN


 ∑

t:S1,t=0

hS (Z1,t) +
∑

t:S1,t=1

hS (Z11,t, Z12,t)




(d)

≤
N∑

t=1

ESN
[
hS

(
Y̆1,t|V̆1,t, X2,t

)]

+ ESN
[
hS

(
V̆1,t|Y (t−1)

12 , V̆ t−1
1 ,W2, Z

(t−1)
22 , Z

(t−1)
11

)]

−N(1− p1)h(Z1)−Np1h(Z11)−Np1h(Z12)−Np2h(Z21)−N(1− p2)h(Z2)

179



where (a) follows by the fact that
(
ZM1

11 , Z
M2
22

)
is independent from W1 given W2, (b) is

because X1,t
f
=
(
W1, Y̆

t−1
1 , St−1

)
and X2,t

f
=
(
W2, V̆

t−1
1 , Z

(t−1)
22 , St−1

)
. In (c), the first two

terms are upper bounded using the fact that

Y̆ t−1
1 =

(
Y

(t−1)
11 , Y

(t−1)
12 , Ȳ

[t−1]
1

)
,

and that conditioning reduces entropy. The noise terms are obtained by subtracting X1,t

and X2,t from Y̆1,t and V̆1,t, and using the fact that noise variables at time t are independent

from the variables up to time t− 1. (d) is because conditioning reduces entropy and because

noise processes are i.i.d.

Putting everything back together, we have

N(2R1 +R2 − εN) ≤
N∑

t=1

h(Ȳ1,t) + ESN
[
hS
(
Y M2

22 |V̄ N
2

)
+ hS

(
Ȳ L2

2 |V̄ N
2

)]

+ ESN




N∑

t=1

IS(V̄2,t;W1|V̄ t−1
2 , Y

(t−1)
21 )

+
N∑

t=1

IS(V̆1,t;Z
t−1
1 |Y (t−1)

12 , V̆ t−1
1 ,W2, Z

(t−1)
22 , Z

(t−1)
11 )

+
N∑

t=1

hS

(
Y̆1,t|V̆1,t, X2,t

)
+
∑

t:S2,t=1

hS (Y21,t)




−N(1− p1)h(Z1)−Np1h(Z11)−Np1h(Z12)

−Np2h(Z21)−N(1− p2)h(Z2)−Nh(Z1)

−Np2h(Z22)

Using Lemma A.3, A.4, A.5, A.7, A.8 and A.9 to bound each of these terms, we get the

desired bound.

A.5.5 Lemmas

In this subsection, we prove the lemmas that have been used in the proofs of the previous

subsections.
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Lemma A.1. X2,t
f
=
(
W2, Ṽ

t−1
1 , St

)

Proof. Note that

X2,1
f
= W2

and by the definition of the channel,

X2,t
f
=
(
W2, Ỹ

t−1
2 , St

) (a)

f
=
(
W2, Ṽ

t−1
1 , X t−1

2 , St
)
,

hence the result follows by induction on t. (a) follows because

Ỹ t−1
2 = St−1

2 h22X
t−1
2 + Ṽ t−1

1 .

Lemma A.2.

N∑

t=1

h(Y1,t|Ṽ1,t, S2,t, X2,t) ≤ Np2 log

(
1 +

SNR1

1 + INR2

)
+N(1− p2) log (1 + SNR1)

Proof.

N∑

t=1

h(Y1,t|Ṽ1,t, S2,t, X2,t) =
N∑

t=1

p2h(Y1,t|V1,t, X2,t) + (1− p2)h(Y1,t|X2,t)

(a)
=

N∑

t=1

p2h(Y1,Q|V1,Q, X2,Q, Q = t) + (1− p2)h(Y1,Q|X2,Q, Q = t)

= Np2h(Y1,Q|V1,Q, X2,Q, Q) +N(1− p2)h(Y1,Q|X2,Q, Q)

(b)
= Np2h(Y1|V1, X2, Q) +N(1− p2)h(Y1|X2, Q)

(c)

≤ Np2 log

(
1 +

SNR1

1 + INR2

)
+N(1− p2) log (1 + SNR1)

where (a) follows by introducing a time-sharing variable Q uniformly distributed between 1

and N , (b) is by defining Yi := Yi,Q, Xi := Xi,Q and Vi := Vi,Q. (c) follows by the fact that

choosing jointly Gaussian input distribution with correlation coefficient ρ = 0 for p(x1, x2)

maximizes the given conditional differential entropy.
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Lemma A.3.

ESN


 ∑

t:Si,t=1

hS (Yij,t)


 = Npi log

(
2πe

(
1

2
+ INRi

))

for (i, j) = (1, 2), (2, 1).

Proof.

ESN


 ∑

t:Si,t=1

hS (Yij,t)


 = ESN


Mi

1

Mi

∑

t:Si,t=1

hS (Yij,t)




≤ ESN


Mi

1

Mi

∑

t:Si,t=1

log 2πe

(
1

2
+ |hij|2Pj,t

)


= E


MiE


 1

Mi

∑

t:Si,t=1

log 2πe

(
1

2
+ |hij|2Pj,t

)∣∣∣∣∣∣
Mi






(a)

≤ EMi

[
MiE

[
log 2πe

(
1

2
+ |hij|2P (i1)

j

)∣∣∣∣Mi

]]

(b)

≤ EMi

[
Mi log 2πe

(
1

2
+ |hij|2E

[
P

(i1)
j |Mi

])]

(c)

≤ EMi

[
Mi log 2πe

(
1

2
+ |hij|2Pj

)]

= E [Mi] log

(
2πe

(
1

2
+ INRi

))

= Npi log

(
2πe

(
1

2
+ INRi

))

where (a) and (b) follow by Jensen’s inequality (since log(·) is concave), and (c) follows since

P
(i1)
j averaged over the realizations of Si is the average power, which is less than the power

constraint Pj.

Lemma A.4.

ESN
[
IS(Vi,t;Wj, Z

(t−1)
jj , Z

[t−1]
i , Z

(t−1)
ij |V t−1

i , Y
(t−1)
ij )

]

= ESN
[
IS(Vi,t;Z

t−1
i |Y (t−1)

ij , V t−1
i ,Wj, Z

(t−1)
jj , Z

(t−1)
ii )

]
= 0

for (i, j) = (1, 2), (2, 1).
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Proof. Since all variables involved are related to Vi,t through Xi,t; by data processing in-

equality,

ESN
[
IS(Vi,t;Wj, Z

(t−1)
jj , Z

[t−1]
i , Z

(t−1)
ij |V t−1

i , Y
(t−1)
ij )

]

≤ ESN
[
IS(Xi,t;Wj, Z

(t−1)
jj , Z

[t−1]
i , Z

(t−1)
ij |V t−1

i , Y
(t−1)
ij )

]

≤ ESN
[
IS(Wi, Z

(t−1)
ii ;Wj, Z

(t−1)
jj , Z

[t−1]
i , Z

(t−1)
ij |V t−1

i , Y
(t−1)
ij )

]

where the latter inequality follows by the fact that Xi,t
f
=
(
Wi, Y

(t−1)
ij , Z

(t−1)
ii , St−1

)
. Simi-

larly, the second mutual information can be bounded by

ESN
[
IS(Vi,t;Z

t−1
i |Y (t−1)

ij , V t−1
i ,Wj, Z

(t−1)
jj , Z

(t−1)
ii )

]

≤ ESN
[
IS(Xi,t;Z

[t−1]
i , Z

(t−1)
ij |Y (t−1)

ij , V t−1
i ,Wj, Z

(t−1)
jj , Z

(t−1)
ii )

]

≤ ESN
[
IS(Wi, Z

(t−1)
ii ;Z

(t−1)
jj , Z

[t−1]
i , Z

(t−1)
ij ,Wj|V t−1

i , Y
(t−1)
ij )

]

where the first step is because Zt−1
i

f
=
(
Z

[t−1]
i , Z

(t−1)
ij , Z

(t−1)
ii , St−1

)
, and second step is because

for random variables A,B,C; I(A,B;C) ≥ I(A;C|B); and Xi,t
f
=
(
Wi, Y

(t−1)
ij , Z

(t−1)
ii , St−1

)
.

Note that we have the same upper bound for both mutual information terms. We will next

show that this upper bound is zero.

To show conditional independence, we will use the property thatX and Y are independent

given Z if and only if the probability distribution p(X, Y, Z) can be factorized as

p(X, Y, Z) = f(X,Z)g(Y, Z)

for some functions f and g. Consider the joint distribution of all the variables involved in

the above mutual information (we define pS(·) := p(·|SN = SN)).

pS(Wi, Z
(t−1)
ii , Z

(t−1)
jj , Z

[t−1]
i , Z

(t−1)
ij ,Wj, V

t−1
i , Y

(t−1)
ij )

= p(Wi)p(Wj)
t−1∏

τ=1

pS(Zii,(τ), Zjj,(τ), Zi,[τ ], Zij,(τ), Vi,τ , Yij,(τ)

|Z(τ−1)
ii , Z

(τ−1)
jj , Z

[τ−1]
i , Z

(τ−1)
ij , V τ−1

i , Y
(τ−1)
ij ,Wi,Wj)

(a)
= p(Wi)p(Wj)

t−1∏

τ=1

pS(Zii,(τ))pS(Zjj,(τ))pS(Zi,[τ ])pS(Zij,(τ))
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· pS(Vi,τ |Z(τ−1)
ii , Y

(τ−1)
ij ,Wi)pS(Yij,(τ)|Z(τ−1)

jj , Z
(τ)
ij , V

τ−1
i ,Wj)

= f(Wi, Z
(t−1)
ii , V t−1

i , Y
(t−1)
ij ) · g(Z

(t−1)
jj , Z

(t−1)
i , Z

(t−1)
ij ,Wj, V

t−1
i , Y

(t−1)
ij )

where (a) follows since

Yij,(τ)
f
=
(
Xj,τ , Z

(τ)
ij , S

τ
)

f
=
(
Z

(τ−1)
jj , Z

(τ)
ij , V

τ−1
i , Sτ ,Wj

)

and

Vi,τ
f
=
(
Xi,τ , Zj,(τ), Zji,(τ)

) f
=
(
Z

(τ−1)
ii , Y

(τ−1)
ij , Sτ−1,Wi, Zj,(τ), Zji,(τ)

)

and
(
Zj,(τ), Zji,(τ)

)
is independent of everything else. In the last line, we define

f(Wi, Z
(t−1)
ii , V t−1

i , Y
(t−1)
ij ) = p(Wi)

t−1∏

τ=1

pS(Zii,(τ))pS(Vi,τ |Z(τ−1)
ii , Y

(τ−1)
ij ,Wi)

g(Z
(t−1)
jj , Z

(t−1)
i , Z

(t−1)
ij ,Wj, V

t−1
i , Y

(t−1)
ij ) = p(Wj)

t−1∏

τ=1

pS(Zjj,(τ))pS(Zi,(τ))

·S (Zij,(τ))pS(Yij,τ |Z(τ−1)
jj , Z

(τ)
ij , V

τ−1
i ,Wj)

from which the result follows.

Lemma A.5.

ESN
[
IS(V̄j,t;Wi|V̄ t−1

j , Y
(t−1)
ji )

]
= 0

Proof.

ESN
[
IS(V̄j,t;Wi|V̄ t−1

j , Y
(t−1)
ji )

]
≤ ESN

[
IS(Xj,t;Wi|V̄ t−1

j , Y
(t−1)
ji )

]

≤ ESN
[
IS(Wj, Z

(t−1)
jj ;Wi|V̄ t−1

j , Y
(t−1)
ji )

]

where the first step follows by data processing inequality, and the second one follows by

Xj,t
f
=
(
Wj, Y

(t−1)
ji , Z

(t−1)
jj , St−1

)
. The proof technique is similar to that of Lemma A.4. The

probability distribution of the involved variables is

p(Wi,Wj, Z
(t−1)
jj , V̄ t−1

j , Y
(t−1)
ji ) = p(Wi)p(Wj)

t−1∏

τ=1

pS(Zjj,(τ))
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pS(V̄j,τ , Yji,(τ)|V̄ τ−1
j , Y

(τ−1)
ji , Z

(τ−1)
jj ,Wi,Wj)

(a)
= p(Wi)p(Wj)

t−1∏

τ=1

pS(Zjj,(τ))

pS(V̄j,τ |Y (τ−1)
ji , Z

(τ−1)
jj ,Wj)pS(Yji,(τ)|Wi, V̄

t−1
j )

where (a) follows by the fact that

V̄j,τ
f
=
(
Wj, Y

(τ−1)
ji , Z

(t−1)
jj , St−1, Zi,τ

)
,

Yji,(τ)
f
=
(
Wi, V̄

t−1
j , St−1, Zji,(τ)

)

and that Zi,τ and Zji,(τ) are independent of everything else. Then the result follows by

defining

f(Wi, V̄
t−1
j , Y

(t−1)
ji ) = p(Wi)

t−1∏

τ=1

pS(Yji,(τ)|Wi, V̄
t−1
j )

g(Wj, Z
(t−1)
jj , V̄ t−1

j , Y
(t−1)
ji ) = p(Wj)

t−1∏

τ=1

pS(Zjj,(τ))pS(V̄j,τ |Y (τ−1)
ji , Z

(τ−1)
jj ,Wi)

and noting that the above probability distribution factorizes as f · g.

Lemma A.6.

ESN
[
hS

(
Y̆ N
i , V̆

N
i |Wi

)]
= ESN

[
hS

(
V̆ N
j , Z

Mi
ii , Z

Lj
j , Z

Mj

ji |Wi

)]

ESN
[
hS

(
Y̆ N
i , V̄

N
i |Wi

)]
= ESN

[
hS

(
V̆ N
j , Z

Mi
ii , Z

N
j |Wi

)]

for (i, j) = (1, 2), (2, 1).

Proof.

ESN
[
hS

(
Y̆ N
i , V̆

N
i |Wi

)]
= ESN

[
N∑

t=1

hS

(
Y̆i,t, V̆i,t|Wi, Y̆

t−1
i , V̆ t−1

i

)]

(a)
= ESN

[
N∑

t=1

hS

(
Y̆i,t, V̆i,t|Wi, Y̆

t−1
i , V̆ t−1

i , X t
i

)]

= ESN

[
N∑

t=1

hS
(
Ȳi,[t], Yii,(t), Yij,(t), V̄i,[t], Yji,(t)
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∣∣∣Wi, Ȳ
[t−1]
i , Y

(t−1)
ii , Y

(t−1)
ij , V̄

[t−1]
i , Y

(t−1)
ji , X t

i

)]

= ESN

[
N∑

t=1

hS
(
V̄j,[t], Zii,(t), Yij,(t), Zj,[t], Zji,(t)

∣∣∣Wi, V̄
[t−1]
j , Z

(t−1)
ii , Y

(t−1)
ij , Z

[t−1]
j , Z

(t−1)
ji

)]

= ESN
[
hS

(
V̄ Li
j , ZMi

ii , Y
Mi
ij , Z

Lj
j , Z

Mj

ji |Wi

)]

(b)
= ESN

[
hS

(
V̆ N
j , Z

Mi
ii , Z

Lj
j , Z

Mj

ji |Wi

)]

where (a) is because X t
i

f
=
(
Wi, Y̆

t−1
i ,St−1

)
, and (b) is because V̆ N

j =
(
V̄ Li
j , Y Mi

ij

)
. The

second equality can be proved using similar steps.

Lemma A.7.

ESN
[
hS

(
Ȳ Li
i |V̆ N

i

)]
≤ a

ESN
[
hS
(
Ȳ Li
i |V̄ N

i

)]
≤ a

for (i, j) = (1, 2), (2, 1), where

a = N(1− pi) log 2πe

(
1 + INRi +

SNRi + 2
√
SNRi · INRi

1 + INRj

)

Proof.

ESN
[
hS

(
Ȳ Li
i |V̆ N

i

)]
≤ ESN


 ∑

t:Si,t=0

hS

(
Ȳi,t|V̆i,t

)



(a)
= ESN


Li

1

Li

∑

t:Si,t=0

hS

(
Ȳi,Q|V̆i,Q, Q = t

)



(b)
= ESN

[
LihS

(
Ȳi|V̆i, Q

)]

= ESN
[
Li
(
pjhS

(
Ȳi|Yji, Q

)
+ (1− pj)hS

(
Ȳi|V̄i, Q

))]

(c)

≤ E
[
Lipj log 2πe

(
1 + INRi +

SNRi + 2
√
SNRi · INRi

1 + 2INRj

)

+ Li(1− pj) log 2πe

(
1 + INRi +

SNRi + 2
√
SNRi · INRi

1 + INRj

)]
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≤ (1− pi) log 2πe

(
1 + INRi +

SNRi + 2
√
SNRi · INRi

1 + INRj

)

where (a) is by introducing a time-sharing random variable Q with uniform distribution over

the set {t : Si,t = 0}, and (b) follows by setting Ȳi = Ȳi,Q and V̆i = V̆i,Q. (c) follows by the

fact that choosing jointly Gaussian input distribution with correlation coefficient ρ = 0 for

p(x1, x2) maximizes the given conditional differential entropy.

By following similar steps, we can show that

ESN
[
hS
(
Ȳ Li
i |V̄ N

i

)]
≤ ESN

[
LihS

(
Ȳi|V̄i, Q

)]

≤ (1− pi) log 2πe

(
1 + INRi +

SNRi + 2
√
SNRi · INRi

1 + INRj

)

Lemma A.8.

ESN
[
hS

(
Y Mi
ii |V̆ N

i

)]
≤ b

ESN
[
hS
(
Y Mi
ii |V̄ N

i

)]
≤ b

where

b = Npi log 2πe

(
1

2
+

SNRi
2INRj + 1

)

for (i, j) = (1, 2), (2, 1).

Proof.

ESN
[
hS

(
Y Mi
ii |V̆ N

i

)]
≤ ESN


 ∑

t:Si,t=1

hS

(
Yii,t|V̆i,t

)



(a)
= ESN


Mi

1

Mi

∑

t:Si,t=1

hS (Yii,Q|Vi,Q, Q = t)




(b)
= ESN

[
MihS

(
Yii|V̆i, Q

)]

= ESN
[
Mi

(
(1− pj)hS

(
Yii|V̄i, Q

)
+ pjhS (Yii|Yji, Q)

)]
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(c)

≤ ESN
[
Mi

(
(1− pj) log 2πe

(
1

2
+

2SNRi + 1
2

2INRj + 1

)
+ pj log

(
πe+

2πe · SNRi
2INRj + 1

))]

≤ pi log 2πe

(
1

2
+

SNRi
2INRj + 1

)

where (a) is by introducing a time-sharing random variable Q with uniform distribution over

the set {t : Si,t = 1}, and (b) follows by setting Yii = Yii,Q and V̆i = V̆i,Q. (c) follows by the

fact that choosing jointly Gaussian input distribution with correlation coefficient ρ = 0 for

p(x1, x2) maximizes the given conditional differential entropy. Similarly,

ESN
[
hS
(
Y Mi
ii |V̄ N

i

)]
≤ ESN

[
MihS

(
Yii|V̄i, Q

)]
≤ pi log 2πe

(
1

2
+

SNRi
2INRj + 1

)

Lemma A.9.

