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ABSTRACT OF THE THESIS

The Fundamentals of Tooth Staining

by

Kenneth L. Jones 11
Master of Science in Biology

University of California, San Diego, 2020

Professor Pieter C. Dorrestein, Chair
Professor Kit Pogliano, Co-Chair

Brilliant white teeth is a desire for most Americans today. Currently there is different
whitening products to bring this shine, however the stains themselves do not have structured
origins. Throughout their life, a tooth’s shade can change due to age, unrelated impacts, a
number of oral cavity diseases, and by the products which we consume. Exploring the
consumption of our food products, the chemistry of the oral cavity, and the associating microbial
communities in relation to tooth staining is the focus of this study. In hopes of determining the
chemical compounds that are causing the staining to occur extrinsically (in the enamel) and

intrinsically (in the dentin) within the coronal portion of the tooth. In addition to this goal the

xviil



study aims to assess the differences between teeth that have been stained significantly over time,
versus teeth that have normal natural stain occurrences throughout time. The teeth that have been
stained significantly over time were artificially stained with common staining solutions. Those
staining solutions include: coffee, tobacco, tea, and wine. These solutions have been index and
annotated for comparison to normal naturally stained teeth. 1000 human teeth were used in this
study, which were analyzed using HPLC-MS/MS. Based on the metabolomics analysis,

microbial communities will be analyzed in correlation to the various staining measurements.

XiX



Chapter I

Introduction



A. Importance of Oral Health

The oral cavity is the gateway to understanding a person’s overall health
history through what it can imply. Oral diseases often have an impact on many aspects
of general health including general diseases, which impact the health of the oral
cavity. Poor oral health is preventable, however untreated and unresolved oral diseases
can have a large impact on a person from the disruption of sleep, to tooth loss, as well
as the formation of ulcerations and abscesses '. A common disease that intensifies
poor oral is a diabetes. Diabetes is a disease that plagues Americans and is known to
increase the chances of periodontal disease 2. Along with periodontal disease, dental
caries have become some of the biggest threats to oral health and are a part of the top
most chronic diseases in the United States *. Both of these diseases vary in their
appearance when being discovered within enamel, the outer layer the tooth.

The variation can be related to old age due to age, unrelated impacts, a number
of oral cavity diseases, and by the products which we consume *. Assessing and
discerning the appearance of common disease allows for differences between a healthy
and an unhealthy tooth to be identified. This also improves the ability to discern

specific staining agents from disease.
B. Disease Related Discoloration
Due to the commonality of dental caries and periodontal disease amongst

Americans, it’s imperative to define characteristics of each disease. These characters

will allow for proper characterization of the teeth that will be used in this study.



Dental caries are known to cause internalized discoloration among a tooth’s
structure, which can be internalized by the enamel or by the dentin. This discoloration
can come from a number of reasons.

One aspect of carry discoloration starts as an initial lesion seen as a white spot,
within the tooth. The color differs due the increased porosity of the structure and its
refractive index. The hard arrested legion becomes black due to exogenous stain
sources. The proteolysis-chelation theory of cavity formation has defined this carious
process centered around amino-acid release during proteolysis *.

Other aspects of discoloration come from the sugar-protein reaction, Maillard
reaction (or non-enzymatic browning) and melanin. The Maillard reaction is believed
to have products and intermediate chemicals, which push for this theory. In addition,
Melanin is a possible candidate, however its location has been scattered amongst the
sites of carious teeth deeming it as poor evidence. These two methods have been
difficult to distinguish due to their pigments similarity found in spectroscopy *.

An alternative to these theories would be exogenous co-staining factors. These
factors could be dietary chromogens that are entering into the tooth during the carious
process amongst microbial communities 4. This point will be analyzed and assessed

further through this study.



C. Characterization of Teeth

The 1000 teeth used for this study were collected and prepared by Colgate. The
group received the full set of teeth from three different locations. Those locations
include Rutgers School of Dental Medicine, Oral Surgery groups in the New Jersey
area, and Therametrics. The teeth used in this study were all taken all due to
orthodontic procedures.

All of the teeth were collected and sorted and focused on samples that were of
molar teeth. Molar teeth were used to guarantee that there were high enough amounts
from each sample to be process through LC-MS/MS and 16s Sequencing. Each tooth
was cut to solely sample the crown of each tooth. The root wouldn’t provide
measurable data that would be of interest of the study.

The teeth were labelled and grouped into three different categories. Those
categories include: control, normal teeth, and stained teeth. Control teeth were used as
a whiteness standard for each tooth. Normal Teeth were used as the main sample
group for this study. There were no treatments done to these teeth to keep them as
close to natural as possible. Stained teeth were categorized by the known staining
solutions of wine, coffee, tea, and tobacco. These samples were indexed to identify if
any of the molecules can be traced to normal natural teeth. The staining procedures
are outlined below:

Wine stain: 25 human teeth were, after imaging, placed into a staining apparatus with
a pure wine stain broth. The staining apparatus and broth was placed ina 37 C incubator

and the teeth cycled in and out of the wine stain broth repeatedly for ~ 2 weeks. The



wine stain broth was refreshed every 48 hours. After the staining period, the teeth were
removed, rinsed well, and placed back into 0.1% thymol and refrigerated until they were

shipped for analysis.

Coffee stain: 25 human teeth were, after imaging, placed into a staining apparatus with
10% by weight coffee stain broth. The staining apparatus and broth was placed in a 37
C incubator and the teeth cycled in and out of the coffee stain broth repeatedly for ~ 3
weeks. The coffee stain broth was refreshed every 48 hours. After the staining period,
the teeth were removed, rinsed well, and placed back into 0.1% thymol and refrigerated

until they were shipped for analysis.

Tea stain: 25 human teeth were, after imaging, placed into a staining apparatus with
10% by weight tea stain broth. The staining apparatus and broth was placed in a 37 C
incubator and the teeth cycled in and out of the tea stain broth repeatedly for ~ 3
weeks. The tea stain broth was refreshed every 48 hours. After the staining period, the
teeth were removed, rinsed well, and placed back into 0.1% thymol and refrigerated

until they were shipped for analysis.

Tobacco stain: 25 human teeth were, after imaging, placed into a staining apparatus
with 10% by weight tobacco stain broth. The staining apparatus and broth was placed
in a 37 C incubator and the teeth cycled in and out of the tobacco stain broth repeatedly

for ~ 3 weeks. The tobacco stain broth was refreshed every 48 hours. After the staining



period, the teeth were removed, rinsed well, and placed back into 0.1% thymol and

refrigerated until they were shipped for analysis.

Each tooth within the dataset was characterized by Colgate along 4 staining
scales. These scales include the L, A, B, and WIO scales. The L scale measures colors
from white to black. The A scale measures colors from red to green. The B scale
measures colors from yellow to blue. The WIO scales defines the subjective light and
darkness of the tooth from the perceived eye. These scales were used to define both

extrinsic (enamel) and intrinsic (dentin) stains.

The CIELAB color system is used for measuring tooth color in dentistry. As
described above, the “LAB” represents specific hue scales that measures between two

distinctive colors. The reading for each tooth was measured by an Easy Shade Device.



D. Metabolomic Tools

The main metabolomic analysis computed was done by the Global Natural
Products Social Molecular Networking (GNPS) ecosystem. This metabolomic
interface is described below:

Global Natural Products Social Molecular Networking (GNPS) is a web-based

mass spectrometry ecosystem that aims to be an open-access knowledge base

for community-wide organization and sharing of raw, processed or identified
tandem mass (MS/MS) spectrometry data. GNPS aids in identification and

discovery throughout the entire life cycle of data; from initial data
acquisition/analysis to post publication .

The GNPS interface was the staple of this study and allowed for specific
analysis of the Molecular Network, Feature-Based Molecular Network, and Network

Annotated Propagation. Each tool used in this study is described below.

Molecular Networks are visual displays of the chemical space present in
tandem mass spectrometry (MS/MS) experiments. This approach groups sets
of spectra from related molecules (known as molecular families) even when
the spectra themselves are not identified (do not match to any known
compounds) °.