ESN

[
N∑

t=1

hS

(
Y̆i,t|V̆i,t, Xj,t

)]
≤ pi log 2πe

(
1

2
+

SNRi
2INRj + 1

)

+ pi log 2πe
1

2
+ (1− pi) log 2πe

(
1 +

SNRi
1 + INRj

)

for (i, j) = (1, 2), (2, 1).

Proof.

ESN

[
N∑

t=1

hS

(
Y̆i,t|V̆i,t, Xj,t

)]
(a)
= ESN

[
N

1

N

N∑

t=1

hS

(
Y̆i,Q|V̆i,Q, Xj,Q, Q = t

)]

= ESN
[
NhS

(
Y̆i,Q|V̆i,Q, Xj,Q, Q

)]

(b)
= Nh(Y̆i|V̆i, Xj, Q)

= pih(Yii, Yij|V̆i, Xj, Q) + (1− pi)h(Ȳi|V̆i, Xj, Q)

≤ pih(Yii|Vi) + pih(Yij|Xj)

+ (1− pi)
[
(1− pj)h(Ȳi|V̄i, Xj) + pjh(Ȳi|Yji, Xj)

]

(c)

≤ pi log 2πe

(
1

2
+

SNRi
2INRj + 1

)
+ pi log 2πe

1

2

+ (1− pi) log 2πe

(
1 +

SNRi
1 + INRj

)
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where (a) is by introducing a uniformly distributed time-sharing random variable Q, and

(b) is by defining Y̆i = Y̆i,Q, V̆i = V̆i,Q and Xj = Xj,Q. (c) follows by the fact that choosing

jointly Gaussian input distribution with correlation coefficient ρ = 0 for p(x1, x2) maximizes

the given conditional differential entropy.

A.6 Gap Analysis

In this section, we give upper bounds for the gap terms δ1 and δ2 from Theorem 2.2. We

also compare our achievable region with the outer bound of [ST11] for the case p1 = p2 = 1.

A.6.1 Bounding δ1

We will show that, each of the bounds (A.18), (A.19), and (A.20) are within a constant

gap of the region given in (2.13)–(2.17). Without loss of generality, we focus on the case

(i, j) = (1, 2), and start with the first bound in (A.18).

A1 + B2 = log

(
3 +

SNR1

1 + INR2

)
+ log (2 + INR2)− 2 log 3− C1 − C2

≥ log

(
1 +

SNR1

1 + INR2

)
+ log (1 + INR2)− 2 log 3− C1 − C2

= log (1 + SNR1 + INR2)− 2 log 3− C1 − C2

= log (1 + SNR1) + log

(
1 +

INR2

1 + SNR1

)
− 2 log 3− C1 − C2

≥ (2.14)(1,2) − 2 log 3− C1 − C2

where (2.13)(1,2) refers to bound in (2.14), evaluated with (i, j) = (1, 2). Next, we consider

the second bound in (A.18). If SNR1 ≥ INR1,

D1 = log (3 + SNR1)− log 3− C1

≥ log (1 + SNR1)− log 3− C1

≥ log (1 + SNR1 + INR1)− log 3− C1 − 1

= (2.13)(1,2),L − log 3− C1 − 1
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where (2.13)(1,2) refers to bound in (2.13), evaluated with (i, j) = (1, 2). If SNR1 < INR1,

D1 = log (3 + SNR1) + p2 log

(
1 +

INR2

3 + SNR1

)
− p2 log

5

3
− log 3− C1

≥ log (1 + SNR1) + p2 log

(
1 +

INR2

1 + SNR1

)
− p2 log

5

3
− p2 log 3− log 3− C1

= (2.13)(1,2),R − p2 log 5− log 3− C1

Next, we consider the first bound in (A.19).

A1 + G2 = log

(
3 +

SNR1

1 + INR2

)
+ log (2 + SNR2 + INR2)− 2 log 3− C1 − C2 − κ1

≥ log

(
1 +

SNR1

1 + INR2

)
+ log (1 + SNR2 + INR2)− 2 log 3− C1 − C2 − κ1

= (2.15)(1,2) − 2 log 3− C1 − C2 − κ1

where (2.15)(1,2) refers to the bound (2.15) evaluated with (i, j) = (1, 2). For the bound

F1 + F2, we first consider the case when INR1 > SNR1.

F1 + F2 ≥ log

(
2 + INR1 +

SNR1

1 + INR2

)
+ log

(
2 + INR2 +

SNR2

1 + INR1

)

− 2 log 3− C1 − C2

≥ log (1 + INR1) + log

(
1 + INR2 +

SNR2

1 + INR1

)
− 2 log 3− C1 − C2

≥ log (1 + SNR1 + INR1) + log

(
1 + INR2 +

SNR2

1 + INR1

)
− 2 log 3− C1 − C2 − 1

= (2.15)(2,1) − 2 log 3− C1 − C2 − 1

By symmetry, we can show that when INR2 > SNR2,

F1 + F2 ≥ (2.15)(1,2) − 2 log 3− C1 − C2 − 1

Next we consider the only remaining case of INR1 ≤ SNR1, INR2 ≤ SNR2.

F1 + F2 = log

(
2 + INR1 +

SNR1

1 + INR2

)
+ log

(
2 + INR2 +

SNR2

1 + INR1

)

+ p1 log




(2 + INR1)
(

3 + SNR1

1+INR2

)

2 + SNR1

1+INR2
+ INR1



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+ p2 log




(2 + INR2)
(

3 + SNR2

1+INR1

)

2 + SNR2

1+INR1
+ INR2


− 2 log 3− 2C1 − 2C2 − (p1 + p2) log 6

(a)

≥ log

(
1 + INR1 +

SNR1

1 + INR2

)
+ log

(
1 + INR2 +

SNR2

1 + INR1

)

+ p1 log




(1 + INR1)
(

1 + SNR1

1+INR2

)

1 + SNR1

1+INR2
+ INR1




+ p2 log




(1 + INR2)
(

1 + SNR2

1+INR1

)

1 + SNR2

1+INR1
+ INR2


− 2 log 3− 2C1 − 2C2 − (p1 + p2) log 6

= (2.16)− 2 log 3− 2C1 − 2C2 − (p1 + p2) log 6

where in (a), we used the fact that the function log
(

x+a
x+a+b

)
is monotonically increasing in

x, for x, a, b > 0. Finally, we consider the bound (A.20). Again, we distinguish the cases

INR2 > SNR2 and INR2 ≤ SNR2. For the former case,

A1 + F2 + G1 = log

(
3 +

SNR1

1 + INR2

)
+ log

(
1 + INR2 +

SNR2

1 + INR1

)

+ log (2 + SNR1 + INR1)− 3 log 3− 2C1 − C2 − κ2

≥ log

(
3 +

SNR1

1 + INR2

)
+ log (1 + INR2) + log (2 + SNR1 + INR1)

− 3 log 3− 2C1 − C2 − κ2

≥ log

(
3 +

SNR1

1 + INR2

)
+ log (1 + INR2 + SNR2) + log (2 + SNR1 + INR1)

− 3 log 3− 2C1 − C2 − κ2 − 1

≥ log

(
1 +

SNR1

1 + INR2

)
+ log (1 + INR2 + SNR2) + log (1 + SNR1 + INR1)

− 3 log 3− 2C1 − C2 − κ2 − 1

= (2.15)(1,2) + (2.13)(1,2) − 3 log 3− 2C1 − C2 − κ2 − 1

For the case INR2 ≤ SNR2,

A1 + F2 + G1 = log

(
3 +

SNR1

1 + INR2

)
+ log

(
1 + INR2 +

SNR2

1 + INR1

)

+ log (2 + SNR1 + INR1)
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+ p2 log




(2 + INR2)
(

3 + SNR2

1+INR1

)

2 + SNR2

1+INR1
+ INR2


− 3 log 3− 2C1 − C2 − p2 log 6− κ2

(a)

≥ log

(
1 +

SNR1

1 + INR2

)
+ log

(
1 + INR2 +

SNR2

1 + INR1

)
+ log (1 + SNR1 + INR1)

+ p2 log




(1 + INR2)
(

1 + SNR2

1+INR1

)

1 + SNR2

1+INR1
+ INR2


− 3 log 3− 2C1 − C2 − p2 log 6− κ2

= (2.17)− 3 log 3− 2C1 − 2C2 − p2 log 6− κ2

where in (a), as before, we used the fact that the function log
(

x+a
x+a+b

)
is monotonically

increasing in x, for x, a, b > 0. By symmetry, similar gaps apply to the case (i, j) = (2, 1).

Now, we can upper bound δ1 by noting that it cannot be larger than the maximum of the

gaps found above (after proper normalization, e.g., the gap found for the bound on R1 +R2

is divided by 2, and the one on 2R1 + R2 is divided by 3). Hence, using the fact that

Ci = 2pj + pi and κi = pi, we find

δ1 < 2 log 3 + 3 (p1 + p2) bits.

A.6.2 Bounding δ2

In order to bound δ2, we compare the bounds obtained in Section 2.7 with the bounds (2.13)–

(2.17) one by one. Without loss of generality, we focus on (i, j) = (1, 2), and begin with the

bound in (2.13).

(2.13)(1,2) = log (1 + SNR1 + INR1)

≥ log
(

1 + SNR1 + INR1 + 2
√

SNR1 · INR1

)
− log 3

≥ (2.53)− log 3

Next, we consider (2.14), and note that (2.55) = (2.14). We now consider the bound (2.15).

(2.15) = log

(
1 +

SNR1

1 + INR2

)
+ log (1 + SNR2 + INR2)

≥ log

(
1 +

SNR1

1 + INR2

)
+ log

(
1 + SNR2 + INR2 + 2

√
SNR2 · INR2

)
− log 3
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≥ (2.57)− log 3

Let us take (2.16).

(2.16) = log

(
1 +

SNR1

1 + INR2

+ INR1

)
+ log

(
1 +

SNR2

1 + INR1

+ INR2

)

+ p1 log




(1 + INR1)
(

1 + SNR1

1+INR2

)

1 + SNR1

1+INR2
+ INR1


+ p2 log




(1 + INR2)
(

1 + SNR2

1+INR1

)

1 + SNR2

1+INR1
+ INR2




≥ log

(
1 +

SNR1

1 + INR2

+ INR1 + 2
√
SNR1 · INR1

)

+ log

(
1 +

SNR2

1 + INR1

+ INR2 + 2
√

SNR2 · INR2

)

+ p1 log




(1 + INR1)
(

1 + SNR1

1+INR2

)

1 + SNR1

1+INR2
+ INR1


+ p2 log




(1 + INR2)
(

1 + SNR2

1+INR1

)

1 + SNR2

1+INR1
+ INR2




− 2 log 3

≥ log

(
1 +

SNR1

1 + INR2

+ INR1 + 2
√
SNR1 · INR1

)

+ log

(
1 +

SNR2

1 + INR1

+ INR2 + 2
√

SNR2 · INR2

)

+ p1 log




(1 + INR1)
(

1 + SNR1

1+INR2

)

1 + SNR1+2
√
SNR1·INR1

1+INR2
+ INR1




+ p2 log




(1 + INR2)
(

1 + SNR2

1+INR1

)

1 + SNR2+2
√
SNR2·INR2

1+INR1
+ INR2


− 2 log 3

≥ (2.61)− 2 log 3− 2p1 − 2p2

Finally, we consider (2.17)

(2.17) = log

(
1 +

SNR1

1 + INR2

)
+ log

(
1 +

SNR2

1 + INR1

+ INR2

)

+ log (1 + SNR1 + INR1) + p2 log




(1 + INR2)
(

1 + SNR2

1+INR1

)

1 + SNR2

1+INR1
+ INR2




≥ log

(
1 +

SNR1

1 + INR2

)
+ log

(
1 +

SNR2 + 2
√
SNR2 · INR2

1 + INR1

+ INR2

)
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+ log
(

1 + SNR1 + INR1 + 2
√

SNR1 · INR1

)

+ p2 log




(1 + INR2)
(

1 + SNR2

1+INR1

)

1 + SNR2

1+INR1
+ INR2


− 2 log 3

≥ log

(
1 +

SNR1

1 + INR2

)
+ log

(
1 +

SNR2 + 2
√
SNR2 · INR2

1 + INR1

+ INR2

)

+ log
(

1 + SNR1 + INR1 + 2
√

SNR1 · INR1

)

+ p2 log




(1 + INR2)
(

1 + SNR2

1+INR1

)

1 + SNR2+2
√
SNR2·INR2

1+INR1
+ INR2


− 2 log 3

≥ (2.62)− 2 log 3− 1− 2p2

In order to bound δ2, we note that it cannot be larger than the maximum of the gaps found

above, after normalization as done with bounding δ1. Hence, we find

δ2 < log 3 + p1 + p2 bits.

A.6.3 Comparison with Suh-Tse outer bound

In this subsection, we compare our inner bound for the case p1 = p2 = 1 with the perfect

feedback outer bound of [ST11]. Looking at the region (2.13)–(2.17), we see that if we set

p1 = p2 = 1, then the bounds (2.16) and (2.17) become redundant, and the region reduces

to the outer bound region of [ST11], with the following differences:

• The outer bounds in [ST11] are parameterized by the parameter ρ, which captures the

correlation between the symbols of two users. In the region (2.13)–(2.17), supremum

values over all possible values of ρ is given.

• The bounds in (2.13)–(2.17) terms 2ρ
√
SNRi · INRi that arise from beamforming gain,

which appear in the outer bounds of [ST11].
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It is easy to see that the first item does not result in a rate penalty, while the second one

gives a penalty of log 3 since

(2.13) = log (1 + SNR1 + INR1)

≥ log
(

1 + SNR1 + INR1 + 2
√
SNR1 · INR1

)
− log 3

Hence, the region C̄(1, 1) is within at most log 3 bits of the outer bound region of [ST11].

From the results of this section, we also know that our scheme achieves the region C̄(1, 1)−δ1.

Evaluating δ1 for p1 = p2 = 1, we see that the proposed scheme achieves within 3 + 3 log 3 ≈
7.75 bits of the Suh-Tse outer bound region.

A.7 Proofs of Corollaries 2.1 and 2.3

In this section, we prove that when the feedback probabilities are sufficiently high, perfect

feedback sum-capacity can be achieved (approximately for Gaussian case, exactly for linear

deterministic case). The precise statements for the two models are given in Corollaries 2.1

and 2.3.

A.7.1 Proof of Corollary 2.1

We will show that when feedback is perfect, the bounds on the sum rate that involve the

feedback probabilities become strictly redundant. That is, setting p1 = p2 = p, we will prove

that the bounds (2.9), (2.5) + (2.6), (2.5)+(2.11)
2

, (2.6)+(2.10)
2

, and (2.10)+(2.11)
3

are all strictly

larger than the perfect feedback bounds (2.7)–(2.8) when p = 1 and n12, n21 > 0. Then the

result follows by noting that all such bounds are continuous and monotonically increasing

functions of p, and hence there must exist a p∗ < 1 such that whenever p = p∗, perfect

feedback sum-rate bounds (2.7)–(2.8) are exactly matched by these bounds.

We first prove a claim that will be used in the main proof.

Claim A.9. For n21, n12 > 0,

(2.7) < n12 + n21 + (n11 − n21)+ + (n22 − n12)+
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(2.8) < n12 + n21 + (n22 − n12)+ + (n11 − n21)+

Proof. By symmetry, we only prove the first statement.

n12 + n21 + (n11 − n21)+ + (n22 − n12)+

= n12 + max (n11, n21) + (n22 − n12)+

= max (n12 + n11, n12 + n21) + (n22 − n12)+

> max (n11, n12) + (n22 − n12)+ ≥ min {(2.7), (2.8)}

where the strict inequality follows by the fact that n21, n12 > 0.

Next, we consider the bound (2.9).

(2.9) = max
{
n12, (n11 − n21)+}+ max

{
n21, (n22 − n12)+}

+ min
{
n12, (n11 − n21)+}+ min

{
n21, (n22 − n12)+}

= n12 + n21 + (n11 − n21)+ + (n22 − n12)+

> min {(2.7), (2.8)}

where the last line follows by Claim A.9. Hence, the bound (2.9) becomes strictly redundant.

Next, consider

(2.10) + (2.11) = max (n11, n12) + max (n22, n21) + (n11 − n21)+ + (n22 − n12)+

+ max
{
n12, (n11 − n21)+}+ max

{
n21, (n22 − n12)+}

+ min
{
n12, (n11 − n21)+}+ min

{
n21, (n22 − n12)+}

= max (n11, n12) + max (n22, n21)

+ 2 (n11 − n21)+ + 2 (n22 − n12)+ n12 + n21

≥ 2 min
{

max (n11, n12) + (n22 − n12)+ ,max (n22, n21) + (n11 − n21)+}

+ (n11 − n21)+ + (n22 − n12)+ n12 + n21
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> 3 ·min {(2.7), (2.8)}

where the last line follows by Claim A.9.

Next, we consider the sum of individual rate bounds. Since these bounds consist of the

minimum of two terms, we consider each case separately. In what follows, (2.5)R denotes the

term on the right-hand side of the minimization in (2.5), while (2.5)L denotes the term on

the left-hand side ((2.6)R and (2.6)L are also defined similarly). By symmetry, it is sufficient

to prove that (2.5)R + (2.6)R and (2.5)L + (2.6)R are strictly redundant for p1 = p2 = 1. We

show this as follows.

(2.5)R + (2.6)R = n11 + n22 + (n21 − n11)+ + (n12 − n22)+

= max (n11, n21) + max (n22, n12)

= n12 + n21 + (n11 − n21)+ + (n22 − n12)+ > min {(2.7), (2.8)}

by Claim A.9, and

(2.5)L + (2.6)R = max (n11, n12) + n22 + (n12 − n22)+

= max (n11, n12) + max (n22, n12)

> max (n11, n12) + (n22 − n12)+ (2.7)

since n12 > 0.