Molecular Networking was used to differentiation specific clusters that are
represented by the different staining treatment types (Coffee, Wine, Tea, and

Tobacco).



Feature-Based Molecular Networking (FBMN) is a computational method that
bridges popular mass spectrometry data processing tools for LC-MS/MS and
molecular networking analysis on GNPS 7.

Feature-Based Molecular Networking was used to examine specific

metabolites and how they effect each color determining scale.

Network Annotated Propagation (NAP) uses spectral networks to propagate
information from spectral library matching in order to improve in silico fragmentation

candidate structure ranking®.

NAP was used to predict the structures for specific metabolites that aren’t

within the GNPS database and assist in assessing microbial community

interactions from each metabolite.

Statistical Analysis was implemented to notice significant differences within
the dataset, highlight important metabolites, and compare important metabolites

against each other. The Statistical analysis that took place include: PCoA, PLS-DA,

Random Forrest, and Spearman Correlations.

The master table was used to compute the distances using our in-house
analysis platform “clusterApp”, which is compatible with the PCoA generation
software, EMPeror. Canberra and Bray-Curtis dissimilarity distances were used to
express correlations found after data analysis. The data was then normalized using

data normalization with Probabilistic Quotient Normalization(30%)"".


http://dorresteinappshub.ucsd.edu:3838/clusterMetaboApp0.9.1/

The supervised analysis utilizes the information of a priori delineated group to
define the separation between them. Analysis was conducted using the Metaboanalyst
platform'?. Partial Least Squares Discriminant Analysis (PLS-DA) [K] was used to
determine which metabolites drive the differences among the experimental categories
of interest!’.

For the Random Forrest analysis, tables were uploaded to metaboanlyst.ca and
filtered using the interquartile range (IQR). Samples then underwent quantile
normalization and were auto-scaled (mean-centered and divided by the standard
deviation of each variable). The median was used to separate the classifications for

each attribute (Ex: L scale White vs Black).

Spearman coefficient correlations was used as a statistical measure of strength
within the monotonic relationship between the different metabolites and each specific

scale analysis.


https://academic.oup.com/nar/article/46/W1/W486/4995686

E. Research Objectives

My research objective is to explore the fundamental causes of tooth staining
from identifying key chemistry, key microbial communities, and the relationships

amongst the two groups in regards to staining.

10



Chapter 11

Sample Method Optimization
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A. Tooth Collection and Preparation

The tooth collection and preparation process was all managed by Colgate. The
process began with the collection of teeth from Therametric, Oral Surgery groups
around New Jersey, and Rutgers School of Dentistry. Once at Colgate the teeth were
cut at the crown and packaged or stained for further analysis. Teeth were then

measured with the CIELAB color system acquired by an Easy Shade Device.

B. Metabolome Processing

900 Human teeth were washed with cold water and dried with Kimwipes. Teeth
were then powderized in a tissue lyser (30 sec. / 30 hz) in stainless steel jars (10mL)
with stainless steel bead. Each sample was scraped out of the jars using collecting spoon.
The spoon and stainless steel jar w/ ball were cleaned with IPA:H.O (1:1) after each
sample. Tooth powder was transferred to 5ml glass vials and barcoded. Each powdered
tooth was weighed on scales and the mass values were found to range from 0.2 to 1.5 g.
The teeth were then stored at -80°C for bacterial growth prevention before preparation
for metabolomic and sequencing plates. Tooth storage solution was stored in -4°C fridge
for further analysis for specific samples.

For extraction, ~250mg of each tooth powder were plated. A synthetic standard
of hydroxyapatite and control teeth were included in each 96-well deep plate. 49 teeth
with a mass below 350mg were excluded from further genomic sequencing and plated
solely for metabolomic analysis. 88 tooth samples were plated with two hydroxyapatite

controls and two tooth controls for both analyses in separate Eppendorf 2mL 96-well

12



deep plates. Sample were plated in the biohood after cleaning all the surfaces with
isopropanol and an RNase solution. Samples plated for microbial sequencing were
stored in -80°C for further analysis.

For metabolomics the teeth were then extracted with 900uL of
MeOH:H.O:EtOAc (1:1:1) with internal standard 1, sulfadimethoxine, using a
multichannel pipette, vortexed (~10 sec.), sonicated for 90 minutes and extracted
overnight at 4°C. Sample were then centrifuged (2000x rpm) for 20 minutes and
transferred 600 uL to a 2mL 96-well deep plate to undergo centrifugal evaporation in
lyophilizer. Samples were then resuspended using 100ul MeOH:H.O (1:1) with
internal standard 2, sulfachloropyridizine, vortexed for 10 seconds, sonicated for 15
minutes, and centrifuged (2000x rpm) for 20 minutes. An 80uL aliquot of each sample
was then transferred to ThermoScientific 96-well shallow plate with external mix of

standards and subjected to LC-MS/MS analysis.

13



C. Experimental Protocol

Extractlon

Sample Collection Moasturemant Pulverization

of Sample Attributes Sonlcatlon

L
2 LC- MS/MS 16s Sequencing
. Preparation Preparation

X
S
n
Oral Surgery /
Group
le n

Network Data < GNPS__

Rﬂ ndom Forrest

Global Analysis P°°A

Specific Analysis

Statlstlcal
Analysis

Figure 1. Experiment Protocol

Samples were collected from one of three groups, Therametric, Rutgers School of
Dental Medicine, and an Oral Surgery Group. They were then measured and archived
based on their color. Both the extrinsic staining and intrinsic staining were measured
and sent to UCSD to begin the data collection process. The teeth were pulverized
using tissue lyser (30 sec. / 30 hz) in stainless steel jars (10mL) with a stainless steel
bead. Extraction, sonication, and lyophilization, took place to prep for both LC-
MS/MS and 16s Sequencing in 96-well plates.

D. Instrumentation

Reverse-phase liquid chromatography — mass spectrometry was performed
using a Thermo Vanquish UHPLC system coupled to a QExactive Orbitrap mass
spectrometer. Data were acquired using data dependent acquisition (m/z 80-1200),

subsequently fragmenting the five most abundant precursor ions. The teeth were

14



profiled with Prosolia Flowprobe coupled to LTQ Orbitrap XL with ~500mL of 50%
MeOH as extraction solvent used.

The injected samples were chromatographically separated using an Vanquish
UHPLC (Thermo Fisher Scientific, Waltham, MA) controlled by Thermo SII for
Xcalibur software (Thermo Fisher Scientific, Waltham, MA), using a 100 x 2.1 mm
Kinetex 1.7 pM, C18, 100A chromatography column (Phenomenex, Torrance, CA),
40°C column temperature, 0.5 mL/min flow rate, mobile phase A 99.9% water
(J.T.Baker, LC-MS grade) 0.1% formic acid (Thermo Fisher Scientific, Optima
LC/MS), mobile phase B 99.9% acetonitrile (J.T.Baker, LC-MS grade) 0.1% formic
acid (Fisher Scientific, Optima LC/MS), with the following gradient: 0-1 min 5% B, 1-
8 min 100% B, 8-10.9 min 100% B, 10.9-11 min 5% A, 11-12 min 5% B for all samples
and benchmarking solutions except for benchmark 1 where the gradient was as follows:
0-1 min 5% B, 1-4.5 min 100% B, 4.5-5.5 min 100% B, 5.5-5.6 min 5% A, 5.6-6 min
5% B.

MS analysis was performed on an Orbitrap (QExactive, Thermo Fisher
Scientific, Waltham, MA) mass spectrometer equipped with HESI-1I probe sources and
controlled by Xcalibur 3.0 software. The following probe settings were used for both
MS for flow aspiration and ionization: Spray voltage of 3500 V, Sheath gas (N2)
pressure of 35 psi, Auxiliary gas pressure (N2) of 10 psi, ion source temperature of
270°C, S-lens RF level of 50 Hz and Aux gas heater temp. at 440°C.

For orbitrap MS, spectra were acquired in positive ion mode over a mass range

of 100-1500 m/z. An external calibration with Pierce LTQ Velos ESI positive ion

15



calibration solution (Thermo Fisher Scientific, Waltham, MA) was performed prior to
data acquisition with error rate less than 1 ppm. Data acquisition parameters were set as
follows: minutes 0-0.5 were sent to waste; minutes 0.1-12 were recorded with data-
dependent MS/MS acquisition mode. Full scan at MS1 level was performed with
resolution of 35K in profile mode. The 10 most intense ions with 2 m/z isolation window
with m/z 0.5 offset per MS1 scan were selected and subjected to normalized collision
induced dissociation with 30eV. MS2 scans were performed at 17.5K resolution with
max IT time of 60ms in profile mode. MS/MS active exclusion parameter was set to 5.0

S.

Data Processing

The LC/MS raw data files were converted to mzXML format and feature
detection was performed with the MZmine2 software'? The software settings were as
follows. Mass detection was performed with a signal threshold of 1.0E3 for MS1 and
1.0E2 for MS2. For the chromatogram building, the mass tolerance was set to 10 ppm,
the minimum peak time span .01s, and minimum height 5.0E3. For chromatographic
deconvolution, the local minimum search algorithm was used; m/z range for MS2 scan
pairing was set at 0.025Da and RT at 0.1 min. range. The peaks were de-isotoped within
25 ppm m/z and 0.2 min RT tolerances, aligned, gap-filled using the same tolerances
and then filtered to retain only peaks that appear in at least 2 samples with minimum 2

peaks in isotope pattern to create the feature table. Peaks present in any of the blanks

16



were removed from the final feature table unless at least one sample contained the peak

at abundance 3x or above.

The Molecular features (ions) were extracted using mzMine2 software.
MzMine2 is an open source software for mass spectrometry with data analysis. The
MS1-based feature detection was performed using parameters suitable for MS platform
used (Q-Exactive) with the parameters listed in the paragraph above. The Aligned
feature table was then exported with the most important metadata categories for inner
and outer staining, these include the L, A, B, and WIO whiteness measurement system.
Then they were combined in RStudio(R) with the feature table, which was used to create
a master table for further statistical analysis. After several feature tables with single
important metadata categories were exported for further correlation analysis using

metaboanalyst.ca.
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Chapter III

Results
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Figure 2. MS1 based PCoA, Distance Matrices. PQN normalization.

Untargeted data analysis on MS/MS data from teeth extracts, hydroxyapatite controls,
and staining solutions. a) Principal coordinate analysis plot (PCoA) constructed from
MS/MS data and spectral counts as a proxy for signal intensity with binary Jaccard
distance metric. b) and c) PCoA of all samples computed with Canberra and Bray-
Curtis distance metrics respectively.
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The legend from Figure 2 is described below:

The Control group (Red) refers to the group of teeth provided by Colgate as a
preliminary basis to show that the given samples represent a broad basis. The Staining
Solutions group (Blue) refers to the actual staining solutions and agents that were
introduced to the teeth which include three replicates of each wine, tobacco, coffee,
and tea. The Hydroxyapatite group (Orange) contained samples of the compound
hydroxyapatite in powder form, which serves as a negative control against normal
teeth due to its enamel like nature. The Normal group (Green) refers to teeth removed
from individuals without any prior knowledge or bias on the consumption of any of
the staining agents. The solvent group (purple) refers to replicate samples of solvent
used for resuspension/extraction later used for mass spectrometry analysis. The
Stained teeth group (Yellow) refers to 100 teeth that were artificially stained with the

four staining agents that are represented as food.
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Figure 3. MS1 based PCoA Canberra with PQN normalization of L Scale
Untargeted data analysis on MS/MS data from teeth extracts. PCoA of all samples
computed with Canberra distance and color-coded based on L scale. The light blue
color indicates a higher L and whiter teeth. Brown represents a lower L value and
black teeth a) Extrinsic (enamel) and b) Intrinsic (dentin) both show a gradient from
PC1to PC3.
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Figure 4. MS1 based PCoA Canberra with PQN normalization of A Scale
Untargeted data analysis on MS/MS data from teeth extracts. PCoA of all samples
computed with Canberra distance and color-coded based on A scale. The red color
indicates a higher A and a more red hue on the teeth. Orange represents a lower A
value and a green hue on the teeth a) Extrinsic (enamel) and b) Intrinsic (dentin) both
show a gradient of PC3 to PC1.

25



c2 (522 %)

€
hd PC1(7.43%)

a) PC3(4.21 %)

PC2(5.22 %)

(¥

PC1(743%)

b) feswz1m
Figure 5. MS1 based PCoA Canberra with PQN normalization of B Scale
Untargeted data analysis on MS/MS data from teeth extracts. PCoA of all samples
computed with Canberra distance and color-coded based on the B scale. The color
green indicates a higher B and a more yellow hue on the teeth. Light blue represents a
lower B value and a blue hue on the teeth a) Extrinsic (enamel) and b) Intrinsic
(dentin) both show a gradient for PC1 to PC2.
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Figure 6. MS1 based PCoA Canberra with PQN normalization of WIO Scale
Untargeted data analysis on MS/MS data from teeth extracts. PCoA of all samples
computed with Canberra distance and color-coded based on the WIO scale. The grey
color indicates a higher WIO and a more white perception of the teeth. Red represents
a lower WIO value and a darker color tooth is perceived a) Extrinsic (enamel) and b)
Intrinsic (dentin) both show a gradient from PC3 to PCL1.
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The unsupervised statistical analysis consisted of solely normal teeth. Minute
trends can be seen for the A, B, and WIO CIELAB color scales for the analysis,
Figures 4 - 6. A clear trend for the L CIELAB color scale, Figure 3, provides evidence
to look into this color matrix more in-depth. However, with little to no discrepancy
between the extrinsic and intrinsic stains, there’s doubt that there will be major
conflicting metabolites between the enamel and the dentin. Further investigation into

the intrinsic staining was done using spearman correlation analysis.
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Figure 7. Partial Least Square Discriminant Analysis (PLS-DA) of Normal and
Stained teeth. a) 3D plot showing distinct robust separation can be seen between
Normal and Stained teeth (Each dot is a sample) b) Top metabolites (features) driving
separation between normal and stained teeth ¢c) Random Forest results expressing top
contributing metabolites with Mean Decrease Accuracy (MDA)
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Due to the gradient seen in the L scale, further supervised statistical analysis
took place before addressing the rest of the CIELAB color scales. The robust
separation between the normal and stained teeth infers that there are specific
metabolites driving these differences. The top features driving the difference for
stained teeth can be found from the VIP score and MDA scores in Figure 7.
Metabolites 599.247221578 and 211.096155486 are expressed from both the PLS-DA
and Random forest analysis. The features will be explored further with the GNPS

database and via molecular networking.
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Figure 8. Top Staining Metabolites Contributing to Extrinsic L, A, B, WIO Spearman
Correlations.
a) Expresses L scale metabolites 496.338657499109, 334.836023729901, and
524.369195012244 as top metabolites contributing to staining b) Expresses A scale
metabolites 494.244890759038, 348.152696239004, and 494.244937103573 as top
metabolites contributing to staining c) Expresses B scale metabolites
137.045546904433, 159.027509171149, and 165.054462243228 as top metabolites

contributing to staining d) Expresses WIO scale metabolites 171.148788469768,

84.055092319631, and 147.091360929535 as top metabolites contributing to staining
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Figure 9. Top Staining Metabolites Contributing Intrinsic L, A, B, WIO Spearman
Correlations.
a) Expresses L scale metabolites 496.338657499109, 334.836023729901, and
524.369195012244 as top metabolites contributing to staining b) Expresses A scale
metabolites 494.244890759038, 348.152696239004, and 494.244937103573 as top