Finally, we consider the bounds (2.10) + (2.6), and (2.11) + (2.5). By symmetry, it is

sufficient to show the redundancy of (2.10)+(2.6)R and (2.10)+(2.6)L. The former is shown

by

(2.10) + (2.6)R = max (n11, n12) + (n11 − n21)+ + max
{
n21, (n22 − n12)+}

+ min
{
n21, (n22 − n12)+}+ n22 + (n12 − n22)+

= max (n11, n12) + (n11 − n21)+ + n21 + (n22 − n12)+ + max (n22, n12)

= max (n11, n12) + + (n22 − n12)+ + n21 + n12 + (n11 − n21)+ (n22 − n12)+
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≥ (2.7) + n21 + n12 + (n11 − n21)+ (n22 − n12)+

> 2 · (2.7)

where the last line follows by Claim A.9, and

(2.10) + (2.6)L = max (n11, n12) + (n11 − n21)+ + max
{
n21, (n22 − n12)+}

+ min
{
n21, (n22 − n12)+}+ max {n22, n21}

= max (n11, n12) + (n11 − n21)+ + n21 + (n22 − n12)+ + max (n22, n21)

> max (n11, n12) + (n11 − n21)+ + max (n22, n21) + (n22 − n12)+

≥ 2 min
{

max (n11, n12) + (n22 − n12)+ ,max (n22, n21) + (n11 − n21)+}

= 2 ·min {(2.7), (2.8)}

where the strict inequality follows by the fact that n21 > 0.

A.7.2 Proof of Corollary 2.3

Similar to the proof of Corollary 2.1, we will show that when feedback is perfect, the bounds

on the sum rate that involve the feedback probabilities become redundant for the set C̄(p1, p2).

Since the capacity region is within a constant gap of the region C̄(p1, p2), for all channel

parameters, the result will follow.

Specifically, setting p1 = p2 = p, we will show that when p = 1, INR1, INR2 > 0, the

bounds (2.16), min
{

(2.13)(1,2), (2.14)(1,2)

}
+ min

{
(2.13)(2,1), (2.14)(2,1)

}
,

(2.13)(1,2)+(2.17)(2,1)

2
,

(2.13)(2,1)+(2.17)(1,2)

2
, and

(2.17)(1,2)+(2.17)(2,1)

3
are all strictly larger than the perfect feedback bound

(2.15), where the subscript (a, b) denotes the evaluation of the relevant bound with (i, j) =

(a, b).

We first prove a claim that will be useful in the proof of the corollary.

Claim A.10. For INR1, INR2 > 0,

min
(i,j)=(1,2),(2,1)

(2.15) < log (1 + INR1) + log (1 + INR2)

198



+ log

(
1 +

SNR1

1 + INR2

)
+ log

(
1 +

SNR2

1 + INR1

)

Proof.

log (1 + INR1) + log (1 + INR2) + log

(
1 +

SNR1

1 + INR2

)
+ log

(
1 +

SNR2

1 + INR1

)

= log

(
1 +

SNR2

1 + INR1

)
+ log (1 + INR1 + INR2 + SNR1 + INR1INR2 + INR1SNR1)

> log (1 + SNR1 + INR1) + log

(
1 +

SNR2

1 + INR1

)

≥ min
(i,j)=(1,2),(2,1)

(2.15)

Next, we show that under the condition INR1, INR2 > 0 and p = 1, all of the mentioned

bounds are strictly redundant. We start with (2.16):

(2.16) = log (1 + INR1) + log (1 + INR2)

+ log

(
1 +

SNR1

1 + INR2

)
+ log

(
1 +

SNR2

1 + INR1

)

> min
(i,j)=(1,2),(2,1)

(2.15)

by Claim A.10. Next,

(2.17)(1,2) + (2.17)(2,1) = log (1 + SNR1 + INR1) + log (1 + SNR2 + INR2)

+ 2 log

(
1 +

SNR1

1 + INR2

)
+ 2 log

(
1 +

SNR2

1 + INR1

)

+ log (1 + INR1) + log (1 + INR2)

= (2.15)(1,2) + (2.15)(2,1) + log (1 + INRi) + log (1 + INRj)

+ log

(
1 +

SNRi
1 + INRj

)
+ log

(
1 +

SNRj
1 + INRi

)

> 2 · (2.15)(1,2) + (2.15)(2,1)

≥ 3 · min
(i,j)=(1,2),(2,1)

(2.15)
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by Claim A.10. Next, we consider the bounds (2.14)(1,2) + (2.14)(2,1), (2.13)(1,2) + (2.14)(2,1),

and (2.14)(1,2)+(2.13)(2,1). By symmetry, it is sufficient to show the redundancy of the former

two.

(2.14)(1,2) + (2.14)(2,1) = log (1 + INR1) + log (1 + INR2)

+ log

(
1 +

SNR1

1 + INR2

)
+ log

(
1 +

SNR2

1 + INR1

)

> min
(i,j)=(1,2),(2,1)

(2.15)

by Claim A.10, and

(2.13)(1,2) + (2.14)(2,1) = log (1 + SNR1 + INR1) + log (1 + SNR2 + INR1)

> log (1 + SNR1 + INR1) + log

(
1 +

SNR2

1 + INR1

)

≥ min
(i,j)=(1,2),(2,1)

(2.15)

since INR1, INR2 > 0. Finally, we show the redundancy of
(2.13)(1,2)+(2.17)(2,1)

2
and

(2.14)(1,2)+(2.17)(2,1)

2
.

Then

(2.13)(1,2) + (2.17)(2,1) = log (1 + SNR1 + INR1) + log (1 + SNR2 + INR2)

+ log

(
1 +

SNR2

1 + INR1

)
+ log (1 + INR1) + log

(
1 +

SNR1

1 + INR2

)

> log (1 + SNR1 + INR1) + log (1 + SNR2 + INR2)

+ log

(
1 +

SNR2

1 + INR1

)
+ log

(
1 +

SNR1

1 + INR2

)

= (2.15)(1,2) + (2.15)(2,1)

≥ min
(i,j)=(1,2),(2,1)

(2.15)

and

(2.14)(1,2) + (2.17)(2,1) = log (1 + INR2) + log (1 + SNR2 + INR2)

+ log

(
1 +

SNR2

1 + INR1

)
+ log (1 + INR1) + 2 log

(
1 +

SNR1

1 + INR2

)

> (2.15)(2,1) + log (1 + INR2) + log (1 + INR1)
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+ log

(
1 +

SNR2

1 + INR1

)
+ log

(
1 +

SNR1

1 + INR2

)

> 2 · min
(i,j)=(1,2),(2,1)

(2.15)
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APPENDIX B

Proofs for Chapter 3

B.1 Proof of Theorem 3.1

Assume the M streams are decoded in the order (1, . . . ,M) for both uplink and downlink,

and denote the rate achieved on the mth uplink (downlink) stream by R̄
(m)
n

(
R̄

(m)
n

)
, with

∑M
m=1 R̄

(m)
n = R̄n and

∑M
m=1 R

(m)
n = Rn. Note that these rates are all random variables due

to their dependence on Hn, Φ and Φ̄, but in this proof we will suppress this dependence for

brevity.

Define pn := P (k ∈ Sm) and p̄n := P
(
k ∈ S̄m

)
for an arbitrary user 1 ≤ k ≤ n and

arbitrary 1 ≤ m ≤M . Note that pn, p̄n → 0 as n→∞.

Define δ′n = pn
c

for a large constant c > 0, define qn := pn− δ′n and q̄n := p̄n− δ̄′n, and the

events

F̄m :=
{∣∣S̄m

∣∣ ≥ nq̄n
}

Ḡm :=

{
max
k∈S̄m

∣∣φ̄∗mh̄k
∣∣2 > εn

}

Fm := {|Sm| ≥ nqn} Gm :=

{
max
k∈Sm

|φ∗mhk|2 > εn

}

Let us choose εn = O
(

1
logn

)
. Then

P (η̄ + η > δ)
(a)

≤ P
(
η̄ >

δ

2

)
+ P

(
η >

δ

2

)

(b)

≤
M∑

m=1

P
(

1

M
R̄MAC-M
n − R̄(m)

n >
δ

2M

)

+
M∑

m=1

P
(

1

M
R̄BC
n −R(m)

n >
δ

2M

)
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(c)
= MP

(
1

M
R̄MAC-M
n − R̄(m)

n >
δ

2M

)

+MP
(

1

M
R̄BC
n −R(m)

n >
δ

2M

)

(d)

≤ MP
(

1

M
R̄MAC-M
n − R̄(m)

n >
δ

2M

∣∣∣∣ F̄m, Ḡm
)

(B.1)

+MP
(
Ḡcm
∣∣ F̄m

)
+MP

(
F̄ cm
)

(B.2)

+MP
(

1

M
RBC
n −R(m)

n >
δ

2M

∣∣∣∣Fm,Gm
)

(B.3)

+MP (Gcm| Fm) +MP (F cm) (B.4)

where (a) and (b) follow by the fact that
∑K

k=1 ak > x ⇒ ∨K
k=1 (ak > x/K) and by union

bound; (c) follows because uniformly random selection of Φ̄ and Φ from the space of uni-

tary matrices induces exchangeable distributions p
(
φ̄1, . . . , φ̄M

)
and p (φ1, . . . , φM) on their

respective columns; and (d) follows by the law of total probability and by upper bounding

probabilities by one. Of the remaining terms, we will focus only on (B.3) and (B.4) here,

to avoid repetition. The uplink counterparts of these terms, given in (B.1) and (B.2), are

bounded in exactly the same way in what follows, except where noted.

First consider (B.3). Note that the conditioning on Gm implies that k∗ /∈ Sr for r 6= m,

where k∗ is the strongest user in Sm, i.e., k∗ = arg maxk∈Sm |φ∗mhk|2. This ensures that the

user that is scheduled for stream m is not already scheduled for another stream, and hence,

using independent Gaussian codebooks and allocating equal power for each downlink stream,

R(m)
n ≥ log

(
1 +

P

M

maxk∈Sm |φ∗mhk|2
1 + (2M − 1)εn

)
, (B.5)

almost surely. Therefore,

P
(

1

M
RDPC
n −R(m)

n >
δ

2M

∣∣∣∣Fm,Gm
)

(a)

≤ P


 log


1 + P

M
max1≤k≤n ‖hk‖2

1 + P
M

maxk∈Sm |φ∗mhk|
2

1+(2M−1)εn


 >

δ

2M

∣∣∣∣∣∣
Fm,Gm




(b)

≤ P

(
max1≤k≤n ‖hk‖2

maxk∈Sm |φ∗mhk|2
>

1 + δ
2M

1 + (2M − 1)εn

∣∣∣∣∣Fm,Gm
)
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(c)

≤ P
(

max1≤k≤n ‖hk‖2

maxk∈Sm ‖hk‖2
+

maxk∈Sm ‖hk‖2

maxk∈Sm |φ∗mhk|2

> 2

√
1 + δ

2M

1 + (2M − 1)εn

∣∣∣∣∣∣
Fm,Gm




(d)

≤ P
(

max1≤k≤n ‖hk‖2

maxk∈Sm ‖hk‖2
> 1 + γ

∣∣∣∣Fm,Gm
)

(B.6)

+ P
(

maxk∈Sm ‖hk‖2

maxk∈Sm |φ∗mhk|2
> 1 + γ

∣∣∣∣Fm,Gm
)

(B.7)

where (a) follows by using Lemma 3 in [SH07] for downlink and Lemma B.1 for uplink

(replace P
M

with P̄ for uplink); (b) follows by the inequality ex ≥ 1 + x and by the fact that

x
y
≥ 1+x

1+y
for x ≥ y; (c) follows by the fact ab ≥ x ⇒ a + b ≥ 2

√
x (by AM-GM inequality);

(d) follows by the fact that
∑K

k=1 ak > x ⇒ ∨K
k=1 (ak > x/K), by the union bound, and by

defining γ > 0 such that

(1 + (2M − 1)εn) (1 + γ)2 < 1 +
δ

2M

for sufficiently large n.

Next, we bound the terms (B.6) and (B.7) separately. Consider (B.6) first.

(B.6) ≤ P
(

max1≤k≤n ‖hk‖2

maxk∈Sm ‖hk‖2
> 1 + γ

∣∣∣∣Fm,Gm
)

(a)
= P

(
maxk∈Scm ‖hk‖2

maxk∈Sm ‖hk‖2
> 1 + γ

∣∣∣∣Fm,Gm
)

≤ P
(

maxk∈Scm ‖hk‖2

maxk∈Sm |φ∗mhk|2
> 1 + γ

∣∣∣∣Fm,Gm
)

(b)

≤ 1

1− ε′n
P
(

maxk∈Scm ‖hk‖2

maxk∈Sm |φ∗mhk|2
> 1 + γ

∣∣∣∣ |Sm| > nqn

)

=
1

1− ε′n

n∑

s=dnqne

∑

As⊆[n]:|As|=s

P (Sm = As| |Sm| ≥ nqn)

· P
(

maxk∈Acs ‖hk‖2

maxk∈As |φ∗mhk|2
> 1 + γ

∣∣∣∣ |As| ≥ nqn, Sm = As
)

(c)
=

1

1− ε′n

n∑

s=dnqne

∑

As⊆[n]:|As|=s

P (Sm = As| |Sm| ≥ nqn)

· P
(

maxk∈Acs ‖hk‖2

maxk∈As |φ∗mhk|2
> 1 + γ

∣∣∣∣ |As| ≥ nqn, Sm = As,
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{
∃r 6= m : |φ∗rhk∗|2 > εn ∨ ∃j ∈ T̄ : |hk∗j|2 > εn

})

(d)
=

1

1− ε′n

n∑

s=dnqne

P ( |Sm| = s| |Sm| > nqn)

· P
(

maxk∈Acs ‖hk‖2

maxk∈As |φ∗mhk|2
> 1 + γ

∣∣∣∣ |As| = s,

{
∃r 6= m : |φ∗rhk∗|2 > εn ∨ ∃j ∈ T̄ : |hk∗j|2 > εn

})

(e)

≤ 1

1− ε′n
P

(
maxk∈Ãcs ‖hk‖

2

maxk∈Ãs |φ∗mhk|
2 > 1 + γ

∣∣∣∣∣
{
∃r 6= m : |φ∗rhk∗|2 > εn ∨ ∃j ∈ T̄ : |hk∗j|2 > εn

}
)

(f)

≤ 1

(1− ε′n)2P

(
maxk∈Ãc ‖hk‖2

maxk∈Ã |φ∗mhk|2
> 1 + γ

)

(g)

≤ 1

(1− ε′n)2

[
P
(

max
k∈Ã
|φ∗mhk|2 < 2 log

(
nqn

log (nqn)

))

+ P
(

max
k∈Ãc
‖hk‖2 > 2 log (nqn) + (2M + 2) log log (nqn)

)

+ P
(

2 log (nqn) + (2M + 2) log log (nqn)

2 log (nqn)− 2 log log (nqn)
> 1 + γ

)]

(h)

≤ 1

(1− ε′n)2

[
1

nqn
+O

(
1

log (nqn)

)
+ 0

]

(i)
= O

(
1

log n

)

where

• (a) follows by the fact that the ratio can be larger than (1 + γ) only if the maximum

in the numerator occurs for a k ∈ Scm (otherwise the ratio is 1);

• (b) is by the fact that for events A,B; P (A|B) ≤ P(A)
P(B)

and by Lemma B.7, where

ε′n → 0;

• (c) is because Sm = As implies the newly conditioned event, which is that for any user

outside the set As, there must exist an r such that |φ∗rhk∗|2 > εn or an uplink user

whose interference strength is larger than εn, by the construction of the set Sm, where
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we have defined k∗ := arg maxk∈Acs ‖hk‖2 (for the uplink case the second part of the

event is removed);

• (d) follows by the fact that the probability on the right-hand side does not depend on

As, as long as |As| is fixed, owing to the fact that the user channel vectors h̄k are i.i.d.;

• (e) follows because the given probability is a monotonically decreasing function of s,

and Ã is any arbitrary subset of users such that
∣∣∣Ã
∣∣∣ = dnqne;

• (f) is by Lemma B.7;

• (g) is by the fact that for events A,B,C; P (A) ≤ P (Bc) + P (Cc) + P (A|B,C) by

union bound and law of total probability;

• (h) is because of Lemmas B.5 and B.6, and by the fact that the last probability is that

of the elements of a deterministic sequence converging to 1 being larger than 1 + γ for

sufficiently large n;

• (i) is because we chose εn = O
(

1
logn

)
, and thus q̄n = O

(
1

logM−1 n

)
by Lemma B.2 for

the uplink and qn = O
(

1
log2M−1 n

)
by Lemma B.3 for the downlink.

Next, we move on to analyze the term (B.7).

(B.7) ≤ P
(

maxk∈Sm ‖hk‖2

maxk∈Sm |φ∗mhk|2
> 1 + γ

∣∣∣∣Fm,Gm
)

(a)
= P

(
maxk∈Sm

∑M
r=1 |φ∗rhk|

2

maxk∈Sm |φ∗mhk|2
> 1 + γ

∣∣∣∣∣Fm,Gm
)

(b)

≤ P

(
maxk∈Sm |φ∗mhk|2 +Mεn

maxk∈Sm |φ∗mhk|2
> 1 + γ

∣∣∣∣∣Fm,Gm
)

= P
(

max
k∈Sm

|φ∗mhk|2 <
Mεn
γ

∣∣∣∣Fm,Gm
)

(c)

≤ 1

1− ε′n
P
(

max
k∈Sm

|φ∗mhk|2 <
Mεn
γ

∣∣∣∣ |Sm| ≥ nqn

)

(d)

≤ 1

1− ε′n

(
1− exp

{
−Mεn

2γ

})nqn
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(e)
= O

(
1

(log n)n/ logn

)

where

• (a) follows by the fact that Φ is unitary and thus ‖Φhk‖ = ‖hk‖;

• (b) is by construction of the set Sm;

• (c) is by Lemma B.7;

• (d) is by Lemma B.4;

• (e) is because we chose εn = O
(

1
logn

)
, thus qn = O

(
1

log2M−1 n

)
by Lemma B.3, and

q̄n = O
(

1
logM−1 n

)
by Lemma B.2.

Therefore (B.3) goes to zero as n → ∞. Next, we consider the terms in (B.4). Note that

the first term goes to zero since

P (Gc|F) =
(

1− exp
{
−εn

2

})nqn

= O

(
1

(log n)n/ logn

)

by Lemma B.4 and by the choice of εn. The second term in (B.4) goes to zero by weak law

of large numbers for triangular arrays [Dur10], applied to the binomial random variable |Sm|
with mean npn.

Since all terms in (B.1), (B.2), (B.3), and (B.4) go to zero, the result follows.