10

metabolites contributing to staining c) Expresses B scale metabolites
137.045546904433, 159.027509171149, and 165.054462243228 as top metabolites
contributing to staining d) Expresses WIO scale metabolites 171.148788469768,
84.055092319631, and 147.091360929535 as top metabolites contributing to staining
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Defining the top contributing metabolites between each color scale allows for
clear comparison amongst the different metabolites. Metabolites that affect more than
one category are of specific interest to narrow down where this metabolite stems from.
Random Forest analysis provides a threshold value to define the characteristics of a
given staining category. This analysis gives the highest likelihood of a particular

metabolite effecting a specific color stain.
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Figure 10. Extrinsic (Enamel) Random Forest Analysis of the L scale

a) For L values, the Black classification has a higher class error than the White
classification. Despite the discrepancy between black and white, the class errors are
relatively accurate to define these characteristics. b) Metabolites 568.4565620761 and
150.9766260429 had the highest impact on black stains for the L scale
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Figure 11. Intrinsic (Dentin) Random Forest Analysis of the L scale

a) For L values, the Black classification has a higher class error than the White
classification. Despite the discrepancy between black and white, the class errors are
relatively accurate to define these characteristics. b) Metabolites 226.9512080462 and
150.9766260429 had the highest impact on black stains for the L scale
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The OOB error is 0.289
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Figure 12. Extrinsic (Enamel) Random Forest Analysis of the A scale

a) For A values, the Red classification has a slightly higher class error than the Green
classification. Defining red and green was accurate for the A scale. b) Metabolites
396.1298786681, 346.1561206945, and 396.129882532 had the highest impact on red
stains for the A scale
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Figure 13. Intrinsic (Dentin) Random Forest Analysis of the A scale

a) For A values, the Red classification has a slightly higher class error than the Green
classification. Defining red and green was accurate for the A scale. b) Metabolites
149.0594570530, 851.3959124016, and 124.0391866701 had the highest impact on
red stains for the A scale
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Figure 14. Extrinsic (Enamel) Random Forest Analysis of the B scale

a) For A values, the Yellow classification has a higher class error than the Blue
classification. This error less accurately defines the yellow characteristic b)
Metabolites 211.0961554868 and 264.1880079541 had the highest impact on yellow
stains for the B scale
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The OOB error is 0.42
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Figure 15. Intrinsic (Dentin) Random Forest Analysis of the B scale

a) For A values, the Yellow classification has a higher class error than the Blue
classification. This error less accurately defines the yellow characteristic b) Metabolite
188.0702925421 had the highest impact on yellow stains for the B scale
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The QOB error is 0.3
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Figure 16. Extrinsic (Enamel) Random Forest Analysis of the WIO scale

a) For A values, the Dark classification has a higher class error than the Light
classification. This error less accurately defines the dark characteristic slightly b)
Metabolites 485.2600998520 and 245.1387871275 had the highest impact on the
perception of darker teeth for the WIO scale.
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Figure 17. Intrinsic (Dentin) Random Forest Analysis of the WIO scale

a) For A values, the Dark classification has a higher class error than the Light
classification. This error less accurately defines the dark characteristic b) Metabolites
400.2196056167 and 256.1537009791 had the highest impact on the perception of
darker teeth for the WIO scale.
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Table 1. Random Forest Variance of Importance Correlations. Top metabolite
matches with spearman correlations have been highlighted in a hue of orange. The
darker the hue the more importance it has to staining overall.
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Random Forest allowed for the identification of features that contribute
specifically to a particular classification for each color scale, as well as the assessment
of accuracy of each classification. The molecular network further permits the
identification of each metabolite to be assessed within the GNPS database and
compared to molecules of similar composition. It will also allow for the metabolites to
be compared based on each staining treatment that took place.

Supervised analysis allowed for discovery of specific compounds that hold key
correlations to the L scale and extrinsic staining. Though it is not possible to readily
identify these compounds, it is possible to explore the global molecular network to
more closely investigate the chemistry of staining.

Molecular networks are visual displays of the chemical space present in
tandem mass spectrometry (MS/MS) experiments. It represents similarities between
MS/MS spectra as a network of connected nodes. Since structurally similar
compounds tend to produce similar MS/MS patterns, this visualization approach can
highlight sets of spectra from related molecules as connected nodes in molecular
networks. This is possible even when the spectra themselves are not matched to any
known compounds. This may help resolve a fundamental problem in metabolomics
where limited size of existing reference databases lead to low identification/annotation
rates (typically only a few percent) in most untargeted analyses. Also, spectra from the
same compound across dataset can get collapsed (clustered) into a single consensus

spectrum thus reducing redundancy and making data easier to interpret.
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The visualization of molecular networks in GNPS represents each spectrum as
a node, and spectrum-to-spectrum alignments as edges (connections) between nodes.
Nodes can be supplemented with metadata, including library matches or information
that is provided by the user, e.g. as abundance, origin of product, biochemical activity,
hydrophobicity etc., which can be reflected in a node’s size, shape or color®. The
GNPS job can be found at:

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=9180cadafd6740aca203849daed3d9

0b.
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https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=9180cadafd6740aca203849daed3d90b.
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=9180cadafd6740aca203849daed3d90b.

Figure 18. Full molecular network obtained on over 1000 samples.
Single nodes on the right indicate unique consensus MS/MS ions. To be linked
together nodes must a similarity of at least 0.66. In the present plot, each colored node

represents a treatment type of human teeth
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The legend for Figure 18 is described below:

Red representing the control group, Yellow representing the stained group,
Orange representing the hydroxyapatite group, Green representing the normal group,
Purple representing the solvent group, Blue representing the food group, Gray
representing 2 or more of the treatment types appearing, and teal is 3 or more
treatment types appearing in the node. The nodes represented are not shown through
any specific dimensions, but a space in a group. The nodes to the right represent
individual nodes not linked to any other clusters due to low similarity to any other
nodes.

With an overview of the specific clusters that relate to each staining solution, it
is important to better understand the compounds connecting these networks. Network
Annotated Prorogation (NAP) allows for investigation of each specific compound. It
provides in silico predictions that can relate why these compounds have undergone the
transformations that take place.

Investigating nodes and clusters of specific compounds can provide important
information on how specific sample types are chemically linked. In this study, the key
interest is the chemistry of compounds in staining agents. As described above,
chemical similarities are represented by connections within the network. Below we
explore clusters of compounds that are stain-specific clusters to explore their role in
enamel staining in human teeth.

The figures represent Network Annotated Propagation (NAP). The NAP

utilizes computationally in silico predicted structures and merges this information with
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library matches annotations to propose structures for unannotated nodes. After
indexing the major staining compounds from tea, coffee, wine, and tobacco they were
compared to those found from the most influential metabolites in the study. The link to
the NAP generation can be found:

https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=58d42f481d3d4515b99a4d7

99c5c30a3.

The metabolites chosen were based on their variance of importance scores
from random forest analysis. The metabolites within Table 1 highlighted are among
the top contributors to staining. Metabolites 124.03918667 and 150.976626 were too
small for in silico generation. The compounds boxed in blue are unannotated within
GNPS. The compounds in green are annotated by GNPS. The compound in yellow is

the compound discussed for the particular figure.
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https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=58d42f481d3d4515b99a4d799c5c30a3
https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=58d42f481d3d4515b99a4d799c5c30a3

b.

Figure 19. NAP in silico prediction of metabolite 211.096155486837 (Cluster ID:
3215) a. The highlighted metabolite prediction containing an aromatic structure and
carboxylic group. b. The related compounds to this structure are found within its
cluster. Compounds missing in a box are due to a lower level of in silico prediction

being necessary.
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b.

Figure 20. NAP in silico prediction of metabolite 233.078104822626 (Cluster ID:
7060) a. The highlighted metabolite prediction containing deprotonated carboxylic
group and aromatic structure. b. The related compounds to this structure are found
within its cluster.
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Figure 21. NAP in silico prediction of metabolite 245.127930082456 (Cluster ID:
10008) a. The highlighted metabolite prediction containing hemiacetal ketones and a
carboxylic branch. b. The related compounds to this structure are found within its
cluster. The compounds in green boxes are found within the GNPS database and
includes variations of cyclo (tyrosyl-prolyl). The blue node has no known annotations
related to its structure.
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Figure 22. NAP in silico prediction of metabolite 367.172219947675 (Cluster ID:
44951) a. The highlighted metabolite prediction containing several aromatic rings and
hemiacetal ketones. b. The related compounds to this structure are found within its
cluster.
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b.

Figure 23. NAP in silico prediction of metabolite 485.260099852049 (Cluster ID:
66409) a. The highlighted metabolite prediction containing a phosphor-head group
with a 25 carbon fatty chain. b. The related compounds to this structure are found
within its cluster. This cluster has a large network of derivations making it
complicated to annotate. Closely related within the GNPS database include Glu-lle
and SpectralMatchtoPyroGlu-PhefromNIST14. Compounds missing in a box are due
to a lower level of in silico prediction being necessary.
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After confirming the possible chemical structures for each metabolite that had
a high correlation to staining, microbe to metabolite vectorization was the next step in
the process. Microbe to metabolite vectorization (MMVEC) allows the inference of
interactions across multiple omics datasets. MMVEC estimates the conditional
probability that each molecule is present given the presence of a specific
microorganism. After ANOVA analysis, Microbiome Supplementary Figure 4, batch
bias could be found between the three different groups from which the samples came
from. Due to this, it was found that only the Rutgers and Therametric samples were

significant enough to use for the MMVEC analysis.
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The MMVEC analysis provided interesting results about the possible
microbes that have a high co-occurrence to the staining correlated metabolites. The
figures below provide those visualization for some of the most common microbes
found. The downloadable access to this visualization can be found for the Rutgers
dataset in supplemental downloads. The downloadable access the Therametric dataset
can be found in supplemental downloads. These can be drag and dropped into

view.giime2.org.
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Figure 24. Selenamonas within the L scale (Rutgers).
Different Selenamonas genus can be found within the ends of the staining scale for
black and white. The microbial groups are found pointing towards Axis 1 and away

from Axis 3. The L gradient trends away from Axis 2.
*Black is represented by the darker red while the green represents whiter stains.
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Figure 25. Lactobacillus zeae and salvarius within the L scale (Rutgers).

Zeae and Salvarius tend to be found closer to the red points which correlate with
blacker stains. The microbial arrows point away from axis 3 in the same direction as
the red points. The L gradient trends away from Axis 2.
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Figure 26. Veillonella Dispar within the L scale (Rutgers).

Dispar tend to be found closer to the red points which correlate with blacker stains.
Microbial arrows are pointing away from Axis 3. The L gradient trends away from
AXis 2.
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Figure 27. Kingella within the L scale (Rutgers).
The Kingella genus tends to be found closer to the green points which correlate with
whiter stains. The microbial arrow is pointed toward Axis 1. The L gradient trends

away from Axis 2.
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Figure 28. Species within the Therametric dataset on the L scale.

Lactobacillus zeae, Rothia aeria, and Bulleidia moorei (Solobacterium moorei) all
showed to be significant for the metabolites contributing to staining. Moorei and Zeae
have the most influence on black staining while Aeria has an impact on white staining.
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Within the analysis a co-occurrence ranking table was also designed to
correlate the top ten microbes with each metabolite. These tables are found below.
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Table 2. Rutgers Top 10 Co-occurrence Microbe List

The microbial community involved with the seven staining microbes all revolve
around the same few microbes. These microbes include but are not limited to:
Selenomonas, Lactobacillus zeae, Kingella, Lautropia, Treponema, Leptotrichia, etc.

*Microbes in orange are not of the oral microbiome or not defined enough to be relevant.
Microbes green and bolded are of the oral microbiome.
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Table 3. Therametrics Top 10 Co-occurrence Microbe List

The microbial community involved with the seven staining microbes all revolve
around the same few microbes. These microbes include but are not limited to:
Bulleidia moorei, pseudomonas, lactobacillus zeae, etc.

*Microbes in orange are not of the oral microbiome or not defined enough to be relevant.
Microbes green and bolded are of the oral microbiome.
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After exploring the Top Co-Occurance Microbes for both datasets. Further
investigation was done to explore the top anti-correlates of those. These microbes only
came from the Rutgers Dataset due to the low relevance of the Therametrics Dataset.

Axis 2 (30.28 %)

o @ C
Q. O ot

o Mo %

Axis 3 (48785 %) _

Axis 1 (20.87 %)

Figure 29. Capnocytophaga and C. Ochracea within the L scale (Rutgers)
Capnocytophaga and C. Ochracea significantly correlated for the metabolites
contributing to staining. Both highly contributed to black staining and show orange
arrows pointed away from Axis 3. The L gradient is going towards Axis 2 from black

staining to whitening.
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Figure 30. Eikenella within the L scale (Rutgers)

The Eikenella spp. significantly correlated for the metabolites contributing to staining.
It highly contributes to black staining and show a green arrow pointed away from Axis
3. The L gradient is going towards Axis 2 from black staining to whitening.
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Figure 31. Prevotella spp. within the L scale (Rutgers)

The Prevotella spp. significantly correlated for the metabolites contributing to
staining. It highly contributes to black staining and shows an orange arrow pointed
away from Axis 3. The L gradient is going towards Axis 2 from black staining to

whitening.
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Figure 32. Streptococcus spp. within the L scale (Rutgers)
The Streptococcus spp. significantly correlated for the metabolites contributing to

staining. It highly contributes to black staining and shows an orange arrow pointed
away from Axis 3. The L gradient is going towards Axis 2 from black staining to

whitening.
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Table 4. Staining Anti-Correlates 10 Top Co-occurrence Microbe List (Rutgers)
The microbial community involved with the seven staining microbes all revolve
around the same few microbes. These microbes include but are not limited to:
Treponema, Capnocytophaga, Prevotella, Eikenella, Streptococcus, Leptotrichia,
Actinomyces, etc.
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Chapter IV

Discussion
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The unsupervised analysis with Principal Coordinate Analysis (PCoA) allows
visualizing multidimensional data by plotting variance within the data in accordance to
a specific metric in reduced number of dimensions. In the present case, the totality of
detected molecular features for all of the samples in the dataset is being visualized,
where a single point on the plot represents one sample and the closeness of two samples
in space represents greater similarity of their corresponding molecular distributions.
This analysis can be conducted for all detected compounds (MS1-based) or only those
that were selected for MS/MS (MS2-based). In the latter case less information is
available, as only a subset of ions across the entire experiment have been fragmented to
obtain MS2. Figure 2a shows an example of such a plot for all features with MS2 using
binary Jaccard distance. There is a clear separation between treatment categories and
sample types. Although staining solution samples were clustered tightly together, there
was no significant overlap found with the actual stained teeth samples (Figure 2a). The
likely reason for clustering is the overall lower amount of ions originated from those
samples. This indicates that such staining is not entirely representative of in vivo staining
conditions. In total, ~270 consensus nodes are were found to be overlapping between
normal, stained teeth and staining solutions, Supplementary Figure 1. Exploratory
analysis was also conducted for all the same detected features (that is, MS1-based), not
only those with MS2, as shown on Figures 2b and 2c.

As can be seen, when using the Canberra distance, the general trend in separation
is observed by treatment category for PC1 and PC2. Stained teeth clearly form a cluster

compared to normal teeth. Hydroxyapatite control samples clustered separately and
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spread across PC1. Samples of food-derived stains also clustered separately further
along the PC1. A similar trend was observed for the Bray distance metric, which is
based on comparative presence/absence between groups, with the exception of stained
teeth samples to separate further away from the normal teeth. This suggests that the
difference in stained vs. non-stained teeth is driven by acquisition of specific
compounds rather than changes in abundances of common compounds in two groups.
The same data can be colored by a measure different than the group. In particular,
the measures of whiteness are of interest. Plots with coloring according to the L scale
(Scale from White to black measuring +L is more white and -L is more black), the A
scale (Scale from red to green, +A is more red and —A is more green), the B scale (Scale
from yellow to blue, +B is more yellow and -B is more blue), and the W10 scale (Human
perception from Light to Dark teeth, +WIO is more light and -WIO is more dark) are
shown on Figures 3 - 5. The analysis took place for both intrinsic and extrinsic staining
to verify if any significant trends could be seen between the two different surfaces. The
trend that is most obvious and apparent is for the L scale. This can be seen through the
stratification of the samples from PC3 axis to PC1 axis, which have a gradient
corresponding to the L scale values could be observed when using Canberra distance
metric (Figure 3a and 3b). Little to no differences were observed between the extrinsic
and intrinsic plots. This suggests that there’s no difference in compounds that are driving
staining differences between the enamel and dentin.
The unsupervised analysis strongly indicates chemical differences in the stained

teeth compared to normal. Further investigation into which compounds are possibly
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responsible for these differences and underlying chemistry captured by the LC-MS/MS

using supervised approaches.