B.2 Proof of Theorem 3.2

Let us choose εn = ε > 0, i.e., a constant. Then, as in the proof of Theorem 3.1,

P
(
Rn + R̄n < 2Mβ

)
≤

M∑

m=1

P
(
R(m)
n < β

)

+ P
(
R̄(m)
n < β

)
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by the fact that
∑K

k=1 ak < x ⇒ ∨K
k=1 (ak < x/K) and by union bound. We only consider

the first term, associated with downlink. The uplink term is bounded the same way, except

where noted. By law of total probability, and by upper bounding probabilities by one,

P
(
R(m)
n < β

)
≤ P (F cm) + P (Gcm|Fm)

+ P
(
R(m)
n < β

∣∣Fm,Gm
)

(B.8)

Since εn is a constant, P (F cm) goes to zero exponentially by Hoeffding’s inequality. P (Gcm|Fm)

is upper bounded by

P (Gcm|Fm) ≤
(

1− exp
{
− ε

2

})nqn

= a
n1+2 log a

a ,

by Lemmas B.4 and B.3, where a = (1− exp {−ε/2}). Note that the last term goes to zero

exponentially if 1 + 2 log a > 0, which is satisfied for sufficiently large ε > 0. We consider

the first term. Conditioned on Gm, a different user is scheduled for each stream, hence

P
(
R(m)
n < β

∣∣Fm,Gm
)

≤ P

(
log

(
maxk∈Sm |φ∗mhk|2
1 + (2M − 1)ε

)
< β

∣∣∣∣∣Fm,Gm
)

(a)
=

1

1− ε′n
P

(
log

(
maxk∈Sm |φ∗mhk|2
1 + (2M − 1)ε

)
< β

∣∣∣∣∣Fm
)

≤ 1

1− ε′n
P
(

max
k∈Sm

|φ∗mhk|2 < βe (1 + 2ε log n)

∣∣∣∣Fm
)

(b)

≤ 1

1− ε′n

(
1− exp

{
−βe (1 + 2ε log n)

2

})nqn

(c)
= Θ

(
e−n

γ)

where (a) follows by Lemma B.7, (b) follows by Lemma B.4, and (c) follows, for some

0 < γ < 1, by Lemma B.3 with the choice εn = ε, and by letting M = α log n for sufficiently

small α > 0. Since all terms in (B.8) go to zero exponentially as n→∞,

∑

n

P
(
Rn + R̄n < 2M

)
<∞

and thus by Borel-Cantelli Lemma [Dur10], the result follows.
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B.3 Proof of (3.1)

Let us denote message of the kth uplink user as W̄k, the message intended for the kth

downlink user by Wk, and for any set S, define WS = {Wk : k ∈ S}. We also define v
(m)
t =

y
(m)
t − 1h∗mxt, where 1 is the vector of ones, i.e., v

(m)
t is the vector of interference signals at

the downlink users of cluster m at time t. Set vt =
[
v

(1)
t , . . . , v

(M)
t

]∗
.

We consider a block length of N , and as explained in Section 3.5, assume z
(m)
t ∼

CN (0,11T ), where 1 is the all ones vector, for m ∈ [M ]. We also assume that the down-

link users within each cluster cooperate, since this cannot reduce capacity. Then, by Fano’s

inequality,

N
(
Rn + R̄n

)
≤ I

(
W[n]; y

N
)

+ I
(
W̄[n]; ȳ

N
)

≤ I
(
W[n]; y

N
)

+ I
(
W̄[n]; ȳ

N , yN ,W[n]

)

(a)
= I

(
W[n]; y

N
)

+ I
(
W̄[n]; ȳ

N , yN
∣∣W[n]

)

= h
(
yN
)
− h

(
yN
∣∣W[n]

)
+ h

(
ȳN , yN

∣∣W[n]

)

− h
(
ȳN , yN

∣∣W[n], W̄[n]

)

= h
(
yN
)

+ h
(
ȳN
∣∣W[n], y

N
)
− h

(
ȳN , yN

∣∣W[n], W̄[n]

)

=
N∑

t=1

h
(
yt|yt−1

)
+ h

(
ȳt
∣∣W[n], y

N , ȳt−1
)

− h
(
ȳt, yt

∣∣W[n], W̄[n], ȳ
t−1, yt−1

)

(b)
=

N∑

t=1

h
(
yt|yt−1

)
+ h

(
ȳt
∣∣W[n], y

N , ȳt−1, xt
)

− h
(
ȳt, yt

∣∣W[n], W̄[n], ȳ
t−1, yt−1, x̄t, xt

)

(c)

≤
N∑

t=1

h (yt) + h (ȳt |yt, xt )− h (z̄t, zt)

(d)
=

N∑

t=1

h (yt) + h (ȳt |vt, xt )− h (z̄t)− h (zt)

≤
N∑

t=1

h (yt) + h (ȳt |vt )− h (z̄t)− h (zt)
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(e)

≤
N∑

t=1

(
M∑

m=1

h
(
y

(m)
t

))
+ h (ȳt |vt )− h (z̄t)

−
(

M∑

m=1

h
(
z

(m)
t

))

where (a) follows by independence of messages; (b) follows by the fact that xt is a determin-

istic function of
(
W[n], ȳ

t−1
)

and x̄t is a deterministic function of W̄[n]; (c) follows because

conditioning reduces entropy and by subtracting xt and x̄t from yt and ȳt; (d) is because

vt = yt − 1H∗x and by independence of uplink and downlink noise; (e) is by the fact that

conditioning reduces entropy, and that noise processes at different clusters are independent.

Since {hm} are orthogonal,
{
ȳ

(m)
t

}
can be uniquely expressed as ȳt =

∑M
m=1

h∗m
‖hm‖ ȳ

(m)
t , i.e.,

this transformation is a bijection. Let us define the matrix H̃ :=
[

h1

‖h1‖ . . .
hM
‖hM‖

]
. Then

h (ȳt) = h
(
H̃∗ȳt

)
= h

(
ȳ

(1)
t , . . . , ȳ

(M)
t

)
+ log

∣∣∣H̃
∣∣∣

= h
(
ȳ

(1)
t , . . . , ȳ

(M)
t

)

since H̃ is unitary. Similarly, z̄t =
∑M

m=1 hmz̄
(m)
t , and

{
z̄

(m)
t

}
are still distributed i.i.d.

CN (0, 1). Hence, also using the fact that conditioning reduces entropy,

N
(
Rn + R̄n

)
≤

N∑

t=1

M∑

m=1

h
(
y

(m)
t

)
+ h

(
ȳ

(m)
t

∣∣∣v(m)
t

)

− h
(
z̄

(m)
t

)
− h

(
z

(m)
t

)

Let km,t denote the number of uplink users scheduled in clusterm at time t, with
∑M

m=1 km,t ≤
M , for all t. Note that given any power allocation, there is a covariance constraint on[
ȳ

(m)
t v

(m)
t

]∗
given by

K = I + km,tP̄


 hm

g



[
h∗m g∗

]
.

Hence, h(ȳt|vt) is maximized when (ȳt, vt) ∼ CN (0, K), with

h(ȳt|vt) = log 2πe
∣∣Kȳ|v

∣∣ ,
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where Kȳ|v is the conditional covariance matrix of ȳ
(m)
t given v

(m)
t . Therefore, evaluating

the differential entropy terms with Gaussian input distributions1, and using the fact that

z
(m)
t ∼ CN (0,11T ), we find (3.1).

B.4 Proof of Corollary 3.1

Using Theorem 3.3 and (3.2), η + η̄ can be lower bounded by

η + η̄ > M log

(
1 + SNRβ

1 + SNRβ

1+SNRα

)

−M log

(
1 +

SNRα

1 + 1
M
SNR

)
−M log 3

If we use the notation f (SNR)
.
= g (SNR) to mean that limSNR→∞

f(SNR)
g(SNR)

= 1, then it is easy

to see that

log

(
1 + SNRβ

1 + SNRβ

1+SNRα

)
− log

(
1 +

SNRα

1 + 1
M
SNR

)
− log 3

.
= log SNRα − log SNRα−1

= log SNR

Hence, the result follows.

B.5 Auxiliary Lemmas

Lemma B.1.

R̄MAC-M
n (Hn) ≤M log

(
1 + P max

1≤k≤n
‖h̄k‖2

)

Proof. The capacity of a MIMO MAC with a per-user power constraint P̄ , and an active

1We evaluate h(y
(m)
t ) assuming a joint Gaussian distribution on xt and x̄t with arbitrary correlation,

since xt is a function of both W[n] and ȳt−1.
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user constraint M is given by

R̄MAC-M
n (Hn) = max

A⊆[n]:|A|=M
log
∣∣IM + P̄ H̄AH̄

∗
A
∣∣

= max
A⊆[n]:|A|=M

log

∣∣∣∣∣IM + P̄
∑

k∈A

h̄kh̄
∗
k

∣∣∣∣∣

Using the inequality |A| ≤
(

tr(A)
M

)M
(which is a direct consequence of AM-GM inequality

applied to the eigenvalues of A),

R̄MAC-M
n (Hn)

= max
A⊆[n]:|A|=M

M log

(
tr
(
IM + P̄

∑
k∈A h̄kh̄

∗
k

)

M

)

= max
A⊆[n]:|A|=M

M log

(
1 +

P̄
∑

k∈A tr
(
h̄kh̄

∗
k

)

M

)

= max
A⊆[n]:|A|=M

M log

(
1 + P̄

∑
k∈A ‖h̄k‖2

M

)

= M log

(
1 + P̄ max

A⊆[n]:|A|=M

∑
k∈A ‖h̄k‖2

M

)

≤M log

(
1 + P̄ max

1≤k≤n
‖h̄k‖2

)

Lemma B.2. For an arbitrary uplink user 1 ≤ k ≤ n, and arbitrary 1 ≤ m ≤M ,

P
(
k ∈ S̄m

)
= (1− exp {−εn/2})M−1

Proof.

P
(
k ∈ S̄m

)
= P

(∣∣φ̄∗rh̄k
∣∣2 ≤ εn, ∀r 6= m

)

(a)
=
[
P
(∣∣φ̄∗1h̄k

∣∣2 ≤ εn

)]M−1

(b)
= (1− exp {−εn/2})M−1

where (a) follows by the fact that the components of Φ̄h̄k are i.i.d. distributed because Φ̄ is

unitary; and (b) follows by the fact that
∣∣φ̄∗1h̄k

∣∣2 is χ2(2) distributed.
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Lemma B.3. For an arbitrary downlink user 1 ≤ k ≤ n, and arbitrary 1 ≤ m ≤M ,

P (k ∈ Sm) = (1− exp {−εn/2})2M−1

Proof.

P (k ∈ Sm)

= P
(
|φ∗rhk|2 ≤ εn, ∀r 6= m; |hkj|2 ≤ εn, ∀j ∈ T̄

)

=
∑

A⊆[n]:|A|=M

P
(
T̄ = A

)

· P
(
|φ∗rhk|2 ≤ εn ∀r 6= m; |hkj|2 ≤ εn, ∀j ∈ A

∣∣ T̄ = A
)

(a)
=

∑

A⊆[n]:|A|=M

P
(
T̄ = A

)

· P
(
|φ∗rhk|2 ≤ εn ∀r 6= m; |hkj|2 ≤ εn, ∀j ∈ A

)

= P
(
|φ∗rhk|2 ≤ εn ∀r 6= m; |hkj|2 ≤ εn, ∀j ∈ A

)

(b)
=
[
P
(∣∣φ̄∗rh̄k

∣∣2 ≤ εn

)]M−1 [
P
(
|hk1|2 ≤ ε

)]M

(c)
= (1− exp {−εn/2})2M−1

where (a) follows by the fact that T̄ is a function of
{
φ̄∗mh̄k

}
m,k

, and all links are independent,

and thus the event
{
T̄ = A

}
is independent, (defining Ã to be an arbitrary subset of uplink

users s.t.
∣∣∣Ã
∣∣∣ = M); (b) follows because the components of Φhk are i.i.d. distributed

and all links are independent; and (c) follows because both |φ∗1hk|2 and |hk1|2 are χ2(2)

distributed.

Lemma B.4.

P
(

max
k∈Sm

|φ∗mhk|2 < x

∣∣∣∣ |Sm| ≥ nqn

)
≤
(
1− e−x2

)nqn

Proof.

P
(

max
k∈Sm

|φ∗mhk|2 < x

∣∣∣∣ |Sm| ≥ nqn

)
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=
n∑

s=dn(p̄−δ)e

∑

As⊆[n]:
|As|=s

P (Sm = As| |Sm| ≥ nqn)

· P
(

max
k∈As
|φ∗mhk|2 < x

∣∣∣∣ |As| ≥ nqn, Sm = As
)

(a)
=

n∑

s=dnqne

P (|Sm| = s ||Sm| ≥ nqn )

· P
(

max
k∈As
|φ∗mhk|2 < x

∣∣∣∣ |As| = s

)

(b)

≤ P
(

max
k∈As
|φ∗mhk|2 < x

∣∣∣∣ |As| = nqn

)

(c)
=
(
1− e−x2

)nqn

where (a) follows by the fact that the probability on the right-hand side does not depend on

As as long as |As| is fixed, owing to the fact that the user channel vectors hk are i.i.d., and

since Φhk ∼ CN (0, I); (b) follows because the given probability is a monotonically decreasing

function of s; and (c) is because
{
|φ∗mhk|2

}
are i.i.d. χ2(2) distributed;

Lemma B.5. Let X1, . . . , XN be i.i.d. χ2(2) distributed random variables. Then

P
(

max
1≤i≤N

Xi < 2 logN − 2 log logN

)
≤ 1

N

Proof.

P
(

max
1≤i≤N

Xi < 2 logN − log logN

)

= [P (X1 < 2 logN − log logN)]N

= (1− exp {− logN + log logN})N =

(
1− logN

N

)N

= exp

{
N log

(
1− logN

N

)}

= exp

{
N

(
− logN

N
−O

(
log2N

N2

))}
≤ 1

N
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Lemma B.6. Let X1, . . . , XN be i.i.d. χ2(2M) distributed random variables. Then for N

sufficiently large,

P
(

max
1≤i≤N

Xi > 2 logN + (2M + 2) log logN

)

= O

(
1

logN

)

Proof. Chernoff bound for a χ2(2M) random variable Z is given by

P (Z > x) ≤
( x

2M
e1− x

2M

)M
,

for x > 2M . Then, assuming N is large enough,

P
(

max
1≤i≤N

Xi > 2 logN + (2M + 2) log logN

)

= 1− P
(

max
1≤i≤N

Xi ≤ 2 logN + (2M + 2) log logN

)

= 1− [P (X1 ≤ 2 logN + (2M + 2) log logN)]N

= 1− [1− P (X1 > 2 logN + (2M + 2) log logN)]N

≤ 1−
(

1−
(

2 logN + (2M + 2) log logN

2M

exp

{
1− 2 logN + (2M + 2) log logN

2M

})M)N

= 1−
(

1− (2 logN + (2M + 2) log logN)M eM

(2M)M N logM+1 N

)N

.
= 1− exp

{
−(2 logN + (2M + 2) log logN)M

(2M/e)M logM+1 N

}

(a)

≤
( e

2M

)M (2 logN + (2M + 2) log logN)M

logM+1N

=
( e

2M

)M O
(
logM N

)

logM+1N
= O

(
1

logN

)

where (a) is by the inequality 1− x ≤ e−x.

Lemma B.7. If Nn → ∞ and εn → 0 as n → ∞, then for i.i.d. χ2(2) distributed

Xi, . . . , XNn,

lim
n→∞

P
(

max
1≤k≤Nn

Xk > εn

)
= 1.
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The proof for Lemma B.7 is trivial and omitted here.
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APPENDIX C

Proofs for Chapter 4

C.1 Proof of Theorem 4.2

Proposition C.1. Let Xi, i = 1, . . . , n, be i.i.d. χ2(2P ) random variables. Then

P
(

min
1≤i≤n

Xi > n−
γ

2P ψ(2P )

)
= O

(
e−n

1−γ
)
, for 0 < γ < 1.

Proof. Using the Taylor series for the upper incomplete Gamma function, as x→ 0,

P (Xi > x) = 1− x2P

(2P )!
+O

(
x2P+1

)
.

Therefore,

P
(

min
1≤i≤n

Xi > n−
γ

2P ψ(2P )

)
=
(
P
(
Xi > n−

γ
2P ψ(2P )

))n

=
(
1− n−γ

)n
= O

(
e−n

1−γ
)
.

We will first derive a lower bound on SNRcoopij , defined by

SNRcoopij =
s2
ij1

1 + |uij1(2)|2 σ2
j|i

‖gij‖2

.

Using the fact that |uij1(2)|2 ≤ 1 and σ2
j|i ≤ σ2

j , where σ2
j is the variance of y2,

SNRcoopij ≥ s2
ij1

1 +
σ2
j

‖gij‖2

=
s2
ij1

1 +
1+‖hj‖2
‖gij‖2

. (C.1)
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Next, since s2
ij1 is the larger eigenvalue of the matrix HijH

∗
ij, using the closed form expressions

for the eigenvalues of 2× 2 matrices,

s2
ij1 =

1

2

(
‖hi‖2 + ‖hj‖2 +

√
‖hi‖4 + ‖hj‖4 + 2‖hi‖2‖hj‖2 cos(2Θ)

)

≥ 1

2

(
‖hi‖2 + ‖hj‖2 +

∣∣‖hi‖2 − ‖hj‖2
∣∣) = max

(
‖hi‖2, ‖hj‖2

)
,

where Θ = cos−1 h∗i hj
‖hi‖‖hj‖ is the angle between hi and hj, and the lower bound is obtained

by setting cos (2Θ) = −1. Using this lower bound in (C.1), we get

SNRcoopij ≥ max (‖hi‖2, ‖hj‖2)

1 +
1+‖hj‖2
‖gij‖2

≥ ‖hj‖2

1 +
1+‖hj‖2
‖gij‖2

≥ (‖hj‖2 + 1) ‖gij‖2

1 + ‖hj‖2 + ‖gij‖2
− 1

≥ 1

2
min

(
‖hj‖2, ‖gij‖2

)
− 1.

Therefore, to prove the first claim in Theorem 4.2, it is sufficient to prove that

P
(

min
i∈N

min
(
‖hj∗(i)‖2, ‖gij∗(i)‖2

)
> Mρ

(
1

2
log n− 2 log log n

))

= O
(
e− log2 n+2 logn

)
.

Define Pn = {j : ‖hj‖2 ≥Mρ
(

1
2

log n− 2 log log n
)
}, and Rn(i) = {j ∈ Pn : φij ≥ n

c
4}.

Proposition C.2. P (Rn(i) = ∅ for some i) = O
(
e− log2 n+2 logn

)
.

Therefore, if Rn(i) 6= ∅ for all i,

1 + SNRcoopmin ≥
1

2
min
i∈N

min
(
‖hj∗(i)‖2, ‖gij∗(i)‖2

)

≥ 1

2
min
i∈N

min

(
Mρ

(
1

2
log n− 2 log log n

)
, n

c
4‖ζij†(i)‖2

)

=
1

2
min

(
Mρ

(
1

2
log n− 2 log log n

)
, n

c
4 min
i∈N
‖ζij†(i)‖2

)
,

where j†(i) = arg maxj∈Rn(i) E
[
SNRcoopij

∣∣φij,hj
]
, and thus

P
(
SNRcoopmin <

1

2
Mρ

(
1

2
log n− 2 log log n

)
− 1

∣∣∣∣Rn(i) 6= ∅ ∀i
)

= O
(
e−n

1−γ
)
, (C.2)
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for all 0 < γ < 1, by Proposition C.1, by the fact that ‖ζij‖2 is a χ2(2) random variable, and

that j†(i) is independent of ‖ζij‖2. Then (C.2), together with Proposition C.2 implies the

first claim of the theorem.

It remains to prove Proposition C.2. To achieve this, we will first lower bound the tail

probability P (‖hj‖2 > a). Define êj,k :=
ej,k
‖ej,k‖

=
ej,k√
M

, Ej := [êj,1 . . . êj,P ], and ξj := [ξj,k]k.

Letting Ej = QjΛjQ
∗
j be an eigendecomposition of Ej,

‖hj‖2 = ρ

∥∥∥∥∥
P∑

k=1

ξj,ke(θj,k)

∥∥∥∥∥

2

= Mρ

∥∥∥∥∥
P∑

k=1

ξj,kê(θj,k)

∥∥∥∥∥

2

= Mρ (Ejξj)
∗ (Ejξj) = Mρξ∗j

(
E∗jEj

)
ξj = Mρ

P∑

k=1

λk
(
E∗jEj

) ∣∣(Qjξj)k
∣∣2 ,

where λk
(
E∗jEj

)
is the kth eigenvalue of E∗jEj, and (Qjξj)k is the kth element of Qjξj. Since

∑P
k=1 λk

(
E∗jEj

)
= tr

(
E∗jEj

)
= P , there must exist a k, say k∗, such that λk∗

(
E∗jEj

)
≥ 1.

Hence,

‖hj‖2 = Mρ
P∑

k=1

λk
(
E∗jEj

) ∣∣(Qjξj)k
∣∣2 ≥Mρ

∣∣(Qjξj)k∗
∣∣2 .

Since Ej is independent from ξj, and since the distributions of i.i.d. Gaussian vectors are

invariant under orthogonal transformations,
∣∣(Qjξj)k∗

∣∣2 has the same distribution as ‖ξj,k‖2

for an arbitrary k, i.e., χ2(2) distribution, or equivalently, exponential distribution with mean

1. Therefore, the tail probability of ‖hj‖2 can be lower bounded by P (‖hj‖2 > Mρa) ≥ e−a.

Hence,

P
(
|Pn| ≤ (1− δ)√n

)

= P

(
n∑

j=1

I
(
‖hj‖2 ≥Mρ

(
1

2
log n− 2 log log n

))
≤ (1− δ)√n

)

Using the tail lower bound on ‖hj‖2, we see that each indicator variable is i.i.d. with mean

at least log2 n√
n

. Therefore, using Chernoff bound,

P
(
|Pn| ≤ (1− δ)√n log2 n

)
≤ O

(
e−δ

2√n log2 n
)

219



Next, we consider the probability P
(
Rn(1) = ∅

∣∣|Pn| ≥ (1− δ)√n log2 n
)
. Since the users

are uniformly distributed in a circle of radius R, P (rij ≤ r) = r2

R2 for sufficiently small r > 0,

and consequently P (φij ≥ x) = 1
R2x

− 2
c . Since hj is independent from φ1j,

P
(
Rn(1) = ∅

∣∣|Pn| ≥ (1− δ)√n log2 n
)

=
(
1− P

(
φ1j ≥ n

c
4

))(1−δ)
√
n log2 n

=
(

1− n− 1
2

)(1−δ)
√
n log2 n

= O
(
e−(1−δ) log2 n

)
.

Then, choosing δ = 1
logn

, and by using independence of channels across i’s,

P (Rn(1) 6= ∅ ∀i) =
(

1−O
(
e−(1−δ) log2 n

)
−O

(
e−δ

2√n log2 n
))n

= 1−O
(
e− log2 n+2 logn

)

which concludes our proof of the first claim.

To prove the second claim, we note that

‖hi‖2 = ρ

∥∥∥∥∥
P∑

k=1

ξi,ke(θi,k)

∥∥∥∥∥

2

≤ ρ
P∑

k=1

|ξi,k|2 ‖e(θi,k)‖2 = MρXi,

where Xi ∼ χ2(2P ). The second claim then follows by Proposition C.1.

C.2 Proof of Lemma B.4

Define αQ =
∑

(i,j)∈Q
∑

s:i∈s1j∈s2

∑
k∈K

∑
z∈Z αskz, and consider the following sequence of opti-

mization problems, indexed by n (with a slight abuse of notation):

maximize Un (α) :=
∑

i∈N

Ui (α)−
∑

Q∈Q

exp
{
n
(
αQ − 1

)}
(C.3)

s.t. αskz ≥ 0,
∑

s

αskz ≤ pkqz, αskz = qz
∑

z′

αskz′ , ∀s, k, z. (C.4)

We will denote the optimal value of the optimization (C.3) with OPTn. Further consider the

corresponding sequence of scheduling policies πn, that choose s∗ = arg maxs⊆N 2×{1,2} f̃n(s),

where

f̃n(s) =
∑

(i,j,m)∈s

(
E
[
R

(i)
sK(t)Z(t)

] ∂Ui
∂ri

+
∂Uj
∂βj

)∣∣∣rj=rj(t−1)
βj=βj(t−1)

− n
∑

Q:s12∩Q6=∅

en(α
Q(t)−1), (C.5)

The empirical utility of the policy πn up to time t is denoted by Un(t).
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Proposition C.3. limn→∞OPTn = OPT′.

Proof. We first show that for any ε > 0, OPTn ≥ OPT′− ε for large enough n. Consider the

optimization (4.12), with the condition (4.14) replaced by

αQ ≤ 1 + ∆, ∀Q ∈ Q, (C.6)

and denote the optimal value of the resulting maximization as OPT∆. By continuity of the

objective function, for any ε > 0, there exists δ > 0 such that
∣∣OPT−δ − OPT

∣∣ < ε
2
. For such

δ, choose n large enough so that e−nδ < ε
2|Q| . Similarly, denote the maximal value of (C.3)

subject to (C.6) as OPT∆
n . Then

OPTn ≥ OPT−δn ≥ OPT−δ − ε

2
≥ OPT′ − ε.

Next, we show that for large enough n, OPTn ≤ OPT′ + ε. Choose δ > 0 small enough so

that
∣∣OPTδ − OPT′

∣∣ < ε. Hence

OPT′ + ε ≥ OPTδ ≥ OPTδn.

Therefore it is sufficient to show that OPTδn = OPTn for large enough n. If we choose n large

enough so that

∂Un (α)

∂αQ

∣∣∣
αQ>1+δ

=
∑

i∈N

∂Ui (α)

∂αQ
− nen(αQ−1)

∣∣∣
αQ>1+δ

< 0,

then concavity implies OPTδn = OPTn, since the derivative would have to be monotonically

decreasing with increasing αQ. Such a choice of n is possible since ∂Ui(α)
∂αQ

∣∣∣
αQ=1+δ

< ∞,

similarly by concavity and twice continuous differentiability, which concludes the proof.

Proposition C.4. limn→∞ Un(t) = U(t).

Proof. It is sufficient to show that for a given t, for a sufficiently large n, all the control

actions taken by policies πn and π∗ up to time t are identical. Note that since the sets K,

Z and N are finite, for a finite t, there are finitely many values αskz(t), and therefore fs(t)

can take. Therefore we can choose n large enough so that
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1. For any τ ≤ t, if αQ(τ) > 1 for some Q, then

fs(τ)− n exp
{
n
(
αQ − 1

)}
< fs∗(τ)

for all subsets s such that s12 ∩Q 6= ∅,

2. For each pair of subsets s, t ⊆ N̄ (t)×{1, 2} such that fs(τ) > ft(τ) and αQ(τ) < 1 for

all Q s.t. s12 ∩Q 6= ∅ and t12 ∩Q 6= ∅,

fs(τ)− n
∑

Q:s12∩Q 6=∅

exp{n
(
αQ(τ)− 1

)
}

> ft(τ)− n
∑

Q:t12∩Q6=∅

exp{n
(
αQ(τ)− 1

)
}.

Here, the first condition ensures that a subset that violates any of the clique constraints

is never scheduled, and the second condition ensures that for the subsets whose scheduling

does not violate any of the clique constraints, the order with respect to f is preserved, and

hence the subset that maximizes f remains the same. This is possible since for x > 0, enx

can be made arbitrarily large, whereas for x < 0, it can be made arbitrarily small by scaling

n. For such n, all scheduling decisions of π∗ and πn up to time t are identical, and thus

Un(t) = U(t) for n sufficiently large.

Proposition C.5. limt→∞ Un(t) = OPTn.

Proof. The proof uses Lyapunov optimization techniques from [BGT95, TG05]. We will

make use of the following theorem from [BGT95] to show the result.

Theorem C.1. Consider a stochastic sequence in Rp satisfying the recursion

α(t) = α(t− 1) +
1

t
g(t),

and let {Ft}t≥0 be a non-decreasing family of filtrations of the underlying σ-algebra, such

that g(t) is Ft-measurable.

Assume the following are satisfied.
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1. There exists a compact set A ⊆ Rp such that

lim
t→∞

inf{‖α(t)− α‖1 : α ∈ A} = 0,

2. There exists K > 0 such that for all t, ‖g(t)‖1 ≤ K,

3. There exists a twice continuously differentable function V : Rp → R such that

E
[
g>(t+ 1)|Ft

]
∇V (α(t)) < −V (α(t)) ,

where > represents vector transpose.

Then the function V in condition 3 satisfies limt→∞ V (α(t))+ = 0.

Consider the sequence of vectors α(t) = {αskz(t)}s,k,z, whose entries satisfy the recursion

αskz(t) = αskz(t− 1) +
1

t

(
IS(t)=sIK(t)=kIZ(t)=z − αskz(t− 1)

)
.

Note that the vector α(t) converges to the compact set defined by (4.13)–(4.14), by the first

claim of Theorem 4.4, and the entries of the corresponding update sequence g(t) in this case

is bounded by 1. Following the strategy of [TG05], we choose

V (y(t)) =
∑

i∈N

Ui

(∑

s:i∈s1

∑

k∈K

∑

z∈Z

R
(i)
skzα

∗
skz,

∑

s:i∈s2

∑

k∈K

∑

z∈Z

α∗skz

)

−
∑

i∈N

Ui

(∑

s:i∈s1

∑

k∈K

∑

z∈Z

R
(i)
skzαskz(t),

∑

s:i∈s2

∑

k∈K

∑

z∈Z

αskz(t)

)

−
∑

Q∈Q

exp
{
n
(
α∗Q − 1

)}
+
∑

Q∈Q

exp
{
n
(
αQ(t)− 1

)}
,

where α∗ is the solution to (C.3)1. Then, if we verify the third condition for this choice of

V , then the proof is concluded using Theorem C.1.

We first evaluate the terms in the left-hand side of the third condition.

E
[
g>skz(t+ 1)|Ft

]
= E

[
IS(t+1)=sIK(t+1)=kIZ(t+1)=z|Ft

]
− αskz(t) =

1Since (C.3) is the maximization of a continuous function over a compact set, the extreme values are
attained within the feasible set.
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∑

b∈K,c∈Z

E
[
IS(t+1)=sIK(t+1)=kIZ(t+1)=z|K(t+ 1) = b, Z(t+ 1) = c,Ft

]
pbqc − αskz(t)

= E
[
IS(t+1)=s|K(t+ 1) = k, Z(t+ 1) = z,Ft

]
pkqz − αskz(t)

=





pkqz − αskz(t), if s = s∗,

−αskz(t), otherwise

where s∗ = arg maxs̃∈N̄ (t+1)×{1,2} f̃n(s̃). Since a single entry of ∇V (α(t)) is given by

Dskz :=
∂V (α(t))

∂αskz(t)

= −
∑

i∈s1

R
(i)
skz

∂Ui
∂ri

∣∣∣
ri=ri(t)

−
∑

i∈s2

∂Ui
∂βi

∣∣∣
βi=βi(t)

+ n
∑

(i,j)∈s12

∑

Q:(i,j)∈Q

en(α
Q(t)−1),

and the inner product on the left-hand side of the third condition can be expressed as

E
[
g>(t+ 1)|Ft

]
∇V (α(t)) = −

∑

k∈K

∑

z∈Z

Ds∗kzpkqz +
∑

k∈K

∑

z∈Z

∑

s

Dskzαskz(t)

= −
∑

k∈K

EL [Ds∗kL] pk +
∑

k∈K

∑

z∈Z

∑

s

Dskzαskz(t)

≤ −
∑

k∈K

∑

z∈Z

∑

s

EL [Ds∗kL]α∗skz +
∑

k∈K

∑

z∈Z

∑

s

Dskzαskz(t)

≤ −
∑

k∈K

∑

z∈Z

∑

s

EL [DskL]α∗skz +
∑

k∈K

∑

z∈Z

∑

s

Dskzαskz(t)

≤ −
∑

k∈K

∑

z∈Z

∑

s

∑

z′∈Z

qz′Dskz′α
∗
skz +

∑

k∈K

∑

z∈Z

∑

s

Dskzαskz(t)

(a)
= −

∑

k∈K

∑

s

∑

z′∈Z

Dskz′α
∗
skz′ +

∑

k∈K

∑

z∈Z

∑

s

Dskzαskz(t)

= −
∑

k∈K

∑

s

∑

z∈Z

∂V (α(t))

∂αskz(t)
(α∗skz − αskz(t))

(b)

≤ −V (α(t))

where (a) follows by the third constraint in (C.4), and (b) follows by convexity.

Finally, we can prove that U(t)→ OPT′. Note that this is equivalent to the statement

lim
n→∞

lim
t→∞

Un(t) = lim
t→∞

lim
n→∞

Un(t).
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Given ε > 0, using Propositions C.3, C.4, and C.5, we can find sufficiently large n and t such

that

|U(t)− OPT| ≤ |U(t)− Un(t)|+ |Un(t)− OPTn|+ |OPTn − OPT| < ε

3
+
ε

3
+
ε

3
= ε,

which concludes the proof.

C.3 Proof of Theorem 4.1

Proof. The upper bound follows by the fact that RMIMO is achievable. To prove the lower

bound, we first note that for any input convariance matrix Q,

σ2
2|1 =

|Σ|
Σ11

=
|I + HQH∗|
1 + ‖h1‖2

, (C.7)

and that K−1 = diag (1, η), where η = 1

1+
σ2

2|1
|g12|2

. Next, we lower bound RMIMO as follows.

RMIMO = log
∣∣I2 + K−1HQH∗

∣∣ (a)

≥ log
∣∣K−1 + K−1HQH∗

∣∣

≥ log |I2 + HQH∗|+ log η, (C.8)

To see why (a) holds, define P := K−1− I2, and denote by λk (A) the k’th largest eigenvalue

for a matrix A. Then by Weyl’s inequality, since η ≤ 1,

λk
(
P + I2 + K−1HQH∗

)
≤ λk(I2 + K−1HQH∗) + λ1(P)

= λk(I2 + K−1HQH∗),

which implies latter determinant in (C.8) is smaller. Next, note that η can be lower bounded

by

η ≤





|g12|2
2σ2

2|1
if σ2

2|1 ≥ |g12|2

1
2

otherwise
(C.9)

Then, combining (C.7), (C.8), and (C.9), we can show that RMIMO is lower bounded by

RMIMO ≥ min

{
max

tr(Q)≤1
log |I2 + HQH∗| , log

(
1 + ‖h1‖2

)
+ log+

(
|g12|2

)}
− 1,
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where log+(x) := max (0, log(x)). We conclude the proof by noting that for any x ≥ 0,

log+(x) ≥ log(1 + x) − 1, and by the fact that the capacity C̄ is upper bounded by the

cut-set bound [Ct79], given by

C̄ ≤ min

{
max

tr(Q)≤1
log |I2 + HQH∗| , log

(
1 + ‖h1‖2

)
+ log

(
1 + |g12|2

)}
.

C.4 Proofs of Lemmas 4.1 and 4.2

C.4.1 Proof of Lemma 4.2

For any n ∈ N, let πn be a feasible policy such that lim inft→∞ U
πn(t) ≥ OPT − 1

2n
. Then

by definition, there must exist Tn such that for t > Tn, Uπn(t) ≥ OPT − 1
n
. Consider the

sequence απn(Tn), where Uπn(t) = U (απn(t)). Let the set of vectors α defined by (4.13) and

(4.14) be Y . Then strong law of large numbers, and the independence of (S(t), K(t)) from

Z(t) implies limn→∞ inf {‖α− απn(Tn)‖ : α ∈ Y} = 0. Therefore, there exists a sequence

{αn} ∈ Y such that limn→∞ ‖αn − απn(Tn)‖ = 0. Since Y is closed and bounded, it is

compact, and therefore αn must have a subsequence, say αnk , that converges to a point

α∗ ∈ Y , which implies

lim
k→∞

απnk (Tnk) = α∗ ∈ Y .

Since the function U is continuous, we have

OPT = lim
k→∞

U (απnk (Tnk)) = U
(

lim
k→∞

απnk (Tnk)
)

= U (α∗) .

Since α∗ is in the feasible set Y , it must be that OPT′ ≥ U (α∗) = OPT.
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C.4.2 Proof of Lemma 4.1

Assume that there exists ε > 0, Q ∈ Q, such that for any N , there exists t > N that satisfies

β∗Q(t) > 1 + ε. Note that

β∗Q(t) ≤ t− 1

t
β∗Q(t− 1) +

|Q|
tp

Iβ∗Q(t−1)<1, (C.10)

with p = min(i,j)∈Q pij, where the upper bound is obtained by observing that the maximal

increase in β∗Q(t) is achieved when all flows (i, j) ∈ Q are scheduled at slot t. Choosing

N = |Q|
εp

, there must exist t > N s.t. β∗Q(t) > 1 + ε. Letting t∗ ≥ N to be the smallest of

such indices, it must be that β∗Q(t∗− 1) ≤ 1, since otherwise the increment β∗Q(t)−β∗Q(t− 1)

cannot be positive, by construction. But by (C.10) and by the choice of N ,

β∗Q(t∗) ≤ t∗ − 1

t∗
β∗Q(t∗ − 1) + εIβ∗Q(t∗−1)<1 ≤ 1 + ε,

which is a contradiction.

C.5 Utility Function with Relaying Cost

For an arbitrary κ, let
(
r̃, β̃
)

solve the optimization (4.8) with Ui (ri, βi) = log(ri)+κ log(1−
βi), where

ri =
∑

s:i∈s1

∑

k∈K

∑

z∈Z

R
(i)
skzαskz, βi =

∑

s:i∈s2

∑

k∈K

∑

z∈Z

αskz.