The supervised analysis utilizes the information of a priori delineated group to
define the separation between them. We have conducted this analysis using the
Metaboanalyst platform®®. Partial Least Squares Discriminant Analysis (PLS-DA) [K]
was used to determine which metabolites drive the differences among the experimental
categories of interest. Random Forrest (RF) ensemble learning method, a different
approach was used to further independently verify the validity of determined
discriminating features.

The supervised analysis using Partial least squares Discriminant Analysis (PLS-
DA) has been carried out for the categories of “Normal” vs. “Stained” teeth outlined by
the metadata (Figure 7). These groups were found to be clearly distinct and the
separation very robust as evidenced by a very high Q2 value of 0.93103. The Q2 value
relates to predictive power of the model to assign samples to the groups and high values
that are close to 1 are indicative of substantial differences among groups. The features
sorted by the variable importance projection (VIP) scores and thus contribute to the
discrimination of these groups are shown on Figure 7b for example. An independent
classification using the ensemble learning approach, random forest (Figure 7c) has been
also conducted. A number of the top features driving the classification do overlap with
the features identified by PLS-DA. The Out Of the Bag (OOB) classification error of
0.00921 for random forest analysis is strongly indicative of major differences among

these two groups.
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An additional category of interest for the staining is the L Scale of whiteness.
Correlation analysis using Spearman (Figure 8, 9) rank correlations have produced a
number of features that largely overlap, but also contain a number of the top features in
Table 1 associated with the “Stained” group from the supervised analyses (Figure 7a-
c). This serves as an independent validation that the compounds that are negatively
associated with whiteness (lower L score) are the same compounds that result in teeth
to be classified as “Stained”. The chemical identity of these compounds was explored
using molecular networking and will be discussed in later materials.

The supervised analysis revealed that there are several features that clearly
discriminate the stained teeth. Interestingly, most of these features were also found to
have strong correlation with the L scale measurements which further implicates these
compounds to staining. Unfortunately, most of the features in Table 1, including the
most discriminant feature from PLS-DA analysis, m/z 599.247221578329 are currently
unidentified. To explore the chemical identities of the staining chemicals, molecular
networks were explored.

Due to the success of the PLS-DA analysis, exploring Spearman correlations for
all of the color scales were analyzed. Few matches could be seen between extrinsic and
intrinsic staining with the different color scales that were explored. Looking at Table 1,
metabolite matches were seen in the L extrinsic color scale. This table was also
compared to the random forest analysis. Due to the relatively small amounts of
metabolite correlations that have occurred, it is inconclusive to state that there is a major

effect of the metabolites on intrinsic staining. The random forest data provided validity
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of the characteristics that were defined of each tooth within the study. Looking at Table
1, most metabolite matches were seen in the L extrinsic color scale and the WIO
perception scale. This hypothesizes that these metabolites may have a correlation with
the black staining (negative L scale) on teeth and their perception on the human eye
(WIO0) to a darker tooth, rather than any effects from the A and B scales. This discovery
leads back into the key metabolites that had significant impact on the study.
Metabolites 124.0391866701, 150.9766260429, and 233.078104822626 were
found to have the most significance. Metabolites 124.0391866701 and 150.9766260429
were too small for in silico prediction so there is no predicted structure to analyze.
Metabolite 233.078104822626 had a predicted structure similar to biotin (Vitamin B7).
Since this is a in silico prediction there is no conclusive data to support this. Therefore,
MS1 data would need to be analyzed to observe possible fragmentation patterns. These
compounds were analyzed and assessed by NAP. Studying the global network there
were many compounds that were defined from different treatments types used.
However, none of the compounds were directly related to one specific staining solution.
Due to newly developed software, microbe to metabolite vectorization
(MMVEC), enables significant contributions to this study. This analysis directly
correlates specific microbes and specific metabolites to metadata features that may be
of interest. MMVEC has shown a significantly more accurate analysis with the
correlations of metabolites than any other correlation methods previously developed®®.

Due to batch bias there we two sets of data that were explored. The correlation to each
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color scale provided the basis of directionality. Color scales A and B can be found in
Supplementary Figures 2-11.

There were four key genus that were involved along with three key species. The
four genus include Laurtropia, Kingella, and Selenomonas. The three key species level
microbes include Lactobacillus zeae, Veillonella dispar, and Bulledia moorei
(Solobacterium moorei). These microbes were of particular interest because they all had
a high co-occurrence with each other the metabolites secreted that contributed highly to
whitening and their relation to periodontal disease. The metabolites may have been

produced from chemical reactions or secreted from a particular microbe or group.

The gram negative, facultative anaerobe Lautropia has only one known oral
species, which is L. mirabilis'®’. L. Mirabilis is known to be involved with subgingival
gingivitis, basic periodontal health, and subgingival biofilms*1°, This interaction could

serve as one of the earliest colonizer when stain vulnerability is develops.

The gram-negative, anaerobic, Kingella genus (Figure 27) includes 6 species
that are found within the oral cavity'’. Kingella oralis has been found to be involved
with healthy and diseased patients of periodontal disease?’. This implies that Kingella

could be another founding member of this colonization.

The gram negative, anaerobic, Selenomonas genus (Figure 24) includes 25

species that are found within the oral cavity. Selenomonas noxia is a known periodontal
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disease bacteria?’. S. sputigena has a generalized role in aggressive periodontal disease
22.

The gram-positive, anerobic Lactobacillus zeae later classified as L. casei and
the facultative anaerobe L. salivarius (Figure 25) are both found within the oral cavity
along with 24 other species® 26, L. casei is found to be mechanically stimulated by
saliva and found within biofilm formation?’. The microbe was also found in patients
with Amelogenesis imperfecta protecting against dental caries. This could imply that a
staining environment is independent of the caries process in general, or under specific
conditions like the Amelogenesis imperfecta environment?®. L. Salivarius has been
involved in controlling periodontitis, dental caries and malodor. This could perhaps be
the microbiome fighting back and recruiting specific microbes to fight off the disease.
It was also involved in effecting epigallocatechin gallate which is a confirmed active
compound in the tea stained samples. This could be the microbe breaking down or re-
constructing the compound into a staining agent 2°.

The gran negative, anaerobic, Viellonella dispar (Figure 26) is one out of 7
within the species. V. Dispar has been known to have early colonizing interactions with
Streptococcus spp. through quorum sensing®:. Often being involved in soft tissues
infections it would make sense to be a microbe involved in the spectrum of periodontal
disease®. It also implies that V.Dispar may contribute to a healthy community fighting
back against periodontal disease and other types of infections. They commonly inhabit

the tongue, carious lesions, and saliva of caries-free individuals 2.
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The gram-positive, obligate anaerobic, Solobacterium moorei, previously
known as B. moorei, is the only oral species within Solobacterium genus (Figure 28).
The species is highly correlated to Halitosis, bad breath 33, The species has been known
to be reduced by chlorohexidine washes, which may contribute to less staining if used
prior to large amounts of plaque build-up, tongue-coating, and gingivitis®*. The
coaggregation of S.moorei appears to be a possible commensal bacteria to disease
within the Therametrics dataset. However, in comparison to the Rutgers dataset,
S.moorei was ranked below the top fifty microbes co-occurring. This makes the microbe
inconclusive to be a member of the whitening microbes.