Note that here αskz has no time dependence and refers to a deterministic quantity, i.e., the

fraction of time for which S(t) = s,K(t) = k, Z(t) = z, throughout the (infinite) duration of

transmission. Then, for any feasible perturbation δα that pushes the operating point from(
r̃, β̃
)

to (r, β), it must be that
∑

s,k,z δαskz
∑

i
∂Ui
∂αskz

≤ 0 by concavity, which, using the

facts

ri − r̃i = δri =
∑

s:i∈s1

∑

(k,z)∈K×Z

R
(i)
skzδαskz, βi − β̃i = δβi =

∑

s:i∈s2

∑

(k,z)∈K×Z

δαskz

can be re-arranged into

∑

i

ri − r̃i
r̃i

≤ κ
∑

i

(1− β̃i)− (1− βi)
1− β̃i

. (C.11)
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C.6 Proof of Theorem 4.3

Before we present the proof, we need several definitions.

Definition C.1. The chromatic number χ(G) is the minimum number of colors needed to

color graph G.

Definition C.2. The clique number ω(G) is the maximum clique size in G.

Definition C.3. A perfect graph is a graph whose chromatic number equals its clique num-

ber, i.e., χ(G) = ω(G).

Definition C.4. A graph is chordal if, for every cycle of length larger than three, there is

an edge that is not part of the cycle, connecting two of the vertices of the cycle.

Given these definitions, we are ready for the proof. The results in [TE92] can be used to

show that the stability region of the constrained queueing network formed by the n users is

given by

Λ =
{
β : D−1β ∈ conv (Π)

}
, (C.12)

where D is a diagonal matrix with pij values on the diagonal (pij > 0 without loss of

generality), conv(·) represents the convex hull of a set of vectors, and Π is the set of incidence

vectors of the independent sets of Gc, i.e., a vector s whose elements are indexed by (i, j) is

contained in Π if
{

(i, j) : s(i,j) = 1
}

is an independent set of Gc2.

The set Λ as defined in (C.12) is known as the stable set polytope of the graph Gc. The

exact characterization of Λ is not known in general [Reb08]. However, stable set polytopes of

perfect graphs can be completely described in terms of their maximal cliques, as characterized

in the following theorem.

2The boundary of the stability region is included in the set Λ for technical convenience. Note that this
does not change the supremum value in the optimization (4.7) since the objective function is continuous.
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Theorem C.2. [Chv75] Let Q be the set of maximal cliques of a perfect graph G. Then

the stable set polytope of G is the set of vectors x ∈ [0, 1]|V| satisfying
∑

v∈Q xv ≤ 1 for all

Q ∈ Q.

Therefore, to complete the proof, it is sufficient to show that there exists a polynomial-

time procedure that adds edges in Gc such that the resulting graph Ḡc is perfect3.

It is known that chordal graphs are perfect [Ber61], and any graph can be made into

a chordal one in polynomial time by inserting edges4. Further, the number of maximal

cliques in a chordal graph is upper bounded by the number of nodes (equal to n(n− 1) for

Gc) [Gav74], and the maximal cliques of a chordal graph can be listed in polynomial time

[RS07], which concludes the proof.

3The fact that Λ
(
Ḡc
)
⊆ Λ (Gc) follows directly from the fact that Ec ⊆ Ēc

4For instance, one can iterate over the vertices, in each iteration connecting all the previously unvisited
neighbors of the current vertex to each other. It is easy to show that such a procedure outputs a chordal
graph.
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APPENDIX D

Proofs for Chapter 5

D.1 Proofs of Theorem 5.1 and Corollary 5.1

The proof is based on a variation of the proof of the main result in [PW15]; however, unlike

the proof therein, we make use of the properties of tight frames.

Fix a failure pattern A. We first note that since the rows of S form a tight frame,

S>S = βIn. Recalling that s>i is the ith row of S,

S>ASA =
∑

i∈A

sis
>
i =

nβ∑

i=1

sis
>
i −

∑

i/∈A

sis
>
i

= S>S − S>AcSAc = βIn − S>AcSAc . (D.1)

Denoting the minimum and maximum eigenvalues of a matrix by λmin(·) and λmax(·) respec-

tively, and using (D.1), any unit vector u satisfies

‖SAcu‖2 ≥ λmin

(
S>AcSAc

)
= β − λmax

(
S>ASA

)
. (D.2)

Defining e = θ̂ − θ∗, we have

‖Xθ̂ − y‖ ≤
(

1 +
‖Xe‖

‖Xθ∗ − y‖

)
‖Xθ∗ − y‖,

by triangle inequality. Therefore

η(S;X, y;α) ≤
(

1 +
‖Xe‖

‖Xθ∗ − y‖

)2

. (D.3)

For any 0 ≤ c ≤ β, consider

‖Xe‖2
(a)

≤ ‖SAcXe‖2

β − λmax

(
S>ASA

)
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(b)

≤ −2
e>X>S>AcSAc(Xθ

∗ − y)

β − λmax

(
S>ASA

)

= −2
e>X>

(
S>AcSAc − (β − c) I

)
(Xθ∗ − y)

β − λmax

(
S>ASA

)

− 2 (β − c)
β − λmax

e>X>(Xθ∗ − y)

(c)

≤ −2
e>X>

(
S>AcSAc − (β − c) I

)
(Xθ∗ − y)

β − λmax

(
S>ASA

)

(d)
= 2

e>X>
(
S>ASA − cI

)
(Xθ∗ − y)

β − λmax

(
S>ASA

)

(e)

≤ 2

∥∥e>X>
(
S>ASA − cI

)∥∥
β − λmax

(
S>ASA

) ‖Xθ∗ − y‖

(f)

≤ 2λXKmax

(
S>ASA − cI

)

β − λmax

(
S>ASA

) ‖Xe‖‖Xθ∗ − y‖,

where (a) follows by (D.2); (b) follows by re-arranging ‖SAc(Xθ̂ − y)‖2 ≤ ‖SAc(Xθ∗ − y)‖2,

which is true because of the optimality of θ̂ for the encoded problem; (c) follows by the

convex optimality condition

〈X>(Xθ∗ − y), e〉 = 〈∇g(θ∗), θ̂ − θ∗〉 ≥ 0;

(d) follows by (D.1); (e) follows by Cauchy-Schwarz inequality; and (f) follows by the defi-

nition of λXKmax, and the fact that θ̂ is feasible, so e ∈ K. This bound, together with (D.3),

implies Theorem 5.1 by minimizing over all possible choices of c.

To prove Corollary 5.1, first note that the bound is maximized when XK contains the

eigenvector of
(
S>ASA − cI

)
corresponding to the largest eigenvalue. Choose X to map an

arbitrary e ∈ K to this eigenvector, which implies λXKmax(S>ASA − cI) = λmax(S>ASA − cI)

(recall that λmax refers to the maximum absolute value of the eigenvalues, hence equivalent

to operator norm for any symmetric matrix). Further choose c = 1
2
λmax(S>ASA) to get

γ(S, e) ≤ min
0≤c≤β

max
|A|=e

(
1 +

2λmax

(
S>ASA − cI

)

β − λmax

(
S>ASA

)
)2

= max
|A|=e

(
1 +

2λmax

(
S>ASA − 1

2
λmax(S>ASA)I

)

β − λmax

(
S>ASA

)
)2
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(g)
= max
|A|=e

(
1 +

λmax

(
S>ASA

)

β − λmax

(
S>ASA

)
)2

= max
|A|=e

(
β

β − λmax

(
S>ASA

)
)2

,

where (g) follows by the fact that all eigenvalues of S>ASA are between 0 and λmax(S>ASA)

and thus the absolute values of all eigenvalues of S>ASA− 1
2
λmax(S>ASA)I are upper bounded

by 1
2
λmax(S>ASA).

D.2 Proof of Theorem 5.2

First we would like to bound
∥∥SAS>A − Ie`

∥∥
2
. Note that the (i, j)th element of SAS

>
A is given

by 〈si, sj〉 for i 6= j, where s>i is the ith row of SA, and the diagonal of SAS
>
A − Ie` consists

of zeros. Since S is equiangular, Proposition 5.1 implies that |〈si, sj〉| =
√

β−1
nβ−1

. Then by

Gershgorin circle theorem, all eigenvalues {λk} of SAS
>
A − Ie` satisfy

|λk| ≤
e∑̀

j=1

|〈si, sj〉| = e`

√
β − 1

nβ − 1
,

which, using the fact ` = nβ
m

implies,

∥∥SAS>A − Ie`
∥∥

2
≤ e

m

√
nβ(β − 1)

1− 1
nβ

.

Using triangle inequality,

∥∥S>ASA
∥∥

2
=
∥∥SAS>A

∥∥
2
≤ 1 +

e

m

√
nβ(β − 1)

1− 1
nβ

.

Plugging in this bound in Corollary 5.1 gives the desired result.

D.3 Proof of Theorem 5.3

Recall that by construction, 2n−1 = q is a prime such that q ≡ 1 (mod 4). For any row index

1 ≤ i ≤ q, define κ(i) as the index of the node row i of S corresponds to, i.e., κ(i) := d i
`
e.
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Further define π : [2n]→ [2n] to be a random permutation of the integers {1, . . . , 2n}, which

is uniform over each of the (2n)! realizations.

Let Ji be the 0-1 indicator variable denoting whether node i is unavailable, (i.e., Ji = 1

if and only if i ∈ A), and J := {Ji}mi=1. Given e, we assume J takes uniformly at random

one of the
(
m
e

)
vector values consisting of e 1’s, and m− e 0’s. Note that Ji and Jj are not

independent for i 6= j.

Given a finite field Fq, a ∈ Fq is called a quadratic residue if there exists r ∈ Fq such that

a ≡ r2 (mod q). Construct the matrix L ∈ {−1, 0, 1}2n×2n such that

Lij =





χ(i− j), 1 ≤ i, j ≤ q

Ii 6=j, if i = q + 1 or j = q + 1

where χ is the quadratic residue character in Fq, defined by

χ(x) =





0, if x = 0,

1, if x 6= 0 is a quadratic residue in Fq,

−1, otherwise.

In the above definition, we have assumed that the (q+1)th index corresponds to the isolated

node appended to the Paley graph.

Characters are important objects of study in analytic number theory (see, e.g., [Apo13]

for more information on characters). In particular, quadratic residue character χ is a multi-

plicative character, satisfying the following properties, which can be easily verified:

1. χ(1) = 1,

2. For a, b ∈ Fq, χ(a)χ(b) = χ(ab),

3. For a ∈ Fq, χ(a) = χ(a−1).

Proposition D.1 ([Apo13]). Let q be an odd prime. The quadratic residue character χ over

Fq satisfies

∑

a∈Fq

χ(a) = 0.
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Define

L̄ :=
[
LijJκ(π(i))Jκ(π(j))

]
i,j
.

Note that the matrix

√
q
(
SAS

>
A − I

)
(D.4)

is identical to the realization of L̄ corresponding to J such that Ji = 1 ⇔ i ∈ A, up to

padding with zeroes. Therefore, they have the same spectrum and the problem reduces to

characterizing the expected spectral norm of L̄.

We will prove the following lemma.

Lemma D.1. Let a, b ∈ Fq. Then

∑

x∈Fq

χ(a− x)χ(b− x) = (−1 + qIa=b) .

Proof. The case a = b easily follows by the fact that

∑

x∈Fq

χ(a− x)χ(a− x) =
∑

x∈Fq

Ia6=x = q − 1.

If a 6= b, using properties of χ(·),
∑

x∈Fq

χ(a− x)χ(b− x) =
∑

x 6=a,b

χ(a− x)χ(b− x)

=
∑

x 6=a,b

χ(a− x)χ
(
(b− x)−1

)
=
∑

x 6=a,b

χ

(
a− x
b− x

)

=
∑

x 6=a,b

χ

(
1 +

a− b
b− x

)
(a)
=
∑

y 6=0,1

χ (y)
(b)
= −χ(1) = −1,

which completes the proof. (a) follows because in Fq every non-zero element has a unique

multiplicative inverse, hence the argument of the character will take every value except 0

(since x 6= a) and 1 (since a 6= b); (b) follows by Proposition D.1.

Now, consider

E
[
tr
(
L̄4
)]
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= E


 ∑

i1,...,i4

Li1i2Li2i3Li3i4Li4i1Jκ(π(i1)) . . . Jκ(π(i4))




=
∑

i1,...,i4

Li1i2Li2i3Li3i4Li4i1E
[
Jκ(π(i1)) . . . Jκ(π(i4))

]
.

Note that, since π is uniformly random, we have

E
[
Jκ(π(i1)) . . . Jκ(π(i4))

]
=

(
e`
s

)
(
m`
s

) ≤
( e
m

)s
,

where s is the number of unique elements in the tuple (i1, i2, i3, i4). Therefore

E
[
tr
(
L̄4
)]
≤

4∑

s=1

( e
m

)s ∑

i1,...,i4:
{i1,i2,i3,i4}=s

Li1i2Li2i3Li3i4Li4i1

=:
4∑

s=1

( e
m

)s
φ(s),

where we have defined the inner sum as φ(s). First, note that φ(1) = 0 by the fact that this

would require all ij to be equal, and Lijij = 0 by definition. Next, consider

φ(2) =
∑

i1,...,i4:
{i1,i2,i3,i4}=2

Li1i2Li2i3Li3i4Li4i1

=
∑

a6=b

LabLbaLabLba =
∑

a6=b

L4
ab = q(q + 1)

by the fact that L is symmetric and all the off-diagonal elements are ±1. Then

φ(3) =
∑

i1,...,i4:
{i1,i2,i3,i4}=3

Li1i2Li2i3Li3i4Li4i1

=
∑

a6=b
a6=c
b 6=c

LabLbcLcbLba +
∑

a6=b
a6=c
b6=c

LabLbaLacLca

=
∑

a6=b
a6=c
b 6=c

L2
abL

2
bc +

∑

a6=b
a6=c
b6=c

L2
abL

2
ac = 2(q + 1)q(q − 1),

similarly by the symmetry and unit modulus of the elements of L. Now,

4∑

s=1

φ(s) =
∑

i1,...,i4

Li1i2Li2i3Li3i4Li4i1
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=
∑

i1,i3

(∑

i2

Li1i2Li2i3

)(∑

i4

Li3i4Li4i1

)

= q2
∑

i1,i3

Ii1=i3 = q2(q + 1),

where the third equality follows by Lemma D.1 and the definition of Lij, which implies

q+1∑

j=1

LijLjk = qIi=k.

The above results then imply

φ(4) = q2(q + 1)− 2(q + 1)q(q − 1)− q(q + 1)

= −q(q + 1)(q − 1).

Hence,

E
[
tr
(
L̄4
)]

=
4∑

s=1

( e
m

)s
φ(s)

=
( e
m

)2

q(q + 1)
(

1 +
e

m
(q − 1)

(
2− e

m

))

≤ 4
( e
m

)3

(q + 1)3.

Then, defining λi to be the ith largest eigenvalue of L̄, for any a > 0,

P
(

max
i
|λi| > a

)
= P

(
max
i
|λi|4 > a4

)

≤ P

(∑

i

|λi|4 > a4

)
= P

(
tr
(
L̄4
)
> a4

)

(a)

≤ E
[
tr
(
L̄4
)]

a4
≤ 4

(
e
m

)3
(q + 1)3

a4
,

where (a) is by Markov inequality. Therefore, setting

a = c
√

2
( e
m

)3/4

(q + 1)3/4 = c
√

2 (e`)3/4

for some constant c > 0, using that for A uniformly random among all
(
m
e

)
possible e failures,

λmax

(
S>ASA

)
= λmax

(
SAS

>
A

)
= 1 +

1√
q
λmax

(
L̄
)
,
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we get

P

(
λmax

(
S>ASA

)
> 1 + c

√
2

m− 1
`

e3/4`1/4

)
≤ 1

c4
,

which directly implies the result using Corollary 5.1.

D.4 Proof of Proposition 5.2

We will use the following result (slightly loosened and rephrased in our notation).

Lemma D.2 ([PW15], Lemma 1). For any c > 0,

η (Sm;X, y;A) ≤
(

1 + 2
‖S>ASA − cI‖2

λmin

(
S>ASA

)
)2

.

Using the results from [Sil85, Gem80], we know that

λmax

(
(Sm)>A (Sm)A

)
→
(√

β
(

1− e

m

)
+ 1

)2

λmin

(
(Sm)>A (Sm)A

)
→
(√

β
(

1− e

m

)
− 1

)2

,

almost surely as m → ∞. Plugging these in Lemma D.2, and using c = 1 + β
(
1− e

m

)
, we

get the desired result.

D.5 Proof of Theorem 5.4

Given an S, we will construct a data pair (X, y) so that the quantity

‖Xθ̂ − y‖2

‖Xθ∗ − y‖2

is maximized, where we choose (X, y) so that ‖Xθ∗ − y‖2 > 0 by design, so the above is

well-defined.

To this end, let us first fix θ∗, and assume y = Xθ∗ + r, where r>X = 0, by the

optimality condition. We can equivalently construct the pair (X, r). Then the relative error
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can be written as

‖Xθ̂ − y‖2

‖Xθ∗ − y‖2
=
‖X
(
θ̂ − θ∗

)
+ r‖2

‖r‖2

(a)
= 1 +

‖X
(
θ̂ − θ∗

)
‖2

‖r‖2

(b)
= 1 +

‖X
(
X>S>AcSAcX

)−1
X>S>AcSAcy −Xθ∗‖2

‖r‖2
=

1 +
‖X
(
X>S>AcSAcX

)−1
X>S>AcSAc(Xθ

∗ + r)−Xθ∗‖2

‖r‖2

= 1 +
‖X
(
X>S>AcSAcX

)−1
X>S>AcSAcr‖2

‖r‖2

where (a) follows by the fact that r>X = 0, and (b) follows by plugging in the analytic

expression for θ̂ = (SAcX)† (SAcy). Let S>AcSAc = Q>ΛQ be the eigendecomposition of

S>AcSAc , and define Z = QX and t = Qr, where we reduced the problem to constructing

(Z, t). Then

‖Xθ̂ − y‖2

‖Xθ∗ − y‖2

(a)
= 1 +

‖QX
(
X>S>AcSAcX

)−1
X>S>AcSAcr‖2

‖Qr‖2

= 1 +
‖Z
(
Z>ΛZ

)−1
Z>Λt‖2

‖t‖2

where (a) follows by the fact that `2 norm is invariant under orthogonal transformations.

Note that since we require r>X = 0, we have t>Z = 0. Therefore we set t = (I − ZZ†)v,

where there is no constraint on v. Plugging in this value for t and simplifying, and also using

the non-expansiveness of the projection, which implies ‖v‖2 ≥ ‖t‖2, we have

sup
X,y

‖Xθ̂ − y‖2

‖Xθ∗ − y‖2

≥ sup
Z,v

(
1 +
‖Z
(
Z>ΛZ

)−1
Z>Λv‖2 − ‖U>v‖2

‖v‖2

)

= sup
Z,v

‖Z
(
Z>ΛZ

)−1
Z>Λv‖2

‖v‖2
,

where U is a n×d matrix with orthonormal columns, whose columns span the column space

of Z. In the last equality, we have used the fact that U is orthogonal.

Now, note that we can assume, without loss of generality, S>AcSAc is positive definite,

since otherwise we can construct (X, y) with unbounded error, by choosing columns of X in
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the eigenspace of S>AcSAc associated with zero eigenvalues. Therefore, we can assume Λ is

invertible. Define B = Λ1/2Z, and P = B
(
B>B

)−1
B> to be the projection matrix on the

range space of B. We pick an X such that

P =




1
2

0> 1
2

0 P̃ 0

1
2

0> 1
2




where 0 is the 0-vector and P̃ is some other idempotent matrix of the appropriate size. Then

P is an appropriate projection matrix for the choice of B as

B =




0> 1
2

B̃ 0

0> 1
2


 , P̃ = B̃

(
B̃>B̃>

)−1

B̃>.

We additionally pick v = α[1, 0, . . . , 0]> for any scalar α. Then, denoting with λi the ith

largest eigenvalue in Λ,

sup
X,y

‖Xθ̂ − y‖2

‖Xθ∗ − y‖2
≥ sup

B,v

‖Λ−1/2B
(
B>B

)−1
B>Λ1/2v‖2

‖v‖2

=

(
λ

1/2
1 + λ

1/2
n

2λ
1/2
n

)2

=
1

4
(1 + κ(SAc))

2

where κ(SAc) =
√
λ1√
λn

is the condition number of SAc .
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APPENDIX E

Proofs and Tables for Chapter 6

E.1 Proofs of Theorems 6.1 of 6.2

In the proofs, we will ignore the normalization constants on the objective functions for

brevity. We will assume the normalization 1√
η

is absorbed into the encoding matrix SA. Let

f̃At := ‖SAt (Xwt − y) ‖2 + λh(w), and f̃A(w) := ‖SAt (Xw − y) ‖2 + λh(w), where we set

A ≡ At. Let w̃∗t denote the solution to the effective “instantaneous” problem at iteration t,

i.e., w̃∗t = arg minw f̃
A(w).

Throughout this appendix, we will also denote

w∗ = arg min
w

‖Xw − y‖2 + λh(w)

ŵ = arg min
w

‖SA (Xw − y) ‖2 + λh(w)

unless otherwise noted, where A is a fixed subset of [m].

E.1.1 Lemmas

Lemma E.1. If S satisfies (6.6) for any A ⊆ [m] with |A| ≥ k, for any convex set C,

‖Xŵ − y‖2 ≤ κ2‖Xw∗ − y‖2,

where κ = 1+ε
1−ε , ŵ = arg minw∈C ‖SA (Xw − y) ‖2, and w∗ = arg minw∈C ‖Xw − y‖2.

Proof. Define e = ŵ − w∗ and note that

‖Xŵ − y‖ = ‖Xw∗ − y +Xe‖ ≤ ‖Xw∗ − y‖+ ‖Xe‖
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by triangle inequality, which implies

‖Xŵ − y‖2 ≤
(

1 +
‖Xe‖

‖Xw∗ − y‖

)2

‖Xw∗ − y‖2 =

(
1 +

‖Xe‖
‖Xw∗ − y‖

)2

‖Xw∗ − y‖2. (E.1)

Now, for any c > 0, consider

‖Xe‖2 ≤ ‖SAXe‖
2

1− ε
(a)

≤ −2
e>X>S>ASA(Xw∗ − y)

1− ε

= −2
e>X>

(
S>ASA − cI

)
(Xw∗ − y)

1− ε − 2c

1− εe
>X>(Xw∗ − y)

(b)

≤ −2
e>X>

(
S>ASA − cI

)
(Xw∗ − y)

1− ε
(c)

≤ 2

∥∥e>X>
(
cI − S>ASA

)∥∥
1− ε ‖Xw∗ − y‖

(d)

≤ 2

∥∥cI − S>ASA
∥∥

1− ε ‖Xw∗ − y‖‖Xe‖,

where (a) follows by expanding and re-arranging ‖SA (Xŵ − y)‖2 ≤ ‖SA (Xw∗ − y)‖2, which

is true since ŵ is the minimizer of this function; (b) follows by the fact that since ŵ ∈ C, e

represents a feasible direction of the constrained optimization, and thus the convex optimality

condition implies 〈∇f(w∗), ŵ − w∗〉 = e>X>(Xw∗ − y) ≥ 0; (c) follows by Cauchy-Schwarz

inequality; and (d) follows by the definition of matrix norm.

Since this is true for any c > 0, we make the minimizing choice c = λmax+λmin

2
(where λmax

and λmin represent the largest and smallest eigenvalues of S>ASA, respectively), which gives

‖Xe‖
‖Xŵ − y‖ ≤

λmax − λmin

λmin

≤ 2ε

1− ε.

Plugging this back in (E.1), we get the desired result.

Lemma E.2. If S satisfies (6.6) for any A ⊆ [m] with |A| ≥ k,

f(ŵ) ≤ κ2f(w∗),

where κ = 1+ε
1−ε , ŵ = arg minw ‖SA (Xw − y) ‖2 + λh(w), and w∗ = arg minw ‖Xw − y‖2 +

λh(w).
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Proof. Consider a fixed At = A, and a corresponding

ŵ = w̃∗t ∈ arg min
w

‖SA (Xw − y) ‖2 + λh(w)

Define

ŵ(r) = arg min
w:λh(w)≤r

‖SA (Xw − y) ‖2

w∗(r) = arg min
w:λh(w)≤r

‖Xw − y‖2.

Finally, define

r∗ = arg min
r
‖Xw∗(r)− y‖2 + r.

Now, consider

f(ŵ) = ‖Xŵ − y‖2 + λh(w) = min
r

(
‖Xŵ(r)− y‖2 + r

)

≤ ‖Xŵ(r∗)− y‖2 + r∗
(a)

≤ κ2‖Xw∗(r∗)− y‖2 + r∗

≤ κ2
(
‖Xw∗(r∗)− y‖2 + r∗

)
= κ2f(w∗),

which shows the desired result, where (a) follows by Lemma E.1, and by the fact that the

set {w : λh(w) ≤ r} is a convex set.

Lemma E.3. If

f̃At+1 − f̃A (w̃∗t ) ≤ γ
(
f̃At − f̃A (w̃∗t )

)

for all t > 0, and for some 0 < γ < 1, where w̃∗t ∈ arg minw f̃
A
t , then

f(wt) ≤ (κγ)t f(w0) +
κ2 (κ− γ)

1− κγ f (w∗) ,

where κ = 1+ε
1−ε .

Proof. Since for any w,

(1− ε) ‖Xw − y‖2 ≤ (Xw − y)> S>A S̃A (Xw − y) ,
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we have

(1− ε) f(w) ≤ f̃A(w).

Similarly f̃A(w) ≤ (1 + ε) f(w), and therefore, using the assumption of the theorem

(1− ε) f(wt+1)− (1 + ε) f (w̃∗t ) ≤ γ ((1 + ε) f(wt)− (1− ε) f (w̃∗t )) ,

which can be re-arranged into the linear recursive inequality

f(wt+1) ≤ κγft + (κ− γ)f (w̃∗t )
(a)

≤ κγf(wt) + κ2(κ− γ)f (w∗) ,

where κ = 1+ε
1−ε and (a) follows by Lemma E.2. By considering such inequalities for 0 ≤ τ ≤ t,

multiplying each by (κγ)t−τ and summing, we get

f(wt) ≤ (κγ)t f(w0) + κ2(κ− γ)f (w∗)
t−1∑

τ=0

(κγ)τ

≤ (κγ)t f(w0) +
κ2 (κ− γ)

1− κγ f (w∗) .

Lemma E.4. Under the assumptions of Theorem 6.2, f̃A(w) is (1− ε) (µ + λ)-strongly

convex.

Proof. It is sufficient to show that the minimum eigenvalue of X̃>A X̃A is bounded away from

zero. This can easily be shown by the fact that

u>X̃>A X̃Au = u>X>S>ASAXu ≥ (1− ε) ‖Xu‖2 ≥ (1− ε)µ‖u‖2,

for any unit vector u.

Lemma E.5. Let M ∈ Rp×p be a symmetric positive definite matrix, with the condition

number (ratio of maximum eigenvalue to the minimum eigenvalue) given by κ. Then, for

any unit vector u,

u>Mu

‖Mu‖ ≥
2
√
κ

κ+ 1
.
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Proof. We point out that this is a special case of Kantorovich inequality, but provide a

dedicated proof here for completeness.

Let M have the eigen-decomposition M = Q>DQ, where Q has orthonormal columns,

and D is a diagonal matrix with positive, decreasing entries d1 ≥ d2 ≥ · · · ≥ dn, with d1

dn
= κ.

Let y = (Qu)◦2, where ◦2 denotes entry-wise square. Then the quantity we are interested in

can be represented as
∑n

i=1 diyi√∑n
i=1 d

2
i yi
,

which we would like to minimize subject to a simplex constraint 1>y = 1. Using Lagrange

multipliers, it can be seen that the minimum is attained where y1 = 1
1+κ

, yn = κ
1+κ

, and

yi = 0 for i 6= 1, n. Plugging this back the objective, we get the desired result

u>Mu

‖Mu‖ ≥
2
√
κ

κ+ 1
.

Proof of Lemma 1. Define S̆t := SAt∩At−1 . First note that

r>t ut =
(
X>S̆>t S̆t [(Xwt − y)− (Xwt−1 − y)]

)>
(wt − wt−1)

= (wt − wt−1)>X>S̆>t S̆tX (w − wt−1)

≥ δµ‖ut‖2, (E.2)

by (5) Also consider

‖rt‖2

r>t ut
=

(wt − wt−1)>
(
X>S̆>t S̆tX

)2

(wt − wt−1)

(wt − wt−1)>X>S̆>t S̆tX (wt − wt−1)
,

which implies

εµ ≤ ‖rt‖
2

r>t ut
≤ (1 + ε)M,

again by (4). Now, setting j` = t− σ̃ + `, consider the trace

tr
(
B

(`+1)
t

)
= tr

(
B

(`)
t

)
− tr

(
B

(`)
t uj`u

>
j`
B

(`)
t

u>j`B
(`)
t uj`

)
+ tr

(
rj`r

>
j`

r>j`uj`

)
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≤ tr
(
B

(`)
t

)
+ tr

(
rj`r

>
j`

r>j`uj`

)

= tr
(
B

(`)
t

)
+
‖rj`‖2

r>j`uj`

≤ tr
(
B

(`)
t

)
+ (1 + ε)M,

which implies tr (Bt) ≤ (1 + ε)M (σ̃ + d). It can also be shown (similar to [BNT16]) that

det
(
B

(`+1)
t

)
= det

(
B

(`)
t

)
· r>j`uj`

u>j`B
(`)
t uj`

= det
(
B

(`)
t

)
· r
>
j`
uj`

‖uj`‖2
· ‖uj`‖

2

u>j`B
(`)
t uj`

≥ det
(
B

(`)
t

) δµ

(1 + ε)M (σ̃ + d)
,

which implies det (Bt) ≥ det
(
B

(0)
t

)(
δµ

(1+ε)M(σ̃+d)

)σ̃
. Since Bt ≥ 0, its trace is bounded

above, and its determinant is bounded away from zero, there must exist 0 < c1 ≤ c2 such

that

c1I � Bt � c2I.

E.1.2 Proof of Theorem 6.1

The proof of the first part of the theorem is a special case of the proof of Theorem 6.3 (with

λ = 0, and the smooth regularizer incorporated into p(w)) and thus we omit this proof and

refer the reader to Appendix E.2. We prove the second part here.

Note that because of the condition in (6.6), we have

(1− ε) � S>ASA � (1 + ε)I,

(1− ε) � S>DSD � (1 + ε)I.

Using smoothness of the objective, and the choices dt = −∇f̃A(wt)(wt) and αt = α, we have

f̃A (wt+1)− f̃A(wt) ≤ α∇f̃A(wt)(wt)
>dt +

1

2
α2d>t X

>S>ASAXdt +
L

2
α2‖dt‖2
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≤ −α
(

1− (1 + ε)M + L

2
α

)∥∥∥∇f̃A(wt)
∥∥∥

2

= − 2ζ (1− ζ)

(1 + ε)M + L
‖∇f̃A(wt)‖2

(a)

≤ − 4νζ (1− ζ)

M (1 + ε) + L

(
f̃A (wt)− f̃A (w̃∗t )

)
,

where (a) follows by strong convexity. Re-arranging this inequality, and using the definition

of γ, we get

f̃At+1 − f̃A (w̃∗t ) ≤ γ
(
f̃At − f̃A (w̃∗t )

)
,

which, using Lemma E.3, implies the result.

E.1.3 Proof of Theorem 6.2

Since h(w) is constrained to be quadratic, we can absorb this term into the error term to get

min
w

∥∥∥∥∥∥


 S 0

0 I






 X
√
λI


w −


 y

0





∥∥∥∥∥∥
.

Note that as long as S satisfies (6.6), the effective encoding matrix diag ([S, I]) also satisfies

the same. Therefore, without loss of generality we can ignore h(w), and assume

(µ+ λ)I � X>X � (M + λ)I.

We also define λmin = 1 − ε and λmax = 1 + ε for convenience. Using convexity and the

closed-form expression for the step size, we have

f̃A (wt+1)− f̃A(wt) ≤ αt∇f̃A(wt)
>dt +

1

2
α2
td
>
t X

>S>ASAXdt

= −
ρ
(
∇f̃A(wt)

>dt

)2

d>t X
>S>DSDXdt

+
1

2

ρ2
(
∇f̃A(wt)

>dt

)2

d>t X
>S>DSDXdt

· d
>
t X

>S>ASAXdt
d>t X

>S>DSDXdt

=

(
d>t X

> (ρ2S>ASA − 2ρS>DSD
)
Xdt

2
(
d>t X

>S>DSDXdt
)2

)(
d>t ∇f̃A(wt)

)2

(a)
= −ρ

(
z>
(
S>DSD − ρ

2
S>ASA

)
z

(
z>S>DSDz

)2

) (
d>t ∇f̃A(wt)

)2

‖Xdt‖2
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(b)

≤ −ρ
(
λmin − ρ

2
λmax

λ2
min

) (d>t ∇f̃A(wt)
)2

‖Xdt‖2

(c)

≤ − ρ

M + λ

(
λmin − ρ

2
λmax

λ2
min

) (d>t ∇f̃A(wt)
)2

‖dt‖2

(d)
= − ρ

M + λ

(
λmin − ρ

2
λmax

λ2
min

) (∇f̃A(wt)
>Bt∇f̃A(wt)

)2

‖Bt∇f̃A(wt)‖2

(e)

≤ − 4ρ

M + λ

(
λmin − ρ

2
λmax

λ2
min

)
c1c2

(c1 + c2)2‖∇f̃A(wt)‖2

(f)

≤ −8(µ+ λ)ρ

M + λ

(
λmin − ρ

2
λmax

λ2
min

)
c1c2

(c1 + c2)2

(
f̃ (wt)− f̃ (w̃∗t )

)

(g)
= − 4(µ+ λ)c1c2

(M + λ)(1 + ε) (c1 + c2)2

(
f̃ (wt)− f̃ (w̃∗t )

)
(h)
= − (1− γ)

(
f̃A (wt)− f̃A (w̃∗t )

)
.

where (a) follows by defining z = Xdt
‖Xdt‖ ; (b) follows by (6.6); (c) follows by the assumption

that X>X � (M + λ)I; (d) follows by the definition of dt; (e) follows by Lemmas E.5 and

6.1; (f) follows by strong convexity of f̃ (by Lemma E.4), which implies ‖∇f̃A(wt)‖2 ≥
2(µ + λ)

(
f̃ (θt)− f̃ (w̃∗t )

)
; (g) follows by choosing ρ = λmin

λmax
; and (h) follows using the

definition of γ.

Re-arranging the inequality, we obtain

f̃At+1 − f̃A (w̃∗t ) ≤ γ
(
f̃At − f̃A (w̃∗t )

)
,

and hence applying first Lemma E.3, we get the desired result.

E.2 Proof of Theorem 6.3

Throughout this appendix, we will define p(w) = 1
2
‖Xw−y‖2 and p̃t(w) = 1

2
‖SAt (Xw − y) ‖2

for convenience, where the normalization by
√
η is absorbed into SA. We will omit the

normalization by n for brevity. Let us also define

w∗ = arg min
w

p(w) + λh(w)

to be the true solution of the optimization problem.

By M -smoothness of p(w),

p(wt+1) ≤ p(wt) + 〈∇p(wt), wt+1 − wt〉+
M

2
‖wt+1 − wt‖2

247



≤ p(w∗)− 〈∇p(wt), w∗ − wt〉+ 〈∇p(wt), wt+1 − wt〉+
M

2
‖wt+1 − wt‖2

≤ p(w∗)− 〈∇p(wt), w∗ − wt〉+ 〈∇p(wt), wt+1 − wt〉+
1

2α
‖wt+1 − wt‖2 (E.3)

where the second line follows by convexity of p, and the third line follows since α < 1
M

. Since

wt+1 = arg minw F̃t(w), by optimality conditions

0 ∈ ∂h(wt+1) +∇p̃t(wt) +
1

α
(wt+1 − wt) . (E.4)

Since h is convex, any subgradient g ∈ ∂h at w = wt+1 satisfies

h(w∗) ≥ h(wt+1) + 〈g, w∗ − wt+1〉,

and therefore (E.4) implies

h(w∗) ≥ h(wt+1)− 〈∇p̃t(wt), w∗ − wt+1〉 −
1

α
〈wt+1 − wt, w∗ − wt+1〉. (E.5)

Combining (E.3) and (E.5),we have

f(wt+1) ≤ f(w∗) + 〈∇p(wt)−∇p̃t(wt), wt+1 − w∗〉

− 1

α
〈wt − wt+1, w

∗ − wt+1〉+
1

2α
‖wt − wt+1‖2

= f(w∗) + 〈∇p(wt)−∇p̃t(wt), wt+1 − w∗〉

+
1

2α

(
‖wt‖2 − 2w>t w

∗ + ‖w∗‖2 + 2w>t+1w
∗ − ‖w∗‖2 − ‖wt+1‖2

)

= f(w∗) + 〈∇p(wt)−∇p̃t(wt), wt+1 − w∗〉

+
1

2α

(
‖wt − w∗‖2 − ‖wt+1 − w∗‖2

)
(E.6)

Define ∆ = I − S>ASA, and consider the second term on the right-hand side of (E.6).