The Rutgers study appears to give the best depiction of what the staining
microbial community could be comprised of. Investigation into the species level for one
microbe and genus level for nine of the microbes within the staining community. This
includes: Capnocytophaga Ochracea, Eikenella, Prevotella, Streptococcus,
Actinomyces, Fusobacterium, Leptotrichia, Oribacterium, and Treponema,

The gram-negative, facultative anaerobe Capnocytophaga Ochracea, is one of
twenty-two Capnocytophaga spp. known in the oral cavity!’. C. Ochracea is a known
periodontal pathogen and has been known to be involved with most of the genus
involved in the periodontal disease microbial community. This microbe has also been
known to be involved in halitosis 3. This could be the healthy microbes fighting off
these pathogens and release foul smells from their death.

The gram-negative, anaerobes Eikenella spp. has two known oral species?’. The

species has been found in localized primary dentition in a case report®. Further
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investigation into this species would provide significant insight into this microbial
community study. This could imply that the species provides a key function in the
dysbiosis of a non-staining environment.

The gram-negative, obligate anaerobes Prevotella spp. has fifty-one known oral
species'’. Prevotella is known to be involved with halitosis and periodontal disease
communities®. This could imply that Prevotella is a main reason for staining and should
be investigated for species level interactions to test metabolism.

The gram-positive, facultative anaerobes Streptococcus spp. has thirty-nine
known oral species!’. S. mutans is a species known to cause dental caries, it would be
interesting to know whether or not this specific species was involved with tooth staining
as well. It would be interesting to know if either dental caries and periodontal disease
happen independent of each other and recruit these specific microbes to mediate
unhealthy and healthy environments.

The gram-positive, facultative anaerobes Actinomyces spp. has thirty known oral
species!’. Multiple species within this genus are known to be normal members of a
healthy oral environment. It would be interesting to specifically narrow down a species
to see if this was a normal commensal bacteria or pathogenic and furthering periodontal
disease environment in staining conditions.

The gram-negative, anaerobes Fusobacterium spp. has fourteen known oral
species'’. The species has been known to appear in late colonization of oral biofilms®.

Implying that Fusobacterium may serve as a spectator when relating to staining.
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Exploring a specific species of this bacteria could provide more insight into this
implication.

The gram-negative, anaerobes Leptotrichia spp. has twenty-one known oral
species'’. The species is known to be found in both healthy environments as well as
halitosis®®. It has also been known to elevate in levels in diabetic patients, and diabetes
is known to expedite periodontal disease by complicating the metabolic control.
Narrowing down the species would further implicate the relationship of periodontal
disease and tooth staining.

The gram-positive, strict anaerobes Oribacterium spp. has five known oral
species’. Little studies have been done with this species, however it has been known to
be involved with chronic obstructive pulmonary disease (COPD). The study aimed to
connect the group with periodontal disease, however the species decreased in amount,
implying it arises to attempt to develop a healthy environment*!,

The gram-negative, aerobic or microaerophilic Treponema genus has over 50
different species that can be traced back to the oral cavity!’. T. denticola is a known
periodontal pathogen?3. It is also known to be one of the three microbiota found to cause
bone destruction and periodontal disease. This increased effect on the enamel could be
one of the main factors involved in a tooth staining environment?*. Treponema has
species found both in the whitening and staining communities developing this
implication more as well as a staining environment being linked periodontal disease

environments.
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These microbes lead to particular interest of each metabolite and their chemical
make-up through their metabolism. Using cytoscape software, and NAP it was possible
to see the potential candidates in relation to the compounds. Specifically these are
special due to their association with coffee, wine, tea, or tobacco. These metabolites
correlate with previously identified metabolites. However, there may be further
investigations that can explain how the metabolites affect the chemistry of the staining
solutions. Though in silico predictions, these compounds don’t appear to be naturally
occurring in the oral cavity. Thus, further corroborating the hypothesis that this staining

is caused by microbial communities.
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Chapter V

Conclusion and Perspective

&9



The future directions look extremely bright with this study due to the
development of MMVEC analysis. It provides hope that future studies gain a better
understanding of the foods in society that are consumed, and how they are
metabolized within microbial communities in the oral cavity. Staining effects appear
to be most prevalent in the enamel. The dentin holds similar compounds, however not
in high amounts that sway staining. The staining solutions used in the study, do not
hold a significant impact in staining to be seen through normal teeth. Periodontal
microbial communities appear to have the highest impact in staining. Narrowing these
genus down to species level will help to drive this point and further validate this study.
The study hopes to determine if similar compounds can be found in other countries
and continents as well. It would be interesting to see if these effects were to be
influenced due to dental carries, tooth porosity, and erosion — which all have specific
effects on compounds that have been known to stain teeth. It would also be interesting
to see if any linkage to periodontal disease or gingivitis could be made. Malodor
prevalence in relation to these diseases would make for stronger connections between
these different groups. It would be advantageous to use a culture microbe to fight off
pathogens and potentially revive unhealthy environments, which lead to plague

formation, periodontal disease, and tooth staining.

This thesis is coauthored with Aksenov, Alexander, Minich, Jeremiah, and

Lejzerowitz, Franck. The thesis author was the primary author of this material.
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Figure 33 . Sample success from 16S microbiome analysis across sample types.

(a) Katharoseq protocol applied to 10 DNA extraction plates determines that the
sample cutoff criteria is 13175 reads. Thus samples with less than 13175 reads are
excluded from the analysis. (b) 42.7% of tooth samples had at least 13175 reads and
thus were included in the analysis. Read count distributions across sample types as
related to sample cutoff read count (13175 reads)
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Figure 34. Primary drivers of teeth microbiome. a) Source of tooth acquisition is a
primary driver of microbiome (ANOISM R2 0.331, P=0.001) followed by treatment
(ANOISM 0.135, P=0.001). Independent analyses of each tooth source was
conducted. Statistical testing of effects of stained vs. normal teeth for each tooth
source (b) Oral Surgery Group (ANOISM R2=0.310, P=0.001), (c) Therametric
(ANOISM R2=0.089, P=0.001), and (d) Rutgers dental school (ANOISM R2=0.434,
P=0.001). (e) The normal non-stained tooth samples from Rutgers dental school were
also significantly different than the combined stained teeth samples (ANOISM
R2=0.261869, P=0.001).

Tooth source location is a major driver of teeth, thus analyses should be
independent. Stained teeth are very different than unstained teeth across all sampling
sites Rutgers, Oral surgery group, and Therametric.This suggests that staining alone
does not account for the microbial diversity found on the teeth from the primary
‘normal’ samples (samples with missing measurements across teeth stain are
removed). Stained teeth have a different microbial profile and specifically a gradient
of differences across wine, tea, coffee, and tobacco.
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Figure 35. Order Map Tooth samples from all three sources (Therametric, Rutgers,
and Oral surgery group) were analyzed to determine microbes which were associated
with artificial staining procedures (tea, wine, tobacco, coffee). Differentially abundant
sOTUs associated with artificial staining procedures were identified using Calour. The
sOTUs were then collapsed down to the order level to show primary phylogenetic
groupings of these microbes in context to controls in the study.

Overall teeth were most dominated by Pseudomonadales, Actinomycetales,
Clostridiales, Lactobacillales. Normal (non-stained teeth) teeth had higher proportions
of Actinobacteria and several other groups. Artificially stained teeth had higher
proportions of Pseudomonadales, Lactobacillales, and several other orders.
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Table 5. Sample Group Statistical Significance

The Statistical analysis of primary factors (md_teeth_source > staining method
> if its stained) points at tooth source (md_teeth_source) as the most significant factor.
The analyses of staining methods on independent sampling sources shows the Oral
Surgery group (e.g. therametric, oral, rutgers) as the least significant contributor. All
samples within each collection cohort were significantly different than stained teeth.