〈∇p(wt)−∇p̃t(wt), wt+1 − w∗〉 =
〈
X>∆(Xwt − y), wt+1 − w∗

〉

= 〈∆(Xwt − y), Xwt+1 − y〉 − 〈∆(Xwt − y), Xw∗ − y〉

=
1

2

[
(X (wt + wt+1)− 2y)>∆ (X (wt + wt+1)− 2y)

− (Xwt+1 − y)>∆ (Xwt+1 − y) + (Xw∗ − y)>∆ (Xw∗ − y)
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− (X (wt + w∗)− 2y)>∆ (X (wt + w∗)− 2y)
]

= 2

(
X

(
wt + wt+1

2

)
− y
)>

∆

(
X

(
wt + wt+1

2

)
− y
)

− 2

(
X

(
wt + w∗

2

)
− y
)>

∆

(
X

(
wt + w∗

2

)
− y
)

− 1

2
(Xwt+1 − y)>∆ (Xwt+1 − y) +

1

2
(Xw∗ − y)>∆ (Xw∗ − y)

≤ 4εp

(
wt + wt+1

2

)
+ 4εp

(
wt + w∗

2

)
+ εp(wt+1) + εp(w∗)

(a)

≤ ε [4p(wt) + 3p(wt+1) + 3p(w∗)]

≤ ε [4f(wt) + 3f(wt+1) + 3f(w∗)] ,

where (a) if by convexity of p(w) and Jensen’s inequality, and the last line follows by non-

negativity of h. Plugging this back in (E.6),

(1− 3ε) f(wt+1)− 4εf(wt) ≤ (1 + 3ε) f(w∗) +
1

2α

(
‖wt − w∗‖2 − ‖wt+1 − w∗‖2

)
.

Adding this for t = 1, . . . , (T − 1),

(1− 7ε)
T∑

t=1

f(wt) ≤ (T − 1) (1 + 3ε) f(w∗) + 4εf(w0) +
1

2α

(
‖w0 − w∗‖2 − ‖wT − w∗‖2

)

≤ T (1 + 3ε) f(w∗) + 4εf(w0) +
1

2α
‖w0 − w∗‖2.

Defining f̄t = 1
T

∑T
t=1 f(wt), and κ = 1+3ε

1−7ε
, we get

f̄T − κf(w∗) ≤ 4εf(w0) + 1
2α
‖w0 − w∗‖2

(1− 7ε)T
,

which proves the first part of the theorem. To establish the second part of the theorem, note

that the convexity of h implies

h(wt) ≥ h(wt+1) + 〈g, wt − wt+1〉,

where g ∈ ∂h(wt+1). By the optimality condition (E.4), this implies

h(wt) ≥ h(wt+1)− 〈∇p̃t(wt), wt − wt+1〉+
1

α
‖wt+1 − wt‖2.
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Combining this with the smoothness condition of p(w),

p(wt+1) ≤ p(wt) + 〈∇p(wt), wt+1 − wt〉+
M

2
‖wt+1 − wt‖2

and using the fact that α < 1
M

, we have

f(wt+1) ≤ f(wt) + 〈∇p(wt)−∇p̃t(wt), wt+1 − wt〉 −
1

2α
‖wt − wt+1‖2.

As in the previous analysis, we can show that

〈∇p(wt)−∇p̃t(wt), wt+1 − wt〉 ≤ ε [7f(wt) + 3f(wt+1)] ,

and therefore

f(wt+1) ≤ 1 + 7ε

1− 3ε
f(wt)−

1

2α(1− 3ε)
‖wt − wt+1‖2

≤ 1 + 7ε

1− 3ε
f(wt).

E.3 Proof of Theorem 6.4

For an iterate vt, let wt := Svt. Define the solution set S = arg minw g(w), and w∗t = PS (wt),

where PS (·) is the projection operator onto the set S. Let v∗t be such that w∗t = S>v∗t , which

always exists since S has full column rank.

We also define L′ := L(1 + ε), and g∗ = minw g(w) = g(w∗t ) for any t.

E.3.1 Lemmas

Lemma E.6. g̃(v) is L′-smooth.

Proof. For any u, v,

g̃(u) = g(S>u) ≤ g(S>v) + 〈∇g(S>v), S>(u− v)〉+
L

2
‖S>(u− v)‖2,

(a)

≤ g(S>v) + 〈S∇g(S>v), u− v〉+
L(1 + ε)

2
‖u− v‖2,
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(b)
= g̃(v) + 〈∇g̃(v), u− v〉+

L(1 + ε)

2
‖u− v‖2,

where (a) follows from smoothness of g, and from (m, η, ε)-BRIP property, and (b) is by the

chain rule of derivatives and the definition of g̃(v). Therefore g̃ is L(1 + ε)-smooth.

Lemma E.7. For any t,

g̃∗ := min
v
g̃(v) = min

w
g(w) =: g∗.

Proof. It is clear that

min
v
g̃(v) = min

v
g(S>v) ≥ min

w
g(w).

To show the other direction, set v∗ = S(S>S)−1w∗, where S>S is invertible since S has full

column rank. Then g(w∗) = g̃(v∗) ≥ minv g̃(v).

Lemma E.8. If g is ν-restricted-strongly convex, then

g(w)− g∗ ≥ ν‖w − w∗‖2,

where w∗ = PS(w).

Proof. We follow the proof technique in [ZY13]. We have

g(w) = g∗ +

∫ 1

0

〈∇g(w∗ + τ(w − w∗)), w − w∗〉dτ

= g∗ +

∫ 1

0

1

τ
〈∇g(w∗ + τ(w − w∗)), τ(w − w∗)〉dτ

≥ g∗ +

∫ 1

0

1

τ
ντ 2‖w − w∗‖2dτ

= g∗ + ν‖w − w∗‖2,

which is the desired result, where in the third line we used ν-restricted strong convexity, and

the fact that

PS(w∗ + τ(w − w∗)) = w∗,

for all τ ∈ [0, 1], since w∗ = PS(w) is thr orthogonal projection.

251



E.3.2 Proof of Theorem 6.4

Recall that the step for block i at time t, ∆i,t, is defined by

∆i,t :=




−α∇ig̃(vt−1), if i ∈ At

0, otherwise.

By smoothness and definition of ∆t,

g̃(vt+1)− g̃(vt) ≤ 〈∇g̃(vt),∆t〉+
L′

2
‖∆t‖2

=
∑

i∈At

(
〈∇ig̃(vt),∆i,t〉+

L′

2
‖∆i,t‖2

)

=
∑

i∈At

(
− 1

α
〈∆i,t,∆i,t〉+

L′

2
‖∆i,t‖2

)

= −
(

1

α
− L′

2

)
‖∆t‖2. (E.7)

Now, for any t,

g̃(vt)− g̃∗ ≤ 〈∇g̃(vt), v
∗
t − vt〉 =

〈
S∇g(S>vt), v

∗
t − vt

〉

(a)

≤
∥∥∇g(S>vt)

∥∥ ·
∥∥S> (v∗t − vt)

∥∥ =
∥∥∇g(S>vt)

∥∥ · ‖w∗t − wt‖ , (E.8)

where (a) is due to Cauchy-Schwartz inequality. Using

∆t = −αPt


 SAt∇g(S>vt)

0


 ,

where Pt is a block permutation matrix mapping {1, . . . , k} to the node indices in At, we

have

‖∆t‖2 = α2∇g(S>vt)
>S>AtP

>
t PtSAt∇g(S>vt) ≥ (1− ε)α2

∥∥∇g(S>vt)
∥∥2
. (E.9)

Because of (E.7), we have

g̃(vt+1)− g̃(vt) = g(wt+1)− g(wt) ≤ 0,
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and hence wt is contained in the level set defined by the initial iterate for all t, i.e.,

wt ∈ {w : g(w) ≤ g(w0)} .

By the diameter assumption on this set, we have ‖wt − w∗t ‖ ≤ R for all t. Using this and

(E.9) in (E.8), we get

g̃(vt)− g̃∗ ≤
R

α

√
1

1− ε‖∆t‖.

Combining this with (E.7),

g̃(vt+1)− g̃(vt) ≤ −
(1− ε)α

R

(
1− αL′

2

)
(g̃(vt)− g̃∗)2 .

Defining πt := g̃(vt)− g̃∗, and C := (1−ε)α
R

(
1− αL′

2

)
, this implies

πt+1 ≤ πt − Cπ2
t .

Dividing both sides by πtπt+1, and noting that πt+1 ≤ πt due to (E.7),

1

πt
≤ 1

πt+1

− C πt
πt+1

≤ 1

πt+1

− C

Therefore

1

πt
≥ 1

π0

+ Ct,

which implies

πt ≤
1

1
π0

+ Ct
.

Since g(wt) = g(S>vt) = g̃(vt) by definition, and g∗ = g̃∗ by Lemma E.7, πt = g(wt) − g∗,
and therefore we have established the first part of the theorem.

To prove the second part, we make the additional assumption that g satisfies ν-restricted-

strong convexity, which, through Lemma E.8, implies g(w) − g∗ ≥ ν‖w − w∗‖2, for w∗ =

PS(w). Plugging in w = wt then gives the bound

‖wt − w∗t ‖2 ≤ 1

ν
πt.
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Using this bound as well as (E.9) in (E.8), we have

π2
t ≤

‖∆t‖2

ν(1− ε)α2
πt.

Using (E.7), this gives

πt ≤
1

ν(1− ε)α2

(
1

α
− L′

2

)−1

(πt − πt+1) ,

which, defining ξ = 1
ν(1−ε)α

(
1− L′α

2

)−1
, results in

πt ≤
(

1− 1

ξ

)t
π0,

which shows the desired result.

E.4 Full Results of the Matrix Factorization Experiment

Tables E.1 and E.2 give the test and train RMSE for the Movielens 1-M recommendation

task, with a random 80/20 train/test split.
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uncoded replication gaussian paley hadamard

m = 8, k = 1

train RMSE 0.804 0.783 0.781 0.775 0.779

test RMSE 0.898 0.889 0.877 0.873 0.874

runtime 1.60 1.76 2.24 1.82 1.82

m = 8, k = 4

train RMSE 0.770 0.766 0.765 0.763 0.765

test RMSE 0.872 0.872 0.866 0.868 0.870

runtime 2.96 3.13 3.64 3.34 3.18

m = 8, k = 6

train RMSE 0.762 0.760 0.762 0.758 0.760

test RMSE 0.866 0.871 0.864 0.860 0.864

runtime 5.11 4.59 5.70 5.50 5.33

Table E.1: Full results for Movielens 1-M, distributed over m = 8 nodes total. Runtime is

in hours. An uncoded scheme running full batch L-BFGS has a train/test RMSE of 0.756 /

0.861, and a runtime of 9.58 hours.

uncoded replication gaussian paley hadamard

m = 24, k = 3

train RMSE 0.805 0.791 0.783 0.780 0.782

test RMSE 0.902 0.893 0.880 0.879 0.882

runtime 2.60 3.22 3.98 3.49 3.49

m = 24, k = 12

train RMSE 0.770 0.764 0.767 0.764 0.765

test RMSE 0.872 0.870 0.866 0.868 0.868

runtime 4.24 4.38 4.92 4.50 4.61

Table E.2: Full results for Movielens 1-M, distributed over m = 24 nodes total. Runtime is

in hours. An uncoded scheme running full batch L-BFGS has a train/test RMSE of 0.757 /

0.862, and a runtime of 14.11 hours.
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[GKK01] Vivek K Goyal, Jelena Kovačević, and Jonathan A Kelner. “Quantized frame
expansions with erasures.” Applied and Computational Harmonic Analysis,
10(3):203–233, 2001.

[GNT06] Leonidas Georgiadis, Michael J. Neely, and Leandros Tassiulas. Resource allo-
cation and cross-layer control in wireless networks. Now Publishers Inc., 2006.

[GS67] J.M. Goethals and J Jacob Seidel. “Orthogonal matrices with zero diagonal.”
Canad. J. Math, 1967.

[GZD15] Kristen Gardner, Samuel Zbarsky, Sherwin Doroudi, Mor Harchol-Balter, and
Esa Hyytia. “Reducing latency via redundant requests: Exact analysis.” ACM
SIGMETRICS Performance Evaluation Review, 43(1):347–360, 2015.

[HAS17] Wael Halbawi, Navid Azizan-Ruhi, Fariborz Salehi, and Babak Hassibi. “Im-
proving distributed gradient descent using reed-solomon codes.” arXiv preprint
arXiv:1706.05436, 2017.

[HK81] Te Sun Han and Kingo Kobayashi. “A New Achievable Rate Region for the
Interference Channel.” IEEE Transactions on Information Theory, 27(1):49–
60, January 1981.

259



[HP04] Roderick B Holmes and Vern I Paulsen. “Optimal frames for erasures.” Linear
Algebra and its Applications, 377:31–51, 2004.

[JW10] Libin Jiang and Jean Walrand. “A distributed CSMA algorithm for throughput
and utility maximization in wireless networks.” IEEE/ACM Transactions on
Networking (ToN), 18(3):960–972, 2010.

[KD15] Can Karakus and Suhas Diggavi. “Opportunistic scheduling for full-duplex
uplink-downlink networks.” In IEEE International Symposium on Information
Theory (ISIT), pp. 1019–1023. IEEE, 2015.

[KD17] Can Karakus and Suhas Diggavi. “Enhancing multiuser MIMO through oppor-
tunistic D2D cooperation.” IEEE Transactions on Wireless Communications,
16(9):5616–5629, 2017.

[KH11] Gerhard Kramer and Jie Hou. “On message lengths for noisy network coding.”
In IEEE Information Theory Workshop (ITW), pp. 430–431. IEEE, 2011.

[KL13] Ashish Khisti and Amos Lapidoth. “Multiple access channels with intermittent
feedback and side information.” In IEEE International Symposium on Informa-
tion Theory Proceedings (ISIT), pp. 2631–2635. IEEE, 2013.

[KSD17a] Can Karakus, Yifan Sun, and Suhas Diggavi. “Encoded distributed optimiza-
tion.” In 2017 IEEE International Symposium on Information Theory (ISIT),
pp. 2890–2894. IEEE, 2017.

[KSD17b] Can Karakus, Yifan Sun, Suhas Diggavi, and Wotao Yin. “Straggler mitiga-
tion in distributed optimization through data encoding.” In Advances in Neural
Information Processing Systems, pp. 5440–5448, 2017.

[KSD18] Can Karakus, Yifan Sun, Suhas Diggavi, and Wotao Yin. “Redundancy tech-
niques for straggler mitigation in distributed optimization and learning.” Sub-
mitted for publication. Preprint available, htttp://arxiv.org., 2018.

[KWD13a] Can Karakus, I-Hsiang Wang, and Suhas Diggavi. “An achievable rate region for
Gaussian interference channel with intermittent feedback.” In Communication,
Control, and Computing (Allerton), 2013 51st Annual Allerton Conference on,
pp. 203–210, Oct 2013.

[KWD13b] Can Karakus, I-Hsiang Wang, and Suhas Diggavi. “Interference channel with in-
termittent feedback.” In IEEE International Symposium on Information Theory
Proceedings (ISIT), pp. 26–30. IEEE, 2013.

260



[KWD15] Can Karakus, I-Hsiang Wang, and Suhas Diggavi. “Gaussian interference chan-
nel with intermittent feedback.” IEEE Transactions on Information Theory,
61(9):4663–4699, 2015.

[LAP14] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. “Scaling
Distributed Machine Learning with the Parameter Server.” In OSDI, volume 14,
pp. 583–598, 2014.

[LCB98] Yann LeCun, Corinna Cortes, and Christopher JC Burges. “The MNIST
database of handwritten digits.”, 1998.

[LCS01] Xiaojun Liu, Edwin K. P. Chong, and Ness B. Shroff. “Opportunistic transmis-
sion scheduling with resource-sharing constraints in wireless networks.” IEEE
Journal on Selected Areas in Communications, 19(10):2053–2064, 2001.

[LKE11] Sung Lim, Young-Han Kim, Abbas El Gamal, and Sae-Young Chung. “Noisy
network coding.” IEEE Transactions on Information Theory, 57(5):3132–3152,
2011.

[LKM15] Jiajia Liu, Nei Kato, Jianfeng Ma, and Naoto Kadowaki. “Device-to-device
communication in LTE-advanced networks: A survey.” IEEE Communications
Surveys & Tutorials, 17(4):1923–1940, 2015.

[LL06] Guoqing Li and Hui Liu. “Downlink radio resource allocation for multi-
cell OFDMA system.” IEEE Transactions on Wireless Communications,
5(12):3451–3459, 2006.

[LLG12] James CF Li, Ming Lei, and Feifei Gao. “Device-to-device (D2D) communication
in MU-MIMO cellular networks.” In IEEE Global Communications Conference
(GLOBECOM), pp. 3583–3587. IEEE, 2012.

[LLP16] Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris Papailiopoulos,
and Kannan Ramchandran. “Speeding up distributed machine learning using
codes.” In IEEE International Symposium on Information Theory (ISIT), pp.
1143–1147. IEEE, 2016.

[LMA16] Songze Li, Mohammad Ali Maddah-Ali, and A Salman Avestimehr. “Funda-
mental tradeoff between computation and communication in distributed com-
puting.” In IEEE International Symposium on Information Theory (ISIT), pp.
1814–1818. IEEE, 2016.

[LSS06] Xiaojun Lin, Ness B Shroff, and Rayadurgam Srikant. “A tutorial on cross-

261



layer optimization in wireless networks.” IEEE Journal on Selected Areas in
Communications, 24(8):1452–1463, 2006.

[LTL06] Pei Liu, Zhifeng Tao, Zinan Lin, Elza Erkip, and Shivendra Panwar. “Coopera-
tive wireless communications: a cross-layer approach.” IEEE Wireless Commu-
nications, 13(4):84–92, 2006.

[LTM12] Sy-Quoc Le, Ravi Tandon, Mehul Motani, and H. Vincent Poor. “The Capacity
Region of the Symmetric Linear Deterministic Interference Channel with Partial
Feedback.” Proceedings of Allerton Conference on Communication, Control, and
Computing, October 2012.

[LV05] Yingbin Liang and Venugopal V Veeravalli. “Gaussian orthogonal relay channels:
Optimal resource allocation and capacity.” IEEE Transactions on Information
Theory, 51(9):3284–3289, 2005.

[LWR15] Ji Liu, Stephen J Wright, Christopher Ré, Victor Bittorf, and Srikrishna Srid-
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