Table 1. Multivariate statistical analysis of metadata categories driving the tooth microbiome

Generalized_Unifrac |

Sample-subset Sample_size Metadata_category type test_method R2 P-value
All samples n=371 md_teeth_source categorical ADONIS 0.229 0.001
md_stain_treatment_type categorical ADONIS 0.115 0.001
Treatment categorical ADONIS 0.095 0.001
a_astrix continuous ADONIS 0.994 0.006
b_astrix continuous ADONIS 0.994 0.009
|_astrix continuous ADONIS 0.994 0.012
shade_trend continuous ADONIS 0.125
wio continuous ADONIS 0.994 0.006
Therametric n=165 md_stain_treatment_type categorical ANOISM 0.633
Treatment categorical ANOISM 0.089 0.001
Normal (n=85) a_astrix continuous ADONIS 1.000 0.002
b_astrix continuous ADONIS 1.000 0.001
|_astrix continuous ADONIS 1.000 0.001
shade_trend continuous ADONIS 1.000 0.007
wio continuous ADONIS 1.000 0.001
Oral surgery group n=145 md_stain_treatment_type categorical ANOISM 0.548
Treatment categorical ANOISM 0.310 0.001
Normal (n=73) a_astrix continuous ADONIS 0.847
b_astrix continuous ADONIS 0.828
|_astrix continuous ADONIS 0.842
shade_trend continuous ADONIS 0.836
wio continuous ADONIS 0.826
Rutgers dental school n=213 md_stain_treatment_type categorical ANOISM 0.262 0.001
Treatment categorical ANOISM 0.434 0.001
Normal (141) a_astrix continuous ADONIS 1.000 0.001
b_astrix continuous ADONIS 1.000 0.001
|_astrix continuous ADONIS 1.000 0.001
shade_trend continuous ADONIS 1.000 0.001
wio continuous ADONIS 1.000 0.001

Therametric and Rutgers collected teeth had significant differences across the
various staining measures (indicating microbial associations with staining), which is

probably due to a sample size effect.
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Figure 36. Microbial sOTUs associated with staining measures in artificially stained
and normal teeth. Spearman correlations of SOTUs to various staining measures (a*,
b*, I*, and wio). (a) Results from shared sOTU correlates when including all samples
(stained and unstained) from the three locations Therametric, Oral surgery group, and
Rutgers dental school. (b) Shared correlates across the staining measures when only
performing correlations on the treatment ‘Normal’ samples (excludes all stained
teeth). * indicates a sample that was used as a positive control in DNA extraction and
IS not a true positive signal. ** indicates SOTUs which were present as core correlates

in both analyses (all samples and stained only).

This plot organizes the microbial correlates to demonstrate how many
correlates are also shared across the various staining measures. When including all
samples, 7 sOTUs were correlated with all four staining measures while 16 sOTUs
were correlated with all 4 staining measures when using Normal (unstained only).
Note, (shade_trend) did not yield any sOTU correlations.
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Stained (3279): Food (1392):

Figure 37. Venn diagrams of molecular networking results. a) Staining samples and
molecules found uniquely in each staining solution. b) The overlap between regular,
stained teeth, and hydroxyapatite powder. c) The overlap between normal, stained
teeth, and staining solutions (food).
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Figure 38. Selenamonas within the A Scale (Rutgers)

Different Selenamonas genus can be found within the ends of the staining scale for

green and red. The microbial groups are found pointing towards Axis 1 and away from

Axis 3. The A gradient trends away from Axis 2.
*Green is represented by the darker red while the green represents red stains.
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Figure 39. Selenamonas within the B Scale (Rutgers)

Different Selenamonas genus can be found within the ends of the staining scale for
yellow and blue. The microbial groups are found pointing towards Axis 1 and away
from Axis 3. The B gradient trends away from Axis 2.

*Yellow is represented by the darker red while the green represents blue stains.
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Figure 40. Veillonella Dispar within the A scale (Rutgers).

Dispar tend to be found closer to the green points which correlate with green stains.
Microbial arrows are pointing away from Axis 3. The L gradient trends away from
AXis 2.
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Figure 41. Veillonella Dispar within the B scale (Rutgers).

Dispar tend to be found closer to the green points which correlate with blue stains.
Microbial arrows are pointing away from Axis 3. The B gradient trends away from
AXis 2.
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Figure 42. Kingella within the A scale (Rutgers).
The Kingella genus tends to be found closer to the green points which correlate with
red stains. The microbial arrow is pointed toward Axis 1. The A gradient trends away

from Axis 2.
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Figure 43. Kingella within the B scale (Rutgers).
The Kingella genus tends to be found closer to the green points which correlate with
blue stains. The microbial arrow is pointed toward Axis 1. The B gradient trends away

from Axis 2.
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Figure 44. Lactobacillus zeae and salvarius within the A scale (Rutgers). Zeae and
Salvarius tend to be found closer to the green points which correlate with green stains.
The microbial arrows point away from axis 3 in the same direction as the green points.
The A gradient trends away from Axis 2.
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Figure 45. Lactobacillus zeae and salvarius within the B scale (Rutgers). Zeae and
Salvarius tend to be found closer to the green points which correlate with blue stains.
The microbial arrows point away from axis 3 in the same direction as the green points.

The B gradient trends away from Axis 2.
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Figure 46. Species within the Therametric dataset on the A scale.

Lactobacillus zeae, Rothia aeria, and Bulleidia moorei (Solobacterium moorei) all
showed to be significant for the metabolites contributing to staining. Moorei and Zeae
have the most influence ongreen staining while Aeria has an impact on red staining.
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Figure 47. Species within the Therametric dataset on the B scale.

Lactobacillus zeae, Rothia aeria, and Bulleidia moorei (Solobacterium moorei) all
showed to be significant for the metabolites contributing to staining. Moorei and Zeae
have the most influence on yellow staining while Aeria has an impact on blue staining.
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Figure 48. Capnocytophaga and C. Ochracea within the A scale (Rutgers)
Capnocytophaga and C. Ochracea significantly correlated for the metabolites
contributing to staining. Both highly contributed to green staining and show orange
arrows pointed away from Axis 3. The A gradient is going towards Axis 2 from green
staining to red staining.
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Figure 49. Capnocytophaga and C. Ochracea within the B scale
(Rutgers)Capnocytophaga and C. Ochracea significantly correlated for the
metabolites contributing to staining. Both highly contributed to yellow staining and
show orange arrows pointed away from Axis 3. The B gradient is going towards Axis
2 from yellow staining to blue.
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Figure 50. Eikenella within the A scale (Rutgers)

The Eikenella spp. significantly correlated for the metabolites contributing to staining.
It highly contributes to green staining and show a green arrow pointed away from Axis
3. The A gradient is going towards Axis 2 from green staining to red.
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Figure 51. Eikenella within the B scale (Rutgers)
The Eikenella spp. significantly correlated for the metabolites contributing to staining.
It highly contributes to yellow staining and show a green arrow pointed away from
Axis 3. The B gradient is going towards Axis 2 from yellow staining to blue.
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Figure 52. Prevotella spp. within the A scale (Rutgers)

The Prevotella spp. significantly correlated for the metabolites contributing to
staining. It highly contributes to green staining and shows an orange arrow pointed
away from Axis 3. The A gradient is going towards Axis 2 from green staining to red.
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Figure 53. Prevotella spp. within the B scale (Rutgers)

The Prevotella spp. significantly correlated for the metabolites contributing to
staining. It highly contributes to yellow staining and shows an orange arrow pointed
away from Axis 3. The B gradient is going towards Axis 2 from yellow staining to

blue.
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Figure 54. Streptococcus spp. within the A scale (Rutgers)
The Streptococcus spp. significantly correlated for the metabolites contributing to

staining. It highly contributes to green staining and shows an orange arrow pointed
away from Axis 3. The L gradient is going towards Axis 2 from green staining to red.
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Figure 55. Streptococcus spp. within the B scale (Rutgers)

The Streptococcus spp. significantly correlated for the metabolites contributing to
staining. It highly contributes to yellow staining and shows an orange arrow pointed
away from Axis 3. The B gradient is going towards Axis 2 from yellow staining to

blue.

122





